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Abstract—This paper presents a high-performance architec-
ture for accelerating Multi-Scalar Multiplication (MSM) on
ASIC platforms, targeting cryptographic applications with high
throughput demands. Unlike prior MSM accelerators that fo-
cus solely on efficient processing elements (PEs), our chiplet-
based design optimally balances area, power, and computational
throughput. We identify a mixed window configuration of 12- and
13-bit windows that enables an efficient multi-PE integration of
10 PEs per chiplet. Our single-PE design achieves a 1.37x speedup
and 1.3x area reduction over prior works, while the multi-PE
chiplet design improves the area-time product by 2.2x, offering
scalability, lower production costs, and higher manufacturing
yields.

Index Terms—Multi-Scalar Multiplication, Zero-knowledge
proofs, Hardware Acceleration, Scalable Chiplet Architecture,
Parallel Computing

I. INTRODUCTION

Multi-Scalar Multiplication (MSM) is a computationally
intensive operation in cryptographic protocols, particularly in
pairing-based zero-knowledge proofs (ZKPs) [1]. As shown
in Figure 1, MSM accounts for over 70% of proof generation
time [2]. Its computational dominance increases with the
number of points N , as seen in systems like Groth16 [3],
PlonK-KZG [4], and Marlin-KZG [5], which process tens to
hundreds of gigabytes of data and take minutes for 225 to 228

points. Hardware acceleration of MSM is crucial for improving
the time and energy of proof generation.

CycloneMSM [6] and Hardcaml [7] are high-performance
FPGA-based MSM accelerators from the 2023 Z-Prize [8]
challenge. These designs leverage Pippenger’s bucket
method [9] to accelerate MSM by decomposing [10] it into
three key steps: bucket classification, bucket aggregation,
and result aggregation. The two accelerators optimize the
computationally dominant bucket classification step and use
a single fully pipelined point adder unit. However, due to the
large size of fully pipelined point adder, these accelerators
cannot instantiate more than one processing element (PE) even
in high-end FPGAs. ASIC architectures such as PipeZK [11],
Gypsophila [12], and PriorMSM [13] primarily employ
single processing element (PE) configurations with optimized
memory access strategies to mitigate bandwidth pressure
from bucket collisions during classification. Among these,
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Fig. 1. Overview of workload distribution for NTT, MSM, and Bucketing
operations involved in proof generation of paring-based ZKPs.

only Gypsophila [12] explores a multi-PE design where each
PE independently computes separate MSMs.

Notably, no prior work has investigated a collaborative
multi-PE MSM design where all PEs work together on a single
MSM computation. Such a design could significantly reduce
latency and enhance throughput.

Motivation for chiplet-based MSM design approach:
Instantiating multiple PEs for MSM increases the overall area
of the ASIC design, which can escalate production costs and
negatively impact yield due to the complexities associated with
fabricating large chips. For example, as shown in Table I,
a monolithic ASIC accelerator with 16-bit window size and
16 PEs would require approximately 269mm2 of die area
which is large. In modern semiconductor engineering, multi-
chiplet System-in-Package (SiP) provides an effective solution
to address cost and yield challenges of large monolithic chips.
Decomposing the design into smaller and modular chiplets
not only improves scalability and manufacturing yield but
also reduces production costs [14]. Recent works – such
as CiFHer [15], REED [16] and Chiplever [17] – have ex-
plored the adoption of chiplet-based architectures for Fully
Homomorphic Encryption (FHE), which like MSM is also
computation and data intensive. This motivates us to explore
the research question: How can MSM be implemented as a
multi-chiplet SiP to achieve high performance?
Our contributions are summarized as follows:

• Memory aware PE Design: We analyze the impact of
memory footprint and latency on PEs and propose an
optimized design that balances area and computational
throughput for MSM workloads.



• Mixed window sizes: We introduce mixed window size
configurations for multi-PE setups, demonstrating how
they optimize memory usage and workload distribution
while minimizing latency.

• Inter-chiplet communication: We propose diverse work-
load distribution and interconnect strategies that minimize
inter-chiplet and off-chip memory communications. We
use these distribution strategies (vertical, horizontal or
full unrolling) to propose three different chiplet-based
architectures.

• Comprehensive evaluation: We evaluate our design
across varying configurations, showing up to 1.14× and
2.2× improvements in throughput and area efficiency,
respectively, compared to state-of-the-art monolithic de-
signs. In addition, our chiplet-based design enhances the
scalability and production yield for ASIC platforms.

II. BACKGROUND

This section outlines the fundamental aspects of MSM,
including its mathematical foundation in elliptic curve cryp-
tography and the Pippenger algorithm used to optimize MSM
computations.

A. Elliptic Curves

An elliptic curve E over a finite field Fq is defined as the set
of points (x, y) ∈ F2

q that satisfy the Weierstrass equation y2 =
x3+ax+ b. For appropriately chosen curve parameters a and
b, the points on E form an Abelian group (E,+), where the
group operation, known as point addition, combines two points
P1 = (x1, y1) and P2 = (x2, y2) to produce a third point P3 =
(x3, y3) on E. Point addition is governed by specific rules of
the elliptic curve and involves field arithmetic operations in Fq .
The group’s identity element is the point at infinity, denoted
by O. For a positive integer scalar s, the scalar multiplication
of a point P ∈ E is defined as s · P =

∑s
k=1 P , which

corresponds to adding P to itself s times.
Elliptic curve arithmetic is the backbone of MSM. The

choice of curve forms and coordinate systems influence the
cost of elliptic curve arithmetic. Adding two points on the
Weierstrass curve involves several modular additions, modular
multiplications, and in some cases, very expensive modular
inversions in the field Fq . These finite field operations are
computationally intensive, as the prime q is usually 384
bits or similar in pairing-based ZKPs, necessitating efficient
implementation techniques. The choice of coordinate system
to represent points on the curve influences the cost of point
addition. For example, projective coordinates eliminate the
need for modular inversion by introducing additional modular
multiplications. Extended projective coordinates (X,Y, Z, T )
are particularly efficient for Twisted Edwards curves, a spe-
cialized form of elliptic curves, as they minimize the number
of modular multiplications in point addition [18].

B. Multi-Scalar Multiplications

Multi-Scalar Multiplication (MSM) is a fundamental opera-
tion in elliptic curve cryptography and zero-knowledge proofs,

Algorithm 1 Pippenger Algorithm - Bucket Method [12]
1: function BUCKETCLASSIFICATION(s,P )
2: Set Bj,k ← O ∀j, k
3: for j = 0 to m− 1 do
4: for i = 0 to N − 1 do
5: k ← si,j
6: Bj,k ← Bj,k + Pi

7: end for
8: end for
9: return Bj,k

10: end function
11: function BUCKETAGGREGATION(Bj,k)
12: Sj ← O ∀j
13: for j = 0 to m− 1 do
14: for k = 0 to 2w − 1 do
15: Sj ← Sj + k ·Bj,k

16: end for
17: end for
18: return Sj

19: end function
20: function RESULTAGGREGATION(Sj)
21: R← O
22: for j = m− 1 downto 0 do
23: R← 2w ·R
24: R← R+ Sj

25: end for
26: return R ▷ R = MSM(s, P )
27: end function

where the goal is to compute a weighted sum of elliptic curve
points. Given a set of scalars s = (s0, s1, . . . , sN−1) with 253-
bit si ∈ Fp ⊆ N and points P = (P0, P1, . . . , PN−1) on an
elliptic curve E, MSM is expressed as:

MSM(s, P ) = s0 · P0 + s1 · P1 + · · ·+ sN−1 · PN−1. (1)

Since N easily reaches 226 in zero-knowledge proofs, the
computational cost of MSM is substantial, driving the need
for efficient algorithms and hardware acceleration. Given the
computational intensity of MSM, efficient algorithms like the
Pippenger algorithm [9] are crucial for minimizing the num-
ber of scalar multiplications and achieving high-performance
hardware implementations.

C. Pippenger Algorithm

The Pippenger algorithm [9], widely employed in MSM,
structures computations to maximize parallelism and reduce
the overall number of scalar multiplications. Algorithm 1
shows Pippenger’s method. This algorithm divides each 253-
bit scalar si into w-bit wide windows si,j , such that si =∑m−1

j=0 si,j ·2j·w, where m = ⌈ 253
w ⌉. This enables independent

processing of smaller scalar segments si,j .
The Pippenger algorithm executes three main stages: (1)

Bucket Classification, (2) Bucket Aggregation, and (3) Result
Aggregation, as shown in Algorithm 1. In the Bucket Classifi-
cation, the value of windows si,j classifies points into buckets.
Specifically, each window value si,j determines the bucket
Bj,si,j to which the point Pi belongs. This classification can
be represented as: Bj,k =

∑
Pi | si,j = k. Therein, Bj,k

is the bucket for the j-th window containing all points Pi
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Fig. 2. Overview of mixed (top) and full (bottom) PADD modules.

with scalar values si,j = k. Aggregating points into buckets
reduces the number of scalar multiplications needed, as each
bucket effectively represents a partial sum within the MSM
computation. Once bucket classification is complete, the algo-
rithm computes the sum Sj over all buckets Bj,k of window j.
Formally, it computes Sj =

∑2w−1
k=0 k ·Bj,k. In the final stage,

it combines the results Sj from all windows by summing each
contribution, weighted by the position of the window. The final
MSM computation is: MSM(s, P ) =

∑m−1
j=0 Sj · 2j·w. Each

window’s sum Sj is scaled by a factor of 2j·w to account
for the window’s position, and the weighted sums are then
combined to get the MSM result.

III. PROPOSED DESIGN

This section details the design of our MSM accelerator,
with a focus on how we optimize performance, scalability,
and resource utilization. We begin by describing the archi-
tecture of the Processing Element (PE), including the trade-
offs involved in selecting the appropriate window size. Next,
we address the challenges in scaling MSM operations by
distributing workloads across multiple PEs and efficiently
managing memory bandwidth. Finally, we present our chiplet-
based approach, discussing how we map operations to multiple
chiplets and optimize the design for both DDR and high-
bandwidth memory (HBM) configurations through horizontal
and vertial unrolling techniques.

A. Processing Element

The fundamental building block of our MSM accelerator
is an optimized Processing Element (PE) design tailored to
handle point addition and doubling operations on elliptic
curves. Each PE consists of two main subunits: a point adder
(PADD) and bucket memory for storing results of bucket
classification.

Figure 2 illustrates two different PE designs, where the top
PE shows a mixed PADD unit and the bottom shows a full
PADD unit. Previous works [6], [7], [19] on FPGA typically
use mixed PADD units to reduce area requirements, as a mixed
PADD unit requires only seven instead of nine modular mul-
tiplication units. Note that each modular multiplier operates
on 377-bit operands via Barret reduction [20]. Within our PE
design, we used the open-source modular multiplier of [6].
Although a mixed PADD reduces area, it restricts the PE’s
efficiency by requiring multiple passes through the unit to

Fig. 3. Impact of window size on area consumption, number of passes, and
area-time product.

simulate a full PADD. This restricts the efficiency especially
for bucket and result aggregation.

In contrast to previous work we utilize a full PADD unit,
this approach allows each PE to perform complete bucket
classification and aggregation without intermediate results or
multiple passes. This maintaining a smooth pipeline flow
and achieving higher overall efficiency during bucket- and
result aggregation. It is noteworthy that the usage of a full
PADD consumes more resources compared to mixed PADD
designs, however, it avoids the complexity of pass-by-pass
accumulation during the aggregation steps.

1) Impact of Window Size on Bucket Memory and La-
tency for single PE case: To evaluate the impact of different
window sizes, we first analyze a single PE performing the
entire MSM computation. The window size directly influences
both the PE’s area requirements and the overall MSM latency.
Larger window sizes reduce the number of computation passes
by processing larger fractions of the scalar in each pass,
thereby decreasing latency. However, this comes at the cost
of exponentially increased bucket memory usage. Conversely,
smaller window sizes keep memory usage manageable but re-
quire more computation passes, potentially increasing latency.

To determine the optimal configuration for our single PE
design, we analyzed window sizes ranging from 8 to 16
bits. Figure 3 illustrates the relationships between the bucket
memory area (in mm2), total PE area (in mm2), number of
computation passes, and the Area-Time Product (ATP). These
datasets highlight how window size impacts both performance
and resource requirements.

Our analysis reveals that the bucket memory area doubles
with each increment in window size, leading to exponen-
tial growth. Meanwhile, the reduction in computation passes
provides a roughly linear performance gain. This mismatch
results in exponential growth of the ATP (black dotted trace
in Figure 3), with a minimum observed in the range of 11-
to 13-bit windows. For window sizes up to 13 bits, the
bucket memory has minimal impact on the total PE area,
which remains dominated by the PADD module. Beyond 13-
bit windows, however, the PE area increases significantly
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Fig. 4. Overview of different distribution techniques for vertical, horizontal and full unrolling.

TABLE I
COST OF MONOLITHIC DESIGN FOR VARIOUS WINDOW SIZES

Window (in bit) 8 9 10 11 12 13 14 15 16
Num. of PEs 32 29 26 24 22 20 19 18 16
Area (in mm2) 154 141 129 124 121 125 149 195 269
Power (in W) 122 111 99 91 84 76 72 68 61

due to the growing memory requirements. Based on these
findings, we select a 13-bit window size as the optimal balance
between performance and area efficiency for our single PE
configuration.

2) Impact of Window Size on Fully Unrolled Archi-
tecture with multi-PE case: After discussing the single-
PE case, we now focus on a fully unrolled PE array. In the
fully unrolled configuration, the entire scalar multiplication
si · Pi is computed in parallel across multiple PEs. Each
PE operates on a specific window wi of the scalar, where
si = ⟨w0|w1| . . . |wc−1⟩. The window size determines the
granularity of these operations, directly influencing both the
utilization of individual PEs and the overall design of the fully
unrolled array.

Table I illustrates the trade-offs between area and power
consumption for various window sizes ranging from 8 to
16 bits. The first row of Table I shows the number of PEs
required to cover a 256-bit scalar. For instance, with an 8-
bit window, 32 PEs are required, each with a smaller bucket
memory. Conversely, larger windows reduce the number of
PEs but require more memory per PE, as discussed earlier.
Interestingly, the overall area consumption in the fully unrolled
case is minimal for 11 to 13-bit windows, which is almost the
same window size as found optimal for the single PE case.
This again highlights the reasonability of our chosen window
size of 13 bits.

In terms of power consumption, Table I shows a decline
for larger window sizes. This trend arises because, as window
sizes grow, the memory footprint increases while the num-
ber of PEs decreases. Since the modular multipliers in PEs
consume more power than memory, larger windows lead to
reduced overall power requirements.

For example, a 16-bit window configuration, as used in [6],
[12], requires a total area of 269 mm2 and 61 W of power

when fully unrolled – when taking TSMC 28nm node. These
resource requirements limit scalability due to increased area
and power demands. By contrast, our analysis identifies an
optimal window size range of 11 to 13 bits, which balances
area and latency efficiency. This range allows the implementa-
tion of multiple PEs without incurring excessive area or power
costs.

1) Bucket Aggregation and Final Sum: After completing
bucket classification, the points in each bucket must be ag-
gregated to compute the final result of the bucket. Tradi-
tional approaches rely on an iterative computation flow for
bucket aggregation, where points are summed sequentially
within each bucket via Double-and-Add similar to the fast
exponentiation algorithm [21]. This method is highly sensitive
to window size, as larger windows result in larger bucket
sizes and therefore more aggregation steps. Consequently, the
iterative nature of this approach introduces latency bottlenecks
due to the pipelined nature of the PADD unit. To address
this, our design overlaps bucket aggregation with classification,
parallelizing these operations to improve throughput.

B. Chiplet-based Considerations

The previous sections identified 11 to 13 bits as the optimal
window size range for single-PE and fully unrolled PE arrays.
Monolithic MSM designs, however, face scalability challenges
due to the exponential dependency of the die area on window
size, as shown in Table I. Although smaller windows increase
power consumption by requiring more PEs, larger windows
reduce PEs while significantly increasing memory area. This
exponential growth in area highlights the limitations of mono-
lithic implementations as they lead to high production costs.

Distribution MSM Workloads Across PEs: We propose
techniques to distribute MSM workloads across multiple PEs
on separate chiplets, avoiding reliance on a single large die.
These strategies reduce the total number of off-chip memory
accesses, improving throughput and scalability. Figure 4 illus-
trates three different workload distributions for chiplet-based
designs with two different memory configurations: (1) low-
bandwidth DDR (Double Data Rate) and (2) high-bandwidth
HBM (High-Bandwidth Memory).



(1) In low-bandwidth setups – shown on the left side of Fig-
ure 4 – horizontal unrolling minimizes redundant point loading
from off-chip memory by processing all windows of the scalar
in parallel. Each point is loaded only once, and computations
for all scalar windows are performed simultaneously within
the PE array.

(2) In high-bandwidth setups – depicted in the middle and
right sides of Figure 4 – both vertical and fully unrolled
strategies are feasible. For vertical unrolling, points are stored
in off-chip memory in an order that reflects the number of
PEs. For example, with an HBM featuring 16 banks, each
bank stores points in a staggered sequence such that bank0
contains [P0, P16, P32, . . . ], bank1 contains [P1, P17, P33, . . . ],
etc. This staggered sequence of points allows us to keep the
loading of scalars linearly (s0, s1, s2, ...) from PCIe without
reordering. The main advantage of this arrangement is the con-
current processing of multiple scalars across PEs, leveraging
the parallelism provided by the memory banks.

(3) In the case of fully unrolled processing (Figure 4
right), vertical unrolling is combined with horizontal unrolling,
allowing computations to be performed on multiple points and
scalars simultaneously. This maximizes parallelism by utiliz-
ing both inter-scalar and intra-scalar parallelization, achieving
the highest throughput at the cost of increased hardware
complexity.

Mapping MSM Workloads to Chiplets: Our chiplet-
based architecture maps MSM workloads by distributing PEs
and mixed window sizes across multiple chiplets to achieve
scalability and efficiency. Figure 5 illustrates this mapping for
vertical unrolling, showing the even distribution of PEs be-
tween two chiplets. Specifically, we employ a mixed window
size configuration consisting of 6 PEs with 12-bit windows
and 14 PEs with 13-bit windows, perfectly splitting the 253-
bit scalar (adjusted from 254 bits using signed scalar reduc-
tion [22], [23]).

This configuration optimally balances PE area and latency,
ensuring efficient utilization of hardware resources. Each
chiplet houses 10 PEs, keeping the total chiplet area within
approximately 80 mm2 in the targeted TSMC 28nm library.
This area constraint ensures scalability by maintaining manu-
facturing yields while avoiding excessive power and thermal
constraints. By adopting this two-chiplet configuration, our
architecture achieves high parallelism and throughput without
compromising on area or power efficiency.

Optimizing Inter-Chiplet Communication: In 2.5D SiP,
chiplets are connected through a silicon interposer using
UCIe [24] interconnects. We optimize the chiplet-to-chiplet
(C2C) communication requirement by tailoring the workload
decomposition for the unique data flow of the MSM. In our
design, we reduce the C2C communication requirement to the
minimum: only one elliptic curve point per cycle. We achieve
this by passing and processing the elliptic curve points serially
within each chiplet. Each point passes through all the PEs
within a particular chiplet before being transmitted to the ad-
jacent chiplet, as shown in Figure 5. The serial pipeline offers
computation-communication parallelism, allowing processing

Package
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2C
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Fig. 5. Overview of an horizontal unrolled architecture with a two-chiplet
configuration each incorporating 10 PEs.

elements to perform computations while points are transferred
simultaneously.

This communication strategy adapts to different memory
configurations to optimize throughput. For low-bandwidth
DDR environments, horizontal unrolling reduces redundant
data loading by ensuring each point is fetched only once,
thereby minimizing off-chip memory interactions. In con-
trast, high-bandwidth HBM environments leverage vertical
unrolling, which takes advantage of the parallel memory
banks in HBM to enable simultaneous access to multiple
points, maximizing memory bandwidth utilization. By aligning
communication strategies with memory configurations, our
design reduces inter-chiplet overhead and ensures scalability
and efficient resource allocation across diverse environments.

IV. EVALUATION AND RESULTS

This section presents performance results for our single- and
multi-PE chiplet design based on TSMC 28nm technology. We
additionally compare our area, power, latency, and scalability
results with state-of-the-art MSM works to highlight the
efficiency and flexibility of our design.

A. Single-PE Performance

Our single PE design demonstrates improvements in speed,
area, and power compared to state-of-the-art MSM accelera-
tors. The single PE with a window size of 13 bits occupies
7.11 mm2 and consumes 4.6 W as shown in Table II.

Compared to GPU-based accelerators cuZK [2] and
GZKP [25], our single-PE design achieves speed improve-
ments between 1.9× and 5.3× depending on N . Compared
to FPGA-based implementations such as CycloneMSM [6],
Hardcaml [7], and BSTMSM [26], our design achieves a
speedup of 7.1×, 6.5×, and 3.4× at N = 223, respectively. We
emphasize our three to four times higher clock frequency than
those works (1 GHz compared to 250–300 MHz, as reported in
Table II). When normalizing our ASIC results to their FPGA
results we still achieve slight speedups of up to 1.8×.

It is also noteworthy, that these FPGA designs utilize nearly
all available logic resources, leaving little room for scalability,
whereas our ASIC architecture is specifically optimized for
efficient scaling with additional PEs. Gypsophila [12] presents
FPGA results for single PE and ASIC results for multiple PEs.
Our single PE design achieves a comparable performance to
their FPGA-based results.



TABLE II
PERFORMANCE COMPARISON WITH RELATED WORKS

Work PEs Platform Freq. Area / Resources Power Latency in ms for various N
MHz mm2 or LUT/FF/DSP/BRAM W 2ˆ16 2ˆ17 2ˆ18 2ˆ19 2ˆ20 2ˆ21 2ˆ22 2ˆ23 2ˆ24 2ˆ25 2ˆ26

GZKP [25] 1 Nvidia V100 - - - 7 - 20 - 62 - 240 - 1,100 - 4,000
cuZK [2] 1 Nvidia V100 - - - - - - 27 47 90 171 312 - - -
PipeMSM [19] 1 Xilinx U55C 125 - 34.9 17.6 35.9 68.8 136.6 273.0 - - - - - -
CycloneMSM [6] 1 AWS F1 250 526k / 661k / 2,277 / 623 43.5 - - - - - - 817.9 1,199.0 1,761.0 3,016.0 5,656.0
Hardcaml [7] 1 Xilinx VU9P 278 387k / 733k / 2,999 / 883.5 - - - - 499.0 540.0 620.0 780.0 1,094.0 - - -
BSTMSM [26] 1 Xilinx U250 300 410k / 744k / 2,920 / 623 - - - 23.0 40.0 75.0 145.0 285.0 564.0 1,124.0 2,242.0 4,479.0
Gypsophila [12] 1 Xilinx VU13P 200 1,459k / - / 3,684 / - 48.9 - - 23.8 44.8 86.8 170.7 338.6 674.3 1,346.0 2,689.0 -
PipeZK [11] 1 UMC 28nm 300 16.86 2.4 22.0 45.0 92.0 184.0 - - - - - - -
PriorMSM [13] 1 TSMC 28nm 1,000 9.21 5.3 1.8 3.3 6.2 12.0 24.0 47.0 95.0 189.0 377.0 754.0 1,509.0
Gypsophila∗ [12] 16 TSMC 12nm 1,000 79.80 45.3 - - 4.8 9.0 17.4 34.2 67.8 135.0 269.5 538.4 -
Ours 1 TSMC 28nm 1,000 7.11 4.6 1.31 2.62 5.24 10.49 20.97 41.94 83.89 167.77 335.55 671.09 1,342.18
Ours 5 TSMC 28nm 1,000 35.54 23.0 0.26 0.52 1.05 2.10 4.19 8.39 16.78 33.55 67.11 134.22 268.44
Ours 10 TSMC 28nm 1,000 71.09 46.1 0.13 0.26 0.52 1.05 2.10 4.19 8.39 16.78 33.55 67.11 134.22
Ours 20 TSMC 28nm 1,000 2×71.09 92.2 0.07 0.13 0.26 0.52 1.05 2.10 4.19 8.39 16.78 33.55 67.11
∗ Performs 16 independent MSMs in parallel. Hence, the latency for one MSM is identical to single PE case but throughput is approx. 16× higher than in single PE.

TABLE III
THROUGHPUT COMPARISON WITH GYPSOPHILA

Work PEs Platform Freq. Area / Resources Power Latency in ms for various N
MHz mm2 W 2ˆ16 2ˆ17 2ˆ18 2ˆ19 2ˆ20 2ˆ21 2ˆ22 2ˆ23 2ˆ24 2ˆ25 2ˆ26

Gypsophila∗ [12] 16 TSMC 12nm 1,000 79.80 45.3 - - 3,328 1,777 919 468 236 119 59 30 -
Ours 20 TSMC 28nm 1,000 2×71.09 92.2 15,240 7,625 3,813 1,907 954 447 238 119 60 30 15
∗ Performs 16 independent MSMs in parallel. Hence, the latency for one MSM is identical to single PE case but throughput is approx. 16× higher than in single PE.

We now consider single-PE works for ASIC. Compared
to PipeZK [11], we achieve a 17× speedup in our single-
PE case with similar technology nodes. Moreover, our design
is 2.4× smaller but needs 1.9× more power. Considering
PriorMSM [13], we reach a moderate speedup of up to 1.37×
while requiring 1.3× less area and 1.15× less power. This
shows the competitiveness of our single PE design with related
ASIC solutions for MSM.

B. Multi-PE and Multi-Chiplet Scaling

Increasing the number of processing elements (PEs) in our
design significantly accelerates MSM operations by enabling
parallel processing of multiple windows. Configurations with
5, 10, and 20 PEs and a mixture of PEs with 12- and 13-
bit window sizes show consistent improvements in latency
and throughput, as reported in Table II. The area and power
usage increase linearly with the number of PEs meaning
that each additional PE proportionally reduces the latency of
MSM while increasing area utilization. For instance, the 10-
PE configuration, occupying approximately 71.09 mm² and
consuming 46.1 W of power (Table II), reduces the required
computation passes to just 2 — 10× fewer than the 20 passes
needed in a single-PE setup. Similarly, the 20-PE config-
uration, spanning two chiplets with 10 PEs each, achieves
the theoretical minimum of 1 pass per MSM operation. Our
chiplet-based approach with horizontal unrolling – where each
chiplet has 71.09 mm2 – allows higher production yield than
a monolithic chip with up to 269 mm2.

The only work published that uses multiple PEs is Gyp-
sophila [12]. However, Gypsophila uses a different approach
than our work and computes 16 independent MSMs in parallel.
Thereby, each of the 16 PEs computes one MSM. Thus,
Gypsophila shows an almost identical MSM latency in the

16 PE case compared to the single PE case. Since our 20 PEs
jointly compute one MSM, we compare the overall throughput
in MSMs performed per second. The according benchmark is
presented in Table III. Compared to Gypsophila, we achieve
a moderately higher throughput for small N and a similar
throughput for larger N . To compare to the area consumption
of Gypsophila, we scale our area from the 28nm to the 12nm
technology by applying a factor of 0.25 [27], [28]. Based on
that, our work has an area benefit of 2.2×. This benefit of
our work is explained by our optimal window sizes of 12 to
13 bits whereas Gypsophilahas 16-bit windows. In addition,
our chiplet-based approach allows lower production costs and
higher yield.

V. CONCLUSION

We presented a chiplet-based MSM accelerator to address
the high computation and data demands in ZKP while of-
fering scalability, low production cost, and increased yield.
By introducing a memory-aware PE design and leveraging
mixed window size configurations, we optimized the trade-
offs between area, power, and computational throughput. Our
design employs flexible workload distribution strategies, in-
cluding horizontal, vertical, and fully unrolled approaches,
tailored to different memory configurations for maximum
efficiency. We further minimized inter-chiplet communication
overhead through MSM’s data flow-specific customization to
the workload distribution and interconnect strategies. Exper-
imental evaluations demonstrated that our single-PE design
achieved a 1.37x speedup and a 1.3x area reduction over
prior works, while the multi-PE chiplet design outperformed
monolithic counterparts by 2.2x in area-time product.
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