
Provable Speedups for SVP Approximation Under
Random Local Blocks

Jianwei Li

Inria Paris and DIENS, PSL, France

Abstract. We point out if assuming every local block appearing in the
slide reduction algorithms [ALNS20] is ‘random’ (as usual in the cryp-
tographic background), then the combination of the slide reduction al-
gorithms [ALNS20] and Pouly-Shen ’s algorithm [PS24] yields exponen-
tially faster provably correct algorithms for δ-approximate SVP for all
approximation factors n1/2+ε ≤ δ ≤ nO(1), which is the regime most
relevant for cryptography.
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1 Introduction

A lattice L ⊂ Rm is the set of integer linear combinations

L := L(B) = {z1b1 + · · ·+ znbn : zi ∈ Z}

of linearly independent basis vectors B = (b1, . . . , bn) ∈ Rm×n. We call n the
rank of the lattice.

The Shortest Vector Problem (SVP) is the computational search problem in
which the input is (a basis for) a lattice L ⊆ Zm, and the goal is to output a non-
zero lattice vector y ∈ L with minimal length, ∥y∥ = λ1(L) := minx∈L ̸=0

∥x∥.
For δ ≥ 1, the δ-approximate variant of SVP (δ-SVP) is the relaxation of this
problem in which any non-zero lattice vector y ∈ L ̸=0 with ∥y∥ ≤ δ · λ1(L) is a
valid solution.

A closely related problem is δ-Hermite SVP (δ-HSVP), which asks to find
a non-zero lattice vector y ∈ L ̸=0 with ∥y∥ ≤ δ · vol(L)1/n, where vol(L) :=
det(BTB)1/2 is the covolume of the lattice. Hermite’s constant γn is (the square
of) the minimal possible approximation factor that can be achieved in the worst
case. I.e.,

γn := max
λ1(L)2

vol(L)2/n
,

where the maximum is over lattices L ⊂ Rn with full rank n. Hermite’s con-
stant is only known exactly for 1 ≤ n ≤ 8 and n = 24, but it is known to be
asymptotically linear in n, i.e., γn = Θ(n). Hermite’s constant plays a large role
in algorithms for δ-SVP.

Starting with the celebrated work of Lenstra, Lenstra, and Lovász in 1982
[LLL82], algorithms for solving δ-(H)SVP for a wide range of parameters δ have
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found innumerable applications, including factoring polynomials over the ra-
tionals [LLL82], integer programming [Len83, Kan83, DPV11], cryptanalysis
[Sha84, Odl90, JS98, NS01], etc.

Recently, many cryptographic primitives have been constructed whose se-
curity is based on the (worst-case) hardness of δ-SVP or closely related lattice
problems [Ajt96, Reg09, GPV08, Pei09, Pei16]. Such lattice-based cryptographic
constructions are likely to be used on massive scales (e.g., as part of the TLS
protocol) in the not-too-distant future [NIS18], and in practice, the security of
these constructions depends on the fastest algorithms for δ-(H)SVP, typically
for δ = poly(n).

This paper is a note on blockwise basis reduction algorithms [Sch87, SE91,
GHKN06, HPS11, ABLR21, MW16, LN24] (more precisely, slide reduction algo-
rithms [GN08a, ALNS20]) for solving δ-SVP. At a high level, these are reductions
from δ-(H)SVP on lattices with rank n to exact/approximate SVP on lattices
with rank k ≤ n. More specifically, these algorithms divide a basis B into pro-
jected blocks B[i,i+k−1] with block size k, where

B[i,j] = (πi(bi), πi(bi+1), . . . , πi(bj))

and πi is the orthogonal projection onto the subspace orthogonal to b1, . . . , bi−1.
Blockwise basis reduction algorithms use their SVP oracle to find short vectors
in these (low-rank) blocks and incorporate these short vectors into the lattice
basis B. By doing this repeatedly (at most poly(n) times (cf. [LW23, §3])) with
a cleverly chosen sequence of blocks, such algorithms progressively improve the
“quality” of the basis B until b1 is a solution to δ-(H)SVP for some δ ≥ 1. The
goal, of course, is to take the block size k to be small enough that we can actually
run an exact/approximate algorithm on lattices with rank k in reasonable time
while still achieving a relatively good approximation factor δ.

We first recall the main results presented in [ALNS20, Theorems 1 and 2]:

Theorem 1 (Informal, slide reduction [ALNS20]). For any approximation factor
δ ≥ 1 and block size k := k(n) ≥ 2, there is an efficient reduction from δS-SVP
on lattices with rank n ≥ k ≥ 2 to δ-SVP on lattices with rank k, where

δS :=

{
δ(δ2γk)

n−k
k−1 for n ≥ 2k,

δ2
√
γk(δ

2γn−k)
n−k+1
n−k−1 ·

n−k
2k ≲ δ(δ2γk)

n
2k for k ≤ n ≤ 2k.

The starting point of this note is the intuition, based on [CN11, §4.3], that
the first minimum of most local blocks in blcokwise basis reduction algorithms
looks like that of a random lattice of rank the block size: this phenomenon does
not hold in small block size ≤ 30 (as noted by Gama and Nguyen [GN08b]), but
it becomes more and more true as the blocksize increases, as shown in [CN11,
Fig. 2]. Intuitively, this was explained by a concentration phenomenon [CN11,
§6.1]: as the rank increases, random lattices dominate in the set of lattices, so
unless there is a strong reason why a given lattice cannot be random, we may
assume that it behaves like a random lattice. This is particularly true for most
cryptographic applications.
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Recently, Pouly and Shen [PS24, Theorem 9 and Corollary 5] show the fol-
lowing interesting result for approximating SVP on random lattices:

Theorem 2 (Informal [PS24]). For every n ≥ 1, there is a randomized algorithm
that on most lattices L ⊂ Rn with full rank n, solves 1.123-SVP with probability
at least 1/2 in time and space 2n/2+o(n).

Our Results. The combination of Theorems 1 and 2 immediately implies the
following result:

Theorem 3 (Informal). Let n > k ≥ 2 be integers and let δ = 1.123. Given
as input a block size k and an LLL-reduced basis B0 of an n-rank lattice L in
Rm, if every projected block of rank k appearing in the slide reduction algorithms
[ALNS20] is random (i.e., δ-SVP on such every projected lattice of rank k can
be solved in time 2k/2+o(k)), then the slide reduction algorithms [ALNS20] solve

δS-SVP on lattices with rank n in time 2
n
4c+o(n) if n ≤ 2k and in time 2

n
2c+2+o(n)

otherwise where

δS :=

{
δ(δ2γk)

n−k
k−1 for n ≥ 2k,

δ2
√
γk(δ

2γn−k)
n−k+1
n−k−1 ·

n−k
2k ≲ δ(δ2γk)

n
2k for k < n ≤ 2k.

This yields the asymptotically fastest proven running times for δ-SVP for all
approximation factors n1/2+ε ≤ δ ≤ nO(1) ‘in the cryptographic background’.
Table 1 summarizes the current state of the art. For example, one can under
random local blocks solve O(n1.99)-SVP in 20.168n+o(n)-time and O(n0.99)-SVP
in 20.253n+o(n) instead of the previously best 20.192n+o(n)-time and 20.406n+o(n),
respectively.

Approximation factor Previous best without any assumption This work under random local blocks

nc for c ∈ (0.5, 0.802] 2
n
2 [ALSD21] 2

n
4c [ALNS20]+[PS24]

nc for c ∈ (0.802, 1] 2
0.401n

c [ALNS20] 2
n
4c [ALNS20]+[PS24]

nc for c > 1 2
n

2c+1.24 [ALSD21] 2
n

2c+2 [ALNS20]+[PS24]

Table 1: Provable algorithms for solving SVP. We write [A]+[B] to denote the
algorithm that uses basis reduction from [A] with the near-exact SVP algorithm
from [B].

Theorem 3 just shows how to “recycle” one’s favourite algorithm for near-
exact SVP to equip the slide reduction algorithms in [ALNS20] for tackling
higher dimension, provided that one is interested in approximating SVP rather
than HSVP. Theorem 3 furthers our understanding of the hardness of SVP ‘in
the cryptographic background’, but it does not impact usual security estimates,
such as those of lattice-based candidates to NIST’s post-quantum standardiza-
tion: this is because current security estimates actually rely on HSVP estimates,
following [GN08b].
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1.1 Open question

Theorem 2 works for “most lattices” with full rank. It suggests an obvious open
question: Is there an algorithm that provably solves O(1)-SVP for any lattice
with rank n in time and space 2n/2+o(n)? If yes, the words “under random local
blocks” in Table 1 can be removed.
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