
LatticeFold+: Faster, Simpler, Shorter Lattice-Based Folding

for Succinct Proof Systems

Dan Boneh and Binyi Chen

Stanford University

February 17, 2025

Abstract

Folding is a technique for building efficient succinct proof systems. Many existing
folding protocols rely on the discrete-log based Pedersen commitment scheme, and are
therefore not post-quantum secure and require a large (256-bit) field. Recently, Boneh
and Chen constructed LatticeFold, a folding protocol using lattice-based commitments
which is plausibly post-quantum secure and can operate with small (64-bit) fields.
For knowledge soundness, LatticeFold requires the prover to provide a range proof on
all the input witnesses using bit-decomposition, and this slows down the prover. In
this work we present LatticeFold+, a very different lattice-based folding protocol that
improves on LatticeFold in every respect: the prover is five to ten times faster, the
verification circuit is simpler, and the folding proofs are shorter. To do so we develop
two novel lattice techniques. First, we develop a new purely algebraic range proof
which is much more efficient than the one in LatticeFold, and may be of independent
interest. We further shrink the proof using double commitments (commitments of
commitments). Second, we show how to fold statements about double commitments
using a new sumcheck-based transformation.

1

Contents

1 Introduction 3
1.1 Additional related work . 7

2 Preliminaries 7
2.1 Cyclotomic rings . 8
2.2 Multilinear extensions and sumchecks over rings 10
2.3 Module-based Ajtai commitments . 12
2.4 Reduction of Knowledge . 12

3 Generalized Committed Linear Relations 13

4 A Toolbox of Reduction of Knowledge 14
4.1 Linear commitments and double commitments 15
4.2 Monomial set check . 16
4.3 Range check . 19
4.4 Commitment transformation . 24

5 Folding Generalized Committed Linear Relations 34
5.1 Folding . 35
5.2 Decomposition . 37
5.3 Efficiency estimate . 38

6 Conclusion and future work 40

A Reducing R1CS to the general linear relation 48

2

1 Introduction

In recent years succinct non-interactive arguments of knowledge (SNARKs) have found
many real-world applications: scaling and bridging blockchains [Whi18; Xie+22], authen-
ticating media [NT16; DB22; KHSS22], machine learning [CWSK24; YCBC24], verifiable
delay functions [BBBF18], and many others. To avoid the high memory requirements of
some SNARK proof systems, provers in practice break the task of constructing a proof
into small steps and prove each step separately. This approach is called incrementally ver-
ifiable computation (IVC) [Val08] or proof carrying data (PCD) [CT10]. It also provides
additional opportunities for parallelizing the prover [Ngu+24].

The original IVC/PCD schemes were built using SNARK recursion [Val08; BCTV14],
where the SNARK verifier is embedded in every computation step being proved. A more
efficient approach, called accumulation or folding, was introduced in Halo [BGH19] and
further developed in [BCMS20; Bün+21; BDFG21] and Nova [KST22]. Many elegant
ideas have since further optimized and extended the folding paradigm [KS24b; BC23;
EG23; BMNW24; Moh23; NBS23; FKNP24; KS24a; AS24].

Folding is best explained using the language of reductions of knowledge [KP23] (see
Section 2.4 for details). Let R1 and R2 be two instance-witness relations. A reduction
of knowledge from R1 to R2 is a protocol Π between a prover and verifier. The verifier
takes as input an instance x1 for R1, interacts with the prover, and outputs an instance x2
for R2 at the end of the protocol. The key requirement is that if the prover can present
a witness w2 for x2, then it is possible to extract from the prover a witnesses w1 for x1.
Hence, knowledge of a valid witness for x2 proves knowledge of a valid witness for x1.

A folding scheme is a reduction of knowledge from some product relation Racc×Rcomp

to Racc. That is, the folding scheme can fold a pair of instances (xacc, xcomp) into a single
new instance x′acc of Racc. By repeatedly folding in this way, the prover can accumulate
many steps of a computation expressed by Rcomp into a single instance of the accumulation
relation Racc. Eventually, the prover proves knowledge of a witness for the final Racc

instance, and this proves knowledge of a valid witness for every step of the computation.
Alternatively, folding can take place along a d-ary tree, with d-to-1 foldings, as in [Ngu+24;
RZ22]. The benefit of folding schemes is that now the statement being proved at every
step only needs to ensure that folding was performed correctly at the previous step, which
is far simpler than a full SNARK verifier. Folding is also much faster for the prover
because folding two witnesses into one is primarily a random linear combination of the two
witnesses.

Folding schemes typically extend the input relation to include a short commitment to
the witness. The commitment scheme is linearly homomorphic, so that the verifier can com-
pute the folded instance as a a random linear combination of these input commitments1.
Often one uses Pedersen as the homomorphic commitment scheme. This poses three dif-

1The ARC folding scheme [BMNW24] is one example that does not use a linearly homomorphic com-
mitment.

3

ficulties: first, the resulting schemes are unsound in a post-quantum setting; second, the
Pedersen hash requires the prover to do a compute-intensive multiscalar multiplication over
a large (256-bit) field; and third, the domain and range of the Pedersen hash are different
groups, requiring arithmetic over two distinct fields to verify a folding proof. This can be
expensive because arithmetic circuits natively support only one field.

Lattice-based folding. Boneh and Chen [BC24] recently proposed a lattice-based fold-
ing scheme, called LatticeFold, where the Pedersen commitment is replaced with an Ajtai
commitment over modules. This resolves all three difficulties mentioned in the previous
paragraph2. However, using Ajtai commitments in folding introduces significant challenges.
The difficulty is that Ajtai commitments are binding only when the input vector is low
norm. This is incompatible with the random linear combination approach used in folding.
Repeatedly taking a random linear combination of witnesses quickly increases the norm
of the accumulated witness to the point where Ajtai commitments are no longer binding.
This breaks soundness of the resulting folding scheme.

To address this issue, folding in LatticeFold is done in two primary steps. First, a norm
reduction step decomposes each of the two input witnesses into d lower norm witnesses.
Second, the resulting 2d instances are folded into a single low norm instance. This ensures
that after repeated folding, the norm of the accumulated witness remains small. However,
this by itself is insufficient. One must also exhibit an extractor that extracts from the prover
low norm witnesses for the two input instances. LatticeFold ensures that the extracted
witnesses are low norm by using a novel sumcheck-based range proof. Forcing the prover
to output this range proof for the two input witnesses is sufficient to ensure that the
extracted witnesses are valid and low norm. However, the range proof in LatticeFold uses
bit decomposition and is therefore expensive to construct because it requires the prover to
commit to many decomposed witnesses.

Experiments by Nethermind [Net24] show that this additional complexity in folding
using Ajtai commitments results in a LatticeFold prover that runs in approximately the
same time as the Pedersen-based HyperNova folding prover [KS24b]. While LatticeFold
has the benefit of post-quantum security, one would further expect that Ajtai-based folding
would be faster than Pedersen-based folding.

Our results. In this work we design a new lattice-based folding scheme called Lattice-
Fold+ that greatly improves the performance of LatticeFold using a number of new lattice-
ring techniques.

As in HyperNova, LatticeFold+ represents the computation relation Rcomp as either a
rank-1 constraint system (R1CS), using quadratic constraints, or a customizable constraint
system (CCS) [STW23] using higher degree constraints. The first step in LatticeFold+ is

2Experiments by Nethermind [Net24] show that the Ajtai hash is about thirty times faster than a
Pedersen hash for committing to ≈ 219 field elements.

4

a sumcheck-based linearization process that is a reduction of knowledge from an R1CS or
CCS relation Rcomp to a general linear relation we call Rlin,B, as explained in Section 3.
This step is similar to HyperNova’s linearization step, but adapted to operate over rings
as was done in LatticeFold [BC24]. This linearization step shows that it suffices to design
a folding scheme that folds L > 2 instances of the linear relation Rlin,B into two instances.

An instance of Rlin,B is a triple (cm, r,v) where cm is an Ajtai commitment to a witness
vector f ∈ Rn

q , where the ℓ∞ norm of f satisfies ∥f∥∞ < B (as defined in the next section).
The elements r and v will be explained in Section 3. Here the witness f is an n-vector of
elements in the ring Rq := Zq[X]/⟨Xd + 1⟩ for some prime q and degree d > 1.

The core of LatticeFold+ takes as input L > 2 instances of Rlin,B and folds them into
two instances of Rlin,B. It does so in two steps. In the first step, it folds the given L
instances of Rlin,B into one instance of Rlin,B2 , namely an instance with a norm bound B2

on the witness. The new range proof in this step is purely algebraic — it does not require
commitments to bit-decomposed vectors. The increase in norm from B to B2 has to be
corrected, and LatticeFold+ does this in the second step. It uses witness decomposition to
reduce a linear instance with norm bound B2 to two linear instances with norm bound B
by splitting every scalar in the witness into its high and low order bits. This second step is
approximately the same as decomposition in LatticeFold. The key new insights are in the
first folding step, which we discuss next.

A new range proof. To ensure that an extractor is able to extract L low norm witnesses
from a folding prover, the prover must provide a range proof that all the input witnesses
are low norm. We develop a new range proof, presented in Section 4.3, that avoids bit
decomposition and is far more efficient than the range proof in LatticeFold. This range
proof method may be of independent interest. The key idea is as follows. Say we want
to prove that a committed vector f = (f1, . . . , fn) ∈ Zn

q satisfies fi ∈ (−d/2, d/2) for all
i ∈ [n]. The prover will commit to a vector of ring elements m = (m1, . . . ,mn) ∈ Rn

q where

each mi ∈ Rq is the monomial mi := Xfi . We denote this commitment by JmK and note
that computing the Ajtai commitment to m is fast because it is a vector of monomials (see
Remark 4.3). Next we show in Lemma 2.2 that if mi is a monomial and mi and fi satisfy a
simple algebraic relation then fi ∈ (−d/2, d/2). Hence, our range proof needs to (i) prove
that JmK is a commitment to a vector of monomials, which we do in Section 4.2, and (ii)
prove that m and f satisfy a certain algebraic relation, which we do in Section 4.3. Both
steps are presented as reductions of knowledge that reduce these checks to checking a simple
evaluation relation. The resulting range proof requires no commitments to bit-decomposed
vectors, and is significantly faster than the LatticeFold range proof.

Double commitments. When applying this range proof to a vector of ring elements
f ∈ Rn

q , we could repeat the range proof above d times: once for the vector of all constant
terms in f , once for the vector of all linear terms in f , and so on. This would require the

5

prover to commit to d vectors m0, . . . ,md−1 ∈ Rn
q which would result in a large transcript

of d commitments c := (Jm0K, . . . , Jmd−1K) ∈ Rκ×d
q that must be sent to the verifier.

Instead, we introduce in Section 4.1 the concept of a double commitment, where the prover
sends to the verifier a commitment to the vector of commitments c. This vector c is
not low norm, so we must first decompose it to reduce its norm and then commit to the
decomposition using an Ajtai commitment. We use LMM to denote this double commitment
to the matrix M := [m0, . . . ,md−1] ∈ Rn×d

q . Note that LMM ∈ Rκ
q is short as required.

These double commitments are crucial for making our folding proofs shorter and simpler
to verify compared to LatticeFold. In Section 4.3 we present a range proof that uses double
commitments to prove that a vector f ∈ Rn

q has low ℓ∞ norm.

Commitment transformation. Double commitments are not linearly homomorphic,
and as a result statements that use double commitments are hard to fold using random
linear combinations. In Section 4.4 we develop a technique that transforms such statements
to ones involving only linear commitments to smaller witnesses. We use sumchecks to en-
sure consistency between the double commitment of a witness M and a linear commitment
to a transformed version of M. Again, this technique may be of independent interest.

Evaluation. LatticeFold+ improves over LatticeFold in every respect: the folding prover
is faster, the folding verifier is simpler, and the folding proof is shorter. We give a de-
tailed evaluation analysis in Section 5.3. Here we present a brief summary when folding L
witnesses each of dimension n and norm less than B:

• Prover complexity: In LatticeFold, the prover’s complexity is dominated by a degree-
4 sumcheck over Rq of size n and the computation of L log2(B) commitments to bit-
decomposed vectors. LatticeFold+ eliminates all these commitments and is consequently
Ω(log(B))-times faster. Concretely, we expect the LatticeFold+ prover to be five to ten
times faster than the LatticeFold prover.

• Verifier circuit complexity: The verifier circuit size is dominated by hashing needed for
the Fiat-Shamir transform. In LatticeFold, all the L log2(B) decomposed commitments
must be hashed. LatticeFold+ eliminates all these commitments thereby shrinking the
size of the verification circuit.

• Proof size: The LatticeFold proof size is Oλ(κd logB + d log n) bits. In LatticeFold+
the proof size is only Oλ(κd + log n) bits. Concretely, the LatticeFold+ proof size is
about 95KB, which is close to the proof size of LaBRADOR [BS23], the shortest known
lattice-based NARK, which has a proof size of 60KB for a similarly sized statement.

Finally, since the prover running time in LatticeFold is comparable to HyperNova [Net24],
we expect the prover time in LatticeFold+ to be significantly faster than HyperNova. Hence,
LatticeFold+ provides both a fast prover and post-quantum security.

6

1.1 Additional related work

Several post-quantum monolithic SNARKs (i.e., not using folding) are built from hash-
based Merkle commitments: Stark [BBHR18b], Ligero [AHIV17], Aurora [Ben+19], Brake-
down [Gol+23], BaseFold [ZCF24], Blaze [Bre+24], and Fractal [COS20]. Their proof
sizes scale sublinearly with the witness size. In practice they require a significant amount
of memory when proving a large statement. Several elegant post-quantum lattice-based
proof systems also offer sublinear proof size [Bau+18; BLNS20; ACK21; Alb+22; BCS23],
however the resulting proofs are larger than the hash-based schemes. One exception is
LaBRADOR [BS23] that produces relatively short proofs, but has a linear time verifier. We
note that LaBRADOR also uses commitments to commitments to shrink the proof size. A
polynomial commitment scheme derived from LaBRADOR, called Greyhound [NS24], has a
square root time verifier. Other lattice-based proof systems, such as [ENS20; LNP22], per-
form well for small statements, but their proof size is linear in the size of the witness. Cini
et al. [CMNW24] recently presented a lattice-based polynomial commitment scheme (PCS)
from Bulletproof/FRI-like techniques [BBHR18a; Bün+18]. Their approach achieves bet-
ter control over witness norm/slack blowup than previous works. However, their scheme
incurs norm blowup/slack at each step, limiting it to supporting only a logarithmic number
of folding steps.

Following LatticeFold [BC24], which uses module-based Ajtai commitments and the ℓ∞-
norm, Fenzi et al. proposed Lova [FKNP24] which operates similarly, but using integer-
based Ajtai commitments and the ℓ2-norm.

2 Preliminaries

Notation. λ ∈ N is the security parameter. For l, r ∈ Z, l < r, we denote by (l, r) the
set {l+ 1, l+ 2, . . . , r− 1} and [l, r) the set {l, l+ 1, . . . , r− 1}, and we define [n] := [0, n).
For a set S, we denote by P (S) the power set of S that consists of all the subsets of S.
If S supports element subtraction, we denote by S − S the set of differences between any
two distinct elements in S. A function f(λ) is poly(λ) if there exists a c ∈ N such that
f(λ) = O(λc). If f(λ) = o(λ−c) for all c ∈ N, we say f(λ) is in negl(λ) and is negligible.
A probability that is 1− negl(λ) is overwhelming.

By default, a vector is a column vector and a ring is always commutative. For a vector
f of length n, we use fi or f [i] (0 ≤ i < n) to denote its ith element. For two vectors f ,g
of the same length we let ⟨f ,g⟩ denote their inner product.

Let R̄ be an arbitrary ring. Given column vectors u1, . . . ,uk ∈ R̄n, we use [u1, . . . ,uk] ∈
R̄n×k to denote horizontal concatenation and (u1, . . . ,uk) ∈ R̄nk to denote vertical con-
catenation. Concatenations of row vectors are similarly defined. For a matrix M ∈ R̄n×m,
{Mi,∗ ∈ R̄m}i∈[n] and {M∗,j ∈ R̄n}j∈[m] denote the rows and columns of M, respectively.
We denote by flat(M) := (M0,∗, . . . ,Mn−1,∗) ∈ R̄nm the vertical concatenation of its rows.
R̄[X1, . . . , Xk] denotes the set of k-variate polynomials over R̄, and we use R̄≤d[X1, . . . , Xk]

7

to denote the set of polynomials with the degree of each variable at most d.
An indexed relation is a set of triples (i, x,w) where the index i is fixed at the setup

phase, x is the online instance and w is the witness. In what follows, we omit the index i
when it is clear in the context.

2.1 Cyclotomic rings

Let d ∈ N be a power of two. We denote by R := Z[X]/⟨Xd + 1⟩ the anti-cyclotomic
ring of dimension d. Let q > 2 be a prime and denote by Rq := R/qR = Zq[X]/⟨Xd + 1⟩
where we represent Zq := {−⌊q/2⌋, . . . , ⌊q/2⌋}. If q ≡ 1 + 2e (mod 4e) for some e | d,
it is well-known that Rq

∼= Fe
qd/e

via the Number Theoretic Transform (NTT). For f =∑
i∈[d] fiX

i ∈ Rq, we use cf(f) := (f0, . . . , fd−1) ∈ Zd
q to denote the coefficient vector

of f , and ct(f) := f0 is the constant term of f . For a vector f ∈ Rn
q , we denote by

cf(f) := (cf(f0)
⊤, . . . , cf(fn−1)

⊤) ∈ Zn×d
q the concatenation of the transposed coefficient

vectors, and ct(f) = (ct(f0), . . . , ct(fn−1)) ∈ Zn
q is the first column of cf(f).

Monomial sets. Define the Zq[X]-monomial set

M′ := {0, 1, X,X2, X3, . . . } ⊆ Zq[X] . (1)

We will need the following lemma.

Lemma 2.1. Let q > 2 be a prime. For every a ∈ Zq[X] we have that a(X2) = a(X)2 if
and only if a ∈M′.

Proof. When a ∈ M′ then indeed a(X2) = a(X)2. Conversely, we prove that a(X2) =
a(X)2 implies that a ∈M′. Let a(X) =

∑n
i=1 aiX

di for some dn > dn−1 > . . . > d1 ≥ 0. If
n = 1 and a(X2) = a(X)2 then a1X

2d1 = a21X
2d1 , which implies that a21 = a1. Therefore

a1 ∈ {0, 1} and either way a ∈M′, as required. Next, suppose towards a contradiction that
a(X2) = a(X)2, but n > 1 and all a1, . . . , an ∈ Zq are non-zero. The highest degree term
in a(X)2 has degree 2dn. The second highest degree term in a(X)2 has degree is dn+dn−1

and its coefficient is 2anan−1. Since 2dn > dn + dn−1 > 2dn−1, the polynomial a(X2) has
no term of degree dn + dn−1. Therefore, because a(X2) = a(X)2, we can conclude that
2anan−1 = 0. But since q > 2 this implies that one of an or an−1 must be zero, which
contradicts the assumption that a1, . . . , an ∈ Zq are non-zero.

Define another monomial set

M :=
{
0, 1, X, . . . ,Xd−1

}
⊆M′ . (2)

In what follows we say that an element a ∈ Rq is inM if and only if the natural embedding
of a into Zq[X] is in the setM :=

{
0, 1, X, . . . ,Xd−1

}
.

8

Remark 2.1. Lemma 2.1 does not hold in Rq. For example, in Zq[X]/⟨X4 + 1⟩ with q ≡ 1
(mod 4), define

a(X) := X3/2 + (i/2)X2 + (i/2)X + (1/2) ∈ Rq

where i ∈ Zq satisfies i2 = −1. Then a(X) satisfies a(X)2 = a(X2), but a is not inM.

For a ∈ (−d, d) ⊆ Zq, we denote by sgn(a) ∈ {−1, 0, 1} the sign of a and sgn(0) := 0.
Define exp(a) ∈ Rq as exp(a) := sgn(a)Xa. Note that exp(a) is inM. E.g., if a < 0, then
exp(a) = −Xa = −(−Xa+d) = Xa+d ∈M. Similarly, we define set EXP(a) ⊆M to be

EXP(a) :=

{
{exp(a)} if a ̸= 0

{0, 1, Xd/2} if a = 0
(3)

For a matrix M ∈ (−d, d)m×n, exp(M) ∈ Mm×n denotes the matrix that replaces each
entry Mi,j with exp(Mi,j), and EXP(M) : [m] × [n] → P (M) denotes the product of sets
that replaces each entry Mi,j with EXP(Mi,j).

We will need the following lemma.

Lemma 2.2. Let d′ := d/2 and ψ :=
∑

i∈[1,d′) i · (X−i +Xi) ∈ Rq. For every a ∈ Zq, if

a ∈ (−d′, d′), then for all b ∈ EXP(a) in M, we have ct(b · ψ) = a. Conversely, if there
exists b ∈M such that ct(b · ψ) = a, then a ∈ (−d′, d′) and b ∈ EXP(a).

Proof. If a ∈ (−d′, d′), then either a = 0 and ct(b ·ψ) = 0 for all b ∈ EXP(0), or a ̸= 0, and
the only element b := exp(a) in EXP(a) satisfies that

ct(b · ψ) = ct

sgn(a)Xa ·
∑

i∈[1,d′)

i · (X−i +Xi)

 = a .

Conversely, suppose ct(b∗ · ψ) = a for some b∗ ∈ M, we show that a ∈ (−d′, d′). If
b∗ = 0, then a = 0 ∈ (−d′, d′). Otherwise, b∗ ·ψ rotates and flips the signs of the coefficients
of ψ, and the constant term ct(b∗ ·ψ) stays in (−d′, d′). Therefore, a ∈ (−d′, d′) as required.
Finally, given that b∗ ∈M and ct(b∗ ·ψ) = a for a ∈ (−d′, d′), by inspection, b∗ is in EXP(a)
and the claim holds.

Norms. Given f =
∑

i∈[d] fiX
i ∈ R, the ℓ∞-norm of f is defined as ∥f∥∞ := maxd−1

i=0 (|fi|).
For a matrix F ∈ Rn×m with entries {Fi,j}i∈[n],j∈[m], its ℓ∞-norm is defined as ∥F∥∞ :=
maxi∈[n],j∈[m]{∥Fi,j∥∞}. We similarly define the ℓ∞-norms for Rq-elements by lifting ele-
ments in Rq to R via the natural embedding.

For an element a ∈ R, we define its operator norm as

∥a∥op := sup
y∈R

∥a · y∥∞
∥y∥∞

. (4)

9

For a finite set S ⊆ R, the operator norm ∥S∥op is defined as ∥S∥op := maxa∈S∥a∥op.
Similarly, we can define operator norms for sets over Rq by lifting the elements to R.
When we write a · b for a ∈ Rq and b ∈ R, we meant the product over R between b and the
embedding of a to R. We will use the following useful facts.

Lemma 2.3. For every a ∈M and b ∈ R, we have ∥a · b∥∞ ≤ ∥b∥∞.

Proof. If a ∈ M, then either a = 0 and the claim holds; or a · b rotates the coefficients of
b and flips the sign of some coefficients of b. Hence the ℓ∞-norm won’t change.

Lemma 2.4 (Corollary 1.2 of [LS18]). Let d, e ∈ N be power-of-twos and e | d, and let

q ≡ 1 + 2e (mod 4e) be a prime. Every non-zero y ∈ Rq with ∥y∥∞ < q1/e√
e

is invertible.

Strong sampling sets. A strong sampling set S ⊆ Rq satisfies that the difference
of any two distinct elements in S is invertible. E.g., if q is a prime, then Zq ⊆ Rq is a
strong sampling set as the difference of any two distinct elements in Zq is invertible in
Rq. By Lemma 2.4, the set of Rq-elements with small coefficients is strongly samplable,
because the differences of small coefficients are still small and thus invertible. Moreover,
such a set has small operator norm:

Lemma 2.5 (Prop. 2 of [AL21]). For all u ∈ R, ∥u∥op ≤ d · ∥u∥∞.

Gadget matrix decomposition. Let b > 1 and b̂ = bk for some k ∈ N. Denote by
gb,k = (1, b, . . . , bk−1) ∈ Zk. Given a matrix M ∈ Rn×m where ∥M∥∞ < b̂, we can
deterministically decompose3 M into a matrix M′ ∈ Rn×mk such that ∥M′∥∞ < b and
M = M′Gb,k, where Gb,k ∈ Zmk×m is the gadget matrix Gb,k := Im ⊗ gb,k. We denote by
G−1

b,k : Rn×m → Rn×mk the deterministic function that maps M to G−1
b,k(M) = M′, that is,

G−1
b,k(M)Gb,k = M. We simply write G and G−1 when m, b, k are all clear in the context.

2.2 Multilinear extensions and sumchecks over rings

For a binary vector a ∈ {0, 1}k, denote by [a]k :=
∑

i∈[k] ai2
i ∈ [2k]; for integer b ∈ [2k],

denote by ⟨b⟩k ∈ {0, 1}k the binary representation of b. We write ⟨b⟩ in short when there
is no ambiguity in context. We review the notion of multilinear extensions over rings.

Definition 2.1 (Multilinear Extensions over Rings). Let R̄ be a ring with zero 0 and
identity 1. The multilinear extension f̃ ∈ R̄≤1[X1, . . . , Xk] of a function f : {0, 1}k → R̄ is

f̃(x) :=
∑

b∈{0,1}k
f(b) · eq(b,x)

where eq(b,x) :=
∏

i∈[k]
[
(1− bi)(1− xi) + bixi

]
.

3For every entry x ∈ (−b̂, b̂), we first compute the base-b decomposition (x0, . . . , xk−1) of |x|, if x < 0,
we further flip the sign of xi for all i ∈ [k].

10

For r ∈ R̄k we define tensor(r) :=
⊗

i∈[k](ri, 1− ri) ∈ R̄2k as the tensor product of r. More

generally, we can define tensor product over “R̄-vector spaces”. Let M be an R̄-module.
For m ∈ Mk, we define tensor(m) :=

⊗
i∈[k](mi, 1 −mi) ∈ M2k . E.g., if M = R̄ × R̄ and

m = (r(0), r(1)) ∈ Mk where r(0), r(1) ∈ R̄k, then tensor(m) = (tensor(r(0)), tensor(r(1))) can
be understood as a pair of tensor products of r(0), r(1) ∈ R̄k, respectively.

Remark 2.2. For a function f : {0, 1}k → R̄ we define its table as

f :=
(
f(⟨0⟩k), f(⟨1⟩k), . . . , f(⟨2k − 1⟩k)

)
∈ R̄2k .

Observe that the evaluation of f̃ at the point r ∈ R̄k is exactly f̃(r) = ⟨f , tensor(r)⟩. More
generally, for a point m ∈ Mk, we define f̃(m) := ⟨f , tensor(m)⟩ ∈ M. E.g., if M = R̄× R̄,
we can understand f̃(m) as the evaluations of f at a pair of points m = (r(0), r(1)) in R̄k.

Lemma 2.6 (Generalized Schwartz-Zippel [BCPS18]). For a nonzero polynomial f ∈
R̄≤d[X1, . . . , Xk] and a strong sampling set C, we have Prr r←Ck [f(r) = 0] ≤ dk

|C| .

As noted by [CCKP19], we can do sumcheck over rings.

Lemma 2.7 (Generalized Sum-Check [CCKP19]). For a polynomial f ∈ R̄≤ℓ[X1, . . . , Xk]
with individual degree at most ℓ, a strong sampling set C ⊆ R̄, and a value s ∈ R̄, there is
a public-coin interactive protocol that reduces the checking of

s
?
=

∑
b∈{0,1}k

f(b)

to the checking of an evaluation claim f̃(r)
?
= v for some r r← Ck and v ∈ R̄. The protocol

is perfectly complete, has prover time4 Õ(2kℓ), verifier time and proof size O(kℓ), and
soundness error kℓ

|C| .

Remark 2.3 (Boosting soundness). We can decrease the soundness error from kℓ/|C| to
(kℓ/|C|)r with r > 1 parallel repetitions. E.g., for r = 2, set MC := C × C, we can
understand the 2-way parallel execution as a sumcheck with challenge set MC .

Remark 2.4 (Batching multiple claims). As noted in [BCS21, Sect. 2.1] and in Hyper-
plonk [CBBZ23], when checking s > 1 sumcheck claims over the same domain, we can
batch them into a single sumcheck over a larger domain, with no additional randomness
needed outside the sumcheck itself. For example, we can view d sumcheck claims over Zq

as a single sumcheck claim over Rq = Zq[X]/⟨Xd + 1⟩. We can also view s > 1 sumcheck
claims over Rq as a single sumcheck claim over Rq[Y]/⟨Y s + 1⟩.

4f needs to be a sum of product of multilinear polynomials to achieve prover time Õ(2kℓ).

11

2.3 Module-based Ajtai commitments

We recall the Module Short Integer Solution (MSIS) assumption.

Definition 2.2 (Module SIS with ℓ∞-Norms [LS15; PR06; LM06; ACK21]). Let q = q(λ),
κ = κ(λ), m = m(λ) and βSIS = βSIS(λ). The module SIS assumption MSIS∞q,κ,m,βSIS

holds
if for all expected polynomial-time adversary A,

Pr

[
(Ax = 0 mod q) ∧ 0 < ∥x∥∞ < βSIS

∣∣∣∣ A r← Rκ×m
q

x ∈ Rm ← A(A)

]
= negl(λ) .

Looking ahead, to argue knowledge soundness of the folding schemes, we need the
commitments to satisfy a relaxed binding property defined below.

Definition 2.3 (Relaxed Binding Commitment [ALS20; ACK21; Ajt96; PR06; LM06]).
Fix q = q(λ),κ = κ(λ), m = m(λ), bound b ∈ N and a set S ⊆ R∗

q with invertible elements.
We say that a randomly sampled linear function A r← Rκ×m

q is (b,S)-relaxed binding if for
all expected polynomial-time adversary A,

Pr

 0 < ∥z1∥∞, ∥z2∥∞ < b ∧ s1, s2 ∈ S∧
Az1s

−1
1 = Az2s

−1
2 ∧

z1s
−1
1 ̸= z2s

−1
2

∣∣∣∣∣∣ A r← Rκ×m
q

(z1, z2 ∈ Rm
q , s1, s2)← A(A)

 = negl(λ) .

It is clear that if the (b,S)-relaxed binding property doesn’t hold, then we can find
x := s2z1 − s1z2 ̸= 0 ∈ Rm such that Ax = 0 mod q. Here s2z1 − s1z2 is computed over
R by first lifting s1, s2, z1, z2 to R. Moreover, ∥x∥∞ < B := 2b∥S∥op, thus we can reduce
the (b,S)-relaxed binding property to the MSIS assumption MSIS∞q,κ,m,B.

2.4 Reduction of Knowledge

We review the notion of reduction of knowledge (RoK) from [KP23]. Informally, it converts
the checking of a statement in relation R1 to that of a reduced statement in R2. Note that
it also captures the notion of folding schemes.

Definition 2.4 (Reduction of Knowledge [KP23]). Let R1, R2 be indexed relations. A
reduction of knowledge Π from relation R1 to R2 consists of the following PPT algorithms:

• G(1λ)→ i: on input security parameter λ output index i.

• P(i, x1,w1) → (x2,w2): take index i, a statement (x1,w1) ∈ R1, interacts with the
verifier, and output a statement (x2,w2) such that (i, x2,w2) ∈ R2.

• V(i, x1) → x2: take index i, an instance x1 for R1, interacts with the prover, and
output an instance x2 for relation R2. V outputs ⊥ if rejects early.

12

For brevity, we denote by ⟨P(w1),V⟩ [i, x1]→ (x2,w2) the interaction between P and V with
common input (i, x1), and assume without loss of generality that (i) the reduced instances
output by the prover and verifier are the same, (ii) ⊥ /∈ L(R2) by default.

A reduction of knowledge with the above syntax satisfy the properties below.

Definition 2.5 (Perfect Completeness). For every PPT adversary A,

Pr

 (i, x1,w1) /∈ R1∨
(i, x2,w2) ∈ R2

∣∣∣∣∣∣
i← G(1λ)

(x1,w1)← A(i)
(x2,w2)← ⟨P(w1),V⟩ [i, x1]

 = 1 .

Definition 2.6 (Knowledge Soundness). There exists a knowledge-error function κ(·) and
an expected polynomial time extractor Ext such that for all expected polynomial time ad-
versaries (A,P∗) that can output (i, x2,w2) ∈ R2 with non-negligible probability after the
interaction with V, we have that given i← G(1λ), (x1, st)← A(i),∣∣∣Pr [(i, ⟨P∗(st),V⟩ [i, x1]) ∈ R2]− Pr

[
(i, x1,Ext

P∗
(i, x1, st)) ∈ R1

]∣∣∣ ≤ κ(λ) .
Definition 2.7 (Public reducibility.). There is a deterministic polynomial time algorithm
f such that for all PPT adversary A and expected polynomial time adversary P∗:

Pr

 f(i, x1, tr) = x2

∣∣∣∣∣∣
i← G(1λ)

(x1, st)← A(i)
(tr, x2,w2)← ⟨P∗(st),V⟩ [i, x1]

 = 1 .

Here tr denotes the transcript of the interaction ⟨P∗(st),V⟩ [i, x1].

We recall the knowledge composition theorem from [KP23].

Theorem 2.1 (Sequential Composition, Thm. 5 [KP23]). Let R1, R2, R3 be indexed
relations. Let Π1 (and Π2) be reduction of knowledge from R1 to R2 (and from R2 to R3),
respectively. Then Π2 ◦Π1 is a reduction of knowledge from R1 to R3.

3 Generalized Committed Linear Relations

Our goal is to build a folding scheme for R1CS relations — relations expressed as a
set of quadratic constraints — and more generally, for customizable constraint systems
(CCS) [STW23] that are expressed as a set of constraints of higher degree. Lattice-
Fold [BC24, Sec. 4] gives a reduction of knowledge from CCS over rings to a linear re-
lation over rings. This reduction of knowledge is inspired by a technique used over fields
in HyperNova [KS24b].

Here we define a general linear relation over rings that is the target of this reduction
of knowledge. The relation uses a commitment scheme J·K : Rn

q → Rκ
q for vectors f ∈ Rn

q

where ∥f∥∞ < B, for some norm bound B. Usually, this is simply the Ajtai commitment
scheme from Section 2.3. The commitment to f is denoted by cm = JfK.

13

Definition 3.1. Let J·K : Rn
q → Rκ

q be a commitment scheme. A generalized committed
linear relation parameterized by B ∈ N, denoted Rlin,B, is a set of triples (i, x,w) where

i =
(
J·K, (M(i) ∈ Rn×n

q)i∈[nlin]

)
, x = (cmf , r ∈ Mlogn

C , v ∈ Mnlin
q), w = f ∈ Rn

q .

Here MC := C × C where C is a strong sampling set5, and Mq := Rq ×Rq. A triple (i, x,w)
is in the relation Rlin,B if

(∥f∥∞ < B) ∧ (cmf = JfK) ∧
(
∀i ∈ [nlin] : ⟨M(i) · f , tensor(r)⟩ = vi

)
. (5)

In words, an instance (cm, r,v) is in the language of the relation Rlin,B if cm is a
commitment to a low-norm vector f ∈ Rn

q , and for all i ∈ [nlin], the multilinear extension

of the vector M(i)f ∈ Rn
q evaluates to the pair vi ∈ Mq at the pair of points r ∈ Mlogn

C .

In Appendix A we present a reduction of knowledge from R1CS to Rlin,B where nlin = 4.
This protocol shows that a folding scheme for Rlin,B is sufficient for folding R1CS relations.
At the heart of the protocol is a sumcheck to reduce the quadratic R1CS relation to four
multilinear evaluation of degree 1, which is an instance ofRlin,B. When the R1CS relation is
defined by matrices A,B,C ∈ Rn×m

q , the derived matrices M(1),M(2),M(3),M(4) ∈ Rn×n
q

in Rlin,B are

M(1) := In, M(2) := A ·G⊤
B,ℓ̂
, M(3) := B ·G⊤

B,ℓ̂
, M(4) := C ·G⊤

B,ℓ̂

where ℓ̂ := ⌈logB(q)⌉ and GB,ℓ̂ ∈ Zmℓ̂×m
q = Zn×m

q is the gadget matrix from Section 2.1. A
similar reduction of knowledge applies to CCS with higher degree constraints.

4 A Toolbox of Reduction of Knowledge

In this section, we introduce several reduction of knowledge protocols, which serve as
the building blocks of our folding scheme for general linear relations. In Section 4.1, we
introduce double commitments, which commits matrices in Rn×m

q to short vectors in Rκ
q .

Section 4.2 introduces Πmon, an RoK that checks if every entry of a committed matrix
belongs to the monomial set from (2). In Section 4.3, we leverage Πmon to construct a
range-check protocol Πrgchk for committed Rq-vectors. In Section 4.4, using Πrgchk, we
present an RoK Πcm which transforms a committed relation associated with a double
commitment, into a simpler relation associated with regular Ajtai commitments.

Recall that the power-of-two d ∈ N is the dimension of the ring Rq, and d′ := d/2.
Define ℓ := ⌈logd′(q)⌉. We will work over two types of challenge sets.

5Or more generally, a product of strong sampling sets.

14

Challenge sets. A folding challenge set S̄ ⊆ Rq is a strong sampling set with small
operator norm. It is used to fold multiple witness vectors into a single low-norm vector.
A sumcheck challenge set C is used to sample challenges for sumcheck protocols. For
simplicity, we assume that |S̄| = |C| ≥ 2λ. In particular, when q is a 128-bit prime, we set
C := Zq. More generally, for a smaller modulus q, we set C as a Zq-vector space that is large
enough. E.g., if q is 64-bit, we can set C := Fq2 or C := Zq ×Zq, which is a Zq-vector space
of dimension 2. To prove a sumcheck claim over Rq (or Zq), we run a sumcheck protocol
over the challenge space C, which can be understood as two parallel sumcheck executions
over the challenge space Zq. For notation convenience, in what follows, we assume q is
large enough and C = Zq, but all protocols easily generalize to smaller modulus. Finally,
we define the Rq-module Mq := Rq × Rq and set MC := C × C. They are useful when we
want to enforce even smaller sumcheck soundness error.

4.1 Linear commitments and double commitments

General linear commitments. For a ∈ Rn
q and M ∈ Rn×m

q , we denote by JaK ∈ Rκ
q

and JMK ∈ Rκ×m
q the “general linear commitments” to a and M respectively. In our paper,

JaK is computed as Aa given the SIS matrix A ∈ Rκ×n
q .

Fix b ∈ N and set S ⊆ R∗
q , we say that a ∈ Rn

q is a (b,S)-valid opening of cma, if

cma = JaK and a = a′

s for some a′ ∈ Rn
q , s ∈ S such that ∥a′∥∞ < b. We simply say that

a is a valid opening if (b,S) is clear in context. Similarly, M ∈ Rn×m
q is a valid opening of

CM ∈ Rκ×m
q if for all i ∈ [m], the i-th column of M is a valid opening of the i-th column

of CM. We define the commitment opening relation (for Rq-vectors)

Ropen :=
{
(x = cmf ∈ Rκ

q ,w = f ∈ Rn
q) : f is valid opening of cmf

}
. (6)

A general linear commitment is (b,S)-binding if it is infeasible to find two different (b,S)-
valid openings a,a′ to the same commitment cm. In our work, binding is implied by
the (b,S = S̄ − S̄)-relaxed binding property (Definition 2.3). We simply say that the
commitment is binding if (b,S) is clear in context.

Double commitments. For a vector m ∈ Rn
q , the double commitment of m is defined

as LmM := JmK ∈ Rκ
q . For a matrix M ∈ Rn×m

q where m > 1, we compute the linear
commitment JMK ∈ Rκ×m

q , and decompose JMK to a low norm vector τ ∈ (−d′, d′)n ⊆
Zn
q , and finally set JτK ∈ Rκ

q as the double commitment to M, which is more compact.
Specifically, assume that κmdℓ ≤ n, we denote by

LMM := JΦ−1(JMK)K ∈ Rκ
q (7)

the double commitment to M, which is much shorter than JMK. Here the map Φ−1 :
Rκ×m

q → (−d′, d′)n is an injective function computed as follows:

Construction 4.1. On input JMK, compute Φ−1(JMK) ∈ (−d′, d′)n as follows:

15

1. compute M′ := G−1
d′,ℓ(JMK) ∈ Rκ×mℓ

q —the gadget decomposition of JMK ∈ Rκ×m
q ,

and flatten it to M′′ := flat(M′) ∈ Rκmℓ
q where ∥M′′∥∞ < d′

2. τ ′M := flat(cf(M′′)) ∈ (−d′, d′)κmℓd is set as the flattening of the coefficient matrix of
M′′, it is clear that ∥τ ′M∥∞ < d′

3. pad τ ′M with zeros to obtain τM ∈ (−d′, d′)n, and output Φ−1(JMK) := τM .

Φ−1 is injective given the injectivity of gadget decomposition and flattening. Moreover,
by the property of gadget matrices, there is a function Φ : (−d′, d′)n → Rκ×m

q such that
Φ(Φ−1(D)) = D for all D ∈ Rκ×m

q . (However, Φ is not injective.)
We say that (τ ∈ (−d′, d′)n,M ∈ Rn×m

q) is a valid opening of C ∈ Rκ
q if

1. M is a valid opening of Φ(τ) = JMK, and

2. τ is a valid opening of C when treating C as a linear commitment.

Remark 4.1. τ is not necessarily Φ−1(JMK) because Φ is not injective.

Define the double commitment opening relation

Rdopen,m :=

(x,w) :

x = CM ∈ Rκ
q

w = (τ ∈ (−d′, d′)n,M ∈ Rn×m
q)

where (τ,M) is valid opening of CM

 . (8)

Lemma 4.1. If J·K is binding, then L·M is also binding, that is, it’s infeasible to find
C, (τ,M), (τ ′,M′) where M ̸= M′ and (τ,M), (τ ′,M′) are both valid openings of C.

Proof. We can find a collision for J·K given such openings: if JMK = JM′K, then we find a
collision M ̸= M′; if τ ̸= τ ′, we find a collision (τ, τ ′) given that JτK = Jτ ′K = C. Otherwise,
suppose τ = τ ′ and JMK ̸= JM′K. Since (τ,M), (τ ′,M′) are both valid openings, we reach
a contradiction that JMK = Φ(τ) = Φ(τ ′) = JM′K.

4.2 Monomial set check

In this section, we present a protocol for checking that every element of a committed matrix
M is in the monomial set M from (2). This will be useful later in our range proofs. We
present the protocol as a reduction of knowledge from an input relation Rm,in to an output
relation Rm,out.

The input relation Rm,in holds when the double commitment CM is a commitment to
a witness matrix M of monomials:

Rm,in :=

(x,w) :

x = CM ∈ Rκ
q ,w = M ∈ Rn×m

q s.t.

Mi,j ∈M for all (i, j) ∈ [n]× [m]
(CM, (Φ

−1(JMK),M)) ∈ Rdopen,m

 . (9)

16

The output relation Rm,out is defined as

Rm,out :=

{
(x,w) :

x = (CM ∈ Rκ
q , r ∈ Clogn, e ∈ Rm

q) ,w = M ∈ Rn×m
q s.t.

M⊤tensor(r) = e ∧ (CM, (Φ
−1(JMK),M)) ∈ Rdopen,m

}
. (10)

The output relation holds for an instance x = (CM, r, e) and a witness matrix w = M, if
M is an opening of CM and satisfies M⊤tensor(r) = e.

Before the construction, we introduce some notation and a useful corollary.

Notation. For every i ∈ [n], we write ⟨i⟩ ∈ {0, 1}logn in short for ⟨i⟩logn. For a ring
element a =

∑
i∈[d] aiX

i ∈ Rq, and a value β ∈ Fqu (where u ≥ 1), we denote by a[β] :=∑
i∈[d] aiβ

i ∈ Fqu .

Corollary 4.1. Let q > 2 be a prime and Fqu an extension field of Zq with u ≥ 1. For all
a ∈ M and β ∈ Fqu, we have a[β]2 = a[β2] (where the arithmetic is over Fqu). And for
every a ∈ Rq not inM,

Pr
β

r←Fqu

[
a[β]2 = a[β2]

]
< 2d/|Fqu | .

Proof. The completeness is trivial. We focus on proving soundness. For a /∈ M, con-
sider the natural embedding a(X) of a in Zq[X] as a polynomial of degree less than d.
By Lemma 2.1, a(X)2 ̸= a(X2) where a(X)2 and a(X2) both have degree less than 2d.
Moreover, since Zq is a subfield of Fqu , we can lift a(X)2 and a(X2) from Zq[X] to Fqu [X].
Then by Lemma 2.6, the claim holds.

Corollary 4.1 suggests a natural way to do monomial set check, by testing Mi,j [β]
2 =

Mi,j [β
2] for every entry (i, j). However, this is too expensive for the verifier, thus we use

sumcheck to improve verifier complexity. We formally describe the construction below.

Construction 4.2. On input x = CM ∈ Rκ
q and w = M ∈ Mn×m ⊆ Rn×m

q where (x,w) ∈
Rm,in, the protocol Πmon proceeds as follows.

1. V→ P : Send challenges c r← Clogn and β r← C.

2. P↔ V : Run a (batched) degree-3 sumcheck for the following claims: for all j ∈ [m],
denote by

m(j) := (M0,j [β], . . . ,Mn−1,j [β]) , m
′(j) := (M0,j [β

2], . . . ,Mn−1,j [β
2])

and check that ∑
i∈[n]

eq(c, ⟨i⟩) ·
(
m̃(j)(⟨i⟩)2 − m̃′(j)(⟨i⟩)

)
= 0 . (11)

17

Let r r← Clogn be the sumcheck challenge, α r← C be the random combiner and v ∈ C
be the claimed evaluation. The sumcheck reduces to the claim:

eq(c, r) ·

 ∑
j∈[m]

αj ·
(
m̃(j)(r)2 − m̃′(j)(r)

) ?
= v .

3. P→ V : Send
{
ej = M̃∗,j(r) ∈ Rq

}
j∈[m]

4. V : Check that:

eq(c, r) ·

 ∑
j∈[m]

αj ·
(
ej [β]

2 − ej [β
2]
) ?

= v , (12)

Abort and return ⊥ if the checks fail.

5. Return the reduced statement (x = (CM, r, e),w = M) ∈ Rm,out.

Remark 4.2 (Batching). We can extend Πmon to check multiple committed matrices by
simply batching all the sumchecks.

Remark 4.3 (Efficiency). The protocol Πmon is highly efficient for reasons below.

1. The degree-3 sumcheck operates over C rather than Rq. E.g., if q ≥ 2λ, C = Zq has
much more efficient arithmetic than Rq.

2. The commitment cost of CM = LMM is mainly for computing JMK. Recall that
the entries of M are in the monomial set M. Thus, for each column M∗,j (j ∈
[m]), JM∗,jK = AM∗,j is essentially the sum of A’s columns (after rotation and
sign flipping). This requires only nκ Rq-additions, much more efficient than Rq-
multiplications. Overall, committing JMK takes ≈ nκm Rq-additions, or equivalently,
nκdm (parallelizable) Zq-additions. E.g., for m ≈ d = 64, and q ≈ 2128, the concrete
cost is comparable to computing an Ajtai commitment for an arbitrary a ∈ Rn

q , which
takes nκ Rq-multiplications, or equivalently, Ω(nκd log d) Zq-multiplications.

3. The multilinear evaluations {ej}j∈[m] can be computed in onlyO(n) Zq-multiplications

plus O(nm) Zq-additions. We first compute the vector tensor(r) using O(n) Zq-

multiplications. Then for each j ∈ [m], M̃∗,j(r) = ⟨M∗,j , tensor(r)⟩ is computed as
follows: initialize v :=

∑
i∈[d] viX

i ∈ Rq as zero. For every i ∈ [n], do nothing if
Mi,j = 0; otherwise, denote by Mi,j = Xmi,j ∈ M where mi,j ∈ [d], and update

vmi,j ← vmi,j + tensor(r)i. The resulting v is exactly M̃∗,j(r) and it takes only O(n)
Zq-additions.

Lemma 4.2. The protocol Πmon is a reduction of knowledge from Rm,in to Rm,out.

18

Proof. Public reducibility is trivial. The claim follows from the lemmas below.

Lemma 4.3. Πmon is perfectly complete.

Proof. For every input statement in Rm,in, the verifier checks pass and the prover’s output
is in Rm,out: Since M’s entries are in the monomial setM, by Corollary 4.1, the sumcheck
claim in (11) holds. Thus, the sumcheck verifier accepts, and the evaluation claim holds.
Since the prover sends correct evaluations {ej}, the check in (12) holds and the output
statement is in Rm,out.

Lemma 4.4. If L·M is binding with binding error ϵbind, then Πmon is knowledge sound with
knowledge error ϵmon,m := (2d+m+ 4 log n)/|C|+ ϵbind.

Proof. The extractor Ext simulates the execution with the malicious prover (A,P∗) and
returns P∗’s output if P∗ passes the verification. Otherwise, Ext returns ⊥. It is clear that
Ext has polynomial time complexity.

Let w = M denote Ext’s output. Let B0 be the event that w is not valid for Rm,in

but valid for Rm,out. That is, there exists an entry (i, j) where Mi,j /∈ M. Consider the
following bad events:

• Event B1: B0 occurs and Mi,j [β]
2 = Mi,j [β

2]. (Note that for a fixed M, by Corol-
lary 4.1, this happens with probability at most 2d/|C|.)

• Event B2: B0 occurs and Mi,j [β]
2 ̸= Mi,j [β

2] but the batched sumcheck claim (at
Step 2) holds. (Note that for a fixed M, by Lemma 2.6, this happens with probability
at most m/|C|+ log n/|C|.)

• Event B3: B0 occurs, the sumcheck claim (at Step 2) does not hold, but the eval-
uations e of M are correct. (Note that for a fixed M, by sumcheck soundness, this
happens with probability at most 3 log n/|C|.)

Suppose for contradiction that Pr[B0] ≥ Pr[B1 ∨B2 ∨B3] > 2d/|C|+m/|C|+4 log n/|C|+
ϵbind. Then there is an adversary that breaks the binding property of J·K with probability
more than ϵbind, contradiction. Thus the claim holds.

4.3 Range check

In this section, we show how to check that the Zq-coefficients of a committed Rq-vector f
are within a fixed range (−B,B), where B = (d′)k for some k ∈ N. Recall that d′ := d/2.

19

Warm-up. As a warm-up, we first set the range to (−d′, d′) and range-check a vector
τ ∈ Zn

q . Our goal is to reduce the relation

R′
rg :=

(x,w) :

x = (cmτ , cmmτ ∈ Rκ
q) ,w = (τ,mτ ∈ Rn

q) s.t.

τ ∈ (−d′, d′)n ∧ (cmmτ ,mτ) ∈ Rm,in

(mτ ∈ EXP(τ)) ∧ (cmτ , τ) ∈ Ropen

 .

to

R′ :=

(x,w) :

x = (cmτ , cmmτ ∈ Rκ
q , r ∈ Clogn, (a, b ∈ Rq)) ,

w = (τ,mτ ∈ Rn
q) s.t.

[τ,mτ]
⊤ tensor(r) = (a, b)

(cmτ , τ) ∈ Ropen ∧ (cmmτ ,mτ) ∈ Ropen

 .

In words, R′
rg checks that τ,mτ are openings to cmτ , cmmτ , and mτ is in EXP(τ) ⊆ Mn

(where EXP(·) is defined in (3)), and τ is in the range (−d′, d′)n. R′ checks that for instance
(cmτ , cmmτ , r, a, b), the witnesses τ,mτ are openings to cmτ , cmmτ and the matrix-vector
product [τ,mτ]

⊤tensor(r) = (a, b) holds. Here, cmmτ serves as a helper commitment for
the range-check. One may understand it as a proof element in the reduction of knowledge.
However, we put it directly into the instance to simplify the protocols and their analysis.

Construction 4.3. On input x = (cmτ , cmmτ ∈ Rκ
q), w = (τ ∈ (−d′, d′)n,mτ ∈ EXP(τ) ⊆

Mn) where6 (x,w) ∈ R′
rg, the protocol proceeds as follows:

1. Run monomial set check Πmon for mτ , which outputs a statement

(x = (cmmτ , r ∈ Clogn, b ∈ Rq),w = mτ) ∈ Rm,out

where b = ⟨mτ , tensor(r)⟩ ∈ Rq.

2. P→ V : Send a := ⟨τ, tensor(r)⟩ ∈ C.

3. V : Let ψ :=
∑

i∈[1,d′) i · (X−i +Xi) ∈ Rq. Check ct(ψ · b) ?
= a, abort and return ⊥ if

the check fails.

4. Return the reduced statement (x = (cmτ , cmmτ , r, (a, b)),w = (τ,mτ)) ∈ R′.

Lemma 4.5. If J·K is binding with binding error ϵbind, then the above protocol is a reduction
of knowledge from R′

rg to R′ with knowledge error ϵ′rg := ϵmon,1 + ϵbind + log n/|C|.

Proof. Completeness is straightforward, we prove knowledge soundness below.
The extractor simulates execution with the adversary (A,P∗) and return P∗’s output.

Conditioned on the verifier accepts, let w = (τ,mτ) be the extractor’s output. Suppose w is
not valid for R′

rg, then either (i) mτ is an invalid opening or mτ /∈Mn, which happens with
probability at most ϵmon,1; or (ii) mτ is a valid opening withinMn, but τ /∈ (−d′, d′)n or

6In practice, a standard implementation will set mτ := exp(τ).

20

mτ /∈ EXP(τ). By Lemma 2.2, we have ct(ψ ·mτ − τ) ̸= 0n. Note that verifier accepts and
w is valid for R′, so ct(ψ · b) = a where a = ⟨τ, tensor(r)⟩, ct(ψ · b) = ⟨ct(ψ ·mτ), tensor(r)⟩.
By the binding property and Lemma 2.6 (over C), this happens with probability at most
ϵbind + log n/|C|. In sum, with probability at most ϵ′rg, the adversary succeeds while the
extractor’s output is invalid for R′

rg. Thus the claim holds.

Next, we are ready to prove that a committed ring vector f ∈ Rn
q lies within a spe-

cific range. Naively, we can commit to the coefficient vectors cf(f) ∈ Zn×d
q and run the

above protocol in parallel d times. However, this incurs high communication costs, as the
input includes d commitments of total size Rκ×d

q , which affects verifier circuit complexity
for the Fiat-Shamir transform. To address this, we optimize communication via double
commitments.

Notation. Given f ∈ Rn
q where ∥f∥∞ < B = (d′)k, denote by

Df = [Df ,0, . . . ,Df ,k−1] = G−1
d′,k(cf(f)) ∈ Zn×dk

q (13)

the decomposition matrix of cf(f) so that ∥Df∥∞ < d′. Here Df ,i ∈ Zn×d
q for all i ∈ [k]. Let

Mf ∈ EXP(Df) ⊆ Mn×dk. Consider the double commitment LMf M = JτDK where τD :=
Φ−1(JMf K) ∈ (−d′, d′)n is the decomposed version of JMf K. Let mτ ∈ EXP(τD) ⊆ Mn.
We consider a range-check relation

Rrg,B :=


(x,w) :

x = (cmf , CMf
, cmmτ ∈ Rκ

q),

w = [τD,mτ , f ,Mf] ∈ Zn
q ×R

n×(2+dk)
q s.t.

cf(f) ∈ (−B,B)n×d ∧ (CMf
,Mf) ∈ Rm,in

(Mf ∈ EXP(Df)) ∧ ((CMf
, cmmτ), (τD,mτ)) ∈ R′

rg

(CMf
, (τD,Mf)) ∈ Rdopen,dk


(14)

The reduction of knowledge is from Rrg,B to the output relation

Rdcom :=


(x,w) :

x =
(
cmf , CMf

, cmmτ ∈ Rκ
q , r ∈ Clogn, e ∈ R3+dk

q

)
,

w = [τD,mτ , f ,Mf] ∈ Zn
q ×R

n×(2+dk)
q s.t.

[τD,mτ , f ,Mf]
⊤ tensor(r) = e

(cmf , f) ∈ Ropen ∧ (cmmτ ,mτ) ∈ Ropen

(CMf
, (τD,Mf)) ∈ Rdopen,dk


(15)

In words, given instance the commitment cmf , the helper commitments CMf
, cmmτ , the

witness f , and the helper witness vectors τD,mτ and matrix Mf , the relation Rrg,B checks
that (i) f is an opening to cmf ; (ii) mτ is an opening to cmmτ and (τD,Mf) is an opening to
the double commitment CMf

; (iii) Mf , mτ are in EXP(Df) ⊆Mn×dk and EXP(τD) ⊆Mn

respectively (EXP(·) is defined in (3)); (iv) τD is a Zq-vector in (−d′, d′)n; and (v) the

21

coefficients of f lie within (−B,B). This is equivalent to a simpler relation that only
checks (i) and (v) for instance cmf and witness f , but we put all helper information into
the statement to simplify the protocol and their analysis.

Similarly, the output relation Rdcom checks that, for instance (cmf , CMf
, cmmτ , r, e),

the witnesses f ,mτ are openings to cmf , cmmτ and (τD,Mf) is an opening to CMf
, and

the matrix-vector product [τD,mτ , f ,Mf]
⊤tensor(r) = e holds.

The protocol. Intuitively, the protocol Πrgchk does the following:

1. check that Mf ∈ EXP(Df) and mτ ∈ EXP(τD) are well-formed via the monomial set
tests;

2. verify that each entry of cf(f), τD matches the constant term of the corresponding
entry in

∑
i∈[k] d

′i · (ψ ·Mf ,i) and ψ ·mτ ; by Lemma 2.2, this implies that cf(f), τD
are within the ranges.

Construction 4.4. On input x = (cmf , CMf
, cmmτ) ∈ Rκ×3

q , w = [τD,mτ , f ,Mf] ∈ Zn
q ×

R
n×(2+dk)
q where (x,w) ∈ Rrg,B, the protocol Πrgchk proceeds as follows:

1. Run a batched protocol Πmon (Construction 4.2) w.r.t. Mf = [Mf ,0 ∈ Rn×d
q , . . . ,Mf ,k−1] ∈

EXP(Df) ⊆Mn×dk and mτ ∈ EXP(τD) ⊆Mn. The output statements are

(x = (cmmτ , r, b ∈ Rq),w = mτ) ∈ Rm,out

(x = (CMf
, r, e ∈ Rdk

q),w = Mf) ∈ Rm,out

where b = ⟨mτ , tensor(r)⟩. For every i ∈ [k], denote by

ui := (Mf ,i)
⊤tensor(r) = e[di, d(i+ 1)) ∈ Rd

q .

2. P→ V : Send v := cf(f)⊤tensor(r) ∈ Cd and a := ⟨τD, tensor(r)⟩ ∈ C

3. V : Let ψ :=
∑

i∈[1,d′) i · (X−i +Xi) ∈ Rq. Check that ct(ψ · b) ?
= a and

ct
(
ψ · (u0 + d′u1 + · · ·+ d′k−1uk−1)

)
?
= v (16)

Abort and return ⊥ if the checks fail.

4. Denote by v̂ :=
∑

i∈[d] viX
i ∈ Rq. Return the reduced statement

(xo = (cmf , CMf
, cmmτ , r, (a, b, v̂,u0, . . . ,uk−1)),wo = [τD,mτ , f ,Mf]) ∈ Rdcom .

Remark 4.4. Πrgchk can be extended to support multiple input instances by batching the
execution of Πmon with the same challenge r ∈ Clogn.

22

Theorem 4.2. Πrgchk is a reduction of knowledge from Rrg,B to Rdcom.

Proof. Public reducibility is trivial. The claim follows from the lemmas below.

Lemma 4.6. Πrgchk is perfectly complete.

Proof. For every input statement in Rrg,B, we show that the verifier checks pass and the
prover’s output is in Rdcom.

First, the prover’s output is in Rdcom: {ui}i∈[k], a, b sent by the honest prover are

exactly the claimed values in Rdcom. And the sent v satisfies that v = cf(f)⊤tensor(r).
Thus, v̂ :=

∑
i∈[d] viX

i = ⟨f , tensor(r)⟩ as required given that tensor(r) is in Cn = Zn
q .

Next, we show that the verifier accepts: First, mτ is in EXP(τD) ⊆ Mn and the
matrix Mf is in EXP(Df) ⊆ Mn×dk. By completeness of Πmon, the monomial set checks
pass. Also note that τD ∈ (−d′, d′)n, by Lemma 2.2, we have ct(ψ · mτ) = τD. Since
tensor(r) ∈ Cn = Zn

q , we have ct(ψ · b) = a. By definition of the decomposed matrix Df ,
with a similar argument, Eq. (16) holds and thus the verifier accepts.

Lemma 4.7. If J·K is binding with binding error ϵbind, then Πrgchk is knowledge sound with
knowledge error ϵrg := ϵmon,dk+1 + ϵbind + log n/|C|.

Proof. The extractor Ext simulates the execution with adversary (A,P∗) and returns P∗’s
output witness if the verifier accepts. Otherwise Ext returns ⊥. It is clear that Ext has
polynomial time complexity.

Let x, xo denote the instances for the input and output relations. Conditioned on the
verifier accepts, let w = (f ,Mf , τD,mτ) be the extractor’s output. Suppose (x,w) is not in
Rrg,B but (xo,w) is in Rdcom. Consider two cases.
Case 1: Mf ∈ Rn×dk

q or mτ ∈ Rn
q are invalid openings, or some of their entries are outside

the monomial set. By knowledge soundness of Πmon, this happens with probability at most
ϵmon,dk+1.
Case 2: Mf is inMn×dk and mτ is inMn and they are valid openings, but

cf(f) /∈ (−B,B)n×d ∨ τD /∈ (−d′, d′)n ∨ Mf /∈ EXP(Df) ∨ mτ /∈ EXP(τ) .

For all i ∈ [k], let Mf ,i ∈ Mn×d be the (di + 1)-th to (di + d)-th columns of Mf . By
Lemma 2.2, we have ct(ψ ·mτ − τD) ̸= 0n or

ct
(
ψ · (Mf ,0 + d′Mf ,1 + ·+ d′k−1Mf ,k−1))

)
̸= cf(f) .

Note that (xo,w) is in Rdcom and the verification passed, so ct(ψ · b) = a and (16) holds,
where a = ⟨τD, tensor(r)⟩ and ct(ψ · b) = ⟨ct(ψ ·mτ), tensor(r)⟩. By the binding property
of J·K and Lemma 2.6, this happens with probability at most ϵbind + log n/|C|. In sum, the
knowledge error is ϵrg = ϵmon,dk+1 + ϵbind + log n/|C|.

23

4.4 Commitment transformation

Double commitments are not linearly homomorphic, thus statements involving double com-
mitments are hard to fold using random linear combinations. This section introduces a
technique that simplifies such statements by reducing them to statements involving only
linear commitments to smaller witnesses. The core idea is to use sumchecks to ensure
consistency between the double commitment of a large witness matrix M and a linear
commitment to a folded version of M.

Specifically, let B := (d′)k where k ∈ N. Fix b ∈ N and folding challenge set S̄ ⊂ Rq

such that J·K is (b,S := S̄ − S̄)-binding and b ≥ 2
∥∥S̄∥∥

op
(d′ + 1 + B + dk). The protocol

Πcm reduces relation Rrg,B from (14) to

Rcom :=

{
(x,w) :

x =
(
cmg ∈ Rκ

q , ro ∈ Mlogn
C , vo ∈ Mq

)
, w = g ∈ Rn

q s.t.

⟨g, tensor(ro)⟩ = vo ∧ ∥g∥∞ < b/2 ∧ (cmg,g) ∈ Ropen

}
(17)

where MC := C × C and Mq := Rq × Rq. We can understand Rcom as a special case of
the general linear relation Rlin,b/2, where the only linear check is the evaluation statement
⟨g, tensor(ro)⟩ = vo.

The protocol Πcm, which we describe next, is the central protocol that we use in the
next section to construct our folding scheme. It uses the range check protocol Πrgchk from
the previous section as a subroutine.

The protocol Πcm. For simplicity, assume that n = κd2kℓ and κ, k, ℓ, d are powers of two
(in Remark 4.8 we explain how to support smaller n). Recall that Φ−1 : Rκ×dk

q → (−d′, d′)n

is the injective map defined in Section 4.1 that decomposes a matrix in Rκ×dk
q to a low-

norm vector in (−d, d′)n; and Φ : (−d′, d′)n → Rκ×dk
q is the map such that Φ(Φ−1(D)) = D

for all D ∈ Rκ×dk
q .

Construction 4.5. The protocol takes as input an instance-witness pair (x,w) ∈ Rrg,B where

x = (cmf , CMf
= JτDK, cmmτ) ∈ Rκ×3

q , w = [τD,mτ , f ,Mf] ∈ Zn
q × (Rn

q)
2 ×Rn×dk

q

and mτ ,Mf satisfy7 mτ ∈ EXP(τD) ⊆ Mn and Mf ∈ EXP(Df) ⊆ Mn×dk. Here Df is a
decomposition of f as defined as in (13). The protocol Πcm proceeds as follows:

1. P ↔ V : Run Πrgchk to reduce the input statement in Rrg,B to that in Rdcom from
(15). Let r ∈ Clogn and e ∈ R3+dk

q be the challenge and evaluations.

2. V→ P : Send folding challenges s r← S̄3 and s′ r← S̄dk.

3. P→ V : Send JhK := JMf Ks′ = JMfs
′K ∈ Rκ

q .

7In practice, a standard implementation will set mτ := exp(τ) and Mf := exp(Df).

24

4. V→ P : Send challenges (c(0), c(1)) r← Clog κ × Clog κ.

5. P↔ V : Run two sumcheck protocols in parallel, where each of them checks the same
sumcheck claims below in a batch8:

• Set u := ⟨e[3, 3 + dk), s′⟩ ∈ Rq; the relation to be checked is

[τD,mτ , f ,h]
⊤ · tensor(r) ?

= (e[0, 2], u). (18)

This left hand side represents four sums each over n elements. Each sum can
be compared to the corresponding value on the right hand side using a degree-2
sumcheck claim that uses the multilinear extensions of τD,mτ , f ,h and tensor(r).
In total, (18) represents four sumcheck claims.

• For every z ∈ [2], define a vector t(z) ∈ Rn
q

t(z) = tensor(c(z))⊗ s′ ⊗ (1, d′, . . . , d′ℓ−1)⊗ (1, X, . . . ,Xd−1) . (19)

Let t̃(z) denote t(z)’s multilinear extension which can be evaluated9 by the ver-
ifier in time O(log κ+ dk + ℓ). Check the two degree-2 sumcheck claims:10∑

i∈[n]

τ̃D(⟨i⟩) · t̃(z)(⟨i⟩) ?
= ⟨tensor(c(z)), JhK⟩ ∈ Rq for z = 0, 1. (20)

If τD ∈ (−d′, d′)n, this is equivalent to checking that (See Remark 4.5)

⟨tensor(c(z)),Φ(τD)s′⟩ ?
= ⟨tensor(c(z)), JhK⟩ . (21)

In total, (20) represents two sumcheck claims.

The verifier can verify all six sumcheck claims from (18) and (20) as a batch using
the sumcheck batching technique from Remark 2.4. In Remark 4.6 we explain that
these six sumchecks can be treated as 6d sumcheck claims over Zq that can all be
batched into a single sumcheck over Zq (or an extension field of Zq).

P and V run two parallel sumcheck protocols for this single batch claim. The need for
two parallel sumchecks in explained in Remark 4.9. Let ro

r← (C × C)logn denote the

corresponding sumcheck challenges. Then, since V can evaluate eq(r, ·), t̃(0), t̃(1) at
both Clogn points in ro by itself, the two sumcheck executions reduce to the evaluation
claims

[τD,mτ , f ,h]
⊤ · tensor(ro)

?
= eo (22)

8The two parallel sumcheck executions use independent verifier challenges.
9t(z) is a tensor product defined in (19), so t̃(z)(r) = ⟨t(z), tensor(r)⟩ can be efficiently evaluated due to

the mixed-product property of tensors.
10⟨tensor(c(z)), JhK⟩ is directly computed by the verifier in time O(κ).

25

for some eo ∈ (Rq × Rq)
4, where τD,mτ , f ,h ∈ Rn

q are the committed witnesses.
These are eight evaluation claims: a claim for each of τD,mτ , f ,h for each of the two
points in ro. The next two steps aggregate these eight claims into two claims.

6. V : Compute cmg ∈ Rκ
q and vo ∈ R2

q where

(cmg, vo) := s0 · (CMf
, eo,0) + s1 · (cmmτ , eo,1) + s2 · (cmf , eo,2) + (JhK, eo,3) ∈ Rκ+2

q

Here we treat eo as a matrix in R2×4
q so that eo,i ∈ R2

q is its i’th column, for i ∈ [4].

7. P : Compute g := s0 · τD + s1 ·mτ + s2 · f + h ∈ Rn
q .

8. Output the reduced statement (x = (cmg, ro, vo),w = g) ∈ Rcom.

Remark 4.5. To see why Eq. (20) and Eq. (21) are equivalent, it suffices to check ⟨τD, t(z)⟩ =
⟨tensor(c(z)),Φ(τD)s′⟩. We can understand τD ∈ (−d′, d′)κd2kℓ as a four-dimensional array
T ∈ (−d′, d′)κ×dk×d×ℓ such that Ti,j,o,p = τD[i · (d2kℓ) + j · (dℓ) + o · ℓ+ p]. Then we have

⟨τD, t(z)⟩ = ⟨τD, tensor(c(z))⊗ s′ ⊗ (1, d′, . . . , d′ℓ−1)⊗ (1, X, . . . ,Xd−1)⟩

=
∑

i∈[κ],j∈[dk],o∈[d],p∈[ℓ]

Ti,j,o,p · tensor(c(z))i · s′j · d′o ·Xp

= ⟨tensor(c(z)),
∑
j∈[dk]

 ∑
o∈[d],p∈[ℓ]

T∗,j,o,p · d′o ·Xp

 · s′j⟩
= ⟨tensor(c(z)),

∑
j∈[dk]

Φ(τD)∗,j · s′j⟩ = ⟨tensor(c(z)),Φ(τD)s′⟩ .

Remark 4.6 (Efficient Instantiations of Sumchecks). Step 5 verifies six sumcheck claims over
Rq in a batch. Observe that each sumcheck claim over Rq can be understood as d sumcheck
claims over Zq: In (18), the elements of tensor(r) are in Zq; similarly, in (20), the elements
of τD are in Zq. Thus there are only scalar multiplications rather than Rq-multiplications
in the degree-2 sumchecks. Hence the sumcheck claim over Rq can be understood as d
coefficient-wise sumcheck claims over Zq.

In sum, the six sumcheck claims over Rq can then be understood as 6d sumcheck claims
over Zq. We can batch the 6d sumcheck claims over Zq to a single sumcheck claim over Zq

(or its field extension) via random linear combination. Thus Πcm only needs to run two
parallel sumcheck protocols over Zq (or an extension field of Zq).

Remark 4.7 (Optimizing communication). The communication is dominated by e′ :=
e[3, 3 + dk) ∈ Rdk

q , which consists of dk “full” Rq-elements. In applications such as IVC,
this affects the recursive verifier circuit size as the Fiat-Shamir transform is typically the
bottleneck.11 Fortunately, we can use the same compression trick for JMf K to compress e′.

11E.g., a 2-to-1 hash over Rq takes more than 100 R1CS constraints over Rq.

26

Specifically, we decompose e′ into τe ∈ (−d′, d′)n′
using an injective map similar to Φ−1,

where n′ = nk/κ. For simplicity, we assume that n′ = n and reuse the notation Φ−1 and
Φ, but it easily generalizes to any n′ ≤ n. Note that Φ(τe) = e′.

In the protocol Πcm, the prover replaces e′ with JτeK in the execution of Πrgchk. Specif-
ically, when running Πmon (Construction 4.2) to check that Mf is in Mn×dk, instead of
sending e′ in the clear, the prover sends the commitment JτeK and the claimed values
(ve,v

′
e) := (e′[β], e′[β2]) ∈ Cdk (used in the check (12)). The rest of the protocol is the

same as Πcm except for the following changes:

• The prover proves that the committed τe is in range (−d′, d′)n′
. This can be achieved

by sending Jexp(τe)K and running Construction 4.3, which is really efficient.

• In Step 5, the prover sends the claimed value of u and batches a sumcheck claim to
prove that ⟨Φ(τe), s′⟩ = u. (Recall that e′ = Φ(τe).)

• In Step 5, the prover batches two sumcheck claims to prove that Φ(τe)[β] = ve and
Φ(τe)[β

2] = v′
e. The idea is almost identical to that explained in Eq. (19), Eq. (20),

except that the term (1, . . . , Xd−1) in Eq. (19) is replaced with (1, β, . . . , βd−1) and
(1, β2, . . . , (β2)d−1) respectively.

• In Step 5, the prover batches a sumcheck claim for the constant term check in Eq. (16).
Specifically, let v ∈ Cd be the claimed values in Eq. (16). The verifier sends c′ r←
Clog d and the prover sends v′ = ⟨u0 + · · ·+ d′k−1uk−1, tensor(c

′)⟩ ∈ Rq. Denote by
z := (1, d′, . . . , d′k−1) ⊗ tensor(c′) ∈ Cdk. It suffices to check that (i) ct(ψ · v′) =
⟨v, tensor(c′)⟩, and (ii)

⟨Φ(τe), z⟩ = v′ . (23)

The inner product (23) can be represented as a degree-2 sumcheck using the same
trick in Eq. (19), Eq. (20).

• At Step 2, V samples two more challenges r1, r2 ∈ S̄, and at Step 6 and 7, V and P
fold (JτeK, Jexp(τe)K and (τe, exp(τe)) into cmg and g respectively, using scalars r1, r2.

This optimization removes e′ that has dk Rq-elements, at the cost of adding two com-
mitments JτeK, Jexp(τe)K ∈ Rκ

q , one Rq-element b and C-element a in the execution of

Construction 4.3, ve,v
′
e which has 2dk C-elements, and v′ ∈ Rq, c

′ ∈ Clog d. In practice,
d≫ κ > k, so this gives us a ≈ dk/(2κ)-factor saving on communication.

Remark 4.8 (Supporting n < κd2kℓ). Construction 4.5 requires the witness length n to be
large enough, i.e., n ≥ κd2kℓ. In this remark, we explain how to support smaller12 n. To
illustrate the idea, consider an example where d = (d∗)2 and n = κdkℓd∗ ≪ κd2kℓ. We
need to make two changes to the protocol Πcm:

12Specifically, we only need n to be slightly larger than κdkℓ.

27

First, we need to slightly change how we compute τD = Φ−1(JMf K). In Step 2 of
Construction 4.1, instead of flattening the entire coefficient matrix cf(M′′

f) ∈ Zκdkℓ×d
q into

a Zq-vector, we split C := cf(M′′
f) into d

∗ parts, i.e.,

C = [C0,C1, . . . ,Cd∗−1]

where for every i ∈ [d∗], Ci ∈ Zκdkℓ×d∗
q and we denote by τi := flat(Ci) ∈ Zn=κdkℓd∗

q .
Finally, we set Φ−1(JMf K) := τD =

∑
i∈[d∗] τiX

i ∈ Rn
q .

Recall that CMf
= JτDK is the double commitment in Πcm. But now, the committed

vector τD is no longer in (−d′, d′)n but an Rq-vector whose elements have degree d∗ =
√
d

and norm d′. This leads to the second change: Recall that we need to range-check the
committed vector τD ∈ Rn

q . A naive approach is to send the linear commitment to a matrix

Mτ ∈ Mn×d∗ and run monomial set checks. However, d∗ may still be large. Fortunately,
the commitment JMτ K ∈ Rκ×d∗

q is much shorter than JMf K ∈ Rκ×dk
q , i.e., d∗ ≪ dk and

n = κdkℓd∗ ≥ κd∗ℓd. So the prover can compute τ ′ := Φ−1(JMτ K) ∈ (−d′, d)n (following
Construction 4.1 with no modification) and send the commitment Jτ ′K, and then range-
check τ ′ by running Construction 4.3. Additionally, the protocol checks the consistency
between Jτ ′K, Jh′K := JMτ Ks

′′
(where s

′′ r← S̄d∗) and JMτ K, using a sumcheck claim as
in Eq. (20). Note that the sumcheck claim can be batched in Step 5.

There is a small tradeoff: instead of sending two helper commitments CMf
= JτDK, cmmτ =

Jexp(τD)K, we send three commitments JτDK, Jτ ′ = Φ−1(JMτ K)K, Jexp(τ ′)K and an h-commitment
Jh′K (that folds JMτ K).

Security analysis of Construction 4.5. Note that cmg is a random linear combination
of the commitments [CMf

= JτDK, cmmτ , cmf] and JMf K. However, the prover never sends
JMf K, which is too large. Instead, the prover adaptively sends a folded commitment JhK =
JMf Ks′ after learning the challenge s′. At a first glance, it is unclear how to enforce the
prover to fix the witness Mf before learning the challenge. A key observation is that CMf

was sent initially, which is claimed to be the double commitment to Mf . By running a
sumcheck to enforce the consistency between the instances JhK, CMf

and the witness JMf K,
we can recover the binding of Mf . Next, we formally prove the security of the scheme.

Theorem 4.3. Let k ∈ N and B := (d′)k. Fix b ∈ N and S̄ ⊆ Rq such that J·K is
(b,S = S̄ − S̄)-binding (defined in Section 4.1) and b ≥ 2

∥∥S̄∥∥
op
(d′ + 1 + B + dk). Then

Πcm is a reduction of knowledge from Rrg,B to Rcom.

Proof. Public reducibility is trivial. The theorem follows from the lemmas below.

Lemma 4.8. If b ≥ B′ = 2
∥∥S̄∥∥

op
· (d′ + 1 +B + dk), then Πcm is perfectly complete.

Proof. For every input instance x = (cmf = JfK, CMf
= JτDK, cmmτ = Jmτ K) and witness

w = [τD,mτ , f ,Mf] such that (x,w) ∈ Rrg,B, we prove that the honest execution of Πcm

succeeds and the output statement is in Rcom.

28

We first show that the verifier accepts and the evaluation claim inRcom (Eq. (17)) holds.
By completeness of Πrgchk, Step 1 executes correctly and the output statement is in Rdcom

from (15). This implies that the first 4 sumcheck claims at Step 5 hold. Moreover, since
(CMf

, (τD,Mf)) ∈ Rdopen,dk (defined in (8)), we have JτDK = CMf
and Φ(τD) = JMf K,

thus
Φ(τD)s′ = JMf Ks′ = JhK

and the last two sumcheck claims (at Step 5) hold. Therefore, the batched sumcheck
executes correctly and the evaluation claims in (22) holds, which implies that the evaluation
claim in Rcom also holds.

Next, we show that the norm constraint in Rcom holds (Eq. (17)), which also implies
that g is a valid opening of cmg. Note that ∥τD∥∞ < d′, the entries of mτ , Mf are in
the monomial set from (2), and ∥f∥∞ < B. By definition of operator norms from (4) and
Lemma 2.3, we have that

∥g∥∞ < d′
∥∥S̄∥∥

op
+
∥∥S̄∥∥

op
+B

∥∥S̄∥∥
op

+ dk
∥∥S̄∥∥

op
= B′/2 ≤ b/2 .

Thus, the output statement is in Rcom, which completes the proof.

Before proving knowledge soundness, we review an adapted version of the coordinate-
wise special soundnesss lemma from [FMN24]. Fix µ ∈ N and let S̄ be a finite set. For two
vectors a,b ∈ S̄µ, we say that a ≡i b for i ∈ [µ] if ai ̸= bi and aj = bj for all j ∈ [µ] \ {i}.

Lemma 4.9 ([FMN24], Lemma 7.1). Fix µ ∈ N and let S̄ be a finite set. Define U := S̄µ
and let Ψ : U × T → {0, 1} be any predicate. Let A be a probabilistic algorithm A : U → T
and let

ϵΨ(A) := Pr
u

r←U

[
Ψ(u,A(u)) = 1

]
.

There is an oracle algorithm E such that EA(u0, y0), on input u0
r← U , y0 ← A(u0), with

probability at least
ϵΨ(A)− µ/|S̄| (24)

outputs µ+1 pairs (u0, y0), (u1, y1 ← A(u1)), ..., (uµ, yµ ← A(uµ)) such that Ψ(ui, yi) = 1
for all i ∈ [µ+ 1] and ui+1 ≡i u0 for all i ∈ [µ]. E calls A for 1 + µ times in expectation,
and 1 + µ(|S̄| − 1) < µ|S̄| times in the worst case.

Next, we are ready to prove knowledge soundness.

Lemma 4.10. Fix k ∈ N and B = (d′)k. Let S̄, C be challenge sets where |S̄| = |C| ≥ 2λ.
Define

ϵsum := (2 log(n)/|C|)2 .
and µ = 3 + dk. Fix any b ∈ N such that J·K is (b,S = S̄ − S̄)-binding with binding error
ϵbind, the protocol Πcm has knowledge error

ϵcm,k =
µ+ dk

|S̄|
+ 3ϵbind + ϵ′rg + ϵrg + 2ϵsum +

µ(log2(κ) + (2 log n)2)

|C|

29

where ϵ′rg, ϵrg are defined in Lemma 4.5 and Lemma 4.7.

Proof. Let A∗ := (A,P∗) be any malicious prover with winning probability ϵA∗ . Without
loss of generality, we assume that A∗ is deterministic. We derive an adversary A′ below
that will be fed to the extractor in Lemma 4.9. Note that A′ only calls A∗ as an oracle.
Recall that MC := C × C.

Let µ := 3+dk and U := S̄µ. The adversary A′, with a hardcoded ro ∈ Mlogn
C , on input

u = (s ∈ S̄3, s′ ∈ S̄dk), simulates execution with A∗ by using u as the folding challenge
and ro as the challenge of the last sumcheck, and internally sampling other randomness
of the verifier. If A∗ fails or A∗’s output is not a valid witness for Rcom, A′ returns ⊥;
otherwise A′ outputs y := (tr,wo), where wo is A∗’s output witness and tr is the execution
transcript, which includes the input and output instances, the verifier randomness, and the
prover messages.

Define the predicate Ψ : U × {0, 1}∗ → {0, 1} such that Ψ(u, y = (tr,wo)) = 1 if and
only if the following two conditions both hold:

1. The execution transcript tr is accepted and uses u as the folding challenges.

2. (xo,wo) ∈ Rcom where xo is the output instance in the transcript.

Next, we describe the extractor Ext for Πcm, which calls the extractor E in Lemma 4.9
as a subroutine:

Extractor ExtA
∗
:

1. Sample ro
r← Mlogn

C to be used by A′. Each call of A′ will reuse the same ro but
freshly sample other randomness for simulating execution with A∗.

2. Sample u(0) r← U and y0 ← A′(u(0)).

3. Call EA′
(u(0), y0). If the execution fails, abort and return ⊥; otherwise, parse the

output

(u(0), y0), (u(1), y1 ← A(u1)), . . . , (u(µ), yµ ← A′(u(µ))) ,

where yi = (tri = (x(i)o , ∗),w(i)
o) for all i ∈ [µ+ 1] and u(i+1) ≡i u

(0) for all i ∈ [µ].

4. For every i ∈ [µ], compute13

wi :=
w(i+1)
o − w(0)

o

u
(i+1)
i − u

(0)
i

∈ Rn
q . (25)

5. Output w := [τ̂D, m̂τ , f̂ , M̂f] := [w0, . . . ,wµ−1] ∈ Rn×µ
q .

By Lemma 4.9, it is clear that Ext runs in expected polynomial time. Next, we focus on
analyzing the success probability of Ext.

13wi is well-defined as u
(i+1)
i − u

(0)
i ∈ S̄ − S̄ is invertible.

30

Success probability. Define ϵΨ(A′) := Pr
u

r←U,ro
r←Mlogn

C
[Ψ(u,A′(u)) = 1], which is

equal to ϵA∗ . By Lemma 4.9, with non-negligible14 probability ϵA∗ − µ/|S̄|, the extractor
Ext does not abort. Conditioned on this, denote by x = (cmf , CMf

, cmmτ) the input
instance in the execution, it suffices to upper-bound the probability that the extracted
witness w = [τ̂D, m̂τ , f̂ , M̂f] is invalid, i.e., (x,w) /∈ Rrg,B.

We first review some properties of the extracted witness. Recall that J·K and multilinear

evaluations are linear functions; J·K is (b,S = S̄ − S̄)-binding and (x(i)o ,w(i)
o) ∈ Rcom for all

i ∈ [µ+ 1]. Thus, if Ext succeeds, w = [τ̂D, m̂τ , f̂ , M̂f] has the following properties:

1. τ̂D, m̂τ , f̂ are (b,S)-valid openings of CMf
= Jτ̂DK, cmmτ , cmf (Eq. (6)).

2. M̂f is a valid opening of JM̂f K. (However, (τ̂D, M̂f) may not be a valid opening of
the double commitment CMf

if JM̂f K ̸= Φ(τ̂D).)

3. For every i ∈ [µ + 1], parse u(i) = (s(i), s′(i) ∈ S̄dk) and denote by Jh(i)K (included
in tri) the h-commitment sent by the prover at Step 3. By linearity of J·K and the
verifier computation at Step 6, we have that

Jh(i)K = JM̂f Ks′(i) . (26)

We note that M̂fs
′(i), however, may not be a (b,S)-valid opening of Jh(i)K, because

we do not have sufficient norm guarantee for M̂fs
′(i).

4. [τ̂D, m̂τ , f̂]
⊤tensor(ro) = e

(0)
o [0, 3) where e

(0)
o (in the first transcript tr0) is the claimed

evaluation in Eq. (22).

5. ⟨M̂fs
′(0), tensor(ro)⟩ = e

(0)
o [3].

Next, we analyze the probability of bad events below.

Define BAD1 as the event that Ext does not abort, but τ̂D (in the extracted witness w)
is not in (−d′, d′)n.

Claim 1. Pr[BAD1] ≤ ϵ1 := ϵbind + ϵ′rg + ϵsum where ϵ′rg is defined in Lemma 4.5.

Proof. If BAD1 occurs, by Property (1) and Property (4), we have (x̄ = CMf
, w̄ = τ̂D) ∈

Ropen and ⟨τ̂D, tensor(ro)⟩ = e
(0)
o [0].

Conditioned on Ext does not abort, consider a mental experiment where we re-run
ExtA

∗
with fresh randomness. If the re-execution does not abort, let τ̂D

∗ denote part of
the extracted witness that is a claimed opening to CMf

; otherwise τ̂D
∗ := ⊥. Consider the

first transcript generated by the re-execution. Let r, r∗o, e[0], eo[0] be the random variables
corresponding to the random challenges and evaluations at Step 1 and Eq. (22). Note that

14ϵA∗ is non-negligible and µ/|S̄| is negligible.

31

r, r∗o are uniformly random, because the first transcript is for the first call to A∗, and ExtA
∗

cannot do rejection sampling to bias the distribution.
Let E∗ be the event that at least one event below occurs in the mental experiment:

• Event B1: (τ̂D
∗ ̸= ⊥) ∧ (τ̂D

∗ ̸= τ̂D);

• Event B2: (τ̂D
∗ = τ̂D) and (τ̂D /∈ (−d′, d′)n ∧ ⟨τ̂D, tensor(r)⟩ = e[0]);

• Event B3: (τ̂D
∗ = τ̂D) and (⟨τ̂D, tensor(r)⟩ ≠ e[0] ∧ ⟨τ̂D, tensor(r∗o)⟩ = eo[0]).

By the binding property of J·K, Lemma 4.5, and Lemma 2.7, we have that

Pr [E∗] ≤ Pr [B1] + Pr [B2] + Pr [B3] ≤ ϵbind + ϵ′rg + ϵsum . (27)

Note that if BAD1 occurs in the mental experiment, then E∗ must also occur. Moreover,
BAD1 occurs with the same probability in the real execution and the mental experiment.
Thus, Pr[BAD1] ≤ Pr[E∗] and the claim holds.

Define BAD2 as the event that (i) Ext does not abort and BAD1 does not occur, but
(ii) (τ̂D, M̂f) (in the extracted witness w) is not a valid opening of the double commitment
CMf

, i.e., (CMf
, (τ̂D, M̂f)) /∈ Rdopen,dk (Eq. (8)).

Claim 2. If |C| = |S̄|, then Pr[BAD2] ≤ ϵ2 := ϵbind +
µ(log2(κ)+(2 logn)2)

|C| .

Proof. If BAD2 occurs, then the following conditions all hold for the extracted witness
w = [τ̂D, m̂τ , f̂ , M̂f]:

• (CMf
, τ̂D) ∈ Ropen (Property (1)) and M̂f is a valid opening of JM̂f K (Property (2));

• The sumcheck evaluation claims for τ̂D in the µ+ 1 transcripts are correct;

• (CMf
, (τ̂D, M̂f)) /∈ Rdopen,dk, which implies that Φ(τ̂D) ̸= JM̂f K.

Conditioned on Ext does not abort, consider a mental experiment where we re-run ExtA
∗

with fresh randomness. If it does not abort, let w∗ = (τ̂D
∗, ∗, ∗, M̂f

∗
) denote the extracted

output, otherwise w∗ := ⊥. Let E∗ be the event that at least one event below occurs in
the mental experiment:

• Event B1: (w∗ ̸= ⊥) ∧ (τ̂D
∗ ̸= τ̂D);

• Event B2: (τ̂D
∗ = τ̂D) and Φ(τ̂D) ̸= JM̂f

∗
K.

Note that if BAD2 occurs in the mental experiment, then E∗ also occurs. Moreover, BAD2

occurs with the same probability in the real execution and the mental experiment. Thus,
Pr[BAD2] ≤ Pr[E∗] ≤ Pr[B1] + Pr[B2]. Suppose for contradiction that Pr[B1] > ϵbind,

32

then we can find an adversary15 that breaks the binding property of J·K with probability
Pr[B1] > ϵbind, contradiction. Thus Pr[B1] ≤ ϵbind and it suffices to analyze Pr[B2].

For every i ∈ [µ + 1], denote by u′
i = (∗, s′(i) ∈ S̄dk) the folding challenge in the i-th

transcript output by Ext in the mental experiment. Observe that event B2 implies that
there exists i∗ ∈ [µ+1] where Φ(τ̂D)s′(i

∗) ̸= JM̂f
∗
Ks′(i∗); moreover, JM̂f

∗
Ks′(i∗) = Jh(i∗)K by

Property (3), where Jh(i∗)K is in the transcript tri∗ . Thus, Φ(τ̂D)s′(i
∗) ̸= Jh(i∗)K, but recall

that the evaluation claim for τ̂D holds.
By Lemma 4.9, Ext calls the adversary for at most µ|S̄| times. For each fixed call,

conditioned on that Φ(τ̂D)s′ ̸= JhK (where s′ is the folding challenge and JhK is the h-
commitment sent by the prover in this call), by Lemma 2.6 and Lemma 2.7, the sumcheck

evaluation claim holds w.r.t. ˜̂τD with probability at most (log κ/|C|)2 + ϵsum. By union
bound over the µ|S̄| calls, we have that

Pr[B2] ≤ µ|S̄| ·
(
(log κ/|C|)2 + ϵsum

)
≤ µ(log2(κ) + (2 log n)2)

|C|
.

We note that this is where we rely on running two independent sumchecks to ensure a small
soundness error despite the large union bound. We will come back to this in Remark 4.9.

In sum, Pr[BAD2] ≤ Pr[E∗] ≤ Pr[B1] + Pr[B2] ≤ ϵ2 as claimed.

Define BAD3 as the event that (i) Ext does not abort and (τ̂D, M̂f) in the extracted
witness w is a valid opening of CMf

; but (ii) (x,w) /∈ Rrg,B, where x is the input instance.

Claim 3. Pr[BAD3] ≤ ϵ3 := ϵbind + ϵrg + (dk)/|S̄|+ ϵsum.

Proof. If BAD3 occurs, by Property (4), (5), we have that

[τ̂D, m̂τ , f̂ , M̂fs
′(0)]⊤tensor(ro) = e(0)o .

And by Property (1) and the premise of BAD3, τ̂D, m̂τ , f̂ are valid openings of CMf
=

Jτ̂DK, cmmτ , cmf ; and (CMf
, (τ̂D, M̂f)) ∈ Rdopen,dk.

Conditioned on Ext does not abort, define w′ = [τ̂D, m̂τ , f̂] and consider a mental
experiment where we re-run ExtA

∗
with fresh randomness. If it does not abort, let w∗

denote the extracted output, otherwise w∗ := ⊥. Consider the first transcript generated by
the re-execution. Let r, r∗o and e, eo, u be the random variables corresponding to the verifier
randomness and claimed evaluations at Step 1, Eq. (18) and Eq. (22). Let s∗

′ ∈ S̄dk be the
folding challenge. Note that r, r∗o, s

∗′ are uniformly random, because the first transcript
corresponds to the first call to A∗, and thus ExtA

∗
cannot bias the distribution. Let E∗ be

the event that at least one event below occurs in the mental experiment:

• B1: (w∗ ̸= ⊥ ∧ w∗ ̸= w);

15The collision attacker keeps re-running ExtA
∗
until Ext does not abort, and then re-executes ExtA

∗
one

more time with fresh randomness.

33

• B2: (w∗ = w) and (x,w) /∈ Rrg,B and w⊤tensor(r) = e;

• B3: (w∗ = w) and w⊤tensor(r) ̸= e and [w′, M̂fs
∗′]⊤tensor(r) = (e[0, 2], u);

• B4: (w∗ = w) and [w′, M̂fs
∗′]⊤tensor(r) ̸= (e[0, 2], u) and [w′, M̂fs

∗′]⊤tensor(r∗o) = eo.

By the binding property of J·K and L·M (Lemma 4.1), knowledge soundness of Πrgchk (Lemma 4.7),
Lemma 2.6, and Lemma 2.7, we have that

Pr [E∗] ≤ Pr [B1] + Pr [B2] + Pr [B3] + Pr [B4]

≤ ϵbind + ϵrg + dk/|S̄|+ ϵsum .

Note that if BAD3 occurs in the mental experiment, then E∗ must also occur. Moreover,
BAD3 occurs with the same probability in the real execution and the mental experiment.
Thus Pr[BAD3] ≤ Pr[E∗] and the claim holds.

Conditioned on that Ext does not abort and BAD1, BAD2, BAD3 do not occur, the
extracted witness w is valid for the input x, i.e., (x,w) ∈ Rrg,B. Thus, Πcm is knowledge
sound with knowledge error ϵcm,k := (3 + dk)/|S̄|+ ϵ1 + ϵ2 + ϵ3. This completes the proof
of Lemma 4.10.

Remark 4.9. We need to run two parallel sumchecks at Step 5 because Claim 2 relies on a
union bound over up to µ|S̄| adversary calls and the bound is meaningless if we only run
one sumcheck. It is unclear whether this is merely a proof artifact or if a concrete attack
exists. We leave it as an interesting future work.

5 Folding Generalized Committed Linear Relations

In this section, we present a folding scheme for generalized committed linear relations
(Definition 3.1). Fix norm bound B = (d′)k where k ∈ N. Let L be the number of input
instances and S̄ the folding challenge set. Let J·K be a general linear commitment defined
in Section 4.1. For simplicity, we assume that J·K is (2B2, S̄ − S̄)-binding and16∥∥S̄∥∥

op
L(d′ + 1 +B + dk) ≤ B2 . (28)

For an indexed relation R and m ∈ N, we use R(m) to denote the set of tuples
(i, (xi,wi)i∈[m]) such that (i, xi,wi) ∈ R for all i ∈ [m]. Define online relation Rcomp :=

R(L−2)
lin,B and accumulated relation Racc := R(2)

lin,B. Our goal is to build a reduction of
knowledge from Rcomp ×Racc to Racc. Our construction consists of two phases.

1. In Section 5.1, we reduce Rcomp×Racc = R(L)
lin,B to Rlin,B2 by leveraging and adapting

the commitment-transformation protocol Πcm from Section 4.4.

16Our scheme naturally extends to more flexible choices of B and L.

34

2. To avoid norm blowup and enable unbounded folding, Section 5.2 reduces Rlin,B2 to

Racc = R(2)
lin,B by adapting a decomposition technique from [BC24].

Remark 5.1. One could also use the “decompose-then-fold” strategy from [BC24], where

we first decompose R(L)
lin,B to R(2L)

lin,
√
B
, and then reduce back to Rlin,B via folding. This

strategy has the advantage that the norm bound never exceeds B and thus we can choose
a larger B if needed. However, it requires computing 2L decomposed commitments, which
leads to a relatively less efficient prover.

We state our main result below.

Theorem 5.1. Fix S̄, L,B = (d′)k such that |S̄| ≥ 2λ, (28) holds and assume that J·K is
(2B2, S̄−S̄)-binding (Section 4.1). There exists a reduction of knowledge from Rcomp×Racc

to Racc, where Rcomp := R(L−2)
lin,B and Racc := R(2)

lin,B.

Proof. The claim follows from Theorem 5.2, Lemma 5.1 and the sequential composition
theorem (Theorem 2.1).

5.1 Folding

In this section, we show how to reduce R(L)
lin,B to Rlin,B2 . Let us first recall the definition of

Rlin,B from Section 3. Given a triple (i, x,w) defined by

i = (J·K, (M(i) ∈ Rn×n
q)i∈[nlin]) , x = (cmf ∈ Rκ

q , r ∈ Mlogn
C ,v ∈ Mnlin

q) , w = f ∈ Rn
q ,

where MC := C × C and Mq := Rq ×Rq, (i, x,w) is in the relation Rlin,B if

(∥f∥∞ < B) ∧ (cmf , f) ∈ Ropen ∧
(
⟨M(i) · f , tensor(r)⟩ = vi∀i ∈ [nlin]

)
where the commitment opening relation Ropen is defined in (6). Next, we illustrate the key
idea by showing how to reduce from Rlin,B to Rlin,B2/L; then via batching, we extend the

idea and show the reduction from R(L)
lin,B to Rlin,B2 .

Warm-up. We first show how to reduce a single statement in Rlin,B to Rlin,B2/L. While
this basic scheme is primarily for illustration, we later extend it to reduce L > 1 statements
in Rlin,B to a single statement in Rlin,B2 .

Our scheme, Πlin,B, is a simple adaptation to Πcm in Construction 4.5. The only
difference is that at Step 5, the parties further represent each linear check in Rlin,B as a
sumcheck claim, and run a (batched) sumcheck protocol to reduce the claim to a fresh linear
check in the output statement. More formally, for each ℓ ∈ [nlin], let ⟨M(ℓ)f , tensor(r)⟩ = vℓ

be the ℓ-th input linear check, we can rewrite it as a sumcheck claim∑
i∈[n]

m(⟨i⟩)eq(r, ⟨i⟩) ?
= vℓ (29)

35

where m(⟨i⟩) is defined as m(⟨i⟩) :=
∑

j∈[n]M
(ℓ)
i,j fj = M

(ℓ)
i,∗f .

By running a sumcheck protocol, we can reduce the claim in (29) to an evaluation claim
m̃(ro) = vo,ℓ. By Remark 2.2, this is equivalent to

m̃(ro) =
∑
i∈[n]

(M
(ℓ)
i,∗f) · tensor(ro)i = ⟨M

(ℓ)f , tensor(ro)⟩
?
= vo,ℓ .

In sum, we reduce ⟨M(ℓ)f , tensor(r)⟩ ?
= vℓ to ⟨M(ℓ)f , tensor(ro)⟩

?
= vo,ℓ.

Denote by Π′
cm the adapted version of Πcm that further checks the above sumcheck

claims. By definition of Rcom (17), the output relation of Π′
cm is exactly Rlin,B2/L. We

describe the protocol Πlin,B below:

Construction 5.1. On input the index i = ((M(i) ∈ Rn×n
q)i∈[nlin], J·K) and

x = (cmf ∈ Rκ
q , r ∈ Mlogn

C ,v ∈ Mnlin
q) , w = f ∈ Rn

q

where (i, x,w) ∈ Rlin,B, define the decomposed matrix Df for f as in (13). Set Mf ∈
EXP(Df), τD = Φ−1(JMf K) ∈ (−d′, d′)n where Φ−1 is defined in Section 4.1, and mτ ∈
EXP(τD). The protocol Πlin,B proceeds as follows:

1. P→ V : Send commitments CMf
= LMf M = JτDK ∈ Rκ

q , cmmτ = Jmτ K ∈ Rκ
q .

2. P↔ V : Run protocol Π′
cm, checking that ⟨M(i)f , tensor(r)⟩ = vi ∀i ∈ [nlin], and(

x′ = (cmf , CMf
, cmmτ),w

′ = (τD,mτ , f ,Mf)
)
∈ Rrg,B

where Rrg,B is defined in (14).

3. Return the reduced statement
(
i, xo = (cmg, ro,vo),wo = g ∈ Rn

q

)
∈ Rlin,B2/L.

By Eq. (28), Theorem 4.3, and the previous argument for reducing linear checks, Πlin,B

is a reduction of knowledge from Rlin,B to Rlin,B2/L. The knowledge error ϵlin,k is identical
to ϵcm,k (in Theorem 4.3).17

Folding multiple inputs. Next, we extend Πlin,B to reduce multiple statements in the

committed linear relation to a single statement. Our goal is to reduce from R(L)
lin,B to

Rlin,B2 . The construction is a simple adaptation of Construction 5.1 via batching. We can
understand it as running L parallel instances of Πlin,B, but with two modifications: First,
all of the concurrent sumchecks are batched. Second, the output witness is a (randomly)
folded sum of the L input (and intermediate) witnesses. This is equivalent to summing up
the output witnesses from the L individual executions of Πlin,B.

17The only difference between Πlin,B and Πcm is that we have 6 + nlin (rather than 6) sumcheck claims to
verify at Step 5, which can be batched using the technique from Remark 2.4.

36

Construction 5.2. On input the index i = ((M(i) ∈ Rn×n
q)i∈[nlin], J·K) and

x =
{

xi = (cmfi ∈ R
κ
q , ri ∈ Mlogn

C ,v(i) ∈ Mnlin
q)

}
i∈[L]

, w =
{
fi ∈ Rn

q

}
i∈[L]

where (i, x,w) ∈ R(L)
lin,B, the protocol Πmlin,L,B proceeds as follows:

1. P↔ V : Check (i, xi, fi) ∈ Rlin,B ∀i ∈ [L] by batching L executions of Πlin,B.

2. Denote by {(cmgi , ro,v
(i)
o ,gi) ∈ Rlin,B2/L}i∈[L] the reduced statements of the L

(batched) executions of Πlin,B. Return the reduced statementx =

∑
i∈[L]

cmgi , ro,
∑
i∈[L]

v(i)
o

 ,w =
∑
i∈[L]

gi

 ∈ Rlin,B2 .

Theorem 5.2. If J·K is (2B2,S = S̄ − S̄)-binding and Eq. (28) holds, then Πmlin,L,B is a

reduction of knowledge from R(L)
lin,B to Rlin,B2 with knowledge error ϵmlin,B,L ≤ L · ϵlin,k.

Proof. Public reducibility and completeness follows from that of Πlin,B. The proof of knowl-
edge soundness is almost identical to that of Theorem 4.3, except that the number of folding
challenges is multiplied by L.

5.2 Decomposition

In this section, we show how to reduce Rlin,B2 to R(2)
lin,B. The scheme is a simple adaptation

to the decomposition protocol from [BC24].

Construction 5.3. On input the index i = ((M(i) ∈ Rn×n
q)i∈[nlin], J·K) and

x = (cmf ∈ Rκ
q , r ∈ Mlogn

C ,v ∈ Mnlin
q) , w = (f ∈ Rn

q)

such that (i, x,w) ∈ Rlin,B2 , the protocol Πdecomp,B proceeds as follows:

1. P→ V : Decompose f to F = [F(0),F(1)] ∈ Rn×2
q according to Footnote 3, such that

∥F∥∞ < B and f = F× [1, B]⊤. Denote the commitment C = JFK ∈ Rκ×2
q and values

v(0),v(1) ∈ Mnlin
q such that for all i ∈ [2],

(i, xi = (C∗,i, r,v
(i)),wi = F(i)) ∈ Rlin,B .

Send C and (v(i))i∈[2].

2. V : Check C× [1, B]⊤
?
= cmf and v(0) +Bv(1) ?

= v. Return ⊥ if fail.

37

3. Return the reduced statement xo = (C∗,i, r,v
(i))i∈[2] and wo = F.

Remark 5.2. In applications like IVC/PCDs, L is typically kept small (e.g., < 10) to
minimize the recursive verifier circuit size, and the norm b̄ of the output witness in Con-
struction 5.2 is much smaller than B2. In this case, to improve efficiency, we can delay the
decomposition step until more folding steps are completed, or replace the norm bound B
in Πdecomp,B with

√
b̄.

Lemma 5.1. Πdecomp,B is RoK from Rlin,B2 to R(2)
lin,B with no knowledge error.

Proof. The proof is a simple adaptation to that in Lemma 3.3 of [BC24]. Public re-
ducibility and completeness are trivial. Next, we prove knowledge soundness. Given ma-
licious prover’s output xo = (C∗,i, r,v

(i))i∈[2] and wo = F, the extractor simply outputs

f := F× [1, B]⊤. If the verifier checks at Step 2 pass and (xo,wo) ∈ R(2)
lin,B, then ∥f∥∞ < B2,

and other checks in Rlin,B2 are satisfied w.r.t. x = (cmf , r,v). Thus, (i, x, f) ∈ Rlin,B2 and
the claim holds.

5.3 Efficiency estimate

Next, we analyze the complexity of the reduction of knowledge from Rcomp×Racc to Racc.
The scheme we consider is the version that applies the technique from Remark 4.6 and
Remark 4.7.

Theorem 5.3. Fix S̄, L,B = (d′)k such that |S̄| ≥ 2λ and (28) holds. Assume that
J·K : Rn

q → Rκ
q is (2B2, S̄ − S̄)-binding and d ≫ max(κ, log n). Let nlin be the number of

linear checks in Rlin,B. The RoK from Rcomp×Racc to Racc, combined with the optimization
in Remark 4.6 and Remark 4.7, has the following complexity:
Prover time: Dominated by Lnκ Rq-multiplications and O(Lnκdk) Rq-additions.
Verifier time (excluding hashing): Dominated by O(Ldk) Rq-multiplications.
Online instance size: (L− 2) · [(κ+ 2nlin) · log |Rq|+ 2 log n log |C|] bits.
Accumulated instance size: 2 · [(κ+ 2nlin) · log |Rq|+ 2 log n log |C|] bits.
Folding proof size: Dominated by L(5κ + 6) + 10 Rq-elements, L(dk + 5) S̄-elements,

and L(2dk + d+ 1) C-elements.

Remark 5.3 (Further optimizing proof sizes). We can further shorten the proof size by
replacing the 5L commitments with 5 commitments. The idea is to have a single batch of
helper commitments (e.g., LMf M, Jmτ K, JhK, etc.) for all of the L inputs, rather than having
separate helper commitments for each input.

Remark 5.4. An S̄-element is much smaller than an Rq-element. E.g., if we choose d = 64
and each coordinate of S̄ to be in {−1, 0, 1, 2}, it takes less than 2d bits to represent an
element in S̄, compared to d log q bits for an Rq-element.

38

Proof of Theorem 5.3. We first analyze prover complexity. Since the sumchecks are all
instantiated over fields (See Remark 4.6), even with more parallel repetitions (or running
over extension fields) for small q, they remain much cheaper than computing commitments
over Rq. Also, it is much more efficient to compute the commitments to τD ∈ (−d′, d′)n and
mτ = exp(τD) (at Step 1) than standard Ajtai commitments: JτDK only requires scalar
multiplications rather than Rq-multiplications; and because mτ ∈ Mn, by Remark 4.3,
Jmτ K takes only O(nκ) Rq-additions.

Therefore, for each online input i ∈ [L − 2], the dominant cost is for computing JfiK
(which takes nκ Rq-multiplications), plus the task of computing JMfiK whereMfi ∈Mn×dk.
By Remark 4.3, the latter takes O(nκdk) Rq-additions. Additionally, the prover needs to
compute two decomposed commitments in Πdecomp,. Thus the prover complexity is as
claimed.

Next, we analyze verifier complexity. With the optimization from Remark 4.7, there are
two main expensive steps: (i) the sumcheck verifier at Step 5 of Construction 4.5, which
takes O(dk) Rq-operations for each input i ∈ [L]; (ii) the folding operation at Step 6,
which takes O(κ) Rq-operation for each input i ∈ [L]. Since d≫ κ in practice, the verifier
complexity is as claimed.

The instance sizes are correct by inspection. Next, we analyze the folding proof size.
Since the sumchecks are instantiated over fields and only have log n ≪ d rounds, their
communication complexities are much smaller compared to commitments and Rq-elements.

For each input i ∈ [L], besides the 2 commitments, 2 Rq-elements, and 2dk C-elements
introduced from the optimization in Remark 4.7, the proof size is dominated by the 2
commitments CMf

, cmmτ sent at Step 1 of Construction 5.1, the dk + 5 folding challenges
(s, s′) in S̄ sent at Step 2, the JhK-commitment sent at Step 3, and the 4 Rq-elements
e[0..2], u in Construction 4.5. Additionally, the verifier sends a vector (v, a) ∈ Cd+1 at
Step 2 of Construction 4.4. In total, they are (5κ + 6) Rq-elements, dk + 5 S̄-elements,
and 2dk + d + 1 C-elements, all multiplied by L. Finally, we need to separately add the
eo-values (consisting of 8 + 2 Rq-elements) at Step 5 of Construction 4.5. Thus the claim
holds.

Comparison with LatticeFold. LatticeFold+ is a significant improvement over Lat-
ticeFold [BC24], both asymptotically and concretely.

In LatticeFold, the prover’s complexity is dominated by an n-sized degree-4 sumcheck
over Rq and the computation of L log2(B) decomposed commitments. This requires at least
O(Lnκ log2(B) Rq-multiplication, which is Ω(log2(B))-times worse than LatticeFold+.

The verifier circuit size of LatticeFold+, dominated by the Fiat-Shamir transform, is
also much better. In LatticeFold, it takes more than L log2(B) decomposed commitments
and Ω(log2(n)) Rq-elements (for sumcheck executions) into its transcript. This is at least
Ω(log2(B))-times worse than LatticeFold+.

39

Concrete prover complexity. By Theorem 5.3, Remark 4.3, Remark 4.6, for typical
parameters (e.g., 128-bit or 64-bit q), we expect prover time to be comparable to the
cost of only committing to input witnesses. Given the high efficiency of module-based
Ajtai commitments (e.g., see Footnote 2), we anticipate promising performance and leave
concrete implementation for future work.

Concrete proof sizes. As noted in Remark 4.7, proof size is crucial to minimize recursive
verifier circuit complexity in applications like IVC/PCD. We provide a candidate set of
parameters to show how small a folding proof can be. While not highly optimized, this
choice serves as a baseline, and we expect further efficiency gains with better parameter
tuning.

L q d n S̄ B k κ proof size # of hashes

3 128-bit 64 221 {−1, 0, 1, 2}d 210 2 9 ≈ 95 KB ≈ 95

The parameters are chosen for 128-bit conjectured hardness against the best-known attacks
on Module-SIS [APS15; Esg+19; ADPS16; BDGL16]. The prime q is selected so that Rq

splits into 16 factors, and by Lemma 2.4, S̄ is indeed a strong sampling set. We set n = 221

to allow proving a R1CS statements over18 Fq4 of size 16 · 221 = 225.
The proof size is ≈ 185KB without the optimization from Remark 5.3 and ≈ 95KB if

we add the optimization, which translates to ≈ 95 hashes (over Rq) for the Fiat-Shamir
transform. After the optimization, the proof size is approaching LaBRADOR [BS23] —
the shortest known lattice-based NARK, which achieves ≈ 60KB proofs for a 220-sized
statement. As noted in [BC24], LaBRADOR has a linear-time verifier and cannot be used
to construct recursive SNARKs.

6 Conclusion and future work

We presented LatticeFold+, a lattice-based folding technique that leverages a new purely
algebraic ring-based range check along with a commitment transformation protocol that
converts a statement about double commitments into a linear statement that can be folded.
The result is a lattice-based folding system that is faster than LatticeFold, produces shorter
proofs, and has a simpler verification circuit.

This work raises two interesting directions for future work. First, throughout the paper
we used the ℓ∞ norm rather than ℓ2 to simplify the analysis of our sub-protocols. However,
the ℓ∞ norm leads to slightly worse parameters in the definition of Module-SIS compared
to ℓ2. It would be interesting to develop an ℓ2 variant of all of our protocols. Second,
we defined all of our protocols over Zq modules for a prime q. In practice, there may be
interest in implementing these protocols modulo a power of two. It would be interesting
to generalize all these results to operate over a non-prime modulus.

18By Remark 4.1 of [BC24], we can pack 16 R1CS field constraints to an Rq-constraint.

40

Acknowledgments. This work was funded by NSF, DARPA, the Simons Foundation,
and UBRI. Opinions, findings, and conclusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily reflect the views of DARPA.

References

[ACK21] Thomas Attema, Ronald Cramer, and Lisa Kohl. “A Compressed Σ-Protocol
Theory for Lattices”. In: CRYPTO 2021, Part II. Ed. by Tal Malkin and
Chris Peikert. Vol. 12826. LNCS. Virtual Event: Springer, Cham, Aug. 2021,
pp. 549–579. doi: 10.1007/978-3-030-84245-1_19.

[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. “Post-
quantum Key Exchange - A New Hope”. In: USENIX Security 2016. Ed. by
Thorsten Holz and Stefan Savage. USENIX Association, Aug. 2016, pp. 327–
343.

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkita-
subramaniam. “Ligero: Lightweight Sublinear Arguments Without a Trusted
Setup”. In: ACM CCS 2017. Ed. by Bhavani M. Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu. ACM Press, 2017, pp. 2087–2104. doi:
10.1145/3133956.3134104.

[Ajt96] Miklós Ajtai. “Generating Hard Instances of Lattice Problems (Extended
Abstract)”. In: 28th ACM STOC. ACM Press, May 1996, pp. 99–108. doi:
10.1145/237814.237838.

[AL21] Martin R. Albrecht and Russell W. F. Lai. “Subtractive Sets over Cyclotomic
Rings - Limits of Schnorr-Like Arguments over Lattices”. In: CRYPTO 2021,
Part II. Ed. by Tal Malkin and Chris Peikert. Vol. 12826. LNCS. Virtual
Event: Springer, Cham, Aug. 2021, pp. 519–548. doi: 10.1007/978-3-030-
84245-1_18.

[Alb+22] Martin R. Albrecht, Valerio Cini, Russell W. F. Lai, Giulio Malavolta, and
Sri Aravinda Krishnan Thyagarajan. “Lattice-Based SNARKs: Publicly Ver-
ifiable, Preprocessing, and Recursively Composable - (Extended Abstract)”.
In: CRYPTO 2022, Part II. Ed. by Yevgeniy Dodis and Thomas Shrimpton.
Vol. 13508. LNCS. Springer, Cham, Aug. 2022, pp. 102–132. doi: 10.1007/
978-3-031-15979-4_4.

[ALS20] Thomas Attema, Vadim Lyubashevsky, and Gregor Seiler. “Practical Prod-
uct Proofs for Lattice Commitments”. In: CRYPTO 2020, Part II. Ed. by
Daniele Micciancio and Thomas Ristenpart. Vol. 12171. LNCS. Springer,
Cham, Aug. 2020, pp. 470–499. doi: 10.1007/978-3-030-56880-1_17.

41

https://doi.org/10.1007/978-3-030-84245-1_19
https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1145/237814.237838
https://doi.org/10.1007/978-3-030-84245-1_18
https://doi.org/10.1007/978-3-030-84245-1_18
https://doi.org/10.1007/978-3-031-15979-4_4
https://doi.org/10.1007/978-3-031-15979-4_4
https://doi.org/10.1007/978-3-030-56880-1_17

[APS15] Martin R Albrecht, Rachel Player, and Sam Scott. “On the concrete hardness
of learning with errors”. In: Journal of Mathematical Cryptology 9.3 (2015),
pp. 169–203.

[AS24] Arasu Arun and Srinath Setty. Nebula: Efficient read-write memory and
switchboard circuits for folding schemes. Cryptology ePrint Archive, Paper
2024/1605. 2024. url: https://eprint.iacr.org/2024/1605.

[Bau+18] Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafaël del Pino, Jens Groth,
and Vadim Lyubashevsky. “Sub-linear Lattice-Based Zero-Knowledge Argu-
ments for Arithmetic Circuits”. In: CRYPTO 2018, Part II. Ed. by Hovav
Shacham and Alexandra Boldyreva. Vol. 10992. LNCS. Springer, Cham, Aug.
2018, pp. 669–699. doi: 10.1007/978-3-319-96881-0_23.

[BBBF18] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. “Verifiable
Delay Functions”. In: CRYPTO 2018, Part I. Ed. by Hovav Shacham and
Alexandra Boldyreva. Vol. 10991. LNCS. Springer, Cham, Aug. 2018, pp. 757–
788. doi: 10.1007/978-3-319-96884-1_25.

[BBHR18a] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. “Fast
Reed-Solomon Interactive Oracle Proofs of Proximity”. In: ICALP 2018. Ed.
by Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald
Sannella. Vol. 107. LIPIcs. Schloss Dagstuhl, July 2018, 14:1–14:17. doi: 10.
4230/LIPIcs.ICALP.2018.14.

[BBHR18b] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable,
transparent, and post-quantum secure computational integrity. Cryptology
ePrint Archive, Report 2018/046. 2018. url: https://eprint.iacr.org/
2018/046.

[BC23] Benedikt Bünz and Binyi Chen. “Protostar: Generic Efficient Accumula-
tion/Folding for Special-Sound Protocols”. In: ASIACRYPT 2023, Part II.
Ed. by Jian Guo and Ron Steinfeld. Vol. 14439. LNCS. Springer, Singapore,
Dec. 2023, pp. 77–110. doi: 10.1007/978-981-99-8724-5_3.

[BC24] Dan Boneh and Binyi Chen. LatticeFold: A Lattice-based Folding Scheme
and its Applications to Succinct Proof Systems. Cryptology ePrint Archive,
Report 2024/257. 2024. url: https://eprint.iacr.org/2024/257.

[BCMS20] Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra, and Nicholas Spooner.
“Recursive Proof Composition from Accumulation Schemes”. In: TCC 2020,
Part II. Ed. by Rafael Pass and Krzysztof Pietrzak. Vol. 12551. LNCS.
Springer, Cham, Nov. 2020, pp. 1–18. doi: 10.1007/978-3-030-64378-2_1.

[BCPS18] Anurag Bishnoi, Pete L Clark, Aditya Potukuchi, and John R Schmitt. “On
zeros of a polynomial in a finite grid”. In: Combinatorics, Probability and
Computing 27.3 (2018), pp. 310–333.

42

https://eprint.iacr.org/2024/1605
https://doi.org/10.1007/978-3-319-96881-0_23
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.4230/LIPIcs.ICALP.2018.14
https://doi.org/10.4230/LIPIcs.ICALP.2018.14
https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2018/046
https://doi.org/10.1007/978-981-99-8724-5_3
https://eprint.iacr.org/2024/257
https://doi.org/10.1007/978-3-030-64378-2_1

[BCS21] Jonathan Bootle, Alessandro Chiesa, and Katerina Sotiraki. “Sumcheck Ar-
guments and Their Applications”. In: CRYPTO 2021, Part I. Ed. by Tal
Malkin and Chris Peikert. Vol. 12825. LNCS. Virtual Event: Springer, Cham,
Aug. 2021, pp. 742–773. doi: 10.1007/978-3-030-84242-0_26.

[BCS23] Jonathan Bootle, Alessandro Chiesa, and Katerina Sotiraki. “Lattice-Based
Succinct Arguments for NP with Polylogarithmic-Time Verification”. In:
CRYPTO 2023, Part II. Ed. by Helena Handschuh and Anna Lysyanskaya.
Vol. 14082. LNCS. Springer, Cham, Aug. 2023, pp. 227–251. doi: 10.1007/
978-3-031-38545-2_8.

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. “Scal-
able Zero Knowledge via Cycles of Elliptic Curves”. In: CRYPTO 2014,
Part II. Ed. by Juan A. Garay and Rosario Gennaro. Vol. 8617. LNCS.
Springer, Berlin, Heidelberg, Aug. 2014, pp. 276–294. doi: 10.1007/978-3-
662-44381-1_16.

[BDFG21] Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. “Halo Infinite:
Proof-Carrying Data from Additive Polynomial Commitments”. In: CRYPTO 2021,
Part I. Ed. by Tal Malkin and Chris Peikert. Vol. 12825. LNCS. Virtual
Event: Springer, Cham, Aug. 2021, pp. 649–680. doi: 10.1007/978-3-030-
84242-0_23.

[BDGL16] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. “New direc-
tions in nearest neighbor searching with applications to lattice sieving”. In:
27th SODA. Ed. by Robert Krauthgamer. ACM-SIAM, Jan. 2016, pp. 10–24.
doi: 10.1137/1.9781611974331.ch2.

[Ben+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars
Virza, and Nicholas P. Ward. “Aurora: Transparent Succinct Arguments for
R1CS”. In: EUROCRYPT 2019, Part I. Ed. by Yuval Ishai and Vincent
Rijmen. Vol. 11476. LNCS. Springer, Cham, May 2019, pp. 103–128. doi:
10.1007/978-3-030-17653-2_4.

[BGH19] Sean Bowe, Jack Grigg, and Daira Hopwood. Halo: Recursive Proof Composi-
tion without a Trusted Setup. Cryptology ePrint Archive, Report 2019/1021.
2019. url: https://eprint.iacr.org/2019/1021.

[BLNS20] Jonathan Bootle, Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor
Seiler. “A Non-PCP Approach to Succinct Quantum-Safe Zero-Knowledge”.
In: CRYPTO 2020, Part II. Ed. by Daniele Micciancio and Thomas Ris-
tenpart. Vol. 12171. LNCS. Springer, Cham, Aug. 2020, pp. 441–469. doi:
10.1007/978-3-030-56880-1_16.

[BMNW24] Benedikt Bünz, Pratyush Mishra, Wilson Nguyen, and William Wang. Arc:
Accumulation for Reed–Solomon Codes. Cryptology ePrint Archive, Paper
2024/1731. 2024. url: https://eprint.iacr.org/2024/1731.

43

https://doi.org/10.1007/978-3-030-84242-0_26
https://doi.org/10.1007/978-3-031-38545-2_8
https://doi.org/10.1007/978-3-031-38545-2_8
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1007/978-3-030-84242-0_23
https://doi.org/10.1007/978-3-030-84242-0_23
https://doi.org/10.1137/1.9781611974331.ch2
https://doi.org/10.1007/978-3-030-17653-2_4
https://eprint.iacr.org/2019/1021
https://doi.org/10.1007/978-3-030-56880-1_16
https://eprint.iacr.org/2024/1731

[Bre+24] Martijn Brehm, Binyi Chen, Ben Fisch, Nicolas Resch, Ron D. Rothblum,
and Hadas Zeilberger. Blaze: Fast SNARKs from Interleaved RAA Codes.
Cryptology ePrint Archive, Paper 2024/1609. 2024. url: https://eprint.
iacr.org/2024/1609.

[BS23] Ward Beullens and Gregor Seiler. “LaBRADOR: Compact Proofs for R1CS
fromModule-SIS”. In: CRYPTO 2023, Part V. Ed. by Helena Handschuh and
Anna Lysyanskaya. Vol. 14085. LNCS. Springer, Cham, Aug. 2023, pp. 518–
548. doi: 10.1007/978-3-031-38554-4_17.

[Bün+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille,
and Greg Maxwell. “Bulletproofs: Short Proofs for Confidential Transactions
and More”. In: 2018 IEEE Symposium on Security and Privacy. IEEE Com-
puter Society Press, May 2018, pp. 315–334. doi: 10.1109/SP.2018.00020.

[Bün+21] Benedikt Bünz, Alessandro Chiesa, William Lin, Pratyush Mishra, and Nicholas
Spooner. “Proof-Carrying DataWithout Succinct Arguments”. In: CRYPTO 2021,
Part I. Ed. by Tal Malkin and Chris Peikert. Vol. 12825. LNCS. Virtual
Event: Springer, Cham, Aug. 2021, pp. 681–710. doi: 10.1007/978-3-030-
84242-0_24.

[CBBZ23] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. “HyperPlonk:
Plonk with Linear-Time Prover and High-Degree Custom Gates”. In: EURO-
CRYPT 2023, Part II. Ed. by Carmit Hazay and Martijn Stam. Vol. 14005.
LNCS. Springer, Cham, Apr. 2023, pp. 499–530. doi: 10.1007/978-3-031-
30617-4_17.

[CCKP19] Shuo Chen, Jung Hee Cheon, Dongwoo Kim, and Daejun Park. Verifiable
Computing for Approximate Computation. Cryptology ePrint Archive, Re-
port 2019/762. 2019. url: https://eprint.iacr.org/2019/762.

[CMNW24] Valerio Cini, Giulio Malavolta, Ngoc Khanh Nguyen, and Hoeteck Wee.
“Polynomial Commitments from Lattices: Post-quantum Security, Fast Veri-
fication and Transparent Setup”. In: CRYPTO 2024, Part X. Ed. by Leonid
Reyzin and Douglas Stebila. Vol. 14929. LNCS. Springer, Cham, Aug. 2024,
pp. 207–242. doi: 10.1007/978-3-031-68403-6_7.

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. “Fractal: Post-quantum
and Transparent Recursive Proofs from Holography”. In: EUROCRYPT 2020,
Part I. Ed. by Anne Canteaut and Yuval Ishai. Vol. 12105. LNCS. Springer,
Cham, May 2020, pp. 769–793. doi: 10.1007/978-3-030-45721-1_27.

[CT10] Alessandro Chiesa and Eran Tromer. “Proof-Carrying Data and Hearsay Ar-
guments from Signature Cards”. In: ICS 2010. Ed. by Andrew Chi-Chih Yao.
Tsinghua University Press, Jan. 2010, pp. 310–331.

44

https://eprint.iacr.org/2024/1609
https://eprint.iacr.org/2024/1609
https://doi.org/10.1007/978-3-031-38554-4_17
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1007/978-3-030-84242-0_24
https://doi.org/10.1007/978-3-030-84242-0_24
https://doi.org/10.1007/978-3-031-30617-4_17
https://doi.org/10.1007/978-3-031-30617-4_17
https://eprint.iacr.org/2019/762
https://doi.org/10.1007/978-3-031-68403-6_7
https://doi.org/10.1007/978-3-030-45721-1_27

[CWSK24] Bing-Jyue Chen, Suppakit Waiwitlikhit, Ion Stoica, and Daniel Kang. “ZKML:
An Optimizing System for ML Inference in Zero-Knowledge Proofs”. In: Pro-
ceedings of the Nineteenth European Conference on Computer Systems, Eu-
roSys 2024, Athens, Greece, April 22-25, 2024. ACM, 2024, pp. 560–574. doi:
10.1145/3627703.3650088. url: https://doi.org/10.1145/3627703.
3650088.

[DB22] Trisha Datta and Dan Boneh. Using ZK Proofs to Fight Disinformation. link.
2022.

[EG23] Liam Eagen and Ariel Gabizon. ProtoGalaxy: Efficient ProtoStar-style fold-
ing of multiple instances. Cryptology ePrint Archive, Report 2023/1106.
2023. url: https://eprint.iacr.org/2023/1106.

[ENS20] Muhammed F. Esgin, Ngoc Khanh Nguyen, and Gregor Seiler. “Practical Ex-
act Proofs from Lattices: New Techniques to Exploit Fully-Splitting Rings”.
In: ASIACRYPT 2020, Part II. Ed. by Shiho Moriai and Huaxiong Wang.
Vol. 12492. LNCS. Springer, Cham, Dec. 2020, pp. 259–288. doi: 10.1007/
978-3-030-64834-3_9.

[Esg+19] Muhammed F. Esgin, Ron Steinfeld, Amin Sakzad, Joseph K. Liu, and
Dongxi Liu. “Short Lattice-Based One-out-of-Many Proofs and Applications
to Ring Signatures”. In: ACNS 19International Conference on Applied Cryp-
tography and Network Security. Ed. by Robert H. Deng, Valérie Gauthier-
Umaña, Mart́ın Ochoa, and Moti Yung. Vol. 11464. LNCS. Springer, Cham,
June 2019, pp. 67–88. doi: 10.1007/978-3-030-21568-2_4.

[FKNP24] Giacomo Fenzi, Christian Knabenhans, Ngoc Khanh Nguyen, and Duc Tu
Pham. “Lova: Lattice-Based Folding Scheme from Unstructured Lattices”.
In: ASIACRYPT 2024, Part IV. Ed. by Kai-Min Chung and Yu Sasaki.
Vol. 15487. LNCS. Springer, Singapore, Dec. 2024, pp. 303–326. doi: 10.
1007/978-981-96-0894-2_10.

[FMN24] Giacomo Fenzi, Hossein Moghaddas, and Ngoc Khanh Nguyen. “Lattice-
Based Polynomial Commitments: Towards Asymptotic and Concrete Effi-
ciency”. In: Journal of Cryptology 37.3 (July 2024), p. 31. doi: 10.1007/
s00145-024-09511-8.

[Gol+23] Alexander Golovnev, Jonathan Lee, Srinath T. V. Setty, Justin Thaler, and
Riad S. Wahby. “Brakedown: Linear-Time and Field-Agnostic SNARKs for
R1CS”. In: CRYPTO 2023, Part II. Ed. by Helena Handschuh and Anna
Lysyanskaya. Vol. 14082. LNCS. Springer, Cham, Aug. 2023, pp. 193–226.
doi: 10.1007/978-3-031-38545-2_7.

[KHSS22] Daniel Kang, Tatsunori Hashimoto, Ion Stoica, and Yi Sun. ZK-IMG: At-
tested Images via Zero-Knowledge Proofs to Fight Disinformation. 2022. eprint:
2211.04775.

45

https://doi.org/10.1145/3627703.3650088
https://doi.org/10.1145/3627703.3650088
https://doi.org/10.1145/3627703.3650088
https://medium.com/@boneh/using-zk-proofs-to-fight-disinformation-17e7d57fe52f
https://eprint.iacr.org/2023/1106
https://doi.org/10.1007/978-3-030-64834-3_9
https://doi.org/10.1007/978-3-030-64834-3_9
https://doi.org/10.1007/978-3-030-21568-2_4
https://doi.org/10.1007/978-981-96-0894-2_10
https://doi.org/10.1007/978-981-96-0894-2_10
https://doi.org/10.1007/s00145-024-09511-8
https://doi.org/10.1007/s00145-024-09511-8
https://doi.org/10.1007/978-3-031-38545-2_7
2211.04775

[KP23] Abhiram Kothapalli and Bryan Parno. “Algebraic Reductions of Knowledge”.
In: CRYPTO 2023, Part IV. Ed. by Helena Handschuh and Anna Lysyan-
skaya. Vol. 14084. LNCS. Springer, Cham, Aug. 2023, pp. 669–701. doi:
10.1007/978-3-031-38551-3_21.

[KS24a] Abhiram Kothapalli and Srinath Setty. NeutronNova: Folding everything that
reduces to zero-check. Cryptology ePrint Archive, Paper 2024/1606. 2024.
url: https://eprint.iacr.org/2024/1606.

[KS24b] Abhiram Kothapalli and Srinath T. V. Setty. “HyperNova: Recursive Argu-
ments for Customizable Constraint Systems”. In: CRYPTO 2024, Part X.
Ed. by Leonid Reyzin and Douglas Stebila. Vol. 14929. LNCS. Springer,
Cham, Aug. 2024, pp. 345–379. doi: 10.1007/978-3-031-68403-6_11.

[KST22] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. “Nova: Recursive
Zero-Knowledge Arguments from Folding Schemes”. In: CRYPTO 2022, Part IV.
Ed. by Yevgeniy Dodis and Thomas Shrimpton. Vol. 13510. LNCS. Springer,
Cham, Aug. 2022, pp. 359–388. doi: 10.1007/978-3-031-15985-5_13.

[LM06] Vadim Lyubashevsky and Daniele Micciancio. “Generalized Compact Knap-
sacks Are Collision Resistant”. In: ICALP 2006, Part II. Ed. by Michele
Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener. Vol. 4052.
LNCS. Springer, Berlin, Heidelberg, July 2006, pp. 144–155. doi: 10.1007/
11787006_13.

[LNP22] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Plançon. “Lattice-
Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More
General”. In: CRYPTO 2022, Part II. Ed. by Yevgeniy Dodis and Thomas
Shrimpton. Vol. 13508. LNCS. Springer, Cham, Aug. 2022, pp. 71–101. doi:
10.1007/978-3-031-15979-4_3.

[LS15] Adeline Langlois and Damien Stehlé. “Worst-case to average-case reductions
for module lattices”. In: DCC 75.3 (2015), pp. 565–599. doi: 10 . 1007 /
s10623-014-9938-4.

[LS18] Vadim Lyubashevsky and Gregor Seiler. “Short, Invertible Elements in Par-
tially Splitting Cyclotomic Rings and Applications to Lattice-Based Zero-
Knowledge Proofs”. In: EUROCRYPT 2018, Part I. Ed. by Jesper Buus
Nielsen and Vincent Rijmen. Vol. 10820. LNCS. Springer, Cham, 2018, pp. 204–
224. doi: 10.1007/978-3-319-78381-9_8.

[Moh23] Nicolas Mohnblatt. Sangria: a folding scheme for PLONK. link. 2023.

[NBS23] Wilson D. Nguyen, Dan Boneh, and Srinath T. V. Setty. “Revisiting the
Nova Proof System on a Cycle of Curves”. In: 5th Conference on Advances
in Financial Technologies, AFT 2023. Vol. 282. LIPIcs. 2023, 18:1–18:22.

46

https://doi.org/10.1007/978-3-031-38551-3_21
https://eprint.iacr.org/2024/1606
https://doi.org/10.1007/978-3-031-68403-6_11
https://doi.org/10.1007/978-3-031-15985-5_13
https://doi.org/10.1007/11787006_13
https://doi.org/10.1007/11787006_13
https://doi.org/10.1007/978-3-031-15979-4_3
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/978-3-319-78381-9_8
https://geometry.xyz/notebook/sangria-a-folding-scheme-for-plonk

doi: 10.4230/LIPICS.AFT.2023.18. url: https://doi.org/10.4230/
LIPIcs.AFT.2023.18.

[Net24] Nethermind. Latticefold and lattice-based operations performance report. 2024.

[Ngu+24] Wilson D. Nguyen, Trisha Datta, Binyi Chen, Nirvan Tyagi, and Dan Boneh.
“Mangrove: A Scalable Framework for Folding-Based SNARKs”. In: CRYPTO 2024,
Part X. Ed. by Leonid Reyzin and Douglas Stebila. Vol. 14929. LNCS.
Springer, Cham, Aug. 2024, pp. 308–344. doi: 10.1007/978-3-031-68403-
6_10.

[NS24] Ngoc Khanh Nguyen and Gregor Seiler. “Greyhound: Fast Polynomial Com-
mitments from Lattices”. In: CRYPTO 2024, Part X. Ed. by Leonid Reyzin
and Douglas Stebila. Vol. 14929. LNCS. Springer, Cham, Aug. 2024, pp. 243–
275. doi: 10.1007/978-3-031-68403-6_8.

[NT16] Assa Naveh and Eran Tromer. “PhotoProof: Cryptographic Image Authen-
tication for Any Set of Permissible Transformations”. In: 2016 IEEE Sym-
posium on Security and Privacy. IEEE Computer Society Press, May 2016,
pp. 255–271. doi: 10.1109/SP.2016.23.

[PR06] Chris Peikert and Alon Rosen. “Efficient Collision-Resistant Hashing from
Worst-Case Assumptions on Cyclic Lattices”. In: TCC 2006. Ed. by Shai
Halevi and Tal Rabin. Vol. 3876. LNCS. Springer, Berlin, Heidelberg, Mar.
2006, pp. 145–166. doi: 10.1007/11681878_8.

[RZ22] Carla Ràfols and Alexandros Zacharakis. Folding Schemes with Selective Ver-
ification. Cryptology ePrint Archive, Report 2022/1576. 2022. url: https:
//eprint.iacr.org/2022/1576.

[STW23] Srinath Setty, Justin Thaler, and Riad Wahby. Customizable constraint sys-
tems for succinct arguments. Cryptology ePrint Archive, Report 2023/552.
2023. url: https://eprint.iacr.org/2023/552.

[Val08] Paul Valiant. “Incrementally Verifiable Computation or Proofs of Knowledge
Imply Time/Space Efficiency”. In: TCC 2008. Ed. by Ran Canetti. Vol. 4948.
LNCS. Springer, Berlin, Heidelberg, Mar. 2008, pp. 1–18. doi: 10.1007/978-
3-540-78524-8_1.

[Whi18] Barry Whitehat. Roll up token. link. 2018.

[Xie+22] Tiancheng Xie, Jiaheng Zhang, Zerui Cheng, Fan Zhang, Yupeng Zhang,
Yongzheng Jia, Dan Boneh, and Dawn Song. “zkBridge: Trustless Cross-chain
Bridges Made Practical”. In: ACM CCS 2022. Ed. by Heng Yin, Angelos
Stavrou, Cas Cremers, and Elaine Shi. ACM Press, Nov. 2022, pp. 3003–
3017. doi: 10.1145/3548606.3560652.

47

https://doi.org/10.4230/LIPICS.AFT.2023.18
https://doi.org/10.4230/LIPIcs.AFT.2023.18
https://doi.org/10.4230/LIPIcs.AFT.2023.18
https://doi.org/10.1007/978-3-031-68403-6_10
https://doi.org/10.1007/978-3-031-68403-6_10
https://doi.org/10.1007/978-3-031-68403-6_8
https://doi.org/10.1109/SP.2016.23
https://doi.org/10.1007/11681878_8
https://eprint.iacr.org/2022/1576
https://eprint.iacr.org/2022/1576
https://eprint.iacr.org/2023/552
https://doi.org/10.1007/978-3-540-78524-8_1
https://doi.org/10.1007/978-3-540-78524-8_1
https://github.com/barryWhiteHat/roll_up_token
https://doi.org/10.1145/3548606.3560652

[YCBC24] Chhavi Yadav, Amrita Roy Chowdhury, Dan Boneh, and Kamalika Chaud-
huri. “FairProof : Confidential and Certifiable Fairness for Neural Networks”.
In: ICML 2024. OpenReview.net, 2024. url: https://openreview.net/
forum?id=EKye56rLuv.

[ZCF24] Hadas Zeilberger, Binyi Chen, and Ben Fisch. “BaseFold: Efficient Field-
Agnostic Polynomial Commitment Schemes from Foldable Codes”. In: CRYPTO 2024,
Part X. Ed. by Leonid Reyzin and Douglas Stebila. Vol. 14929. LNCS.
Springer, Cham, Aug. 2024, pp. 138–169. doi: 10.1007/978-3-031-68403-
6_5.

A Reducing R1CS to the general linear relation

In this appendix we describe a reduction of knowledge from a committed R1CS relation to
the general linear relation from Section 3. First, let us define the committed R1CS relation.

Definition A.1 (Committed R1CS). A committed R1CS relation is an indexed relation
parameterized by B ∈ N:

RcR1CS,B :=

(i, x,w) :

i = (A,B,C ∈ Rn×m
q),

x =
(
cm ∈ Rκ

q , x ∈ Rℓin
q

)
, w = f ∈ Rn

q where

cm = JfK, ∥f∥∞ < B, and for z = G⊤
B,ℓ̂
· f ∈ Rm

q :

(Az) ◦ (Bz) = (Cz), z[0 . . . ℓin] = (1,x)

 (30)

where ℓ̂ := ⌈logB(q)⌉ and GB,ℓ̂ ∈ Zmℓ̂×m
q = Zn×m

q is the gadget matrix from Section 2.1.

In this definition we assumed that the dimension of the R1CS matrices is n ×m and
that n = m × ℓ̂, where ℓ̂ is the expansion factor of the gadget matrix GB,ℓ̂. One can just

as easily describe a reduction of knowledge when the R1CS matrices are n′ × m, for an
unconstrained n′, however this complicates the tensor notation from Remark 2.2 since it
requires tensors on varying number of variables. To keep things simple we assume n = m×ℓ̂.

We first introduce a simplified linear relation,

R′
lin,B :=

(i, x,w) :

i = (J·K, (M(i) ∈ Rn×n
q)i∈[nlin]),

x = (cmf , r ∈ Clogn, v ∈ Rnlin
q), w = f ∈ Rn

q s.t.

(∥f∥∞ < B) ∧ (cmf = JfK) ∧(
∀i ∈ [nlin] : ⟨M(i) · f , tensor(r)⟩ = vi

)
 (31)

which is almost identical to Rlin,B except that we replace Mq := Rq × Rq, MC := C × C
(from Rlin,B) with Rq, C respectively.

The protocol to reduce RcR1CS,B to R′
lin,B is shown in Figure 1. Its completeness,

knowledge soundness, and public reducibility are analyzed in [BC24, Sec. 4]. Let xo :=

48

https://openreview.net/forum?id=EKye56rLuv
https://openreview.net/forum?id=EKye56rLuv
https://doi.org/10.1007/978-3-031-68403-6_5
https://doi.org/10.1007/978-3-031-68403-6_5

(
cm, ro, (v, vA, vB, vC)

)
denote the reduced instance in R′

lin,B. To complete the reduction,
we expand xo to an instance x′o in Rlin,B defined as follows:

x′o :=
(
cm, r′o := (ro, ro) ∈ MC , ((v, v), (vA, vA), (vB, vB), (vC, vC)) ∈ M4

q

)
.

Remark A.1. In Figure 1, the evaluation v = f̃(ro) is never used. A reader may wonder why
we need it in the reduced instance. This is because the accumulated instance in our folding
scheme (Section 5.1) requires an evaluation check, which is the result of the sumcheck in
Construction 5.2. So we add this evaluation value to align with the accumulated instance.

49

Parameters: A sumcheck challenge set C (Section 4)
Input: i = (A,B,C ∈ Rn×m

q) and x := (cm,x) ∈ Rκ
q ×Rℓin

q and w := f ∈ Rn
q

Output: xo :=
(
cm, r ∈ Clogn, (v, vA, vB, vC) ∈ R4

q

)
and wo := f

The protocol ⟨P(x;w);V(x)⟩:
1. V→ P: V sends P a random vector r← Clogn.
2. P↔ V: Define the polynomial g ∈ R≤2

q [X1, . . . , Xlogn] as

g(x) := eq(r,x) · [gA(x) · gB(x)− gC(x)]

where for every M ∈ {A,B,C} set M′ := M ·G⊤
B,ℓ̂
∈ Rn×n

q and define

gM(x) :=
∑

b∈{0,1}logn

(M̃′)(x,b) · f̃(b).

P and V run a sum-check protocol for the claim
∑

b∈{0,1}logn g(b) = 0.

Let ro ← Clogn be the sum-check challenge vector. The protocol reduces to a

random evaluation check g(ro)
?
= s for some s ∈ Rq.

3. P → V: P sends V values (v, vA, vB, vC) ∈ R4
q . When P is honest these values are

v := f̃(ro) = ⟨f , tensor(ro)⟩ ∈ Rq, and for every M ∈ {A,B,C}

vM :=
∑

b∈{0,1}logn

M̃′(ro,b) · f̃(b) ∈ Rq

where M′ := M ·G⊤
B,ℓ̂

. Applying Remark 2.2 to the columns of M′ shows that

vM =
(
(M′)⊤ · tensor(ro)

)⊤ · f = (M′ · f)⊤ · tensor(ro) = ⟨M′ · f , tensor(ro)⟩.

4. V computes e := eq(r, ro) and checks that e · (vAvB − vC)
?
= s .

5. The derived R′
lin,B triple (io, xo,wo) is defined by

V outputs io := (In,A
′,B′,C′) and xo :=

(
cm, ro, (v, vA, vB, vC)

)
,

P outputs wo := f

Figure 1: The protocol to reduce RcR1CS,B to R′
lin,B.

50

	Introduction
	Additional related work

	Preliminaries
	Cyclotomic rings
	Multilinear extensions and sumchecks over rings
	Module-based Ajtai commitments
	Reduction of Knowledge

	Generalized Committed Linear Relations
	A Toolbox of Reduction of Knowledge
	Linear commitments and double commitments
	Monomial set check
	Range check
	Commitment transformation

	Folding Generalized Committed Linear Relations
	Folding
	Decomposition
	Efficiency estimate

	Conclusion and future work
	Reducing R1CS to the general linear relation

