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Abstract. In block ciphers, the attacker should not be able to distin-
guish a block cipher from a random permutation, making the existence
of a distinguisher important. Cryptanalysis of the reduced-round vari-
ants of block ciphers is also important in cryptographic design. AES is
the most widely used block cipher, and currently, the best-known distin-
guisher for 5-round AES has a data and time complexity of 229.95 with
a success probability of 55%. In this paper, we propose the fully active
exchanged boomerang and multiple exchanged boomerang distinguishers
for 5-round AES, based on the retracing boomerang key-recovery attack.
The fully active exchanged boomerang distinguisher utilizes the proba-
bility that either each byte of the diagonal of the returned plaintext pair
is fully active, or the diagonal is inactive for all diagonals. This prob-
ability is very high, but we enhance it using the friends pair technique
to distinguish a block cipher from a random permutation. The multiple
exchanged boomerang distinguisher utilizes the fact that there are three
trails where the probability of one diagonal of the returned plaintext pair
being inactive is higher than the random probability, and one trail where
it is equal to the random probability. This 5-round distinguisher has a
complexity of 227.08 and a success probability of 82%, which represents a
new best-known result for the secret-key distinguisher on 5-round AES.

Keywords: AES · Distinguisher · Boomerang · Exchanged Boomerang.

1 Introduction

A block cipher is a cryptographic algorithm that encrypts data in fixed-size units
using a secret key. A block cipher primitive is typically designed by repeating
a round function multiple times. While using many rounds ensures security, it
also reduces efficiency. Therefore, to design a block cipher that is both secure
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and efficient, it is important to calculate the number of rounds that are secure
against various attacks through security analysis of reduced-round variants, and
then select the appropriate number of rounds by adding margin rounds.

The security of a block cipher primitive is generally evaluated by demonstrat-
ing its resistance against various known attacks, which fall into two categories:
distinguishing attacks and key recovery attacks. A distinguishing attack aims to
distinguish a block cipher from a random permutation, and is referred to as a
distinguisher. In particular, the secret-key distinguisher allows for the evaluation
of the cipher’s randomness for any given key.

Well-known attacks on block ciphers include differential cryptanalysis (DC) [9]
and linear cryptanalysis (LC) [30]. These cryptanalysis techniques were initially
introduced for the Data Encryption Standard (DES) and have since led to various
variants. As these analysis techniques evolved and computing power increased,
the National Institute of Standards and Technology (NIST) initiated a compe-
tition to develop a new block cipher standard.

DC has been utilized and extended in various attacks, including truncated
differentials [27], impossible differential cryptanalysis [26], high-order differen-
tials [27], boomerang attacks [37], differential-linear attacks [28], integral [17],
meet-in-the-middle [14] and others. Most recently, variations of DC have been
proposed, such as the subspace trail [21], the yoyo trick [33,31], the multiple-of-8
property [20], mixture-differential cryptanalysis [19,3], the exchange attacks [4],
and the fixed property [34].

In particular, we focus on the boomerang attack [37] introduced at FSE
1999. The boomerang attack, proposed by Wagner, is a technique that combines
two high-probability short differentials to achieve a higher overall probability
boomerang trail in the adaptively chosen ciphertexts setting. A boomerang trail
consisting of an upper-part differential with probability p and a lower-part dif-
ferential with probability q has an overall probability of p2q2. If p2q2 < 2−n

(where n is the block size), it can be used as a distinguisher.

The boomerang attack has been extended into various variants. Plaintext-
only variants, the amplified boomerang [25] and the rectangle attacks [8], were
presented shortly after. To further study the dependence and the connectivity
of upper and lower differentials in the boomerang attack, Dunkelman et al. pro-
posed the sandwich attack [15]. Cid et al. used the boomerang connectivity table
(BCT) [11] to analyze the case where the middle round is a single s-box layer.
In [13,35,38], researchers studied the case where the middle round is composed
of several rounds. Yang et al. introduced the double boomerang connectivity
table (DBCT) [40] and showed that the relation between neighboring rounds
cannot be ignored. Murphy showed in 2011 that some boomerang characteris-
tics were in fact impossible [32]. The truncated boomerang attack which utilizes
truncated differentials with boomerang is presented in EUROCRYPT 2023. The
exchanged boomerang attack is an attack that utilizes the mixing technique (ex-
change property [4]) from the retracing boomerang attack [16], and it has also
been utilized in the re-boomerang and boomerang chain distinguishers [39].
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Among block ciphers, the most widely used is the Advanced Encryption
Standard (AES) [12], which has demonstrated its security over the last 25 years.
AES is designed by Daemen and Rijmen in 1997 and standardized by the NIST
in 2001. Due to its security, several block ciphers with structures similar to AES
have been proposed, such as SKINNY [6] and MIDORI [1]. Additionally, many
tweakable block ciphers, like KIASU-BC [23] and DEOXYS-BC [24], reuse the
round function of AES in their designs and some block cipher use reduced-round
AES as a core component, such as Hound [18] and WEM [10], which use 5-
round AES, and TNT-AES [2], which uses 6-round AES. Therefore, analyzing
reduced-round variants of AES is particularly important.

Our Contributions

We first propose the fully active exchanged boomerang distinguisher. It uses
plaintext pairs with one active diagonal and checks whether each of the four
diagonals of the returned plaintext pair is either fully active (i.e., all four bytes
are active) or inactive in the exchanged boomerang. This is possible because
the right pairs following the fully active exchanged boomerang trail have at
most one active byte per column after the first round MC. The probability of
the fully active exchanged boomerang is 2−22. However, the random probability
that each of the four diagonals of the returned plaintext pair is either fully active
or inactive is very high, given by

((1− 2−8)4 + 2−32)4 ≈ 2−0.09.

We utilize the friend pairs technique [7] and exchange active inverse diagonal
technique to reduce this probability to

(((1− 2−8)4 + 2−32)4)2
8

≈ 2−23.1,

which is lower than the boomerang probability of 2−22. As a result, we can
construct the fully active exchanged boomerang distinguisher. Although the
boomerang probability is high, the use of friend pairs increases the complex-
ity accordingly. The fully active exchanged boomerang distinguisher on 5-round
AES has the data and time complexities of 231 with a success probability of 70%.
Although the fully active distinguisher does not provide better results than the
existing distinguisher, it is significant because it introduces a new approach for
distinguishing based on the pair being fully active, which, to the best of our
knowledge, has not been proposed before.

Then, we propose the multiple exchanged boomerang distinguisher. It uses
plaintext pairs with one active diagonal and checks whether the returned plain-
text pair is inactive in one inverse diagonal. We use four exchanged boomerang
trails which have same input truncated differences to increase the boomerang
probability to

2−28 + 2−27.4 + 2−28 + 2−30 ≈ 2−26.08.

Since the probability that the returned plaintext pair is inactive in one inverse
diagonal is randomly given by 4 · 2−32 = 2−30, we can construct the multiple



4 Shin et al.

exchanged boomerang distinguisher. Although the boomerang probability is not
as good as that of the fully active exchanged boomerang, it is more efficient
since it does not require additional pairs. The multiple exchanged boomerang
distinguisher on 5-round AES has the data and time complexities of 227.08 with
a success probability of 82%. The multiple exchanged boomerang distinguisher
is, to the best of our knowledge, the best distinguisher for 5-round AES.

Comparison with Previous Work

The first secret-key distinguisher for 5-round AES, known as the multiple-of-8
distinguisher, was first presented by Grassi et al. at EUROCRYPT 2017 [20].
In [33], the 5-round and 6-round yoyo distinguishers in an adaptively chosen
plaintexts and ciphertexts setting were presented by Rønjom et al. at ASI-
ACRYPT 2017. However, there was an error in the complexity calculation in
[33], and it was recomputed in [31]. In ASIACRYPT 2019, Bardeh et al. pre-
sented 5-round and 6-round distinguishers, known as exchange attacks [4]. The
current secret-key distinguishers for 5-round AES are shown in Table 1. Data
complexity is measured in chosen plaintexts (CP), adaptively chosen ciphertexts
(ACC) or adaptively chosen plaintexts and ciphertexts (ACPC). Time complex-
ity is measured in equivalent number of 5-round AES encryptions (E) or memory
accesses (M).

Table 1. Secret-key distinguishers for 5-round AES

Property Data Time Succ. Prob. Ref.

Multiple-of-8 232 CP 235.6 M 99% [20]

Exchange 230 CP 230 E 63% [4]

Yoyo 229.95 ACPC 229.95 M 55% [31]

Yoyo 230.65 ACPC 229.95 M 81% [31]

Fully active exchanged boomerang 231 ACC 231 M 70% Sect. 3

Multiple exchanged boomerang 227.08 ACC 227.08 M 82% Sect. 4

Organization

The remainder of the paper is organized as follows. Section 2 provides a brief
introduction to AES and explains the exchanged boomerang attack. In Section
3, we introduce the fully active exchanged boomerang distinguisher for 5-round
AES. In Section 4, we introduce the fully active exchanged boomerang distin-
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guisher for 5-round AES. Finally, in Section 5, we conclude the paper. The source
code for the experiments in this paper is available online.5

2 Preliminaries

2.1 Description of the AES

AES [12] was designed by Daemen and Rijmen in 1997. It is a Substitution-
Permutation Network (SPN) block cipher with a block size of 128 bits. It sup-
ports key sizes of 128, 192, and 256 bits, and employs 10, 12, and 14 rounds for
each respective key size. The internal state of AES is represented as a 4×4 array
of bytes, with indexing done column-wise. The round function of AES consists
of four operations performed in the following order and can be seen in Figure 1.

– SubBytes (SB) : The S-box operation is applied to each byte of the internal
state.

– ShiftRows (SR) : The second, third, and fourth rows are rotated to the left
by 1, 2, and 3 bytes, respectively.

– MixColumns (MC) : Each column is multiplied by a 4×4 MDS (Maximum
Distance Separable) matrix.

– AddRoundKey (AK) : The state is XORed with a 128-bit round key.

Round function R

AK SB

S

x
x
x
x

SR

C ←M× C

x
x

x
x

MC

Fig. 1. Round function of AES

Before the first round, an additional AK is applied and in the final round
the MC is omitted. For the reduced-round AES, the MC in the final round is
omitted. The round are indexed from 1 to 14, with the initial whitening key
AK as 0th round. The description of the key schedule is omitted in this paper
because it is not utilized.

5 We have submitted the source code as Supplementary Material. After the anonymous
review, we will upload and make it publicly available on GitHub.
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2.2 Differential and Truncated Differential Cryptanalysis

Differential cryptanalysis (DC) [9] is a well-known and powerful cryptanalysis
technique for block ciphers. DC is a statistical attack on block ciphers that
studies the development of differences between two encrypted plaintexts through
the encryption process. A differential is defined by an input difference ∆in ∈
{0, 1}n and output difference ∆out ∈ {0, 1}n, where n is the block size. We use
the notation ∆in

E−→ ∆out with p when a differential exists with probability p,
where the probability is defined over a random plaintext P :

p = Pr[∆in
E−→ ∆out] = Pr[E(P )⊕ E(P ⊕∆in) = ∆out].

Since E is a permutation, we have Pr[∆in
E−→ ∆out] = Pr[∆out

E−1

−→ ∆in].
A truncated differential [27] is defined by a set of input differences Din and

a set of output differences Dout. We use the notation Din
E−→ Dout to denote

the existence of a truncated differential with probability
→
p , defined as (with Avg

denoting the average):

→
p = Pr[Din

E−→ Dout] = Avg∆in∈Din
Pr[E(P )⊕ E(P ⊕∆in) ∈ Dout].

We also define the probability of the reverse truncated differential as

←
p = Pr[Dout

E−1

−→ Din] = Avg∆out∈Dout
Pr[E−1(C)⊕ E−1(C ⊕∆out) ∈ Din],

where C is a random ciphertext. In general, Pr(Din
E−→ Dout) and Pr(Dout

E−1

−→
Din) are different.

2.3 Boomerang Attacks

In 1999, Wagner introduced the boomerang attack [37], which combines two
differential trails to construct a boomerang trail that uses longer rounds in the
adaptive chosen ciphertext setting. In the boomerang attack, the encryption
function E is divided into two parts, E = E1◦E0. For upper part E0, there exists
a differential trail ∆in

E0−→ ∆out with probability
→
p in the forward direction and a

differential trail ∆out
E−1

0−→ ∆in with probability
←
p in the backward direction. For

the lower part E1, there exists a differential trail ∇out
E−1

1−→ ∇in with probability
←
q . The boomerang process is as follows and is shown in Figure 2.

1. Choose plaintext pairs (P1, P2) such that P ⊕ P ′ = ∆in, and ask for the
corresponding ciphertext pairs (C1, C2).

2. Generate C3 = C1⊕∇out and C4 = C2⊕∇out, and ask for the corresponding
plaintext pairs (P3, P4).

3. Check if P3 ⊕ P4 = ∆in.
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P1 P2

X1 X2

E0 E0

E1 E1

C1 C2

P3 P4

X3 X4

E0 E0

E1 E1

C3 C4

∆in

∆in

∇out ∇out

∆out

∆out

∇in ∇in

E

E0

E1

Fig. 2. The boomerang Attack

Denote Xi = E0(Pi) for i = 1, 2, 3, 4. Since P1 ⊕ P2 = ∆in, it follows that
X1 ⊕X2 = ∆out with probability

Pr[X1 ⊕X2 = ∆out | P1 ⊕ P2 = ∆in] =
→
p .

Similarly, since C1 ⊕ C3 = ∇out and C2 ⊕ C4 = ∇out, we have X1 ⊕X3 = ∇in
and X2 ⊕X4 = ∇in, each with probability

Pr[X1⊕X3 = ∇in | C1⊕C3 = ∇out] = Pr[X2⊕X4 = ∇in | C2⊕C4 = ∇out] =
←
q .

If X1 ⊕X2 = ∆out, X1 ⊕X3 = ∇in, and X2 ⊕X4 = ∇in, then

X3 ⊕X4 = X1 ⊕X2 ⊕X1 ⊕X3 ⊕X2 ⊕X4 = ∆out ⊕∇in ⊕∇in = ∆out.

If X3 ⊕X4 = ∆out, then P3 ⊕ P4 = ∆in holds with probability

Pr[P3 ⊕ P4 = ∆in | X3 ⊕X4 = ∆out] =
←
p .
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Therefore, given that P1 ⊕ P2 = ∆in, C1 ⊕ C3 = ∇out and C2 ⊕ C4 = ∇out, the
probability that P3 ⊕ P4 = ∆in is

Pr[P3 ⊕ P4 = ∆in | P1 ⊕ P2 = ∆in] =
→
p ·←p ·←q

2
.

If
→
p ·←p ·←q

2
> 2−n, then it can be used as a distinguisher.

2.4 Truncated Boomerang attack

In EUROCRYPT 2023, Bariant et al. replaced all differential trails in boomerang
attaks by truncated differential trails to propose the truncated boomerang at-
tacks [5]. The truncated boomerang attacks use structures on both plaintext
and ciphertext sides, which can reduce the complexity effectively. The trun-
cated boomerang attack consider two truncated differentials D0

in
E0−→ D0

out and
D1

in
E1−→ D1

out with probabilities
→
p ,
←
p and

→
q ,
←
q on E0 and E1. The truncated

boomerang attack proceeds as follows.

1. Choose a plaintext structure P0⊕D0
in. For each i ∈ D0

in, we define Pi = P0⊕i
and ask for the corresponding Ci = E(Pi).

2. Generate cipher structures Ci ⊕ D1
out for each ciphertext Ci. For each j ∈

D1
out, we define C̄i

j
= Ci ⊕ j and ask for the corresponding P̄i

j
= E−1(C̄i

j
).

3. Check if there exists a pair such that P̄i
j ⊕ P̄ ′i

j′ ∈ D0
in.

Similarly to the boomerang attack,

Pr[X1 ⊕X2 ∈ D0
out | P1 ⊕ P2 ∈ D0

in] =
→
p ,

Pr[X1 ⊕X3 ∈ D1
in | C1 ⊕ C3 ∈ D1

out] =
←
q ,

Pr[X2 ⊕X4 ∈ D1
in | C2 ⊕ C4 ∈ D1

out] =
←
q .

However, like in sandwich attack analysis, there is a connection probability

r = Pr[X3⊕X4 ∈ D0
out | (X1⊕X2 ∈ D0

out)∧(X1⊕X3 ∈ D1
in)∧(X2⊕X4 ∈ D1

in)].

And again, similarly to the boomerang attack,

Pr[P3 ⊕ P4 ∈ D0
in | X3 ⊕X4 ∈ D0

out] =
→
p .

Therefore, the probability that a pair follows truncated boomerang trail is

Pr[P3 ⊕ P4 ∈ D0
in | P1 ⊕ P2 ∈ D0

in] =
→
p ·←p ·←q

2
· r.

2.5 Exchanged Boomerangs for 5-round AES

The authors of [16] and [39] utilized the exchange technique to construct a
new boomerang attack on reduced-round AES. We call it as the exchanged
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boomerang attack. The exchange boomerang attacks use truncated differential
trails in the forward characteristic, and differential trail in the backward charac-
teristic. Thus it can use structures on plaintext side, but can not use structures
on ciphertext side.

We consider only 5-round AES and decompose it into two parts, E1 ◦ E0,
where

E0 = SR ◦ SB ◦AK ◦MC ◦ SR ◦ SB ◦AK ◦MC ◦ SR ◦ SB ◦AK

is the upper 2.5 rounds before MC of the third round, and

E1 = AK ◦ SR ◦ SB ◦AK ◦MC ◦ SR ◦ SB ◦AK ◦MC

is the final 2 rounds. Let (P1, P2) be a pair of plaintexts and (C1, C2) be the
corresponding pair of ciphertexts. The exchanged boomerang generates the new
ciphertext pair (C3, C4) by exchanging the active inverse diagonal. For each
inverse diagonal 1 ≤ j ≤ 4, let the ciphertext pair generated by exchanging the
j-th inverse diagonal be denoted as (Cj

3 , C
j
4). Denote the intermediate value after

E0 as X. We decompose E1 as E1 = E1,1 ◦ E1,0, where

E1,0 = AK ◦MC

and
E1,1 = AK ◦ SR ◦ SB ◦AK ◦MC ◦ SR ◦ SB.

Denote the intermediate value after E1,0 as Y .
(Cj

3 , C
j
4) is obtained by exchanging the active inverse diagonal of (C1, C2),

and since E1,1 can be computed in 32-bit super box units, (Y j
3 , Y

j
4 ) is obtained by

exchanging the active diagonal of (Y1, Y2). (Y
j
3 , Y

j
4 ) is obtained by exchanging the

active diagonal of (Y1, Y2), and since E1,0 = AK ◦MC, (Xj
3 , X

j
4) and (X1, X2)

have the same zero difference pattern with probability 1. It can be used to
construct an efficient boomerang trail.

3 Fully active exchanged boomerang distinguisher

In this section, we propose the fully active exchanged boomerang distinguisher
by increasing the probability that the diagonal of the returned plaintext pair
(P j

3 , P
j
4 ) in the exchanged boomerang trail is either fully active or inactive in

each diagonal, using friend pairs. As far as we know, this is the first time that a
block cipher and a random permutation have been distinguished using fully ac-
tive pairs. The fully active exchanged boomerang distinguisher for 5-round AES
has a complexity of 231 with a success probability of 70%. We first present the
fully active exchanged boomerang distinguisher algorithm, followed by an anal-
ysis of the distinguisher’s complexity and success probability. Then, we provide
experimentally verified data and consider key recovery attack.

The idea of the fully active exchanged boomerang distinguisher is that if each
column of returned pair has only one active byte after the first round MC, then
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the plaintext pair must be fully active because the MC and MC−1 is an MDS
matrix. The probability that a returned plaintext pair is fully active at random
is very high, but we can reduce it using the friend pairs technique. Additionally,
by using a backward trail with probability 1 in the exchanged boomerang trail,
we ensure that all pairs obtained by exchanging the active inverse diagonal of
a right pair’s ciphertext pair remain right pairs, further reducing the random
probability. We utilize these two techniques to reduce the random probability to
be lower than the boomerang probability, thereby constructing the fully active
boomerang distinguisher.

We introduce the fully active exchanged boomerang trail. For the upper part
E0, the input truncated difference Din is active only in the 0th diagonal, the
output truncated difference Dout is active only in one inverse diagonal, and the
truncated difference for returned plaintext pairs D′in is either inactive or all bytes
of the diagonal are active for all diagonals. Since Din

E0−→ Dout is equivalent to the
condition where only one byte is active after the first round MC, the probability
of Din

E0−→ Dout is

Pr[Din
E0−→ Dout] =

→
p = 4 · 2−24 = 2−22.

Dout
E−1

0−→ D′in holds with probability

Pr[Dout
E−1

0−→ D′in] =
←
p = 1.

If there are no inactive bytes before the second round MC, there will be no
inactive bytes (fully active) in the plaintext pair. If there are n inactive bytes
before the second round MC, there will be n inactive diagonals in the plaintext
pair.

For the lower part E1, one of the inverse diagonals of (C1, C2) is exchanged
to obtain ciphertext pairs (Cj

3 , C
j
4) for j ∈ {1, 2, 3, 4}. Then, the probability that

Xj
3 ⊕Xj

4 ∈ Dout is
Pr[Xj

3 ⊕Xj
4 ∈ Dout] = 1

by the exchange boomerang. Therefore, the probability of satisfying the fully
active exchanged boomerang trail is 2−22. The fully active exchanged boomerang
trail can be seen in Figure 3. In the figure, white boxes represent inactive bytes,
gray boxes represent active bytes, and hatched boxes represent exchanged bytes.

Since the probability of a single byte being active is 1− 2−8, the probability
of an entire diagonal being active is (1− 2−8)4. Since the probability of a diag-
onal being inactive is 2−32, the probability that one returned plaintext pair is
randomly either fully active or inactive in each diagonal is ((1− 2−8)4 +2−32)4.
Therefore, the probability that all four returned plaintext pairs are randomly
either fully active or inactive in each diagonal is

(((1− 2−8)4 + 2−32)4)4 ≈ 2−0.36.

It is a very high probability for distinguishing using the fully active exchanged
boomerang trail, so we reduce it by using friend pairs. For the right pair (P1, P2)
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(P1, P2)

AK

SB SR MC

2−22

AK

SB SR MC

AK

SB SR MC

AK

SB SR MC

AK

SB SR

AK

SB

(C1, C2)

(P3, P4)

AK

SB SR MC

AK

SB SR MC

AK

SB SR MC

1

AK

SB SR MC

AK

SB SR

AK

SB

(C3, C4)

Fig. 3. Fully active exchanged boomerang trail

that follows the fully active exchanged boomerang trail, all friend pairs where
the 0th diagonal is the same as (P1, P2) and the other diagonals use different
constants compared to (P1, P2) are also right pairs that follow the fully active
exchanged boomerang trail. Therefore, for any plaintext pair, the probability
that the pair and all its friend pairs also satisfy the exchanged boomerang trail
is still 2−22. However, if we use 26 friend pairs, then the probability that all
returned pairs of the pair and its 26 friend pairs are randomly either fully active
or inactive in each diagonal is

((((1− 2−8)4 + 2−32)4)4)2
6

≈ 2−23.13 < 2−22.

Therefore, since the fully active exchanged boomerang probability is bigger than
the random probability, a distinguisher can be constructed.

We need 222 plaintext pairs to obtain one right pair. Using a plaintext struc-
ture of size 211.5, where only the 0th diagonal can take values and the remaining
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bytes are any constants, we can obtain 222 plaintext pairs. For all 222 plaintext
pairs, 26 friend pairs are generated for each. A right pair and all of its friend
pairs follow the fully active exchanged boomerang trail with a probability of 1.
On the other hand, all returned pairs of a wrong pair and its friend pairs are
randomly either fully active or inactive in each diagonal with a probability of
2−23.13. Therefore, for all returned pairs of a pair and its friend pairs that are
either fully active or inactive in each diagonal, on average,

1 + 222 · 2−23.13 = 1 + 2−1.13 ≈ 1.46 > 1

such pairs exist for 5-round AES, while for a random permutation, on average,

222 · 2−23.13 = 2−1.13 ≈ 0.46 < 1

such pairs exist. Therefore, if there exists a plaintext pair and its friend pair
such that all generated returned plaintext pairs are either fully active or inac-
tive in each diagonal, we output 5-round AES; otherwise, we output a random
permutation. This allows us to distinguish 5-round AES from a random permu-
tation. The fully active exchanged boomerang distinguisher for 5-round AES is
as follows, and the pseudocode is given in Algorithm 1.

1. Choose a plaintext structure of size 211.5 in which the four bytes in the 0th
diagonal can take values and the remaining bytes are any constants.

2. For each plaintext pair (P1, P2), generate friend pairs (P ′1, P
′
2) where the

0th diagonal is the same, but the constants are different and ask for the
corresponding ciphertexts.

3. For each j ∈ {0, 1, 2, 3}, exchange the j-th active inverse diagonal of cipher-
text pair (C1, C2) to obtain (C3, C4) and ask for the decryption of (C3, C4)
to obtain (P3, P4).

4. If there exists one pair (P1, P2) such that all returned pair (P ′3, P ′4) of a pair
and its friend pairs that are either inactive or have all bytes of the diagonal
active for all diagonals, the distinguishing result is 5-round AES, otherwise
it is a random permutation.

Complexity

In step 1, we need 211.5 chosen plaintexts. In step 2, we generate 222 · 26 = 228

plaintext pairs, so 228 · 2 = 229 chosen plaintexts are required. In step 3, we
generate 228 ·4 = 230 ciphertext pairs, so 230 ·2 = 231 adaptive chosen ciphertexts
are required. Therefore, the data complexity of a distinguishing process is 231

ACC, and the time complexity is 231.

Success Probability

The probability of the distinguisher succeeding is given by the average of the
probability that the distinguisher outputs 5-round AES when the black box is
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Algorithm 1 Fully active exchanged boomerang distinguisher for 5-round AES
1: Ask for the encryption of a plaintext structure of size 211.5 in which the four bytes

in the 0th diagonal can take values and the remaining bytes are any constants
2: for each plaintext pair do
3: Ask for the encryption of the pair and its 26 friend pairs, where the 0th diagonal

is the same, and the other diagonals have different constants
4: for each ciphertext pair do
5: Exchange the j-th active inverse diagonal of (C1, C2) to obtain four pairs

(C3, C4) for j ∈ {0, 1, 2, 3}
6: Ask for the decryption of four pairs (C3, C4) to obtain four pairs (P3, P4)
7: end for
8: if all returned pair are either inactive or have all bytes of the diagonal active

for all diagonals then
9: return 5-round AES

10: end if
11: end for
12: return random permutation

a 5-round AES and the probability that the distinguisher outputs a random
permutation when the black box is a random permutation. Each probability can
be calculated using the Poisson distribution. When the black box is 5-round
AES, it follows a Poisson distribution with λ = 1.46, and when the black box
is a random permutation, it follows a Poisson distribution with λ = 0.46. The
probability of having 1 or more occurrences in a Poisson distribution with λ =
1.46 is approximately

Pr[X ≥ 1] ≈ 0.77

and for a Poisson distribution with λ = 0.46, the probability of 0 occurrences is
approximately

Pr[X = 0] ≈ 0.63.

Therefore, the distinguisher succeeds with a probability of

0.77 + 0.63

2
= 0.7

on average.

Experimental Verification

To verify the fully active exchanged boomerang distinguisher, we first count the
number of pairs (P1, P2) such that all returned pairs (P ′3, P

′
4) of the pair and

its friend pairs are either inactive or have all bytes of the diagonal active for all
diagonals. We conducted 100 experiments for each case and verified that, for 5-
round AES, there is an average of 1.63 pairs, while for the random permutation
(10-round AES), there is an average of 0.46 pairs, which is close to the theoretical
expectation. The experimental results for this are shown in Table 2.
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Table 2. Experimental results of the number of detected pairs in the fully active
exchanged boomerang distinguisher for 5-round AES

Number of Blackbox Experimental Theoretical

experiments Primitive number of pairs number of pairs

100 5-round AES 1.63 1.46

100 Rand. Perm. 0.46 0.46

Additionally, to experimentally verify the success probability of the distin-
guisher, we counted the number of cases where the distinguisher outputs 5-round
AES when the black box is 5-round AES, and the number of cases where the
distinguisher outputs a random permutation when the black box is a random
permutation. As in the previous experiment, we conducted 100 times each for
5-round AES and the random permutation (10-round AES). The results showed
that when the black box was 5-round AES, the distinguisher outputted 5-round
AES 74 times, and when the black box was a random permutation, the distin-
guisher outputted a random permutation 58 times. Therefore, the experimental
success probability is (0.74 + 0.58)/2 = 0.66, which is similar to the theoretical
probability. The experimental results for this are shown in Table 3.

Table 3. Experimental results of a success probability of the fully active exchanged
boomerang distinguisher for 5-round AES

Number of Blackbox Returned as Returned as Experimental

experiments Primitive 5-round AES Rand. Perm. Success Probability

100 5-round AES 74 26
0.74+0.58

2
= 0.66

100 Rand. Perm. 42 58

Key Recovery Attack

The fully active exchanged boomerang distinguisher can be directly used in the
key recovery attacks for 5-round AES with the complexity of the distinguisher it-
self, which is higher than that of the retracing boomerang attack. The right pairs
following the fully active exchanged boomerang trail have three inactive bytes
in the column after first round of MC, allowing the filtering of the 0th round
key. Since the returned pairs can also be used to filter the 0th round key, the
0th round key can be recovered by a single use of the distinguisher. Key guess-
ing can be performed with negligible complexity compared to the complexity
of the fully active exchanged boomerang distinguisher, using the meet-in-the-
middle (MITM) technique [3] with a complexity of 217. Therefore, it requires a
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complexity of 231, which is less efficient compared to the retracing boomerang
attack using friendly exchanged boomerang trails for key recovery. The key re-
covery process is as follows.

1. Execute the distinguishing attack and obtain quartets (P1, P2, P
j
3 , P

j
4 ) which

follow the fully active exchanged boomerang, where (P1, P2) is active in the
0th diagonal and (P j

3 , P
j
4 ) is either fully active or inactive in each diagonal.

2. Guess and filter 0th round key according to the fact that the difference of
(P j

3 , P
j
4 ) after first round MC are active at most one byte in each column.

Since we have 4 · 26 = 28 pairs of (P j
3 , P

j
4 ), we can sufficiently filter the

diagonal of the 0th round key by a factor of 232 · (2−22)28 . Therefore, we can
obtain the 0th round key.

4 Multiple exchanged boomerang distinguisher

In this section, we propose the multiple exchanged boomerang distinguisher by
using multiple exchanged boomerang trails which have the same input truncated
differences. The multiple exchanged boomerang distinguisher for 5-round AES
has a complexity of 227.08. This is, to the best of our knowledge, the best-
known distinguisher for 5-round AES. We first present the multiple exchanged
boomerang distinguisher algorithm, followed by an analysis of the distinguisher’s
complexity and success probability. Then, we provide experimentally verified
data and consider key recovery attack.

The idea of the multiple exchanged boomerang distinguisher is to utilize
multiple exchanged boomerangs that use the same input truncated differences,
Din and D′in. We have found four exchanged boomerang trails in total: three
trails with probabilities better than the random probability and one trail with
a probability equal to the random probability. We combine the four exchanged
boomerang trails to significantly increase the boomerang probability.

We introduce the multiple exchanged boomerang trail. The multiple ex-
changed boomerang uses four exchanged boomerang trails which have the same
Din and D′in. The input truncated difference Din is active only in the 0th diag-
onal, same as in the fully active exchanged boomerang trail, and the truncated
difference for returned plaintext pairs D′in is inactive in one diagonal. We define
the truncated differences D′in for the four exchanged boomerang trails as D1

out,
D2

out, D3
out, and D4

out.
The truncated difference D1

out for the upper part E0 of the first exchanged
boomerang trail is active only in a one inverse diagonal. The probability of
Din

E0−→ D1
out is

Pr[Din
E0−→ D1

out] =
→
p = 4 · 2−24 = 2−22

and the probability of D1
out

E−1
0−→ Din is

Pr[D1
out

E−1
0−→ Din] =

←
p = 2−8 · 4 = 2−6.
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Fig. 4. First exchanged boomerang trail

Therefore, the probability of the first exchanged boomerang trail is

→
p ·←p = 2−22 · 2−6 = 2−28.

The first trail can be seen in Figure 4.
The truncated difference D2

out for the upper part E0 of the second exchanged
boomerang trail is active in two inverse diagonals. The probability of Din

E0−→
D2

out is

Pr[Din
E0−→ D2

out] =
→
p = 6 · 2−16 = 2−13.4

and the probability of D2
out

E−1
0−→ Din is

Pr[D2
out

E−1
0−→ Din] =

←
p = 4 · 2−16 = 2−14.
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Fig. 5. Second exchanged boomerang trail

Therefore, the probability of the second exchanged boomerang trail is

→
p ·←p = 2−13.4 · 2−14 = 2−27.4.

The second trail can be seen in Figure 5.
The truncated difference D3

out for the upper part E0 of the third exchanged
boomerang trail is active in three inverse diagonals. The probability of Din

E0−→
D3

out is

Pr[Din
E0−→ D3

out] =
→
p = 4 · 2−8 = 2−6

and the probability of D3
out

E−1
0−→ Din is

Pr[D3
out

E−1
0−→ Din] =

←
p = 4 · 2−24 = 2−22.
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Fig. 6. Third exchanged boomerang trail

Therefore, the probability of the third exchanged boomerang trail is

→
p ·←p = 2−6 · 2−22 = 2−28.

The third trail can be seen in Figure 6.
The truncated difference D4

out for the upper part E0 of the fourth exchanged
boomerang trail is active in four inverse diagonals. The probability of Din

E0−→
D4

out is

Pr[Din
E0−→ D4

out] =
→
p = 1

and the probability of D4
out

E−1
0−→ Din is

Pr[D4
out

E−1
0−→ Din] =

←
p = 4 · 2−32 = 2−30.
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Fig. 7. Fourth exchanged boomerang trail

Therefore, the probability of the third exchanged boomerang trail is

→
p ·←p = 1 · 2−30 = 2−30.

The fourth trail can be seen in Figure 7.
By combining four exchanged boomerang trails with the same Din and D′in,

the probability of the multiple exchanged boomerang is

2−28 + 2−27.4 + 2−28 + 2−30 = 2−26.08.

The probability that the returned plaintext pair is randomly inactive in one di-
agonal is 4 · 2−32 = 2−30. Therefore, since the multiple exchanged boomerang
probability is better than the random probability, a distinguisher can be con-
structed.



20 Shin et al.

We need 226.08 pairs to obtain one right pair. Since we can generate four
additional ciphertext pairs by exchanging the active inverse diagonal in the ci-
phertext pairs, 224.08 plaintext pairs are required. Using a plaintext structure of
size 212.58, where only the 0th diagonal can take values and the remaining bytes
are any constants, we can obtain 224.08 plaintext pairs. A right pair satisfy the
multiple exchanged boomerang with a probability of 1. On the other hand, a
wrong returned pair is randomly inactive in one diagonal with a probability of
2−30. Therefore, for returned pair that is inactive in one diagonal, on average,

1 + 2−26.08 · 230 = 1 + 2−3.92 ≈ 1.066 > 1

such pairs exist for 5-round AES, while for a random permutation, on average,

2−26.08 · 230 = 2−3.92 ≈ 0.066 < 1

such pairs exist. Therefore, if there exists a plaintext pair such that returned
plaintext pair is inactive in one diagonal, we output 5-round AES; otherwise,
we output a random permutation. This allows us to distinguish 5-round AES
from a random permutation. The multiple exchanged boomerang distinguisher
for 5-round AES is as follows, and the pseudocode is given in Algorithm 2.

1. Choose a plaintext structure of size 212.58 in which the four bytes in the 0th
diagonal can take values and the remaining bytes are any constants, and ask
for the corresponding ciphertexts.

2. For each j ∈ {0, 1, 2, 3}, exchange the j-th active inverse diagonal of cipher-
text pair (C1, C2) to obtain (C3, C4) and ask for the decryption of (C3, C4)
to obtain (P3, P4).

3. If there exist a pair (P3, P4) that is inactive in one diagoal, the distinguishing
result is 5-round AES, otherwise it is a random permutation.

Algorithm 2 Multiple exchanged boomerang distinguisher for 5-round AES
1: Ask for the encryption of a plaintext structure of size 212.58 in which the four bytes

in the 0th diagonal can take values and the remaining bytes are any constants
2: for each ciphertext pair do
3: Exchange the j − th active inverse diagonal of (C1, C2) to obtain four pairs

(C3, C4) for j ∈ {0, 1, 2, 3}
4: Ask for the decryption of four pairs (C3, C4) to obtain four pairs (P3, P4)
5: if returned pair is inactive in one diagonal then
6: return 5-round AES
7: end if
8: end for
9: return random permutation
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Complexity

In step 1, we need 212.58 chosen plaintexts. In step 2, we generate 224.08·4 = 226.08

ciphertext pairs, so 226.08 · 2 = 227.08 adaptive chosen ciphertexts are required.
Therefore, the data complexity of a distinguishing process is 227.08 ACC, and
the time complexity is 227.08.

Success Probability

The probability of the distinguisher succeeding is given by the average of the
probability that the distinguisher outputs 5-round AES when the black box is
a 5-round AES and the probability that the distinguisher outputs a random
permutation when the black box is a random permutation. Each probability can
be calculated using the Poisson distribution. When the black box is 5-round
AES, it follows a Poisson distribution with λ = 1.066, and when the black
box is a random permutation, it follows a Poisson distribution with λ = 0.066.
The probability of having 1 or more occurrences in a Poisson distribution with
λ = 1.066 is approximately

Pr[X ≥ 1] ≈ 0.713

and for a Poisson distribution with λ = 0.066, the probability of 0 occurrences
is approximately

Pr[X = 0] ≈ 0.936.

Therefore, the distinguisher succeeds with a probability of
0.713 + 0.936

2
= 0.8245

on average.

Experimental Verification

To verify the multiple exchanged boomerang distinguisher, we first count the
number of returned pairs (P3, P4) that are inactive in one diagonal. We conducted
100 experiments for each case and verified that, for 5-round AES, there is an
average of 1.12 pairs, while for the random permutation (10-round AES), there
is an average of 0.08 pairs, which is close to the theoretical expectation. The
experimental results for this are shown in Table 4.

Additionally, to experimentally verify the success probability of the distin-
guisher, we counted the number of cases where the distinguisher outputs 5-round
AES when the black box is 5-round AES, and the number of cases where the
distinguisher outputs a random permutation when the black box is a random
permutation. As in the previous experiment, we conducted 100 times each for
5-round AES and the random permutation (10-round AES). The results showed
that when the black box was 5-round AES, the distinguisher outputted 5-round
AES 57 times, and when the black box was a random permutation, the distin-
guisher outputted a random permutation 91 times. Therefore, the experimental
success probability is (0.57 + 0.91)/2 = 0.74, which is similar to the theoretical
probability. The experimental results for this are shown in Table 5.
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Table 4. Experimental results of the number of detected pairs in the multiple ex-
changed boomerang distinguisher for 5-round AES

Number of Blackbox Experimental Theoretical

experiments Primitive number of pairs number of pairs

100 5-round AES 1.12 1.066

100 Rand. Perm. 0.08 0.066

Table 5. Experimental results of a success probability of the multiple exchanged
boomerang distinguisher for 5-round AES

Number of Blackbox Returned as Returned as Experimental

experiments Primitive 5-round AES Rand. Perm. Success Probability

100 5-round AES 57 43
0.57+0.91

2
= 0.74

100 Rand. Perm. 9 91

Key Recovery Attack

Similar to the fully active exchanged boomerang distinguisher, the multiple ex-
changed boomerang distinguisher can be directly used in key recovery attacks for
5-round AES with the complexity of the distinguisher itself, which is higher than
that of the retracing boomerang attack. Among the four exchanged boomerang
trails used in the multiple exchanged boomerang distinguisher, the three trails
with the highest probabilities have inactive bytes after the first round MC.
Therefore, by leveraging the fact that the right pair has at least one inactive
byte with high probability after the first round MC, the 0th round key can be
filtered. The returned pairs of a right pair all have the same zero difference pat-
tern as the right pair after the first round MC. Therefore, using a total of five
pairs, we can filter one diagonal from the input plaintext pair and three diag-
onals from the four returned plaintext pairs by a factor of 2−6. Therefore, by
performing the distinguisher twice to obtain two right pairs, the 0th round key
can be sufficiently filtered. Key guessing also can be performed with negligible
complexity compared to the complexity of the multiple exchanged boomerang
distinguisher, using the meet-in-the-middle (MITM) technique [3] with a com-
plexity of 217. Therefore, it requires a complexity of 2·227.08 = 228.08, which is less
efficient compared to the retracing boomerang attack using friendly exchanged
boomerang trails for key recovery. The key recovery process is as follows.

1. Execute the distinguishing attack and obtain quartets (P1, P2, P
j
3 , P

j
4 ) which

follow the fully active exchanged boomerang, where (P1, P2) is active in the
0th diagonal and (P j

3 , P
j
4 ) is inactive in one diagonal.

2. Guess and filter 0th round key according to the fact that the differences of
(P1, P2) and (P j

3 , P
j
4 ) after first round MC are inactive at least one byte in
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each column. In a single execution of the distinguisher, the key is filtered by
a factor of (2−6)1+3·4 = 2−78.

3. Repeat the above two steps once more to sufficiently filter the 0th round key.
4. We can sufficiently filter the 0th round key by a factor of 2128 · (2−78)2.

Therefore, we can obtain the 0th round key.

5 Conclusion

In this paper, we proposed the fully active exchanged boomerang and multi-
ple exchanged boomerang distinguishers for 5-round AES by utilizing the friend
pairs technique and multiple trails. The fully active exchanged boomerang dis-
tinguisher for 5-round AES has the data and time complexities 231 and success
probability 70%. The multiple exchanged boomerang distinguisher for 5-round
AES has the data and time complexities 227.08 and success probability 82%. To
the best of our knowledge, this is the best-known distinguisher for 5-round AES.
The fully active exchanged boomerang and multiple exchanged boomerang dis-
tinguishers can also be applied to other AES-like block ciphers. In the fully active
exchanged boomerang distinguisher, distinguishing by checking whether the di-
agonal is inactive or if all bytes of the diagonal are active could be considered
for future research, potentially combined with other cryptanalysis techniques.
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