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Abstract. Current adaptively secure identity-based encryption (IBE)
constructions from lattices are unable to achieve a good balance among
the master public key size, secret key size, modulus and reduction loss.
All existing lattice-based IBE schemes share a common restriction: the
modulus is quadratic in the trapdoor norm.

In this work, we remove this restriction and present a new adaptively
secure IBE scheme from lattices in the standard model, which improves
the state-of-the-art construction proposed by Abla et al. (TCC 2021) and
achieves asymptotically better efficiency. More precisely, we achieve the
asymptotically minimal number of public vectors among all the existing
schemes, along with a significantly smaller modulus compared to the
scheme by Abla et al. (TCC 2021). Furthermore, our scheme enjoys the
smallest Gaussian width of the secret key among all existing schemes
and has the same tightness as Abla et al.’s scheme.

We propose a novel cross-multiplication design for our IBE scheme,
along with several novel tools and techniques, including: (a) a homomor-
phic computation algorithm that outputs BGG+-style encoding with two
distinct-norm trapdoors; (b) a sampling algorithm with hybrid Gaussian
outputs; and (c) a partial rerandomization algorithm. These new tools
and techniques are general and could find rich applications in lattice-
based cryptography.

Keywords: Lattice-based cryptography · Identity-based encryption ·
GSW-style encryption · BGG+-style encoding · Sampling algorithm.

1 Introduction

Identity-based encryption (IBE), proposed by Shamir [34] as a way to simplify
public key and certificate management, is a generalization of public key encryp-
tion, where the public key can be an arbitrary string, such as a name, a tele-
phone number, or an email address. Since its first realization proposed by Boneh
and Franklin [8], various IBEs based on bilinear maps [6,7,20,36,37], quadratic
⋆ Corresponding author.
† A preliminary version of this paper is accepted by PKC 2025, this is the full version.
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residues modulo composite [10,15], and lattices [1,2,14,17,21,23,25,38,39] have
been proposed.

Two major security notions, selective security and adaptive security, have
been studied in the literature. The former requires the adversary to choose the
challenge identity before seeing the master public key (mpk), while the latter does
not have this restriction. Adaptive security offers stronger protection and is more
desirable in practical settings. However, realizing this notion is quite challenging,
especially when aiming for efficiency comparable to that of selectively secure
designs in the plain model.

Prior constructions from bilinear groups have achieved this goal using the
powerful dual-system framework [37]. However, it remains uncertain whether the
dual-system framework can be instantiated from other assumptions, particularly
from post-quantum candidates such as lattices. In the post-quantum context, al-
though there are adaptively secure lattice-based IBEs, the current instantiations
are unable to achieve a good balance between mpk size, secret key size, modulus,
and reduction loss, i.e., either with large mpk and reduction loss, small modulus
and secret key, or with small mpk and (almost) tight reduction, yet large mod-
ulus and secret key. (See Tab. 1 for details.) Achieving a good balance among
these aspects is a crucial step toward realizing a practical post-quantum IBE.
In this work, we focus on constructing adaptively secure lattice-based IBE with
compact mpk, small modulus, small secret key size, and tight reduction simulta-
neously in the standard model. Below we discuss the challenges faced by current
approaches and introduce our new ideas.

Challenges in Current Techniques. In Eurocrypt 2010, Agrawal et al. [2] con-
structed an efficient adaptively secure IBE in the standard model. However,
this construction is not compact in the sense that the public parameter con-
tains O(λ) number of basic matrices, where λ is the security parameter. To deal
with this issue, Yamada [38] constructed IBE schemes from lattices based on
the partitioning technique and reduced the number of the public matrices to
O(λ1/τ ), where τ ∈ N is an arbitrary constant. However, these schemes require
a super-polynomial LWE modulus. Subsequently, Katsumata and Yamada [25]
proposed a more efficient IBE scheme from the ring LWE (RLWE) assumption
with asymptotically the same number of public matrices, but only with polyno-
mial modulus. Later, Yamada [39] proposed two new constructions and reduced
the number of the public parameters to ω(log λ) in his second construction. How-
ever, his second construction relies on the Barrington’s Theorem [4] to compute
an NC1 boolean circuit, which can be done in polynomial time in theory yet
would not be expected to be efficient in practice.

Besides, there exists a bootstrapping technique by [13,16] which can trans-
form any selectively secure IBE into an adaptively secure one without blowing
up the mpk at all. However, the resulting scheme is not considered (even close
to) practical as each ciphertext consists of ℓ garbled circuits (ℓ is the bit length
of ID). In a separate line of work, Boyen and Li [12], along with the subsequent
work by Lai et al. [27], presented adaptively secure IBE schemes with (almost)
tight security from lattices. Their constructions follow the Katz-Wang frame-
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work [26] but fail to achieve a compact mpk. Specifically, their constructions
require homomorphic computation of a PRF, which leads to the need for encod-
ing the PRF’s seed into the mpk. Both constructions use a bit-by-bit encoding
that requires O(λ) additional random public matrices in the mpk.

Recently, Abla et al. [1] proposed a more compact IBE scheme (ALWW-IBE)
with only ω(1) ring vectors in the public parameters. Moreover, they further
improved previous works in two aspects: (1) every component in their construc-
tion is explicit, i.e., without relying on Barrington’s Theorem [4] and (2) they
achieved a tighter security reduction. Despite these theoretical advancements,
the construction in [1] still has a distance to practicality. The main drawback of
their construction is that it requires a large modulus (about at least O(n13.5),
where n is the dimension of the underlying ring). This drawback also affects the
total size of the mpk1, the total size of the ciphertext, the running time of the
scheme, and the concrete hardness of the underlying RLWE problem. Specif-
ically, their construction is based on the partitioning technique with a subtle
design of partition function and homomorphic computation in cyclotomic rings.
However, this paradigm involves heavy homomorphic evaluation of the partition
function. What’s worse, the modulus is at least the quadratic of the norm of the
trapdoor after homomorphic evaluation due to the noise re-randomization as
described in [25]. It seems that the existing approach, particularly the noise re-
randomization, inherently induces the modulus to be quadratic of the trapdoor
norm, and thus harshly increases the modulus. This raises a natural question:

Can we remove the quadratic restriction of modulus on the trapdoor
norm, and thus design an adaptively secure lattice-based IBE that inherits
the compactness and tightness of ALWW-IBE, but with small modulus?

1.1 Our Contributions

In this work, we provide an affirmative answer to this question. Particularly,
we remove the quadratic restriction of modulus, and thus obtain an adaptively
secure IBE from lattices in the standard model, with the same compactness and
tightness of ALWW-IBE, but with significantly smaller modulus. The key inno-
vation lies in a novel cross-multiplication design, supported by several novel tools
and techniques. We believe that these tools can find broad applications in other
lattice-based primitives and thus are of general interests. Below we summarize
our two major contributions, and present our new techniques in Sect. 1.2.

– Our IBE scheme, like [1], achieves the asymptotically minimal number of
basic vectors in mpk among all the existing schemes, and as tight as the
ALWW-IBE, but with significantly smaller modulus compared to [1]. Fur-
thermore, our scheme enjoys the smallest Gaussian width of the secret key
among all existing schemes (including [1]). For a detailed overview and com-
parison, please refer to Tab. 1.

1 The number of matrices in mpk is unchanged. But due to a large modulus, the size
of each matrix is large and leads to a large mpk.
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Table 1. Comparison with previous lattice-based IBE constructions with adaptive
security in the standard model.

Scheme
|mpk|
# of
Rk

q vec.♯
RLWE param

1
α = q

σRLWE

Gaussian width
of the skid

|skid|, |ct|
# of

Rk,Rk
q vec.

Reduction cost

[2]+[11] O(λ) Õ(n5.5) Õ(n2) O(1) O(ϵ2/qQ)

[12] O(λ) superpoly(n) Õ(n3) O(1) O(ϵ/λ)

[27] O(λ) O(n8) O(n3.5) O(1) O(ϵ/λ)

[38] O(λ1/τ )⋆ superpoly(n) superpoly(n) O(1) O(ϵτ+1/ℓQτ )

[25] O(λ1/τ ) O(n2.5+2τ ) O(nτ ) O(1) O(λτ−1ϵτ/Qτ )τ+1)

[39] I+[24] ω(log2(λ)) Õ(n5.5) Õ(n2.5) O(1) O(εv+1/Qv)Ξ

[39] II ω(log(λ)) poly(n)† poly(n) O(1) O(ε2/ℓ2Q)

[1] ω(1) O(n11+ 4
κ )‡,♮ O(n4.5+ 2

κ ) O(1) O(ϵ2/Q)∗

Ours ω(1) O(n6.5+ 2
κ )♮ O(n1.5) O(1) O(ϵ2/Q)∗

Notations: |mpk|, |ct|, and |skid| denote the size of the master public key, ciphertext, and secret key
of the IBE. λ, n, q, σRLWE denote the security parameter, ring dimension, modulus, and Gaussian
parameter of RLWE. Q and ε denote the number of key extraction queries and the advantage in
attacking the IBE scheme. All the schemes set the ring dimension n = Θ(λ). To measure the
reduction cost, we show the advantage of the RLWE algorithm constructed from the adversary
against the corresponding IBE scheme, just like [39]. To be fair, we calculate the reduction cost by
employing the technique of Bellare and Ristenpart [5] for all schemes.

♯ Rq = Zq [x]/(x
n + 1) is a polynomial ring, and k = ⌈logb q⌉ where b is a small constant (e.g.,

b = 2) or a polynomial in n (e.g., nv for any real v).
⋆ τ ∈ N is a constant that can be chosen arbitrarily. Since the reduction cost is exponential in τ ,

this value is typically set very small (e.g., τ = 2 or 3).
Ξ v > 1 is a constant that can be set small, depending on the underlying error correcting code.
† poly(n) denotes some fixed but large polynomial. It is hard to determine an explicit bound for

comparison due to the implicit construction of the work.
‡ κ ≥ 1 can be any constant that satisfies n

1
κ > 3 + κ, e.g., 2 or 4, depending on the parameters

of the underlying error correcting code.
♮ Note that [1, Section 3] does their analysis in both the plain model and the CRS model. A smaller

RLWE parameter (Õ(n7.5+κ
4 )) can be achieved in the CRS model. Here, we only compare the

parameters (in [1] and ours) in the plain model. Our analysis in the plain model can be easily
adapted to the CRS model, which results in a smaller RLWE parameter. We refer to Appendix E
for the detailed parameter analysis in both models.

∗ In the ALWW-IBE paper [1], the authors obtain T ′ = T + min{Õ(λ1/κQ/ϵ), O(λ1+3/κ)Qκ+3}
and ϵ′ = O(ϵ/λ1/κQ) using the bit-security framework [31]. Here we analyse their reduction cost
with the most common technique [5] without relying on the bit-security framework. We note
that our IBE could have the same reduction cost as the ALWW-IBE in the bit-security model,
as it contains the same partition function as in the ALWW-IBE. The analysis in the bit-security
model of our IBE is similar to [1, Lemma 5.4] and we omit it in our paper.

– Technically, we propose three novel tools and techniques to obtain our IBE
scheme. They are (a) homomorphic computation outputting BGG+-style
encoding with two distinct-norm trapdoors; (b) sampling algorithm with
hybrid Gaussian outputs; and (c) partial re-randomization. These tools and
techniques are general, not only restricted to ring settings, but also can be
applied to LWE-based IBE as shown in Appendix F. We believe it could find
rich application scenarios in lattice-based cryptography.
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1.2 Techniques Overview

Our IBE follows the framework of the ALWW-IBE and we remove the quadratic
restriction of modulus by using a novel cross-multiplication design with the help
of several novel tools/techniques including a) homomorphic computation out-
putting BGG+-style encoding with two distinct-norm trapdoors; b) sampling
algorithm with (Dr, Dσ)-hybrid outputs; c) partial re-randomization. In this sub-
section, we recap the ALWW-IBE framework and provide a high level overview
of the ideas of our construction.

Recap of ALWW-IBE [1]. For a polynomial ring R = Z[x]/(xn + 1), the
ALWW-IBE construction follows the general framework [2] of constructing lattice-
based IBE which associates each identity id a vector

pk⊤id = [b⊤|F (id)⊤] ∈ R2k
q , (1)

where b ∈ Rk
q is a vector chosen uniformly at random. One of the main technical

contributions of [1] is that they propose a succinct hash function and reduce the
size of the public vectors to ω(1). More concretely, they use the equality test
function Equalβ(x

α) that outputs 1 if α = β and 0 otherwise, and compute the
function F (id) as

F (id) = −cγ +
∑

i∈[t]

∑
j∈[L+1]

H-Equalj(ci) · xf(i,j), (2)

where cγ , {ci}i∈[t] ∈ Rk
q are public vectors, f : [t] × [L + 1] → [n] is a function

related to an error correcting code with position index L, and H-Equalj(ci) is
a homomorphic computation of Equalj(·) from the public vectors {ci}i∈[t]. The
number of the public vectors is ω(1), i.e., t = ω(1). During the security proof,
the reduction algorithm first prepares some random monomials xγ , {xi}i∈[t] ∈ R
and random matrices Rγ , {Ri}i∈[t] ∈ Rk×k with a small spectral norm, and sets
the public vectors by “BGG+-style encoding” form [9] as

c⊤γ = b⊤Rγ + xγg⊤ ∈ Rk
q , c⊤i = b⊤Ri + xig⊤ ∈ Rk

q , (3)

where g = [1|b|b2| · · · |bk−1] ∈ Rk
q is the gadget vector with well-known trapdoor

Tg [29]. Then, the equality test function can be homomorphically computed as

H-Equalj(ci) = b⊤Ri,j + Equalj(x
i)g⊤.

Further, the function F (id) in Eq. (2) can be homomorphically computed as

F (id)⊤ = −
(
b⊤Rγ + xγg⊤

)
+
∑
i∈[t]

∑
j∈[L+1]

(
b⊤Ri,j + Equalj(x

i)g⊤
)
· xf(i,j)

= b⊤
(∑

i,j

Ri,j · xf(i,j) −Rγ

)
︸ ︷︷ ︸

:=Rid

+
(∑

i,j

Equalj(x
i) · xf(i,j) − xγ

)
︸ ︷︷ ︸

:=H(id), invertible

g⊤

= b⊤Rid +H(id)g⊤.
(4)
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The sampling vector for identity id in Eq. (1) is now converted into

pk⊤id = [b⊤|b⊤Rid +H(id)g⊤] ∈ R2k
q . (5)

For any uniformly random u ∈ Rq, the reduction algorithm can sample a short
vector x satisfying pk⊤id · x = u using the public trapdoor Tg if and only if
H(id) ̸= 0. In more detail, we first sample a perturbation2 p ∈ R2k following the
idea of Gaussian convolution by Peikert [32]. Then, by the Gaussian sampling
algorithm [29] and public trapdoor Tg, we can obtain a short vector x̃ such that
g⊤ · x̃ = H(id)−1 · (u − pk⊤id · p) under the condition that H(id) ̸= 0 and H(id)
is invertible. Finally, the secret key for identity id is a short vector x defined as

[b⊤|b⊤Rid +H(id)g⊤]︸ ︷︷ ︸
pk⊤id

·
(
p+

[
−Rid

I

]
· x̃
)

︸ ︷︷ ︸
skid(:=x)

= u.

By the definition of x, the size of x is linear in the norm of the matrix Rid
3. We

also note that x is close to a spherical Gaussian distribution.
The IBE ciphertext of a message m is akin to a dual Regev ciphertext [21,33]

which consists of two parts:

c0 = u · v + e0 +
⌈q
2

⌉
·m ∈ Rq, c1 = pkid · v + e1 ∈ R2k

q ,

where v ∈ Rq is a secret and e0 ← DR,σ0
, e1 ← DR2k,σ1

are some errors.
Note that in the security reduction, the challenge ciphertext can be seen as
(c∗1)

⊤ = [b⊤|b⊤Rid∗ ] · v + e1 because H(id∗) = 0, then the challenge ciphertext
c∗1 can be simulated by a re-randomization4 algorithm as follows:

(c∗1)
⊤ = ReRand

(
[Ik|Rid∗ ],b · v + e′0, σ0,

σ1

2σ0

)
= b⊤[Ik|Rid∗ ] · v + (e′1)

⊤,

where e′0 ← DRk,σ0
and the distribution of e′1 is statistically close to the discrete

Gaussian distribution DR2k,σ1
. For the re-randomization algorithm, it requires

σ1

2σ0
≥ ∥[Ik|Rid∗ ]∥, thus the size of the error e1 ← DR2k,σ1

is linear in the norm
of the matrix Rid∗

5. During the decryption step, the user (who owns the secret
2 We need to take a perturbation, since the output secret key x should follow a spher-

ical Gaussian distribution to ensure that no information about the trapdoor matrix
Rid is revealed.

3 The size of the short vector x̃ depends on the public trapdoor Tg and has a small
norm. The perturbation p acts as a mask for Rid and does not have a noticeable
impact on the overall size of x. So we don’t need to pay attention to them here.

4 On input a vector b+x ∈ Rk, a matrix V ∈ Rk×l, two reals σ0 and σ1 such that σ1 ≥
2σ0 ·∥V∥ and x← DR,σ0 , the re-randomization algorithm ReRand(V,b+x, σ0,

σ1
2σ0

)

outputs b⊤V + (x′)⊤, where the distribution of x′ ∈ Rl is statistically close to the
discrete Gaussian with width σ1.

5 The Gaussian parameter σ0 is only related to the hardness of the RLWE assumption,
not related to Rid∗ , so we don’t consider it here.



Adaptively Secure IBE from Lattices with Asymptotically Better Efficiency 7

key skid := x) can compute

c0 − c⊤1 · x =
⌈q
2

⌉
·m+ e0 − e⊤1 · x︸ ︷︷ ︸

error term

. (6)

To ensure decryption correctness, the modulus q should be larger than the error
term.

As mentioned above, the sizes of the error e1 and the secret key x are both
linear in the norm of the matrix Rid, so the size of error term would be at least
quadratic of the norm of the matrix Rid. Recall that the matrix Rid is gener-
ated by homomorphic computation of the partition function6 H(·) as in Eq. (4),
which itself has a relatively large norm due to the complex circuit of the parti-
tion function. Therefore, the restriction, i.e., the modulus q should be at least
the quadratic of the trapdoor matrix Rid’s norm, leads to large modulus.

Remove the quadratic restriction of modulus. Our goal is to remove the
quadratic restriction of the modulus q on the trapdoor matrix Rid’s norm. At
a high level, our idea can be represented by Fig. 1. Specifically, the error term7

large

,

small large

small

,

large

error error

large

Fig. 1. The error term of ALWW-IBE (left) and ours (right), where ⟨·, ·⟩ represents
vector inner product.

in ALWW-IBE (Eq. (6)) is the inner product of a large error e1 (i.e., linear in
Rid’s norm) and a large secret key x (i.e., linear in Rid’s norm). Our idea is to
design the error term to be the inner product of a (Dσ0

, Dσ1
)-hybrid error with

σ1 ≫ σ0 and a (Dr, Dσ)-hybrid secret key with r ≫ σ8, where Dθ represents
a Gaussian distribution with width θ and (Dθ0 , Dθ1)-hybrid represents that the
first part is sampled according to Dθ0 and the second part is sampled according
to Dθ1 . In our design, the error term is a cross-multiplication, i.e., “small × large
+ large × small”, thus removing the quadratic restriction.

We approach our idea in two parts: (1) obtaining a (Dr, Dσ)-hybrid secret
key; (2) obtaining a (Dσ0 , Dσ1)-hybrid error. Below, we provide some details of
our techniques.
6 We call H(·) as “partition function” since H(id) = 0 if and only if id = id∗.
7 We ignore the term e0 because it only depends on the hardness of the RLWE problem

and it has a small norm.
8 To further shrink the size of the secret key, we only take the Dσ part (small) as the

user’s secret key in our IBE construction. It does not affect the decryption, since
anyone can compute the Dr part (large) after it gets the Dσ part.
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(1) Obtaining a (Dr, Dσ)-hybrid secret key. To achieve this, we first design a se-
ries of homomorphic computation algorithms to output a BGG+-style encoding
that encodes the partition function H(id) and has two trapdoors with distinct
norms. Using such a BGG+-style encoding as our new sampling vector, we design
a new sampling algorithm with (Dr, Dσ)-hybrid outputs.

(1.1) Homomorphic computation outputting BGG+-style encoding with two distinct-
norm trapdoors.

Homomorphic computation of partition function in GSW-style encryption form.
First, instead of setting the public parameters as in Eq. (3), we use the “GSW-
style encryption” form [22] to construct as follows

Cγ = ARγ + xγG ∈ R2×2k
q , C⊤i = ARi + xiG ∈ R2×2k

q , (7)

where Rγ ,Ri ∈ R2k×2k is some random matrices with small spectral norm, G =[
g⊤ 0⊤

0⊤ g⊤

]
∈ R2×2k

q is the public gadget matrix, and A =
[

a⊤

a⊤s+e⊤

]
∈ R2×2k

q is the
public key of the GSW-style encryption scheme, consisting of RLWE samples: a
uniformly random vector a ∈ R2k

q , a secret s ∈ Rq and an error vector e ∈ R2k.
Similar to Eq. (4), the function F (id) can be homomorphically computed by the
public parameters in Eq. (7) as

F (id) = ARid +H(id)G ∈ R2×2k
q . (8)

Note that the function F (id) in Eq. (4) is a BGG+-style encoding of the partition
function H(id) and cannot be decrypted. In contrast, the function F (id) in Eq. (8)
is a GSW-style encryption of the partition function H(id) and is decryptable.

Homomorphic transformation from GSW-style encryption to BGG+-style en-
coding. To generate the sampling vector similar to Eq. (5), we first sample a
uniform vector b ∈ Rk

q , and prepare an additional public vector in the “BGG+-
style encoding” form [9] (similar to Eq. (3)) as

c⊤s = b⊤Rs + s · g⊤,

where Rs ∈ Rk×k is a random matrix with small spectral norm and s ∈ Rq is
the secret key of the GSW-style homomorphic encryption scheme. Then, we use
the decryptable property of the GSW-style ciphertext and do a homomorphic
“incomplete decryption” of the GSW-style ciphertext F (id) in Eq. (8) in two
steps: (1) write the last k columns of the matrix Rid as R̂id ∈ R2k×k, and take
the last k columns of the ciphertext F (id) as

[
ĉ⊤
0

ĉ⊤
1

]
=
[

a⊤R̂id

(a⊤s+e⊤)R̂id+H(id)g⊤

]
; (2)

compute the following equation

F̂ (id)
⊤
= ĉ⊤1 − c⊤s · g−1(ĉ⊤0 ) = ĉ⊤1 − (b⊤Rs + s · g⊤) · g−1(ĉ⊤0 )

= b⊤ · −Rs · g−1(ĉ⊤0 ) + (ĉ⊤1 − s · ĉ⊤0 )

= b⊤ · −Rs · g−1(ĉ⊤0 )︸ ︷︷ ︸
R

+H(id)g⊤ + e⊤R̂id︸ ︷︷ ︸
e⊤
id

= b⊤R+H(id)g⊤ + e⊤id .

(9)
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Note that the real GSW-style decryption first computes ĉ1 − s · ĉ0 and then do
a rounding for the final element to recover the message. Eq. (9) actually does a
homomorphic computation of the first step (This is where our “incomplete de-
cryption” comes from). It homomorphically transforms a GSW-style ciphertext
(Eq. (8)) into a BGG+-style encoding (Eq. (9)) of the same message H(id).

Now we get the sampling vector [b⊤|F̂ (id)
⊤
] for the identity id as follows

pk⊤id = [b⊤|b⊤R+H(id)g⊤ + e⊤id ] ∈ R2k
q . (10)

Note that eid has a large norm (i.e., linear in Rid’s norm), while R is a fresh
matrix and thus has a small norm. Compared to Eq. (5), our new sampling vector
in Eq. (10) has two trapdoors with distinct norms (i.e., small R and large eid),
which allows us to sample a (Dr, Dσ)-hybrid secret key in the next step.

(1.2) Sampling algorithm with (Dr, Dσ)-hybrid outputs. Now we can use our new
vector pkid in Eq. (10) to sample the secret key. Generally speaking, for a given
uniform u ∈ Rq, we design a new sampling algorithm, to sample a small-norm
(i.e., Dσ) vector x ∈ R2k and a large-norm (i.e., Dr, where r ≫ σ) error w ∈ R
such that pk⊤id · x = u+ w.

In more detail, we first sample a perturbation p ∈ R2k that masks the
trapdoor matrix R by Gaussian convolution. Using the trapdoor Tg, we obtain
a short vector x̃ such that g⊤ · x̃ = H(id)−1 · (u− pk⊤id · p) under the condition
that H(id) ̸= 0 and H(id) is invertible. Then, we get a short vector x satisfying

[b⊤|b⊤R+H(id)g⊤ + e⊤id ]︸ ︷︷ ︸
pk⊤id

·
(
p+

[
−R
I

]
· x̃
)

︸ ︷︷ ︸
:=x

= u+ e⊤id · x̃︸ ︷︷ ︸
error

.

Obviously, the error would leak some information about the trapdoor eid. To
solve this problem, a trivial idea is to add a perturbation that masks the trapdoor
eid, just like the perturbation p masking the trapdoor R. Concretely, we first
sample a perturbation h ∈ R and compute u′ = u + h, then follow the same
steps as above except for replacing u with u′, we get

[b⊤|b⊤R+H(id)g⊤ + e⊤id ]︸ ︷︷ ︸
pk⊤id

·
(
p+

[
−R
I

]
· x̃
)

︸ ︷︷ ︸
x

= u+ (h+ e⊤id · x̃)︸ ︷︷ ︸
error

.

It is true that the error would not leak any information about eid, just as x does
not reveal R. However, both x and the error use the same source of randomness,
i.e., x̃, which results in that x and the error both have the same Gaussian
width. This violates our design goal that x and the error have different widths.
Therefore, we introduce a new source of randomness to deal with this issue.
Specifically, we additionally sample a perturbation p̄ ∈ Rk and compute u⋆ =
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u′+e⊤id · p̄, then follow the previous steps except for replacing u′ with u⋆, we get

[b⊤|b⊤R+H(id)g⊤ + e⊤id ]︸ ︷︷ ︸
pk⊤id

·
(
p+

[
−R
I

]
· x̃
)

︸ ︷︷ ︸
x, small

= u+ (h+ e⊤id · (p̄+ x̃)︸ ︷︷ ︸
:=x̄

)

︸ ︷︷ ︸
:=w, large error

.

Then [ x̄x ] =
[
p̄
p

]
+[ I

T ]x̃ where T =
[−R

I

]
. Now both x and x̄ use the same source

of randomness x̃, allowing us to simultaneously guarantee they have the same
width and are independent. Consequently, the source of randomness x̄ in the er-
ror w is unrelated to x, and we conclude that the two outputs (w ∈ R,x ∈ R2k)
are independent and have different Gaussian widths.

We combine the large w and the small x into a (Dr, Dσ)-hybrid secret key.

(2) Obtaining a (Dσ0
, Dσ1

)-hybrid error. To achieve this, we pick an IBE cipher-
text with (Dσ0

, Dσ1
)-hybrid errors. To simulate such a ciphertext in the security

reduction, we run the re-randomization algorithm to generate partial ciphertext
(i.e., the Dσ1

part) and incorporate some tricks.

(2.1) IBE ciphertext with (Dσ0
, Dσ1

)-hybrid errors. Our IBE scheme outputs
ciphertext (c0, c1) where c1 has (Dσ0

, Dσ1
)-hybrid errors. We have that σ1 ≫ σ0

which corresponds to the (Dr, Dσ)-hybrid secret key and follows our idea of
“cross-multiplication”.

c0 = u · v + e0 +
⌈q
2

⌉
·m ∈ Rq, c1 = d ·

[
1

pkid

]
· v +

[
e1
e2

]
∈ R2k+1

q ,

where e1 ← DR,σ0 is a small error and e2 ← DR2k,σ1
is a large error. Note that

we add an invertible element d ∈ Rq to align with the corresponding term in the
security reduction in the next step. Similarly, we modify the input of the secret
key sampling algorithm (in (1.2)) from u to d−1u, thus we have pk⊤id ·x = d−1u+w.

(2.2) Partial re-randomization. In the security reduction, we use the fact that
H(id∗) = 0 and pk⊤id∗ = [b⊤|b⊤R∗ + e⊤id∗ ] (defined in Eq. (10)). To simulate the
challenge ciphertext (c∗1)⊤ = d · [1|b⊤|b⊤R∗+e⊤id∗ ] ·v+[e1|e⊤2 ], a direct approach
is to run the re-randomization algorithm as follows:

(c∗1) = ReRand

([
Ik+1

[
R∗

e⊤
id∗

] ]
, d · [ 1b ] · v + e′0, σ0,

σ1

2σ0

)
= d · [1|b⊤] ·

[
Ik+1

[
e⊤
id∗
R∗

] ]
· v + e′

= d · [1|b⊤|b⊤R∗ + e⊤id∗ ] · v + e′

where the distribution e′ is statistically close to the discrete Gaussian DR2k+1,σ1
.

However, this does not match our desired ciphertext distribution since each
component of the 2k + 1 vector e′ follows the same Gaussian distribution.
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To solve this problem, we first use the re-randomization algorithm to generate
a partial ciphertext:

(c̃∗1)
⊤ =ReRand

([
Ik R∗

0⊤ e⊤
id∗

]
, d · [ b1 ] · v + e′0, σ0,

σ1

2σ0

)
= d · [b⊤|1] ·

[
Ik R∗

0⊤ e⊤
id∗

]
· v + (e′2)

⊤

= d · [b⊤|b⊤R∗ + e⊤id∗ ] · v + (e′2)
⊤.

Then, we concatenate the last element of d·[ b1 ]·v+e′0
9 and the partial ciphertext

c̃∗1, to generate the ciphertext c∗1 as follows:

(c∗1)
⊤ = d · [1|b⊤|b⊤R∗ + e⊤id∗ ] · v + [e′1|e′2],

where e′1 ← DR,σ0
is the last element of the small error e′0 and the distribu-

tion of e′2 is statistically close to the discrete Gaussian distribution DR2k,σ1
. For

the re-randomization algorithm, it requires σ1

2σ0
≥
∥∥∥[ Ik R∗

0⊤ e⊤
id∗

]∥∥∥, thus the error
e2 ∼ DR2k,σ1

is related to the vector eid∗ and has a large norm.

We obtain a (Dσ0
, Dσ1

)-hybrid error, consisting of small e1 and large e2.

Realizing our idea. During the decryption step, the user can compute

c0 − c⊤1 · [−wx ] =
⌈q
2

⌉
·m+ (e0 + e1 · w︸ ︷︷ ︸

small×large

− e⊤2 · x︸ ︷︷ ︸
large×small

). (11)

Compared to the error term in Eq. (6), our error term in Eq. (11) has a cross-
multiplication characteristic, i.e., “small × large + large × small”, thus removing
the quadratic restriction of the modulus q on the trapdoor norm.

2 Preliminaries

Notations. We denote Z,N and R as the set of integers, the set of natural
numbers and the set of real numbers, respectively. We use bold uppercase letters
(e.g., A) to denote matrices, and bold lowercase letters (e.g., a) for column
vectors. We use ∥a∥ to denote the Euclidean norm of vector a and define ∥A∥ :=
sup∥x∥=1 ∥Ax∥. We denote the horizontal concatenation of two vectors a,b by
[a⊤|b⊤]. We use Ã to denote the Gram-Schmidt orthogonalization of A. For a
(quotient) polynomial ring R over Z and a set S ⊂ Z, we denote SR ⊆ R as the
set of elements in R with all coefficients in S. For a positive integer k, let [k]
be the set of integers {0, 1, · · · , k − 1} and [−k, k] := {−k, · · · ,−1, 0, 1, · · · , k}.
We say a function f : N → R is negligible if ∀c > 0,∃λ0 ∈ N,∀λ > λ0, f(λ) <

9 Consider d · [ b1 ] ·v+e′
0 as RLWE samples. We add d ∈ Rq to mask the secret v in the

extra “1” term. Thus, we can view the last element as d · v+ e′1, which constitutes a
single RLWE sample.
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1/λc and we use negl(λ) to denote any negligible function. We use “PPT” to
denote probabilistic polynomial time. For a distribution D, we use d ← D to
denote sampling d according to D and use d ∼ D to denote that d follows the
distribution D. For a set S, we use U(S) to denote the uniform distribution over
S and use s

$← S to denote s ← U(S). For any probabilistic algorithm A, we
use y

$← A(x) as running A with fresh randomness on input x and assigning the
output to y. For any two random variables X and Y with support Ω, denote
their statistical distance as △(X,Y ) = 1

2

∑
s∈Ω |Pr[X = s]− Pr[Y = s]|.

2.1 Identity-Based Encryption (IBE)

Syntax. We recall the standard syntax of IBE [8,34] in the following. An identity-
based encryption scheme Π with identity space ID consists of four PPT algo-
rithms (Setup,KeyGen,Enc,Dec) as follows.
– Setup(1λ): Given the security parameter λ, it outputs the master public key

mpk and the master secret key msk.
– KeyGen(mpk,msk, id): Given (mpk,msk) and an identity id ∈ ID, it outputs

the secret key skid.
– Enc(mpk, id,m): Given the master public key mpk, an identity id ∈ ID, and

a message m, it outputs a ciphertext ct.
– Dec(mpk, skid, ct): Given the master public key mpk, the secret key skid, and

a ciphertext ct, it outputs a message m′ or ⊥.

Correctness. We say an IBE scheme Π is correct, if for all id ∈ ID and all
m in the specified message space, it holds that Pr[Dec(mpk, skid, ct) ̸= m] =

negl(λ), where the probability is taken over the randomness used in (mpk,msk)
$←

Setup(1λ), skid
$← KeyGen(mpk,msk, id) and ct

$← Enc(mpk, id,m).

Adaptive anonymous security. We consider the adaptive anonymous security
notion for IBE as in [39], which implies the adaptive (non-anonymous) secu-
rity considered in [1]. This security is defined by the following game between a
challenger and an adversary A.
Setup: At the beginning of the game, the challenger runs Setup(1λ) to get

(mpk,msk) and sends mpk to A.
Phase 1: A may adaptively make key extraction queries. When A submits id,

the challenger returns skid
$← KeyGen(mpk,msk, id).

Challenge: At some point, A outputs a message µ and an identity id∗, on which
it wishes to be challenged. Then, the challenger picks a random bit coin

$←
{0, 1} and a random ciphertext ct∗1 ← C from the ciphertext space. If coin =

0, it runs ct∗0
$← Enc(mpk, id∗, µ) and gives the challenge ciphertext ct∗0 to A.

If coin = 1, it gives ct∗1 to A.
Phase 2: A continues to make key queries with a restriction that id ̸= id∗.
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Guess: Finally, A outputs a bit ĉoin for coin.
The advantage of A is defined as |Pr[ĉoin = coin] − 1

2 |. We say that the
scheme satisfies adaptively-anonymous security if the advantage of any PPT A
is negligible.

2.2 Lattices and Gaussians

Lattices. An n-dimensional (full rank) lattice Λ ⊆ Rn is the set of all integer
linear combinations of some set of n linearly independent basis vectors B =
{b1, · · · ,bn} ⊆ Rn, Λ = {Bx | x ∈ Zn}. We denote the dual lattice of Λ by
Λ∗ := {y ∈ span(Λ) | ⟨y,x⟩ ∈ Z,∀x ∈ Λ}. For a matrix A ∈ Zn×m

q , define
Λ⊥q (A) := {e ∈ Zm : Ae = 0 mod q}, which is a full-rank m-dimensional integer
lattice. We omit q when it is clear from the context.

Gaussian distributions. The Gaussian function ρ : Rm → (0, 1] is defined as
ρ(x) = exp(−π · ⟨x,x⟩). Applying a linear transformation given by an invertible
matrix B yields ρB(x) = ρ(B−1x) = exp(−π · x⊤Σ−1x), where Σ = BB⊤.
Since ρB is exactly determined by Σ, we also write it as ρ√Σ . For a lattice Λ
and c ∈ span(Λ), the discrete Gaussian distribution DΛ+c,

√
Σ is defined as: for

any x ∈ Λ+ c,

DΛ+c,
√
Σ(x) =

ρ√Σ(x)

ρ√Σ(Λ+ c)
.

When Σ = σ2I for some real σ > 0, we write ρ√Σ , DΛ+c,
√
Σ as ρσ, DΛ+c,σ.

We recall the definition of smoothing parameter of lattices as follows.

Definition 1 ([30], smoothing parameter). For any ϵ > 0, any n-dimensional
lattice Λ, the smoothing parameter ηϵ(Λ) is the smallest real s > 0 such that
ρ1/s(Λ

∗\{0}) ≤ ϵ.

For the discrete Gaussian over lattices, we have the following tail bounds.

Lemma 1 ([25]). For σ > ηϵ(Zn), t ≥ 0, x ∈ Zn, Pre←DZn,σ
[|e⊤x| ≥ t] ≤

2e
−π· t2

∥x∥2σ2 .

Lemma 2 ([30]). For n-dimensional lattice Λ, ϵ ∈ (0, 1
2 ), s ≥ ηϵ(Λ), we have

Prx←DΛ,s
[∥x∥ > s

√
n] ≤ 2−n.

The following lemma can be used to re-establish the discrete Gaussian dis-
tribution after multiplying with a matrix.

Lemma 3 ([25], noise re-randomization). Let q, l,m be positive integers
and σ1 be a positive real satisfying σ1 > max{ηϵ(Zm), ηϵ(Zl)}. Let b ∈ Zm

q be
arbitrary and x chosen from DZm,σ1 . Then for any V ∈ Zm×l and positive real
σ2 > ∥V∥, there exists a PPT algorithm ReRand(V,b + x, σ1, σ2) that outputs
b′⊤ = b⊤V + x′⊤ ∈ Zl

q where the statistical distance of the discrete Gaussian
DZl,2σ1σ2

and the distribution of x′ is within 8ϵ.
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2.3 Rings and Ideal Lattices

Rings. In this paper, we consider the polynomial ring R := Z[x]/(xn +1) where
n (the degree of R) is a power of 2. Any element a ∈ R can be denoted as

a =
n−1∑
i=0

aix
i, where ai ∈ Z. For any prime integer q, we denote Rq as R/qR =

Zq[x]/(x
n + 1) and R×q as the set of invertible elements of Rq.

Coefficient Embedding. We define a coefficient map ϕ : R → Zn that sends a ring
element a =

∑n−1
i=0 aix

i ∈ R to its coefficient vector a = [a0| · · · |an−1]⊤ ∈ Zn.
Furthermore, we can define another map Rot : R → Zn×n that sends a ∈ R to
a matrix in Zn×n such that the i-th row is ϕ(a · xi−1 mod (xn + 1))⊤ ∈ Zn. We
can extend the maps ϕ and Rot to ring vectors and matrices. The norms of ring
matrices (or vectors) are defined by their corresponding coefficient embedding
matrices (or vectors), i.e, for any A ∈ Rs×t, ∥A∥ := ∥Rot(A)∥. The Gram-
Schmidt orthogonalization of ring matrices is defined analogously, i.e., for any
A ∈ Rs×t, Ã := R̃ot(A).

Discrete Gaussian over rings. For Σ = BB⊤ where B is an invertible matrix
over R, we denote DRk,

√
Σ as the distribution of sampling x ← DZnk,

√
Σ and

output ϕ−1(x) ∈ Rk. When Σ is a matrix over R[x]/(xn + 1), we use the no-
tation DRk,

√
Σ to denote DRk,Rot(

√
Σ), where Rot can be naturally extended to

R[x]/(xn + 1).
We extend Lemma 1 to the ring setting via the following lemma.

Corollary 1 (Corollary of Lemma 1). For positive interger k, σ > ηϵ(Znk),

real number t ≥ 0, x ∈ Rk, we have Pre←DRk,σ
[|ϕ(e⊤x)j | ≥ t] ≤ 2e

−π· t2

∥x∥2σ2 .

The proof of Corollary 1 is trivial and we omit it due to space limit.

Lemma 4 ([18], Fact 6). For a positive integer ρ and a matrix R uniformly
chosen from [−ρ, ρ]s×tR , there exists a constant C (1 < C < 2) such that for any
positive number ω, we have Pr[∥R∥ ≥ Cρ

√
n(
√
s+
√
t+ ω))] ≤ 2e−πω

2

.

Lemma 5 ([25], Regularity lemma). Let n be a power of two, q ≡ 3 mod 8

be a prime and l, k, ρ be positive integers that ρ < 1
2

√
q/n. For A

$← Rk′×k
q and

R
$← [−ρ, ρ]k×lR , we have △((A,AR), (A, U(Rk′×l

q ))) ≤ l
2 ·
(

qk
′

(2ρ+1)k

)n/2
.

Ring learning with errors. The Learning With Errors (LWE) problem was intro-
duced by Regev [33] and we will use the ring version of it, namely RLWE [28].

Definition 2 ([28], RLWE). For positive integers n = n(λ), k = k(n), a
prime integer q = q(n) > 2, an error distribution χ = χ(n) over R, and an
algorithm B, consider the experiment where a secret bit coin $← {0, 1} is chosen
and then B({(ui, yi)}ki=1) is called when coin = 0, B({(ui, ui ·v+ei)}ki=1 is called
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when coin = 1 where u1, · · · , uk, y1, · · · , yk, v
$← Rq and e1, · · · , ek

$← χ. Finally,
B outputs a bit coin′ and B wins the experiment if coin′ = coin. The advantage of
B is defined as |Pr[coin′ = coin]− 1

2 |. We say the RLWEn,k,q,χ assumption holds
if the advantage of any PPT B is negligible.

We note that the RLWE problem is at least as hard as some worst-case lattice
problem. We refer to Lemma 23 for details.

2.4 Lattice Trapdoor Over Rings and Gaussian Sampling

We recall the public gadget and its trapdoor defined in [29] and related lemmas.

Definition 3 ([29]). For positive integers b and k ≥ k′ = ⌈logb q⌉, the public
gadget vector is defined as g := [1|b|b2| · · · |bk′−1|0⊤]⊤ ∈ Rk

q , and there is a
publicly known matrix Tg such that Rot(Tg) ∈ Znk×nk is a basis of the lattice
Λ⊥(Rot(g⊤)) and ∥T̃g∥ ≤

√
b2 + 1.

Lemma 6 ([1]). For integers k, q, b satisfying the requirements of Def. 3, on
input a vector u ∈ Rk

q , there exists a deterministic polynomial-time algorithm
g−1(·) which outputs the matrix R = g−1(u⊤) such that R ∈ [−b, b]k×kR , g⊤ ·R =
u⊤ and ∥R∥ ≤ nkb.

For the G matrix defined in [29], we have the following corollary of Lemma 6.
We note that Lemma 6 and Corollary 2 can also hold in the Zq setting, we refer
to Appendix A for details.

Corollary 2. For the gadget matrix G =
[
g⊤ 0⊤

0⊤ g⊤

]
∈ R2×2k

q , on input a matrix

U ∈ R2×2k
q , there exists a deterministic polynomial-time algorithm G−1(·) which

outputs the matrix R = G−1(U) such that R ∈ [−b, b]2k×2kR , G · R = U and
∥R∥ ≤ 2nkb.

Next, we recall a general trapdoor generation method in the ring setting as
defined in [1] together with some useful lemmas for the trapdoor pair.

Lemma 7 ([1]). For positive integers ρ, q such that ρ < 1
2

√
q/n, k ≥ 2 logρ q,

there exists a polynomial time algorithm TrapGen(n, k, ρ, b, q) that outputs a vec-
tor b ∈ Rk

q and a matrix Tb ∈ Rk×k, where Rot(b⊤) ∈ Zn×nk is a full-rank
matrix and Rot(Tb) ∈ Znk×nk is a basis of Λ⊥(Rot(b⊤)), such that b is sta-
tistically close to U(Rk

q ) and Rot(b⊤) ∈ Zn×nk
q has full (column) rank, and

∥T̃b∥ ≤ O(bρ
√
n logρ q).

Lemma 8 ([21], adapted to the ring setting). For a trapdoor pair (b,Tb) ∈
Rk

q ×Rk×k satisfying b⊤ ·Tb = 0⊤ mod q and Rot(b⊤) ∈ Zn×nk is a full-rank

matrix, σ ≥ ηϵ(Znk) · ∥T̃b∥ and a given target u $← Rq, there exists a preimage
sampling algorithm SamPre(b,Tb, u, σ) that outputs a short vector x such that
b⊤ · x = u mod q and the distribution of x is statistically close to DRk,σ.
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Lemma 9 ([21], adapted to the ring setting). For a trapdoor pair (b,Tb) ∈
Rk

q ×Rk×k satisfying b⊤ ·Tb = 0⊤ mod q and Rot(b⊤) ∈ Zn×nk is a full-rank
matrix, and let ϵ ∈ (0, 1

2 ) and σ ≥ ηϵ(Znk) · ∥T̃b∥. Then, for x ← DRk,σ, the
distribution of the syndrome u = b⊤ · x mod q is statistically close to uniform
distribution over Rq.

Finally, we recall the following lemma about perturbation of non-spherical
Gaussians, which originates from [32].

Lemma 10 ([19,29,40], adapted to the ring setting). For T ∈ Rm×k, σ2 ≥
(s2+η2ϵ (Znk)) · (∥T∥2+1), Σp = σ2Im− s2TT⊤, the following two distributions
are statistically close:
– sample z← DRk,s, p← DRm,

√
Σp

, output p+Tz;

– output x← DRm,σ.

2.5 Homomorphic Encryption and Homomorphic Computation

Here, we describe the GSW-style [22] homomorphic encryption scheme over ring
elements and δ-expanding homomorphic computation.

The Ring-GSW homomorphic encryption scheme. We first recall the Ring-GSW
homomorphic encryption scheme in [22], which consists of six algorithms (Setup,
KeyGen,Enc,Dec,Add,Mul).
– Setup(1λ): on input the security parameter λ, do:

• set the ring dimension n := n(λ) which is a power of 2, the modulus
q := q(n), the base b := b(n), the positive integer ρ := ρ(n), k := ⌈logb q⌉,
and the noise distribution χ over R.

• output the public parameter pp := (n, q, b, ρ, k, χ). We assume that pp is
an input to all the following algorithms.

– KeyGen(pp): on inputs the public parameter pp, do:

• pick a
$← R2k

q , s $← Rq, e← χ2k.

• set the encryption key ek := A =
[

a⊤

a⊤s+e⊤

]
, the decryption key dk := s.

– Enc(ek,m): on input encryption key ek := A, a message m ∈ {0, 1}R, do:

• sample a random matrix R
$← [−ρ, ρ]2k×2kR .

• set the public gadget matrix G =
[
g⊤ 0⊤

0⊤ g⊤

]
∈ R2×2k

q .

• output the ciphertext C = AR+mG ∈ R2×2k
q .

– Dec(dk,C): on input the decryption key dk and a ciphertext C, takes the
last column of ciphertext and split it into two elements (c0, c1), do:

• compute
⌊

1
bk−1 · (c1 − c0 · s)

⌉
.
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– Add(C1,C2): on input two ciphertexts C1,C2, output:

CAdd = C1 +C2 = A(R1 +R2) + (m1 +m2)G.

– Mul(C1,C2): on input two ciphertexts C1,C2, output:

CMul = C1 ·G−1(C2) = (AR1 +m1G) ·G−1(AR2 +m2G)

= A
(
R1 ·G−1(AR2 +m2G) +R2m1

)
+ (m1m2)G.

The following definition expresses the quality of the homomorphic evaluation
by the factor δ, which is useful in the noise analysis of the IBE scheme.

Definition 4 ([39], δ-expanding evaluation). Let k be a natural num-
ber. We say that the deterministic algorithms (PubEval,TrapEval) as in are δ-
expanding for a function family F = {f : X t → Y} where X ,Y ⊂ R if they are
efficient and satisfy the following properties:
– PubEval({Ci ∈ R2×2k

q }i∈[t], f ∈ F) = Cf ∈ R2×2k
q

– TrapEval(A ∈ R2×2k
q , {Ri ∈ R2k×2k}i∈[t], {zi}i∈[t]}, f ∈ F) = Rf ∈ R2k×2k

for z = [z1| · · · |zt]⊤ ∈ X t. We require the following holds:

PubEval({ARi + ziG}i∈[t], f) = ARf + f(z)G,

and we have ∥Rf∥ ≤ δ ·maxi∈[t]{∥Ri∥}.

3 Homomorphic Computation Outputting BGG+-style
Encoding with Two Distinct-norm Trapdoors

In TCC 2021, Abla et al. [1] proposed a specific equality test function and a
succinct partition function (using the equality test function as a sub-function),
which can be homomorphically computed using ω(1) public vectors. In this sec-
tion, we first homomorphically compute the equality test function and the par-
tition function in the GSW-style encryption form (defined in Sect. 2.5). By the
decryptable property of the GSW-style ciphertext, we design an incomplete de-
cryption function to homomorphically transform the GSW-style encryption to a
BGG+-style encoding (defined in Def. 9), which has two trapdoors with distinct
norms.

3.1 Homomorphic Computation of Equality Test function in
GSW-style Encryption Form

As the introduction mentions, this work focuses on the cyclotomic rings of
power-of-two, which have simpler mathematical structures. Let R = Z[x]/Φm(x)
be the m-th cyclotomic ring, modulus q be co-prime to m, and Rq = R/qR. For
this setting, we have Φm(x) = xn + 1 where n = φ(m) = m/2.
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Definition 5 (Equality test function). Define function Equalβ(·) parame-
terized by β ∈ [m] as follows: on input xα ∈ R, the function Equalβ(x

α) outputs
1 if α ≡ β mod m and 0 otherwise.

In [1], the authors provide algorithms to homomorphically compute the equal-
ity test functions and analyze the expansion factor of their algorithms. We adapt
their algorithms to our Ring-GSW homomorphic encryption setting and provide
new algorithms (PubEvalE,TrapEvalE) in Construction 2. Due to space limit, we
put our algorithms in Appendix B. We bound the expansion factor of our algo-
rithms with the following theorem.

Theorem 1. The algorithms (PubEvalE,TrapEvalE) in Construction 2 are 2mn(kb)2-
expanding with respect to the function family {Equalβ}β∈[m].

The proof of this theorem is an adaptation of the proof in [1]. Due to space
limit, we put the proof in Appendix B.1.

3.2 Homomorphic Computation of Partition function in GSW-style
Encryption Form

In this subsection, we first recall the definition of the partition function and
the partition function family10 in [1] that will be used in our IBE construction.

Definition 6 ([1], partition function). Let p, t, L, η,m, n be integers such
that tp ≤ n, m = 2n, L + 1 ≤ mη11; ECC : D → ZL

p be a function12, whose
image is indexed by {1, · · · , L} and ECC(z)[0] = 0 for every z ∈ D. For any
(α,β) ∈ [L + 1]t × Zt

p, the partition function HR,t
α,β : D → R as HR,t

α,β(z) :=∑
i∈[t](x

ip+ECC(z)[αi] − xip+βi).

Abla et al. [1] gave another form of the partition function for homomorphic
computation as follows.

Definition 7 ([1]). Let p, t, L, η,m, n be integers such that tp ≤ n, m = 2n,
L+1 ≤ mη where numbers in [L+1] can be represented in m-ary; ECC : D → ZL

p

be a function whose image is indexed by {1, · · · , L} and ECC(z)[0] = 0 for every
z ∈ D. For each j ∈ [L+1], denote j’s m-ary representation as (j[0], · · · , j[η−1]).
Let R := Z[x]/(xn +1). For any z ∈ D, on input ({αi,i′}i∈[t],i′∈[η] ∈ [m]t×η, β̃ ∈
Rq), the partition function Gz is defined as

Gz({αi,i′}i∈[t],i′∈[η], β̃) := −β̃+
∑

i∈[t],j∈[L+1]

 ∏
i′∈[η]

Equalj[i′](x
αi,i′ )

·xip+ECC(z)[j].

10 We provide some supplementary notes about the “partition” property in Ap-
pendix B.2.

11 Note that m, η and the relationship L+1 ≤ mη are actually not used in this defini-
tion. We keep them in this definition because they will be used in another form of
the partition function as in Def. 7.

12 In [1], ECC is an error correcting code with relative distance Υ . Here we consider a
more general definition for simplicity.
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Note that the function defined in Def. 6 and Def. 7 can be equal for certain
parameters. More precisely, when {αi,i′}i′∈[η] is the m-ary representation of αi

and β̃ =
∑

i∈[t] x
ip+βi , we have that HR,t

α,β(z) = Gz({αi,i′}i∈[t],i′∈[η], β̃). We put
the full derivation process of this equation into Appendix B.3.

Definition 8 ([1], partition function family). For any t′ ∈ [t], the class
HR,t,t′ is defined as

HR,t,t′ =
{
HR,t

α,β : α′ ∈ ([L+ 1]\{0})t
′
,β′ ∈ Zt′

p ,α
⊤ = (α′⊤,0⊤),β⊤ = (β′⊤,0⊤)

}
,

where 0⊤ = (0, · · · , 0) ∈ Zt−t′
p , i.e., padding 0’s to match the dimension t.

Furthermore, define HR,t = ∪t′∈[t]HR,t,t′ .

In [1], the authors provide algorithms to homomorphically compute this par-
tition function and analyze the expansion factor of their algorithms. We adapt
their algorithms to our Ring-GSW homomorphic encryption setting and provide
new algorithms (PubEvalG,TrapEvalG) in Construction 3. Due to space limit,
we put our algorithms in Appendix B. We bound the expansion factor of our
algorithms with the following theorem.

Theorem 2. For parameters as stated in Def. 6, and assuming the underlying
algorithms (PubEvalE,TrapEvalE) are δ-expanding for {Equalj}j∈[m], the algo-
rithms (PubEvalG,TrapEvalG) in Construction 3 are (L+1)t·η ·2nkb·δ-expanding
with respect to the function family {Gz}z∈D.

The proof of this theorem is an adaptation of the proof in [1]. Due to space
limit, we put the proof in Appendix B.4.

3.3 Homomorphic transformation from GSW-style encryption to
BGG+-style encoding

In this subsection, we first recall the BGG+-style encoding in [9]. Then, we
design an incomplete decryption function for a GSW-style ciphertext and its ho-
momorphic computation algorithm. Specifically, this homomorphic computation
algorithm takes in a GSW-style ciphertext for some message m and transforms
it into a BGG+-style encoding of m with some additional errors (with the help
of a BGG+-style encoding for the decryption key s).

First, we recall the BGG+-style encoding over ring elements.

Definition 9 ([9], BGG+-style encoding). Given a public vector b ∈ Rk
q

and a positive integer ρ, to encode α ∈ R, we choose a random small-norm
matrix Rα

$← [−ρ, ρ]k×kR , and define the encoding as c⊤ := b⊤ ·Rα + α · g⊤.

Then, we give our new definition of the incomplete decryption function.
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Definition 10 (Incomplete decryption function). On input a GSW-style
ciphertext (as in Sect. 2.5) C ∈ R2×2k

q with
[
c⊤
0

c⊤
1

]
as the last k-columns and

the corresponding decryption key s ∈ Rq, the incomplete decryption function is
defined as D̃ec(C, s) := c1 − s · c0.

Next, we provide homomorphic computation algorithms for D̃ec and analyze
the expansion bound.

Construction 1 On input a GSW-style ciphertext (as in Sect. 2.5) Cm =
[

a⊤

a⊤s+e⊤

]
·

Rm + m · G for m ∈ R and a BGG+-style encoding (as in Def. 9) c⊤s =
b⊤ · Rs + s · g⊤ for s ∈ R, we construct (EvalPub,EvalTrap, EvalError) for the
incomplete decryption function D̃ec as follows.
EvalPub(Cm, cs): output c⊤1 − c⊤s · g−1(c⊤0 ), where

[
c⊤
0

c⊤
1

]
is Cm’s last k-columns.

EvalTrap(Rs,Cm): output −Rs·g−1(c⊤0 ), where c0 is the vector defined in EvalPub.
EvalError(e,Rm): output e⊤ · R̂m, where R̂m is the last k-columns of Rm.

Theorem 3. In the algorithms (EvalPub,EvalTrap,EvalError) for the incomplete
decryption function D̃ec, the 2-norm of the output of the EvalTrap is bounded
by nkb · ∥Rs∥, the 2-norm of the output of the EvalError is bounded by ∥e∥ ·∥Rm∥.
Proof. It is easy to see that

c⊤1 − c⊤s · g−1(c⊤0 ) = c⊤1 − (b⊤ ·Rs + s · g⊤) · g−1(c⊤0 )
= b⊤ · (−Rs) · g−1(c⊤0 ) + (c⊤1 − s · c⊤0 )

= b⊤ · (−Rs) · g−1(c⊤0 )︸ ︷︷ ︸
EvalTrap

+m · g⊤ + e⊤ · R̂m︸ ︷︷ ︸
EvalError

.

By Lemma 6, we have ∥ −Rs · g−1(c⊤0 )∥ ≤ nkb · ∥Rs∥. By the definition of R̂m

as in EvalError algorithm, we have ∥e⊤ · R̂m∥ ≤ ∥e∥ · ∥R̂m∥ ≤ ∥e∥ · ∥Rm∥.

4 Sampling Algorithms with (Dr, Dσ)-Hybrid Outputs

In this section, we follow the idea of the sampling algorithms in [2] and design
new sampling algorithms with (Dr, Dσ)-hybrid outputs. Due to space limitation,
we recall the sampling algorithms from [2] in Appendix C.1.

Our sampling algorithm would like to obtain (w,x) which is a (Dr, Dσ)-
hybrid pair where r ≫ σ, satisfying

f⊤x = u+ w mod q, (12)

for any given uniformly random u ∈ Rq. The vector f is

f⊤ = [b⊤|b⊤R+ yg⊤ + e⊤] ∈ R2k
q (13)

where b ∈ Rk
q , R ∈ Rk×k is a matrix with small entries, e ∈ Rk is a vec-

tor with (relatively) large entries, y ∈ R×q is an invertible element, and g =

[1|b| · · · |bk−1]⊤ ∈ Rk
q is the specific gadget vector as defined in Def. 3, whose

trapdoor Tg is publicly known.



Adaptively Secure IBE from Lattices with Asymptotically Better Efficiency 21

4.1 Our New Sampling Algorithms

Our sampling algorithms with (Dr, Dσ)-hybrid outputs consist of two parts:
SampleLefthybrid and SampleRighthybrid.

Let (b,Tb) ∈ Rk
q ×Rk×k be a trapdoor pair satisfying the requirements of

Lemma 7 and SamPre be the algorithm in Lemma 8. Consider the following two
algorithms.

SampleLefthybrid(b, c ∈ Rk
q ,Tb ∈ Rk×k, u ∈ Rq, σ, r ∈ R)

– sample w ← DR,r,x2 ← DRk,σ, set ũ = u+ w.
– run x1 ← SamPre(b,Tb, u

′, σ) where u′ = ũ− c⊤x2.
– output (w,x = [ x1

x2
]).

SampleRighthybrid(b,g ∈ Rk
q , e ∈ Rk,Tg,R ∈ Rk×k, y ∈ R×q , u ∈ Rq, σ, s, r ∈ R)

– sample h← DR,
√
Σh

where Σh := r2 − σ2e⊤e.

– sample p′ =
[
p̄
p

]
← DR3k,

√
Σp

where p̄ ∈ Rk,p ∈ R2k, and Σp := σ2I3k −
s2T′T′⊤ for T =

[−R
Ik

]
∈ R2k×k and T′ =

[
Ik
T

]
∈ R3k×k.

– set u⋆ = u+ h+ e⊤p̄.
– compute v = y−1(u⋆ − f⊤p) where f is defined in Eq. (13).
– run z← SamPre(g,Tg, v, s).
– compute w = h+ e⊤(p̄+ z) and x = p+Tz.
– output (w,x).

4.2 Analysis of Our New Sampling Algorithms

In this subsection, we analyze our new sampling algorithms and prove the output
distributions of these two algorithms are statistically close.

Theorem 4. For any trapdoor pair (b,Tb) ∈ Rk
q ×Rk×k satisfying b⊤ ·Tb =

0⊤ mod q and Rot(b⊤) ∈ Zn×nk is a full-rank matrix, any c ∈ Rk
q , σ ≥

ηϵ(Znk) · ∥T̃b∥ and any real r > 0, define f⊤ = [b⊤|c⊤], then the following
two distributions are statistically close

– {(f , w,x, u) : u $← Rq, (w,x)← SampleLefthybrid(b, c,Tb, u, σ, r)}.
– {(f , w,x, u) : w ← DR,r, x← DR2k,σ, u = f⊤x− w}.

Proof. Consider the first distribution (f , w,x, u). We omit f since it is fixed in
this distribution and we only consider the (w,x = [ x1

x2
], u) part where u

$← Rq,
(w,x) are sampled using the algorithm SampleLefthybrid(b, c,Tb, u, σ, r) Note
that the SampleLefthybrid algorithm samples w ← DR,r,x2 ← DRk,σ and x1 ←
SamPre(b,Tb, u+ w − c⊤x2, σ).
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Hybrid 1. Now we consider a hybrid distribution (w,x = [ x1
x2

], u) where w,x2

are sampled as above, x1 ← DRk,σ, u
′ = b⊤x1 and finally compute u = u′ −

w+c⊤x2. We note that Hybrid 1 and the first distribution are statistically close
due to the following claim.

Claim. For any trapdoor pair (b,Tb) ∈ Rk
q×Rk×k satisfying b⊤ ·Tb = 0⊤ mod

q and Rot(b⊤) ∈ Zn×nk is a full-rank matrix, σ ≥ ηϵ(Znk) · ∥T̃b∥, the following
two distributions are statistically close:

– sample u′
$← Rq, then sample x1 ← SamPre(b,Tb, u

′, σ), output (x1, u
′);

– sample x1 ← DRk,σ, then compute u′ = b⊤x1, output (x1, u
′).

It is obvious that this claim follows from Lemma 8 and Lemma 9.

Note that Hybrid 1 is exactly the second distribution in Theorem 4. This
completes the proof. □

Theorem 5. For a vector b ∈ Rk
q , the public gadget trapdoor pair (g,Tg) ∈

Rk
q × Rk×k satisfying g⊤ · Tg = 0⊤ mod q and Rot(g⊤) ∈ Zn×nk is a full-

rank matrix, any matrix R ∈ Rk×k and vector e ∈ Rk, any invertible element
y ∈ R×q , s ≥ ηϵ(Znk)·∥T̃g∥, σ2 ≥ (s2+η2ϵ (Znk))·(∥T′∥2+1) where T′ =

[
Ik
T

]
and

T =
[−R

Ik

]
, r2 ≥ (σ2 + η2ϵ (Znk)) · (∥e∥2 +1), define f⊤ = [b⊤|b⊤R+ yg⊤+ e⊤],

then the following two distributions are statistically close

– {(f , w,x, u) : u $← Rq, (w,x)← SampleRighthybrid(b,g, e,Tg,R, y, u, σ, s, r)};
– {(f , w,x, u) : w ← DR,r,x← DR2k,σ, u = f⊤x− w}.

Proof. Consider the first distribution (f , w,x, u). We omit f since it is fixed in
this distribution and we only consider the (w,x, u) part where u

$← Rq, (w,x)
are sampled using the algorithm SampleRighthybrid(b,g, e,Tg,R, y, u, σ, s, r).

Hybrid 1. Now we consider a hybrid distribution (w,x, u) where w,x are sam-
pled as above. We swap the sampling order of u and u⋆ where u⋆ is used in
SampleRighthybrid, i.e., we first sample u⋆ $← Rq, h ← DR,

√
Σh

, p′ =
[
p̄
p

]
←

DR3k,
√

Σp
and then compute u = u⋆ − h − e⊤p̄. Clearly, the first distribution

and Hybrid 1 are identically distributed.

Hybrid 2. Now we consider the second hybrid distribution (w,x, u) where w,x
are sampled as above. We swap the order of sampling u⋆ and v where v is used
in SampleRighthybrid, i.e., we first sample v

$← Rq, set u⋆ = yv+ f⊤p and set u as
above. We claim that Hybrid 1 and Hybrid 2 are identically distributed. Since
y ∈ R×q is invertible and v

$← Rq, the term yv follows a uniform distribution
over Rq, then u⋆ = yv + f⊤p as well.

Hybrid 3. Now we consider the third hybrid distribution (w,x, u) where w,x
are sampled as above. We swap the order of sampling v and z, i.e., we first
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sample z ← DRk,s, then compute v = g⊤z and set u as above. We note that
Hybrid 3 and Hybrid 2 are statistically close due to the following claim.

Claim. For the gadget trapdoor pair (g,Tg) ∈ Rk
q ×Rk×k satisfying g⊤ ·Tg =

0⊤mod and Rot(g⊤) ∈ Zn×nk is a full-rank matrix, s ≥ ηϵ(Znk) · ∥T̃g∥, the
following two distribution are statistically close:

– sample v
$← Rq, then sample z← SamPre(g,Tg, v, s), output (z, v);

– sample z← DRk,s, then compute v = g⊤z, output (z, v).

It is obvious that this claim follows from Lemma 8 and Lemma 9.

Note that in Hybrid 3, w is computed by h+ e⊤(p̄+ z) and x is computed
by x = p + Tz where p′ =

[
p̄
p

]
← DR3k,

√
Σp

, z ← DRk,s, h ← DR,
√
Σh

. We

define x̄ := p̄ + Ik · z, then w = h + e⊤x̄. We further define x′ := [ x̄x ], then
x′ =

[
p̄+Ikz
p+Tz

]
= p′ +T′z in Hybrid 3.

By routine computation, we have that

u = u⋆ − h− e⊤p̄ = f⊤x− w. (14)

We put the full derivation process of Eq. (14) in Appendix C.2. Then we compute
u = f⊤x− w in the following hybrids.

Hybrid 4. Now we consider the fourth hybrid distribution (w,x, u) where u is
sampled as above, x′ = [ x̄x ] ← DR3k,σ and w is computed as above. Note that
Hybrid 4 is statistically close to Hybrid 3 due to the following claim.

Claim. For a matrix T′ ∈ R3k×k, σ2 ≥ (s2 + η2ϵ (Znk)) · (∥T′∥2 + 1), Σp =
σ2I3k − s2T′T′⊤, the following two distributions are statistically close:
– sample z← DRk,s, p′ ← DR3k,

√
Σp

, output p′ +T′z;

– output x′ ← DR3k,σ.

Directly, it comes from Lemma 10.

Hybrid 5. Now we consider the last hybrid distribution (w,x, u) where x, u are
sampled as above and w ← DR,r. Note that Hybrid 5 is statistically close to
Hybrid 4 due to the following claim.

Claim. For a matrix e ∈ R1×k, r2 ≥ (σ2+η2ϵ (Znk))·(∥e∥2+1), Σh = r2−σ2e⊤e,
the following two distributions are statistically close:
– sample x̄← DRk,σ, h← DR,

√
Σh

, output h+ e⊤x̄;
– output w ← DR,r.

Directly, it comes from Lemma 10.

Note that in Hybrid 5, x′ = [ x̄x ] ← DR3k,σ which means that x follows the
distribution of DR2k,σ, u = f⊤x−w from Hybrid 3 and w follows the distribution
of DR,r. This means that the distribution in Hybrid 5 is exactly the same as the
second distribution in Theorem 5. This completes the proof. □
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Theorem 6. For any trapdoor pair (b,Tb) ∈ Rk
q ×Rk×k satisfying b⊤ ·Tb =

0⊤ mod q and Rot(b⊤) ∈ Zn×nk is a full-rank matrix, the gadget trapdoor pair
(g,Tg) ∈ Rk

q × Rk×k satisfying g⊤ · Tg = 0⊤ mod q and Rot(g⊤) ∈ Zn×nk is
a full-rank matrix, any matrix R ∈ Rk×k and vector e ∈ Rk, any invertible
element y ∈ R×q , s ≥ ηϵ(Znk) · ∥T̃g∥, σ2 ≥ (s2 + η2ϵ (Znk)) · (∥T′∥2 + 1) for
T =

[−R
Ik

]
∈ R2k×k and T′ =

[
Ik
T

]
∈ R3k×k, r2 ≥ (σ2 + η2ϵ (Znk)) · (∥e∥2 + 1),

σ ≥ ηϵ(Znk) · ∥T̃b∥, define f⊤ = [b⊤|c⊤] = [b⊤|b⊤R+ yg⊤ + e⊤], then the dis-
tributions of outputs from SampleLefthybrid and SampleRighthybrid are statistically
close. More precisely, the following two distributions are statistically close

– {(f , w,x, u) : u $← Rq, (w,x)← SampleLefthybrid(b, c,Tb, u, σ, r)};

– {(f , w,x, u) : u $← Rq, (w,x)← SampleRighthybrid(b,g, e,Tg,R, y, u, σ, s, r)}.

Proof. Directly from Theorem 4 and Theorem 5. □

5 IBE Scheme

In this section, combining the homomorphic computation of the partition func-
tion in the GSW-style encryption form and the homomorphic transformation
from GSW-style encryption to BGG+-style encoding (Sect. 3), our new sam-
pling algorithms with (Dr, Dσ)-hybrid outputs (Sect. 4), we provide an adap-
tively secure lattice-based IBE scheme with smaller modulus, smaller secret key
size than ALWW-IBE [1]. Particularly, we provide the construction in Sect. 5.1,
the security proof in Sect. 5.2 and parameter analysis in Sect. 5.3.

5.1 Construction

Let n := n(λ), q := q(n), b := b(n), ρ := ρ(n), k := k(n), s := s(n), σ0 := σ0(n),
σ′0 := σ′0(n), σ1 := σ1(n), σ := σ(n), r := r(n) be parameters that are specified
later. Let R = Z[x]/(xn + 1), Rq = R/qR and χ := DR,σ′

0
.

Let the identity space of the scheme be ID = {0, 1}l for some l ∈ N and the
message space be M = {0, 1}n ⊂ R. Let GSW be the Ring-GSW homomorphic
encryption scheme in Sect. 2.5. We define the IBE scheme (Setup,KeyGen,Enc,Dec)
in the following.

Setup(1λ). On input a security parameter λ, do:
1. pp := (n, q, b, ρ, k, χ)← GSW.Setup(1λ).

2. (ek := A =
[

a⊤

a⊤s+e⊤

]
, dk := s)← GSW.KeyGen(pp).

3. (b ∈ Rk
q ,Tb ∈ Rk×k)← TrapGen(pp).

4.
{
{Cαi,i′}i∈[t],i′∈[η],Cβ̃

}
← GSW.Enc(ek, 0).

5. ĉ
$← Rk

q , cs
$← Rk

q , d
$← R×q , u $← Rq.

6. output mpk := (b, {Cαi,i′}i∈[t],i′∈[η],Cβ̃ , ĉ, cs,A, d, u), msk := (Tb, s).
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KeyGen(mpk,msk, id). On inputs the master public key mpk, the master secret
key msk, and an identity id ∈ ID, do:
1. define Gid as the function as in Def. 7 with index id.

2. compute CG = PubEvalG(
{
{Cαi,i′}i∈[t],i′∈[η],Cβ̃

}
, Gid) ∈ R2×2k

q .

3. compute F (id) = EvalPub(CG, cs) ∈ Rk
q .

4. sample (w,x)← SampleLefthybrid(b, ĉ+ F (id),Tb, d
−1u, σ, r), satisfying

[b⊤|ĉ⊤ + F (id)⊤] · x = d−1u+ w.

5. output skid := x ∈ R2k.

Enc(mpk, id,m). On inputs the master public key mpk, an identity id, and a
message m, do:
1. set µ = m0 +m1x+ · · ·mn−1x

n−1 ∈ Rq.

2. compute CG = PubEvalG(
{
{Cαi,i′}i∈[t],i′∈[η],Cβ̃

}
, Gid) ∈ R2×2k

q .

3. compute F (id) = EvalPub(CG, cs) ∈ Rk
q .

4. sample v
$← Rq, e0, e1 ← DR,σ0

, e2 ← DR2k,σ1
.

5. compute c0 = u · v + e0 + ⌈ q2⌉ · µ, c1 = d ·

 1
b

ĉ+ F (id)

 · v + [e1
e2

]
.

6. output the ciphertext ct := (c0, c1) ∈ Rq ×R2k+1
q .

Dec(mpk, skid = x, ct = (c0, c1)). on inputs the master public key mpk, the user
secret key skid, and the ciphertext ct, do:

1. compute CG = PubEvalG(
{
{Cαi,i′}i∈[t],i′∈[η],Cβ̃

}
, Gid) ∈ R2×2k

q .

2. compute F (id) = EvalPub(CG, cs) ∈ Rk
q .

3. compute w = [b⊤|ĉ⊤ + F (id)⊤] · x− d−1u.
4. output m = ⌊ 2q · ϕ(c0 − c⊤1 · [−wx ])⌉ mod 2, where the rounding function
⌊·⌉ is applied component-wise.

Remark 1. In the KeyGen step, we use our new algorithm SampleLefthybrid to
sample (w,x) (which are (Dr, Dσ)-hybrid outputs where r ≫ σ). To shrink the
size of the secret key, we only take x (i.e., Dσ part) as the user’s secret key. Note
that w can be deterministically computed from x,mpk and id, i.e., steps 1-3 of
the decryption algorithm. This means that during the key query phase of the
IBE security game, an adversary is able to compute w itself after obtaining x
from the challenger.

Lemma 11 (Correctness). For any positive number ω, if q ≥ 5ω(σ0+rσ0
√
n+

σ1σ
√
2nk), then the above IBE scheme has a decryption error at most 6e−πω

2

+
2−2nk + 2−n.
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Proof. For the Dec algorithm, we show that the error term in decryption would
not exceed q/5. Specifically, the decryption algorithm calculates

c0 − c⊤1 ·
[
−w
x

]
= u · v + e0 + ⌈

q

2
⌉ · µ− (d · [1|b⊤|ĉ⊤ + F (id)⊤] · v + [e1|e⊤2 ]) ·

[
−w
x

]
= ⌈q

2
⌉ · µ+ (e0 + w · e1 − e⊤2 · x︸ ︷︷ ︸

error term

).

Then, the following inequalities hold13:

– by Lemma 20 and e0 ∼ DR,σ0
, we have Pr[|ϕ(e0)j | ≥ t1] ≤ 2e

−π t21
σ2
0 .

– by Theorem 4, we have x ∼ DR2k,σ
14, w ∼ DR,r.

– by Corollary 1 and w ∼ DR,r, we have Pr[|ϕ(w · e1)j | ≥ t2] ≤ 2e
−π t22

∥e1∥2r2 .

– by Lemma 2 and e1 ∼ DR,σ0
, Pr[∥e1∥ ≥ σ0

√
n] ≤ 2−n.

– by Corollary 1 and e2 ∼ DR2k,σ1
, we have Pr[|ϕ(e⊤2 ·x)j | ≥ t3] ≤ 2e

−π· t23
∥x∥2σ2

1 .

– by Lemma 2 and x ∼ DR2k,σ, we have Pr[∥x∥ ≥ σ
√
2nk] ≤ 2−2nk.

Taking t1 = ωσ0, t2 = ωrσ0
√
n, t3 = ωσ1σ

√
2nk, by union bound, we have

Pr[|ϕ(e0 + w · e1 − e⊤2 · x)j | ≥ t1 + t2 + t3] ≤ 6e−πω
2

+ 2−2nk + 2−n.

Therefore, if ω(σ0+ rσ0
√
n+σ1σ

√
2nk) ≤ q/5, then the decryption error occurs

with probability at most 6e−πω
2

+ 2−2nk + 2−n. □

5.2 Security Proof

In this section, we analyze the security of our IBE scheme. Due to space lim-
itations, we put the proofs of all the lemmas involved in Theorem 7 (Lemmas 12
to 15 and 17 to 19) in Appendix D, except for Lemma 16, because the proof
of Lemma 16 shows how we run the re-randomization algorithm to simulate a
partial ciphertext.

Theorem 7. The above IBE scheme is adaptively-anonymous security assuming
the assumptions RLWEn,2k,q,DR,σ′

0
and RLWEn,k+2,q,DR,σ0

hold.

13 In this correctness analysis, we use multiple lemmas and theorems without explicitly
specifying the parameters. We note that all the requirements of these lemmas and
theorems are met for the parameters in Sect. 5.3.

14 Actually, Theorem 4 guarantees that x is statistically close to DR2k,σ. Since the sta-
tistical distance is negligible, we omit the statistical distance and do the correctness
analysis without it.
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Proof. Let A be a PPT adversary that breaks the adaptive security of the IBE
scheme. Let ϵ = ϵ(λ) and Q = Q(λ) be its advantage and the number of the
key queries. In each game, a value coin′ ∈ {0, 1} is defined. While it is set
coin′ = ĉoin in the first game, these values might be different in the later games.
In the following, we define Ei to be the event that coin′ = coin.
Game 0. This is the real security game. Recall that since the ciphertext space

is C = Rq ×R2k+1
q , in the challenge phase, the challenge ciphertext is set as

ct∗ = (c0, c
∗
1)

$← Rq ×R2k+1
q if coin = 1. At the end of the game, A outputs

a guess ĉoin for coin. Finally, the challenger sets coin′ = ĉoin. By definition,
we have

∣∣Pr[E0]− 1
2

∣∣ = ∣∣Pr[coin′ = coin]− 1
2

∣∣ = ∣∣∣Pr[ĉoin = coin]− 1
2

∣∣∣ = ϵ.

Game 1. In this game, the challenger performs an additional abort check at the
end of the game. First, the challenger chooses a random partitioning function
H

$← HR,t,t′ as Def. 8, where t′ = ⌈logc
3Q
ϵ ⌉

15. Specifically, the challenger
picks random vectors α′ ∈ [L + 1]t

′
, β′ ∈ Zt′

p , denotes α = (α′,0′) ∈
[L+ 1]t,β = (β′,0) ∈ Zt

p, and sets and keeps the partition function:

H(id) := Gid(α,β) = HR,t
α,β(id) =

∑
i∈[t]

(
xip+ECC(id)[αi] − xip+βi

)
.

Then, the challenger checks whether the following condition holds:

H(id∗) = 0 ∧ H(id(1)) = · · ·H(id(Q)) = 1,

where id∗ is the challenge identity, id(1), · · · , id(Q) are identities for which A
has made key extraction queries. If it does not hold, the challenger ignores
the output ĉoin of A, and sets coin′

$← {0, 1}. If it holds, the challenger sets
coin′ = ĉoin.

Lemma 12.
∣∣Pr[E1]− 1

2

∣∣ ≥ 2
3 ·

1
pt′ · ϵ.

Game 2. In this game, we change the way
{
{Cαi,i′}i∈[t],i′∈[η],Cβ̃

}
are chosen.

– in Game 1, Cαi,i′ ← GSW.Enc(ek, 0), Cβ̃ ← GSW.Enc(ek, 0).

– in Game 2, the challenger first picks α ∈ [L+1]t,β ∈ Zt
p as Game 1, and

generates Cαi,i′ ← GSW.Enc(ek, xαi,i′ ), Cβ̃ ← GSW.Enc(ek,
∑

i∈[t] x
ip+βi)

with randomness Rαi,i′ , Rβ̃ , respectively.

Lemma 13. By the RLWEn,2k,q,DR,σ′
0

assumption (Def. 2) and the regularity
lemma (Lemma 5), we have |Pr[E1]− Pr[E2]| = negl(n).

Game 3. In this game, we change the way ĉ, cs are chosen.

– in Game 2, ĉ, cs
$← Rk

q .

15 c := 1
1−Υ

where Υ is the relative distance of the error correcting code ECC.
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– in Game 3, the challenger chooses R0,Rs
$← [−ρ, ρ]k×kR , and sets ĉ =

b⊤R0, cs = b⊤Rs + s · g⊤.

Lemma 14. By the TrapGen algorithm (Lemma 7), and the regularity lemma
(Lemma 5), we have |Pr[E2]− Pr[E3]| = negl(n).

Note. Before entering the next game, we first define the matrix RG ∈ R2k×2k

for an identity id ∈ ID as

RG = TrapEvalG

(
A,
{
{Rαi,i′},Rβ̃

}
, (α,β), Gid

)
∈ R2k×2k.

By Construction 3 and Theorem 2, we have

CG = PubEvalG
({
{Cαi,i′},Cβ̃

}
, Gid

)
= ARG +Gid(α,β) ·G ∈ R2×2k

q .

Then, we define the matrix Rid ∈ Rk×k and the vector eid ∈ Rk as

Rid = EvalTrap(Rs,CG) ∈ Rk×k, eid = EvalError(e,RG) ∈ Rk.

By Construction 1 and Theorem 3, we have

F (id) = EvalPub(CG, cs) = b⊤Rid +Gid(α,β) · g⊤ + e⊤id ∈ Rk
q .

Game 4. In this game, we change the way to generate the public vector b and
to respond to the secret key queries.
– in Game 3, the challenger generates (b,Tb)← TrapGen(pp), and answers

each of the secret key queries using this trapdoor Tb, i.e., (w,x) ←
SampleLefthybrid(b, ĉ+ F (id),Tb, u, σ, r).

– in Game 4, C samples b
$← Rk

q uniformly at random instead of running
TrapGen algorithm, and answers each of the secret key queries using the
newly defined trapdoors Rid, eid, i.e., (w,x)← SampleRighthybrid(b,g, eid,
Tg,R0 +Rid, Gid(α,β), u, σ, s, r).

Lemma 15. By the TrapGen algorithm (Lemma 7) and the sampling algorithms
(Theorem 6), we have |Pr[E3]− Pr[E4]| = negl(n).

Game 5. In this game, we change the way challenge ciphertext c∗1 is created
when coin = 0.

– in Game 4, c∗1 = d ·
[ 1

b
F (id∗)

]
· v+ [ e1e2

] for e1 ← DR,σ0
and e2 ← DR2k,σ1

.

– in Game 5, the challenger samples y = d · [ b1 ] · v+e′0 for e′0 ← DRk+1,σ0
,

calls the last element of the vector y as ȳ, and constructs c∗1 =
[

ȳ
c̄∗
1

]
,

where c̄∗1 = ReRand
([

Ik R0+Rid∗

0⊤ e⊤
id∗

]
,y, σ0,

σ1

2σ0

)
.

Lemma 16. By Lemma 3, we have |Pr[E4]− Pr[E5]| = negl(n).
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Proof. In Game 4, we use the fact that when id = id∗, Gid(α,β) = 0, i.e.,
F (id∗)⊤ = b⊤(R0 + Rid∗) + e⊤id∗ , then the challenge ciphertext c∗1 can be re-
written as

c∗1 = d ·

 1
b

F (id∗)

 · v + [e1
e2

]
=

 d · v + e1

d ·
[

b
F (id∗)

]
· v + e2

 . (15)

In Game 5, by the re-randomization algorithm ReRand, we have (c̄∗1)
⊤ = d ·

[b⊤|1] ·
[
Ik R0 +Rid∗

0⊤ e⊤id∗

]
· v+ (e′2)

⊤ = d · [b⊤|b⊤(R0 +Rid∗) + e⊤id∗ ] · v+ (e′2)
⊤ =

d · [b⊤|F (id∗)⊤] · v + (e′2)
⊤ where the distribution of e′2 is statistically close to

the discrete Gaussian distribution DR2k,σ1
. By the construction of c∗1 in Game

5, we have

c∗1 =

[
ȳ
c̄∗1

]
=

 d · v + e′1

d ·
[

b
F (id∗)

]
· v + e′2

 , (16)

where e′1 is the last element of e′0, i.e., e′1 ← DR,σ0
. Comparing Eq. (15) and Eq. (16),

Game 4 and Game 5 are statistically indistinguishable.

Game 6. In this game, we further change the way challenge ciphertext (c∗0, c
∗
1)

is created when coin = 0.
– in Game 5, the challenger picks y = d · [ b1 ] · v + e′0 and sets c∗0 = u · v +

e0 + ⌈ q2⌉ · µ, c∗1 =
[

ȳ
c̄∗
1

]
, where c̄∗1 = ReRand

([
Ik R0+Rid∗

0⊤ e⊤
id∗

]
,y, σ0,

σ1

2σ0

)
.

– in Game 6, the challenger picks y′0
$← Rq, y′

$← Rk+1
q , c∗0 = y′0 + e0 +

⌈ q2⌉ · µ, c∗1 =
[

ȳ
c̄∗
1

]
, where c̄∗1 = ReRand

([
Ik R0+Rid∗

0⊤ e⊤
id∗

]
,y′ + e′0, σ0,

σ1

2σ0

)
.

Lemma 17. By the RLWEn,k+2,q,DR,σ0
assumption (Def. 2), then we have that

|Pr[E5]− Pr[E6]| = negl(n).

Game 7. In this game, we further change the way challenge ciphertext c∗1 is
created when coin = 0. Specifically, the challenger picks y1

$← Rk
q , y2

$← Rq,
e′2 ← DR2k,σ1

, and sets c̄∗1 = [y⊤1 |y⊤1 (R0 +Rid∗) + y2 · e⊤id∗ ] + (e′2)
⊤.

Lemma 18. By Lemma 3, we have |Pr[E6]− Pr[E7]| = negl(n).

Game 8. In this game, we change the challenge ciphertext to be a random
vector, regardless of whether coin = 0 or 1. It is obvious that Pr[E8] =

1
2 .

Lemma 19. By Lemma 5, we have |Pr[E7]− Pr[E8]| = negl(n).

Analysis. Combining Lemmas 12 to 19, we have∣∣∣∣Pr[E8]−
1

2

∣∣∣∣ =
∣∣∣∣∣Pr[E1]−

1

2
+

7∑
i=1

(Pr[Ei+1]− Pr[Ei])

∣∣∣∣∣
≥
∣∣∣∣Pr[E1]−

1

2

∣∣∣∣− 7∑
i=1

|Pr[Ei+1]− Pr[Ei]| ≥
2

3
· 1

pt′
· ϵ− negl(λ).
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Since ϵ is noticeable and Q is polynomially bounded, the value pt
′
is polynomially

bounded, and thus
∣∣Pr[E8]− 1

2

∣∣ is noticeable, which is contradicts to the fact that
Pr[E8] =

1
2 . This completes the proof. □

5.3 Asymptotic and Concrete Parameters

Due to space limit, we present the constraints on our IBE scheme’s parameters
in Appendix E. In this section, we present two possible sets of the parameters
for our IBE construction in Tab. 2, concretely and asymptotically.

Table 2. Asymptotic and concrete parameters of our IBE scheme(⋆).

Definition Params (Set I) b = 2, ρ = 1 (Set II) b = ρ = nν(♮)

Asymptotic Concrete Asymptotic Concrete
security parameter λ λ λ

identity length l O(λ) ≤ 4λ O(λ) ≤ 4λ

bound on the number
of key queries Q poly(λ) Q poly(λ) Q

ring dimension n Θ(λ) n Θ(λ) n

length of the gadget vector k O(log(λ)) 2 log q O(1) 2 logb q

repetition number in
partition function t ω(1) logc(3Q)(‡) ω(1) logc(3Q)

small positive real regarding
smoothing parameter ϵ λ−ω(1) 2−3λ λ−ω(1) 2−3λ

ECC parameters(∗)
L O(λ1+ 2

κ )(†)
( κ√n)2l
log(λ)

O(λ1+ 2
κ )

( κ√n)2l
log(λ)

p O(λ
1
κ

) n
1
κ O(λ

1
κ

) n
1
κ

Υ 1−O(λ− 1
κ ) 1− κ+3

κ√n
1−O(λ− 1

κ ) 1− κ+3
κ√n

Gaussian parameter of e
in GSW public matrix A

σ′
0 O(λ1.5) σ′

0 O(λ1.5) σ′
0

Gaussian parameter of e0, e1
in IBE ciphertext c0, c1

σ0 O(λ1.5) σ0 O(λ1.5) σ0

Gaussian parameter of x
in sampling algorithms σ O(λ1.5) n2.5 O(λ1.5b2) n2.5b2

Gaussian parameter of w
in sampling algorithms r O(λ6+ 2

κ ) n7.5+ 2
κ λ O(λ6+ 2

κ b4) n7.5+ 2
κ λb4

Gaussian parameter of e2

in IBE ciphertext c1
σ1 O(λ6+ 2

κ ) n5.5+ 2
κ · σ0 O(λ6+ 2

κ b4) n5.5+ 2
κ b4 · σ0

system modulus q O(λ8+ 2
κ ) n9.5+ 2

κ · σ0 O(λ8+ 2
κ b6) n9.5+ 2

κ b6 · σ0

⋆ we note that we present the parameters in the plain model here. As said in Appendix E, we can
simply calculate the corresponding parameters in the CRS model, only the parameters r, σ1, q
would be changed.

∗ we set the parameter in error correcting code L, p, Υ refer to ALWW-IBE [1].
† κ > 1 can be any constant that satisfies n

1
κ > 3 + κ, depending on how we set parameters of

the error correcting code.
‡ c > 1 is a parameter defined by the relative distance as c := 1

1−Υ .
♮ ν > 0 is any positive real.
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Lemma 23 ([25]). Let α be the positive real, k be an integer. Let q ≡ 3 mod 8
be a prime such that there is another prime p ≡ 1 mod m satisfying p ≤ q ≤ 2p.
Let σ := αq ≥ n3/2k1/4ω(log9/4(n)). Then, there is a PPT quantum reduction
from Õ(n/α)-approximate SIVP (or SVP) to RLWEn,k,q,χ with χ = DR,σ.

Lemma 24 ([1]). For integers k, q, b satisfying the requirements of Def. 3,
on input a vector c ∈ Zk

q ⊂ Rk
q , the algorithm g−1(·) in Lemma 6 outputs the

matrix R = g−1(c⊤) such that R ∈ [−b, b]k×kZ , g⊤ ·R = c⊤ and ∥R∥ ≤ kb.

Corollary 3. For the gadget matrix G =
[
g⊤ 0⊤

0⊤ g⊤

]
∈ R2×2k

q , on input a matrix

C ∈ Z2×2k
q ⊂ R2×2k

q , the algorithm G−1(·) in Corollary 2 outputs the matrix
R = G−1(C) such that R ∈ [−b, b]2k×2kZ , G ·R = C and ∥R∥ ≤ 2kb.

B Omitted Details in Sect. 3

B.1 Construction 2 and Proof of Theorem 1

According to [1], the equality test function in Def. 5 can be computed as Equalβ(xα) =
1
m ·
∑m−1

i=0

(
xα−β)i.

Construction 2 We present algorithms (PubEvalE,TrapEvalE) for {Equalβ(·)}β∈[m]

as follows.

PubEvalE({Cα},Equalβ)
– compute C′ = Cα · x−β.
– compute Cj recursively as follows:

Cj =

{
G, j = 0

C′ ·G−1(Cj−1) +G, j ≥ 1

– output Cm−1 ·G−1(m−1 ·G).

TrapEvalE(A, {Rα}, {xα},Equalβ)
– compute R′ = Rα · x−β.
– Let Cj’s be matrices as defined in the PubEvalE and Cα = ARα + xαG,

compute Rj recursively as follows:

Rj =

{
0, j = 0

R′ ·G−1(Cj−1) + xα−β ·Rj−1, j ≥ 1

– output Rm−1 ·G−1(m−1 ·G).
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Proof of Theorem 1.

Proof. To prove the theorem, we need to show that the 2-norm of the output of
the TrapEvalE is bounded by 4mn(kb)2∥Rα∥, and equivalently

∥Rm−1 ·G−1(m−1 ·G)∥ ≤ 4mn(kb)2 · ∥Rα∥.

Since we have the matrix norm G−1(m−1 ·G) ≤ 2kb by Corollary 3, and thus
proving ∥Rm−1∥ ≤ 2mnkb · ∥Rα∥ is enough to complete the proof.

Next, we prove a slightly more general statement by induction: for j ∈ [m],
∥Rj∥2(j + 1)nkb · ∥Rα∥, and thus by taking j = m− 1, we complete the proof.

For the base case j = 0, this statement obviously holds as 0 ≤ 2nkb ·
∥Rα∥ holds trivially as R0 = 0. We next assume the induction hypothesis that
∥Rj∗−1∥ ≤ 2j∗nkb · ∥Rα∥ holds for some j∗ − 1. Our goal is to prove that the
statement also holds for j∗, thus implying what we want by induction.

Next, we have

∥Rj∗∥ = ∥R′ ·G−1(Cj∗−1) + xα−β ·Rj∗−1∥
≤ ∥R′ ·G−1(Cj∗−1)∥+ ∥Rj∗−1∥
≤ ∥R′∥ · 2nkb+ 2j∗nkb · ∥Rα∥
≤ 2(j∗ + 1)nkb · ∥Rα∥.

The first inequality is from the triangular inequality; the second is by Corollary 2
and the induction hypothesis; the last inequality is by ∥R′∥ = ∥Rα∥. Thus, we
have ∥Rm−1∥ ≤ 2mnkb · ∥Rα∥. This complete the proof. □

B.2 Supplementary for the Partition Property of the Partition
Function in Sect. 3.2

First, we recall an insight from the work [3], stating that the IBE design with
the trapdoor vanishing technique indeed only needs (weak) pairwise independent
hash functions plus the random isolation technique of Valiant and Vazirani [35],
which can generically replace the prior notions “admissible hash functions” [7,14]
or “abort-resistant hash functions” [36]. To summarize this insight, we state the
following lemma.

Lemma 25 ([3]). Let Q ⊂ {0, 1}n be an arbitrary subset, A,B be integers such
that B ≤ A, |Q| ≤ δB for some δ ∈ (0, 1), and let H : {0, 1}n → Y be an almost
pairwise independent hash function family which has the following properties:

1. ∀x ∈ {0, 1}n, Prh∈H[h(x) = 0] = 1
A .

2. For any distinct x1 ̸= x2 ∈ {0, 1}n, Prh∈H[h(x1) = 0|h(x2) = 0] < 1
B .

Then for any element x /∈ Q, we have

Prh∈H[h(x) = 0 ∧ (h(x′) ̸= 0∀x′ ∈ Q)] ∈ (
1− δ

A
,
1

A
).
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Then the following lemma shows that the partition function family defined
in Def. 8 is an almost pairwise independent hash function family.

Lemma 26 ([1], Lemma 4.5). For any code ECC : D → ZL
p with relative

distance Υ , ring R with dimension n such that tp ≤ n. Then for any t′ ≤ t, the
hash function family HR,t,t′ as in Def. 8 has following properties:

1. For any element z1 ∈ D, PrH∈HR,t,t′ [H(z1) = 0] = (1/p)t
′
.

2. For any distinct elements z1 ̸= z2 ∈ D, we have

PrH∈HR,t,t′ [H(z1) = 0|H(z2) = 0] < (1− Υ )t
′
.

B.3 Omitted derivation process in Sect. 3.2

HR,t
α,β(z) = −

∑
i∈[t]

xip+βi +
∑
i∈[t]

∑
j∈[L+1]

(j
?
= αi) · xip+ECC(z)[j]

= −
∑
i∈[t]

xip+βi +
∑
i∈[t]

∑
j∈[L+1]

 ∏
i′∈[η]

j[i′]
?
= αi,i′

 · xip+ECC(z)[j]

= −β̃ +
∑
i∈[t]

∑
j∈[L+1]

 ∏
i′∈[η]

Equalj[i′](x
αi,i′ )

 · xip+ECC(z)[j]

= Gz({αi,i′}i∈[t],i′∈[η], β̃).

B.4 Construction 3 and Proof of Theorem 2

Construction 3 Given (PubEvalE,TrapEvalE) for {Equalβ(·)}β∈[m] as subrou-
tine, we construct (PubEvalG,TrapEvalG) for {Gz}z∈D (defined in Def. 7) as:

PubEvalG(
{
{Cαi,i′}i∈[t],i′∈[η],Cβ̃

}
, Gz)

– for i ∈ [t], j ∈ [L+ 1], i′ ∈ [η], (homomorphically) compute

Ci,j,i′ =

{
PubEvalE(Cαi,0 ,Equalj[0]), i′ = 0

PubEvalE(Cαi,i′ ,Equalj[i′]) ·G
−1(Ci,j,i′−1), i′ ≥ 1

Then, let Ci,j := Ci,j,η−1.
– output CG := −Cβ̃ +

∑
i∈[t],j∈[L+1] Ci,j · xip+ECC(z)[j].

TrapEvalG(A,
{
{Rαi,i′}i∈[t],i′∈[η] ⊂ R

2k×2k
q ,Rβ̃ ∈ R

2k×2k
q

}
, {xα, β̃}, Gz)

– for i ∈ [t], j ∈ [L+ 1], i′ ∈ [η], (homomorphically) compute

R′i,j,i′ := TrapEvalE

(
A, {Rαi,i′}, {x

αi,i′},Equalj[i′]
)
.
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– for i′ ∈ [η], let Ci,j,i′ be the matrix in PubEvalG algorithm with Cαi,i′ =
ARαi,i′ + xαi,i′G, recursively compute

Ri,j,i′ =

{
R′i,j,i′ , i′ = 0

R′i,j,i′ ·G−1(Ci,j,i′−1) + Equalj[i′](x
αi,i′ ) ·Ri,j,i′−1, i′ ≥ 1

Then, let Ri,j := Ri,j,η−1.
– output RG := −Rβ̃ +

∑
i∈[t],j∈[L+1] Ri,j.

Proof of Theorem 2.

Proof. To prove the theorem, it suffices to prove ∥RG∥ ≤ (L + 1)t · η · nkb · δ ·
maxi∈[t],i′∈[η]{∥Rαi,i′∥, ∥Rβ̃∥}. Since the algorithms (PubEvalE,TrapEvalE) are δ-
expanding for function family {Equalj}j∈[m], we have ∥R′i,j,i′∥ ≤ δ·maxi∈[t],i′∈[η]{∥Rαi,i′∥}
for each i ∈ [t], j ∈ [L + 1], i′ ∈ [η]. Additionally, we can show ∥Ri,j∥ ≤
η · 2nkb · δ ·maxi∈[t],i′∈[η]{∥Rαi,i′∥} by similar analysis by Theorem 1. Further,
it is easy to see that

∥RG∥ ≤
∑

i∈[t],j∈[L+1]

∥Ri,j∥+ ∥Rβ̃∥ ≤ (L+ 1)t · max
i∈[t],j∈[L+1]

{∥Ri,j∥}+ ∥Rβ̃∥

≤ (L+ 1)t · η · 2nkb · δ · max
i∈[t],i′∈[η]

{∥Rαi,i′∥, ∥Rβ̃∥}.

This completes the proof. □

C Omitted details in Sect. 4

C.1 Recall sampling algorithms from [2] for Sect. 4

In [21], the Ajtai trapdoor generation algorithm outputs a pair (b,Tb) ∈
Rk

q ×Rk×k satisfying that b⊤ ·Tb = 0⊤ mod q. Later, to improve the efficiency
of lattice-based IBE in the standard model, Agrawal, Boneh, and Boyen [2]
constructed a family of lattices for which there are two distinct trapdoors for
sampling, one is the Ajtai trapdoor, the other one is a “small-norm” randomiza-
tion matrix R, used in the real world and simulated world, respectively. More
concretely, they construct the sampling vector as

f⊤ = [b⊤|b⊤R+ yg⊤] ∈ R2k
q , (17)

where R ∈ Rk×k is a secret trapdoor matrix with small, random entries, y ∈ R×q
is an invertible element, and g = [1|b| · · · |bk−1]⊤ ∈ Rk

q is the specific gadget
vector [29], whose trapdoor Tg is publicly known. For a given uniform u ∈ Rq,
it is easy to sample a short vector x that satisfying

f⊤x = u mod q.

The sampling algorithms consist of two parts: SampleLeft and SampleRight.
They use the SamPre algorithm in Lemma 8.
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SampleLeft(b, c ∈ Rk
q ,Tb ∈ Rk×k, u ∈ Rq, σ ∈ R)

– sample x2 ← DRk,σ.
– run x1 ← SamPre(b,Tb, u

′, σ) where u′ = u− c⊤x2.
– output x = [ x1

x2
] ∈ R2k

q .

SampleRight(b,g ∈ Rk
q ,R,Tg ∈ Rk×k, y ∈ R×q , u ∈ Rq, σ, s ∈ R)

– sample p← DR2k,
√

Σp
where Σp := σ2I− s2TT⊤ for T =

[−R
I

]
.

– compute v = y−1(u− f⊤ · p) where f is computed using Eq. (17).
– run z← SamPre(g,Tg, v, s).
– output x = p+Tz.

Lemma 27 ([2]). For s ≥ ηϵ(Znk) · ∥T̃g∥, σ2 ≥ (s2 + η2ϵ (Znk)) · (∥T∥2 + 1),
σ ≥ ηϵ(Znk)·∥T̃b∥, the distributions of outputs from SampleLeft and SampleRight
are statistically close.

C.2 Full derivation process of Eq. (14)

u = u⋆ − h− e⊤p̄

= yv + f⊤p− h− e⊤p̄

= yg⊤z+ f⊤p− h− e⊤p̄

= (yg⊤ + e⊤)z− e⊤z+ f⊤p− h− e⊤p̄

= (f⊤Tz+ f⊤p)− (h+ e⊤p̄+ e⊤z)

= f⊤x− w.

D Omitted Proofs in Theorem 7

Proof of Lemma 12
Proof. Define γ := Pr[H(id∗) = 0 ∧H(idi) ̸= 0 ∀i ≤ Q], then we have

γ = Pr[H(id∗) = 0 ∧H(id1) ̸= 0 ∧ · · · ∧H(idQ) ̸= 0]

= Pr[H(id∗) = 0]− Pr[H(id∗) = 0 ∧ (H(id1) = 0 ∨ · · · ∨H(idQ) = 0)]

= Pr[H(id∗) = 0]− Pr[(H(id∗) = 0 ∧H(id1) = 0) ∨ · · · ∨ (H(id∗) = 0 ∧H(idQ) = 0)]

≥ Pr[H(id∗) = 0]−
Q′∑
i=1

Pr[H(id∗) = 0 ∧H(idi) = 0]

= Pr[H(id∗) = 0]−
Q′∑
i=1

Pr[H(idi) = 0|H(id∗) = 0] · Pr[H(id∗) = 0]

= Pr[H(id∗) = 0]

(
1−

Q∑
i=1

Pr[H(idi) = H(id∗)]

)

=
1

pt′
(1−Q · (1− γ)t

′
).
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Since
∣∣Pr[E1]− 1

2

∣∣ ≥ γmin ·
∣∣Pr[E0]− 1

2

∣∣ − 1
2 (γmax − γmin), γmax = Pr[H(id∗) =

0] = 1
pt′ , γmin = 1

pt′ (1−Q · (1− γ)t
′
), we have γmax − γmin = 1

pt′ ·Q · (1− γ)t
′
.

Then, ∣∣∣∣Pr[E1]−
1

2

∣∣∣∣ ≥ 1

pt′
(1−Q · (1− γ)t

′
) · ϵ− 1

2
· 1

pt′
·Q · (1− γ)t

′
.

Since we set t′ = log 1
1−γ

3Q
ϵ , then ( 1

1−γ )
t′ = 3Q

ϵ , i.e., Q · (1− γ)t
′
= ϵ

3 ,∣∣∣∣Pr[E1]−
1

2

∣∣∣∣ ≥ 1

pt′
· (1− ϵ

3
) · ϵ− 1

2
· 1

pt′
· ϵ
3
≥ 5

6
· 1

pt′
· ϵ− 1

6
· 1

pt′
· ϵ = 2

3
· 1

pt′
· ϵ.

where ϵ < 1
2 .

Proof of Lemma 13

Proof. Now we show that the distributions of Game 1 and Game 2 are close
by the RLWEn,2k,q,χ assumption (Def. 2) and the regularity lemma (Lemma 5).
First, we re-write Game 1 and Game 2, and define two intermediate Games,
called Game 1+ and Game 2+.

Game 1. In this Game, the challenger first picks a
$← R2k

q , s
$← Rq, e ←

χ2k, and sets A =
[

a⊤

a⊤s+e⊤

]
∈ R2×2k

q . Then, it samples random matrices

Rαi,i′ ,Rβ̃

$← [−ρ, ρ]2k×2kR , and generates the public matrices as follows

Cαi,i′
:= ARαi,i′ + 0 ·G, Cβ̃

:= ARβ̃ + 0 ·G.

Game 1+. In this Game, the challenger first picks random matrix A
$← R2×2k

q ,

samples random matrices Rαi,i′ ,Rβ̃

$← [−ρ, ρ]2k×2kR , and generates the pub-
lic matrices as follows

Cαi,i′
:= ARαi,i′ + 0 ·G, Cβ̃

:= ARβ̃ + 0 ·G.

Game 2+. In this Game, the challenger first picks random matrix A
$← R2×2k

q ,

samples random matrices Rαi,i′ ,Rβ̃

$← [−ρ, ρ]2k×2kR , and generates the pub-
lic matrices as follows

Cαi,i′
:= ARαi,i′ + xαi,i′ ·G, Cβ̃

:= ARβ̃ +
∑
i∈[t]

xip+βi ·G.

Game 2. In this Game, the challenger first picks a
$← R2k

q , s
$← Rq, e ←

χ2k, and sets A =
[

a⊤

a⊤s+e⊤

]
∈ R2×2k

q . Then, it samples random matrices

Rαi,i′ ,Rβ̃

$← [−ρ, ρ]2k×2kR , and generates the public matrices as follows

Cαi,i′
:= ARαi,i′ + xαi,i′ ·G, Cβ̃

:= ARβ̃ +
∑
i∈[t]

xip+βi ·G.
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By the regularity lemma (Lemma 5), Game 1+ and Game 2+ are statistically
indistinguishable. Then we show that the distributions of Game 1 and Game 1+
are computationally indistinguishable by the RLWEn,2k,q,χ assumption (Def. 2).
We first define an RLWE adversary B as follows. Upon receiving 2k challenge
samples {(ai, zi)}i∈[2k] ∈ (Rq × Rq)

2k, the adversary B simulates the IBE ex-

periment by setting the public matrix A =
[
a⊤

z⊤

]
∈ R2×2k

q , sampling random

matrices Rαi,i′ ,Rβ̃

$← [−ρ, ρ]2k×2kR , generating the public matrices

Cαi,i′
:= ARαi,i′ + 0 ·G, Cβ̃

:= ARβ̃ + 0 ·G,

and simulating the rest of the experiment according to Game 1. At the end of
the game, if A successfully guesses the correct (simulated) challenge bit from B,
then B guesses that the challenge samples are RLWE samples and outputs 1;
otherwise, B guesses the uniform distribution and outputs 0. It can be seen that
B perfectly simulates the view of A in Game 1 if {(ai, zi)}i∈[2k] are valid RLWE

samples (i.e., zi = ais+ei) and Game 1+ otherwise (i.e., zi
$← Rq). We therefore

conclude that Game 1 and Game 1+ are indistinguishable by the RLWEn,2k,q,χ

assumption. Similarly, Game 2 and Game 2+ are indistinguishable. Thus, Game
1 and Game 2 are indistinguishable by the RLWEn,2k,q,χ assumption and the
regularity lemma.

Proof of Lemma 14

Proof. By Lemma 7, the vector b generated by TrapGen algorithm is statistically
close to the uniform distribution over Rk

q . Then, for a truly uniform b, the
distributions of (b,b⊤R0,b

⊤Rs) and (b, U(Rk
q ), U(Rk

q )) are statistically close
by the regularity lemma (Lemma 5). Thus, Game 2 and Game 3 are statistically
indistinguishable.

Proof of Lemma 15

Proof. By Lemma 7, the vector b generated by TrapGen algorithm is statistically
close to the uniform distribution over Rk

q . By Theorem 6, the distributions of the
outputs from SampleLefthybrid and SampleRighthybrid algorithms are statistically
close. Thus, Game 3 and Game 4 are statistically indistinguishable.

Proof of Lemma 17

Proof. Now we show that the distributions of Game 5 and Game 6 are close by
the RLWEn,k+2,q,DR,σ0

assumption (Def. 2). We first define an RLWE adversary
B′ as follows.
Instance. B′ is given the RLWE instance {(ui, yi)}k+1

i=0 ∈ Rq×Rq. If uk+1 is not
invertible, then aborts. B′ simulates the IBE experiment.

Setup. To generate the master public key mpk, B′ executes as follows:
– pp← GSW.Setup(1λ).
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– (A, s)← GSW.KeyGen(pp).

– sample
{
{Cαi,i′},Cβ̃

}
as in Game 2.

– set d := uk+1, b := u−1k+1 · [u1| · · · |uk], u := u0.
– sample ĉ, cs as in Game 3.
– use the y0 in the RLWE challenge as the y0 in the game, then set y :=

[y1| · · · |yk+1], ȳ := yk+1.
Then it outputs mpk := (b, {Cαi,i′},Cβ̃ , ĉ, cs,A, d, u), which simulates the
setup phase.

Phase 1 & Phase 2. When A makes the key extraction queries, B′ responds as
in Game 4.

Challenge. When A makes the challenge query for the challenge identity id∗ and
a message m, B′ sets the challenge ciphertext as

c∗0 = y0 + ⌈
q

2
⌉ · µ, c∗1 =

 ȳ

ReRand

([
Ik R0 +Rid∗

0⊤ e⊤id∗

]
,y, σ0,

σ1

2σ0

) .

Guess. At the end of the game, if A successfully guesses the correct (simulated)
challenge bit from B′, then B′ guesses that the challenge samples are RLWE
samples and outputs 1; otherwise, B′ guesses the uniform distribution and
outputs 0.

When the RLWE challenge is from the real RLWE distribution, i.e., yi = ui ·v+ei
for some v ∈ Rq, the challenge ciphertext is distributed exactly as in Game 5.

When the RLWE challenge is truly random, i.e., yi = y′i + ei for some y′i
$← Rq,

the challenge ciphertext is distributed exactly as in Game 6. We therefore con-
clude that Game 5 and Game 6 are indistinguishable by the RLWEn,k+2,q,DR,σ0

assumption.

Proof of Lemma 18

Proof. In Game 6, we can re-write y′
$← Rk+1

q as [ y1
y2 ] where y1

$← Rk
q and

y2
$← Rq, then we have that

c̄∗1 = ReRand

([
Ik R0+Rid∗

0⊤ e⊤
id∗

]
,y′ + e′0, σ0,

σ1

2σ0

)
= y′⊤ ·

[
Ik R0+Rid∗

0⊤ e⊤
id∗

]
+ (e′2)

⊤

= [y⊤1 |y2] ·
[

Ik R0+Rid∗

0⊤ e⊤
id∗

]
+ (e′2)

⊤

= [y⊤1 |y⊤1 (R0 +Rid∗) + y2 · e⊤id∗ ] + (e′2)
⊤.

By Lemma 3, we have that the distribution of e′2 is statistically close the dis-
crete Gaussian distribution DR2k,σ1

. Thus, Game 6 and Game 7 are statistically
indistinguishable.
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Proof of Lemma 19

Proof. First, it is easy to see that c∗0 is uniformly random over Rq in both Game
7 and Game 8. We also have to show that the distribution of c∗1 is close to the
uniform distribution over R2k+1

q . To see this, we first observe the following

(b⊤,b⊤R0,y
⊤
1 ,y

⊤
1 R0) ≈ (b⊤,b′⊤,y⊤1 , (y

′
1)
⊤) ≈ (b⊤,b⊤R0,y

⊤
1 , (y

′
1)
⊤), (18)

where b,b′
$← Rk

q , R0 ← [−ρ, ρ]k×k, y1,y
′
1

$← Rk
q . It can be seen that the

first and the second distributions are statistically close by apply Lemma 5 for[
b⊤

y⊤
1

]
∈ R2×k

q and R0 ← [−ρ, ρ]k×kR . It can also be seen that the second and the
third distributions are statistically close by applying the same lemma for b and
R0. From the above, we have that the following distributions are statistically
close:

(b⊤,b⊤R0,y
⊤
1 + (e′2,1)

⊤,y⊤1 R0 + y⊤1 Rid∗ + y2e
⊤
id∗ + (e′2,2)

⊤)

≈ (b⊤,b⊤R0,y
⊤
1 + (e′2,1)

⊤, (y′1)
⊤ + y⊤1 Rid∗ + y2e

⊤
id∗ + (e′2,2)

⊤)

≈ (b⊤,b⊤R0,y
⊤
1 , (y

′
1)
⊤).

The first and the second distributions above are statistically close by Eq. (18),
whereas the second and the third distributions are statistically close by the fact
that e′2,1, e′2,2 and Ri, which are used to compute Rid∗ , are chosen independently
random from other variables. Therefore, Game 7 and Game 8 are statistically
indistinguishable.

E Parameter Constraints for our IBE construction
in Sect. 5.3

Denote the security parameter as λ and the degree of ring R by n. To satisfy
the correctness and security requirement, for any real number ω, we require:

– For the requirement of the partition function as in Def. 6, Lemma 22, we
need

n is a power of 2, q ≡ 3 mod 8, tp ≤ n, m = 2n, L+ 1 ≤ mη.

– For the requirements of TrapGen algorithm and gadget vector g in Def. 3, we
need

ρ <
1

2

√
q/n, k ≥ 2 logρ q, k ≥ ⌈logb q⌉.

– To make sure the assumptions RLWEn,k+2,q,DR,σ0
and RLWEn,2k,q,DR,σ′

0
hold,

in the asymptotic setting, we use the bound

σ0 ≥ n3/2(k + 2)1/4ω(log9/4(n)), σ′0 ≥ n3/2(2k)1/4ω(log9/4(n))

to guarantee that the condition of the reduction in Lemma 23 is satisfied.
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– For the requirement of SampleLefthybrid algorithm in Theorem 4, we need

σ ≥ ηϵ(Znk) · ∥T̃b∥,

where ∥T̃b∥ ≤ O(bρ
√
n logρ q) by Lemma 7.

– For the requirement of SamPre in SampleRighthybrid algorithm in Theorem 5,
we need

s ≥ ηϵ(Znk) · ∥T̃g∥,

where ∥T̃g∥ ≤
√
b2 + 1 by Def. 3.

– For the requirement of SampleRighthybrid algorithm in Theorem 5, we need

σ2 ≥ (s2 + η2ϵ (Znk)) · (∥Rid∥2 + 1),

where ∥Rid∥ ≤ nkb · ∥R∥ ≤ nkb ·Cρ
√
n · (2

√
k+ ω) with probability 2e−πω

2

by Theorem 3 and Lemma 4.
– For the requirement of SampleRighthybrid algorithm in Theorem 5, we need

r2 ≥ (σ2 + η2ϵ (Znk)) · (∥eid∥2 + 1).

Note that we consider the plain model and CRS model respectively, as in [1,
Corollary 4.9].
• In plain model, ∥eid∥ ≤ ∥e∥4(L+1)tmn2(kb)3η∥R′∥ by Theorems 1 to 3.
• In CRS model, ∥eid∥ ≤ ∥e∥Õ(tLmnk2b3η)∥R′∥.

Additionally, by the definition of e (in Sect. 2.5) and Lemma 2, ∥e∥ ≤
σ′0
√
2nk. By Lemma 4, ∥R′∥ ≤ Cρ

√
n · (2

√
2k+ω) with probability 2e−πω

2

.
– For the requirement of ReRand algorithm, we need

σ1 ≥ 2σ0 · ∥V∥ for V =
[

Ik Rid∗

0⊤ e⊤
id∗

]
.

– For the correctness of our IBE scheme (Lemma 11), we need modulus q
satisfy

q ≥ 5ω(σ0 + rσ0

√
n+ σ1σ

√
2nk)

to achieve correctness with concrete probability at least 1−(6e−πω2

+2−2nk+
2−n).

F Application for LWE-based IBE

We note that our novel cross-multiplication design and several techniques are
not only restricted to RLWE-based IBE [1,25], but also can be applied to LWE-
based IBE [2,38,39].

Our several novel tools/techniques include: a) homomorphic computation
outputting BGG+-style encoding with two distinct-norm trapdoors; b) sam-
pling algorithm with hybrid Gaussian outputs; c) partial rerandomization. In
this section, we explain how to apply these techniques to LWE-based IBE, re-
spectively.
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F.1 Apply Technique a) to LWE-based IBE

Usually in LWE-based IBE [2,38,39], there are a trapdoor pair (B,TB) ∈ Zn×nk
q ×

Znk×nk, and some public uniform matrices Ci, which are simulated as Ci =
BRi+xiG in the security proof (where G ∈ Zn×nk

q and k ≥ log q). As described
in Sect. 1.2, our technique a) follows the steps below:

1. First, we simulate Ci in GSW-style encryption form.
2. Then, we homomorphically compute the partition function H(·) and get a

GSW-style encryption CH of the partition function.
3. Also, we provide a public random matrix M in the construction, and simulate

it in a BGG+-style encoding of the secret key of GSW.
4. Finally, using the BGG+-style encoding M, we homomorphically transform

the GSW-style encryption CH into an (approximate) BGG+-style encoding
of the partition function, i.e.,

Cid = BRid +H(id)G+Eid. (19)

A straightforward but failing approach to adapting to LWE

1. First, we simulate

Ci =
[

A
s⊤A+e⊤

]
Ri + xi

[
G

g⊤

]
,

where
([

A
s⊤A+e⊤

]
, s
)

are the public key and secret key of GSW scheme.
2. Then, we homomorphically compute the partition function H(·) and get

CH =
[

A
s⊤A+e⊤

]
RH + H(id)

[
G

g⊤

]
. For the last k columns of CH , i.e.,[

Ĉ0

ĉ⊤
1

]
=
[

AR̂H

(s⊤A+e⊤)R̂H+H(id)g⊤

]
, then we have

ĉ⊤1 − s⊤Ĉ0 = H(id)g⊤ + e⊤R̂H .

3. Also, we add a public random matrix M in the construction, and simulate

each row of M in the security proof. Suppose B =

 b⊤
1

...
b⊤

n

, we sample a

small-norm matrix Rs ∈ Znk×nk and set

M =

m⊤
1

...
m⊤

n

 =

 b⊤
1 Rs+s⊤G

...
b⊤

n Rs+s⊤G

 = BRs +

[
s⊤

...
s⊤

]
G.

4. Finally, we compute

ĉ⊤1 −m⊤i ·G−1(Ĉ0) = b⊤i · (−RsG
−1(Ĉ0)) +H(id)g⊤ + e⊤R̂H
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for i ∈ [n]. Since we want to get a result as the form of Eq. (19), we concate-
nate these n vectors on the diagonal (we try to use the vectors g⊤ to make
up the matrix G) as follows: b⊤

1 ·(−RsG
−1(Ĉ0))+H(id)g⊤+e⊤R̂H

. . .
b⊤

n ·(−RsG
−1(Ĉ0))+H(id)g⊤+e⊤R̂H

.
Obviously, such a matrix is not what we expect (i.e., Eq. (19)), since it’s only
non-zero on the diagonal.

A novel and successful approach to adapting to LWE

From the above “incorrect” idea, we know that we cannot use the vectors g⊤

to make up the matrix G, the only way to generate the final matrix we want
(i.e., Eq. (19)), is to generate the complete matrix G directly in the process of
homomorphic computation. Therefore, we propose another idea:

1. First, we simulate

Ci =


A

s⊤1 A+e⊤
1

...
s⊤n A+e⊤

n

Ri + xi[G G ].

2. Then, we homomorphically compute the partition function H(·) and get

CH =


A

s⊤1 A+e⊤
1

...
s⊤n A+e⊤

n

RH + H(id)[G G ]. For the last nk columns of CH , i.e.,

[
Ĉ0

Ĉ1

]
=


AR̂H

s⊤1 A+e⊤
1

...
s⊤n A+e⊤

n

R̂H+H(id)G

, we have

Ĉ1 −

 s⊤1
...
s⊤n

Ĉ0 = H(id)G+

 e⊤
1

...
e⊤
n

R̂H .

3. Also, we add a public random matrix M in the construction, and simulate

M = BRs +

 s⊤1
...
s⊤n

G.

4. Finally, we compute

Ĉ1 −M ·G−1(Ĉ0) = B (−Rs ·G−1(Ĉ0))︸ ︷︷ ︸
Rid

+H(id)G+

 e⊤
1

...
e⊤
n

R̂H︸ ︷︷ ︸
Eid

.
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Obviously, Rid is small-norm and Eid is large-norm. So we construct a matrix
version of the sampling vector as in Eq. (19), and then we can get

PKid = [B|BRid +H(id)G+Eid] ∈ Zn×2nk

to sample the hybrid secret.

F.2 Apply Technique b) to LWE-based IBE

Similar to Sect. 1.2, we sample h ∈ Zn, p̄ ∈ Znk, p ∈ Z2nk as perturbations,
which follow some elliptical Gaussian distributions. Let x̃ ∈ Znk be a short vector
such that Gx̃ = H(id)−1 · (u + h + Eid · p̄ − PKid · p). We then construct the
hybrid secret (w ∈ Zn,x ∈ Z2nk) as follows.

[B|BRid +H(id)G+Eid]︸ ︷︷ ︸
PKid

·
(
p+

[−Rid
I

]
x̃
)︸ ︷︷ ︸

x, small

= u+ (h+Eid (p̄+ x̃))︸ ︷︷ ︸
w, large

It’s easy to verify that the above equation holds:

PKid · x = [B|BRid +H(id)G+Eid] ·
(
p+

[−Rid
I

]
x̃
)

= PKid · p+H(id)Gx̃+Eid · x̃
= PKid · p+ (u+ h+Eid · p̄−PKid · p) +Eid · x̃
= u+ (h+Eid · p̄+Eid · x̃)
= u+w

F.3 Apply Technique c) to LWE-based IBE

Similar to Sect. 1.2, we construct the hybrid error as

c⊤1 = v⊤ ·D · [In,PKid] + [e⊤1 , e
⊤
2 ] ∈ Z2nk+n,

where v ∈ Zn is a random vector, D ∈ Zn×n is an invertible matrix, e1 ← DZn,σ0

is a small error and e2 ← DZ2nk,σ1
is a large error.

Similar to Sect. 1.2, we first use the re-randomization algorithm to generate a
partial ciphertext

(c̃∗1)
⊤ = ReRand(

[
Ink R∗

0 E∗

]
,v⊤ ·D · [B, In] + (e′0)

⊤, σ′0,
σ1

2σ0
)

= v⊤ ·D · [B, In] ·
[
Ink R∗

0 E∗

]
+ (e′2)

⊤

= v⊤ ·D · [B,BR∗ +E∗] + (e′2)
⊤,

where the distribution of e′2 is close to e2. We concatenate the last part of
v⊤ ·D · [B, In] + (e′0)

⊤ and c̃∗1, and get the ciphertext c∗1 as follows

(c∗1)
⊤ = v⊤ ·D · [In,B,BR∗ +E∗] + [e′⊤0 , e′⊤2 ].
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