
Verifiable Streaming Computation and Step-by-Step

Zero-Knowledge

Abtin Afshar, Rishab Goyal∗

Abstract

We propose a new incrementally computable proof system, called Incrementally Verifiable
Streaming Computation (IVsC). IVsC enables computing incremental proofs of correct execution
for any RAM programM on a streaming input x. Input x is called a streaming input if it is only
available on-the-fly as part of an ongoing data generation/streaming process, and not available
at once. We also propose a new notion of zero-knowledge features for IVsC that guarantees the
proof can be incrementally verified w.r.t. an encrypted digest, where the proof and digest hide
the full data stream. We design zero-knowledge IVsC from a wide variety of standard falsifiable
assumptions (such as decision-linear/sub-exponential DDH/LWE).

We also introduce a new notion of non-interactive zero-knowledge proofs, that we call step-by-
step zero-knowledge protocols. Such protocols have strong zero-knowledge guarantees, wherein
the prover’s entire internal memory is simulatable at any point during proof generation. That
is, unlike standard zero-knowledge proofs, where only the final proof is simulatable, we can also
simulate prover’s state at every step of the computation. Such proof systems will be useful
in settings where an adversary could corrupt an honest prover even before it generates the
full proof. We show that a zero-knowledge IVsC system can be used (almost) as a black-box to
design step-by-step zero-knowledge proof systems, therefore secure under standard assumptions.

∗Email: {abtin,rishab}@cs.wisc.edu. Research supported by Wisconsin Alumni Research Foundation.

Contents

1 Introduction 1
1.1 Overview . 2

2 Preliminaries 10
2.1 RAM Programs . 10
2.2 Rate-1 Block Somewhere Extractable Hash (SEH) Families 11
2.3 Rate-1 Somewhere Extractable Batch Arguments (seBARGs) 13
2.4 2-to-1 Collision Resistant Hash Function . 14
2.5 Hash Tree . 14
2.6 Non-Interactive Zero-Knowledge Arguments (NIZK) 15
2.7 (Customized) Public-Key Encryption System . 16

2.7.1 leakage resilient/RDM/randomness recoverable/rate-1 PKEs 17

3 Zero-Knowledge Incrementally Verifiable Streaming Computation (zk-IVsC) 18
3.1 Definition. 18
3.2 Construction . 20
3.3 Analysis . 25
3.4 Further Optimizing zk-IVsC . 27
3.5 Predicated zk-IVsC . 27

3.5.1 Definition . 27
3.5.2 Construction . 29
3.5.3 Analysis . 31

4 Incrementally Computable Zero-Knowledge Arguments (ICZK) 31
4.1 Definition . 31
4.2 Construction . 32
4.3 Analysis . 34

5 From IVsC to Deterministic Distributed Computation 35
5.1 Binary Tree to Path Distributed Computation . 37
5.2 Class of Succinctly Transformable Distributed Computations to a Path 38

6 Benefits and Applications 39

A zk-IVsC Complete Analysis. 45

B Predicated zk-IVsC Complete Analysis. 62

C ICZK Complete Analysis. 66

i

1 Introduction

Incrementally verifiable computation (IVC) [Val08] and, its popular generalization, proof carrying
data (PCD) [CT10] are powerful succinct argument protocols. They enable incremental proof
generation for a distributed computation performed by a network of mutually distrustful parties.
PCDs have major theoretical and practical significance [CTV13, CTV15, NT16, Min17, KB23,
BMRS20, CCDW20]. They offer strong succinctness and soundness guarantees, which informally
state that the proof size is very short and no cheating polytime attacker can create proofs for
incorrect computation. In privacy-sensitive applications (e.g., zk-EVM [But22] and more [CTV15,
BBB+18, XZC+22, ZGSX23]), it is extremely valuable to support zero-knowledge guarantees as
well. That is, the proofs (both, intermediate and final) must hide the sensitive data.

The most common approaches to design PCDs rely on recursively composing succinct non-
interactive arguments of knowledge (SNARKs), or related primitives with similar accumulation/folding
features. Such PCDs are typically proven secure in oracle models (e.g., Random Oracles), or under
non-falsifiable (knowledge) assumptions (e.g., knowledge-of-exponents) [CT10, BCCT13, BCTV14,
BGH19, BCMS20, COS20, BDFG21, BCL+21, CY21, CCS22, KST22, KS22, HN23, CCG+23,
BC23, CGSY24]. Despite numerous advantages (e.g., transparent setup via ROs, nearly-constant
sized proofs, etc), these have a strong limitation. Their security relies on complex heuristics [BR94],
or strong non-falsifiable assumptions [Nao03]. As is standard practice in cryptography, proving se-
curity under standard (falsifiable) cryptographic assumptions is more desirable.

Unfortunately, there are known strong barriers to designing PCDs from standard falsifiable
assumptions [GW11]. In light of these, it is natural to ask whether we could design PCDs, for
any subset of general distributed computation, secure under standard assumptions. Recently, two
beautiful works by Paneth-Pass [PP22] and Devadas et al. [DGKV22] designed IVC for all deter-
ministic computation assuming hardness of standard assumptions. IVCs are a sub-class of PCDs,
where distributed computation occurs in a straight-line (i.e., each user hands off partial computa-
tion state to the next user). Although not yet practical, these works design the first fully-succinct
IVC from standard falsifiable assumptions. In this work, we continue this investigation of designing
PCDs (beyond IVC) under standard assumptions.

This work. We introduce the notion of incrementally verifiable streaming computation (IVsC),
as an improvement over IVCs. We also propose a new notion of privacy for IVsC. Our goal is to
capture computations over ‘streaming data’ while preserving data privacy. In words, IVsC can be
used in applications, where data is not statically available, but comes in via an ongoing generation
process. Similar to [PP22, DGKV22], we keep our focus on only deterministic computation.

We also introduce a new notion of non-interactive zero-knowledge (NIZK), that we call step-by-
step zero-knowledge protocols. These protocols are standard NIZK systems, except they have two
special features: (1) the NIZK proof can be incrementally computed, (2) the prover’s internal state
is also simulatable at any step during proof generation. That is, unlike standard NIZKs where only
the final proof can be simulated, we can simulate prover’s state after every computation step.1

We design IVsC (with privacy) from a wide variety of standard assumptions (decision linear, or
sub-exponential DDH, or LWE). In addition, we design step-by-step ZK protocols starting from our
IVsC protocol, obtaining them from same assumptions. We also briefly discuss another application

1E.g., consider a user proving correctness of PRF evaluation (y = FK(x)) computed via the GGM-tree [GGM86],
then using a step-by-step ZK protocol we can guarantee that the prover’s state only leaks the partial PRF evaluation
(i.e., after i PRG computations, only FK(x[1 : i]) could get leaked, instead of K).

1

in developing a new approach to prove distributed computations beyond path-graphs.

Organization. In the next section, we provide a high level overview of our main results and
techniques. We discuss some motivating examples highlighting the benefits of supporting streaming
inputs and various practical use cases of our designed systems in Section 6. In Section 2 we provide
standard cryptographic preliminaries. In Section 3 we formally introduce and design IVsC with
privacy. In Section 4 we describe step-by-step ZK and design it via a useful extension of IVsC,
called predicated zero-knowledge IVsC. Finally, in Section 5 we discuss some more applications.

1.1 Overview

Consider the computation of a RAM machineM on an input x, where the computation ofM(x)
is very long (i.e., cannot be finished by a single user). An IVC protocol enables distribution of this
computation across multiple users. In IVC, the (u+1)-th user takes the entire intermediate machine
configuration cft (i.e., computation state and memory) from u-th user along with a succinct proof
πt, and continues the computation for some ℓ steps to generate updated configuration and proof,
(cft+ℓ, πt+ℓ). Here cf0 denotes the initial configuration (i.e., input x) and πt proves that cf0 → cft
after t steps of M. Importantly, the proof size, |πt|, should never grow with t, and the running
time for a single user should only grow with the number of computation steps it performs (i.e., ℓ
for user u + 1 in the above). In the context of deterministic computations, the verifier gets both,
the original and final, configuration (e.g., cf0, cft) along with πt.

Streaming inputs and introducing IVsC. As described above, IVC requires the full input x to
be part of the original machine configuration, cf0. Thus, it cannot support incrementally certifying
long computations, if the entire input is not available (or cannot be given) to the first user when the
computation begins. To handle dynamic/streaming inputs, we consider a new streaming variant
called incrementally verifiable streaming computation (IVsC).

In IVsC, each user u gets a local input xu, in addition to the (intermediate) machine configuration
cft and proof πt. Rather than viewing the input x to be an implicit part of the configuration cf, we
consider a separate input tape forM (in addition to its internal memory). Thus,M can read bits
off of the input tape as well as its memory. One significant difference is that πt now certifies that
cf0 → cft w.r.t. inputs x1, x2, . . ., where xi is local data/input available to the u-th user and cf0
is some fixed initial configuration (e.g., all-zeros). Since we focus on deterministic computations
(like [PP22, DGKV22]), thus the verifier receives the inputs x1, x2, . . . to verify the proof.

Prior works in IVC [PP22, DGKV22] (and RAM delegation [CJJ21], more broadly) also con-
sidered an explicit Digest algorithm to speed up verification. Digest takes as input a configuration
and outputs a short digest. A verifier only needs the digest for the configurations, thus its running
time could be independent of the input size. We consider a similar improvement in IVsC. Our
Digest procedure produces a short digest for a streaming input x1, x2, . . .; moreover, the digest is
incrementally computable. That is, in addition to proof πt, each user passes along the input digest
(so far), and the next user updates the proof as well as the digest. Thus, πt can be verified rather
quickly (i.e., in time independent of the streaming input size) given the digest. An important aspect
of the ‘input digest’, both in IVC and IVsC, is that the digest is independent of M, thus it can
be reused for verifying other computations on the same data. However, a soundness attacker still
must output the full input, or otherwise, the computation becomes non-deterministic.

We formalize the IVsC framework in Section 3, and explain our design choices. Succinctness
and soundness can be naturally extended from either IVC/PCD literature (for deterministic com-

2

putation). At a very high level, IVsC can be viewed as a PCD for straight-line graphs. (Note that
since IVC does not support local data for intermediate users, thus IVC does not really correspond
to PCDs for straight-line graphs.) Next, we sketch the main ideas behind our IVsC design.

IVsC via recursive proof batching. Our starting point is the elegant template developed by
Paneth-Pass [PP22] and Devadas et al. [DGKV22]. Both works relied on a common master tool,
called rate-1 somewhere extractable batch arguments (seBARGs)2. ‌Rate-1 seBARGs are powerful
batch argument systems that generate a succinct proof π proving the validity of a batch of k
instances x1, . . . , xk, given corresponding NP witnesses ω1, . . . , ωk. These argument systems are
very desirable for two reasons: (i) proof size, |π|, is equal to the size of a single witness, |ωi|, plus
a fixed additive polynomial term and (ii) one can efficiently extract the NP witness, corresponding
to a hidden trapdoor index, from any accepting proof.

While both [PP22, DGKV22] rely on rate-1 seBARGs, their IVC designs are somewhat different
due to diverging intermediate abstractions developed in each work. Paneth-Pass introduced the
notion of mergeable proofs of delegation, while Devadas et al. proposed the concept of hashed
multi-hop seBARGs. We briefly summarize both of them, and refer the reader to [PP22, DGKV22]
for a detailed overview.

Prior intermediate abstractions. Mergeable proofs [PP22] enable merging two delegation proofs
into a single succinct proof. That is, given proof π1, π2 that certify cf0 → cf1 and cf1 → cf2 (resp.),
using mergeable proofs these can be accumulated into a single proof π′ of fixed polynomial size,
certifying cf0 → cf2. On the other hand, hashed multi-hop seBARGs generalize seBARGs to allow
unbounded batching of batch proofs, with a special feature that the verifier only needs the digest
of instances for verification, where the prover also generates this digest after each batching. That
is, given k proofs π1, . . . , πk for x1, . . . , xk, one generates a proof π and digest h such that verifier
only needs (π, h), and k such proof-digest pairs can be further batched polynomially many times.
Both works design these two objects by relying on rate-1 seBARGs.

Canonical IVC template. Given these tools, [PP22, DGKV22] follow a somewhat similar template
for designing IVC. Each IVC proof contains λ RAM delegation proofs π1, . . . , πλ, and λ configura-
tions cf1, . . . , cfλ. Each πi = ϵ (i.e., empty), or it proves cfi → cfi+1. The special feature of these is
that if πi ̸= ϵ, then it certifies correctness of exactly 2i computation steps. That is,M starts from
cfi and reaches cfi+1 after 2i steps. Now {πi}i together certifyM that cf0 → cfT (where cf0 and
cfT are starting/ending configs). And, the way this works is as: suppose T =

∑
i ti+12

i (where ti is
the i-th least significant bit in binary representation of T), then for each i s.t. ti = 0 we have that
πi = ϵ, otherwise πi certifies cfi → cfi+1 (proving correctness of 2i computation steps).

The advantage of designing IVC proofs as above is that it ensures proofs can be incrementally
updated, yet their size does not grow with T (machine run-time). To understand a bit better,
suppose a user is given an IVC proof certifying some T computation steps of M, and it wants to
run two more steps (i.e., cfT → cfT+2). Given the above architecture, the user can first create a
RAM delegation proof π′ for certifying cfT → cfT+2, and then do the following:

1. Start with i = 1.
2. Check if πi is empty. If yes, it sets πi = π′, appropriately updates the underlying configura-

tions, and ends the routine. Else:

(a) “Accumulate” πi and π′. (Note each of these prove a computation of size 2i.)

2Throughout, by rate-1 we mean almost-rate-1, where the proof to witness ratio is 1 + o(1) and not exactly 1.

3

(b) Update π′ with the above accumulated proof. (Now π′ proves a computation of size
2i + 2i = 2i+1.)

(c) Update corresponding configurations appropriately, increase i to i + 1, and go back to
step (2).

The above trick is colloquially referred to as the ‘powers-of-two’ trick and has been used in various
contexts in cryptography [GKP+13, GHMR18, GV20]. In the context of IVC, it is extremely
useful for incrementally updating RAM delegation proofs, while ensuring that the individual RAM
delegation proofs (what we refer to as {πi}i) do not get “merged” [PP22] or “batched” [DGKV22]
too often. Clearly, at any point when we combine RAM proofs, the underlying configurations go
from being 2i apart to being 2i+1 apart. Thus, next time the resulting proof has to be merged
will be only after 2i+1 more computation steps have happened. This inherently guarantees desired
succinctness for the proof size, and ensures updating a proof and verifying it can be done efficiently.

Soundness of IVC. Pass-Paneth execute the above template by using their mergeable proofs for
accumulation, while Devadas et al. rely on hashed multi-hop seBARGs. The exact designs in both
works slightly alter the above template to suit their intermediate object as well as to ensure the
soundness proof goes through.

At an abstract level, we can view both their soundness proofs through a unified lens. We infor-
mally call it the sliding window technique, where the intuition is to view all T steps of computations
(and their corresponding configurations) as a long linked list. Now the i-th element/node in the list
corresponds to the computation that happens at the i-th step ofM’s computation. Recall at any
step, M would read/write something from/on its memory, update the RAM machine state, and
move the head along the memory. The core idea behind proving soundness is to fix a constant-size
continuous sequence of nodes cfi, . . . , cfi+w, and extract the corresponding configurations by using
extractability feature of underlying seBARGs. We refer to this sequence of nodes as a window,
where w is the window size. Given the extracted information, the reduction algorithm can argue
that the all these configurations must be consistent3 w.r.tM by relying on seBARG’s (/interme-
diate object’s) security. The next step is for the reduction to “slide” the window slightly in the
forward direction. That is, say now it extracts cfi+1, . . . , cfi+w+1 (i.e., moves it forward by one).
Again, we can argue that these configurations must be consistent as before, and it appears that,
by sliding the (extraction) window by one node at a time, we can argue that the starting and final
configurations are consistent as perM.

However, there are two caveats that require care. First, we need to guarantee that sliding the
extraction window has only negligible drop in adversary’s success; and second, when we move across
two overlapping windows, then the extracted configurations that appear in both are the same. This
is where the works rely on the famous no-signaling proof techniques [KRR14, CJJ21], and show
that by devising a very specific sequence of hybrids and case analysis, soundness goes through.

While the above is mostly accurate, there is one final technical issue. The configuration size is
too big, thus if we want to extract even a single configuration entirely, then the underlying RAM
delegation/batch proof size must grow with the (maximum) configuration size. At first, this appears
to be a major bottleneck, but it turns out there is rather simple and elegant solution for addressing
it. Simply denote each node with a ‘psuedo’ -configuration pcf, instead of the full configuration
cf. A psuedo-configuration can be viewed as a specialized digest of the full configuration. Its

3Throughout, when we say two (or more) configurations cf1, cf2 (, . . .) are consistent, we mean that if you runM on
cf1, then you will reach cf2 (and so on).

4

size is a-priori fixed (thus, independent of |cfi|), and one can succinctly check if two (adjacent)
pseudo-configurations are consistent. For security, they guarantee that an attacker cannot generate
two pairs of psuedo-configurations (pcf1, pcf2) and (pcf ′1, pcf

′
2) such that they both are consistent,

yet pcf1 = pcf ′1 and pcf2 ̸= pcf ′2. To design such pseudo-configurations, prior works use special
hash functions [HW15, OPWW15] implemented as Merkle trees. Combining all these ideas, one
can avoid extracting the full configuration, and ensure the soundness proof goes through without
blowing up the proof size. We refer the reader to [PP22, DGKV22] for a more detailed overview.

Our IVsC template. Our template builds upon the aforementioned IVC template to handle stream-
ing inputs. Very briefly, the central reason the above IVC design cannot handle streaming inputs
directly is that the input in IVC is programmed/hardwired inside the starting configuration. That
is, since the input x is statically available, the first user simply treats it as part of the RAM memory.
Thus, if some user (during the incremental computation) receives additional data/input, then it
has to somehow merge it with its current configuration while proving consistency. The issue is that
this significantly changes the pseudo-configuration, thus proving the pseudo-configurations are still
consistent (succinctly) is challenging.

Our solution is to maintain a separate input tape, in addition to all other parts of the machine
configuration. The advantage of separating this out would be: (1) we can add new data to the input
tape dynamically, (2) it will not affect the current pseudo-configuration significantly4. However,
just splitting (streaming) input and the full machine configuration is not enough. We need to ensure
that an appropriate succinct digest for the input tape is added to the (new) pseudo-configuration,
and this digest can be incrementally updated to support new incoming/streaming data. Finally,
we also need to be careful that, despite these changes, the two necessary properties for pseudo-
configurations still hold – (a) succinctly certifying two pseudo-configurations are adjacent, and (b)
computational infeasibility of finding two consistent pseudo-configuration pairs with conflicting
computation results.

At a high level, we achieve this by including λ input digests h1, . . . , hλ as an additional part of the
incremental proof. Recall previously, they contained λ RAM delegation proofs and λ configurations.
The purpose of maintaining these additional digests is to make sure that streaming inputs can be
efficiently accumulated via the powers-of-two technique. Thus, the running time of update does not
scale with the total size of the streaming input. Additionally, these digests can also be added to
each pseudo-configuration pcf, and they will assist in succinctly proving adjacency of two pseudo-
configurations. This is because each user (potentially) gets some new data/input, thus these digest
values could significantly change when the user accumulates the latest input. To ensure this doesn’t
cause a problem, we prove that the input digests are also correctly updated by each prover. An
important and desirable feature of the above input digests is that these can be reused for certifying
different computations on the same data. Thus, if the same sequence of users run another machine
M′ on the given data, then the input digests will be consistent. Therefore, a verifier does not need
to recompute the digests for a given sequence of streaming inputs every time.

Overall, these ideas could put together to generalize the IVC template to handle streaming
inputs. And, although the soundness proof has to be sufficiently expanded (due to the changes in
pseudo-configurations and additional tape headers), the core technical ideas still rely on the sliding
window technique coupled with no-signaling proof strategies. Next, we discuss how to formalize
and achieve a non-trivial notion of privacy for IVsC.

4There would be some changes which include storing additional tape header for the input tape, etc. But these can
be appropriately handled, thus we ignore them for this overview.

5

Privacy (zero-knowledge) for IVsC. As mentioned earlier, defining privacy (zero-knowledge)
for IVsC is a rather delicate task. Recall that a zero-knowledge proof for any deterministic com-
putation is simply ϵ, an empty string. Because a verifier can verify its validity by performing the
computation on its own, and an empty proof string is perfectly simulatable (vacuously). Since we
study IVsC for deterministic computations, thus it is unclear if there exists a non-trivial notion
of zero-knowledge. In words, what can we hide from a malicious verifier that gets the (streaming)
input for the (deterministic) computation?

At first glance, it seems zero-knowledge for (incremental) deterministic computations is unlikely
to be meaningful. However, it turns out that we indeed can formalize this non-trivially for IVsC
(even IVC). Recall that a verifier gets a proof π and a short digest h as inputs, rather than the full
input. This digest can either be statically computed for a fixed input (i.e., in IVC), or incrementally
for a streaming input (i.e., in IVsC). Suppose we define privacy for the proof and digest jointly as
follows:

{(π, h, y =M(x1, x2, . . .)) : (π, h)← IVsC.Prove(M, x1, x2, . . .)} ≈c Sim(M, y) (1)

The above states that an honestly computed proof-digest pair is indistinguishable from a simulated
distribution, given the machine description and the output of the computation. Moreover, we can
define this to hold even for intermediate proofs, digests, and configurations.

In other words, the guarantee is when a particular user passes off the IVsC proof, digests,
and configurations after (say) T computation steps to the next user, then that user cannot learn
anything about the previous inputs or intermediate configurations ofM, more than what is revealed
by cfT , i.e. the configuration ofM after running it for T steps on the (streaming) input so far.

While the above formulation may seem ideal and almost the best-possible privacy guarantee
that could be feasibly defined for incremental deterministic computations, there is one technical
nuance. If we juxtapose the soundness definition and Eq. (1), then we realize the threat models are
not fully overlapping. Soundness states that an adversary cannot generate y, x1, x2, . . . and π such
that y ̸=M(x1, x2, . . .) but (Digest(x1, x2, . . .), π) is accepted by the verifier. Notably, soundness
attackers must output the full input. While Eq. (1) states that simulation only works for the proof
and digest, and not the full input. This leaves a noticeable gap. Let us explain via an example.

An example. Consider a trusted authority that collects and signs large amounts of certain sensitive
data. Due to resource constraints, it delegates the computation of a study/survey on this data to
a cloud provider. Suppose it wants the cloud provider to publish the output publicly (e.g., census
statistics and results) so that any individual user can verify the output. Now it might appear
that we could readily rely on IVsC in this setting. The cloud runs IVsC to incrementally run the
computation, generate a proof π, and digest h, and publishes these along with the output. Due to
the zero-knowledge guarantee, we know that the proof-digest pair will not reveal too much about
the data. But what about soundness!? We cannot rely on IVsC soundness to guarantee that a user
will not accept the results, as the user does not have the entire data.

While it appears bypassing this would require all powerful succinct proofs for non-deterministic
computations, we point out that (in many such applications) all a user might want to check is that
the input digest h conforms to a publicly checkable predicate. That is, h is well-formed. E.g., the
user just wants to check that every data was signed by the trusted (collection) authority. With this
insight, we introduce a new notion that we call predicate zero-knowledge property for IVsC.

Predicated zero-knowledge for IVsC. Consider ϕ to be the predicate against which a verifier wants

6

to check data conformity. That is, the verifier wants to check that

∃x1, x2, . . . s.t. y =M(x1, x2, . . .) ∧ (ϕ(xi) = 1)i

Syntactically, we do not make any significant adjustments to the IVsC abstraction, except with
one notable difference. Since we require the proof-digest pair (π, h) to hide everything about
the streaming inputs, beyond their predicate satisfiability, thus the digest h can no longer be
deterministically computed from just the inputs (x1, x2, . . .). Instead, we expect each digest h is
accompanied with a predicate proof πϕ such that: (1) a verifier can efficiently check the underlying
data conforms as per ϕ, and (2) πϕ can also be incrementally updated as new streaming data comes
in. Soundness and privacy (in the form of zero-knowledge) can be appropriately generalized to fit
the abstraction. We refer the reader to the main body for detailed descriptions. We remark that
we also keep track of the randomness used in creating/updating these digests. This is useful for
defining stronger soundness notions as well as enabling auditability of the digest computation by
the data owner.

We believe the above gives us the best possible guarantee for capturing privacy for incremental
proofs for deterministic computations. Along the way, it answers an important question left open by
Ananth et al. [ADKL19] asking if one could design incremental proofs that enjoy both succinctness
and privacy guarantees. Next, we explain the main ideas behind our construction.

Designing IVsC with predicated zero-knowledge. We explain our final template in two steps.
First, we design an IVsC protocol with empty predicates. That is, we do not check well-formedness
of the digest in the first step. While this is not ideal, we fix this in the second step. In the second
step, we take our base protocol and extend it for arbitrary non-empty predicates.

Step 1: IVsC for empty predicates. In our previous IVsC template (without privacy), each proof
contains λ RAM delegation proofs (π1, . . . , πλ), λ pseudo-configurations (pcf1, . . . , pcfλ), and λ
digests (h1, . . . , hλ). Let us inspect why this does not already satisfy zero-knowledge as in Eq. (1).
There are multiple reasons listed out below:

1. The digests and pseudo-configurations are (deterministic, Merkle-tree-style) hashes of the
streaming input and configurations. Thus, they could reveal parts of the inputs and interme-
diate configurations.

2. The RAM delegation proofs themselves do not have any zero-knowledge guarantees.

In short, every component of the original proof leaks information about the inputs and computation
so far. At a high level, our approach is two-fold: (a) commit to every input xi and each configuration
cfj , and then hash down the corresponding commitments, and (b) equip RAM delegation proofs
with necessary zero-knowledge properties by using NIZKs. The intuition is that by committing and
then hashing the inputs/configurations, we can rely on hiding property of commitments. Similarly,
by using NIZKs (inside RAM delegation proofs) we can prove correctness of each transition between
two psuedo-configurations, while hiding the openings for the commitments.

The above serves as a good high level summary of the technical modifications needed. However,
the exact composition of these have to done very carefully so that the soundness proof goes through.
Notably, using NIZKs and commitments, we make all these digest and pseudo-configurations
“lossy”. By lossy, we mean that they may no longer satisfy statistical binding properties that
are necessary for executing the sliding-window-style proof strategy. Moreover, once we plug in
NIZKs, then recursive composition of RAM delegation proofs can not be done succinctly. Because

7

even if the NIZK proofs are very short, then we need to compose them recursively where the instance
size grows significantly with each composition. However, as we detail in the main body, these issues
can be handled by relying on hiding commitments with somewhere-extractability guarantees. And,
more importantly, we use NIZKs to only prove consistency of two pseudo-configurations that are
2 steps apart. In other words, we realize that it is sufficient to just have the first RAM delegation
proof, π1, satisfy zero-knowledge properties. And, rest of the RAM delegation proofs can still be
composed as before, without using NIZKs. The proof of zero-knowledge is much more simple, since
we can start by simulating NIZK proof that show consistency of all pseudo-configurations that are
2 steps apart. Once we change these, we can accumulate them as an honest prover does, and we
can finish the proof by using hiding security of all (extractable) commitments.

More details are provided later in Section 3. We remark that we could feasibly introduce a new
intermediate abstraction (similar to mergeable proofs/hashed multi-hop BARGs [PP22, DGKV22]),
equip it with stronger zero-knowledge-style guarantees, and then use ideas from our IVsC template
described earlier. Instead, we decided to give a more direct construction for IVsC by relying on
rate-1 seBARGs (and related primitives) in the main body. This is mostly because, unlike prior
works [DGKV22, PP22], we focus on privacy of incremental proofs. And, capturing a sufficient
notion of zero-knowledge for those intermediate abstractions turned out problematic. Briefly, as we
hinted above, we need two different RAM delegation proofs (one with zero-knowledge property and
one without for ensuring optimal accumulation), thus any possible intermediate abstraction would
be unfortunately quite complicated and make the soundness proof a highly non-black-box process.

Step 2: Extending to general predicates. Finally, we show that we can upgrade the above IVsC
protocol to generate predicate proofs along with the incremental proofs. Note that each predicate
proof is almost like another incremental proof. That is, consider each prover computes two parallel
IVsC proofs, where the first IVsC proof certifies computation ofM(x1, . . .), while the second proof
certifies computation of ((ϕ(x1) = 1) ∧ (ϕ(x2) = 1) . . .). Note that if we generate both of these
proofs using our above IVsC construction with empty predicates, then this offers a generic approach
for designing IVsC for general predicates. We need some additional care in ensuring the soundness
proof goes through. Because of the fact that if these two proofs are generated independently, then
we cannot argue that their corresponding input digests are the same (since they are not determin-
istic). Thus, a black-box approach for extending to general predicates does fail. However, as we
detail in Section 3.5, if we reuse the digests carefully, and rely on similar incremental computation
techniques (as we do for our empty predicate IVsC), then the proofs of soundness, well-formedness
of digest, and zero-knowledge work out. Moreover, we consider even more general predicates, where
different portions of the streaming data could have separate predicates, and those could even be
provided in a streaming fashion. Refer to Section 3.5 for more details.

The above concludes the overview of our IVsC protocols, and next we introduce the notion of
step-by-step zero-knowledge protocols and discuss our main design ideas.

Step-by-step zero knowledge. The prover’s running time in any NIZK proof system (for NP) is
always larger than the time it takes to computeR(x, ω), whereR is the corresponding NP relation5.
Consider a setting where R is a really long computation, or x and ω are being generated as part of
a streaming computation. The question that we are interested in studying is: can zero-knowledge
proofs be incrementally computed? Suppose the NIZK proof will be computed by more than one
user (due to large runtime of R), then can we obtain any intermediary zero-knowledge guarantees

5Otherwise, the NIZK system will not satisfy either correctness, soundness, or zero-knowledge.

8

for the computation state that is passed to the next prover? Or, can we obtain any protections
against attackers that can corrupt a prover in the middle of the computation?

To address these, we introduce a new notion of NIZK systems, that we call step-by-step zero-
knowledge protocols. We design an incrementally computable zero-knowledge protocol (ICZK) that
gives us desired step-by-step ZK guarantees. We define ICZK as a regular NIZK system with two
special features: (a) the NIZK proof is computed as an incremental proof (i.e., the proof size does
not scale with runtime of R), and (b) they satisfy incremental zero-knowledge. By incremental ZK,
we mean that the following distributions (for any T) are indistinguishable:

{state : state← Prove(x, ω, T)} ≈c {Sim(cf) : cf = R(x,w;T)}

In the above, R(x,w;T) denotes running R on (x, ω) for T time steps, and state refers to the
prover’s state after running T steps of the NP validation relation, R. It is straightforward to
see that the above tightly captures the intuition behind a step-by-step zero-knowledge protocol.
Because we are quite literally defining simulatability at every step of the computation. As we show
next, we can design ICZK quite naturally from our (predicated) zero-knowledge IVsC protocols.

From zk-IVsC to ICZK. A natural idea would be to directly use zk-IVsC to incrementally run R on
(x, ω) as the joint input. While the resulting scheme would satisfy our incremental ZK property,
we are unable to prove its soundness. The reason is that there is no obvious ‘meaningful’ predicate
that we could check on (x, ω) to ensure a cheating prover is really using a satisfying witness as part
of the input, without revealing ω as part of the proof.

At a high level, our plan is to include a redundant encoding of the witness ω as an additional
component of the proof, and then define the predicate to check that the witness portion of the
input (in the zk-IVsC proof) is consistent with this encoding. To preserve zero-knowledge, we set
the redundant encoding to be an encryption of ω. That is, the prover starts by encrypting ω
to create a ciphertext ct = Enc(ω;R) for some randomness R. Then, we run the zk-IVsC prover
while setting the predicate ϕ to check that ct is an encryption of the input witness ω. However,
there is a major hurdle in executing this strategy. The predicate ϕct is no longer a deterministic
function. Encryption must be randomized for preserving zero-knowledge, thus we need to include
the encryption randomness R as part of the zk-IVsC input.

Combining the above ideas, the ICZK prover starts by encrypting ω as ct = Enc(ω;R), and
then sets (x, ω,R) as the input for zk-IVsC. With this, the ICZK prover runs the zk-IVsC protocol

for computing R on (x, ω) portion of the input, and sets the predicate as ϕct(x, ω,R) = (ct
?
=

Enc(ω;R)). While this change makes the predicate deterministic, and we can prove soundness
of the resulting system, we have made it difficult to prove (incremental) zero-knowledge. This is
because the randomness R that we use to encrypt ω is used as an input in the zk-IVsC protocol.
Now to use semantic security of encryption, we have to argue that R is not leaked by the zk-IVsC
portion of the proof. However, to argue that R is not leaked by the zk-IVsC proof, we need to make
sure the predicate ϕct is independent of its input (x, ω,R).

This circularity prevents us from proving (incremental) zero-knowledge for the above design.
Our final observation is that we can break this circularity by relying on two special PKE schemes,
one that is leakage-resilient and satisfies randomness recovery6 [PW08], and other that supports
randomness-dependent-message security [BCPT13]. The first type of PKE schemes is used to
encrypt ω, while the second type is used to commit to the input (x, ω,R) as part of zk-IVsC. Together

6We also need it to be rate-1, but as we show later, the rate can be improved quite easily.

9

these both guarantee that our zk-IVsC protocol satisfies a leakage-resilient-style zero-knowledge
guarantee, and the semantic security of ct can be used despite the circularity. Fortunately, we
observe that these PKE can be designed from lossy trapdoor functions [PW08], thus we are able
to instantiate our template under a wide variety of standard assumption. Although there are some
more technical subtleties that we need to handle along the way, the above nicely summarizes the
key challenges and circular issues. We refer to Section 4 for a more in-depth discussion.

New trade-offs in certifying general distributed computation via IVsC. Finally, we also
briefly discuss another application for IVsC in certifying distributed computations beyond path
graphs. While we do not design general PCDs for deterministic computations, we show that IVsC
can be deployed in a wide variety of distributed computation networks to enable a non-trivial
trade-off. We show that if we start with any arbitrary distributed computation network with
say N computation nodes, then using IVsC we can certify the computation with a proof size of
poly(λ, logN). However, the total running time of the computation would grow linearly with N ,
rather than with the network diameter/depth (which could be as small as logN). Our idea is to
modify the (more general) distributed network by inserting a few artificial communication edges
between different nodes, and use those to convert it into an almost path graph by relying on an
appropriate topological sorting. We believe this could be interesting model for future research, thus
sketch a construction in Section 5.

Related work. While the scope of PCD constructions from standard falsifiable assumptions [Nao03]
is limited to IVC protocols for deterministic computation [DGKV22, PP22], there are several
PCD constructions such as [CT10, BDFG21, CY21, KS22, HN23] for general distributed com-
putations from non-falsifiable assumptions. These works can be split to two different templates:
(1) PCDs via recursive composition of succinct non-interactive arguments of knowledge (SNARKs)
[BCCT13, BCTV14, BSCTV17, COS20], and (2) more efficient PCDs via accumulation schemes in
the random oracle model [BCMS20, BCL+21, KST22, BC23, BC24, BMNW24]7. Moreover, there
are a few works that construct PCDs with a transparent setup [BGH19, BCL+21, CCS22, CCG+23]
without heuristically instantiating the random oracle in a non-black-box way.

2 Preliminaries

Notation We use overline for sets (e.g., for inputs to the RAM machine we let z = (zk)k∈[K] and
zi = (zk)k∈[i]).

2.1 RAM Programs

A RAM program is typically defined as a deterministic machine M represented using a fixed
polynomial-sized set of states that has random access to a large memory (where the memory
includes an explicit input and rest of it is initialized as zeros). In this work, we use the following
representation for RAM machines as it enables a simpler exposition of our main ideas.

Any RAM machine M that receives n bits of explicit input x = {0, 1}n, is associated with a
work tape of size S = S(n) and a fixed set of states Q that the machine can be in at any point
during machine execution. Formally, a machineM is associated with following components:

7All these works additionally rely on public-key assumption with a notable exception of [BMNW24] which is limited
to bounded depth accumulation.

10

• A set of machine states Q.

• A memory M of size n + S. Without loss of generality, we assume that the explicit input
x ∈ {0, 1}n is written in the first n cells of the memory (i.e., x = (M1, . . . ,Mn)), and the rest
of the memory (i.e., (Mn+1, . . . ,Mn+S)) corresponds to the work-tape of the machine. For
ease of exposition, we also use W = (W[i])i∈[S] to denote the work-tape. In our model, we
view the work tape to be initialized as all zeros.

• A state transition function δ with the following syntax:

δ : Q× {0, 1} → Q× {0, 1}log(n+S) × {0, 1}logS × {0, 1}

Here the transition function defines the execution of machineM at each time step.

There is a circuit CM that computes the next step as follows:

CM(q, rbit) = (q′, ridx′,widx,wbit)

We define the “configuration” of the RAM machine as the work part of memory, the current
state, and the next reading index. Namely, we have cf = (W, q, ridx). Note that |cf| = S+log |Q|+
log(n+ S).

We let out to be the output of the RAM machine and require the machine to write out at the first
nout = |out| locations of the work tape W. Namely, we have out = W[1, . . . , nout] = cf[1, . . . , nout].

In this work, our focus is on streaming inputs z = (zk)k∈[K] for RAMmachines. More specifically
the machine is run by K users on their inputs where each user runs the machine for T steps. We
use cfk,t for the configuration of the machine at timestamp (k, t), i.e., after running for t steps by
user k. We let cf1,0 be the initial configuration of the machine and cfk,0 = cfk−1,T for k > 1.

We denote byM(cfk,t, zk; 1
t′) running the machineM starting from the intermediate configu-

ration cfk,t, on input zk for t′ steps. It follows by induction that

cfk,t =M
(
M

(
· · ·M

(
M(cf1,0, z1; 1

T), z2; 1
T
)
· · ·

)
, zk; 1

t
)
.

We additionally useM((zk)k∈[K]; 1
T) = cfK,T for a complete computation of machine by K users.

The language of machineM is defined as follows:

LM,T =

{
(z, out) :

cf1,0 = initial config, cfK,T [1, . . . , nout] = out,

∀k ∈ [K] :
(
|zk| = n ∧ M(cfk,0, zk; 1

T) = cfk,T

) }
(2)

Remark 2.1. We let w.l.o.g. the initial configuration cf1,0 to be all zeros.

2.2 Rate-1 Block Somewhere Extractable Hash (SEH) Families

In what follows we recall a simplified definition of a block somewhere extractable hash (SEH) family
that suffices for our applications.

11

Syntax. A block somewhere extractable hash family SEH consists of the following polynomial
time algorithms:

Gen(1λ, N,Σ, I)→ (hk, td). This is a probabilistic setup algorithm that takes as input a security
parameter 1λ in unary, a number of blocks N , an alphabet Σ, and a subset I ⊆ [N]. It
outputs a hash key hk along with trapdoor td.

Hash(hk, x)→ v. This is a deterministic algorithm that takes as input a hash key hk and an input
x ∈ ΣN , and outputs a hash value v.

Extract(td, v, j)→ y. This is a deterministic extraction algorithm that takes as input a trapdoor
td, a hash value v, and an index j ∈ [|I|] and outputs a block y.

We use the notation Extract(td, v) = (Extract(td, v, j))j∈[|I|].

Definition 2.2 (SEH). A somewhere extractable hash family SEH = (Gen,Hash,Extract) is required
to satisfy the following properties:

Efficiency. The size of the hash key hk and the hash value v is at most |I| · |Σ| · poly(λ).

Index hiding. For any PPT adversary A, any polynomial N = N(λ), and any I0, I1 ⊆ [N] such
that |I0| = |I1|, there exists a negligible function negl(·) such that for every λ ∈ N,

Pr

[
A(hk) = b :

b← {0, 1}
(hk, td)← Gen(1λ, N,Σ, Ib)

]
≤ 1

2
+ negl(λ),

Extraction correctness. For any λ ∈ N, any N ≤ 2λ, any subset I ⊆ [N], and any x ∈ ΣN ,
there exists a negligible function negl(·) such that for every λ ∈ N,

Pr

[
(xi)i∈I ̸= Extract(td, v, I) :

(hk, td)← Gen(1λ, N,Σ, I)
v← Hash(hk, x)

]
≤ negl(λ).

Remark 2.3. Note that the extraction correctness of a SEH family, implies the following properties:

Somewhere binding. For any λ ∈ N, any N ≤ 2λ, any subset I ⊆ [N], any index i∗ ∈ I, and
any (all powerful) adversary A, there exists a negligible function negl(·) such that for every λ ∈ N,

Pr

 Hash(hk, x) = v
∧ xi∗ ̸= yi∗

:
(hk, td)← Gen(1λ, N,Σ, I),
(v, x)← A(hk),
(yi)i∈I = Extract(td, v)

 ≤ negl(λ).

Somewhere binding w.r.t. path opening. For any λ ∈ N, N = 2, any b ∈ [2], and any
x ∈ Σ2, there exists a negligible function negl(·) such that for every λ ∈ N and any ℓ ∈ [λ],

Pr

 VerifyAcc(hk, v, ρ, b) = 1
∧ v0,b ̸= v0

:

(
(hkd, tdd)← Gen(1λ, 2,Σ, b)

)
d∈[ℓ] ,

(v, ρ)← A(hk),
v0 = Extract′((tdd)d∈[ℓ], v)

 ≤ negl(λ).

where hk = (hkd)d∈[ℓ], ρ = ((v0,1, v0,2), . . . , (vℓ−1,1, vℓ−1,2)), and we define VerifyAcc(hk, v, ρ, b) =
1 if for d ∈ [ℓ], SEH.Hash(hkd, (vd−1,1, vd−1,2)) = vd,b where vℓ,b = v. Additionally define Extract′(
(tdd)d∈[ℓ], v) to recursively compute Extract(tdd, vd) = vd−1 for d ∈ [ℓ], where vℓ = v, and outputs
v0.

12

Definition 2.4 (Almost Rate-1 SEH). A SEH scheme is said to be almost rate-1 if the hash value
generated by Hash(hk, x) is of length (1 + c/λ) · |I| · |Σ|+ poly(λ).

Remark 2.5 ([CG]). Assuming almost rate-1 seBARGs there exists almost rate-1 SEH.

2.3 Rate-1 Somewhere Extractable Batch Arguments (seBARGs)

Syntax. A (publicly verifiable and non-interactive) somewhere extractable batch argument scheme
seBARG for an NP language L (decided by relation R) consists of the following polynomial time
algorithms:

Setup(1λ, k, n, i∗)→ crs. This is a probabilistic setup algorithm that takes as input a security pa-
rameter 1λ, number of instances k, input length n, and an index i∗ ∈ [k]. It runs in time at
most poly(λ, n, log k) and outputs a common reference string crs.

Prove(crs, x1, . . . , xk, w1, . . . , wk)→ π. This is a prover algorithm takes as input a crs, k instances
x1, . . . , xk and corresponding witnesses w1, . . . , wk, and outputs a proof π.

Verify(crs, x1, . . . , xk, π)→ 0/1. The verification algorithm takes as input a common reference string
crs, k instances xi for i ∈ [k], and a proof π. It outputs 0 (reject) or 1 (accept).

Definition 2.6 (seBARG). A somewhere-extractable batch argument scheme seBARG = (Setup,
Prove,Verify) for L is required to satisfy the following properties:

Efficiency. The size of the CRS and the proof is at most poly(λ, log k, n,m), wherem is the witness
length.

Completeness. For any λ ∈ N, and any k = k(λ), n = n(λ) of size at most 2λ, any k instances
x1, . . . , xk ∈ L, and their corresponding witnesses w1, . . . , wk ∈ {0, 1}m, and any index i∗ ∈
[k],

Pr

[
Verify(crs, x1, . . . , xk, π) = 1 :

crs← Setup(1λ, k, n, i∗),
π ← Prove(crs, x1, . . . , xk, w1, . . . , wk)

]
= 1.

Index hiding. For any PPT adversary A, any polynomials k = k(λ) and n = n(λ), and any
indices i0, i1 ∈ [k] there exists a negligible function negl(·) such that for every λ ∈ N,

Pr

[
b← A(crs) : b← {0, 1},

crs← Setup(1λ, k, n, ib)

]
≤ 1

2
+ negl(λ).

Somewhere Extraction. There exists a stateful PPT extractor E such that for any PPT adversary
A, there exists a negligible function negl(·) such that for any polynomials k = k(λ) and
n = n(λ), and any index i∗ ∈ [k], for every λ ∈ N,

Pr

 Verify(crs, x1, . . . , xk, π) = 1
∧ R(xi∗ , w∗) ̸= 1

:
(crs, td)← E(1λ, k, n, i∗)
(x1, . . . , xk, π)← A(crs)
w∗ ← E

(
td, {xi}i∈[k], π

)
 ≤ negl(λ).

13

Remark 2.7. We note that the somewhere extraction property implies the following semi-adaptive
soundness property which asserts that for any PPT adversary A, any polynomials k = k(λ) and
n = n(λ), and any index i∗ ∈ [k], there exists a negligible function negl(·) such that for every λ ∈ N,

Pr

[
Verify(crs, x1, . . . , xk, π) = 1
∧ xi∗ /∈ L :

crs← Setup(1λ, k, n, i∗)
(x1, . . . , xk, π)← A(crs)

]
≤ negl(λ).

Definition 2.8 (Almost Rate-1 seBARG). An seBARG scheme (Setup,Prove,Verify) is said to be
almost rate-1 if the proof generated by Prove(crs, x1, . . . , xk, w1, . . . , wk) is of length (1 + c/λ)m+
poly(λ) for some constant c.

Remark 2.9 ([DGKV22, PP22, KLVW23]). Assuming either LWE/DLIN/sub-exponential DDH
(and QR), there exists almost rate-1 seBARGs.

2.4 2-to-1 Collision Resistant Hash Function

Syntax. A 2-to-1 collision resistant hash function (CRHF) consists of the following polynomial
time algorithms:

Gen(1λ)→ hk. This is a probabilistic key generation algorithm that takes as input a security pa-
rameter 1λ, and outputs a hash key hk.

Hash(hk, x)→ h. This is the hashing algorithm that takes as input the hash key hk and an input
x ∈ {0, 1}2λ, and outputs a hash value h ∈ {0, 1}λ.

Definition 2.10 (CRHF). A CRHF H = (Gen,Hash) is required to satisfy the following property:

Collision Resistance. For any PPT adversary A, there exists a negligible function negl(·) such
that for every λ ∈ N,

Pr

[
Hash(x1) = Hash(x1) ∧
x1 ̸= x2

:
(hk)← Gen(1λ),
(x1, x2)← A(hk)

]
≤ negl(λ).

2.5 Hash Tree

Syntax. A hash tree consists of the following polynomial time algorithms:

Gen(1λ)→ hk. This is a probabilistic key generation algorithm that takes as input a security pa-
rameter 1λ, and outputs a hash key hk.

Hash(hk, x)→ (rt, tree). This is the hashing algorithm that takes as input the hash key hk and an
input x ∈ {0, 1}∗, and outputs a hash root rt and a hash tree tree.

Read(hk, tree, i)→ (b, rop). This is the hash opening algorithm that takes as input the hash key hk,
a hash tree tree, and an index i, and outputs a bit b and a reading opening rop.

Write(hk, tree, i, b)→ (rt′, tree′,wop). This is the writing algorithm that takes as input the hash key
hk, a hash tree tree, an index i and a bit b, and outputs a hash root rt′, a hash tree tree′, a
writing opening wop.

14

VfyRd(hk, rt, i, b, rop)→ 0/1. This is a read-verification algorithm that takes as input the hash key
hk, a hash root rt, an index i, a bit b and a reading opening rop, and outputs 0 (reject) or 1
(accept).

VfyWt(hk, rt, i, b, rt′,wop)→ 0/1. This is a write-verification algorithm that takes as input the hash
key hk, a hash root rt, an index i, a bit b, a new hash root rt′ and a writing opening wop, and
outputs 0 (reject) or 1 (accept).

Definition 2.11 (Hash Tree). A hash tree HT = (Gen,Hash,Read,Write,VfyRd,VfyWt) is required
to satisfy the following properties:

Efficiency. The size of hash key hk is at most poly(λ), the size of hash root rt is λ, and the size of
openings is at most poly(λ, log n) where n is the input size.

Reading Soundness. For any PPT adversary A, there exists a negligible function negl(·) such
that for every λ ∈ N,

Pr

 VfyRd(hk, rt, i, b(1), rop(1)) = 1 ∧
VfyRd(hk, rt, i, b(2), rop(2)) = 1 ∧
b(1) ̸= b(2)

:
hk← Gen(1λ),

(rt, i, b(1), rop(1), b(2), rop(2))← A(hk)

 ≤ negl(λ).

Writing Soundness. For any PPT adversary A, there exists a negligible function negl(·) such
that for every λ ∈ N,

Pr

 VfyWt(hk, rt, i, b, rt(1),wop(1)) = 1 ∧
VfyWt(hk, rt, i, b, rt(2),wop(2)) = 1 ∧
rt(1) ̸= rt(2)

:
(hk)← Gen(1λ),

(rt, i, b, rt(b),wop(b), rt(2),wop(2))← A(hk)

 ≤ negl(λ).

Remark 2.12. For all the algorithms and definitions above, instead of a single bit b at location i
we can consider a set (bij)ij∈I at locations in the set I = (i1, . . . , it). Then the size of opening will
grow linearly with t.

Remark 2.13. Reading soundness implies collision resistance of the hash tree.

Remark 2.14 ([Mer87]). Hash trees can be constructed using any family F : {0, 1}2λ → {0, 1}λ
of collision-resistance hash functions.

2.6 Non-Interactive Zero-Knowledge Arguments (NIZK)

Consider an NP language L = {x | ∃w : R(x,w) = 1} defined w.r.t. a relation R.

Syntax. A non-interactive zero-knowledge (NIZK) argument consists of the following polynomial
time algorithms:

Setup(1λ, 1nx , 1nw)→ crs. The probabilistic setup algorithm takes as input a security parameter λ,
an instance length nx, an witness length nw, and outputs a common reference string crs.

Prove(crs, x, w)→ π. The prover algorithm takes as input a common reference string crs, an in-
stance x, and a witness w and outputs a proof π.

15

Verify(crs, x, π)→ 0/1. The verifier algorithm takes as input a common reference string crs, an
instance x, and a proof π. It outputs 0 (reject) or 1 (accept).

Definition 2.15 (NIZK). A non-interactive zero-knowledge proof (Setup,Prove,Verify) for L is
required to satisfy the following properties:

Completeness. For all λ, nx, nw ∈ N and (x,w) ∈ R where |x| = nx and |w| = nw we have:

Pr[Verify(crs, x, π) = 1 : crs← Setup(1λ, 1nx , 1nw), π ← Prove(crs, x, w)] = 1.

Adaptive Soundness. For any PPT adversary A, there is a negligible function negl(·) such that
for all λ, nx ∈ N:

Pr

[
Verify(crs, x, π) = 1 ∧
x /∈ L :

crs← Setup(1λ, 1nx , 1nw),
(x, π)← A(crs), |x| = nx

]
≤ negl(λ).

Zero-Knowledge. There exists a stateful PPT simulator S such that for any PPT adversary A,
there is a negligible function negl(·) such that for all λ, nx, nw ∈ N:

|Pr[AProve(crs,·,·)(crs) = 1 : crs← Setup(1λ, 1nx , 1nw)]−

Pr[AOS(·,·)(crs) = 1 : crs← S(1λ, 1nx , 1nw)]| ≤ negl(λ)

where OS(x,w) outputs S(x) if x ∈ L and ⊥ otherwise.

Knowledge Extractor. There exists a stateful PPT extractor E such that for any non-uniform
PPT adversary A, there is a negligible function negl(·) such that for all λ, nx, nw ∈ N:

Pr

 Verify(c̃rs, x, π) = 1,
∧ (R(x,w) = 0 ∨ |w| > nw)

:

(c̃rs, td)← E(1λ, 1nx , 1nw),
(x, π)← A(c̃rs),
|x| = nx,
w ← E(td, x, π)

 ≤ negl(λ),

and c̃rs and crs← Setup(1λ, 1nx , 1nw) are computationally indistinguishable.

Remark 2.16 ([CW23, BWW23, BKP+23]). Assuming PKE and seBARGs there exists NIZKs.

2.7 (Customized) Public-Key Encryption System

Syntax. A public key encryption (PKE) scheme for the message space M = {Mλ}λ∈N consists
of the following polynomial time algorithms.

Setup(1λ)→ (pk, sk). The probabilistic setup algorithm takes as input a security parameter 1λ and
outputs the public and secret key pair (pk, sk).

Enc(pk,m)→ ct. The probabilistic encryption algorithm takes as input the public key pk, a message
m ∈Mλ, and outputs the ciphertext ct.

Dec(sk, ct)→ m′. The decryption algorithm takes as input secret key sk, ciphertext ct, and outputs
m′.

16

Definition 2.17 (PKE). A public-key encryption system (Setup,Enc,Dec) for m ∈Mλ is required
to satisfy the following properties:

Correctness. For any λ ∈ N, m ∈ Mλ, we have that Dec(sk, ct) = m where ct← Enc(pk,m) and
(pk, sk)← Setup(1λ).

Security. For any stateful PPT adversary A, there is a negligible function negl(·) such that for all
λ ∈ N: ∣∣∣Pr [1← AEnc(pk,·)(1λ, pk)

]
− Pr

[
1← AEnc(pk,0|m|)(1λ, pk)

]∣∣∣ ≤ negl(λ)

where (pk, sk)← Setup(1λ).

2.7.1 leakage resilient/RDM/randomness recoverable/rate-1 PKEs

Definition 2.18 (PKE with Randomness Recovery). A public-key encryption system (Setup,Enc,Dec)
for m ∈ Mλ is said to have randomness recovery if the decryption algorithm additionally outputs
the randomness, i.e., Dec(sk,Enc(pk,m; r))→ (m, r).

Definition 2.19 (Leakage Resilient PKE). A public-key encryption system (Setup,Enc,Dec) for
m ∈ Mλ is said to be leakage resilient if for any stateful PPT adversary A, there is a negligible
function negl(·) such that for all λ ∈ N:∣∣∣Pr [1← AEnc′(pk,·,·)(1λ, pk)

]
− Pr

[
1← AEnc′(pk,0|m|,·)(1λ, pk)

]∣∣∣ ≤ negl(λ)

where (pk, sk)← Setup(1λ) and Enc′(pk,m, f) outputs (Enc(pk,m; r), f(r)).

Remark 2.20 ([PW08], §4.1). Assuming lossy trapdoor functions (LTDFs) there exists a leakage
resilient PKE with randomness recovery. The construction given in section 4.1 of [PW08] immedi-
ately implies randomness recovery. Moreover, in their security analysis, in addition to c1 we can
consider more leakage on the randomness, thus the min entropy of the randomness goes down by
the length of the additional leakage. Therefore, we only need to increase the randomness size by
the leakage size nℓ (λ bits in our applications) and use (n+ nℓ, k + nℓ)-LTDFs. Note that LTDFs
with better parameter can be constructed by combining two LTDFs.

Remark 2.21 ([PW08, FGK+10]). Assuming LWE, DLIN, and DDH there exists lossy trapdoor
functions. Thus under the same set of assumptions there exists a leakage resilient PKE with
randomness recovery.

Definition 2.22 (Rate-1 PKE). A PKE scheme (Setup,Enc,Dec) is said to be rate-1 if the ciphertext
generated by Enc(pk,m) is of length |m|+ poly(λ)

Remark 2.23 (Rate-1 leakage resilient PKE with randomness recovery.). Assuming PRGs and
PKEs, there exists rate-1 PKEs. Furthermore, if we start with a leakage resilient PKE with ran-
domness recovery, we get a rate-1 leakage resilient PKE with randomness recovery. The construction
works as follows: (1) Setup compute pk′ = (pk, G) where pk← PKE.Setup(λ) and G is a PRG with
3λ-bits seeds (that is secure if s has high entropy), (2) the encryption algorithm samples a PRG
seed s, and computes ct1 ← PKE.Enc(pk, s), ct2 = G(s)⊕m, and (3) the decryption algorithm first
decrypts ct1 to find s and then computes m = ct2 ⊕G(s).

17

The security follows from the security of the underlying PKE and PRG. Additionally, if the
underlying PKE is randomness recoverable, since the decryption algorithm also finds s, the resulting
algorithm is also randomness recoverable. For leakage resilience we rely on leakage resilience of the
underlying PKE, and high entropy of s given the leakage. Moreover, since the encrypted message
is 3λ-bits long, the required randomness for PKE is poly(λ), so the resulting scheme is rate-1.

Definition 2.24 (Randomness-Dependent Message (RDM) PKE). A public-key encryption system
(Setup,Enc,Dec) for m ∈Mλ is said to be randomness-dependent message if for any stateful PPT
adversary A, there is a negligible function negl(·) such that for all λ ∈ N:∣∣∣Pr [1← expA0 (1

λ, pk)
]
− Pr

[
1← expA1 (1

λ, pk)
]∣∣∣ ≤ negl(λ)

where definitions of expA0 and expA1 are provided in Figure 1.

expA0 (1
λ, pk). This is the real experiment where A first receives pk ← Setup(1λ) from the challenger. Then

A iteratively sends fi to the challenger, receives fi(r), then sends mi and receives Enc(pk,mi; r). After this, A
outputs guess b′. Output b′.

expA1 (1
λ, pk). This is the ideal experiment where A first receives pk← Setup(1λ) from the challenger. Then

A iteratively sends fi to the challenger, receives fi(r), then sends mi and receives Enc(pk, 0|mi|; r). After this,
A outputs guess b′. Output b′.

Figure 1: Real and ideal experiments for RDM-PKE security.

Remark 2.25 ([BCPT13]). Assuming PKE there exists an RDM-PKE.

3 Zero-Knowledge Incrementally Verifiable Streaming Computa-
tion (zk-IVsC)

In this section we first formally define zk-IVsC, and construct and analyze our zk-IVsC. We finally
discuss how to further extend and optimize our zk-IVsC.

3.1 Definition.

Syntax. A zero-knowledge incrementally verifiable streaming computation (zk-IVsC) scheme for
a RAM machineM consists of the following PPT algorithms:

Gen(1λ, n, S, T)→ crs. The probabilistic setup algorithm takes as input a security parameter 1λ,
the input length n, the maximum configuration size S, and the running time of machine T ,
and outputs a common reference string crs.

Update(crs, zk, stk−1, hzk−1,Πk−1; psk)→ (stk, hzk,Πk). The update algorithm takes as input a CRS
crs, an input zk, an intermediate state stk−1, an intermediate digest hzk−1, a proof Πk−1, and
some private state/randomness psk. It outputs an updated state stk, an updated digest hzk,
and an updated proof Πk. Note that this algorithm has RAM access to the memory.

Note. The update algorithm takes psk as explicit randomness, and it could use more ran-
domness. However, we are not making the entire randomness explicit for simplicity.

18

Digest(crs, z, ps)→ hz. The digest algorithm takes as input a CRS crs, a set of inputs z = (zk)k∈[K],
and a set of private states ps = (psk)k∈[K], and outputs a hash digest hz.

Verify(crs, (hz, out),Π)→ 0/1. The verifier algorithm takes as input a CRS crs, a hash digest hz,
an output out, and a proof Π, and outputs a bit to signal whether the proof is valid or not.

Remark 3.1 (Prover). We will define the prover Prove(crs, (zk)k∈[K]; (psk)k∈[K]) for a zk-IVsC
inductively as follows (where st0 is the initial state and Π0 = ϵ):

If K = 1 then output (st1, hz1,Π1)← Update(crs, z1, st0,Π0; ps1), otherwise inductively compute
(stK−1, hzK−1,ΠK−1) = Prove(crs, (zk)k∈[K−1]; psK−1) and output (stK , hzK ,ΠK) that is computed
as (stK , hzK ,ΠK)← Update(crs, zK , stK−1, hzK−1,ΠK−1; psK).

Informal definition. Informally speaking, zk-IVsC requires that for a RAM computationM(z) =
cf where out = cf[1, . . . , nout], there exists an efficient prover who generates a proof whose size is
independent of computation time and space. Moreover, no PPT adversary can find (1) a collision:
i.e. two different inputs whose digests are the same, (2) a valid proof w.r.t. an honest digest
of z for some incorrect output out, (3) valid proofs Π(0) and Π(1) w.r.t. a unique digest hz for
out(0) ̸= out(1), (4) any information about z from (hz,Π) more than what is revealed by cf.

Definition 3.2 (zk-IVsC). A zero-knowledge incrementally verifiable streaming computation scheme
(Gen,Update,Digest,Verify) forM has to satisfy the following properties:

Completeness. For every λ, n, S, T ∈ N, any z = (zk)k∈[K] s.t. zk ∈ {0, 1}n,

Pr

 (z, out) ∈ LM,T ∧
hz = Digest(crs, z, ps) ∧
Verify(crs, (hz, out),Π) = 1

:
crs← Gen(1λ, n, S, T)
(st, hz,Π)← Prove(crs, z; ps)
find cf ∈ st, out = cf[1, . . . , nout]

 = 1.

Efficiency. For the completeness experiment above,

• Size of crs, and setup running time are poly(λ, logS, log n).

• Size of Π, and its verification time are poly(λ, logS, log n, log T, logK).

• Update’s running time is poly(λ, n)+poly(λ, S)+T ·poly(λ, logS, log n, log T, logK). (We
also consider - and later achieve - a more efficient update that runs in T ·poly(λ, logS, log n,
log T, logK), when it is allowed to preprocess the n-bit input.)

Collision Resistance. For any stateful PPT adversary A there exists a negligible function
negl(·) such that for every λ ∈ N,

Pr

 hz(0) = hz(1) ∧
z(0) ̸= z(1)

:

(n, S, T)← A(1λ), crs← Gen(1λ, n, S, T)

(z(b), ps(b))b∈{0,1} ← A(crs)
(hz(b) = Digest(crs, z(b), ps(b)))b∈{0,1}

 ≤ negl(λ).

Soundness. For any admissible stateful PPT adversary A there exists a negligible function
negl(·) such that for every λ ∈ N,

Pr

[
(z, out) /∈ LM,T ∧
Verify(crs, (hz, out), π) = 1

:
(n, S, T)← A(1λ), crs← Gen(1λ, n, S, T)
(z, out, ps,Π, 1K·T)← A(crs), hz = Digest(crs, z, ps)

]
≤ negl(λ).

where an adversary is admissible if ∀k ∈ [K], zk ∈ {0, 1}n.

19

Strong Soundness. For any stateful PPT adversary A there exists a negligible function negl(·)
such that for every λ ∈ N,

Pr

 Verify(crs, (hz, out(0)),Π(0)) = 1 ∧
Verify(crs, (hz, out(1)),Π(1)) = 1 ∧
out(0) ̸= out(1)

:

(n, S, T)← A(1λ),
crs← Gen(1λ, n, S, T),

(hz, (out(b),Π(b))b∈{0,1}, 1
K·T)← A(crs)

 ≤ negl(λ).

Remark 3.3. Strong soundness implies the normal soundness by having the challenger run
M on ((zk)k∈[K]) (received from the adversary), and generate (out∗,Π∗) corresponding to the
correct computation. Additionally, strong soundness implies collision resistance property.

Zero-Knowledge. There exists a stateful PPT simulator S such that for any PPT adversary A,
there is a negligible function negl(·) such that for all λ ∈ N,

Pr

 b = b′ :

(n, S, T)← A(1λ), b← {0, 1}
crs0 ← Gen(1λ, n, S, T), crs1 ← S(1λ, n, S, T),
z ← A(crsb), cf =M(z; 1T)
(st0, hz0,Π0)← Prove(crs0, z), (st1, hz1,Π1)← S(crs1, cf),
b′ ← A(stb, hzb,Πb)

 ≤ negl(λ).

3.2 Construction

In this section we first define the notation, then present an overview of our construction, followed
by the building blocks and the construction itself.

Notations. We implement our algorithms in the RAM model and to indicate a RAM access, we
use underline in the construction. For ease of exposition (and w.l.o.g.) we assume T is a power of
2, every user has an input of size n, and the work tape is of size S.

For a RAM machineM we use cf = (W, q, ridx) to denote a configuration and pcf = (rt, q, ridx)
to denote a pseudo-configuration, where W is the work tape, rt is a short digest of the work
tape W (root of the hash tree computed on W), q is the state of the RAM machine, and ridx
(reading index) is the pointer on the memory. For a configuration (resp. pseudo-configuration)
that corresponds to user k after t steps of the computation, we use cfk,t = (Wk,t, qk,t, ridxk,t) (resp.
pcfk,t = (rtk,t, qk,t, ridxk,t)). Note that we are splitting the memory into two parts, input tape and
work tape, and often we denote the digest of the input tape by rtin. Moreover, if ridx ≤ n thenM
is reading the ridxth index from the input tape, otherwise, M is reading the (ridx − n)th index of
the work tape.

Construction overview. We break our zk-IVsC proof to small steps, and show how each step
builds upon the previous step. Our starting point is the fact the hash trees allow one to succinctly
prove a single step of RAM computation. Namely, consider a RAM transition cf

z−→ cf ′ which
consists of a single-bit reading from input/work tape zi/Wi and a single-bit writing in the work
tape. One can succinctly prove such a transition by generating a reading proof rop and a writing
proof wop corresponding to the digest of the input/work tapes. Hence, (rop,wop) is a proof for the

RAM transition pcf
rtin−−→ pcf ′. Namely, we use is-nxt-cnfgM(hkht, rtin, pcf, pcf

′, rbit, rop,wop) → 0/1
(see Fig. 2) (where hkht is a hash-key for a hash tree) as a function that efficiently checks the
adjacency of two [consecutive] pseudo-configurations w.r.t. their corresponding set of reading and
writing proofs (rop,wop).

20

is-nxt-cnfgM(hkht, rtin, pcf, pcf
′, rbit, rop,wop)→ 0/1

Compute the RAM step function as CM(q, rbit) = (q∗, ridx∗,widx∗,wbit∗). Then output 1 if all of following
checks pass; output 0 otherwise.

Check reading correctness. Namely, rop certifies rbit is ridxth index of the input/work tape:

• If ridx ≤ n then HT.VfyRd(hkht, rtin, ridx, rbit, rop) = 1, o.w. HT.VfyRd(hkht, rt, ridx− n, rbit, rop) = 1.

Check writing correctness. Namely, wop certifies pcf → pcf′:

• (q′, ridx′) = (q∗, ridx∗) and HT.VfyWt(hkht, rt,widx
∗,wbit∗, rt′,wop) = 1.

Figure 2: Description of is-nxt-cnfgM.

Next, we show how to make such a proof zero-knowledge by encrypting the pseudo-configurations
and input digest and generating a NIZK proof πzk for such a transition. Namely, we let (ctin, epcf, epcf

′)

be encryptions of (rtin, pcf, pcf
′), and by epcf

ctin−−→ epcf ′ we denote there exist (rtin, pcf, pcf
′), s.t.

pcf
rtin−−→ pcf ′. Thus we define Lzk (see Fig. 3) to be the NIZK language for such a transition

which checks the correctness of all the encryptions (w.r.t. an encryption public-key pk and the

corresponding randomnesses), in addition to checking whether pcf
rtin−−→ pcf ′ holds.

Language Lzk

Hardwired: pk, hkht
Instance: x = (ctin, epcf, epcf

′)
Witness: w = (rtin, rin, pcf, r, pcf

′, r′, rbit, rop,wop)
Membership: w is a valid witness for x ∈ Lzk if the following hold:

ctin is the encryption of input root: PKE.Enc(pk, rtin; rin) = ctin.

epcf is the encryption of pcf: PKE.Enc(pk, pcf; r) = epcf.

epcf′ is the encryption of pcf′: PKE.Enc(pk, pcf′; r′) = epcf′.

(rop,wop) certify pcf → pcf′: is-nxt-cnfgM(hkht, rtin, pcf, pcf
′, rbit, rop,wop) = 1.

Figure 3: Description of language Lzk.

We let (v = (epcf, epcf ′), πzk) to be a level 0 proof (w.r.t. ctin), i.e. π0 ∈ Π in our zk-IVsC
construction. Next we show how to iteratively merge any two proofs πℓ−1,1 and πℓ−1,2 (each for 2ℓ

steps of the computation) to get a proof πℓ (for 2
ℓ+1 steps of the computation). First note that by

our choice of T (being a power of 2), a proof for T steps of the computation (performed by any
user k) would only be a proof πlog T−1. Thus until level ℓ−2 we use the same ctin to generate/check
the proofs, and only after that the ctin values are being merges. Therefore, in our construction, we
only see h in the proofs πℓ for ℓ ≥ log T − 1 (where h = ctin at level log T − 1). Moreover, every
proof has two path opening from v to its leftmost and rightmost childs/epcfs. Since the leftmost
and rightmost childs of v at level 0 are part of v itself, we do not consider path openings for π0.
Next we show how to merge two level ℓ− 1 proofs for ℓ ≥ log T . Note that this is the more general
case and includes all the checks we need to consider for merging.

First note that our construction samples separate SEH keys and seBARG CRSs for every level
of merging, hence we use crsbp,ℓ and hkcf,ℓ for merging level ℓ− 1 proofs. Now consider two proofs
πℓ−1,1 = (v1, ρ1,1, ρ1,2, h1, π̂1) and πℓ−1,2 = (v2, ρ2,1, ρ2,2, h2, π̂2). To merge such proofs, (1) we use
a CRHF to hash (h1, h2) to get t-h, (2) we use SEH to hash (v1, v2) to get t-v, (3) we compute an

21

seBARG proof t-π∗ for Lbp,ℓ (see Fig. 4) that proves (a) the correctness of t-h w.r.t. (h1, h2), (b)
the correctness of t-v w.r.t. (v1, v2), (c) the validity of (vi, hi) w.r.t. π̂i, (d) the validity of ρi,1 and
ρi,2 w.r.t. v, and (e) the equality of v1 and v2 at their intersection, i.e. the rightmost child of v1
is the same as the leftmost child of v2, and (4) we extend ρ1,1 (resp. ρ2,2) to get t-ρ1 (resp. t-ρ2),
path openings to the leftmost (resp. rightmost) child of t-v.

Language Lbp,ℓ

Hardwired: pk, hkht, hkch, crszk, (crsbp,j)j∈[ℓ−1], (hkcf,j)j∈[ℓ].
Instance: x = (h, v, i).
Witness: w = (v1, v2, ŵ).
Membership: w is a valid witness for x ∈ Lbp,ℓ if the following hold:

v is the hash of (v1, v2). Namely, SEH.Hash(hkcf,ℓ, (v1, v2)) = v.

ŵ certifies the validity of vi. Namely:

• If ℓ = 1, then parse vi = (epcf, epcf′) and ŵ = π, and check NIZK.Verify(crszk, (h, epcf, epcf
′), π) = 1.

• If 1 < ℓ ≤ log T − 1, then parse ŵ = (ρ1, ρ2, π), and check BARG.Verify(crsbp,ℓ−1, (h, vi, j)j∈[2], π) = 1.

• If log T ≤ ℓ, then parse ŵ = (ρ1, ρ2, h1, h2, π), and check BARG.Verify(crsbp,ℓ−1, (hi, vi, j)j∈[2], π) = 1
and CRHF.Hash(hkch, (h1, h2)) = h.

ρi ∈ ŵ is a valid path from vi. Namely, if ℓ > 1 check SEH.VerifyAcc((hkcf,d)d∈[ℓ−1], vi, ρi, 3− i).

Intersection of v1 and v2 is equal. Namely, for i ∈ [2], if ℓ = 1 parse vi = (v′i,1, v
′
i,2), otherwise, parse

ρi = ((v0,i,1, v0,i,2), . . . , (vℓ−2,i,1, vℓ−2,i,2)) and v0,i,3−i = (v′i,1, v
′
i,2). Then check v′1,2 = v′2,1.

Figure 4: Description of language Lbp,ℓ.

Now we put everything together to get t-π = (t-v, t-ρ1, t-ρ2, t-h, t-π
∗), which in the next iter-

ation, (if πℓ ∈ Π is not empty,) will be parsed as πℓ,2 and get further merged with the already
existing level ℓ proof in Π. This iterative process ends when πℓ ∈ Π is empty and then we let
(ϵ, . . . , ϵ, t-π, πℓ+1, . . . , πλ) to be the new proof. The last piece of the puzzle is to generate a proof
πout for the actual output out ofM. We do this by generating a hash tree reading proof w.r.t. the
final pcf in the computation/proof.

The verification checks the validity of all the proofs, and verifies every consecutive non-empty
hash values v ∈ πℓ and v′ ∈ πℓ′ are equal in their intersecting epcf (w.r.t. their corresponding path
openings), and the starting epcf in the proof is consistent with the initial configuration and the
output is consistent with the last epcf in the proof (w.r.t. πout). We summarize our notation in
Table 1.

Building blocks and parameters. Let HT be a hash tree with output root of size λ on any input,
CRHF be a collision resistant Hash : {0, 1}2λ → {0, 1}λ, seBARG be an almost rate-1 seBARG, SEH
be an almost rate-1 SEH, NIZK be a NIZK, and PKE be a public-key encryption. We use the
following parameters to instantiate such primitives. Let |pcf| = λ + |q| + log(n + S), |epcf| =
|PKE.Enc(pk, 0|pcf|)|, and ncf,0 = 2 · |epcf|. For ℓ ∈ [λ], let ncf,ℓ = |SEH.Hash(hkcf,ℓ, 02.ncf,ℓ−1)|,
nbp,ℓ = λ + ncf,ℓ + 1, and Σℓcf = {0, 1}ncf,ℓ be the alphabet for block SEH. Moreover, let |ctin| =
|PKE.Enc(pk, 0λ)|, |r| be the size of randomness used by PKE, and nzk,x = |ctin| + 2|epcf| and
nzk,w = λ+ 2|pcf|+ 3|r|+ 1 + |rop|+ |wop|.

22

Table 1: zk-IVsC Noatation Summary

pk/sk public-key/secret-key for encryption

hkht/hkch hash-key for hash tree/collision-resistant hash function

crszk/tdzk CRS/trapdoor for the NIZK scheme

crsbp,ℓ/tdbp,ℓ CRS/trapdoor for seBARG used to generate proofs at level ℓ

hkcf,ℓ/tdcf,ℓ hash-key/trapdoor for SEH used to hash level ℓ− 1 hashes of epcfs

z/W/q RAM machine’s input tape/work tape/state

rbit/ridx RAM reading bit/reading index

widx/wbit RAM writing bit/writing index

cf configuration = (W, q, ridx)

pcf pseudo-configuration = (rt, q, ridx) where rt is hash root of W

epcf encrypted pseudo-configuration ← PKE.Enc(pk, pcf)

pcf1,0 the universal starting pseudo-configuration

rop/wop reading/writing proof w.r.t. hash roots

rtin/treein hash root/hash tree of RAM input z

rin/ctin randomness/ciphertext of rtin, i.e. ctin = PKE.Enc(pk, rtin; rin)

h
powers-of-2 hashes of ctin values, i.e. at level log T − 1, h = ctin and at any
level ℓ ≥ log T , h = CRHF.Hash(hkch, (h1, h2)) for level ℓ− 1 hashes h1 and h2

v
powers-of-2 hashes of epcf values, i.e. at level 0, v = (epcf, epcf ′) and at any
level ℓ ≥ 1, v = SEH.Hash(hkcf,ℓ, (v1, v2)) for level ℓ− 1 hashes v1 and v2

ρ a path opening from hash value v to its rightmost or leftmost child

πℓ ∈ Π
= (v, ρ1, ρ2, h, π

′), a level ℓ proof in the powers-of-2 structure where h is empty
if ℓ < log T − 1 and if ℓ = 0, π′ is a NIZK proof, o.w. it is a seBARG proof

Construction 3.4. In this construction, we always parse hz = (hlog T−1, · · · , hλ), crs = (pk, hkht, hkch,
crszk, (crsbp,ℓ, hkcf,ℓ)ℓ∈[λ], pcf1,0), Π = (πout, epcf, π0, . . . , πλ), pcf = (rt, q, ridx), and sti = (cfi, pcfi, ri)

wherever needed. Moreover, we let st0 = (0|cf|, pcf1,0, 0
|r|), and Π0 = (ϵ, epcf1,0, ϵ, · · · , ϵ), hz0 =

(ϵ, · · · , ϵ) where pcf1,0 is as defined in Gen and epcf1,0 = PKE.Enc(pk, pcf1,0; 0
|r|).

Gen(1λ, n, S, T)→ crs. This algorithm lets α, β = 1λ8 and does the following:

1. Sample parameters: hkht ← HT.Gen(1λ), hkch ← CRHF.Gen(1λ), (pk, sk) ← PKE.Gen(1λ),
crszk ← NIZK.Setup(1λ, 1nzk,x , 1nzk,w) for Lzk, (hkcf,ℓ, tdcf,ℓ)← SEH.Gen(1λ, 2,Σℓ−1

cf , α[ℓ]) for
ℓ ∈ [λ], and (crsbp,ℓ, tdbp,ℓ)← seBARG.Setup(1λ, 2, nbp,ℓ, β[ℓ]) for ℓ ∈ [λ].

2. Get the honest starting pseudo-configuration: pcf1,0 = (HT.Hash(hkht, 0
S), 0|q|, 0|ridx|).

3. Output crs = (pk, hkht, hkch, crszk, (crsbp,ℓ, hkcf,ℓ)ℓ∈[λ], pcf1,0).

Update(crs, zk, stk−1, hzk−1,Πk−1; psk)→ (stk, hzk,Πk). This algorithm does the following:

1. Define the starting state for user k = last state for user k−1: (stk,0,Πk,0) = (stk−1,Πk−1).

8While both α and β have fixed values in the construction, we specifically define them in the construction as we will
change these values in the security proofs.

23

2. Compute the work/input tape roots: let Wk,0 ∈ stk,0, (rtk,0, treek,0) = HT.Hash(hkht,Wk,0)
and (rtin, treein) = HT.Hash(hkht, zk).

3. Encrypt input root: let rin = psk and compute ctin = PKE.Enc(pk, rtin; rin).

4. Define input auxiliary information required for proof generation: auxin = (rtin, treein, rin, ctin).

5. RunM and update its corresponding proof for T steps: for t ∈ [T] run (stk,t, treek,t,Πk,t) =
UpdateSingleStep(crs, auxin, stk,t−1, treek,t−1,Πk,t−1).

9

6. Update the input digest: hzk = nxt-hz(hkch, hzk−1, ctin).

7. output (stk,T , hzk,Πk,T).

Digest(crs, (zk)k∈[K], (psk)k∈[K])→ hz. This algorithm does the following:

1. Let hz0 = (hlog T−1, · · · , hλ) where hℓ is empty for ℓ ∈ [log T − 1, λ].

2. For k ∈ [K] compute root of zk, then encrypt the root and update hz by adding the
encrypted root to it; namely, compute the following:

(a) (rtk, treek) = HT.Hash(hkht, zk), and ctin = PKE.Enc(pk, rtk; psk).

(b) hzk = nxt-hz(hkch, hzk−1, ctin).

3. Output hz = (hlog T−1, · · · , hλ).

nxt-hz(hkch, hz, t-h)→ hz′

Let hz = (hlog T−1, · · · , hλ), ℓ = log T − 1 and while hℓ is not empty iteratively do the following (1) let h∗ =
(hℓ, t-h), (2) compute t-h = CRHF.Hash(hkch, h

∗), and (3) increment ℓ. Output hz′ = (ϵ, . . . , ϵ, t-h, hℓ+1, . . . , hλ).

Figure 5: Description of nxt-hz.

Verify(crs, (hz, out),Π)→ 0/1. This algorithm does the following:

1. Parse Π = (πout, epcf, π0, · · · , πλ), hz = (hlog T−1, · · · , hλ).
2. Verify that πout proves out is the corresponding output of epcf. Namely, let πout =

(pcf, r, π∗), and pcf = (rt, q, ridx), and check HT.VfyRd(hkht, rt, [nout], out, π
∗) = 1 and

PKE.Enc(pk, pcf; r) = epcf; output 0 otherwise.

3. First verify all the λ proofs w.r.t. input digest hz, and then check the consistency of vi
values with the starting/ending/intersecting encrypted pseudo-configurations. Track such
encrypted pseudo-configurations by epcf∗ and at the beginning let epcf∗ = epcf, i.e. the
last encrypted pseudo-configuration in the proof. Then for ℓ ∈ [log T − 1, λ], if πℓ is not
empty do the following and output 0 if any of the checks fail:

(a) Let πℓ = (v, ρ1, ρ2, h, π̂). Check h = hℓ, seBARG.Verify(crsbp,ℓ, (v, h, i)i∈[2], π̂) = 1, and
SEH.VerifyAcc((hkcf,d)d∈[ℓ], v, ρi, i) for i ∈ [2].

(b) For i∈ [2] parse ρi = ((v0,i,1, v0,i,2), . . . , (vℓ−1,i,1, vℓ−1,i,2)), v0,i,i = (epcfi,1, epcfi,2), and
check epcf2,2 = epcf∗. Let epcf∗ = epcf1,1.

4. Output 1 if epcf∗ = PKE.Enc(pk, pcf1,0; 0
|r|) and 0 otherwise.

9Recall that by underlining an algorithm we mean that it can be even more efficiently implemented as a RAM
algorithm. We explain this further in Section 3.3.

24

UpdateSingleStep(crs, auxin, stt−1, treet−1,Πt−1)→ (stt, treet,Πt). This algorithm does the following:

1. Parse Πt−1 = (πout, epcft−1, π0, · · · , πλ), and auxin = (rtin, treein, rin, ctin).

2. Find (cft, pcft), and the reading/writing proofs (rop,wop) for RAM transition pcft−1 → pcft as follows:

(a) Get read-proof from input tape: (rbit, rop) = HT.Read(hkht, treein, ridxt−1) if ridxt−1 ≤ n.

(b) Get read-proof from work tape: (rbit, rop) = HT.Read(hkht, treet−1, ridxt−1 − n) if ridxt−1 > n.

(c) Run the RAM step function: CM(qt−1, rbit) = (qt, ridxt,widx,wbit).

(d) Get write-proof for work tape: (rtt, treet,wop) = HT.Write(hkht, treet−1,widx,wbit).

(e) Update the work tape: write wbit at widxth index of Wt−1 to get Wt.

(f) Find (cft, pcft): Let cft = (Wt, qt, ridxt) and pcft = (rtt, qt, ridxt).

3. Encrypt pcft: sample rt and compute epcft = PKE.Enc(pk, pcft; rt).

4. Compute a NIZK proof for epcft−1 → epcft: πzk = NIZK.Prove
(
crszk, x = (ctin, epcft−1, epcft), w

)
for

language Lzk where w = (rtin, rin, pcft−1, rt−1, pcft, rt, rbit, rop,wop).

5. Define the temporary proof and input hash: let t-π =
(
t-v = (epcft−1, epcft), t-ŵ = πzk

)
, and t-h = ctin.

Note that at the moment these values correspond to a level 0 proof in the power-of-2-structure, but they
will be treated as proofs for level ℓ, in the next iterative process.

6. Iteratively merge the proofs: let ℓ = 0 and while πℓ ∈ Π is not empty run the following iterative process
to merge the proofs πℓ and t-π (which are at the same level) and increment ℓ at the end.

(a) Parse t-π and πℓ as follows:

• If ℓ = 0 then πℓ = (v1, ŵ1) and t-π = (v2, ŵ2).

• If 0 < ℓ < log T − 1 then πℓ = (v1, ρ1,1, ρ1,2, π̂1) and t-π = (v2, ρ2,1, ρ2,2, π̂2).

• If log T − 1 ≤ ℓ then πℓ = (v1, ρ1,1, ρ1,2, h1, π̂1) and t-π = (v2, ρ2,1, ρ2,2, h2, π̂2).

(b) Merge level ℓ hashes to get the next temp v: t-v = SEH.Hash(hkcf,ℓ+1, (v1, v2)).

(c) Merge level ℓ input hashes to get the next temp h: if ℓ ≥ log T − 1 compute t-h =
CRHF.Hash(hkch, (h1, h2)).

(d) Find partial witness ŵi for merging BARG proofs: for i ∈ [2], if 1 ≤ ℓ < log T then ŵi =
(ρ1,2, ρ2,1, π̂i), and if log T ≤ ℓ then ŵi = (ρ1,2, ρ2,1, hi, π̂i).

(e) Merge NIZK/BARG proofs: t-π∗ = seBARG.Prove

(
crsbp,ℓ+1,

(xi = t-h, t-v, i)i∈[2]

(wi = v1, v2, ŵi)i∈[2]

)
for the lan-

guage Lbp,ℓ+1 in Fig. 4.

(f) Extend the path openings to get the next temp path openings: for i ∈ [2] if ℓ = 0 then t-ρi = (v1, v2),
and if ℓ ≥ 1 then t-ρi = (ρi,i, (v1, v2)).

(g) Put everything together to get the next temp π: if ℓ < log T − 2 then t-π = (t-v, t-ρ1, t-ρ2, t-π
∗),

otherwise, t-π = (t-v, t-ρ1, t-ρ2, t-h, t-π
∗).

7. Compute output-proof w.r.t. epcft: (outt, π
∗
t) = HT.Read(hkht, treet, [nout]) and πout = (pcft, rt, π

∗
t).

8. Output (stt, treet,Πt = (πout, epcft, ϵ, . . . , ϵ, t-π, πℓ+1, . . . , πλ)).

3.3 Analysis

Theorem 3.5. Assuming that seBARG is an almost rate-1 seBARG (Definitions 2.6 and 2.8),
NIZK is a secure NIZK protocol (Definition 2.15), PKE is a secure PKE system (Definition 2.17),
SEH is an almost rate-1 SEH (Definitions 2.2 and 2.4), HT is a hash tree (Definition 2.11), and
CRHF is a 2-to-1 collision resistant hash function (Definition 2.10), Construction 3.4 is a zk-IVsC
(Definition 3.2).

25

Corollary 3.6. Assuming almost rate-1 seBARGs and PKEs, Construction 3.4 is a zk-IVsC.

Corollary 3.7. Assuming either LWE, or DLIN, or sub-exponential DDH, Construction 3.4 is a
zk-IVsC.

The zero-knowledge property of our construction follows by NIZK zero-knowledge and PKE se-
curity in a straightforward manner, however, the soundness proof is rather a delicate task. Next, we
provide an overview of the strong soundness of our construction and refer the reader to Appendix A
for a complete analysis of our construction.

Strong soundness overview. Define expα,β to be an experiment w.r.t. the choice of α and β
(where SEH (resp. seBARG) is binding/extractable on the path α (resp. β)), that also outputs
the trapdoors and secret keys. Note that α uniquely determines a tuple (cfk,t−1, cfk,t) in the
computation (and its corresponding path in the proof). Define an extraction algorithm Extract∗ that

by (recursively) using the SEH trapdoors and the PKE secret-key, extracts some (pcf
(b)
k,t−1, pcf

(b)
k,t)

from proof Π(b). Now note that any epcfk,t is in exactly two different path openings, one that
branches out to right and one that branches out to left. Now, define two other extraction algorithms
Extractr (resp. Extractl) that first recursively use the seBARG trapdoors, then use path openings

from right (resp. left), and finally uses the PKE secret-key to extract some pcf
(b)
r (resp. pcf

(b)
l) from

proof Π(b), where (k, t) is also defined by the value of α. Our goal is to inductively show that if

pcf
(0)
k,t−1 = pcf

(1)
k,t−1, then pcf

(0)
k,t = pcf

(1)
k,t , and next increment α and β while holding the invariant

that pcf
(0)
k,t = pcf

(1)
k,t . More specifically, we prove the following:

(1) In exp1,1 we have pcf
(0)
1,0 = pcf

(1)
1,0 (see. Claim A.2). We rely on the SEH binding on the path

to epcf1,0, PKE correctness, and the verifier’s equality check with pcf1,0 ∈ crs.

(2) In expα,α if pcf
(0)
k,t−1 = pcf

(1)
k,t−1 then pcf

(0)
k,t = pcf

(1)
k,t (see Claim A.3). To prove this we use

an induction on ℓ, the level of the proof π
(b)
ℓ = (v(b), ρ

(b)
1 , ρ

(b)
2 , h(b), π̂(b)) that includes a proof for

pcfk,t−1 → pcfk,t. We first extract a witness from π̂(b), then using SEH binding property argue the

extracted witness is consistent with the extracted hash value from v(b). Then starting with hashed
inputs h(b) that are consistent with hz, by relying on collision resistance of CRHF we get that the
hashed input values in the witness are also consistent with hz. Then we rely on the induction step.
For the induction base, we additionally rely on the knowledge soundness of NIZK, together with
reading and writing soundness of HT (for is-nxt-cnfgM), to conclude the claim.

(3) If pcf
(0)
k,t = pcf

(1)
k,t in expα,α then pcf

(0)
k,t = pcf

(1)
k,t in expα,α+1 (see Claim A.4). Note that

the statement depends only on SEH trapdoors and PKE secret-key, thus we can rely on the index
hiding property of seBARG to change the binding path from α to α+ 1.

(4) If pcf
(0)
k,t = pcf

(1)
k,t in expα,α+1 then pcf

(0)
k,t = pcf

(1)
k,t in expα+1,α+1 (see Claim A.5). To prove

this we take the following steps – (a) in expα,α+1 if pcf
(0)
k,t = pcf

(1)
k,t then pcf

(0)
l = pcf

(1)
l ; this holds

as the path on which pcf
(b)
l is computed is the same as the path on which pcf

(b)
k,t is extracted, (b) in

expα,α+1 if pcf
(0)
l = pcf

(1)
l then pcf

(b)
r = pcf

(b)
r ; this holds either by the verifier’s check or the seBARG

proof check at some level j, (c) if pcf
(b)
r = pcf

(b)
r in expα,α+1 then pcf

(b)
r = pcf

(b)
r in expα+1,α+1; this

holds by the SEH index hiding and the fact that statement depends only on seBARG trapdoors and

PKE secret key, (d) in expα+1,α+1 if pcf
(b)
r = pcf

(b)
r then pcf

(0)
k,t = pcf

(1)
k,t ; this holds as the path on

which pcf
(b)
r is computed is the same as the path on which pcf

(b)
k,t is extracted.

26

(5) In expKT,KT if pcf
(0)
N,T = pcf

(1)
N,T then the adversary cannot generate valid proofs Π(0) and

Π(1) for two different final outputs out(0) and out(1) (see Claim A.6). To prove this claim we rely

on the SEH binding and PKE correctness to show pcf
(b)
K,T = pcf(b) where pcf(b) ∈ π

(b)
out, which implies

that pcf(0) = pcf(1), and finally rely on reading soundness of HT to prove out(0) = out(1).

3.4 Further Optimizing zk-IVsC

In this section we explain how to further optimize our zk-IVsC.

What if output is large? Consider a RAM machine M for which the output size nout is
large, e.g., nout ≃ S. In this scenario, as our proof size and verification time grows with nout,
our construction becomes inefficient. In this case we alter the proof to not compute πout, and let
the verification to only verify a digest of the final configuration (which is already included in our
construction) and conclude the proof by relying on collision resistance of HT. Then the efficiency
analysis of our construction becomes independent of nout, making the construction efficient even if
the output size is large.

More efficient prover. Suppose we don’t want the running time of the prover (and Update) to
grow with the size of cf. Note that the only part of the computation that grows with |cf| = S is the
computation of the hash tree given the configuration cfk,0. To avoid this step, we can consider the
computation of the RAMmachine to keep a tree of the cf in its memory. Thus we update the state st
such that instead of sti = (cfi, pcfi, ri), we have sti = (cfi, pcfi, treei, ri). Note that the size of st only
suffers from a (multiplicative) logarithmic overhead on the size of cf. However, Update algorithm
will be relieved from the computation of treek,0 each time a new user starts to run the machine.
Therefore, the new running time of Update is poly(λ, n) + T · poly(λ, logS, log n, log T, log k, nout)
and the running time of the new prover is K (poly(λ, n) + T · poly(λ, logS, log n, log T, logK,nout)).

Succinct communication to the next user. Note that each time a user finishes running the
machine, it has to pass the final state/configuration to the next user (so that they can start running
the machine). We highlight that if the amount of information needed to start running the machine
by the next user is succinct, then there is a succinct way of sending the last configuration to the next
user. Namely, user k will only write the information that needs to be passed on at the beginning of
the work tape and let the rest of the work tape be all zeros (this will only have an additive overhead
of size at most S on the running time of the machine, and w.l.o.g. we can assume S ≤ T). Then
the user will only send the non-zero part of the memory to the next user and the next user will
be able to reconstruct the entire state/configuration. Therefore, we can always assume that for all
k ∈ [N], stk,T has a short description (e.g., of size poly(λ, logS)).

3.5 Predicated zk-IVsC

3.5.1 Definition

In this section, we extend zk-IVsC definition to further impose a well-formedness property on the
input to the machine, and then propose a construction that achieves such property.

27

Syntax. A predicated zero-knowledge incrementally verifiable streaming computation (predicated
zk-IVsC) scheme for a RAM machineM is defined similarly to zk-IVsC, except that, first the Gen
algorithm additionally takes a predicate size nf as input, and second, the primitive also has the
following PPT algorithms for proving and verifying the well-formedness of the inputs:

PredicateUpdate(crs, fk, zk, psk, fk−1, hzk−1,Σk−1)→ (hzk,Σk) The predicate update algorithm takes
as input a CRS crs, a predicate fk, an input zk, set of predicates fk−1 = (fj)j∈[k−1], a private
state psk, a digest hzk−1, and a proof Σk−1 and outputs an updated digest hzk and an updated
proof Σk.

PredicateVerify(crs, f , hz,Σ)→ 0/1 The predicate verifier algorithm takes as input a CRS crs, a set
of predicates f = (fk)k∈[K], a digest hz, and a proof Σ, and outputs a bit to signal whether
the proof is valid or not.

Remark 3.8 (Predicate Prover). We will define the predicate prover algorithm PredicateProve(crs, f ,
z, ps) for a predicate zk-IVsC inductively as follows (where hz0,Σ0 = ϵ):

If K = 1 then output (hz1,Σ1) ← PredicateUpdate(crs, f1, z1, ps1, f0, hz0,Σ0), otherwise induc-
tively compute (hzK−1,ΣK−1) = PredicateProve(crs, fK−1, zK−1, psK−1) and output

(hzK ,ΣK)← PredicateUpdate(crs, fK , zK , psK , fK−1, hzK−1,ΣK−1).

Definition 3.9 (Predicated zk-IVsC). A predicated zero-knowledge incrementally verifiable stream-
ing computation scheme (Gen,Update,Digest,Verify,PredicateProve,PredicateVerify) forM has to
satisfy the following properties:

Completeness. For every λ, n, S, T ∈ N, any z = (zk)k∈[K] s.t. zk ∈ {0, 1}n,

Pr


(z, out) ∈ LM,T ∧ f(zk) = 1 ∧
hz = hz′ = Digest(crs, z, ps) ∧
Verify(crs, (hz, out),Π) = 1

PredicateVerify(crs, f , hz,Σ) = 1

:

crs← Gen(1λ, n, S, T, nf)
(st, hz,Π)← Prove(crs, z, ps)
find cf ∈ st, out = cf[1, . . . , nout]

(hz′,Σ)← PredicateProve(crs, f , z, ps)

 = 1.

Efficiency. For the completeness experiment above,

• The size of the crs and setup running time are poly(λ, logS, n, nf).

• The size of Π, and update/verifier’s running time are the same as in IVsC

• The size of Σ is poly(λ, n, nf , logK), and predicate update/verifier’s running time are
poly(K) + poly(λ, n, nf , logK). (We also consider - and later achieve - a more efficient
predicate update/verifier that run in poly(λ, n, nf , logK), when they are allowed to
preprocess the set f ..

Collision Resistance, Soundness, and Strong Soundness. Similar to zk-IVsC.

Predicate Soundness. There exists PPT extractor E and algorithms TGen and HashCheck such
that for any stateful PPT adversary A there exists a negligible function negl(·) such that for
every λ ∈ N,

28

Pr

 PredicateVerify(crs, f , hz,Σ) = 1 ∧
(fk∗(z

∗) = 0 ∨
HashCheck(crs, hz, z∗, k∗, op) = 0)

:

(n, S, T, nf , k
∗)← A(1λ),

(crs, td)← TGen(1λ, n, S, T, k∗),

(f, hz,Σ)← A(crs)
(z∗, op)← E(td, f , hz,Σ)

 ≤ negl(λ),

and crs and crs′ ← Gen(1λ, n, S, T) are computationally indistinguishable even given k∗.

Zero-Knowledge. There exists a stateful PPT simulator S such that for any PPT adversary A,
there is a negligible function negl(·) such that for all λ ∈ N,

Pr


b = b′ :

(n, S, T, nf)← A(1λ), b← {0, 1}
crs0 ← Gen(1λ, n, S, T, nf), crs1 ← S(1λ, n, S, T, nf),
(z, f)← A(crsb), (fk(zk) = 1)k∈[K], cf =M(z; 1T)

(st0, hz0,Π0)← Prove(crs0, z, ps)

(hz0,K ,Σ0)← PredicateProve(crs, f , z, ps)

(st1, hz1,Π1,Σ1)← S(crs1, cf)
b′ ← A(stb, hzb,Πb,Σb)


≤ negl(λ),

where we consider a variant of Prover that additionally outputs all the intermediate hz values,
i.e., hzb = (hzb,k)k∈[K].

3.5.2 Construction

Notations. We implement our algorithms in the RAM model and to indicate a RAM access, we
use underline in the construction. For ease of exposition (and w.l.o.g.) we assume T is a power of
2. We let r1,0 to be all zeros.

By f
∗
= (f

∗
1, f

∗
2) we denote f

∗
= (fk)k∈[1,2t], f

∗
1 = (fk)k∈[1,t], and f

∗
2 = (fk)k∈[t+1,2t]. We say

γ corresponds to zk (or just k) if (γlog T , . . . , γλ) is the unique path from root to k∗th leaf in a full
binary tree of depth λ− log T + 1.
Construction overview. The PredicateUpdate works similarly to Update, that is, it builds a
powers-of-2 structure of proofs, generates proofs at the base level using a NIZK, and recursively
merges the proofs using seBARGs. Moreover, the construction relies on a decomposition algorithm
that decomposes the set of all predicates to their corresponding powers-of-2 structure. More specif-
ically we define TreeDecompose(f) = (fdc,0, . . . , fdc,λ) to be an algorithm that receives as input a

set f of size k and decomposes it to disjoint sets fdc,i as follows: first write k as a summation of

powers of 2, i.e. k =
∑λ

i=0 bi · 2i where bi ∈ {0, 1} and let si =
∑i

j=0 bj · 2j for i ∈ [−1, λ]. Finally

it outputs (fdc,0, . . . , fdc,λ) where fdc,i = (fk)k∈[K−si+1,K−si−1] for i ∈ [0, λ].

29

Language Lzk,f

Hardwired: pk, hkht
Instance: x = (f, ctin)
Witness: w = (z, rtin, r)
Membership: w is a valid witness for x ∈ Lzk,f if the following hold:

ctin is the encryption of rtin. Namely, PKE.Enc(pk, rtin; r) = ctin.

rtin is the input root. Namely, (rtin, treein) = HT.Hash(hkht, z).

Input satisfies the predicate. Namely, Check f(z) = 1.

Figure 6: Description of language Lzk,f .

Language Lbp,f,ℓ

Hardwired: hkch, crszk,f , (crsbp,f,j)j∈[ℓ−1]

Instance: x = (f
∗
= (f

∗
1, f

∗
2), h, i)

Witness: w = (h1, h2, π)
Membership: w is a valid witness for x ∈ Lbp,f,ℓ if the following hold:

h is the hash of (h1, h2). Namely, CRHF.Hash(hkch, (h1, h2)) = h.

π certifies well-formedness of hi w.r.t. f
∗
i . Namely, if ℓ = log T then NIZK.Verify(crszk,f , (f

∗
i , hi), π) = 1,

otherwise, seBARG.Verify(crsbp,f,ℓ−1, (f
∗
i , hi, j)j∈[2], π) = 1.

Figure 7: Description of language Lbp,f,ℓ.

Building blocks and parameters. We use the same primitives as in zk-IVsC. In addition to
the sizes in zk-IVsC, let nf = |fk| for k ∈ [K], and nbp,f,ℓ = 2ℓ−log T+1 · nf + λ + 1. Let |r| and
|ct| be respectively the size of randomness and ciphertext of PKE, and let nzk,f,x = nf + |ct| and
nzk,f,w = n+ λ+ |r|.

Construction 3.10. We use the same parsing notation as in zk-IVsC, except that we modify
crs parsing as crs = (pk, hkht, hkch, crszk, crszk,f , (crsbp,ℓ, hkcf,ℓ)ℓ∈[λ], (crsbp,f,ℓ)ℓ∈[log T,λ], pcf1,0), and we
additionally parse Σ = (πf,log T−1, · · · , πf,λ) wherever needed. Update , Digest, and Verify algorithms
remain the same as in zk-IVsC.

Gen(1λ, n, S, T, nf)→ crs. This algorithm is the same as in zk-IVsC except that it additionally
samples crszk,f = NIZK.Setup(1λ, 1nzk,f,x , 1nzk,f,w), lets γ = 1λ and for all ℓ ∈ [log T, λ], it
samples (crsbp,f,ℓ, tdbp,f,ℓ) ← seBARG.Gen(1λ, 2, nbp,f,ℓ, γ[ℓ − log T + 1]), and outputs crs =
(pk, hkht, hkch, crszk, crszk,f , (crsbp,ℓ, hkcf,ℓ)ℓ∈[λ], (crsbp,f,ℓ)ℓ∈[log T,λ], pcf1,0).

PredicateUpdate(crs, fk, zk, psk, fk−1, hzk−1,Σk−1)→ (hzk,Σk). This algorithm does the following:

1. Let hzk−1 = (hlog T−1, · · · , hλ), and Σk−1 = (πf,log T−1, · · · , πf,λ).
2. Decompose the predicates fk−1 to powers-of-2: (fdc,0, . . . , fdc,λ) = TreeDecompose(fk−1).

3. Encrypt the root of input: (rtin, treein) = HT.Hash(hkht, zk) and ctin = PKE.Enc(pk, rtin; psk).

4. Compute a NIZK proof for fk(zk) = 1: πzk,f = NIZK.Prove(crszk,f , x = (fk, ctin), w) for the
language Lzk,f where w = (zk, rtin, psk).

30

5. Define the temporary proof, input hash, and predicates: Let t-h = ctin, t-f = (fk), t-π =
πzk,f . Note that at the moment these values correspond to a level 0 proof in the power-of-
2-structure, but they will be treated as proofs for level ℓ, in the next iterative process.

6. Iteratively merge the proofs: let ℓ = log T −1 and while πf,ℓ is not empty run the following
iterative process and increment ℓ at the end:

(a) Let h = hℓ, h
′ = t-h, π1 = πf,ℓ, π2 = t-π, f

∗
1 = t-f , f

∗
2 = fdc,ℓ−log T+1.

(b) Merge level ℓ input hashes to get the next temp h: t-h = CRHF.Hash(hkch, (h, h
′)).

(c) Merge level ℓ predicates to get the next temp predicates: t-f = (f
∗
1 ∪ f

∗
2).

(d) Merge NIZK/BARG proofs: t-π = seBARGProve

(
crsbp,f,ℓ+1,

(t-f, t-h, i)i∈[2],
(h, h′, πi)i∈[2]

)
for

the language Lbp,f,ℓ+1.

7. Output (hzk = (ϵ, . . . , ϵ, t-h, hℓ+1, . . . , hλ),Σk = (ϵ, . . . , ϵ, t-π, πf,ℓ+1, . . . , πf,λ)).

PredicateVerify(crs, f , hz,Σ)→ 0/1. The verifier first decomposes the predicates f and then verifies
NIZK/BARG proofs. Namely, let (fdc,0, . . . , fdc,λ) = TreeDecompose(f), if πf,log T−1 is not

empty then check NIZK.Verify(crszk,f , (fdc,0, hlog T−1), πf,log T−1) = 1, and for ℓ ∈ [log T, λ] if

πf,ℓ is not empty then check seBARG.Verify(crsbp,f,ℓ, (fdc,ℓ−log T+1, hℓ, i)i∈[2], πf,ℓ) = 1. Output
1 if all the checks pass and 0 o.w.

3.5.3 Analysis

Theorem 3.11. Assuming that seBARG is an almost rate-1 seBARG (Definitions 2.6 and 2.8),
NIZK is a secure NIZK protocol (Definition 2.15), PKE is a secure PKE system (Definition 2.17),
SEH is an almost rate-1 SEH (Definitions 2.2 and 2.4), HT is a hash tree (Definition 2.11), and
CRHF is a 2-to-1 collision resistant hash function (Definition 2.10), Construction 3.10 is a predicated
zk-IVsC (Definition 3.9).

Corollary 3.12. Assuming almost rate-1 seBARGs and PKEs, Construction 3.10 is a predicated
zk-IVsC.

Corollary 3.13. Assuming either LWE, or DLIN, or sub-exponential DDH, Construction 3.10 is a
predicated zk-IVsC.

The analysis of the predicate proof is very similar to the analysis of zk-IVsC. We refer the reader
to Appendix B for a complete analysis of our construction.

4 Incrementally Computable Zero-Knowledge Arguments (ICZK)

4.1 Definition

Consider an NP language L = {x = (x1, . . . , xK) | ∃w = (w1, . . . , wK) : R(x,w) = 1} defined w.r.t.
a relation R.

31

Syntax. An incrementally computable zero-knowledge (ICZK) argument consists of the following
polynomial time algorithms:

Setup(1λ, nx, nw)→ crs. The probabilistic setup algorithm takes as input a security parameter λ, a
single instance length nx, a single witness length nw, and outputs a common reference string
crs.

Update(crs, xk, wk, stk−1,Πk−1)→ (stk,Πk). The update algorithm takes as input a common refer-
ence string crs, an instance xk, and a witness wk, a state stk−1, and a proof Πk−1, and outputs
a state stk and a proof Πk.

Verify(crs, x,Π)→ 0/1. The verifier algorithm takes as input a common reference string crs, an
instance x, and a proof Π. It outputs 0 (reject) or 1 (accept).

Remark 4.1 (Prover.). We will define the prover Prove(crs, x, w) → π algorithm for an ICZK
inductively as follows (where st0 is the initial state and Π0 = ϵ):

If K = 1 then output (st1,Π1) ← Update(crs, x1, w1, st0,Π0), otherwise inductively compute
(stK−1,ΠK−1) = Prove(crs, (xk, wk)k∈[K−1]) and output (stK ,ΠK)← Update(crs, xK , wK , stK−1,ΠK−1).

Definition 4.2 (ICZK). An incrementally computable zero-knowledge argument (Setup,Update,Verify)
for L is required to satisfy the following properties:

Completeness. For all λ, nx, nw ∈ N and (x,w) ∈ R where |xk| = nx and |wk| = nw we have:

Pr[Verify(crs, x,Π) = 1 : crs← Setup(1λ, nx, nw),Π← Prove(crs, x, w)] = 1.

Adaptive Soundness. For any PPT adversary A, there is a negligible function negl(·) such that
for all λ, nx ∈ N:

Pr[Verify(crs, x,Π) = 1 ∧ x /∈ L : crs← Setup(1λ, nx, nw), (x,Π)← A(crs), |xk| = nx] ≤ negl(λ)

Incremental Zero-Knowledge. There exists a stateful PPT simulator S such that for any PPT
adversary A, there is a negligible function negl(·) such that for all λ, nx, nw ∈ N:

Pr

 A(stb,Πb) = b :
crs0 ← Setup(1λ, nx, nw), crs1 ← S(1λ, nx, nw), b← {0, 1}
(x,w)← A(crsb), cf =M((x,w); 1T)
(st0,Π0)← Prove(crs0, x, w), (st1,Π1)← S(crs1, cf)

 ≤ negl(λ).

4.2 Construction

In this section we first define the notation, then present an overview of our construction, followed
by the building blocks and the construction itself.

Notations. In this construction we will use the algorithms in predicated zk-IVsC (with RAM access)
as subroutines, thus we let Ψ.A denote calling algorithm A from the predicated zk-IVsC construction
as a subroutine in this construction. LetM be a RAM machine for relation R with space S, and
running time T (on each input zi = (xi, wi)). DefineM′ to be the same asM except that it takes

32

zi = (xi, wi, y1, y2) as input but does not use y1 and y2 in the computation. Later, we let y1 = psi
and y2 = ri be randomnesses for different PKE schemes.

Construction overview. LetM be a RAM machine for relation R with space S, and running
time T (on each input zk = (xk, wk)). Our starting point is to consider the computation ofM as a
zk-IVsC where the streaming inputs are zk = (xk, wk) and the tuple (hz,Π) is considered as the proof
of computation. While this proof is zero-knowledge, one cannot verify that hz is an honest digest
of z. Our idea is to send a hiding encoding of the witnesses and use the input well-formedness
proof to verify the consistency of hz with such an encoding. There are two caveats in such an
approach: (1) both the encoding of witnesses and encrypted digest of the RAM machine have
to be randomized to satisfy any hiding properties, however, our predicated zk-IVsC only supports
deterministic computation, and the predicates have to be publicly known, and (2) the predicate
proof is sound only at a trapdoor location, thus we have to break the global well-formedness of hz
to a local well-formedness checks. We get around both of these issues using following blueprint:
(1) encrypt the witness and private state (wk, psk) under some randomness rk to get ctk, (2) use
zk-IVsC to prove the computation of a RAM machine M′, and (3) use predicate fk to prove xk

is the correct statement, (wk, psk, rk) is consistent with ctk, and hzk−1
ctin−−→ hzk where ctin is the

encryption of zk’s root under randomness psk. Then the final proof consists of ctk, hzk, and zk-IVsC
computation and predicate proofs.

Building blocks and parameters. Let HT be a hash tree with output root of size λ on
any input, CRHF be a collision resistant Hash : {0, 1}2λ → {0, 1}λ, seBARG be an almost rate-1
seBARG, SEH be an almost rate-1 SEH, NIZK be a NIZK, PKE be a randomness-dependent message
public-key encryption (RDM-PKE), and rrPKE be a rate-1 leakage resilient public-key encryption
with randomness recovery. In addition to predicated zk-IVsC sizes, we let nps be the size of the
randomness ps for the PKE above, nr be the size of the randomness for the rrPKE above, and
n = (nx + nw + nps + nr). Additionally, we let nf be the max size of the function fk from Fig. 8.

Predicate fk
Hardwired: hkht, pk, pk

′, (xk, ctk, hzk−1, hzk)
Input: z = (x,w, ps, r)
Output: 1 if the following hold:

The RAM input is consistent with NIZK statement. Namely, x = xk.

The RAM input is consistent with encrypted witness. PKE.Enc(pk, (w, ps); r) = ctk.

The RAM input is consistent with hzk−1 → hzk transition Namely, (rt, tree) = HT.Hash(hkht, x, w, ps, r),
ctin = PKE.Enc(pk′, rt; ps) and nxt-hz(hkch, hzk−1, ctin) = hzk using Fig. 5.

Figure 8: Description of predicate fk in the ICZK construction.

Construction 4.3. In this construction, we always parse Π = (hz,Πψ,Σψ, ct) and crs = (crsψ, pk),
where we have crsψ = (pk′, hkht, hkch, crszk, crszk,f , (crsbp,ℓ, hkcf,ℓ)ℓ∈[λ], (crsbp,f,ℓ)ℓ∈[log T,λ], pcf1,0).

Setup(1λ, nx, nw)→ crs. This algorithm samples crsψ similar to predicated zk-IVsC (except that
now PKE is RDM-PKE), and (pk, sk)← rrPKE.Gen(1λ), and outputs crs = (crsψ, pk).

Update(crs, xk, wk, stk−1,Πk−1)→ (stk,Πk). This algorithm does the following:

33

1. Parse crs = (crsψ, pk) and Πk−1 = (hzk−1,Πψ,k−1,Σψ,k−1, ctk−1).

2. Encrypt the witness and private state: sample randomness psk, rk, and compute ctk =
rrPKE.Enc(pk, (wk, psk); rk).

3. Update the computation proof for runningM′ on zk = (xk, wk, psk, rk): (stk, hzk,Πψ,k)←
Ψ.Update(crsψ, zk = (xk, wk, psk, rk), stk−1, hzk−1,Πψ,k−1; psk).

4. Get the predicates: find hkht, pk
′ ∈ crsψ; then construct fk using Fig. 8.

5. Update the predicate well-formedness proof w.r.t. fk(zk) = 1: compute (hzk,Σψ,k) ←
Ψ.PredicateUpdate(crsψ, fk, zk, psk, fk−1, hzk−1,Σψ,k−1).

6. Output (stk,Πk = (hzk,Πψ,k,Σψ,k, ctk)).

Verify(crs, x,Π)→ 0/1. This algorithm parses crs = (crsψ, pk), and Π = (hz,Πψ,Σψ, ct). It addi-
tionally parses crsψ to find hkht and pk′, and then construct f using Fig. 8. Finally it checks
Ψ.Verify(crs, (hzK , 1),Πψ) = 1 and Ψ.PredicateVerify(crs, f , hzK ,Σψ) = 1. It outputs 1 if both
checks pass, and 0 otherwise.

4.3 Analysis

Theorem 4.4. Assuming that seBARG is an almost rate-1 seBARG (Definitions 2.6 and 2.8), NIZK
is a secure NIZK protocol (Definition 2.15), PKE is a secure RDM-PKE system (Definitions 2.17
and 2.24), SEH is an almost rate-1 SEH (Definitions 2.2 and 2.4), HT is a hash tree (Definition 2.11),
CRHF is a 2-to-1 collision resistant hash function (Definition 2.10), and rrPKE is a secure rate-1
leakage resilient PKE with randomness recovery (Definitions 2.17 to 2.19 and 2.22), Construc-
tion 4.3 is an ICZK (Definition 4.2) with proof size K|wi| + K · poly(λ, log |x1|, log |w1|, logK) +
poly(λ, log |x1|, |w1|, logK).

Corollary 4.5. Assuming almost rate-1 seBARGs and lossy trapdoor functions, Construction 4.3
is an ICZK.

Corollary 4.6. Assuming either LWE, or DLIN, or sub-exponential DDH, Construction 4.3 is an
ICZK.

Next, we provide an overview of soundness and zero-knowledge of our construction and refer
the reader to Appendix C for a complete analysis of our construction.

Soundness overview. To rely on the soundness of zk-IVsC we need to find (z, ps) s.t. hz is the
honest digest of (z, ps). First, note that x is publicly known. Then, we decrypt all the ciphertexts
ct to find (w, ps); moreover, recall that ct is generated using PKE with randomness recovery, thus,
we can recover r as well. Hence, we can reconstruct zk = (xk, wk, psk, rk). Next, we need to prove
that hz is consistent with z as reconstructed above.

Suppose this doesn’t hold; then there is an index k such that nxt-hz(hzk−1, ctin) ̸= hzk while
hzk−1 = Digest(zk−1, psk−1). Next we guess index k, and prove that the above event cannot happen
if our guess is correct. Namely, if the predicate proof is extractable on k, then there is an input z∗

that satisfies the predicate. By the predicate check, nxt-hz(hzk−1, ct
∗
in) ̸= hzk, where ct

∗
in is computed

from z∗. Now note that the computation of ct∗in (resp. ctink) from z∗ (resp. zk) is deterministic, and
its correctness is checked by the predicate fk. Therefore, all that is left to prove is that zk = z∗. For
this, we crucially rely on the perfect correctness of the PKE that is used to compute ct. Namely,

34

since we check that each predicate input is consistent with ctk, and the choice of such input is
unique by the perfect correctness of PKE, it holds that z∗ is the same as zk.

Incremental zero-knowledge overview. We first recall the main circularity challenges in prov-
ing zero-knowledge of our construction. First, note that the ciphertext ctk is the encryption of
(wk, psk) and its security relies on the randomness of rk, however, rk is used as part of the input zk
everywhere in the zk-IVsC proofs. Moreover, the zero-knowledge of zk-IVsC holds if psk is random
and independent. However, not only there is leakage of psk in ctk, but also the message encrypted
under the randomness psk (which is the hash of zk), depends on psk. Our main observation is that
we can break down these circularities step by step and bound the leakage at every step. Next, we
show how to carefully formulate the hybrids and use the right building blocks to get around such
issues.

H0: This is the original experiment.

H1: Use NIZK simulator to compute crszk, and πzk in Πψ. H0 → H1 relies on zero-knowledge
property of the underlying NIZK. Note that after this step the only information about an
intermediate configurations cfk,t is in epcfk,t, and the only information about the inputs of

M is in (hz, ct,Σψ) and (ctin,k)k∈[K] (that is being used in the statements of Πψ and Σψ).

H2: Use NIZK simulator to compute crszk,f , and πzk,f in Σψ. H1 → H2 also relies on the zero-
knowledge property of the underlying NIZK. Note that after this step there is no information
about inputs (w, ps, r) in the proof except the ones in (hzk, ctk, ctin,k)k∈[K] where hz is con-
structed only using (ctin,k)k∈[K]. Thus, the only information about zk is in ctk and ctin,k.

H3: For every cfk,t (except cf1,0 and cfK,T), compute epcfk,t ← PKE.Enc(pk, 0|pcf|). H2 → H3 relies
on the PKE security. Note that after this step there is no information about the intermediate
configurations in the proof.

H4: For every ctk, independently sample rk and let ctk = rrPKE.Enc(pk, 0nw+|ps|; rk). H3 → H4

relies on the security with leakage of the underlying rrPKE as the only information about
randomness r remained in the proof is in (ctin,k)k∈[K] (that is an encryption of a short digest
of the input zk.). Note that after this step there’s no information about w and ps in the ct.

H5: For every zk, let ctin,k ← PKE.Enc(pk, 0λ). H4 → H5 relies on the RDM security of the
underlying PKE as the only information about randomness ps remained in the proof is in
(ctin,k)k∈[K] (that is the encryption of a short digest of the inputs). Note that after this step
there’s no information about w in the proof and the proof can be simulated using only (x, cf).

5 From IVsC to Deterministic Distributed Computation

We present this section as PCD for deterministic computation, however, we note that our construc-
tions are not true PCD and we modify the network by adding new communication edges.

Distributed Computation. A distributed computation is a tuple S = (G, data, linp,C) where
G denotes the graph of computation, data denotes the data that is transferred over the edges, linp
denotes the local input of any user/vertex, and C denotes a compliance function for the inputs and
output of any node. More formally we define a distributed computation as follows:

• G = (V,E).

35

• D = Diameter(G).

• V = {vdi } where d ∈ D and i ∈ [2d−1].

• E = {(vd+1
j , vdi)}j∈[2(i−1)+1,2·i],d∈[D−1].

• datainp(v
d
i) = (data(v, vdi))v s.t. (v, vdi) ∈ E.

• dataout(v
d
i) = data(vdi , v) where (vdi , v) ∈ E.

• C(datainp(v), linp(v), dataout(v)) = 1 for all v ∈ V .

Proof Carrying Data (PCD) Systems. PCD systems are usually defined for non-deterministic
computations where the security is w.r.t. a knowledge extractor. However, IVsC is defined for
deterministic computation. Therefore, for applications of IVsC to PCD we define PCD for deter-
ministic computations where we assume that the compliance functions C for each set of node inputs
(datainp(v), linp(v)) outputs 1 only for a unique node output dataout(v). Moreover, this output can
be computed using a RAMmachine, i.e., there exists a RAMmachineR s.t. R(datainp(v), linp(v)) =
dataout(v). For the rest of this section by PCD we refer to PCD for deterministic computation.

Definition 5.1 (PCD for Deterministic Computation). A PCD system Π = (Gen,Prove,Verify) for
a deterministic compliance function C consists of the following algorithms:

• Gen(1λ)→ crs

• Prove(crs, linp(v), datainp(v), πinp(v))→ (dataout(v), πout(v)).

• Verify(crs, G, (linp(v))v∈V , dataout(v
∗), πout(v

∗))→ {0, 1}.

Where v∗ is the sink of the graph. Note that the Prove algorithm is defined for a single vertex,
and we define the GlobalProve(crs, G, (linp(v))v∈V) → (dataout(v

∗), πout(v
∗)) inductively by writing

down a topological order of the graph and running the Prove algorithm for each of the vertices in
order.

Completeness. For any λ ∈ N it holds that:

Pr

[
Verify(crs, X) = 1 :

(dataout(v
∗), πout(v

∗))←
GlobalProve(crs, G, (linp(v))v∈V)

]
= 1

where crs← Gen(1λ), and X = (G, (linp(v))v∈V , dataout(v
∗), πout(v

∗)).

Soundness. For any PPT stateful admissible adversary A there exists a negligible function
negl(·) such that for every λ ∈ N,

Pr

[
Verify(crs, G, (linp(v))v∈V , out, π) = 1,
∧ out ̸= dataout(v

∗)
:

(G)← A(1λ), crs← Gen(1λ),
((linp(v))v∈V , out, π)← A(crs)

]
≤ negl(λ).

Remark 5.2 (From IVsC to Linear PCD). Note that our construction of IVsC (i.e., consider
Construction 3.4 without zero-knowledge proofs and properties) implies a PCD for a deterministic
computation on a path graph. More specifically, we can use (Gen,Update,Verify) of an IVsC as

36

(Gen,Prove,Verify) in a PCD for path graphs. Note that we can consider a RAM machine R with
fixed input size n, max configuration size S, and running time T that computes the compliant
function C. Then we can instantiate an IVsC using these parameters and let the PCD algorithms be
the same as the IVsC algorithms. Note that the way we analyze our construction it is only secure
against adversaries that output 1N ·T , therefore our PCD constructions from IVsC are also secure
only if the adversary outputs the running time of the computation in unary. Additionally, note
that our construction achieves a stronger security notion w.r.t. a verifier that only takes a digest of
the local inputs. This implies the notion of PCD for path graphs and also enables us to strengthen
this notion correspondingly.

In the following, we discuss the set of distributed computations for which we can generate a
PCD using our results on IVsC.

5.1 Binary Tree to Path Distributed Computation

Here we show how to transform a depth-D binary tree distributed computation into a Path com-
putation with a succinct amount of data (a D overhead on the original data size) carried over
the edges. Hence, given a PCD scheme for a path distributed computation, we can generate a
PCD scheme for a depth-D (with an acceptable D, say poly(λ) at most) binary tree distributed
computation.

Construction 5.3. Given S = (G, data, linp,C) construct S′ = (G′, data′, linp,C′) as follows:

1. G′ = (V,E′).

2. E′ = E1 ∪ E2 ∪ E3 where

• E1 = {(vD2i−1, v
D
2i)}i∈[2d−2].

• E2 = {(vd+1
2i , vdi)}d∈[D−1],i∈[2d−1].

• E3 = {(vd2i−1, v
D
(2i−1)(2D−d)+1

)}d∈[D−1],i∈[2d−2].

3. linp′(vdi) = linp(vdi).

4. Let data′out(v) = (data1out(v), . . . , data
D
out(v)) and data′inp(v) = (data1inp(v), . . . , data

D
inp(v)) be as

follows:

• Let data′inp(v
D
1) = ϵ, and for (d, i) ̸= (D, 1), (vd

′
i′ , v

d
i) ∈ E′, let data′inp(v

d
i) = data′out(v

d′
i′).

• For any edge (vD2i−1, v
D
2i) ∈ E1, let data

′
out(v

D
2i−1) = data′inp(v

D
2i−1) and append dataout(v

D
2i−1)

to dataDout(v
D
2i−1) where C(ϵ, linp(vD2i−1), dataout(v

D
2i−1)) = 1.

• For any edge (vd+1
2i , vdi) ∈ E2, let data

′
out(v

d+1
2i) = data′inp(v

d+1
2i), datad+2

out (v
d+1
2i) = ϵ, and

append dataout(v
d+1
2i) to datad+1

out (v
d+1
2i) where C(datad+2

inp (vd+1
2i), linp(vd+1

2i), dataout(v
d+1
2i)) =

1.

• For any edge (vd2i−1, v
D
(2i−1)(2D−d)+1

) ∈ E3, let data
′
out(v

d
2i−1) = ϵ and append dataout(v

d
2i−1)

to datadout(v
d
2i−1) where C(datad+1

inp (vd2i−1), linp(v
d
2i−1), dataout(v

d
2i−1)) = 1.

5. C′(data′inp(v), linp(v), data
′
out(v)) = 1 for all v ∈ V .

37

Correctness. From the construction it is clear that for any v ∈ V , datainp(v) ⊆ data′inp(v),
therefore, user v has all the data it needs to perform its computation. Additionally, it is clear
from the construction of S′ that every v has exactly one input and output data, so it is a path
computation.

Succinctness. Let max(v,v′)∈E |data(v, v′)| = SPCD, then for any user/vertex v ∈ V , we have:

|datainp| = D · SPCD since for any d ∈ D (except one at most), datadinp(v) includes one data at most.

Figure 9: Example of Construction 5.3 for a depth 4 tree where md
i = dataout(v

d
i) in

the original distributed computation. Here E′ and dataout(v
d
i) are determined by red.

5.2 Class of Succinctly Transformable Distributed Computations to a Path

Here we generalize the approach in the previous subsection and discuss a bigger class of distributed
computations that can be transformed into a path distributed computation. First note that the
main challenge in such a transformation is to keep a succinct set of all the data that is needed to
do the rest of the computation. More specifically, in this approach, we have to find a topological
order of a directed graph such that at any point in the order, the amount of data that needs to be
kept to do the rest of the computation is succinct. We can transform any graph G for which such
a topological order exists, to a path of computation with a succinct amount of data carried over
the edges.

More formally, let (v1, . . . , vN) be a topological order of a graph G. Denote L to be a labeling
function such that if the computation for vi is done then L(vi) = 1, and otherwise L(vi) = 0. Define
a node vi to be open, O(vi) = 1, if L(vi) = 1 and L(vj) = 0 where (vi, vj) ∈ E. Suppose we start the
computation from v1 and stop right after some arbitrary point vi. Define the set of open nodes as
follows Oi = {vj | O(vj) = 1}. Now note that at any point vi, we only need to keep dataout for the
open nodes. This is because if a node vk is not open either (1) L(vk) = 0 hence dataout(vk) hasn’t

38

been computed yet, or (2) L(vk) = 1 and L(vk′) = 1 where (vk, vk′) ∈ E, therefore, dataout(vk) is
already used as part of datainp(vk′) and it will not be used elsewhere, so we don’t need to keep it.
Putting this all together means that if for a graph G, there exists a topological order (v1, . . . , vN)
such that |Oi| = poly(λ) for any i ∈ [N], then there exists a transformation from S = (G, . . .) to a
linear distributed computation with a succinct amount of data carried over the edges.

Zero-Knowledge for Distributed Computation. We call a graph good if it is succinctly
transformable to a path. Defining zero-knowledge for these graphs is a challenging task let alone
constructing a zero-knowledge PCD for these graphs. Here we informally discuss a high-level idea
to achieve zero-knowledge and then analyze the kind of zero-knowledge that it potentially achieves.
After transforming a graph into a path, we generate a pair of public and secret keys of an FHE
encryption system for the sink node and publish the public key. Then every user encrypts its local
input under that public key and the computation is defined as a homomorphic computation over
the inputs. This approach achieves zero-knowledge for the inputs for every user against all the
other users except the sink user. Note that the same approach can be taken to achieve privacy in a
path graph as well but our construction has two advantages over this. First, it is based on simpler
assumptions than FHE. Second, the sink user learns nothing about the other users’ inputs other
than the last configuration of the machine.

Now if the sink user of a good graph is not predetermined, e.g., the graph is still evolving and
more users are joining, then we can use the same idea with a leveled set of public and secret keys,
where every user has a pair of secret and public keys, and the public keys are published. The first
user starts by encrypting its message under its parent’s public key and performs the homomorphic
computation and sends the result to the next user. Every user upon receiving an input has two
choices, either (1) the computation is done under some other user’s public key, in which case the
user will continue the computation under the same public key, or (2) the computation is done
under that user’s public key, in which case it uses its secret key to decrypt the computation, then
encrypts the computation using its parent’s public key and performs the rest of the computation
homomorphically under that public key. This approach achieves zero-knowledge for inputs for user
v against any user v′ if there is no path from v to v′ in the graph.

We leave the formalization and constructions of zero-knowledge PCD for general good graphs
(and without FHE) as an interesting open problem.

6 Benefits and Applications

The streaming scenario. In many modern applications, the data for computation might not
be available all at once, or it could be in an ongoing process of generation. Additionally, datasets
are often too large and it is difficult to store the entire data simultaneously, or with a single data
processor. E.g., consider a cloud service provider running an ML process on a massive dataset
collected by a trusted agency such as the National Institute of Health (NIH). The data could be
a large corpus of sensitive patient data from many different sources (e.g., healthcare providers,
research facilities, etc), where the data is signed by each contributing source. The question is how
can we verify that the clour provider trained the model correctly?

NIH might ask the cloud provider to use IVC, but this would require the training data to be
fixed at the beginning. Therefore, if new data arrives (e.g., new routine blood sample results),
then the cloud provider has to restart the IVC computation. Also, if the ML algorithm is itself a

39

streaming algorithm (e.g., reinforcement learning), then the cloud cannot take advantage of this.
Furthermore, the proof might leak information about the sensitive data, thus cannot be shared
with third-party clients (e.g., an insurance provider, or research lab) who are not authorized to
look at the entire data but only the parameters of the trained ML model.

One could consider many more such applications (e.g., online video-processing of traffic-videos/user-
videos by National Highway Institute/Youtube, etc). We believe that IVsC protocols will be a very
valuable tool for all such applications. A cloud provider can create incremental proofs over stream-
ing (sensitive) data. Moreover, as long as there is a publicly checkable predicate associated with
the data (e.g., every medical record is signed by a trusted entity), then the proof can be verified
without the entire dataset, but just the additional predicated proof. Thus, it will solve: (a) the
streaming problem, and (b) data privacy problem.
Step-by-step zero-knowledge. Similarly, the notion of step-by-step zero-knowledge could be
a great addition to practical deployments of proof systems. For instance, consider any sensitive
computation performed by one user/device, or even multiple. A popular threat in many deployed
cryptographic systems is of total system corruption. Unfortunately, standard zero-knowledge com-
pletely fails in such settings. However, step-by-step zero-knowledge offers a new approach for
capturing such practical threats by defining a best-possible zero-knowledge property. E.g., consider
any application where a user wants to prove that it correctly computed a PRF on a public input
x. That is, it wants to prove y = FK(x), where K is the user’s secret. Such proofs of PRF evalu-
ations routinely occur in many blockchain applications (e.g., for leader election in proof-of-stake)
or anonymous credentials/ blind signatures (for generating blinded credentials/signatures). Using
a step-by-step ZK protocol, we can prove that the user’s PRF key K will never be fully compro-
mised even an attacker gets a hold of their system during the proof generation process. Basically,
if one use GGM-style PRFs [GGM86], then after each computation step, the user can delete the
PRG seed after it correctly expands it (depending upon the next input bit). This merely sketches
how step-by-step ZK could go beyond conventional zero-knowledge formulations to provide better
protections, and we believe further exploration would be quite meaningful for applications.

Acknowledgments. We would like to thank Elahe Sadeghi and Saikumar Yadugiri for their
valuable suggestions and assistance in refining the content of this paper. We also thank anonymous
reviewers for valuable feedback. Their inputs greatly improved the clarity and presentation of the
ideas discussed.

References

[ADKL19] Prabhanjan Ananth, Apoorvaa Deshpande, Yael Tauman Kalai, and Anna Lysyan-
skaya. Fully homomorphic nizk and niwi proofs. In Theory of Cryptography Confer-
ence, pages 356–385. Springer, 2019.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and
Greg Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In
2018 IEEE symposium on security and privacy (SP), pages 315–334. IEEE, 2018.

[BC23] Benedikt Bünz and Binyi Chen. Protostar: Generic efficient accumulation/folding for
special sound protocols. Cryptology ePrint Archive, 2023.

40

[BC24] Dan Boneh and Binyi Chen. Latticefold: A lattice-based folding scheme and its ap-
plications to succinct proof systems. Cryptology ePrint Archive, 2024.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive compo-
sition and bootstrapping for snarks and proof-carrying data. In Proceedings of the
forty-fifth annual ACM symposium on Theory of computing, pages 111–120, 2013.

[BCL+21] Benedikt Bünz, Alessandro Chiesa, William Lin, Pratyush Mishra, and Nicholas
Spooner. Proof-carrying data without succinct arguments. In Advances in Cryptology–
CRYPTO 2021: 41st Annual International Cryptology Conference, CRYPTO 2021,
Virtual Event, August 16–20, 2021, Proceedings, Part I 41, pages 681–710. Springer,
2021.

[BCMS20] Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra, and Nicholas Spooner. Proof-
carrying data from accumulation schemes. Cryptology ePrint Archive, 2020.

[BCPT13] Eleanor Birrell, Kai-Min Chung, Rafael Pass, and Sidharth Telang. Randomness-
dependent message security. In Theory of Cryptography: 10th Theory of Cryptography
Conference, TCC 2013, Tokyo, Japan, March 3-6, 2013. Proceedings, pages 700–720.
Springer, 2013.

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero
knowledge via cycles of elliptic curves. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part II, volume 8617 of LNCS, pages 276–294. Springer, Heidelberg,
August 2014.

[BDFG21] Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. Halo infinite: Proof-
carrying data from additive polynomial commitments. In Advances in Cryptology–
CRYPTO 2021: 41st Annual International Cryptology Conference, CRYPTO 2021,
Virtual Event, August 16–20, 2021, Proceedings, Part I 41, pages 649–680. Springer,
2021.

[BGH19] Sean Bowe, Jack Grigg, and Daira Hopwood. Recursive proof composition without a
trusted setup. Cryptology ePrint Archive, 2019.

[BKP+23] Nir Bitansky, Chethan Kamath, Omer Paneth, Ron Rothblum, and Prashant Nalini
Vasudevan. Batch proofs are statistically hiding. Cryptology ePrint Archive, 2023.

[BMNW24] Benedikt Bünz, Pratyush Mishra, Wilson Nguyen, and William Wang. Accumulation
without homomorphism. Cryptology ePrint Archive, 2024.

[BMRS20] Joseph Bonneau, Izaak Meckler, Vanishree Rao, and Evan Shapiro. Coda: Decentral-
ized cryptocurrency at scale. Cryptology ePrint Archive, 2020.

[BR94] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In Dou-
glas R. Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages 232–249. Springer,
Heidelberg, August 1994.

[BSCTV17] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero
knowledge via cycles of elliptic curves. Algorithmica, 79:1102–1160, 2017.

41

[But22] Vitalik Buterin. The different types of zk-evms. https://vitalik.eth.limo/

general/2022/08/04/zkevm.html, 2022.

[BWW23] Eli Bradley, Brent Waters, and David J Wu. Batch arguments to nizks from one-way
functions. Cryptology ePrint Archive, 2023.

[CCDW20] Weikeng Chen, Alessandro Chiesa, Emma Dauterman, and Nicholas PWard. Reducing
participation costs via incremental verification for ledger systems. Cryptology ePrint
Archive, 2020.

[CCG+23] Megan Chen, Alessandro Chiesa, Tom Gur, Jack O’Connor, and Nicholas Spooner.
Proof-carrying data from arithmetized random oracles. In Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, pages 379–404.
Springer, 2023.

[CCS22] Megan Chen, Alessandro Chiesa, and Nicholas Spooner. On succinct non-interactive
arguments in relativized worlds. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 336–366. Springer, 2022.

[CG] Jiaqi Cheng and Rishab Goyal. Personal communication.

[CGSY24] Alessandro Chiesa, Ziyi Guan, Shahar Samocha, and Eylon Yogev. Security bounds
for proof-carrying data from straightline extractors. In Theory of Cryptography Con-
ference, pages 464–496. Springer, 2024.

[CJJ21] Arka Rai Choudhuri, Abhihsek Jain, and Zhengzhong Jin. Snargs for P from LWE. In
2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS),
pages 68–79. IEEE, 2021.

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum
and transparent recursive proofs from holography. In Advances in Cryptology–
EUROCRYPT 2020: 39th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Zagreb, Croatia, May 10–14, 2020, Proceedings,
Part I 39, pages 769–793. Springer, 2020.

[CT10] Alessandro Chiesa and Eran Tromer. Proof-carrying data and hearsay arguments from
signature cards. In ICS, volume 10, pages 310–331, 2010.

[CTV13] Stephen Chong, Eran Tromer, and Jeffrey A Vaughan. Enforcing language semantics
using proof-carrying data. Cryptology ePrint Archive, 2013.

[CTV15] Alessandro Chiesa, Eran Tromer, and Madars Virza. Cluster computing in zero knowl-
edge. In Advances in Cryptology-EUROCRYPT 2015: 34th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria,
April 26-30, 2015, Proceedings, Part II 34, pages 371–403. Springer, 2015.

[CW23] Jeffrey Champion and David J Wu. Non-interactive zero-knowledge from non-
interactive batch arguments. Cryptology ePrint Archive, 2023.

42

https://vitalik.eth.limo/general/2022/08/04/zkevm.html
https://vitalik.eth.limo/general/2022/08/04/zkevm.html

[CY21] Alessandro Chiesa and Eylon Yogev. Subquadratic snargs in the random oracle model.
In Advances in Cryptology–CRYPTO 2021: 41st Annual International Cryptology
Conference, CRYPTO 2021, Virtual Event, August 16–20, 2021, Proceedings, Part
I 41, pages 711–741. Springer, 2021.

[DGKV22] Lalita Devadas, Rishab Goyal, Yael Kalai, and Vinod Vaikuntanathan. Rate-1 non-
interactive arguments for batch-np and applications. In 2022 IEEE 63rd Annual Sym-
posium on Foundations of Computer Science (FOCS), pages 1057–1068. IEEE, 2022.

[FGK+10] David Mandell Freeman, Oded Goldreich, Eike Kiltz, Alon Rosen, and Gil Segev.
More constructions of lossy and correlation-secure trapdoor functions. In Public Key
Cryptography–PKC 2010: 13th International Conference on Practice and Theory in
Public Key Cryptography, Paris, France, May 26-28, 2010. Proceedings 13, pages 279–
295. Springer, 2010.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions. Journal of the ACM (JACM), 33(4):792–807, 1986.

[GHMR18] Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, and Ahmadreza
Rahimi. Registration-based encryption: removing private-key generator from ibe. In
Theory of Cryptography: 16th International Conference, TCC 2018, Panaji, India,
November 11–14, 2018, Proceedings, Part I 16, pages 689–718. Springer, 2018.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. How to run turing machines on encrypted data. In Ran Canetti
and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages
536–553. Springer, Heidelberg, August 2013.

[GV20] Rishab Goyal and Satyanarayana Vusirikala. Verifiable registration-based encryption.
In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part I, volume
12170 of LNCS, pages 621–651. Springer, Heidelberg, August 2020.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from
all falsifiable assumptions. In Proceedings of the forty-third annual ACM symposium
on Theory of computing, pages 99–108, 2011.

[HN23] Mathias Hall-Andersen and Jesper Buus Nielsen. On valiant’s conjecture: impossibility
of incrementally verifiable computation from random oracles. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages 438–
469. Springer, 2023.

[HW15] Pavel Hubacek and Daniel Wichs. On the communication complexity of secure function
evaluation with long output. In Proceedings of the 2015 Conference on Innovations in
Theoretical Computer Science, pages 163–172, 2015.

[KB23] Assimakis Kattis and Joseph Bonneau. Proof of necessary work: succinct state verifica-
tion with fairness guarantees. In International Conference on Financial Cryptography
and Data Security, pages 18–35. Springer, 2023.

43

[KLVW23] Yael Kalai, Alex Lombardi, Vinod Vaikuntanathan, and Daniel Wichs. Boosting batch
arguments and ram delegation. In Proceedings of the 55th Annual ACM Symposium
on Theory of Computing, pages 1545–1552, 2023.

[KRR14] Yael Tauman Kalai, Ran Raz, and Ron D Rothblum. How to delegate computations:
the power of no-signaling proofs. In Proceedings of the forty-sixth annual ACM sym-
posium on Theory of computing, pages 485–494, 2014.

[KS22] Abhiram Kothapalli and Srinath Setty. Supernova: Proving universal machine execu-
tions without universal circuits. Cryptology ePrint Archive, 2022.

[KST22] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. Nova: Recursive zero-
knowledge arguments from folding schemes. In Annual International Cryptology Con-
ference, pages 359–388. Springer, 2022.

[Mer87] Ralph C Merkle. A digital signature based on a conventional encryption function. In
Conference on the theory and application of cryptographic techniques, pages 369–378.
Springer, 1987.

[Min17] O(1) labs. mina cryptocurrency. https://minaprotocol.com/, 2017.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In Annual International
Cryptology Conference, pages 96–109. Springer, 2003.

[NT16] Assa Naveh and Eran Tromer. Photoproof: Cryptographic image authentication for
any set of permissible transformations. In 2016 IEEE Symposium on Security and
Privacy (SP), pages 255–271. IEEE, 2016.

[OPWW15] Tatsuaki Okamoto, Krzysztof Pietrzak, Brent Waters, and Daniel Wichs. New real-
izations of somewhere statistically binding hashing and positional accumulators. In
Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015, Part I, volume 9452 of
LNCS, pages 121–145. Springer, Heidelberg, November / December 2015.

[PP22] Omer Paneth and Rafael Pass. Incrementally verifiable computation via rate-1 batch
arguments. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Sci-
ence (FOCS), pages 1045–1056. IEEE, 2022.

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In
Proceedings of the fortieth annual ACM symposium on Theory of computing, pages
187–196, 2008.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In Theory of Cryptography: Fifth Theory of Cryptography Con-
ference, TCC 2008, New York, USA, March 19-21, 2008. Proceedings 5, pages 1–18.
Springer, 2008.

[XZC+22] Tiancheng Xie, Jiaheng Zhang, Zerui Cheng, Fan Zhang, Yupeng Zhang, Yongzheng
Jia, Dan Boneh, and Dawn Song. zkbridge: Trustless cross-chain bridges made prac-
tical. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 3003–3017, 2022.

44

https://minaprotocol.com/

[ZGSX23] Tianyu Zheng, Shang Gao, Yubo Song, and Bin Xiao. Leaking arbitrarily many secrets:
Any-out-of-many proofs and applications to ringct protocols. In 2023 IEEE Symposium
on Security and Privacy (SP), pages 2533–2550. IEEE, 2023.

A zk-IVsC Complete Analysis.

Proof of Theorem 3.5. We prove completeness, efficiency, strong soundness, and zero-knowledge
properties of our construction.

Completeness. The completeness follows by the construction and the completeness of the un-
derlying seBARG, NIZK, PKE, H, HT and SEH.

Efficiency. Recall that we are applying almost rate-1 SEH, and almost rate-1 seBARG. Moreover,
note that the size of a ciphertext only grows polynomially with the message size and the size of a
NIZK proof only grows polynomially with the size witness size and the statement size. Hence the
size of each proof πi is computed as follows (where c and c′ are constants):

• |πout| = poly(λ, logS, nout), and |epcf|, |pcf|, |π0| = poly(λ, logS, log n).

• |π1| = 2ncf,0 + (1 + c/λ)|π0|+ poly(λ) ≤ (1 + c/λ) · poly(λ, logS, log n)

• For ℓ ≤ log T −1, |πℓ| = (1+ c′/λ)ncf,ℓ−1+2|ρ|+(1+ c/λ)|πℓ−1|+poly(λ) ≤ (1+(c+ c′)/λ)ℓ ·
poly(λ, logS, log n, ℓ).

• For log(T ·K) ≥ ℓ ≥ log T , |πℓ| = (1 + c′/λ)ncf,ℓ−1 + 2|ρ|+ 2λ+ (1 + c/λ)|πℓ−1|+ poly(λ) ≤
(1 + (c+ c′)/λ)ℓ · poly(λ, logS, log n, ℓ) ≤ ec+c

′ · poly(λ, logS, log n, ℓ).

Therefore it holds that |Π| = poly(λ, logS, log n, log T, logK). Note that here we consider RAM
machines with polynomially bounded outputs. If the output size nout grows larger (say, grows
with S), we slightly modify the construction so that the proof size does not grow with nout (see
Section 3.4).

By the same argument since verifier only checks seBARG proofs and SEH path openings va-
lidity, and since the verification circuit size for BARGs at the base level (which grows with the
NIZK verification size which in turn grows with the size of is-nxt-cnfgM and with encryption) is
poly(λ, logS, log n, nout), the verifier’s running time grows with poly(λ, logS, log n, log T, logK).

The setup running time grows with the batch argument, the NIZK and SEH setup run-
ning time, and the pseudo-configuration computation time. The first three grow at most with
poly(λ, logS, log n, ℓ) for ℓ ≤ λ, thus the total running time of the crs and hk generations is
poly(λ, logS, log n). For pseudo-configuration computation, the size of the work tape can be large,
but since it is initialized to all zeros, the pseudo-configuration computation can be done efficiently by
taking advantage of the symmetric structure of the computation when run on all zeros input. Thus,
we only need an order of tree-depth steps to compute the root, and hence the pseudo-configuration
computation time is poly(λ, logS) making the total running time of the setup poly(λ, logS, log n).
With the same argument, the crs size is poly(λ, logS, log n).

Finally, assuming RAM access to the memory (in the underlined parts in the construction) that
includes the entire tree of the input and configurations, one can generate reading and writing open-
ings by only reading the path from root to leaf of the tree. Now since each element on the path is

45

poly(λ)-size and the path length is logarithmic in n and S, the total running time of a single reading
or writing generation is poly(λ, logS, log n). Thus, the running time of a single step of update only
grows with poly(λ, logS, log n, log T, log k, nout). Hence, the running time of the update grows with
T single steps plus the hash tree computation of the beginning and input digests. Therefore, the to-
tal running time of Update grows with poly(λ, n)+poly(λ, S)+T ·poly(λ, logS, log n, log T, log k, nout).

Strong Soundness. Define the original experiment exporig and the event Bad as follows:

exporig :=

 (n, S, T)← A(1λ),
crs← Gen(1λ, n, S, T),

(hz, (out(b),Π(b))b∈{0,1}, 1
K·T)← A(crs)

 ,

Bad :=

 Verify(crs, (hz, out(0)),Π(0)) = 1 ∧
Verify(crs, (hz, out(1)),Π(1)) = 1 ∧
out(0) ̸= out(1)

 .

Our goal is to prove that for any stateful PPT adversary A and any λ ∈ N,

Pr
[
Bad : exporig

]
≤ negl(λ).

Notation. For t = T , we define (k, t, t+1) := (k+1, 0, 1) (e.g., (cfk,t, cfk,t+1) := (cfk+1,0, cfk+1,1)).

Let pcf
(b)
k,t (resp. epcf

(b)
k,t) be the pseudo-configuration (resp. encrypted pseudo-configuration) of tth

configuration on the kth input in the proof Π(b) for b ∈ {0, 1}. Furthermore, let Genα,β be a
generation algorithm with respect to α, β, where the NIZK extractor (instead of NIZK setup) is
used to generate crszk, i.e. (crszk, tdzk) ← NIZK.E(1λ, 1nzk,x , 1nzk,w), and let Genα,β in addition to
the crs output td = (tdbp, tdcf , tdzk, sk) (where tdbp = (tdbp,ℓ)ℓ∈[λ] and tdcf = (tdcf,ℓ)ℓ∈[λ]). Define
depth(·) for a hash value v (resp. a proof π∗) be ℓ if hkcf,ℓ (resp. crsbp,ℓ) is used to generate that
value. For any hash value v of depth 0 let v = (epcf1, epcf2), then we denote by v[b] = epcfb. We
say α or β corresponds to (k, t− 1, t) if it indicates the unique path to v∗ = (epcfk,t−1, epcfk,t) from
a root of depth λ (a complete tree). Additionally, define the following extraction algorithms:

• Extractcf(td,Π
(b))→ (epcf

(b)
k,t−1, epcf

(b)
k,t). It finds (k, t− 1, t) corresponding to α (w.l.o.g. tdcf,ℓ

includes α[ℓ] for all ℓ ∈ [λ]). Then locates v
(b)
d ∈ Π(b) (where d = depth(vd)) such that it

includes (pcfk,t−1, pcfk,t). Then recursively uses v
(b)
ℓ−1 = SEH.Extract(td, v

(b)
ℓ) for ℓ ∈ [d] to

find (epcf
(b)
k,t−1, epcf

(b)
k,t). Since this algorithm only uses v(b) ∈ π

(b)
ℓ ∈ Π(b), we can w.l.o.g. let

Extractcf(td,Π
(b)) ≡ Extractcf(td, π

(b)
ℓ) ≡ Extractcf(td, v

(b)).

• Extractbp(td,Π
(b)) → w(b). It finds (k, t − 1, t) corresponding to β, then locates π

(b)
ℓ =

(v(b), ρ
(b)
1 , ρ

(b)
2 , h(b), π̂(b)) ∈ Π(b) such that it includes a proof for (pcfk,t−1, pcfk,t). Then it com-

putes w(b) ← seBARG.E(tdbp,ℓ, (h(b), v(b), j)j∈[2], π̂(b)). Since this algorithm only uses π̂(b) ∈
π
(b)
ℓ ∈ Π(b), we can w.l.o.g. let Extractbp(td,Π

(b)) ≡ Extractbp(td, π
(b)
ℓ) ≡ Extractbp(td, π̂

(b)).

• Extractr(td,Π
(b))→ (epcf

(b)
r). It finds (k, t, t+1) corresponding to β. Let the path to (k, t, t+1)

be (1, · · · , 1, 2, β[j + 1], · · · , β[λ]) for some j ∈ [λ] (number of 1’s at the beginning can be
0). In words this algorithm extracts using batch proofs until finding a proof at level j and

46

its witness, then it uses path opening from right to find an encrypted pseudo-configuration

epcf
(b)
r corresponding to cfk,t.

Formally, Extractr finds a proof π
(b)
ℓ = (v(b), ρ

(b)
1 , ρ

(b)
2 , h(b), π̂(b)) ∈ Π(b) such that it contains a

poof for (pcfk,t, pcfk,t+1). Now find epcf
(b)
r as follows:

– If (k, t) is the leftmost config in the tree with root v(b) (e.g., ℓ < j), then let ρ
(b)
1 =

((v
(b)
0,1, v

(b)
0,2), . . . , (v

(b)
ℓ−1,1, v

(b)
ℓ−1,2)), v

(b)
0,1 = (epcf

(b)
r , epcf ′).

– Otherwise, it holds that ℓ ≥ j, then recursively use seBARG.Extract(tdbp,d, (x
(b)
d,1, x

(b)
d,2)) =

w
(b)
d for d ∈ [j, ℓ] where x

(b)
d,i = (h̃

(b)
d , ṽ

(b)
d , i) for i ∈ [2] constructed as follows, (1)

(h̃
(b)
ℓ , ṽ

(b)
ℓ) = (v(b), h(b)), (2) find (ṽ

(b)
d−1,1, ṽ

(b)
d−1,2) ∈ w

(b)
d and let ṽ

(b)
d−1 = ṽ

(b)
d−1,β[d], and (3) if

d < log T let h̃
(b)
d−1 = h̃

(b)
d , otherwise Find (h̃

(b)
d−1,1, h̃

(b)
d−1,2) ∈ w

(b)
d and let h̃

(b)
d−1 = h̃

(b)
d−1,β[d].

Finally find (ṽ
(b)
j−1,2, ρ̃

(b)
j−1,2) ∈ w

(b)
j and do the following, (1) if j = 1 then let ṽ

(b)
j−1,2 =

(epcf
(b)
r , epcf ′), (2) otherwise let ρ

(b)
j−1,2 = ((v

(b)
0,1, v

(b)
0,2), . . . , (v

(b)
j−2,1, v

(b)
j−2,2)), and v

(b)
0,1 =

(epcf
(b)
r , epcf ′).

• Extractl(td,Π
(b)) → (epcf

(b)
l). This is similar to Extractr except that in the end it uses path

opening from left to find an encrypted pseudo-configuration epcf
(b)
l . Namely, it finds (k, t, t+1)

corresponding to β. Let the path to (k, t, t + 1) be (1, · · · , 1, 2, β[j + 1], · · · , β[λ]) for some
j ∈ [λ] (number of 1’s at the beginning can be 0).

Formally, Extractl finds a proof π
(b)
ℓ = (v(b), ρ

(b)
1 , ρ

(b)
2 , h(b), π̂(b)) ∈ Π(b) such that it contains a

poof for (pcfk,t−1, pcfk,t). Now find epcf
(b)
l as follows:

– If (k, t) is the rightmost config in the tree with root v(b) (e.g., ℓ < j), then let ρ
(b)
2 =

((v
(b)
0,1, v

(b)
0,2), . . . , (v

(b)
ℓ−1,1, v

(b)
ℓ−1,2)), v

(b)
0,2 = (epcf ′, epcf

(b)
l).

– Otherwise similar to Extractr find w
(b)
j . Finally find (ṽ

(b)
j−1,1, ρ̃

(b)
j−1,1) ∈ w

(b)
j and do the

following, (1) if j = 1 then let ṽ
(b)
j−1,1 = (epcf ′, epcf

(b)
l), (2) otherwise let ρ

(b)
j−1,1 =

((v
(b)
0,1, v

(b)
0,2), . . . , (v

(b)
j−2,1, v

(b)
j−2,2)), v

(b)
0,2 = (epcf ′, epcf

(b)
l).

For any stateful PPT adversary A and any λ ∈ N define the experiment expα,β (where α

47

corresponds to (k, t− 1, t)) as follows:

expα,β :=



n, S, T ← A(1λ),
(crs, td)← Genα,β(1

λ, n, S, T),

(hz, (out(0),Π(0)), (out(1),Π(1)), 1N ·T)← A(crs),
(epcf

(b)
k,t−1, epcf

(b)
k,t)← Extractcf(td,Π

(b)) for b ∈ {0, 1},
pcf

(b)
k,t−b′ = PKE.Dec(sk, epcf

(b)
k,t−b′) for b, b

′ ∈ {0, 1},
w(b) ← Extractbp(td,Π

(b)) for b ∈ {0, 1},
epcf

(b)
r ← Extractr(td,Π

(b)) for b ∈ {0, 1},
pcf

(b)
r = PKE.Dec(sk, epcf

(b)
r) for b ∈ {0, 1},

epcf
(b)
l ← Extractl(td,Π

(b)) for b ∈ {0, 1},
pcf

(b)
l = PKE.Dec(sk, epcf

(b)
l) for b ∈ {0, 1}


Note that if α = β = 1λ, then expα,β is the same as the strong soundness experiment except

that the setup algorithm uses NIZK extractor to generate crszk and the experiment performs some
additional computations on A’s output.

We define the following hybrids.

H0: This is the original experiment.

Hk,t,1: This is expα,β where α and β correspond to (k, t− 1, t).

Hk,t,2: This is expα,β where α corresponds to (k, t− 1, t), and β corresponds to (k, t, t+ 1).

Hk,t,3: This is expα,β where α and β correspond to (k, t, t + 1). Note that this hybrid is equal to
Hk,t+1,1 (or Hk+1,1,1 if t = T).

If proofs Π(0) and Π(1) verify, we prove the followings hold except with a negligible probability:

• (Claim A.1) For any adversary A the probability that out(0) ̸= out(1) in H0 and H1,1,1 is
negligibly close (henceforth, our goal is to prove Pr[Bad : expα,β] ≤ negl(λ)).

• (Claim A.2) In hybrid H1,1,1 pcf
(0)
1,0 = pcf

(1)
1,0.

• (Claim A.3) In hybrid Hk,t,1 if pcf
(0)
k,t−1 = pcf

(1)
k,t−1 then pcf

(0)
k,t = pcf

(1)
k,t .

• (Claim A.4) Hk,t,1 and Hk,t,2 are indistinguishable.

• (Claim A.5) Hk,t,2 and Hk,t,3 are indistinguishable.

• (Claim A.6) In hybrid HN,T,1 if pcf
(0)
N,T = pcf

(1)
N,T then the adversary cannot generate valid

proofs Π(0) and Π(1) for two different final outputs out(0) and out(1).

Claim A.1. If NIZK extractor satisfies crs indisstinguishability and α = β = 1λ, then for any
stateful PPT adversary A it holds that:

|Pr[Bad : expα,β]− Pr[Bad : exporig]| ≤ negl(λ).

Proof. The proof directly follows from the crs indistinguishability of the NIZK extractor.

48

Claim A.2. If SEH is somewhere binding w.r.t. path opening, PKE is correct, and α = β = 1λ,
then for any stateful PPT adversary A it holds that:

Pr[Bad ∧ pcf
(0)
1,0 ̸= pcf

(1)
1,0 : expα,β] ≤ negl(λ).

Proof. We will prove that for b ∈ {0, 1}, pcf
(b)
1,0 = pcf1,0 (as given in the crs). First let ℓ ∈

[λ] be the biggest index such that π
(b)
ℓ ̸= ϵ, then parse π

(b)
ℓ = (v(b), ρ

(b)
1 , ρ

(b)
2 , h(b), π̂(b)), ρ

(b)
1 =

((v
(b)
0,1, v

(b)
0,2), . . . , (v

(b)
ℓ−1,1, v

(b)
ℓ−1,2)), and v

(b)
0,1 = (epcf

(b)
1,0, epcf

(b)
1,1). Note that since α = β = 1λ, then

Extractcf(td,Π
(b)) = (epcf

(b)
1,0, epcf

(b)
1,1) by somewhere binding w.r.t. path opening of SEH. Also,

note that by the verifier’s check epcf
(b)
1,0 = PKE.Enc(pk, pcf1,0; 0

|r|) for b ∈ {0, 1}. Then by PKE

correctness it holds that pcf
(b)
1,0 = pcf1,0, and hence we have pcf

(0)
1,0 = pcf

(1)
1,0.

Claim A.3. If seBARG is somewhere extractable, NIZK has knowledge extractor, PKE is correct,
SEH is somewhere binding, HT has reading and writing soundness, and CRHF is collision resistant,
and α and β correspond to (k, t− 1, t), and for any stateful PPT adversary A it holds that:

Pr[Bad ∧ pcf
(0)
k,t−1 ̸= pcf

(1)
k,t−1 : expα,β] ≤ negl(λ),

then for any such adversary, it holds that:

Pr[Bad ∧ pcf
(0)
k,t ̸= pcf

(1)
k,t : expα,β] ≤ negl(λ).

Proof. To prove the claim, by total law of the probablity we only need to show that for any stateful
PPT adversary A it holds that:

δ0 = Pr[Bad ∧ pcf
(0)
k,t−1 = pcf

(1)
k,t−1 ∧ pcf

(0)
k,t ̸= pcf

(1)
k,t : expα,β] ≤ negl(λ).

We prove this by induction on the depth ℓ of the proof π
(b)
ℓ that contains (pcfk,t−1, pcfk,t) (the

depth is the same for both proofs as it only depends on the time T and number of inputs N). Note
that this is a two-step induction, first on the depth ℓ ≤ log T − 1, and then on the depth ℓ ≥ log T .

Also note that if ℓ < log T − 1 then there is no h(b) in the proof π
(b)
ℓ that contains (pcfk,t−1, pcfk,t),

thus in this case we let h(b) = hlog T−1 where hlog T−1 ∈ hz.

Let (h(b), v(b), π̂(b)) ∈ π
(b)
ℓ and define Verℓ be the following event:

Verℓ :=

[
seBARG.Verify(crsbp,ℓ, (h

(0), v(0), j)j∈[2], π̂
(0)) = 1 ∧

seBARG.Verify(crsbp,ℓ, (h
(1), v(1), j)j∈[2], π̂

(1)) = 1

]
and

δ1,ℓ = Pr[Verℓ ∧ pcf
(0)
k,t−1 = pcf

(1)
k,t−1 ∧ pcf

(0)
k,t ̸= pcf

(1)
k,t : expα,β].

Since Verℓ is implied by Bad, it holds that δ1,ℓ ≥ δ0, thus it suffices to prove that δ1,ℓ ≤ negl(λ).
In the following induction let hz = (hlog T−1, . . . , hλ) and note that h(b) = hlog T−1 by the verifier’s

check.

49

Induction Base. Now suppose π
(b)
1 = (v(b), ρ

(b)
1 , ρ

(b)
2 , h(b), π̂(b)) ∈ Π(b) is the proof that contains

(pcf
(b)
k,t−1, pcf

(b)
k,t) (i.e. ℓ = 1). This means Extractcf(td,Π

(b)) = SEH.Extract(tdcf,1, v
(b)) and w(b) =

Extractbp(td,Π
(b)) = seBARG.Extract(tdbp,1, (h

(b), v(b), j)j∈[2], π̂
(b)) = (ṽ

(b)
1 , ṽ

(b)
2 , π

(b)
zk), is a witness for

x(b) = (h(b), v(b), β[1]). Let ṽ
(b)
β[1] = (˜epcf

(b)
k,t−1,

˜epcf
(b)
k,t).

Now let expα,β additionally compute NIZK.E(tdzk, x
(b)
zk = (h(b), ˜epcf

(b)
k,t−1,

˜epcf
(b)
k,t), π

(b)
zk) = w

(b)
zk

and parse w
(b)
zk = (rt

(b)
in , r

(b)
in , p̃cf

(b)
k,t−1, r

(b)
k,t−1, p̃cf

(b)
k,t, r

(b)
k,t , rbit

(b), rop(b),wop(b)).

Recall that Lbp,1 from Fig. 4 is the corresponding language for (x(b), w(b)) and Lzk from Fig. 3

is the corresponding language for (x
(b)
zk , w

(b)
zk).

Now consider the following probabilities:

δ2 = Pr

 (x(0), w(0)) ∈ Lbp,1 ∧
seBARG.Verify(crsbp,1, (h

(1), v(1), j)j∈[2], π̂
(1)) = 1 ∧

pcf
(0)
k,t−1 = pcf

(1)
k,t−1 ∧ pcf

(0)
k,t ̸= pcf

(1)
k,t

: expα,β

 .

δ3 = Pr

[
(x(b), w(b)) ∈ Lbp,1 for b ∈ {0, 1} ∧
pcf

(0)
k,t−1 = pcf

(1)
k,t−1 ∧ pcf

(0)
k,t ̸= pcf

(1)
k,t

: expα,β

]
.

δ4 = Pr


(˜epcf

(0)
k,t−1,

˜epcf
(0)
k,t) = (epcf

(0)
k,t−1, epcf

(0)
k,t) ∧

NIZK.Verify(crszk, x
(0)
zk , π

(0)
zk) = 1

(x(1), w(1)) ∈ Lbp,1 ∧
pcf

(0)
k,t−1 = pcf

(1)
k,t−1 ∧ pcf

(0)
k,t ̸= pcf

(1)
k,t

: expα,β

 .

δ5 = Pr

 (˜epcf
(b)
k,t−1,

˜epcf
(b)
k,t) = (epcf

(b)
k,t−1, epcf

(b)
k,t) for b ∈ {0, 1} ∧

NIZK.Verify(crszk, x
(b)
zk , π

(b)
zk) = 1 for b ∈ {0, 1} ∧

pcf
(0)
k,t−1 = pcf

(1)
k,t−1 ∧ pcf

(0)
k,t ̸= pcf

(1)
k,t

: expα,β

 .

δ6 = Pr


(˜epcf

(b)
k,t−1,

˜epcf
(b)
k,t) = (epcf

(b)
k,t−1, epcf

(b)
k,t) for b ∈ {0, 1} ∧

(x
(0)
zk , w

(0)
zk) ∈ Lzk ∧

NIZK.Verify(crszk, x
(1)
zk , π

(1)
zk) = 1 ∧

pcf
(0)
k,t−1 = pcf

(1)
k,t−1 ∧ pcf

(0)
k,t ̸= pcf

(1)
k,t

: expα,β

 .

δ7 = Pr

 (˜epcf
(b)
k,t−1,

˜epcf
(b)
k,t) = (epcf

(b)
k,t−1, epcf

(b)
k,t) for b ∈ {0, 1} ∧

(x
(b)
zk , w

(b)
zk) ∈ Lzk for b ∈ {0, 1} ∧

pcf
(0)
k,t−1 = pcf

(1)
k,t−1 ∧ pcf

(0)
k,t ̸= pcf

(1)
k,t

: expα,β

 .

δ8 = Pr

 (p̃cf
(b)
k,t−1, p̃cf

(b)
k,t) = (pcf

(b)
k,t−1, pcf

(b)
k,t) for b ∈ {0, 1} ∧ rt

(0)
in = rt

(1)
in ∧

is-nxt-cnfgM(hkht, rt
(b)
in , p̃cf

(b)
k,t−1, p̃cf

(b)
k,t, rbit

(b), rop(b),wop(b)) = 1 for b ∈ {0, 1} ∧
pcf

(0)
k,t−1 = pcf

(1)
k,t−1 ∧ pcf

(0)
k,t ̸= pcf

(1)
k,t

: expα,β

 .

50

δ9 = Pr



rbit(0) = rbit(1) ∧
CM(q̃

(b)
k,t−1, rbit

(b)) = (q̂
(b)
k,t,

ˆridx
(b)

k,t,widx
(b),wbit(b)) ∧

(q̃
(b)
k,t,

˜ridx
(b)
k,t) = (q̂

(b)
k,t,

ˆridx
(b)

k,t) ∧
HT.VfyWt(hkht, r̃t

(b)
k,t−1,widx

(b),wbit(b), r̃t
(b)
k,t,wop

(b)) = 1 for b ∈ {0, 1} ∧
(p̃cf

(b)
k,t−1, p̃cf

(b)
k,t) = (pcf

(b)
k,t−1, pcf

(b)
k,t) for b ∈ {0, 1} ∧

pcf
(0)
k,t−1 = pcf

(1)
k,t−1 ∧ pcf

(0)
k,t ̸= pcf

(1)
k,t

: expα,β


.

We let δ1 = δ1,1, and ϵi = δi − δi+1 for i ∈ [8] and ϵ9 = δ9. Since δ1 =
∑6

i=1 ϵi we only need to
show that for i ∈ [9], ϵi is negligible. Now the following Eqs. (3) to (8) holds.

Case 1. For b ∈ {0, 1} it holds that:

Pr[seBARG.Verify(crsbp,1, (h
(b), v(b), j)j∈[2], π̂

(b)) = 1 ∧ (x(b), w(b)) /∈ Lbp,1 : expα,β] ≥ ϵb+1 (3)

Suppose towards the contradiction that for some b∗ ∈ {0, 1}, ϵb∗+1(·) is non-negligible. Then
we construct Bbp s.t. Bbp = (α, β, 1,A, b∗) breaks the seBARG security. Note that the advantage
of Bbp(α, β, 1,A, b∗) is greater than that of A in Eq. (3) contradicting the seBARG security.

Bbp(α, β, ℓ,A, b) This PPT attacker does the following:

1. Receives (n, S, T) from A and crs∗ from the challenger where (crs∗, td∗)← seBARG.Gen(1λ, 2,
nbp,ℓ, β[ℓ]).

2. Computes (crs, td)← Genα,β(1
λ, n, S, T) and updates crs by replacing crsbp,ℓ with crs∗.

3. Sends crs to A and receives (hz, (out(0),Π(0)), (out(1),Π(1)), 1N ·T).

4. Finds π
(b)
ℓ = (v(b), ρ

(b)
1 , ρ

(b)
2 , h(b), π̂(b)) ∈ Π(b), and output ((h(b), v(b), j)j∈[2], π̂

(b)).

Case 2. For b ∈ {0, 1} it holds that:

Pr

[
SEH.Hash(hkcf,1, (ṽ

(b)
1 , ṽ

(b)
2)) = v(b) ∧

(˜epcf
(b)
k,t−1,

˜epcf
(b)
k,t) ̸= (epcf

(b)
k,t−1, epcf

(b)
k,t)

: expα,β

]
≥ ϵb+3 (4)

Suppose towards the contradiction that for some b∗ ∈ {0, 1}, ϵb∗+3(·) is non-negligible. Then
we construct Bseh s.t. Bseh = (α, β, 1,A, b∗) breaks the SEH security. Note that the advantage of
Bseh(α, β, 1,A, b∗) is greater than that of A in Eq. (4) contradicting the SEH security.

Bseh(α, β, ℓ,A, b) This PPT attacker does the following:

1. Receives (n, S, T) from A and hk∗ from the challenger where (hk∗, td∗)← SEH.Gen(1λ,Σℓ−1
cf ,

2, α[ℓ]).

2. Computes (crs, td)← Genα,β(1
λ, n, S, T) and updates crs by replacing hkcf,ℓ with hk∗.

51

3. Sends crs to A and receives (hz, (out(0),Π(0)), (out(1),Π(1)), 1N ·T).

4. Finds π
(b)
ℓ = (v(b), ρ

(b)
1 , ρ

(b)
2 , h(b), π̂(b)) ∈ Π(b).

5. Computes w(b) = seBARG.Extract(tdbp,ℓ, (h
(b), v(b), j)j∈[2], π̂

(b)) and finds (ṽ
(b)
1 , ṽ

(b)
2) ∈ w(b).

6. Outputs ((ṽ
(b)
1 , ṽ

(b)
2), v(b))

Case 3. For b ∈ {0, 1} it holds that:

Pr[NIZK.Verify(crszk, (h
(b), ˜epcf

(b)
k,t−1,

˜epcf
(b)
k,t), π

(b)
zk) = 1 ∧ (x

(b)
zk , w

(b)
zk) /∈ Lzk : expα,β] ≥ ϵb+5 (5)

Suppose towards the contradiction that for some b∗ ∈ {0, 1}, ϵb∗+1(·) is non-negligible. Then we
construct Bzk s.t. Bzk = (α, β, 1,A, b∗) breaks the NIZK knowledge extractor property. Note that
the advantage of Bzk(α, β, 1,A, b∗) is greater than that of A in Eq. (3) contradicting NIZK security.

Bzk(α, β, ℓ,A, b) This PPT attacker does the following:

1. Receives (n, S, T) fromA and crs∗ from the challenger where (crs∗, td∗)← NIZK.E(1λ, 1nx , 1nw).

2. Computes (crs, td)← Genα,β(1
λ, n, S, T) and updates crs by replacing crszk with crs∗.

3. Sends crs to A and receives (hz, (out(0),Π(0)), (out(1),Π(1)), 1N ·T).

4. Finds π
(b)
ℓ = (v(b), ρ

(b)
1 , ρ

(b)
2 , h(b), π̂(b)) ∈ Π(b).

5. Compute w(b) = seBARG.Extract(tdbp,1, (h
(b), v(b), j)j∈[2], π̂

(b)).

6. Parse w(b) = (ṽ
(b)
1 , ṽ

(b)
2 , π

(b)
zk), and let ṽ

(b)
β[1] = (˜epcf

(b)
k,t−1,

˜epcf
(b)
k,t).

7. Output ((h(b), ˜epcf
(b)
k,t−1,

˜epcf
(b)
k,t), π

(b)
zk).

Case 4. We claim ϵ7 = 0 (6).

Note that if for b ∈ {0, 1}, (x(b)zk , w
(b)
zk) ∈ Lzk (where x

(b)
zk = (h(b), ˜epcf

(b)
k,t−1,

˜epcf
(b)
k,t) and w

(b)
zk =

(rt
(b)
in , r

(b)
in , p̃cf

(b)
k,t−1, r

(b)
k,t−1, p̃cf

(b)
k,t, r

(b)
k,t , rbit

(b), rop(b),wop(b))), then by the definition of Lzk (see Fig. 3)

for b ∈ {0, 1} it holds that PKE.Enc(pk, rt
(b)
in ; r

(b)
in) = h(b), PKE.Enc(pk, p̃cf

(b)
k,t−1; r

(b)
k,t−1) =

˜epcf
(b)
k,t−1,

and PKE.Enc(pk, p̃cf
(b)
k,t; r

(b)
k,t) =

˜epcf
(b)
k,t.

Now first note that, as discussed in the beginning of the claim’s proof, it holds that h(0) = h(1) =

hlog T−1, thus by the perfect correctness of PKE for b ∈ {0, 1} we have rt
(0)
in = rt

(1)
in . Moreover, by

the definition of expα,β for b, b′ ∈ {0, 1} it holds that pcf(b)k,t−b′ = PKE.Dec(sk, epcf
(b)
k,t−b′). Thus if for

b ∈ {0, 1} it holds that (˜epcf
(b)
k,t−1,

˜epcf
(b)
k,t) = (epcf

(b)
k,t−1, epcf

(b)
k,t), then by the perfect correctness of

PKE for b ∈ {0, 1} we have (p̃cf
(b)
k,t−1, p̃cf

(b)
k,t) = (pcf

(b)
k,t−1, pcf

(b)
k,t). By the same argument, the other

direction can be proved, therefore, we conclude that δ7 = δ8 and ϵ7 = 0.

52

Case 5. If ridx
(0)
k,t−1 ≤ n then let (m∗, i∗) = (hlog T−1, ridx

(0)
k,t−1), otherwise let (m∗, i∗) = (rt

(0)
k,t−1,

ridx
(0)
k,t−1). Then it holds that:

Pr

[
rbit(0) ̸= rbit(1) ∧
HT.VfyRd(hkMT,m

∗, i∗, rbit(b), rop(b)) = 1 ∧ for b ∈ {0, 1}
: expα,β

]
≥ ϵ8 (7)

Suppose towards the contradiction that ϵ8(·) is non-negligible. Then we construct Breadht s.t.
Breadht = (α, β, 1,A) breaks the hash tree security. Note that the advantage of Breadht (α, β, 1,A) is
greater than that of A in Eq. (7) contradicting the hash tree reading soundness.

Breadht (α, β, ℓ,A) This PPT attacker does the following:

1. Receives (n, S, T) from A and hk∗ from the challenger where hk∗ ← HT.Gen(1λ).

2. Computes (crs, td)← Genα,β(1
λ, n, S, T) and updates crs by replacing hkht with hk∗.

3. Sends crs to A and receives (hz, (out(0),Π(0)), (out(1),Π(1)), 1N ·T).

4. For b ∈ {0, 1}, first finds π
(b)
ℓ = (v(b), ρ

(b)
1 , ρ

(b)
2 , h(b), π̂(b)) ∈ Π(b), then computes w(b) =

seBARG.Extract(tdbp,ℓ, (h
(b), v(b), j)j∈[2], π̂

(b)), w
(b)
zk = NIZK.E(tdzk, (h(b), ˜epcf

(b)
k,t−1,

˜epcf
(b)
k,t), π

(b)
zk),

and finally finds (rbit(b), rop(b)) ∈ w
(b)
zk .

5. Outputs (m∗, i∗, rbit(0), rop(0), rbit(1), rop(1)) where (m∗, i∗) = (hlog T−1, ridx
(0)
k,t−1) if ridx

(0)
k,t−1 ≤

n, and (m∗, i∗) = (rt
(0)
k,t−1, ridx

(0)
k,t−1) otherwise.

Case 6. It holds that:

Pr

[
CM(q

(0)
k,t−1, rbit

(0)) = (q
(b)
k,t, ridx

(b)
k,t,wbit

(0),widx(0)) ∧ rt
(0)
k,t ̸= rt

(1)
k,t ∧

HT.VfyWt(hkMT, rt
(0)
k,t−1,widx

(0),wbit(0), rt
(b)
k,t,wop

(b)) = 1 for b ∈ {0, 1}
: expα,β

]
≥ ϵ9

(8)
Suppose towards the contradiction that ϵ9(·) is non-negligible. Then we construct Bwriteht s.t.

Bwriteht = (α, β, 1,A) breaks the hash tree security. Note that the advantage of Breadht (α, β, 1,A) is
greater than that of A in Eq. (8) contradicting the hash tree writing soundness.

Bwriteht (α, β, ℓ,A) This PPT attacker does the following:

1. Receives (n, S, T) from A and hk∗ from the challenger where hk∗ ← HT.Gen(1λ).

2. Computes (crs, td)← Genα,β(1
λ, n, S, T) and updates crs by replacing hkht with hk∗.

3. Sends crs to A and receives (hz, (out(0),Π(0)), (out(1),Π(1)), 1N ·T).

4. For b ∈ {0, 1}, first finds π
(b)
ℓ = (v(b), ρ

(b)
1 , ρ

(b)
2 , h(b), π̂(b)) ∈ Π(b), then computes w(b) =

seBARG.Extract(tdbp,ℓ, (h
(b), v(b), j)j∈[2], π̂

(b)), w
(b)
zk = NIZK.E(tdzk, (h(b), ˜epcf

(b)
k,t−1,

˜epcf
(b)
k,t), π

(b)
zk),

and finally finds (rbit(b),wop(b)) ∈ w
(b)
zk .

5. Computes CM(q
(0)
k,t−1, rbit

(0)) = (q
(b)
k,t, ridx

(b)
k,t,wbit

(0),widx(0)).

6. Outputs (rt
(0)
k,t−1,widx

(0),wbit(0), rt
(0)
k,t ,wop

(0), rt
(1)
k,t ,wop

(1)).

53

Induction Step (1). Suppose the claim holds for any ℓ′ < ℓ ≤ log T − 1, namely, δ1,ℓ′ ≤ negl(λ).

Let π
(b)
ℓ = (v(b), ρ

(b)
1 , ρ

(b)
2 , h(b), π̂(b)) ∈ Π(b) be the proof that contains (pcf

(b)
k,t−1, pcf

(b)
k,t). Now the

followings hold:

• Extractcf(td,Π
(b)) = Extractcf(td, v

(b)) = Extractcf(td, v
(b)
α[ℓ]) where v

(b)
α[ℓ] = SEH.Extract(tdcf,ℓ,

v(b)). Let Extractcf(td,Π
(b)) additionally output v

(b)
α[ℓ].

• w(b) = Extractbp(td,Π
(b)) = seBARG.Extract(tdbp,ℓ, (h

(b), v(b), j)j∈[2], π̂
(b)) = (ṽ

(b)
1 , ṽ

(b)
2 , ρ̃

(b)
1 , ρ̃

(b)
2 ,

π̃(b)), is a witness for x(b) = (h(b), v(b), β[ℓ])

Let Lbp,ℓ be the corresponding language for (x(b), w(b)) defined in the Fig. 4.
Now consider the following probabilities:

δ2 = Pr

 (x(0), w(0)) ∈ Lbp,ℓ ∧
seBARG.Verify(crsbp,ℓ, (h

(1), v(1), j)j∈[2], π̂
(1)) = 1 ∧

pcf
(0)
k,t−1 = pcf

(1)
k,t−1 ∧ pcf

(0)
k,t ̸= pcf

(1)
k,t

: expα,β

 .

δ3 = Pr

[
(x(b), w(b)) ∈ Lbp,ℓ for b ∈ {0, 1} ∧
pcf

(0)
k,t−1 = pcf

(1)
k,t−1 ∧ pcf

(0)
k,t ̸= pcf

(1)
k,t

: expα,β

]
.

δ4 = Pr


ṽ
(0)
α[ℓ] = v

(0)
α[ℓ] ∧

seBARG.Verify(crsbp,ℓ−1, (h
(0), ṽ

(0)
α[ℓ], j)j∈[2], π̃

(0)) = 1 ∧
(x(1), w(1)) ∈ Lbp,1 ∧
pcf

(0)
k,t−1 = pcf

(1)
k,t−1 ∧ pcf

(0)
k,t ̸= pcf

(1)
k,t

: expα,β

 .

δ5 = Pr


ṽ
(b)
α[ℓ] = v

(b)
α[ℓ] for b ∈ {0, 1} ∧

seBARG.Verify(crsbp,ℓ−1, (h
(b), ṽ

(b)
α[ℓ], j)j∈[2], π̃

(b)) = 1 for b ∈ {0, 1} ∧
pcf

(0)
k,t−1 = pcf

(1)
k,t−1 ∧ pcf

(0)
k,t ̸= pcf

(1)
k,t

: expα,β

 .

We let δ1 = δ1,ℓ, and ϵi = δi − δi+1 for i ∈ [4] and ϵ5 = δ5. Since δ1 =
∑5

i=1 ϵi we only need to
show that for i ∈ [5], ϵi is negligible.

Case 1. Similar to the case 1 in the induction base if ϵb+2 is non-negligible then Bbp(α, β, ℓ,A, b)
breaks the security of seBARG.

Case 2. Similar to the case 2 in the induction base if ϵb+4 is non-negligible then Bseh(α, β, ℓ,A, b)
breaks the security of SEH.

Case 3. Notice that ϵ5 ≤ δ1,ℓ−1, therefore, by the induction hypothesis, ϵ5 ≤ negl(λ).

54

Induction Step (2). Suppose the claim holds for any ℓ′ < ℓ (where ℓ ≥ log T), namely, δ1,ℓ′ ≤
negl(λ). We follow the same approach as induction step (1) except that w(b) additionally includes

(h̃
(b)
1 , h̃

(b)
2). Thus we only need to show that h̃

(0)
α[ℓ] = h̃

(1)
α[ℓ] to use the induction step. We let δ2 and

δ3 to be the same as in induction step (1), and define the rest as follows:

δ4 = Pr


ṽ
(0)
α[ℓ] = v

(0)
α[ℓ] ∧

CRHF.Hash(hkch, (h̃
(0)
1 , h̃

(0)
2)) = h(0) ∧

seBARG.Verify(crsbp,ℓ−1, (h̃
(0)
α[ℓ], ṽ

(0)
α[ℓ], j)j∈[2], π̃

(0)) = 1 ∧
(x(1), w(1)) ∈ Lbp,1 ∧
pcf

(0)
k,t−1 = pcf

(1)
k,t−1 ∧ pcf

(0)
k,t ̸= pcf

(1)
k,t

: expα,β

 .

δ5 = Pr


ṽ
(b)
α[ℓ] = v

(b)
α[ℓ] for b ∈ {0, 1} ∧

CRHF.Hash(hkch, (h̃
(b)
1 , h̃

(b)
2)) = h(b) for b ∈ {0, 1} ∧

seBARG.Verify(crsbp,ℓ−1, (h
(b)
α[ℓ], ṽ

(b)
α[ℓ], j)j∈[2], π̃

(b)) = 1 for b ∈ {0, 1} ∧
pcf

(0)
k,t−1 = pcf

(1)
k,t−1 ∧ pcf

(0)
k,t ̸= pcf

(1)
k,t

: expα,β

 .

δ6 = Pr


ṽ
(b)
α[ℓ] = v

(b)
α[ℓ] for b ∈ {0, 1} ∧ h̃

(0)
α[ℓ] = h̃

(1)
α[ℓ] ∧

seBARG.Verify(crsbp,ℓ−1, (h
(b)
α[ℓ], ṽ

(b)
α[ℓ], j)j∈[2], π̃

(b)) = 1 for b ∈ {0, 1} ∧
pcf

(0)
k,t−1 = pcf

(1)
k,t−1 ∧ pcf

(0)
k,t ̸= pcf

(1)
k,t

: expα,β

 .

Similar to induction step (1) define δ1, and ϵi for i ∈ [6].

Case 1 and 2. Similar to the case 1 and 2 in the induction step (1).

Case 3. It holds that:

Pr

[
h̃
(0)
α[ℓ] ̸= h̃

(1)
α[ℓ] ∧

CRHF.Hash(hkch, (h̃
(b)
1 , h̃

(b)
2)) = hℓ for b ∈ {0, 1}

: expα,β

]
≥ ϵ5 (9)

Suppose towards the contradiction that ϵ5(·) is non-negligible. Then we construct Bch s.t.
Bch(α, β, ℓ,A) breaks the CRHF security. Note that the advantage of Bch(α, β, ℓ,A) is greater than
that of A in Eq. (9) contradicting the CRHF security.

Bch(α, β, ℓ,A) This PPT attacker does the following:

1. Receives (n, S, T) from A and hk∗ from the challenger where hk∗ ← CRHF.Gen(1λ).

2. Computes (crs, td)← Genα,β(1
λ, n, S, T) and updates crs by replacing hkch with hk∗.

3. Sends crs to A and receives (hz, (out(0),Π(0)), (out(1),Π(1)), 1N ·T).

4. Finds π
(b)
ℓ = (v(b), ρ

(b)
1 , ρ

(b)
2 , h(b), π̂(b)) ∈ Π(b).

5. Computes w(b) = seBARG.Extract(tdbp,ℓ, (h
(b), v(b), j)j∈[2], π̂

(b)) and finds (h̃
(b)
1 , h̃

(b)
2) ∈ w(b).

6. Outputs ((h̃
(0)
1 , h̃

(0)
2), (h̃

(1)
1 , h̃

(1)
2)).

55

Case 4. Notice that ϵ6 ≤ δ1,ℓ−1, therefore, by the induction hypothesis, ϵ6 ≤ negl(λ).

Claim A.4. If seBARG is index hiding, α and β correspond to (k, t − 1, t), β′ corresponds to
(k, t, t+ 1), and for any stateful PPT adversary A it holds that:

Pr[Bad ∧ pcf
(0)
k,t ̸= pcf

(1)
k,t : expα,β] ≤ negl(λ),

then for any such adversary, it holds that:

Pr[Bad ∧ pcf
(0)
k,t ̸= pcf

(1)
k,t : expα,β′] ≤ negl(λ).

Proof. There is some index j s.t. β = (2, · · · , 2, 1, β[j + 1], · · · , β[λ]) and β′ = (1, · · · , 1, 2, β[j +
1], · · · , β[λ]). For d ∈ [0, j] define βd as βd[ℓ] = β′[ℓ] for ℓ ∈ [d] and βd[ℓ] = β[ℓ] at every other
index. Therefore β0 = β (correspond to (k, t− 1, t)) and βj = β′ (corresponds to (k, t, t+1)). Note
that every βd−1 and βd differ only on index d.

If the claim doesn’t hold, then there is an adversary A s.t. for some d ∈ [j] there is a non-
negligible function ϵ(·) s.t.:

Pr[Bad ∧ pcf
(0)
k,t ̸= pcf

(1)
k,t : expα,βd]− Pr[Bad ∧ pcf

(0)
k,t ̸= pcf

(1)
k,t : expα,βd−1

] ≥ ϵ(λ) (10)

Now we construct Bihbp s.t. Bihseh(α, βd, d,A) breaks the index-hiding property of seBARG on two
indices e1 = βd[d] and e2 = βd−1[d].

Bihbp(α, β, ℓ,A) This PPT attacker does the following:

1. Receives (n, S, T) from A and crs∗ from the challenger where (crs∗, td∗)← seBARG.Gen(1λ, 2,
nbp,ℓ−1, eb).

2. Computes (crs, td)← Genα,β(1
λ, n, S, T) and updates crs by replacing crsbp,ℓ with crs∗.

3. Sends crs to A and receives (hz, (out(0),Π(0)), (out(1),Π(1)), 1N ·T).

4. If for any b ∈ {0, 1}, Verify(crs, (hz, out(b)),Π(b)) = 0 or out(0) = out(1) then abort.

5. Finds π
(b)
ℓ = (v(b), ρ

(b)
1 , ρ

(b)
2 , h(b), π̂(b)) ∈ Π(b).

6. Compute (epcf
(b)
k,t−1, epcf

(b)
k,t)← Extractcf(td,Π

(b)) for b ∈ {0, 1}.

7. Compute pcf
(b)
k,t = PKE.Dec(sk, epcf

(b)
k,t) for b ∈ {0, 1}.

8. Output 1 if pcf
(0)
k,t ̸= pcf

(1)
k,t and 2 otherwise.

In the reduction above b = 1 corresponds to expα,βd and b = 2 corresponds to expα,βd−1
. There-

fore, Bihbp(α, βd, d,A)’s distinguishing advantage is greater than that of A in Eq. (10) contradicting
the seBARG security.

56

Claim A.5. If seBARG, SEH, HT, and CRHF are secure, α corresponds to (k, t − 1, t), α′ and β′

correspond to (k, t, t+ 1), and for any stateful PPT adversary A it holds that:

Pr[Bad ∧ pcf
(0)
k,t ̸= pcf

(1)
k,t : expα,β′] ≤ negl(λ),

then for any such adversary, it holds that:

Pr[Bad ∧ pcf
(0)
k,t ̸= pcf

(1)
k,t : expα′,β′] ≤ negl(λ).

Proof. Consider the following probabilities:

δ0 = Pr[Bad ∧ pcf
(0)
k,t ̸= pcf

(1)
k,t : expα,β′]

δ1 = Pr[Bad ∧ pcf
(0)
l ̸= pcf

(1)
l : expα,β′]

δ2 = Pr[Bad ∧ pcf(0)r ̸= pcf(1)r : expα,β′]

δ3 = Pr[Bad ∧ pcf(0)r ̸= pcf(1)r : expα′,β′]

δ4 = Pr[Bad ∧ pcf
(0)
k,t ̸= pcf

(1)
k,t : expα′,β′]

We let ϵi = δi − δi−1 for i ∈ [4]. Since δ4 = δ0 +
∑4

i=1 ϵi, and by the claim assumption
δ0 ≤ negl(λ), we only need to show that for i ∈ [4], ϵi is negligible.

Case 1. It holds that:

ϵ1 ≤ Pr[Bad ∧ pcf
(0)
l ̸= pcf

(1)
l ∧ pcf

(0)
k,t = pcf

(1)
k,t : expα,β′]

Thus for some b ∈ {0, 1} it holds that:

ϵ1/2 ≤ Pr[Bad ∧ pcf
(b)
k,t ̸= pcf

(b)
l : expα,β′]

Now two cases could happen:

• pcf
(b)
l is computed using some ρ

(b)
2 ∈ π

(b)
ℓ ∈ Π(b). In this case by the verifier’s check it holds

that SEH.VerifyAcc((hkcf,d)d∈[ℓ], v
(b), ρ

(b)
2 , 2) = 1 where v(b) ∈ π

(b)
ℓ . Now since α corresponds

to (k, t − 1, t), it is binding on the path ρ
(b)
2 , thus by the SEH security and PKE correctness

it holds that Pr[Bad ∧ pcf
(b)
k,t ̸= pcf

(b)
l : expα,β′] ≤ negl(λ).

• Find π
(b)
ℓ = (v(b), ρ

(b)
1 , ρ

(b)
2 , h(b), π̂(b)) ∈ Π(b) that contains a proof for (k, t − 1, t). Note that

j < ℓ thus α and β both are binding on the same path from a level ℓ proof until a level j proof.

Additionally recall that to find pcf
(b)
l , seBARG extraction is recursively used to find witness

w
(b)
j . Then w(b) is parsed to get (ṽ

(b)
j−1,1, ρ̃

(b)
j−1,1) ∈ w

(b)
j and pcf

(b)
l is found using them. Let v

(b)
d

be the hash of pseudo-configurations at level d that is extracted by recursively running SEH
extraction starting from v(b). Now two cases can happen:

57

– ṽ
(b)
j−1 ̸= v

(b)
j−1. This contradicts the seBARG and SEH security since both are binding on

the same path from ℓ to j.

– ṽ
(b)
j−1 = v

(b)
j−1 ∧ pcf

(b)
k,t ̸= pcf

(b)
l . This contradicts either the somewhere statistically binding

of SEH on the path from v
(b)
j−1 to epcf

(b)
l or the PKE correctness.

Case 2. Similar to case 1, for some b ∈ {0, 1} it holds that:

ϵ2/2 ≤ Pr[Bad ∧ pcf(b)r ̸= pcf
(b)
l : expα,β′]

Two cases could happen:

• pcf
(b)
l (resp. pcf

(b)
r) is computed using some ρ

(b)
2 ∈ π

(b)
ℓ ∈ Π(b) (resp. ρ

(b)
1 ∈ π

(b)
ℓ′ ∈ Π(b)) where

ℓ > ℓ′. In this case by the verifier’s check, the leftmost encrypted pseudo-configuration in π
(b)
ℓ′

is the same as the rightmost encrypted pseudo-configuration in π
(b)
ℓ , namely, epcf

(b)
l = epcf

(b)
r ,

thus by PKE correctness we have pcf
(b)
l = pcf

(b)
r .

• Otherwise, recall that that for both pcf
(b)
l and pcf

(b)
r , first seBARG extractor is recursively

being using to find w
(b)
j for a batch proof at level j. Let (ṽ

(b)
j−1,1, ṽ

(b)
j−1,2) ∈ w

(b)
j , then by the

definition of Lbp,j , validity of w
(b)
j (which is implied by the extraction correctness of batch

argument) implies that the leftmost encrypted pseudo-configuration in the tree with root

ṽ
(b)
j−1,2 is equal to the rightmost encrypted pseudo-configuration in ṽ

(b)
j−1,1, namely, epcf

(b)
l =

epcf
(b)
r , thus by PKE correctness we have pcf

(b)
l = pcf

(b)
r .

Therefore in both cases it holds that Pr[Bad ∧ pcf
(b)
r ̸= pcf

(b)
l : expα,β′] ≤ negl(λ).

Case 3. Similar to the proof of Claim A.4 we prove ϵ3 ≤ negl(λ). There is some index j s.t.
α = (2, · · · , 2, 1, α[j+1], · · · , α[λ]) and α′ = (1, · · · , 1, 2, α[j+1], · · · , α[λ]). For d ∈ [0, j] define αd
as αd[ℓ] = α′[ℓ] for ℓ ∈ [d] and αd[ℓ] = α[ℓ] at every other index. Therefore α0 = α (correspond to
(k, t− 1, t)) and αj = α′ (corresponds to (k, t, t+ 1)). Note that every αd−1 and αd differ only on
index d. There is an adversary A s.t. for some d ∈ [j] it holds that:

Pr[Bad ∧ pcf(0)r ̸= pcf(1)r : expαd,β′]− Pr[Bad ∧ pcf(0)r ̸= pcf(1)r : expαd−1,β′] ≥ ϵ3(λ)/λ (11)

Now we construct Bihseh s.t. Bihseh(αd, β′, d,A) breaks the index-hiding property of SEH on two
indices e1 = αd[d] and e2 = αd−1[d].

Bihseh(α, β, ℓ,A) This PPT attacker does the following:

1. Receives (n, S, T) from A and hk∗ from the challenger where (hk∗, td∗)← seBARG.Gen(1λ, 2,
Σℓ−1
cf , eb).

2. Computes (crs, td)← Genα,β(1
λ, n, S, T) and updates crs by replacing hkcf,ℓ with hk∗.

3. Sends crs to A and receives (hz, (out(0),Π(0)), (out(1),Π(1)), 1N ·T).

58

4. If for any b ∈ {0, 1}, Verify(crs, (hz, out(b)),Π(b)) = 0 or out(0) = out(1) then abort.

5. Finds π
(b)
ℓ = (v(b), ρ

(b)
1 , ρ

(b)
2 , h(b), π̂(b)) ∈ Π(b).

6. Compute epcf
(b)
r ← Extractr(td,Π

(b)) and pcf
(b)
r = PKE.Dec(sk, epcf

(b)
r) for b ∈ {0, 1}.

7. Output 1 if pcf
(0)
r ̸= pcf

(1)
r and 2 otherwise.

In the reduction above b = 1 corresponds to expα,βd and b = 2 corresponds to expα,βd−1
. There-

fore, Bihseh(αd, β′, d,A)’s distinguishing advantage is greater than that of A in Eq. (11) contradicting
the SEH security.

Case 4. Similar to case 1, for some b ∈ {0, 1} it holds that:

ϵ4/2 ≤ Pr[Bad ∧ pcf
(b)
k,t ̸= pcf(b)r : expα′,β′]

Note that α′ and β′ are the same path, thus the proof is similar to case one.

Claim A.6. If SEH is somewhere binding w.r.t. path opening, HT has reading soundness, PKE is
correct, and α and β correspond to (K,T − 1, T), and for any stateful PPT adversary A it holds
that:

Pr[Bad ∧ pcf
(0)
K,T ̸= pcf

(1)
K,T : expα,β] ≤ negl(λ),

then for any such adversary, it holds that:

Pr[Bad : expα,β] ≤ negl(λ).

Proof. It suffices to show that for any PPT adversary A it holds that:

δ0 = Pr[Bad ∧ pcf
(0)
K,T = pcf

(1)
K,T : expα,β] ≤ negl(λ). (12)

Let π
(b)
ℓ = (v(b), ρ

(b)
1 , ρ

(b)
2 , h(b), π̂(b)) ∈ Π(b) be the proof that contains (pcf

(b)
K,T−1, pcf

(b)
K,T) and

For b ∈ {0, 1} parse ρ
(b)
2 = ((v

(b)
0,1, v

(b)
0,2), . . . , (v

(b)
ℓ−1,1, v

(b)
ℓ−1,2)), and v

(b)
0,2 = (epcf

(b)
1 , epcf

(b)
2), and π

(b)
out =

(pcf
(b)
2 , r(b), π̂

(b)
out), and pcf

(b)
2 = (rt

(b)
2 , q

(b)
2 , ridx

(b)
2). Now, define the following probabilities:

δ1 = Pr


HT.VfyRd(hkht, rt

(b)
2 , [nout], out

(b), π̂
(b)
out) = 1 for b ∈ {0, 1} ∧

PKE.Enc(pk, pcf
(b)
2 ; r(b)) = epcf

(b)
2 for b ∈ {0, 1} ∧

SEH.VerifyAcc((hkcf,d)d∈[ℓ], v
(b), ρ

(b)
2 , 2) for b ∈ {0, 1} ∧

out(0) ̸= out(1) ∧ pcf
(0)
K,T = pcf

(1)
K,T

: expα,β

 .

δ2 = Pr


HT.VfyRd(hkht, rt

(b)
2 , [nout], out

(b), π̂
(b)
out) = 1 for b ∈ {0, 1} ∧

PKE.Enc(pk, pcf
(b)
2 ; r(b)) = epcf

(b)
2 for b ∈ {0, 1} ∧

epcf
(0)
K,T = epcf

(0)
2 ∧

SEH.VerifyAcc((hkcf,d)d∈[ℓ], v
(1), ρ

(1)
2 , 2) ∧

out(0) ̸= out(1) ∧ pcf
(0)
K,T = pcf

(1)
K,T

: expα,β

 .

59

δ3 = Pr


HT.VfyRd(hkht, rt

(b)
2 , [nout], out

(b), π̂
(b)
out) = 1 for b ∈ {0, 1} ∧

PKE.Enc(pk, pcf
(b)
2 ; r(b)) = epcf

(b)
2 for b ∈ {0, 1} ∧

epcf
(b)
K,T = epcf

(b)
2 for b ∈ {0, 1} ∧

out(0) ̸= out(1) ∧ pcf
(0)
K,T = pcf

(1)
K,T

: expα,β

 .

δ4 = Pr

 HT.VfyRd(hkht, rt
(b)
2 , [nout], out

(b), π̂
(b)
out) = 1 for b ∈ {0, 1} ∧

pcf
(b)
K,T = pcf

(b)
2 for b ∈ {0, 1} ∧

out(0) ̸= out(1) ∧ pcf
(0)
K,T = pcf

(1)
K,T

: expα,β

 .

First note that δ0 ≤ δ1 since all the events are implied by the verification of the proofs. Also,
δ3 = δ4 by the perfect correctness of PKE. Moreover, the advantage of an adversary B attacking

the reading soundness of HT by outputting (rt
(0)
2 , [nout], out

(0), π
(0)
out, out

(1), π
(1)
out) when A generates

((out(0),Π(0)), (out(1),Π(1))) is at least δ4, thus δ4 ≤ negl(λ). Therefore, we only need to show that
δb+1 − δb+2 ≤ negl(λ) for b ∈ {0, 1}. It holds that:

δb+1 − δb+2 ≤ ϵb = Pr
[

SEH.VerifyAcc((hkcf,d)d∈[ℓ], v
(b), ρ

(b)
2 , 2) ∧ pcf

(b)
K,T = pcf

(b)
2 : expα,β

]
.

Now by somewhere binding w.r.t. path opening of SEH it holds that ϵb ≤ negl(λ) concluding the
proof.

Zero-Knowledge. We construct the simulator S(crs, cf) as follows:

• It generates crs similar to Gen except that it runs the NIZK simulator to generate crszk.

• To generate the proof it does the following:

1. Compute epcfk,t for k ∈ [K], t ∈ [T] as follows: (1) let epcf1,0 = PKE.Enc(pk, pcf1,0; 0
|r|),

(2) let cf = (W, q, ridx) and compute (rt, tree) = HT.Hash(hkht,W), and pcfK,T =
(rt, q, ridx), then sample randomness r and compute epcfK,T = PKE.Enc(pk, pcfK,T),
(3) for every other (k, t) independently (under different randomness) compute epcfk,t =

PKE.Enc(pk, 0|pcf|).

2. Let st = (cf, pcfK,T , r).

3. Generate ctin,k for k ∈ [K] by independently encrypting 0λ.

4. To generate hz use the same iterative process as in Digest except that in Item 2a instead
of computing ctin use ctin,k computed above.

5. To generate the proof use the same iterative process as in Update except that do not
compute (pcft−1, pcft, rbit, rop,wop), and to generate πzk use NIZK simulator. Also, never
compute πout except when (k, t) = (K,T) in which case compute πout similar to the
prover.

60

We define the following hybrids.

H0: This is the original experiment. Namely, the adversary sends (n, S, T), challenger sends
crs0 ← Gen(1λ, n, S, T), adversary sends z., challenger computes cf = M(z; 1T) and sends
(st0, hz0,Π0)← Prove(crs0, z) to the adversary and finally adversary outputs b′.

H1: Similar to the original experiment except that NIZK simulator is used to generate crszk, and
πzk at every iteration.

H2,k,t: Similar to H1 except that for every cfi,j until cfk,t except cf1,0 and cfK,T , we let epcfi,j =

PKE.Enc(pk, 0|pcf|) (and for the rest epcfi,j is honestly generated). Note that H2,1,0 = H1 and
H2,K,T−1 = H2,K,T .

H3,k: Similar to H2,K,T except that for every zi until zk, we let ctin,i = PKE.Enc(pk, 0λ) (and for the
rest ctin,i is honestly generated). Note that H3,0 = H2,K,T and H3,K is the output of the simu-
lator. Namely inH3,K the adversary sends (n, S, T), the simulator sends crs1 ← S(1λ, n, S, T),
adversary sends z, simulator computes cf = M(z; 1T) and sends (st1, hz1,Π1) ← S(crs0, cf)
to the adversary and finally adversary outputs b′.

For any adversary let H∗(A) be the output of the adversary in hybrid H∗.

Claim A.7. If NIZK is zero-knowledge then for any stateful PPT adversary A it holds that:

|Pr[H1(A) = 1]− Pr[H0(A) = 1]| ≤ negl(λ).

Proof. Towards the contradictions suppose there exists an adversaryA and a non-negligible function
ϵ(·) s.t. |Pr[H1(A) = 1] − Pr[H0(A) = 1]| ≥ ϵ(λ). We construct adversary Bzk that breaks the
zero-knowledge property of the underlying NIZK protocol as follows:

1. Receives (n, S, T) from A, and crs∗ from NIZK zero-knowledge challenger.

2. Computes (crs, td)← Gen(1λ, n, S, T) and updates crs by replacing crszk with crs∗.

3. Sends crs to A, receives z.

4. Computes (st, hz,Π) similar to the prover except that at every single step, instead of com-
puting πzk, queries the challenger on (x,w) and receive πzk.

5. Outputs whatever A outputs.

If the NIZK challenger generates crs and proof using Gen and Prove, then Bzk simulates H0

for A and if the challenger uses NIZK simulator, then Bzk simulates H1 for A. Thus Bzk has a
non-negligible advantage ϵ(λ) in breaking the zero-knowledge property of NIZK.

In the following claim we let k ∈ [K], t ∈ [T], and (k, t) ̸= (K,T).

Claim A.8. If PKE is secure then for any stateful PPT adversary A it holds that:

|Pr[H2,k,t(A) = 1]− Pr[H2,k,t−1(A) = 1]| ≤ negl(λ).

61

Proof. Towards the contradictions suppose there exists an adversaryA and a non-negligible function
ϵ(·) s.t. |Pr[H2,k,t(A) = 1]−Pr[H2,k,t−1(A) = 1]| ≥ ϵ(λ). We construct adversary Bpke that breaks
the security of the underlying PKE protocol as follows:

1. Receives (n, S, T) from A, and pk∗ from PKE challenger.

2. Computes (crs, td)← Gen(1λ, n, S, T) and updates crs by replacing pk with pk∗.

3. Sends crs to A, receives z.

4. Computes (st, hz,Π) similar to H2,k,t−1 except that instead of computing epcfk,t, queries the
challenger on pcfk,t and receive epcfk,t.

5. Outputs whatever A outputs.

If the PKE challenger generates the ciphertext honestly, then Bpke simulates H2,k,t−1 for A and
if it responds with a ciphertext of all zeros, then Bpke simulates H2,k,t for A. Thus Bpke has a
non-negligible advantage ϵ(λ) in breaking the security of PKE.

In the following claim we let k ∈ [K].

Claim A.9. If PKE is secure then for any stateful PPT adversary A it holds that:

|Pr[H3,k(A) = 1]− Pr[H3,k−1(A) = 1]| ≤ negl(λ).

Proof. Similar to the proof of Claim A.8.

Therefore we conclude the proof of zero-knowledge property by a hybrid argument.

B Predicated zk-IVsC Complete Analysis.

Proof of Theorem 3.11. The completeness, and strong soundness proofs are similar to zk-IVsC. We
only need to prove efficiency, predicate proof soundness, and zero-knowledge properties of our
construction.

Efficiency. The crs size and Setup running time in addition to the other elements (which is similar
to IVsC) grows with crszk,f size and generation time which grow with poly(λ, nzk,f,x, nzk,f,w) =
poly(λ, n, nf), thus in total grows with poly(λ, logS, n, nf).

Now note the size of πf,log T−1 and its generation/verification time grows with NIZK statement
and witness and the the circuit that decides the language, thus all three grow with poly(λ, n, nf).
Additionally, similar to the IVsC analysis the proof size and its generation/verification (given the
tree decomposition of fk) grows with poly(λ, n, nf , logK). Finally tree decomposition of fk grows
at most with poly(K).

62

Predicate Proof Soundness. First note that the crs indistinguishability of Gen and TGen folows
direcrtly from the crs indistinguishablity of the seBARG, and crs indistinguishability of NIZK ex-
tractor. Next we construct algorithms TGen, HashCheck and the extractor E .

The TGen(1λ, n, S, T, nf , k
∗) → crs algorithm is the same as Gen except that γ corresponds to

k∗, and NIZK extractor E is used to generate crszk,f . It computes td = ((crsbp,f,ℓ)ℓ∈[log T,λ], tdzk,f , k
∗).

The HashCheck(crs, hz, z∗, k∗, op)→ 0/1 algorithm does the following:

1. Let hj ∈ hz be a hash that includes k∗th leaf and (bj−1, . . . , blog T−1) (where bi ∈ {0, 1}) be the
path from hj to the k∗th leaf. Then parse opening as op = (r, ylog T−1,1, ylog T−1,2, . . . , yj−1,1,
yj−1,2).

2. For i ∈ [log T, j − 1] check CRHF.Hash(hkch, (yi−1,1, yi−1,2)) = yi,bi .

3. If j ≥ log T check CRHF.Hash(hkch, (yj−1,1, yj−1,2)) = hj otherwise let ylog T−1,blog T−1
= hj .

4. Compute (rt, tree) = HT.Hash(hkht, z
∗) and check ylog T−1,blog T−1

= PKE.Enc(pk, rt; r).

5. Output 1 if all the checks pass and 0 otherwise.

The extractor E does the following:

1. Find a proof πf,ℓ s.t. it contains a proof for zk∗ and let π∗
f,ℓ = πf,ℓ.

2. Let hzk−1 = {hlog T−1, · · · , hλ} and h∗ℓ,γ[ℓ+1] = hℓ.

3. Compute fdc,ℓ−log T+1 using TreeDecompose(f) and let f
∗
ℓ,γ[ℓ+1] = fdc,ℓ−log T+1.

4. Recursively extract from the proof πf,ℓ. Namely for i ∈ [log T, ℓ] Compute (h∗i−1,1, h
∗
i−1,2, π

∗
f,i−1)

= seBARG.E(tdbp,f,i, (f
∗
i,γ[i+1] = (f

∗
i−1,1, f

∗
i−1,2), h

∗
i,γ[i+1], j)j∈[2], π

∗
f,i).

5. Compute (z∗, h∗, r∗) = NIZK.E(tdzk,f , (f
∗
log T−1,γ[log T], h

∗
log T−1,γ[log T]), π

∗
f,log T−1).

6. Compute op = (r∗, h∗log T−1,1, h
∗
log T−1,2, . . . , h

∗
ℓ−1,1, h

∗
ℓ−1,2) and output (z∗, op).

Additionally let Extract be an algorithm that performs only one extraction (either BARG or
NIZK depending on ℓ) from proof πf,ℓ.

For any stateful PPT adversary A and any λ ∈ N define the experiment expα,β (where α
corresponds to (k, t− 1, t)) as follows:

exp :=



n, S, T, nf , k
∗ ← A1(1

λ),
(crs, td)← TGen(1λ, n, S, T, nf , k

∗),

(f, hz,Σ)← A2(crs),

(fdc,0, . . . , fdc,λ) = TreeDecompose(f)

(z∗, op)← E(td, f , hz,Σ)
w ← Extract(td, f , hz,Σ)


Moreover, let Bad be the following event:

Bad :=

[
PredicateVerify(crs, f , hz,Σ) = 1 ∧
(fk∗(z

∗) = 0 ∨ HashCheck(crs, hz, z∗, k∗, op) = 0)

]
.

63

To prove the claim, we need to show that for any stateful PPT adversary A it holds that:

δ0 = Pr[Bad : exp] ≤ negl(λ).

We prove this by induction on the depth ℓ of the proof πf,ℓ that contains a proof for zk∗ .
First note that by the construction of the E it holds that for any hℓ ∈ hz that includes k∗th leaf,
(γℓ, . . . , γlog T) is a path from hℓ to k∗th leaf. Thus we just need to check the CRHF hash correctness
on the path to k∗th leaf and the encryption + hash correctness on the base level. Given op =
(r∗, h∗log T−1,1, h

∗
log T−1,2, . . . , h

∗
ℓ−1,1, h

∗
ℓ−1,2) Let opj = (r∗, h∗log T−1,1, h

∗
log T−1,2, . . . , h

∗
j−1,1, h

∗
j−1,2) and

HashCheck′(crs, hj , z
∗, opj) partially run HashCheck as follows: 1) check the CRHF hash correctness

in the opj on path (γj , . . . , γlog T) from root hj , 2) check the base level encryption + hash correctness.
Define Verℓ be the following event:

• If ℓ ≥ log T then

Verℓ :=

[
seBARG.Verify(crsbp,f,ℓ, (f

∗
ℓ,γ[ℓ+1], hℓ, j)j∈[2], πf,ℓ) = 1 ∧

(fk∗(z
∗) = 0 ∨ HashCheck′(crs, hℓ, z

∗, opℓ) = 0

]
.

• Otherwise

Verℓ :=

[
NIZK.Verify(crszk,f , (f

∗
log T−1,γ[log T], hℓ), πf,ℓ) = 1 ∧

(fk∗(z
∗) = 0 ∨ HashCheck′(crs, hℓ, z

∗, opℓ) = 0)

]
.

and define δ1,ℓ = Pr[Verℓ : exp]. Note that δ1,ℓ ≥ δ0 for all ℓ, thus it suffices to prove that
δ1,ℓ ≤ negl(λ).

Induction Base. Suppose ℓ = log T − 1, thus it holds that E(td, f , hz,Σ) = (z∗, op = r∗) and
w = Extract(td, f , hz,Σ) = NIZK.E(tdzk,f , x = (f

∗
log T−1,γ[log T], hℓ), πf,ℓ) = (z∗, h∗, r∗). Now we

define the following probability:

δ2 = Pr
[
(x,w) ∈ Lzk,f ∧ (fk∗(z

∗) = 0 ∨ HashCheck′(crs, hℓ, z
∗, opℓ) = 0) : exp

]
.

Note that:

δ1,ℓ − δ2 ≤ Pr[NIZK.Verify(crszk,f , x, πf,ℓ) = 1 ∧ (x,w) /∈ Lzk,f : exp] ≤ negl(λ)

where the last inequality holds by the argument of knowledge property of the NIZK. Additionally
note that δ2 = 0 as (x,w) ∈ Lzk,f implies (a) fk∗(z

∗) = 0, and (b) (h∗, tree∗) = HT.Hash(hkht, z
∗)

and PKE.Enc(pk, h∗; r∗) = hℓ, thus HashCheck′(crs, hℓ, z
∗, opℓ) = 1. So it holds that δ1,log T−1 ≤

negl(λ).

Induction Step. Suppose δ1,i ≤ negl(λ) for all i < ℓ, and we want to prove that δ1,ℓ ≤ negl(λ).

Then it holds that w = seBARG.E(tdbp,f,ℓ, (f ℓ,γ[ℓ+1] = (f
∗
1, f

∗
2), hℓ, j)j∈[2], πf,ℓ) = (h∗1, h

∗
2, π

∗
f).

∨ HashCheck′(crs, h∗ℓ−1,γ[ℓ], z
∗, opℓ−1) = 0

Now for b = γ[ℓ] we define the following probability:

δ2 = Pr[(x = (f
∗
b , h

∗
b , b), w) ∈ Lbp,f,ℓ ∧ (fk∗(z

∗) = 0 ∨ HashCheck′(crs, hℓ, z
∗, opℓ) = 0) : exp].

64

Note that:

δ1,ℓ−δ2 ≤ Pr[seBARG.Verify(crsbp,f,ℓ, ((f
∗
1, f

∗
2), hℓ, j)j∈[2], πf,ℓ) = 1 ∧ (x,w) /∈ Lbp,f,ℓ : exp] ≤ negl(λ)

where the last inequality holds by the knowledge extractor property of the seBARG. Ad-
ditionally (x,w) ∈ Lbp,f,ℓ implies that 1) CRHF.Hash(hkch, (h

∗
1, h

∗
2)) = hℓ, 2) if ℓ = log T then

NIZK.Verify(crszk,f , (f
∗
b , h

∗
b), π

∗
f) = 1, and if ℓ > log T then seBARG.Verify(crsbp,f,ℓ−1, (f

∗
b , h

∗
b , j)j∈[2], π

∗
f)

= 1.
Now since HashCheck′(crs, hℓ, z

∗, opℓ) = 0 is equivalent with

CRHF.Hash(hkch, (h
∗
1, h

∗
2)) ̸= hℓ ∨ HashCheck′(crs, h∗b , z

∗, opℓ−1) = 0,

it holds that δ2 ≤ δ1,ℓ−1 ≤ negl(λ) where the last inequality holds by the induction assumption.
Thus it holds that δ1,ℓ ≤ negl(λ) concluding the proof.

Zero-Knowledge. We construct the simulator S(crs, cf) as follows:
• It generates crs similar to Gen except that it runs the NIZK simulators to generate crszk and
crszk,f .

• To generate the proof it does the following:

1. Compute cfk,t, st, ctin,k, hz, and Π similar to the zero-knowledge simulator for zk-IVsC
except that for hz output all the intermediate hz values (i.e., hzk for k ∈ [K]) instead of
the final hz.

2. Compute Σ similar to the predicate prover except that use NIZK simulator to compute
πzk,f where we use the previously computed ctin,k in the statement.

We define the following hybrids (note that the hybrids are similar to the proof of zero-knowledge
property of zk-IVsC except that we additionally have a H2 to simulate the predicate proofs).

H0: This is the original experiment. Namely, the adversary sends (n, S, T, nf), challenger sends
crs0 ← Gen(1λ, n, S, T, nf), adversary sends (z, f) s.t. fk(zk) = 1. Then Challenger computes
cf = M(z; 1T), (st0, hz0, ps,Π0) ← Prove(crs0, z), (hz0,K ,Σ0) ← PredicateProve(crs, f , z, ps)
and sends (st0, hz0,Π0,Σ0) to the adversary and finally adversary outputs b′.

H1: Similar to the original experiment except that NIZK simulator is used to generate crszk, and
πzk at every iteration of computing Π.

H2: Similar to H1 except that NIZK simulator is used to generate crszk,f , and πzk,f at every
iteration of computing Σ.

H3,k,t: Similar to H2 except that for every cfi,j until cfk,t except cf1,0 and cfK,T , we let epcfi,j =

PKE.Enc(pk, 0|pcf|) (and for the rest epcfi,j is honestly generated). Note that H3,1,0 = H2 and
H3,K,T−1 = H3,K,T .

H4,k: Similar to H3,K,T except that for every zi until zk, we let ctin,i = PKE.Enc(pk, 0λ) (and
for the rest ctin,i is honestly generated). Note that H4,0 = H3,K,T and H4,K is the output
of the simulator. Namely in H4,K the adversary sends (n, S, T, nf), the simulator sends
crs1 ← S(1λ, n, S, T, nf), adversary sends z (z, f) s.t. fk(zk) = 1. The simulator computes
cf =M(z; 1T) and sends (st1, hz1,Π1,Σ1)← S(crs0, cf) to the adversary and finally adversary
outputs b′.

65

For any adversary let H∗(A) be the output of the adversary in hybrid H∗. The proof closely
follows the proof of zero-knowledge property in zk-IVsC except that we additionally have to prove
the indistinguishability of hybrids H1 and H2. Thus we have the following claim:

Claim B.1. If NIZK is zero-knowledge then for any stateful PPT adversary A it holds that:

|Pr[H2(A) = 1]− Pr[H1(A) = 1]| ≤ negl(λ).

Proof. Similar to the proof of Claim A.7.

C ICZK Complete Analysis.

Proof of Theorem 4.4. Here we prove completeness, adaptive soundness and incremental zero-
knowledge of our construction.

Completeness. The completeness follows by the construction and the completeness of the un-
derlying Ψ, and PKE.

Efficiency. Note that the size of hzk values and Πψ,k are poly(λ, log |x1|, log |w1|, logK), and the
size of Σψ,k is poly(λ, log |x1|, |w1|, logK). Additionally since rrPKE is rate-1, the size of each ctk
is |wi| + poly(λ). Therefore, the total proof size is K|wi| + K · poly(λ, log |x1|, log |w1|, logK) +
poly(λ, log |x1|, |w1|, logK).

Adaptive Soundness. Let ExpICZK be the following experiment:

ExpICZK :=


(crs, sk)← Setup(1λ, 1nx , 1nw),

(x,Π = (hz,Πψ,Σψ, ct))← A(crs)
|xk| = nx, ((wk, psk; rk)← PKE.Dec(sk, ctk))k∈[K]

(zk = xk, wk, psk, rk)k∈[K]


and Bad be the following event:

Bad :=

[
x /∈ L ∧ Ψ.Verify(crs, (hzK , 1),Πψ) = 1 ∧
Ψ.PredicateVerify(crs, f , hzK ,Σψ) = 1

]
.

Note that to prove the adaptive soundness of Construction 4.3 we only need to prove that
δ1 = Pr[Bad : ExpICZK] ≤ negl(λ). Now define the following probabilities:

δ2 = Pr

[
x /∈ L ∧ Ψ.Verify(crs, (hzK , 1),Πψ) = 1 ∧
hzK = Ψ.Digest(crs, z, ps)

: ExpICZK

]
.

δ3 = Pr
[
x /∈ L ∧ Ψ.Verify(crs, (hzK , 1),Πψ) = 1 : ExpICZK, hzK = Ψ.Digest(crs, z, ps)

]
.

Now note that x /∈ L implies M(x,w) = 0 that implies M′(z) = 0 thus by the soundness
property that we prove in predicated zk-IVsC it holds that δ3 ≤ negl(λ). Additionally note that

66

δ2 ≤ δ3. Hence, it suffices to show that δ1−δ2 ≤ negl(λ), namely we need to show that δ∗ ≤ negl(λ)
where:

δ∗ = Pr

[
Ψ.PredicateVerify(crs, f , hzK ,Σψ) = 1 ∧
hzK ̸= Ψ.Digest(crs, z, f)

: ExpICZK

]
.

Suppose for some non-negligible function ϵ(·) it holds that δ∗ ≥ ϵ(λ), then for some k∗ ∈ [K]
and some non-negligible function ϵ′(·) it holds that:

Pr

 Ψ.PredicateVerify(crs, f , hzK ,Σψ) = 1 ∧
hzk∗ ̸= Ψ.Digest(crs, zk∗ , psk∗) ∧
hzk∗−1 = Ψ.Digest(crs, zk∗−1, psk∗−1)

: ExpICZK

 ≥ ϵ′(λ). (13)

Now we construct an adversary B that given A breaks the predicate soundness property that
we proved in predicated zk-IVsC. B receives nx and nw from A, samples a random index k′ ∈ [K],
sends (n, S, T, nf , k

′) to the challenger, receives crsψ from the challenger, samples (pk, sk), send
crs = (crsψ, pk) to A, receives (x,Π) from A, computes (w, ps, r) by decrypting ct using sk, lets
zk = (xk, wk, psk, rk) for k ∈ [K], finds pk′ and hkht in crsψ, computes f , and sends (f, hzK ,Σψ) to
the challenger. Note that this is the same as ExpICZK except that crsψ is generated using Ψ.TGen on
index k′. Let this experiment be ExpICZK,k′ Note that B’s advantage can be computed as follows:

δB =
K∑
k′=1

1/K · Pr
[

Ψ.PredicateVerify(crs, f , hzK ,Σψ) = 1 ∧
fk′(z

∗) = 0
:

ExpICZK,k′ ,

z∗ ← Ψ.E(td, f , hzK ,Σψ)

]
,

and it holds that,

δB ≥ 1/K · Pr
[

Ψ.PredicateVerify(crs, f , hzK ,Σψ) = 1 ∧
fk∗(z

∗) = 0
:

ExpICZK,k∗ ,

z∗ ← Ψ.E(td, f , hzK ,Σψ)

]
.

(14)
Now let z∗ = (x∗, w∗, ps∗, r∗), and consider the following cases:

• If x∗ ̸= xk∗ then by the the description of fk∗ it holds that fk∗(z
∗) = 0.

• If PKE.Enc(pk, (w∗, ps∗); r∗) ̸= ctk then by the the description of fk∗ it holds that fk∗(z
∗) = 0

(otherwise by perfect correctness of PKE it holds that (w∗, ps∗, r∗) = (wk∗ , psk∗ , rk∗)).

• If z∗ = zk∗ , then fk∗(z
∗) = 0 is equivalent with fk∗(zk∗) = 0.

Let (rtk∗ , treek∗) = HT.Hash(hkht, (xk∗ , wk∗ , psk∗ , rk∗)) and ĉtk∗ = PKE.Enc(pk′, rtk∗ ; psk∗). Thus
by Eq. (14) and the description of fk∗ it holds that:

δB ≥ Pr

[
Ψ.PredicateVerify(crs, f , hzK ,Πψ) = 1 ∧
nxt-hz(hzk−1, ĉtk∗) ̸= hzk

: ExpICZK,k∗

]
≥ ϵ(λ)/K − negl(λ).

which means

67

δB ≥ Pr

 Ψ.PredicateVerify(crs, f , hzK ,Πψ) = 1 ∧
hzk∗ ̸= Ψ.Digest(crs, zk∗ , psk∗) ∧
hzk∗−1 = Ψ.Digest(crs, zk∗−1, psk∗−1)

: ExpICZK,k∗

 ≥ ϵ(λ)/K − negl(λ).

there by Eq. (13) it holds that δB ≥ ϵ′(λ) which contradicts the predicate soundness property
that we proved for predicated zk-IVsC concluding the soundness of Construction 4.3.

Incremental zero-Knowledge. We construct the simulator S(crs, cf) as follows:

• It generates crs similar to the zero-knowledge simulator in the predicated zk-IVsC.

• To generate the proof it does the following:

1. Compute Πψ, Σψ, and hz similar to the zero-knowledge simulator in the predicated
zk-IVsC.

2. Compute ct by independently encrypting 0nw+|ps| for every k ∈ [K].

We define the following hybrids:

H0: This is the original experiment. Namely, the challenger on input (nx, nw), sends crs0 ←
Gen(1λ, nx, nw) to A, A sends (x,w) s.t. R(x,w) = 1 andM(x,w) = cf. Then the challenger
sends (st0,Π0) = Prove(crs, x, w) to A, and finally A outputs b′.

H1: Similar to H0 except that NIZK simulator is used to generate crszk, and πzk at every iteration
of computing Πψ.

This step only uses the zero-knowledge property of the underlying NIZK. Note that after this
step the only information about the intermediate configurations is in epcfk,t (for k ∈ [K] and
t ∈ [T]) that is the encryption of the root of the pseudo-configuration. Additionally, the only
information about the inputs of the machine is in (hz, ct,Σψ) and (ctin,k)k∈[K] (that is being
used in the statements of Πψ).

H2: Similar to H1 except that NIZK simulator is used to generate crszk,f , and πzk,f at every
iteration of computing Σψ.

This step only uses the zero-knowledge property of the underlying NIZK. Note that after this
step there is no information about inputs (w, ps, r) in the proof except the ones in (hz, ct) and
(ctin,k)k∈[K] (that is being used in the statements of Πψ and Σψ). Additionally note that the
only information about the input zk other than the ones in ctk, is a short (of size λ bits) digest
of the input zk that is encrypted in ctin,k (since hz is constructed only using (ctin,k)k∈[K]).

H3,k,t: Similar toH2 except that for every cfi,j until cfk,t except cf1,0 and cfK,T , and in the generation
of Πψ we let epcfi,j ← PKE.Enc(pk, 0|pcf|) (and for the rest epcfi,j is honestly generated). Note
that H3,1,0 = H2 and H3,K,T−1 = H3,K,T .

This step only uses the security of the underlying PKE. Note that after this step there is no
information about the intermediate configurations in the proof.

68

H4,k: Similar to H3,K,T except that for every cti until ctk, we independently sample ri and let
cti = rrPKE.Enc(pk, 0nw+|ps|; ri) (and for the rest cti is honestly generated). Note that H4,0 =
H3,K,T .

This step only uses the security with leakage of the underlying rrPKE as the only information
about randomness r remained in the proof is in (ctin,k)k∈[K] (that is the encryption of a short
(of size λ) bits of the inputs). Note that after this step there’s no information about w and
ps in the ct. The only information left in the proof is in (ctin,k)k∈[K].

H5,k: Similar to H4,K except that for every zi until zk, we let ctin,i ← PKE.Enc(pk, 0λ) (and for
the rest ctin,i is honestly generated). Note that H5,0 = H4,K and H5,K is the output of the
simulator. Namely in H5,K the simulator on input (nx, nw), sends crs1 ← S(1λ, nx, nw) to
A, A sends (x,w) s.t. R(x,w) = 1 andM(x,w) = cf. Then the simulator sends (st1,Π1) =
S(crs, x, cf) to A, and finally A outputs b′.

This step only uses the randomness-dependent message security of the underlying PKE as the
only information about randomness ps remained in the proof is in the message of (ctin,k)k∈[K]

(that is the encryption of a short (of size λ) bits of the inputs). Note that after this step
there’s no information about w in the proof and the proof can be simulated using only (x, cf).

For any adversary let H∗(A) be the output of the adversary in hybrid H∗. We have the following
claims:

Claim C.1. If NIZK is zero-knowledge then for any stateful PPT adversary A it holds that:

|Pr[H1(A) = 1]− Pr[H0(A) = 1]| ≤ negl(λ).

Proof. hi Towards the contradictions suppose there exists an adversary A and a non-negligible
function ϵ(·) s.t. |Pr[H1(A) = 1]−Pr[H0(A) = 1]| ≥ ϵ(λ). We construct adversary Bzk that breaks
the zero-knowledge property of the underlying NIZK protocol as follows:

1. Receives (1nx , 1nw) as input, and crs∗ from NIZK zero-knowledge challenger.

2. Computes (crs, td)← Gen(1λ, 1nx , 1nw) and updates crs by replacing crszk ∈ crsψ with crs∗.

3. Sends crs to A, receives x,w.

4. Computes (st,Π) similar to the prover except that at every step of updating hzk−1 to hzk − 1
Πψ (every call of UpdateSingleStep in subroutine Ψ.Update), instead of computing πzk, queries
the challenger on the correct computation of corresponding (x,w) and receive πzk.

5. Outputs whatever A outputs.

If the NIZK challenger generates crs and proof using Gen and Prove, then Bzk simulates H0

for A and if the challenger uses NIZK simulator, then Bzk simulates H1 for A. Thus Bzk has a
non-negligible advantage ϵ(λ) in breaking the zero-knowledge property of NIZK.

Claim C.2. If NIZK is zero-knowledge then for any stateful PPT adversary A it holds that:

|Pr[H2(A) = 1]− Pr[H1(A) = 1]| ≤ negl(λ).

69

Proof. Towards the contradictions suppose there exists an adversaryA and a non-negligible function
ϵ(·) s.t. |Pr[H2(A) = 1] − Pr[H1(A) = 1]| ≥ ϵ(λ). We construct adversary Bzk that breaks the
zero-knowledge property of the underlying NIZK protocol as follows:

1. Receives (1nx , 1nw) as input, and crs∗ from NIZK zero-knowledge challenger.

2. Computes (crs, td) similar to H1 and updates crs by replacing crszk,f ∈ crsψ with crs∗.

3. Sends crs to A, receives x,w.

4. Computes (st,Π) similar to the H1 except that at every update of computing Σψ (every call
of subroutine Ψ.PredicateUpdate), instead of computing πzk,f , queries the challenger on the
correct computation of the corresponding (x,w) and receive πzk,f .

5. Outputs whatever A outputs.

If the NIZK challenger generates crs and proof using Gen and Prove, then Bzk simulates H1

for A and if the challenger uses NIZK simulator, then Bzk simulates H2 for A. Thus Bzk has a
non-negligible advantage ϵ(λ) in breaking the zero-knowledge property of NIZK.

In the following claim we let k ∈ [K], t ∈ [T], and (k, t) ̸= (K,T).

Claim C.3. If PKE is secure then for any stateful PPT adversary A it holds that:

|Pr[H3,k,t(A) = 1]− Pr[H3,k,t−1(A) = 1]| ≤ negl(λ).

Proof. Towards the contradictions suppose there exists an adversaryA and a non-negligible function
ϵ(·) s.t. |Pr[H3,k,t(A) = 1]−Pr[H3,k,t−1(A) = 1]| ≥ ϵ(λ). We construct adversary Bpke that breaks
the security of the underlying PKE protocol as follows:

1. Receives (1nx , 1nw) as input, and pk∗ from PKE challenger.

2. Computes (crs, td) similar to H2 and updates crs by replacing pk ∈ crsψ with pk∗.

3. Sends crs to A, receives (x,w).

4. Computes (st,Π) similar to H2 except that when running single step of computing Πψ (calling
UpdateSingleStep in subroutine Ψ.Update) on (k, t), instead of computing epcfk,t, queries the
challenger on pcfk,t and receive epcfk,t.

5. Outputs whatever A outputs.

If the PKE challenger generates the ciphertext honestly, then Bpke simulates H3,k,t−1 for A and
if it responds with a ciphertext of all zeros, then Bpke simulates H3,k,t for A. Thus Bpke has a
non-negligible advantage ϵ(λ) in breaking the security of PKE.

In the following claim we let k ∈ [K].

Claim C.4. If rrPKE is secure then for any stateful PPT adversary A it holds that:

|Pr[H4,k(A) = 1]− Pr[H4,k−1(A) = 1]| ≤ negl(λ).

70

Proof. Towards the contradictions suppose there exists an adversaryA and a non-negligible function
ϵ(·) s.t. |Pr[H4,k(A) = 1] − Pr[H4,k−1(A) = 1]| ≥ ϵ(λ). We construct adversary Bpke that breaks
the security with leakage of the underlying PKE protocol as follows:

1. Receives (1nx , 1nw) as input, and pk∗ from PKE challenger.

2. Computes (crs, td) similar to H3,K,T and updates crs by replacing pk with pk∗.

3. Sends crs to A, receives (x,w).

4. Computes (st,Π) similar to H3,K,T except that instead of computing ctk ∈ ct, queries the
challenger on ((wk, psk), gk(·)), and receive (ctk, g(rk)), where we define gk(r) to compute
HT.Hash(hkht, zk = (xk, wk, psk, rk)) and output only rtk (and not treek). Note that gk(·) has
(hkht, xk, wk, psk) hard-coded.

5. Outputs whatever A outputs.

If the PKE challenger generates the ciphertext honestly, then Bpke simulates H4,k−1 for A and
if it responds with a ciphertext of all zeros, then Bpke simulates H4,k for A. Additionally note that
|rtk| = λ, thus there is only λ bits of leakage about the randomness rk that is used to encrypt
(wk, psk). Therefore Bpke has a non-negligible advantage ϵ(λ) in breaking the security with leakage
of PKE.

In the following claim we let k ∈ [K].

Claim C.5. If PKE is secure then for any stateful PPT adversary A it holds that:

|Pr[H5,k(A) = 1]− Pr[H5,k−1(A) = 1]| ≤ negl(λ).

Proof. Towards the contradictions suppose there exists an adversaryA and a non-negligible function
ϵ(·) s.t. |Pr[H5,k(A) = 1] − Pr[H5,k−1(A) = 1]| ≥ ϵ(λ). We construct adversary Bpke that breaks
the randomness-dependent message security of the underlying PKE protocol as follows:

1. Receives (1nx , 1nw) as input, and pk∗ from PKE challenger.

2. Computes (crs, td) similar to H4,K and updates crs by replacing pk′ ∈ crsψ with pk∗.

3. Sends crs to A, receives (x,w).

4. Computes (st,Π) similar to H4,K,T except that instead of computing ctin,k, interacts with the
challenger as follows: sends gk(·), receives gk(psk), sends gk(psk), and receive ctin,k. We define
gk(psk) to compute HT.Hash(hkht, zk = (xk, wk, psk, rk)) and output only rtk (and not treek).
Note that gk(·) has (hkht, xk, wk, rk) hard-coded.

5. Outputs whatever A outputs.

If the PKE challenger generates the ciphertext honestly, then Bpke simulates H5,k−1 for A and
if it responds with a ciphertext of all zeros, then Bpke simulates H5,k for A. Additionally note that
|rtk| = λ, thus there is only λ bits of leakage about the randomness psk that is used to encrypt rtk.
Therefore Bpke has a non-negligible advantage ϵ(λ) in breaking the randomness-dependent message
security PKE.

71

Therefore we conclude the proof of zero-knowledge property by a hybrid argument.

72

	Introduction
	Overview

	Preliminaries
	RAM Programs
	Rate-1 Block Somewhere Extractable Hash (SEH) Families
	Rate-1 Somewhere Extractable Batch Arguments (seBARGs)
	2-to-1 Collision Resistant Hash Function
	Hash Tree
	Non-Interactive Zero-Knowledge Arguments (NIZK)
	(Customized) Public-Key Encryption System
	leakage resilient/RDM/randomness recoverable/rate-1 PKEs

	Zero-Knowledge Incrementally Verifiable Streaming Computation (zk-IVsC)
	Definition.
	Construction
	Analysis
	Further Optimizing zk-IVsC
	Predicated zk-IVsC
	Definition
	Construction
	Analysis

	Incrementally Computable Zero-Knowledge Arguments (ICZK)
	Definition
	Construction
	Analysis

	From IVsC to Deterministic Distributed Computation
	Binary Tree to Path Distributed Computation
	Class of Succinctly Transformable Distributed Computations to a Path

	Benefits and Applications
	zk-IVsC Complete Analysis.
	Predicated zk-IVsC Complete Analysis.
	ICZK Complete Analysis.

