
K-Linkable Ring Signatures and
Applications in Generalized Voting

Wonseok Choi12, Xiangyu Liu12, Lirong Xia3, and Vassilis Zikas2

1 Purdue University
2 Georgia Institute of Technology

3 Rutgers University
wonseok@purdue.edu, liu3894@purdue.edu, lirong.xia@rutgers.edu, vzikas@gatech.edu

Abstract. Linkable ring signatures (LRS) allow a user to sign anonymously on behalf of a ring, while
maintaining linkability—two signatures from the same signer are publicly identified, i.e., linked. This
linkability makes LRS suitable to prevent double-voting in classical, plurality voting protocols—each
voter casts one vote and the candidate with the most votes wins the election.
Several voting scenarios rely on (generalized) rules rather than plurality. For example, in ranked voting,
voters submit a ranking of the candidates, and the outcome is a function of these rankings. Such
generalized voting rules are common in social choice theory, and have recently found their way into
blockchain governance, e.g., for prioritizing (voting on) proposed (candidate) projects. However, unlike
plurality voting, using LRS for voters to sign their votes (rankings) does not guarantee vote privacy as
one can observe the rankings of each individual voter, which, depending on the scoring rule, is more
information than what the outcome of the election offers.
We introduce k-linkable ring signatures (k-LRS) as a primitive for simultaneously achieving anonymity
and privacy in generalized voting. A k-LRS scheme has the following properties:

(k-)Anonymity: a user can sign anonymously (on behalf of the ring) up to k times, so that even an
unbounded adversary cannot link his signatures.

(k-)Linkability: If any signer signs more than k times, all his signatures are publicly linked (individual
k-linkability); and, any set of c signers cannot generate more than k·c unlinked signatures (collective
k-linkability).

We provide two constructions of k-LRS: one is from the DDH, and the other is from SIS (hence post-
quantum). Finally, we show how k-LRS can be applied to a broad range of voting rules, including
score voting, multi-voting, and Borda. Our protocols are non-interactive voting—each voter just posts
a message on a bulletin board—which highlights the potential of k-LRS in blockchain-governance
scenarios.

Table of Contents

K-Linkable Ring Signatures and Applications in Generalized Voting . 1
Wonseok Choi, Xiangyu Liu, Lirong Xia, and Vassilis Zikas

1 Introduction . 3
1.1 Our Contributions . 4
1.2 Related Work . 6
1.3 Technical Overview . 8

2 Preliminaries . 14
3 k-Linkable Ring Signatures . 15
4 Applications in Voting Systems . 18

4.1 Non-Interactive Voting over Anonymous BB . 18
4.2 Instantiating Different Voting Rules . 22
4.3 Mode 1 Voting from k-LRS . 23
4.4 Approaches of Reducing the Complexity of Linking . 24
4.5 Mode 2 Voting from k-LRS and t-LRS . 26

5 Negative Result on Privacy . 27
6 Instantiating k-LRS from Aggregatable Identification Schemes . 28

6.1 Identification Schemes . 28
6.2 Aggregatable Identification Schemes . 30
6.3 DL-based AIS . 31
6.4 k-LRS from Aggregatable Identification Schemes . 34

A Limitation of Liu et al.’s LRS Scheme . 42
B The Insecurity of Bultel and Lafourcade’s Scheme . 43
C Impossiblity of Traceable Ring Signatures with Unconditional Anonymity . 44
D Deferred Material in Construction . 45

D.1 SIS-based AIS . 45
D.2 Security of k-LRS . 50

E Concrete Schemes . 53
E.1 Concrete Scheme from the DL/DDH Assumption . 53
E.2 Concrete Scheme from the SIS Assumption . 54

F Multi-Event LRS: Definition and Generic Construction from k-LRS . 55
F.1 Defnition of Multi-Event LRS . 56
F.2 Generic Construction from k-LRS . 58

G Discussions . 60
G.1 On the Necessity of Stateless k-LRS and Linking All k + 1 Signatures . 60
G.2 Other Applications of k-LRS . 60
G.3 Further Discussion on AIS . 61

H Anonymous Bulletin Board . 61
I Mode 3 Borda Count from MLRS . 62
J Relaxed Mode 2 Voting and Simpler Constructions from k-LRS and MLRS . 62
K Deferred Proofs . 63

K.1 Proofs of Theorems for Voting Modes . 63
K.2 Proof of the Negative Result on Privacy . 64

1 Introduction

The overwhelming majority of the literature on cryptographic voting considers so-called plurality voting [Cha81,
BT94a]—each voter casts a vote for one out of many candidates, and the candidate with the most votes
wins. Furthermore, the focus is on eliminating trust in third parties by means of a (usually interactive)
protocol among the voters [BY86, CGS97, LWW04]. Such a protocol would typically assume voters have
access to a bulletin board (in short, BB), as well as several hybrid functionalities (like a voter registration
authority, an election authority, etc. [KZZ15b, Adi08, KZZ15a, CZZ+16], and primarily aim to ensure (vote)
privacy—the protocol does not leak to the adversary anything beyond the outcome of the election. Other
desirable properties like receipt-freeness [AOZZ15] and public verifiability [KZZ15b], are also guaranteed by
existing protocols.

Parallel to (and independently of) the cryptographic literature, social choice theory has long studied
voting, albeit from an orthogonal angle. The goal here is to study the functionality and voter behavior
in a setting, where one assumes a fully trusted authority that privately collects votes, performs the tally,
and announces the result, e.g, as in national elections. A central theme here is to investigate alternative
(generalized) voting and scoring/tallying rules that can improve such functionality and incentivize some
desired voter behavior, e.g., improve fairness, boost participation, increase truthfulness, etc. Due to the
difference in scope, with only a new notable exception, e.g., [LLXZ20], the question of vote privacy against
an authority that cannot be trusted to keep the votes private (e.g., puts them on a BB) has received little
attention in this literature.

The advent of blockchains has created a common venue for the two, traditionally disjoint disciplines to
innovate. Indeed, the plurality rule typically falls short from implementing the functionality one typically
needs in blockchain governance [CLZ23, KL22, KAPS20, VH21, GMS21]. For example, the ability to rank
proposals according to the users’ preferences is at the core of several decentralized autonomous organizations
(DAOs); incentivizing honest behavior and participation to the blockchain’s governance mechanism is key to
the security of the blockchain itself. The above makes the social-choice-theory findings on generalized voting
rules highly relevant for such innovation.

However, the model of centralized, complete trust used in social choice theory does not correspond
to such governance applications, where users are typically interested in privacy of the voting process. At
the same time in such a setting one is typically interested in non-interactive solutions, where voters post
their preferences/votes, and in particular in such solutions which avoid making assumptions about trusted
authorities. Indeed, such assumptions go against the principles of modern blockchain systems.

Thus, the motivating question of our work is:

How can we design non-interactive, voter-private (and anonymous)4 voting mechanisms, which do
not assume complex trusted-setup authorities, rely on standard cryptographic assumptions, and allow
for implementing generalized voting rules?

To answer the above question, we introduce and instantiate a new cryptographic signing primitive, termed
k-linkable ring signatures (in short, k-LRS), an adaptation of classical linkable ring signatures [LWW04], that
is tuned for solving the above problem. Recall that standard ring signatures [RST01] enable a member of a
group to sign a message as an anonymous group member, i.e., without revealing its identity. In a nutshell,
our k-linkability property ensures that group members can sign up to k times while preserving anonymity,
but if they issue more than that many signatures (on related messages/events) then this is detected and
their signatures are linked. As we shall see, this asymmetry allows the design of simple, non-interactive
private (and anonymous) voting mechanisms without assuming a trusted authority, but merely assuming
an anonymous (posting) bulletin board (ABB). Such an ABB could, for instance, be obtained by posting
to a blockchain ledger using an anonymous communication network, like TOR. Importantly, in this work,
we aim for unconditional privacy, i.e., privacy against unbounded adversaries. Besides being a theoretically
interesting goal, unconditional privacy is, in our opinion, a desirable property for anonymity of voting data
residing on a long-lived, public-state system like a blockchain ledger.

4 In the context of voting, vote privacy, or simply, privacy, is a stronger property than anonymity, as the latter only
requires that a vote cannot be traced back to the voter.

3

1.1 Our Contributions

To better motivate the concept of k-linkability, and in particular its suitability for non-interactive generalized
voting over an anonymous bulletin board (ABB), we discuss why standard (1-)linkable ring signatures fall
short from solving the problem. To this direction, let us start with the following näıve solution using standard
(existentially unforgeable) signatures: Each voter signs their vote (via digital signatures) and posts to the
ABB the message. Clearly, the above does not preserve voter anonymity (hence also privacy): Any known
association of a user with his public key links the user to his vote.

Instead, one can use ring signatures [RST01], which were designed exactly to preserve anonymity in
such situations. In a nutshell, ring signatures allow voters to post anonymously to the ABB. However, this
anonymous signing introduces a new issue: In standard (plurality) voting, every voter is supposed to vote
for exactly one candidate. But the anonymity of ring signatures, which, recall, was introduced to solve the
problem, now becomes a problem of its own, as one cannot catch users who post more than one vote to the
ABB.

One could rectify this by assuming an (election) registration authority that issues unique anonymous
voting-credentials—so that if one uses the credentials twice, then they will be exposed [KZZ15b]. However,
this solution requires trust to such a registration authority, which is what we are aiming to remove. Another
idea would be to use linkable ring signatures [LWW04]. Such signatures are aimed exactly at solving the
above conundrum: as long as every signer signs (at most) one message, they enjoy the anonymity guarantees
of ring signatures. But once more than one signatures are issued by a signer on related messages (e.g., more
than one vote on the same candidate) then this is detected and these votes are linked (and can, therefore,
be removed). We refer to such signatures as 1-linkable ring signatures.

The above works for plurality, but fails for voting rules where the voter is expected to give more structured
votes, e.g., indicate his approval for each candidate (a.k.a., approval voting). In such settings, we are interested
in aggregate approval (by all voters) without revealing each individual’s preference. Hence, one cannot sign
and post his approval. This is exactly where k-linkable ring signatures come to the rescue.

k-Linkable Ring Signature (k-LRS). In a nutshell, a k-linkable ring signature (k-LRS) scheme is an extension
of standard 1-linkable ring signatures to allow anonymity of signing for up to k times. More concretely, it
has the following attractive properties.

– k(-Sign)-Anonymity. A user can sign anonymously, with the same key, on behalf of a ring/group under
one event label—this could be a candidate’s name— up to k times. (k ∈ Z+ is a parameter of the scheme.)
k-LRS inherits all advantages of (ordinary) LRS schemes, including no group manager, the flexibility of
the ring choice, etc.

– k-Linkability. A collusion of c users cannot generate more unlinked signatures than they are allowed to,
i.e., to generate more than k · c signatures that are unlinked.

– Non-slanderability: This is a standard property of LRS which ensures that a malicious signer (or coalition
of signers) cannot “incriminate” honest signers. In particular, if a signer/public-key has signed no more
than k signatures (under some event label) then these signatures will not be part of any linked sets no
matter what malicious signers do.5

Looking ahead, the literature (on (1-)linkable ring signature) has considered two versions of linkabil-
ity. The initial version, which we refer to as weak linkability [LWW04, TW05, LASZ14] only requires
the infeasibility of generating two unlinked signatures given one secret key. This can be seen as linkabil-
ity [BGK+21, XLAZ24] for adversaries who corrupt any one of the singers in the ring. As demonstrated
in [LW06, BGK+21] and by the attack [HC24] on the linkability of DualDory [BEHM22], this notion is
insufficient against adversaries that corrupt more than one party. In particular, we describe an attack on Liu

5 Note that this property, which, in standard signatures follows trivially from existential unforgeability, is not as
easy to achieve on a ring s setting, where signers’ signatures are anonymous within the ring.

4

et al.’s weak linkable ring signatures [LASZ14], which allows a set of two colluding parties to generate three
signatures without being pairwise linked. This attack makes weak linkability inappropriate for our goals.6

Notwithstanding, more recent work [BKP20, BGK+21, XLAZ24] introduced the stronger linkability prop-
erty for (1)-LRS: any set of c signers/public-keys cannot generate more than c · k signatures (even when
colluding) without being pairwise detected/linked. Our definition of k-linkability follows the latter, stronger
paradigm.

Instantiations of k-LRS. Equipped with the definition of k-linkable signatures, we proceed to instantiations.
We provide instantiations based on the discrete logarithm (DL) assumption and the decisional Diffie-Hellman
(DDH) assumption, as well as a post-quantum construction, based on the short integer solutions (SIS)
assumption. Our constructions improve the state of the art in several ways: First, they are the first to
achieve the notion of k-linkability for k ≥ 2. Second, with the exception of our DDH-based construction,
our instantiations achieve unconditional anonymity and strong linkability. As a side result, in Appendix A
we describe an attack showing that the prior work of unconditionally-anonymous LRS (which, recall, are for
k = 1) by Liu et al. [LASZ14] only achieve weak linkability. Our results on k-LRS are summarized in Table 1.

Table 1. Summary of our k-LRS constructions. All our constructions achieve (computational) unforgeability, k-
linkability, and non-slanderability. Note that unconditional anonymity is not strictly stronger than computation
anonymity here due to the restriction of signing times in total. See Sec. 1 for more details.

Unforgeab. Linkab. Non-Sland. Anon. Assump.

Scheme 1
(Sec. 6 and E.1)

✓ ✓ ✓
uncond. DL
comp. DDH

Scheme 2
(Sec. 6 and E.2)

✓ ✓ ✓
uncond.

SIS
comp.

Application in Voting. We next show how k-LRS can be used to implement private (and, therefore, anony-
mous) non-interactive voting using (only) an anonymous bulletin board (ABB). We provide an appropriate
definition for the security of such non-interactive voting over ABB in Sec. 4 and associated constructions.
Our constructions focus on score voting and multi-voting (see Sec. 1.3 for an overview). Since they are
non-interactive, our construction follows the following paradigm: Each voter posts an appropriate vector of
k-linkable signatures to the ABB, and the outcome is computed on the state of ABB after everyone has
posted. The novelty of our construction lies in devising appropriate (combinations of) events so that the
scheme satisfies the desired rules.

Our voting schemes can be instantiated with any of our (unconditional) anonymous k-LRS schemes
and achieve (unconditional) privacy. All our schemes achieve computational public verifiability (under the
assumption of the associated k-LRS scheme, i.e., DDH, or SIS). That is, every voter can verify that his
vote is accounted for—this follows trivially from the fact that the result of the voting is computed based on
public data that appear on the ABB—so the voter needs to simply verify that his vote appears on the ABB.
Table 2 gives a summary of our results in generalized voting.

In Appendix J, we also show how k-LRS can be used to instantiate additional voting rules. Along the way
we also provide a simple extension of k-LRS, which we term multi-event k-LRS (in short, k-MLRS where k
is a vector) which incorporates multiple event into the definition of (k-)LRS in Appendix F. Ranked voting,
including the Borda count, can be realized by our notably simple Mode 3 using (1, 1)-MLRS in Appendix I.

We note that for a typical governance scenario, k1 (the number of votes each voter can cast, namely
the maximum rank) would typically be much smaller (constant) in the number of voters n. As blockchain

6 [BGK+21] discusses the insufficiency of the security model in [LASZ14] (and [LW06, ACST06]), but does not
provide a concrete attack. To the best of our knowledge, ours is the first work to provide an actual linkability
attack on [LASZ14].

5

Table 2. Our non-interactive ABB-based voting protocols: three types of voting rules (modes), i.e., score-voting,
multi-voting, and the Borda count. For Mode 1 and 2, k is the parameter of the underlying k-LRS scheme (or k
for Mode 3 using k-MLRS), and k1, k2, and q are voting parameters, where k1 represents the number of votes each
voter can cast, k2 ≤ k1 defines the maximum votes a voter can allocate to a single candidate, and q denotes the
total number of candidates. Anonymity—i.e., the protection of voters’ identity—of Mode 1 and 2 is unconditional and
follows directly from the unconditional anonymity of k-LRS (more precisely, 1-LRS). All schemes have (computational)
public verifiability. With regards to privacy, for Mode 1 we get unconditional privacy, whereas for Mode 2, the amount
of privacy (unconditional or computational) depends on how we set the parameter k of our k-LRS. For Mode 3,
anonymity and privacy are both computational. The last column reports the complexity of detecting violations of
the voting rules—by using the k-linkability property.

Security
Pub.-Ver. Detect. Complexity

Anon. Privacy

Mode 1, Sec. 4.3
(e.g., score voting)

uncond.
uncond.
(k = O(k1))

✓
(

nk1
k1+1

)
Mode 2, Sec. 4.5
(e.g., multi-voting)

uncond.
uncond.
(k = O(k2

1 + k1q)) ✓

(
nk1
k1+1

)
+O(nk1q)

comp.
(k = O(k1 + k2 + 1))

(
nk1
k1+1

)
+O(n(k1 + q))

Mode 3, App. I
(e.g., Borda count)

comp.
comp.
(k = (1, 1), MLRS)

✓
(
nq
2

)

governance systems scale, they tend to rely on long voting periods, e.g., Algorand,7 and/or to transition
to a form of representation voting, where voters allocate their voting power to a (much smaller) number
of representatives who vote on their behalf, e.g., Cardano.8 Thus we believe that even in their current,
unoptimized, and theory-tuned format, our constructions might be of practical interest for an appropriate
range of parameters. In fact, we conjecture that the super-linear detection complexity is a limitation of
(unconditional) privacy in this non-interactive and no-setup scenario, see Remark 6.

Finally, we show that our voting protocols have optimal behavior with respect to certain properties
that are relevant for generalized voting rules. In particular, our (unconditionally) private schemes have the
following limitations:

– They do not identify under-voters—i.e., voters that vote less, e.g., for fewer candidates, than what they
are supposed to.

– Although we can link (and remove) signatures that violate the quota of k-signatures per party, we cannot
identify the (public key) of the party that triggered such a violation.

As we prove in (the following) Theorems 7 and 12, these are not shortcomings of our schemes, but they
apply to any non-interactive unconditionally private voting scheme over an ABB without additional setup.
Theorem 12 relies on a connection between (k)-LRS and the notion of traceable signatures, which may be
of independent interest.

Theorem 1. (Informally, Theorem 7) For anonymous bulletain board (ABB)-based non-interactive voting
protocols, it is impossible to achieve privacy and unvervote identification simultaneously.

Theorem 2. (Theorem 12) Traceable ring signatures cannot achieve unconditional anonymity.

1.2 Related Work

Linkable Ring Signatures. Ring signatures (RS) [RST01] allow a user to sign on behalf of a group, and the
identity of the real signer is hidden in the group (i.e., anonymity). Different from group signatures [CH91]

7 https://governance.algorand.foundation
8 https://developers.cardano.org/docs/get-started/cardano-cli/governance

6

where there is a group manager for generating keys and tracing when necessary, there is no group manager
in ring signatures, and a signer can generate a signature without the participation or even knowledge of
the other users. Furthermore, in most ring signatures schemes [RST01, AOS02, ZK02, DKNS04], anonymity
holds unconditionally.

Classical ring signatures are unlinkable, meaning that it is impossible to determine whether two signatures
were generated by the same signer. Liu et al. [LWW04] weakened anonymity by introducing linkable ring
signatures (LRS), where there is a link algorithm that can publicly determine whether two signatures originate
from the same signer (linked) or not (unlinked). With this linkability, LRS has found extensive applications
in e-voting [CLW08], e-cash [TW05], ad-hoc network authentication [LWW04], private payment [LRR+19],
etc. However, in most existing LRS schemes [LWW04, TW05, LW05, ACST06, BKP20], a pseudoidentity of
the signer (see the technical overview below) is contained in the signature for the sake of public linkability,
and hence the unconditional anonymity is sacrificed.

There are some works of LRS with unconditional anonymity [LASZ14, BH18, YWM+22, BBG+22,
GPS25, Har25]. In [LASZ14], Liu et al. took a new form of key pairs where there are multiple secret keys
corresponding to a public key, and proposed the first LRS scheme with unconditional anonymity. Boyen and
Haines [BH18] considered the forward security of LRS. Balla et al. [BBG+22] extended Liu et al.’s scheme to
the designated-verifier setting. Ye et al. [YWM+22] proposed the LRS scheme over NTRU lattice. However,
the schemes in [BH18, YWM+22, BBG+22] all apply the same approach as [LASZ14] and achieve only weak
linkability, which is not sufficient for most applications, including e-voting.

Two recent and concurrent works [GPS25, Har25] considered unconditionally anonymous LRS with stan-
dard linkability. Grontas et al. [GPS25] adopted the same sequential structure as in [LWW04] (and also in our
work), and obtained a DH-based LRS scheme. Hara [Har25] proposed the first unconditionally anonymous
LRS scheme in the standard model. However, Hara’s scheme [Har25] does not support event-oriented signing
(see Remark 1) and hence it is one-time-used.

Relation with k-Times Traceable Ring Signatures. The most related work with our k-LRS is the k-times (full)
traceable ring signature (k-TRS) proposed by Bultel and Lafourcade in [BL16]. A k-TRS scheme allows a
signer to sign on behalf of the ring within k-times, and once a signer exceeds the bound k, all signatures
from it will be publicly traced. Moreover, the real identity of the signer is tracked, just as in traceable ring
signatures [FS07].

We have seen that the scheme in [BL16] can be viewed as an extension of the “using LRS k times”
paradigm (see the technical overview below). By introducing an extra secret/public key pair to trace all
signatures from the actual signer, this construction suffers from a shortcoming in that it is stateful, i.e.,
the signer has to record how many times they have signed. The scheme achieves computational anonymity
only due to the traceability (cf. Theorem 12). Moreover, we specify that the scheme in [BL16] does not
achieve the traceability as it claimed (though it is still a weaker version of traceability as the weak linkability
in [LASZ14]), and we show the concrete attack in Appendix B and a detailed comparison in Appendix G.1.

Relation with k-Times Anonymous Authentication. Teranishi et al. [TFS04] proposed the concept of k-
times anonymous authentication (k-TAA) that allows users to authenticate (to some application provider)
anonymously, as long as times they are authenticated is within a fixed number k. Both k-TAA and k-LRS
aim for the same goal of k-times anonymous authentication. But they have some differences as follows.

– In k-TAA [TFS04, TS06, CHK+06], a group manager generates a global secret/public key pair and issues
identification tokens to group members. From this perspective, k-TAA is more akin to the k-extension
of a group signature [CH91]. In contrast, k-LRS does not rely on a trusted authority for global key
generation, and the signer can flexibly select a group of users to hide their identity when signing.

– To avoid exceeding the limitation of authentication, a user in k-TAA has to track of how many times
their credentials have been used, resulting in a stateful scheme. In contrast, our k-LRS is completely
stateless.

– In k-LRS, if a user signs k′ times and k′ > k, then all k′ signatures from this signer are linked and
publicly detectable. However, in k-TAA, the (k + 1)-th authentication fails, and the verifier does not
know anything about the previous k authentications from this user.

7

– There is no tracing algorithm in k-LRS.

Blockchain and Voting A transaction protocol in a blockchain system can use linkable ring signatures to
provide both confidentiality and privacy [SALY17, YSL+20]. There are few works [LJW+19, RAVR21] to
implement voting systems using blockchain and ring signatures to be distributed and decentralized.

Receipt-freeness is one of the important requirements for e-voting to ensure a voter cannot prove how they
voted to a third party, even if they wish to do so voluntarily. The concept has been widely studied [AOZZ15,
BHM08, BT94b, DKR06, DKR10, HS12, HS00, JV06, JCJ10, KT09, KTV11, KTV12, MH96, Oka97, SK95].
Juels et al. [JCJ10] formalized coercion-resistance, which is stronger notion than receipt-freeness, and it
becomes one of the necessary conditions for e-voting to prevent several types of attacks such as vote selling
or blackmail. Jonker and Pieters [JP10] further studied anonymity and coercion-resistance in e-voting. Langer
et al. [LJP10] studied more about security semantics and explored anonymity and verifiability in terms of
(un)linkability between a voter and their votes.

Other Methods for Privacy Equipped with (ordinary) LRS for authenticity, there are some other methods
to protect the privacy in voting, including homomorphic encryption, shuffling [Gro03, PBD05, Nef01], and
multi-party computation (MPC) [Yao82, GMW87], etc. However, they are not as simple as our k-LRS method
due to the following reasons.

– For the homomorphic encryption and the shuffling solutions, every voter encrypts their message/vote
information before signing and uploading it, and then there is a designated authority that “mixes” the
encrypted messages and then releases the secret key so that everyone knows the voting result. However,
this requires a trusted authority that is responsible for properly generating a public key or a common
reference string and then releasing the corresponding secret key, which deviates from the decentralization
principle.

– MPC appears to be a good solution for the privacy problem. However, information-theoretic MPC needs
an honest majority of the parties [GMW87] (recall that we pursuit unconditional anonymity), which is
exorbitant in our voting application. More importantly, the vote-and-go property (i.e., a voter can finish
the voting in one shoot) cannot be achieved since most MPC protocols are interactive.

1.3 Technical Overview

In this subsection, we briefly overview our techniques.

Why the Trivial Construction from LRS to k-LRS Does Not Work? Considering the concept of k-LRS in
mind, one might initially think of a simple way to construct k-LRS from k (ordinary) LRS schemes as
follows. The signer S(j) (j ∈ [n] and n is the size of the ring) generates k distinct secret/public key pairs

((sk
(j)
1 , pk

(j)
1), ..., (sk

(j)
k , pk

(j)
k) for LRS, and then sets its secret key and public key as

sk(j) = (sk
(j)
1 , ..., sk

(j)
k), and pk(j) = (pk

(j)
1 , ..., pk

(j)
k).

To sign for the i-th time under some event e, the signer S(j) uses their i-th secret key sk
(j)
i to sign the

message on behalf of the public key ring (pk
(1)
1 , ..., pk

(1)
k , ..., pk

(n)
1 , ..., pk

(n)
k). One can obviously sign k times

using k secret keys they hold. Furthermore, if a signer signs more than k times, say (k + 1) times, then at
least two of the signatures among these (k+1) signatures will be linked due to the security of the underlying
LRS scheme.

However, this straightforward construction has two drawbacks. First, the signing process is stateful, as
a signer must record their state to know how many times they have signed for the same event. Second, and
more importantly, the link algorithm can only identify two signatures from the same secret key but not
all from the signer, which is essential in many applications, particularly voting systems: Once cheating is
detected—i.e., if a signer has signed more than k times—all k + 1 (or more) signatures from this malicious
signer should be deemed invalid and removed from the voting profile. However, in the simple construction

8

above, it is unclear whether the signer has generated an additional fraudulent signature except for the two
linked signatures. We refer to Appendix G.1 for more discussions on the necessity of stateless signatures and
k-linkability (linking all k + 1 signatures).

Toward Unconditional Anonymity. In this work, we consider unconditional anonymity for (k-linkable) ring
signatures, i.e., the anonymity does not rely on any hardness assumption. We first review how existing
LRS schemes are constructed. Let (sk, pk) be a pair of keys for the LRS scheme. In most existing LRS
schemes [LWW04, LW05, TW05, BKP20], a signature contains a pseudoidentity pid = fe(sk) (a.k.a. link-
ability tag [TW05]), where fe(·) is a one-way function indexed by the event label e, and the verification
algorithm will check the well-formedness of pid.

– On one hand, two signatures from the same signer (under the same event) will be linked due to the same
(or nearly identical9) pid.

– On the other hand, the identity of the signer (i.e., sk) is hidden due to the one-wayness of fe(·), ensuring
anonymity.

Take the discrete logarithm (DL) based construction as an example. Let G be a cyclic group of order
q, and g be a generator. A secret/public key pair is in the form of (sk, pk) = (x,X = gx) ∈ Zq × G,
and pid = gxe ∈ G is the pseudoidentity leaked in the signature. Here ge is another random generator of
G determined by some public function ge = H(e).10 Moreover, according to the decisional Diffie-Hellman
(DDH) assumption, given the public key gx and the event-related parameter ge, the pseudoidentity pid = gxe
is computationally indistinguishable from a random element in G, thus preserving anonymity.

However, since the information of sk is leaked via pid = fe(sk), anonymity must rely on the hardness
assumption such that pid is pseudorandom, and therefore it is not unconditionally anonymous. It seems that
to provide linkability, the anonymity of ring signatures must degrade from unconditional (as in [RST01]) to
computational (as in [LWW04]). Designing unconditionally anonymous LRS remained an open problem for
a decade since the concept of LRS was proposed.

The breakthrough work by Liu et al. [LASZ14] introduced the first LRS scheme with unconditional
anonymity. It follows the pseudoidentity construction to achieve linkability as before. But remarkably, the
scheme takes a “multi-to-one” paradigm for key pairs, i.e., for a public key, there are multiple secret keys
that correspond to that public key. More precisely, in Liu et al.’s scheme, a secret/public key pair is in the
form of

(sk, pk) = ((x1, x2), X = gx1
1 gx2

2) ∈ Z2
q ×G,

where g1, g2 are two random generators of G. The pseudoidentity in the signature (w.r.t. event e) is pid =
gx1
e ∈ G, where ge = H(e). The well-formedness of pid will be checked during verification.

– Unconditional anonymity: The secret key sk consists of two parts (sk1, sk2), and only a portion of
the secret key (i.e., sk1) is compromised from the pseudoidentity. Furthermore, as long as the second
part sk2 is uniformly distributed, the public key is uniformly distributed. Therefore, from pid, even an
information-theoretic adversary cannot link it to any specific public key or, equivalently, to any signer’s
identity (as long as the signer does not sign twice).

– Linkability: Given a secret/public key pair, it is infeasible to compute another secret key that corresponds
to the public key.

Extension to the k-LRS Setting. Inspired by [LASZ14], we are aiming to design k-LRS with unconditional
anonymity. Recall that in k-LRS, a signer can sign at most k times without being traced. We apply the same
“multi-to-one” idea as that in [LASZ14], and extend it as follows: a signer generates k+1 partial secret keys
sk1 = x1, ..., skk+1 = xk+1, and aggregates them into one public key

pk = gx1
1 · g

x2
2 · · · g

xk+1

k+1 ,

9 In some isogeny-based or lattice-based schemes [BKP20], two signatures are linked if the pseudoidentities contained
in them are close enough.

10 H(·) is modeled as a random oracle in security proofs.

9

where g1, ..., gk+1 are k + 1 random generators of G. For the i-th signing w.r.t. event e, the signature
contains a pseudoidentity of the form pid = gxi

e . It is easy to see that the leakage of the first k partial
secret keys (x1, ..., xk) does not threaten anonymity as long as xk+1 is uniformly distributed, and thus
pk as well. Moreover, according to the (k + 1)-find representation assumption [Bra93] (which is implied
by the DL assumption), given (x1, ..., xk+1) and pk =

∏
i∈[k+1] g

xi
i , it is infeasible to compute a distinct

(x′
1, ..., x

′
k+1) ̸= (x1, ..., xk+1) satisfying pk =

∏
i∈[k+1] g

x′
i

i . Therefore, a malicious signer cannot provide
another pseudoidentity in the signature, and linkability is guaranteed.

It seems we are done! However, the above idea has two flaws.

– The signing algorithm is still stateful. A signer has to record a signing state to avoid the case of two
signatures containing the same pseudoidentity w.r.t. the same i-th partial secret key.

– If a malicious signed k + 1 times, of which the first two contain the same pseudoidentity gx1
e , and

the following k − 1 signatures contain gx2
e , ..., gxk

e , respectively, then how to design the link algorithm
to identify all these k + 1 signatures from many other signatures that contain other different pseudo-
identities? Recall that x1, ..., xk+1 are sampled independently.

To address these two issues, we modify the pseudoidentity so that it contains information from all k partial
secret keys. Consequently, if k + 1 pseudoidentities are generated from one signer, some information will
overlap, allowing these k+1 signatures to be identified. To this goal, we change the function fe(sk1, ..., skk)
to a probabilistic algorithm, and introduce k random coefficients a1, ..., ak ∈ Z∗

q when signing. Therefore,

fe(sk1, ..., skk; a1, ..., ak) :=
∏
i∈[k]

gai·xi
e,i ,

where (ge,1, ..., ge,k) = H(e) are k random generators of G. Meanwhile, the final signature includes the
coefficients a1, ..., ak as well.

The signing algorithm is non-stateful now. For each signing, the signer samples a new group of coefficients
(a1, ..., ak) independently. From k signatures, which contain k groups of coefficients and k pseudo-identities,
one can recover gx1

e,1, ..., g
xk

e,k consequently, as long as all these k groups of coefficients form an invertable

matrix in (Z∗
q)

k×k, which happens with overwhelming probability. In the following, we call epki = gxi
e,i

(i ∈ [k]) event-related public keys. With such a function fe(sk1, ..., skk), we can design the link algorithm as
follows.

Link: Given (k + 1) signatures, Link outputs 1 (linked) if any group of k signatures among them results
in the same event-related public keys epk1, ..., epkk.

The above two flaws have been solved by introducing such coefficients in signing, and the unconditional
anonymity holds as before (as long as one signer does not sign more than k times). Additionally, due to the
collision resistance of secret key, an adversary cannot find two secret keys that map to the same public key,
and hence cannot generate an unlinked pseudoidentity.

Sequential Structure v.s. Parallel Structure. For the security of LRS and k-LRS, (no matter whether it
achieves computational anonymity or unconditional anonymity), the following linkability is required.

Linkability (informal). The adversary, who corrupts at most s signers, cannot generate more than ks
signatures such that every (k + 1) of them are unlinked (for (ordinary) LRS, k = 1).

Many works considering unconditional anonymity [LASZ14, BH18, BBG+22, YWM+22] adopt a weaker
definition of linkability.

Weak linkability (informal). The adversary, who corrupts one signer, cannot generate more than k (for
(ordinary) LRS, k = 1) signatures such that these signatures are unlinked.

For most applications of (k-)LRS, especially the application in voting systems, weak linkability is not
sufficient at all since it is feasible and motivated for two signers to collude and generate more valid votes

10

(namely, more unlinked and valid signatures) more than they are allowed to. For Liu et al.’s scheme [LASZ14],
we show a concrete attack against the linkability in Appendix A.

We now investigate deeper into Liu et al.’s LRS scheme to understand why it achieves only weak linkability.
Suppose there are n signers in the ring. Except for the part of pseudoidentity, the core idea for designing
an (L)RS scheme is to generate a 1-out-of-n proof [CDS94], showing that the signer holds one secret key
corresponding to one public key among total n public keys. The LRS scheme in [LASZ14] takes the well-known
Schnorr identification scheme [Sch91]. In more detail, Let (x,X = gx) be a pair of secret/public keys. In the
identification scheme, the first message from the prover (i.e., the signer in LRS) is a commitment cmt = gr

for random r ∈ Zq, and given a random challenge ct ∈ Zq, the response is computed as rsp = r + x · ch.
The verification passes if grsp = cmt · Xch. Following the Fiat-Shamir transform [FS86] the identification
scheme can be transferred into a signature scheme by setting ch = H(cmt,msg). Moreover, there exists a
perfect simulator that outputs a valid transcript (cmt, ch, rsp) which distributes identically as the honestly
generated one.

Following the method in [CDS94], Liu et al.’s LRS scheme takes what we called parallel structure for the
1-out-of-n proof. The high-level idea is, the signer δ first generates a commitment cmt(δ), and then simulates
other (n− 1) members’ transcript {(cmt(j), ch(j), rsp(j))}. Fixed n commitments, a random challenge ch(δ)

(for the signer δ’s commitment) is fixed according to

ch(1) + ch(2) + ...+ ch(n) = ch0,

where ch0 = H(cmt(1), ..., cmt(n),msg), and H(·) is a random oracle. With the knowledge of the secret key,
δ is able to compute a valid response rsp(δ). The final signature consists of all n members’ transcripts.

Liu et al.’s scheme [LASZ14] takes some optimization on the construction above to reduce the signature
size. The final signature is in the form of

σ = (pid, cmt, ecmt, ch(1), ..., ch(n), rsp1, rsp2),

where pid = g
x
(δ)
1

e is the pseudoidentity of the signer δ (w.r.t. event e), cmt is a commitment, and ecmt is an
event-related commitment (i.e., it is related to event e). The verification algorithm will check whether the
following equations hold.

cmt = grsp1

1 grsp2

2

∏
j∈[n]

(X(j))ch
(j)

, (1)

ecmt = grsp1
e

∏
j∈[n]

(pid)ch
(j)

, (2)

ch(1) + ch(2) + ...+ ch(n) = H(pid, cmt, ecmt,msg). (3)

If signer δ wants to generate a signature, then they has to fix other (n − 1) members’ challenges before
determining cmt, as otherwise it cannot offer a response rsp making Eq. (1) hold, since it does not know

the discrete logarithm of
∏

j∈[n]\{δ}(X
(j))(ch

(j)). Conditioned on (1), from Eq. (2) we can deduce that pid

must be in the form of g
x
(δ)
1

e .11 Therefore, a malicious signer δ cannot generate a valid signature in which

pid ̸= g
x
(δ)
1

e , and weak linkability holds as a result.

However, if two malicious signers δ and γ collude, then with the knowledge of two secret keys (x
(δ)
1 , x

(δ)
2)

and (x
(γ)
1 , x

(γ)
2), they have more flexibility in choosing ch(δ) and ch(γ), as long as (ch(δ)+ch(γ)) is determined

due to Eq. (3). Consequently, they are able to generate a valid signature in which pid ̸= g
x
(δ)
1

e and pid ̸= g
x
(γ)
1

e ,
indicating that linkability does not hold in Liu et al.’s scheme.

The key point for the insecurity above is that if the adversary A controls more than one secret key, then
Eq. (3) is not sufficient to restrict the choice of ch(1), ..., ch(n). With a flexible choice of challenges, rsp1, rsp2,
and pid are not limited to be in the forms as before, even conditioned on Eq. (1) and (2). To overcome this

11 Actually, this deduction relies on the 2-FindRep assumption, see Appendix A for more details.

11

problem, we apply a so-called sequential structure for the 1-out-of-n proof to provide a stricter restriction on
challenges. Now, an LRS signature is in the form of

σ = (pid, (cmt(1), ecmt(1), ch(1), rsp
(1)
1 , rsp

(1)
2), ..., (cmt(n), ecmt(n), ch(n), rsp

(n)
1 , rsp

(n)
2)).

The verification algorithm checks whether the following equations hold for every j ∈ [n]:12

cmt(j) = g
rsp

(j)
1

1 g
rsp

(j)
2

2 (X(j))ch
(j)

, (4)

ecmt(j) = g
rsp

(j)
1

e (pid)ch
(j)

, (5)

ch(j) = H(pid, cmt(j−1), ecmt(j−1),msg). (6)

The j-th challenge is determined by the (j − 1)-th commitment, and all n challenges and n commitments
form a ring connected by the hash function. Thanks to such a sequential structure, the choice of challenges
are strictly restricted by Eq. (6). Together with (4) and (5), the pseudoidentity must be in the correctness
form. Even if the adversary holds more than one secret key, it does not bring any extra advantage when
forging an ill-formed pid, and the linkability holds as a result.

Taking All Together. We formalize a new primitive called (k+1)-aggregatable identification scheme ((k+1)-
AIS), and then show a generic construction of k-LRS with unconditional anonymity from (k + 1)-AIS.
Informally, a (k + 1)-AIS scheme has the following properties.

– Aggregation. Given (k + 1) secret/public key pairs (sk1, pk1), ..., (skk+1, pkk+1), all public keys can be

aggregated as a new public key p̃k. Furthermore, ((sk1, ..., skk+1), p̃k) forms a new key pair of the
identification scheme.

– Collision resistance of secret key. It is computationally infeasible to find two different secret keys (sk1, ..., skk+1)

and (sk′1, ..., sk
′
k+1) that correspond to the same p̃k.

– Uniformity. Fixed any partial secret keys sk1, ..., skk, the aggregated public key is uniformly distributed
if skk+1 is uniformly distributed.

– Homomorphism. The computation of the validity check for a transcript (cmt, ch, rsp) is homomorphic
on some coefficient space F.

Except for the DL-based construction,we give another instantiation of (k+1)-AIS from the short integer
solution (SIS) assumption. In our construction of k-LRS, a signature is in the form of

σ = (a1, ..., ak, pid, (cmt(1), ecmt(1), ch(1), rsp(1)), ..., (cmt(n), ecmt(n), ch(n), rsp(n))),

where a1, ..., ak are random coefficients over F, pseudoidentity pid = fe(sk1, ..., skk; a1, ..., ak), and
(cmt(j), ecmt(j), ch(j), rsp(j)) is a transcript w.r.t. the j-th member in the ring. Moreover, ch(j) =
H(pid, cmt(j−1), ecmt(j−1),msg) for all j ∈ [n].

As for security, the k-LRS scheme constructed above has unforgeability, unconditional or computational
anonymity, linkability, and non-slanderability. Especially:

– Anonymity. If a signer signs no more than k times in total, then the pseudoidentity contained in the
signature leaks only the information of the first k partial secret keys, and hence unconditional anonymity
of k-LRS is guaranteed due to the uniformity of (k+1)-AIS. Additionally, computational anonymity still
holds even if a signer issues more than k signatures in total, as long as no more than k signatures are
issued for any single event.

– Linkability. The stronger notation of linkability for k-LRS is achieved, due to the sequential structure of
the scheme.

12 The n-th member in the member also serves as the 0-th member.

12

Application in Voting. When applying an LRS scheme into a voting system, a vote is actually a message-
event-signature tuple. For example, a vote for candidate C in the election event “2025Election” is in the
form of

(Vote:C︸ ︷︷ ︸
message

, 2025Election︸ ︷︷ ︸
event label

, σ︸︷︷︸
signature

),

where σ is an LRS signature on message “C” under event label “2025Election”. Thanks to the security
of LRS, the identity of the real voter/signer is hidden from the signature, and double-voting is publicly
detectable due to the linkability of two signatures.

From k-LRS we directly obtain a Mode 1 voting scheme, where each voter/signer is allowed to sign up to
k times. If a malicious voter votes/signs more than k times, then all votes from them will be detected due
to the linkability of signatures, and hence be discarded. For example, in the scenario of score voting where
each voter is allowed to give the candidate an (integer) score ranging 0 to k, a vote for candidate C with
score s is in the form of

((Vote:C︸ ︷︷ ︸
message

, 2025Election-C︸ ︷︷ ︸
event

, σ1︸︷︷︸
signature

), ..., (Vote:C︸ ︷︷ ︸
message

, 2025Election-C︸ ︷︷ ︸
event

, σs︸︷︷︸
signature

)).

All s message-event-signature tuples are separated as long as s ≤ k. Therefore, privacy is guaranteed,
and hence, the scoring distribution is hidden.

Multi-Event Settings. Now suppose there are 5 candidates A,B,C,D,E, and each voter is allowed to select
3 candidates without repetition (e.g., it is not allowed to select A twice). Actually, there are two limitations
in this scenario:

1. Each voter can vote at most 3 times totally in this voting event.
2. Each candidate can be selected at most once.

The first restriction can be guaranteed via a 3-LRS scheme. However, how can we simultaneously limit the
number of votes cast for the same candidate?

Recall that in k-LRS, the signing bound is related to an event label e, i.e., a signer can sign up tp k times
without being linked under a particular e. To deal with the case where there are more than two bounds,
a straightforward way is to let the signing be related to different events, which is exactly the idea of a
multi-event LRS scheme (see Appendix F for the formal definition).

Let M be the number of event indexes (i.e., how many different bounds). In a (k1, ..., kM)-MLRS scheme,
a signature is generated under M events e1, ..., eM . For any π ∈ [M], kπ + 1 signatures whose π-th event
label are the same will be linked if they came from the same signer. Now the voting problem above can be
dealt with a (3, 1)-MLRS scheme, where a vote for candidate C is in the form of

(Vote:C︸ ︷︷ ︸
message

, 2025Election︸ ︷︷ ︸
event-1

, C︸︷︷︸
event-2

, σ︸︷︷︸
signature

).

If a malicious voter votes more than 3 times (say, 4 times), then the four signatures will be linked under
the first event label “2025Election”. Moreover, if the voter votes more than once (say, 2 times) on the same
candidate (say, candidate C), then the two signatures will be linked under the second event label “C”. In
this work, we show a generic construction of (k1, ..., kM)-MLRS from k-LRS schemes.

Mode 2 Voting: Removing All Property. If there are multiple events (e.g., for score votes, each event is
defined with each candidate), Mode 1 voting can only detect ballots from the same event, but cannot detect
all ballots made from a single signer. Taking the above example, if a malicious voter votes on “A”, “B”, and
“A”, respectively, then the first and the third votes from it will be discarded due to the linkability w.r.t.
event “A”. However, the second vote for “B” remains, which is not desirable in many cases.

We come up with a novel method to solve this problem. The high-level idea is to let a vote for candidate
A (i.e., under event label “A”) contain more information beyond “A” so that such information can be used

13

to correlate this vote to other linked votes on another candidate B (i.e., under event label “B”). If the voter
obeys the voting rule, all the votes from it are unlinked, and unconditional anonymity still holds.

Suppose there are 5 candidates A,B,C,D,E, and each voter is allowed to select 3 candidates without
repetition (e.g., it is not allowed to select A twice). One vote for A is in the form of

(Vote:A︸ ︷︷ ︸
message

, 2025Election, A,B,C,D,E︸ ︷︷ ︸
event labels

, σA,1, ..., σA,3, σB , σC , σD, σE , σ̃︸ ︷︷ ︸
signatures

),

where

1. σA,1, ..., σA,3 are three 5-LRS signatures under event “A”, and
2. σB (resp., σC , σD, and σE) is a 5-LRS signature under event “B” (resp., under events “C”, “D”, and

“E”), and
3. σ̃ is a 3-LRS signature under event “2025Election”.

The signature σ̃ is used to bound the voting times for “2025Election”, and the signatures
σA,1, ..., σA,3, σB , σC , σD, σE are used to bound the voting time on each candidate. If a voter behaves hon-
estly, then for a candidate A, there are a total of five signatures at most (three from a vote for A and two
from the two other votes on some other candidates). Since we use a 5-LRS scheme, all these signatures will
not be linked. However, if the voter votes on A twice, then there are 6 signatures (from the two votes) under
the same event label “A”, and the two votes will be discarded. Furthermore, a vote for some other candidate
will also be detected since it contains one signature under event “A”.13

For a more general case where each voter gets k = k1 votes and at most k2 votes on the same candidate
is allowed, we can use a k-LRS scheme and a t-LRS scheme. A vote for candidate C is required to contain
x t-LRS signatures under event “C”, one t-LRS signature under the event of each other candidate, and
one k-LRS signature under the event of the whole voting process. Here we set k2x + (k − k2) ≤ t and
(k2 + 1)x > t. The first inequality is set for functionality/correctness when the voter behaves honestly, and
the second inequality is set in case the voter is malicious.

Negative Results. After addressing the issue of overvotes, we further consider whether it is feasible to identify
undervoting (i.e., when a malicious voter casts less than k votes and then abstains). Unfortunately, it appears
impossible to detect such behavior if we aim to preserve privacy. The formal statement is shown in Sec. 5.
We emphasize that this negative result applies only in non-interactive voting scenarios—where a voter casts
votes without interacting with others—yet, this is the most practical setting in many applications. An
interesting future direction would be to explore efficient interactive voting systems that achieve privacy and
unconditional anonymity simultaneously.

2 Preliminaries

Let λ ∈ N denote the security parameter. For a, b ∈ Z with a < b, define [a, b] := {a, a+ 1, ..., b}. For c ∈ Z+

[c] = [1, c]. Denote by x := y the operation of assigning y to x. Denote by x
$← S the operation of sampling

x uniformly at random from a set S. For a distribution D, denote by x ← D the operation of sampling x
according to D. For an algorithm A, denote by y ← A(x; r) or y := A(x; r), the operation of running A with
input x and randomness r and assigning the output to y. If the randomness is uniformly sampled, we simply
denote as y ← A(x). For a ring of users R, we use PKR to denote the assembly of users’ public keys in R.
“PPT” is short for probabilistic polynomial-time.

We use bold lower-case letters to denote vectors (e.g., x), and bold upper-case letters to denote matrices
(e.g., A). Unless there is a specific description, all vectors are column vectors.

For random variables X and Y defined over S, the min-entropy of X is defined as H∞(X) :=
− log(maxs∈S Pr[X = s]), and the statistical distance between X and Y is defined as ∆(X,Y) :=
1/2

∑
s∈S |Pr[X = s]− Pr[Y = s]|.

13 Actually, we use an extended link algorithm of k-LRS here, which can tell whether k′ signatures are signed from
one signer for any k′ ≥ k + 1.

14

Voting Rules. While we briefly introduced plurality voting [Cha81, BT94a] in the introduction, we are
interested in other voting rules in this work:

– approval voting [BF78]: each voter indicates which candidates they “approved” of and the candidate with
the most approvals is chosen as the winner;

– Borda count: the Borda count is a kind of ranked voting.14 In the Borda count, each voter assigns points
to candidates based on their ranking;

– score voting, a.k.a. range voting: each voter scores candidates within a specified range (e.g., 0 to 1015);
– multi-voting [HS00]: each voter can cast up to k1 votes in total, but no more than k2 votes for any single

candidate, where k1 and k2 are arbitrary positive integers.

Note that approval voting is a special case of score voting, and score voting, in turn, is a special case of
multi-voting.

3 k-Linkable Ring Signatures

In this section we formally define k-linkable ring signatures (k-LRS).

Definition 1 (k-LRS). Let k ∈ N+. A k-linkable ring signature (k-LRS) scheme consists of the following
five algorithms. Namely, k−LRS = (Setup,Gen,Sign,Ver, Link).

– pp← Setup(1λ, k). The setup algorithm takes as input the security parameter 1λ and the upper bound of
unlinked signing times k, and outputs a public parameter pp.

– (sk, pk) ← Gen(pp): The key generation algorithm takes as input pp, and outputs a pair of secret and
public keys (sk, pk). W.l.o.g., we assume pk contains pp.

– σ ← Sign(PKR, sk
(δ), e,msg): The signing algorithm takes as input a group of public keys PKR, the

secret key sk(δ) of user δ ∈ R, an event label e and a message msg, and outputs a signature σ.
– 1/0 ← Ver(PKR, e,msg, σ): The verification algorithm Ver takes as input PKR, e, msg and σ, and

outputs a bit indicating the validity of σ.
We say a signature σ (w.r.t. event e, message msg and ring R) is valid (resp., invalid), if
Ver(PKR, e,msg, σ) = 1 (resp., Ver(PKR, e,msg, σ) = 0).

– 1/0← Link(e, σ1, ..., σk+1): The link algorithm that takes as input an event label e and (k+1) signatures
σ1, ..., σk+1, and outputs a bit, where 1 indicates that these (k + 1) signatures are linked to one actual
signer, and 0 indicates unlinked.

Correctness.

1. Let k,N ∈ N+. For any R ⊆ [N] and δ ∈ R, any event e and message msg, it holds that

Pr

 pp← Setup(1λ, k)

(sk(1), pk(1)), ..., (sk(N), pk(N))← Gen(pp)

σ ← Sign(PKR, sk
(δ), e,msg)

: Ver(PKR, e,msg, σ) = 0

 ≤ negl(λ).

2. Let k,N ∈ N+. For any Ri ⊆ [N] and δi ∈ Ri (i ∈ [k + 1]), any event e and messages msg1, ...,msgk+1,
it holds that

Pr

 pp← Setup(1λ, k)

(sk(1), pk(1)), ..., (pk(N), sk(N))← Gen(pp)

For i ∈ [k + 1] : σi ← Sign(PKRi , sk
(δi), e,msgi)

: Link(e, σ1, ..., σk+1) = 1

 = 1, if δ1 = ... = δk+1;

Pr

 pp← Setup(1λ, k)

(sk(1), pk(1)), ..., (sk(N), pk(N))← Gen(pp)

For i ∈ [k + 1] : σi ← Sign(PKRi , sk
(δi), e,msgi)

: Link(e, σ1, ..., σk+1) = 1

 ≤ negl(λ), otherwise.

14 Ranked voting depends only on which of two candidates is preferred by a voter.
15 Range voting was originally proposed with scores of 0 or 1, and it can be a range of integers without loss of

generality.

15

If k = 1, then k-LRS degrades to (ordinary) LRS.

Remark 1 (On the universality of the link algorithm). In the definition above the link algorithm Link works
only for two signatures under the same event label e (a.k.a. prefix in [BEHM22, HC24]). In some previous
works, Link is defined only in the case two signatures are on behalf of the same ring (e.g., [LWW04, LW05]).
Here we take a more generic definition as that in [TWC+04, LASZ14] by introducing the event label as an
extra input in the signing. The definition in previous works is covered by ours when e = PKR.

Remark 2 (Extended link algorithm). It is easy to modify Link to an extended algorithm that predicates
whether k′ signatures are linked for any k′ ≥ k + 1. In the application of voting systems, this extended link
algorithm will be used to identify all votes from a dishonest user, if they voted more than k times.

As for security, we require unforgeability, (unconditional or computational) anonymity, linkability, and
non-slanderability for k-LRS. Let N ∈ N+ is the total number of users in the system.

Unforgeability. The adversary cannot forge a signature for a new message on behalf of the ring R in which
it is not included.

(Unconditional) anonymity. Given at most k ring signatures, the unconditional or computational adver-
sary cannot detect which signer actually signed them.

Linkability. The adversary who corrupts at most s signers cannot output (ks+1) different signatures w.r.t.
the same event such that, every (k + 1) of them are unlinked.

Non-slanderability. After seeing k signatures w.r.t. the same event from one honest signer, the adversary
cannot generate a valid forgery that makes these k + 1 signatures linked.

More formally, we define the security properties via the following experiments. Here N ∈ N+ denotes the
total number of users in the system.

Definition 2 (Unforgeability of k-LRS). Let k−LRS be a k-LRS scheme. We say k−LRS has unforgeabil-

ity, if AdvunforgA,k (λ) := Pr[ExpunforgA,k (λ) = 1] ≤ negl(λ) holds for all PPT adversary A, where the experiment

ExpunforgA,k (λ) is defined in Fig. 1.

Expunforg
A,k (λ):

pp← Setup(1λ, k)

For j ∈ [N]: (sk(j), pk(j))← Gen(pp)
S := Scorr := ∅
(R∗, e∗,msg∗, σ∗)← ASign(·,·,·,·),Corr(·)({pk(j)}j∈[N])

If R∗ ⊆ [N] ∧ R∗ ∩ Scorr = ∅ ∧ (R∗, e∗,msg∗, ·) /∈ S
∧ Ver(PKR∗ , e∗,msg∗, σ∗) = 1:
output 1

Otherwise: output 0

Sign(R, δ, e,msg):

If R ⊈ [N] ∨ δ /∈ R: return ⊥
σ ← Sign(PKR, sk

(δ), e,msg)
S := S ∪ {(R, e,msg, σ)}
Return σ

Corr(j):

Scorr := {j}
Return sk(j)

Fig. 1. The unforgeability experiment of k-LRS.

Definition 3 ((Unconditional) anonymity of k-LRS). Let k−LRS be a k-LRS scheme. We say k−LRS
has anonymity, if AdvanonyA,k (λ) := |Pr[ExpanonyA,k (λ) = 1] − 1/2| ≤ negl(λ) holds for all PPT adversary A,
where the experiment ExpanonyA,k (λ) is defined in Fig. 2.

If AdvanonyA,k (λ) ≤ negl(λ) even for all powerful adversary A, then we say k−LRS has unconditional
anonymity.

16

Expanony
A,k (λ):

b
$← {0, 1}

pp← Setup(1λ, k)
Spair := ∅
For j ∈ [N]:

(sk(j), pk(j))← Gen(pp)

T [j] := 0

For all δ, e: L[δ, e] := 0

b′ ← ASign(·,·,·,·),Chall(b,·,·,·,·,·)({pk(j)}j∈[N])

If b = b′: output 1
Otherwise: output 0

Sign(R, δ, e,msg):

If R ⊈ [N] ∨ δ /∈ R: return ⊥
σ ← Sign(PKR, sk

(δ), e,msg)

+ + L[δ, e] , + + T [δ]
Return σ

Chall(b,R, δ0, δ1, e,msg0,msg1):

If R ⊈ [N] ∨ δ0 /∈ R ∨ δ1 /∈ R: return ⊥
If T [δ0] ≥ k ∨ T [δ1] ≥ k: return ⊥
If L[δ0, e] ≥ k ∨ L[δ1, e] ≥ k: return ⊥
++ L[δ0, e]; + + L[δ1, e]
σ0 ← Sign(PKR, sk

(δ0⊕b), e,msg0)

σ1 ← Sign(PKR, sk
(δ1⊕b), e,msg1)

Return (σ0, σ1)

Fig. 2. The (unconditional) anonymity experiment of k-LRS, where the highlighted codes are only shown in the
unconditional anonymity experiment.

Remark 3 (On the definition of (unconditional) anonymity). In our definition above, even an all-powerful
adversary A is granted access to the signing oracle. This seems redundant at first glace, since such adversary
A can extract a secret key from a public key and simulate the signing oracle by itself. However, we emphasize
that a single public key may correspond to multiple secret keys, as is the case in this work. Consequently,
access to the signing oracle allows A to obtain information about the specific secret key held by the signer,
which may help to break the anonymity.

A drawback of unconditional anonymity is that, during the security experiment, a secret key can be used
to sign at most k times anonymously, even for different events. This is due to the fact that each signature
must embed some information about the secret key sk to ensure linkability. However, the entropy of sk
is inheriently limited, as its length is polynomial in the security parameter. Consequently, an unbounded
adversary could extract sufficient information about sk from a large number of signatures, ultimately enabling
the detection of another signature issued by the same sk.

Definition 4 (Linkability of k-LRS). Let k−LRS be a k-LRS scheme. We say k−LRS has unforgeability, if
AdvlinkA,k (λ) := Pr[ExplinkA,k (λ) = 1] ≤ negl(λ) holds for all PPT adversary A, where the experiment ExplinkA,k (λ)
is defined in Fig. 3.

Explink
A,k (λ):

pp← Setup(1λ, k)

For j ∈ [N]: (sk(j), pk(j))← Gen(pp)
For all δ, e: L[δ, e] := 0
S := Scorr := ∅
(e∗, {(R∗

i ,msg∗i , σ
∗
i)}i∈[ℓ])← ASign(·,·,·,·),Corr(·)({pk(j)}j∈[N])

If
(
∀i ∈ [ℓ] : (R∗

i , e
∗,msg∗i , ·) /∈ S ∧ Ver(PKR∗

i
, e∗,msg∗i , σ

∗
i) = 1

)
∧ (∀G ⊆ [ℓ], |G| = k + 1 : Link(e∗, {σ∗

i }i∈G) = 0)
∧ |Scorr| ≤ ⌊(ℓ− 1)/k⌋ : output 1

Otherwise: output 0

Sign(R, δ, e,msg):

If R ⊈ [N] ∨ δ /∈ R: return ⊥
If L[δ, e] ≥ k: return ⊥
++ L[δ, e]
σ ← Sign(PKR, sk

(δ), e,msg)
S := S ∪ {(R, e,msg, σ)}
Return σ

Corr(j):

Scorr := Scorr ∪ {j}
Return sk(j)

Fig. 3. The linkability experiment of k-LRS.

Remark 4 (Weak linkability of k-LRS). In the definition above, if the adversary A can corrupt at most one
user, then linkability degrades to weak linkability (as defined in [LASZ14] in case k = 1). Weak definition

17

is not sufficient for most applications, especially in the voting systems, since it is feasible and motivated for
two signers to collude to generate more unlinked signatures than they are allowed to, and hence control more
votes and break the fairness of voting.

Definition 5 (Non-slanderability of k-LRS). Let k−LRS be a k-LRS scheme. We say k−LRS has un-
forgeability, if Advnon-slA,k (λ) := Pr[Expnon-slA,k (λ) = 1] ≤ negl(λ) holds for all PPT adversary A, where the

experiment Expnon-slA,k (λ) is defined in Fig. 4.

Expnon-sl
A,k (λ):

pp← Setup(1λ, k)

For j ∈ [N]: (sk(j), pk(j))← Gen(pp)
S := Scorr := ∅
For all δ, e: L[δ, e] := 0
(e∗, δ∗, {(R∗

i ,msg∗i , σ
∗
i)}i∈[k+1])

← ASign(·,·,·,·),Corr(·)({pk(j)}j∈[N])

If {(R∗
i , δ

∗, e∗,msg∗i , σ
∗
i)}i∈[k] ⊆ S

∧ (R∗
k+1, δ

∗, e∗,msg∗k+1, ·) /∈ S
∧ Ver(PKR∗

k+1
, e∗,msg∗k+1, σ

∗
k+1) = 1

∧ Link(e∗, {σ∗
i }i∈[k+1]) = 1 ∧ δ∗ /∈ Scorr :

output 1
Otherwise: output 0

Sign(R, δ, e,msg):

If R ⊈ [N] ∨ δ /∈ R: return ⊥
If L[δ, e] ≥ k: return ⊥
++ L[δ, e]
σ ← Sign(PKR, sk

(δ), e,msg)
S := S ∪ {(R, δ, e,msg, σ)}
Return σ

Corr(j):

Scorr := {j}
Return sk(j)

Fig. 4. The non-slanderability experiment of k-LRS.

4 Applications in Voting Systems

Now we show how k-LRS can be used to build anonymous non-interactive voting.

4.1 Non-Interactive Voting over Anonymous BB

In this paper, we focus more on multi-party protocols between voters. We assume only eligible voters are
registered correctly in a given voting event, so we ignore registrars and corresponding pre-computations.
Our voting protocols are purely multi-party protocols between voters only and without tallying authority or
verification phase since the protocols can be proven to be correct and secure without any of those.

We assume public key infrastructure (PKI) and anonymous bulletin board (ABB) model, i.e., we assume
there is a PKI where everyone has access to the public keys of others, and there is an ABB on which
everyone can write privately, and there is no direct communication channel between any two parties except
ABB. We recall the definition of ABB in Appendix H. For simplicity, we assume there is no network delay
(the consideration of network delays is vital, but orthogonal to the goals of this work).

Definition 6 (Voting specification). Let V, E ,D,S denote the set of voters, the vote space, the decision
space, and the tally function, respectively. A voting specification Γ = (V, E ,D,S) consists of the following
components:

– Voters: The voters are (represented by IDs) from the set V (throughout this paper, V = [n]). The voters
cast their votes and receive their outcome at the end.

– Vote: A vote vote(u) ∈ E of a voter u ∈ [n] is a vector defined over a domain E.
– Voting rule: the voting rule specifies how the decision is computed from the votes cast by the voters. The

voting rule is represented by a deterministic function S(·) : En → D that takes a tuple of vectors from
E (on from each voter) and outputs a decision from a decision space D.

18

– Profile: A profile P = (vote(1), ..., vote(n)) ∈ En is a vector in En. It represents the ordered sequence of
all votes cast by the voters.

A dishonest voter may attempt to cast a vote outside the domain E . Ideally such votes should be either
ignored, or mapped to a (set of) default value(s) according to the scoring rule (e.g., treating them as casting
a score of 0 in the case of a scoring vote).

Example 1. In plurality voting, the vote domain E is defined over E ⊂ {0, 1}q such that vote ∈ E ⇔
hw(vote) = 1 (the hamming weight of vote) if each digit denotes each candidate among q candidates and
voters are eligible to cast their vote for only one candidate. If q = 3 and vote = 010, then the vote is for the
second candidate. ◁

In this paper, we primarily focus on more complex voting rules such as the Borda count, score voting,
and multi-voting. We define a specific specification to describe these rules:

Definition 7 (k-voting specification). A k-voting specification Γ = (V, E ,D,S) is a voting specification
such that E can be decomposed into k components, i.e., E ⊆ (E ′)k for a domain E ′.

Example 2. Note that the voting specification in the previous example can also be a q-voting specification.
For other examples, in score voting, E can be E = [0, k] ⊆ [0, 1]k if there is only one candidate and one can
give a score from 0 to k. In the same setting but when there are q candidates, E = [0, 1](k·q) so that it can be
viewed as E = [0, k]q. In the Borda count where there are k = q candidates, it can be E = Sk ⊆ [k]k where
Sk is the finite symmetric group defined over [k]. ◁

Definition 8 (ABB-based (non-interactive) voting protocols). Let Γ = (V = [n], E ,D,S) be a voting
specification, and Π be an n-party protocol defined over Γ , where V are the participants with their inputs
in E, and outputs a decision value contained in D. Voters in V can call S as a subroutine of Γ during the
running.

We call Π an ABB-based voting protocol if it satisfies the following properties.

1. Voters have read/write access to an anonymous bulletin board (ABB). Any pair of two voters in V cannot
communicate with each other except by writing on and reading from ABB.

2. The output of Π for each voter is computed via a public function that takes as input the final state of
ABB and outputs the decision (tally) from the decision space D.

We say that an ABB-based voting protocol is non-interactive if the voters only write once on the ABB in
the protocol.

ABB-based non-interactive voting offers several advantages, including the vote-and-go property, where
a voter can complete the voting process in a single step. In this paper, we primarily focus on this class of
voting protocols.

Note that a vote in the protocol can be an arbitrary string of any length, potentially falling outside the
domain E if we consider a malicious adversary so that a voter does not follow the instruction. The input of
voters in the protocol is intended to be a profile P ∈ En, but it might be not for the above case. However,
when the context is clear, by abuse of notation, we will keep using a term “profile” P = (vote(1), ..., vote(n))
to denote an input of a protocol even if it could be not an element of En. Additionally, by definition, honest
parties only receive messages through the ABB. However, we emphasize that corrupted parties can coordinate
their views and actions in an arbitrary manner.

Definition 9 (Correctness of voting protocols). We say a voting protocol Π is correct with respect to
a voting specification Γ = (V = [n], E ,D,S), if the following properties are satisfied except with negligible
probability.

1. (Completeness) For any profile P ∈ En, in an honest execution of Π with inputs P—i.e., if the n voters
honestly run Π with initial inputs P—the output of Π (for every voter) equals S(P).

19

2. (Robustness) There exists an extractor E that maps a malicious PPT adversary A attacking Π (who
is able to corrupt any number of voters and have them behave arbitrarily during the protocol) to an
augmented semi-honest PPT adversary A′ = E(A) for Π (i.e., an adversary who is able to corrupt the
same number of voters and modify their inputs but run the protocol honestly) such that the output of
any honest voter in an execution of Π against adversary A is distributed identically to the output of the
same honest voter with the same input in an execution of Π against adversary A′.

Remark 5. The first property (completeness) in Def. 9 ensures that the protocol Π will return the correct
result according to the rule S, while the second property (robustness) asserts that the adversary cannot
influence the result except by altering the inputs of corrupted users it controls, i.e., the adversary cannot
“disrupt” the execution of Π.

Additionally, we note in passing that the two properties in the above definition are for different exper-
iments. Completeness is for an honest execution, and hence the probability of error is taken over just the
choice of randomness for n voters. Robustness considers the extractor and adversary, hence is the probability
is taken over the choices of the randomness of uncorrupted voters, A, and E.

Example 3. Let n = 2 and the voters be Arthur and Bertha, corresponding to 1 and 2, respectively. Suppose
there are five candidates, Alice, Bob, Carol, Dick, and Eve, and voters are supposed to score each candidate
from 0 to 9, i.e., E = [0, 9]5.

P = (vote(1), vote(2))T =

[
1 2 3 4 5
9 0 9 0 9

]
,

states that Arthur assigns 1 to Alice, 2 to Bob, 3 to Carol, 4 to Dick, and 5 to Eve, and Bertha assigns 9 to
Alice, 0 to Bob, 9 to Carol, 0 to Dick, and 9 to Eve.

Assume that the voting is specified such that the decision (tally) ranks the candidates in descending
order based on the sum of their scores. Then, given P as before, the total score for Alice is 10, that of Bob
is 2, and so on. Therefore,

S(P) = (Eve, Carol, Alice, Dick, Bob).

Consider a voting protocol Π for the above voting specification. If Π is correct, then the output of Π
(for honest users) should be S(P). In this paper we consider ABB-based non-interactive voting protocols.
Therefore, there is a public function SABB(·) such that with high probability SABB(PABB) = S(P). Here
PABB denotes the final state of ABB after a running of protocol Π with initial input P . For example, given
a profile P as above, if Π is designed so that every voter casts their votes along with a (ring) signature on
ABB (as the case in this paper), then the state of ABB might be

PABB =

[
(9, 0, 9, 0, 9, σ(2))
(1, 2, 3, 4, 5, σ(1))

]
up to a permutation for the rows, where σ(1) (resp., σ(2)) denotes a signature from voter 1 (resp., voter 2).

Now, consider the scenario where Bertha is acting maliciously. In addition to her own vote (9, 0, 9, 0, 9),
she also intends to cast an additional vote (8, 0, 8, 0, 8). Specifically, Bertha takes two inputs: vote(2a) =
(9, 0, 9, 0, 9) and vote(2b) = (8, 0, 8, 0, 8), and attempts to impersonate two voters. Following the above exam-
ple, after a permutation by ABB, a state PABB could be

PABB =

(9, 0, 9, 0, 9, σ(2a))
(1, 2, 3, 4, 5, σ(1))
(8, 0, 8, 0, 8, σ(2b))

 .

Due to the correctness of Π, there must be a machanism to identify and discard the malicious in-
puts (9, 0, 9, 0, 9) and (8, 0, 8, 0, 8) while retaining the valid input (1, 2, 3, 4, 5) left, resulting in a tally of
(Eve, Dick, Carol, Bob, Alice). This can be interpreted as the existence of an extractor E that efficitively
maps the malicious adversary Bertha into a passive adversary holding an input vote(2) = (0, 0, 0, 0, 0). The
correctness is ensured by the linkability of k-LRS, as σ(2a) and σ(2b) are linked, having been signed by the
same voter Bertha. ◁

20

Definition 10 (Anonymity of voting protocols). Let Γ = (V = [n], E ,D,S) be a voting specification and
Π be a protocol for it. We say Π has (unconditional) anonymity, if for any i, j ∈ [n], any PPT (information-
theoretic) adversary A who corrupts a group of voters except i, j, any profiles P = (vote(1), . . . , vote(n)) and
P[i,j], it holds that ∣∣∣Pr [AΠP

→ 1
]
− Pr

[
AΠ

P[i,j] → 1
]∣∣∣ ≤ negl(λ),

where λ is the security parameter, and

P[i,j] = (vote(1)
′
, ..., vote(n)

′
) s.t.

vote(i)

′
= vote(j),

vote(j)
′
= vote(i),

vote(ι)
′
= vote(ι), otherwise.

Example 4. Following the previous example, let

P = (vote(1), vote(2))T =

[
1 2 3 4 5
9 0 9 0 9

]
.

Then P indicates that Arthur (the first voter) assigns 1 to Alice, 2 to Bob, 3 to Carol, 4 to Dick, and 5 to
Eve, and Bertha (the second voter) assigns 9 to Alice, 0 to Bob, 9 to Carol, 0 to Dick, and 9 to Eve. Now,
let’s consider

P[1,2] =

[
9 0 9 0 9
1 2 3 4 5

]
.

Then P[1,2] indicates that Arthur gives 9 to Alice, 0 to Bob, 9 to Carol, 0 to Dick, and 9 to Eve, and Bertha
gives 1 to Alice, 2 to Bob, 3 to Carol, 4 to Dick, and 5 to Eve. Anonymity ensures that the running with P
and the running with P[1,2] are indistinguishable from the attacker. This captures the unlinkability between
voters and their votes. ◁

Definition 11 (Privacy of voting protocols). Let Γ = (V = [n], E ,D,S) be a k-voting specification (i.e.,

vote(j) = (vote
(j)
1 , ..., vote

(j)
k) for j ∈ [n]), and Π be a protocol for Γ . We say Π has (unconditional) privacy,

if for any (i, j) ∈ [n]2, any G ⊆ [k], any PPT (information-theoretic) adversary A who corrupt a group of
voters except i, j, any profiles P = (vote(1), . . . , vote(n)) and P[i,j,G], it holds that∣∣∣Pr [AΠP

→ 1
]
− Pr

[
AΠ

P[i,j,G] → 1
]∣∣∣ ≤ negl(λ),

where λ is the security parameter, and

P[i,j,G] =

(vote
(1)
1

′
, ..., vote

(1)
k

′
)

...

(vote
(n)
1

′
, ..., vote

(n)
k

′
)

 s.t.

vote

(i)
ℓ

′
= vote

(j)
ℓ , ℓ ∈ [G]

vote
(j)
ℓ

′
= vote

(i)
ℓ , ℓ ∈ [G]

vote
(ι)
ℓ

′
= vote

(ι)
ℓ , otherwise.

Example 5. Following the previous example, let

P = (vote(1), vote(2))T =

[
1 2 3 4 5
9 0 9 0 9

]
.

Then P indicates that Arthur gives 1 to Alice, 2 to Bob, 3 to Carol, 4 to Dick, and 5 to Eve, and Bertha
gives 9 to Alice, 0 to Bob, 9 to Carol, 0 to Dick, and 9 to Eve. Now consider

P[1,2,G={1,4,5}] =

[
9 2 3 0 9
1 0 9 4 5

]
.

Then P[1,2,G] indicates that Arthur gives 9 to Alice, 2 to Bob, 3 to Carol, 4 to Dick, and 9 to Eve, and Bertha
gives 1 to Alice, 0 to Bob, 9 to Carol, 4 to Dick, and 5 to Eve. Privacy ensures that the execution with P and
the execution with P[1,2,G] are indistinguishable to the attacker. In other words, not only are identities of
Arthur and Bertha kept confidential, but it is also private whether the voter who assigns 9 to Alice assigns
2 or 0 to Bob. ◁

21

4.2 Instantiating Different Voting Rules

This section describes applications of our k-LRS in various voting scenarios. Let Γ = (V, E ,D,S) be a voting
specification we will implement together with a fixed number V = [n]. Every participant in our protocol
obtains an entire profile P (which may contain arbitrary messages from malicious users so that P may not
be in En) just by looking ABB together with an identified overvote set P ′ ⊂ P . With S, one can get a desired
result by running S(P \P ′). This part is trivial, so we will focus on the steps of getting P ′, i.e., we will define
E precisely, but we will not specify D and S since literally they can be anything depending on users’ choice.
In this paper, we propose two voting modes to ensure privacy.

Mode 1 (Score voting, a.k.a. range voting). Each voter can vote their preference as an integer score (where
there is only a single candidate).

As the first simple but powerful use case, we can immediately obtain Mode 1 voting via k-LRS. This
mode allows to cast a vote as an integer score score from 0 to k with privacy, which has never been achieved
in e-voting literature. Note that this rule is equivalent to allowing each user to cast or abstain from voting
up to k times, where each vote implies giving an additional score of 1. Thanks to k-LRS, everyone can easily
verify if one casts their vote more than k times, namely, if one does overvote, which will be formally defined
later. This mode can be extended to cover any number of voting candidates by simply running the mode in
parallel per candidate. For this mode, the specification is required to be E = [0, k] ∈ [0, 1]k.

Mode 2 (Multi-voting). Each voter is eligible to cast their votes up to k1 times with a restriction that at most
k2 votes are allowed to each candidate. Once a voter breaks this rule, then all their ballots will be discarded.
Suppose there are q voting candidates. One can obtain an enhanced version of the parallel running of Mode 1
by letting k1 = q · k2. While the parallel execution of Mode 1 can only verify overvotes for a single candidate
(thus preserving the anonymity of the dishonest voter’s ballots for other candidates), Mode 2 can verify
overvotes across all candidates. For this mode, we restrict E ⊆ [0, q]k1 such that vote = (vote1, . . . , votek1

) ∈ E
if and only if {votei}i∈I = {0} or |{votei}i∈I | > 1 for all I ⊆ [1, k1] such that |I| > k2. In other words,
votei = 0 implies that one abstains from casting their i-th vote, allowing votei to be zero more than k2 times
among all choices of i. Meanwhile, votei = j ∈ [1, q] indicates that the (partial) vote is for the j-th candidate,
with the number of repetitions not exceeding the threshold k2.

We emphasize that the mode can also implement the Borda count by simply letting k2 = 1 and distin-
guishing votei by position to denote i-th preference for each i.

In the remainder of this section, we will provide formal protocol descriptions and proof of the correctness
and privacy of the modes. However, before doing so, we first discuss some details below.

Registering/precomputation. In practice, eligibility to vote also can be an issue. There should be a
publicly available PKI, and only eligible voters should be able to register their public key to the PKI. We
omit the details on this since our primary concern is MPC protocol among (eligible) voters, but we emphasize
that the proof of eligibility can be simply done by submitting a certificate from registrars.

Random strings. In the following voting systems, every vote is a (set of) valid message-event-signature
tuple(s), and the message contains the voting preference and a random string str ∈ {0, 1}λ (just like the
serial number on banknotes and checks) where λ is the security parameter of our signature scheme. When
counting the result, if two votes or two message-event-signature tuples have the same random string, then
one will be discarded. This results in a negligible correctness error in the voting systems.

Our SIS-based k-LRS and (k1, ..., kM)-MLRS schemes (Appendix D.1) do not achieve strong unforgeabil-
ity, i.e., after seeing a signature σ on some message msg and event e, it is possible to generate another valid
signature σ′ on the same msg and e. If there is no random string in the signed message, then after seeing
several votes (message-event-signature tuples) to a candidate, the adversary can generate more signatures on
the same message and event, increase the number of votes for that candidate and hence break the correctness
of voting.

Limitations and allowing abstention. Note that if undervoting is possible, meaning the voting specifica-
tion requires casting at least one vote (or a positive score), any ABB-based non-interactive voting protocol

22

cannot simultaneously achieve correctness, privacy, and overvote identification, as established by the impos-
sibility result (Sec. 5). However, if the specification permits abstention, undervoting is effectively eliminated,
allowing all of these properties to be achieved. Another important note is about coercion-resistant secu-
rity [JCJ10]. Since we consider ABB-based non-interactive voting protocol, which is a protocol without
tallying authorities, it is impossible to guarantee coercion-resistant security. This can be easily seen from
our assumption since we assume no trusted party at all. However, it does not limit the potential of our
k-LRS schemes; this is a limitation of the security assumption. To achieve coercion resistance, we need more
complicated cryptographic tools and more assumptions, e.g., a trusted tally server that provides dummy
ballots [LQT20]. On the other hand, our k-LRS schemes can be implemented in such voting systems, which
could be an interesting future work.

4.3 Mode 1 Voting from k-LRS

We design a mode 1 voting protocol from our k-LRS scheme. Thanks to the k-LRS scheme, the protocol is
extremely simple. In a nutshell, each voter 1) registers their public key to PKI, 2) generates vote via k-LRS
scheme and uploads it to ABB, and 3) reads ABB, discards overvotes via Link algorithm, and computes a
voting rule. Precisely, each voter u ∈ [n] runs the following protocol:

Preparing phase. u generates a key pair (sku, pku) of a k-LRS scheme and registers pku to PKI.
Voting phase. Let 0 ≤ s ≤ k be the score intended by u. The voter u does the following for each i ∈ [s]:

1. Sample random strings stri ∈ {0, 1}λ.
2. Sign the message (“VOTE:” || stri) under a predetermined event label, e.g., (“2025 ELECTION”),

on behalf of V.
Let (σ1, ..., σs) be the signatures obtained by the above procedure. u gets their ballot

vote(u) = (vote
(u)
1 , vote

(u)
2 , . . . , vote(u)s)

where vote
(u)
i = (stri||σi) for all i ∈ [s]. As the last step of this phase, u uploads vote(u) to ABB.

Counting phase. When the voting phase is done, anyone participating in the protocol can read ABB so
that u can also check the validity of all message-event-signature tuples using the public key list of V and
the linking algorithm and discard all ill-formed tuples. For every (k+1) signatures among all signatures
obtained from ABB, u invokes the Link algorithm to check whether these (k + 1) signatures are linked.
Whenever u finds linked (k+1) signatures, then u can further find all other linked signatures and discard
all of them. Repeat doing this until every (k + 1) signatures are unlinked.
Finally, u runs S with the valid messages (that form a profile) from valid message-event-signature tuples
and outputs a decision.

Analysis. We prove the following theorem.

Theorem 3. If the underlying k-LRS scheme in Mode 1 voting has unforgeability, (unconditional)
anonymity, linkability, and non-slanderability, then the voting protocol for Mode 1 voting has correctness
and (unconditionally) privacy.

Proof (of Theorem 3 (Security of Mode 1 Voting)). Recall that the protocol is non-interactive, and therefore,
malicious voters cannot influence the result except by uploading their votes to the ABB. Obviously, the votes
should satisfy the specific form defined by the rule; otherwise, they will be discarded immediately during the
counting phase.

We present the following two facts to show that the counting results are correct.

1. All votes from honest voters (who vote/sign no more than k times) will remain. This is guaranteed by
the randomness of str and the non-slanderability of k-LRS. Recall that if two message-event-signature
tuples contain the same random string, then one of them will be discarded. While for honestly generated
votes, this happens with negligible probability. Moreover, according to the non-slanderability, even after
seeing at most k signatures from an honest voter, an attacker still cannot forge a signature (with a
non-repeated random string) that makes those (k + 1) signatures linked.

23

2. All votes from dishonest voters (who vote/sign more than k times) will be identified and discarded. Due
to the linkability of k-LRS, if a malicious voter votes mote than k times, then all signatures contained
in the votes will be linked and discarded. Moreover, thanks to the non-slanderability, malicious voters
cannot invalidate votes from honest voters, as analyzed above.

The voting system has anonymity due to the (unconditional) anonymity of k-LRS. Furthermore, the s
message-event-signature tuples from a specific voter is confused among all ℓ (valid) tuples after the permu-
tation by ABB, and no information is revealed except that the candidate gets exactly a score of ℓ, and hence
the privacy is guaranteed. ⊓⊔

Remark 6 (On the complexity and hardness of efficient link). One potential concern when using k-LRS in a
voting scheme that produces a total of ℓ ballots is the need to invoke the Link algorithm

(
ℓ

k+1

)
times, which

becomes impractical for large k. While our primary contributions lie in proposing and formalizing the concept
of k-linkability, addressing the weak linkability problem, and demonstrating the feasibility of ABB-based non-
interactive voting with privacy, we also would like to discuss the hardness of designing an efficient linking
algorithm. Notably, all existing linkable ring signatures (i.e., 1-LRS schemes)—e.g., [LWW04, LW05, TW05,
ACST06, LASZ14, SALY17, DV09, LAZ19, HKSS22]—that we are aware of employ similar Link algorithms,
requiring

(
ℓ
2

)
invocations to determine whether any two signatures are linked among ℓ signatures. This

provides strong evidence of the inherent difficulty in constructing a “superlink” algorithm—one that could
efficiently process all ℓ signatures and directly output any linked signature tuples if they exist, within less
than

(
ℓ

k+1

)
operations. Assuming there exists no such superlink algorithm, we can argue that there exists

no better way to achieve private ABB-based non-interactive voting without a trusted setup: any k ballots
should look like independent while any linked k + 1 ballots should be detectable.

4.4 Approaches of Reducing the Complexity of Linking

In this subsection we explore some approaches to reduce the complexity
(

ℓ
k+1

)
in Mode 1 voting, though

coming with trade-offs in functionality or security.

Variant 1: Use deterministic pseudoidentity additionally. Recall that to avoid a stateful signing algo-
rithm and also to achieve the “removing all” property, we employ a re-randomized pseudoidentity instead of a
deterministic pseudoidentity (see the technical overview in Sec. 1.3). In many e-cash systems (e.g., [CHL05]),
a signature contains two tags: one for detecting oversigning and the other for identifying all fraud signatures if
oversigning occurs. Following this approach, we can extent a user’s secret key to (ŝk1, ..., ŝkk+1, sk

′
1, ..., sk

′
k),

where (ŝk1, ..., ŝkk+1) is a secret key of k-LRS, and sk′1, ..., sk
′
k are k secret keys from an ordinary LRS

scheme (i.e., 1-LRS). In this setting, a user’s i-th signature includes both a re-randomized pseudoidentity

fe(ŝk1, ..., ŝkk; a1, ..., ak) (as shown in our construction) and a deterministic pseudoidentity fe(ŝki) (as in the
trivial solution of using LRS k times). The deterministic pseudoidentity enables efficient detection of over-
votes and the identification of two fraudulent votes. Furthermore, the re-randomized pseudoidentity helps
identify the remaining k − 1 fraudulent votes, reducing the total complexity to

(
ℓ
2

)
+
(
ℓ−2
k−1

)
. However, this

approach doubles the size of the secret key and make the signing stateful, and the unconditional security is
sacrificed.16

In more precisely, we consider the following relaxed variant of Mode 1 voting.

Preparing phase. u generates a key pair (ŝku, ŝku) of a k-LRS scheme, and k key pairs

(sk′u,1, sk
′
u,1), ..., (sk

′
u,k, pk

′
u,k) of an LRS scheme, and registers pku = (p̂ku, pk

′
u,1, ..., pk

′
u,k) to PKI.

Voting phase. Let 0 ≤ s ≤ k be the score intended by u. The voter u does the following for each i ∈ [s]:

1. Sample random strings stri ∈ {0, 1}λ.
16 By applying an unconditionally anonymous LRS scheme (e.g., our k-LRS scheme with k = 1) instead, we can still

achieve unconditional security. However, this will triple the size of the secret key size.

24

2. Use ŝku to sign the message (“VOTE:” || stri) under the predetermined event label on behalf of V
and obtain the signature σ̂i.

3. Use sk′u,i to sign the message (“VOTE:” || stri || σ̂i) under the predetermined event label on behalf
of V and obtain the signature σ′

i.
Let (σ1, ..., σs) be the signatures obtained by the above procedure, where σi := (σ̂i, σ

′
i). Then u gets their

ballot
vote(u) = (vote

(u)
1 , vote

(u)
2 , . . . , vote(u)s)

where vote
(u)
i = (stri||σi) for all i ∈ [s]. As the last step of this phase, u uploads vote(u) to ABB.

Counting phase. When the voting phase is done, anyone participating in the protocol can read ABB so
that u can also check the validity of all message-event-signature tuples using the public key list of V and
the linking algorithm and discard all ill-formed tuples. Suppose there are ℓ well-formed ballots (str||σ̂||σ′)
left. u first invokes the (deterministic) link algorithm of the LRS scheme to check if σ′ contained in the
two ballots are linked. If so, then u further invokes the Link algorithm of the k-LRS scheme to identify
all other fraudulent votes by checking σ̂, and u removes all linked ballots. Repeat this until σ′ in every
pair of ballots are unlinked.
Finally, u runs S with the valid messages (that form a profile) from valid message-event-signature tuples
and outputs a decision.

Analysis. Let |V| = n and assume ℓ ≈ nk, then the counting phase above has a computation complexity
approximate to

(
ℓ
2

)
+
(
ℓ−2
k−2

)
. For the security, we prove the following theorem in Appendix K.1.

Theorem 4. If the underlying k-LRS scheme and LRS scheme in Mode 1 voting has unforgeability,
anonymity, linkability, and non-slanderability, then the stateful voting protocol for Mode 1 voting has cor-
rectness and privacy.

Variant 2: Partition the anonymous ring. Another approach to reduce the complexity of
(

ℓ
k+1

)
is to

partition the voter set [n] properly.17 Say, [n] is divided by m subsets: N1, ..., Nm with the same cardinality.

If we run our voting protocol among voters in Ni, then the number of Link calls will be
(
kn/m
k+1

)
, assuming

ℓ ≈ nk. By combining all the results from each partition, the total number of Link calls among all partitions
will be reduced to O(nk+1/mk), though at the cost of reducing anonymity. Note that each voter’s k ballots
are now “hidden” among kn/m ballots, which maybe sufficient for an appropriate choice of m. For even
larger k, similarly, we can divide k into smaller numbers at the cost of reducing privacy. We take the variant
of partitioning the anonymity ring as an example and formally present the scheme as follows.

Preparing phase. u generates a key pair (sku, pku) of a k-LRS scheme and registers pku to PKI. Let
V = (v1, ..., vn) be the universe of all voters, sorted in alphabetical order. Given that m | n, partition V
into m disjoint subsets V1, ...,Vm, where for each j ∈ [m], Vj = (v(j−1)n/m+1, ..., vjn/m).

Voting phase. Let 0 ≤ s ≤ k be the score intended by u. The voter u does the following for each i ∈ [s]:
1. Sample random strings stri ∈ {0, 1}λ.
2. Sign the message (“VOTE:” || stri) under the predetermined event label on behalf of Vj , where Vj

denotes the subset of voters to which u belongs.
Let (σ1, ..., σs) be the signatures obtained by the above procedure. u gets their ballot

vote(u) = (vote
(u)
1 , vote

(u)
2 , . . . , vote(u)s)

where vote
(u)
i = (stri||σi) for all i ∈ [s]. As the last step of this phase, u uploads vote(u) to ABB.

Counting phase. When the voting phase is done, anyone participating in the protocol can read ABB so
that u can also check the validity of all message-event-signature tuples using the public key list of V and
the linking algorithm and discard all ill-formed tuples. For every (k+1) signatures among all signatures
obtained from ABB, u invokes the Link algorithm to check whether these (k + 1) signatures are linked,

17 The idea of partitioning has been explored in some works, e.g., [BEHG20, CEL+23].

25

within the corresponding sub-ring of size n/m. Whenever u finds linked (k + 1) signatures, then u can
further find all other linked signatures and discard all of them. Repeat doing this until every (k + 1)
signatures are unlinked.
Finally, u runs S with the valid messages (forming a profile) from valid message-event-signature tuples
and outputs a decision.

Analysis. Let |V| = n and assume ℓ ≈ nk, then the counting phase above has a computation complexity

approximate to m ·
(
kn/m
k+1

)
. The security is shown by the following theorem, whose proof is similar to

Theorem 3 and we safely omit here.

Theorem 5. If m | n and the underlying k-LRS scheme in Mode 1 voting has unforgeability, (unconditional)
anonymity, linkability, and non-slanderability, then the voting protocol for Mode 1 voting has correctness and
(unconditionally) privacy among the sub-ring of size n/m.

4.5 Mode 2 Voting from k-LRS and t-LRS

Suppose there are q candidates C1, ..., Cq. Let k = k1 and x, t ∈ N+ such that k1 + k2(x − 1) ≤ t and
(k2 + 1)x > t. Note that there always exists a fixed solution to (x, t) = (k1, k1k2 + k1 − k2); however, we
let (x, t) be a parameter that can be freely chosen since one could further optimize in implementation level
depending on the value of (k1, k2). For example, if k1 = k2 = k, we can let (x, t) = (1, k).

The only difference between Mode 1 and Mode 2 is how to generate ballots that contain signatures. In
Mode 1, a ballot can be divided into parts, with each part only containing one signature, and they look
independent of each other. However, in Mode 2, we combine many signatures into one part and sign again
for this entire part of a ballot. The details are in below:

Preparing phase. u generates a key pair (sku, pku) of a k-LRS scheme and a key pair (ŝku, p̂ku) of t-LRS,

and registers (pku, p̂ku) to PKI.
Voting phase. W.l.o.g., assume u wants to produce k number of ballots. If u wants to produce k′ < k

ballots, then they just skips k − k′ iterations. For each i ∈ [k], let ci ∈ [q] and Cci be the candidate u
wants to vote for. User u does the following:

1. For j ∈ [x],
(a) Sample a random string stri,j ∈ {0, 1}λ.
(b) Use ŝku to sign the message (“VOTE:” || Cci || stri,j) under an event label

(“CANDIDATE:” || Cci) on behalf of V.
Let τi = ((Cci ||stri,1||σi,1), . . . , (Cci ||stri,x||σi,x)) be the (abstract) message-signature pairs obtained
by the above process.

2. For j ∈ [q] \ {ci},
(a) Sample random strings str′i,j ∈ {0, 1}λ.
(b) Use ŝku to sign the message (“VOTE:” || Cci || str′i,j) under an event label

(“CANDIDATE:” || Cj) on behalf of V. (Note: Be aware of the event label!)
Let τ ′i =

(
(Ccj ||str′j,1||σ′

j,1)
)
j∈[q]\{ci}

be the message-signature pairs obtained by the above process.

3. samples a random string str′′i ∈ {0, 1}λ, and
4. uses sku to sign the message (“VOTE:” || Ci || str′′i || τi || τ ′i) under an event label (“VOTE”) on

behalf of V, and gets a signature σ′′
i .

u gets the ballot vote(u) = (vote
(u)
1 , vote

(u)
2 , . . . , vote

(u)
k), where

vote
(u)
i = (Cci ||str′′i ||τi||τ ′i ||σ′′

i)

for i ∈ [k]. As the last step of this phase, u uploads vote(u) to ABB.
Counting phase. This phase is almost the same as Mode 1, but there are two types of signatures, so one

should use two different link functions from k-LRS and t-LRS with respect to the category of signatures.

26

Remark 7 (On the necessity of using distinct random strings). We emphasize that in Mode 2 voting protocol
above, it is essential to sample a fresh random string for every signing operation, including the generation of

the inner signatures σi,j , σ
′
i,j and the outer signature σ′′

i . A vote vote
(u)
i = (Cci ||str′′i ||τi||τ ′i ||σ′′

i) is considered
valid only if all random strings within it are distinct. To see the reason, consider an attack where the
adversary, intending to vote for candidate C, samples a single random string str and signs the message
(“VOTE:” || C || str) under an event label (“CANDIDATE:” || C) only once. Then, leveraging the malleability
of the signature scheme, the adversary generates x− 1 additional signatures on the same message and event
label (for a non-strongly unforgeable signature scheme, it is feasible to generate another valid signature after
seeing one valid message-signature pair). Note that this does not break the linkability since the message and
the label remain unchanged. However, if repeated strings within a vote are allowed, the adversary can cast
more than k2 votes for the same candidate while keeping those votes unlinked, as the adversary signs only
once instead of x times as required. To protect the protocol from such attacks, we enforce the use of distinct
random strings when verifying the validity of each vote.

Analysis. We prove the following theorem in the Appendix K.1.

Theorem 6. If the underlying k-LRS and t-LRS schemes in Mode 2 voting have unforgeability, (uncondi-
tional) anonymity, linkability, and non-slanderability, then the voting protocol for Mode 2 voting has correct-
ness and privacy.

Remark 8. One drawback of Mode 2 voting is that it achieves computationally privacy rather than uncondi-
tionally privacy, even the underlying k-LRS scheme has unconditional anonymity. This is because the secret
key ŝku of t-LRS is used to sign signatures under different event labels, and the total signing time may exceed
the threshold t (but for an honest voter, the total signing times on each event is still bounded by t), and thus
unconditional anonymity does not hold anymore (see Remark 3 for more discussions). Nevertheless, we can
still achieve unconditional anonymity by additionally restricting k1(q+x−1) ≤ t to guarantee that the total
number of signatures (even under different event) does not exceed t. This will result in large parameters x
and t and hence it is practical only when q and k1 = k2 are small (since there is a solution for x and t only
when k1 = k2). To better present the idea of Mode 2 voting, we consider the scheme in the computational
anonymity setting.

5 Negative Result on Privacy

The Mode 2 protocol (Sec. 4.5) achieves nearly all desirable properties, except that undervotes are possible,
i.e., a malicious voter may cast fewer than the required k votes. In this section, we formally prove that
for an ABB-based non-interactive voting protocol (cf. Def. 8) with privacy, it is impossible to protect from
undervote behaviors. Recall that we assume public key infrastructure (PKI) and anonymous bulletin board
(ABB) model. That is, we assume a PKI where everyone has access to the public keys of others, and an
ABB on which everyone can write privately. Moreover, there is no direct communication channel between
any two parties except ABB.

Let q ∈ N+, and C1, ..., Cq be q candidates of the voting event.

Definition 12 (Overvote and undervote). Let Γ = (V = [n], E ,D,D,S) be a k-voting specification

(i.e., a well-formed vote is in the form of vote(u) = (vote
(u)
1 , ..., vote

(u)
k) for u ∈ [n]). Let P be an initial

input of a voting protocol Π with respect to Γ . We say P has overvote (resp., an undervote), if there exists

vote(u) = (vote
(u)
1 , ..., vote

(u)
k′) ∈ P such that k′ > k (resp., k′ < k), i.e., there is a malicious voter who casts

more (resp., less) than k votes.
We say the voting protocol Π has overvote (resp., undervote) detection if the running of Π with ini-

tial inputs P additionally outputs an indicator bit b, showing whether P contains an overvote (resp., an
undervote).

We say the voting protocol Π has overvote (resp., undervote) identification if the running of Π with initial
inputs P additionally outputs a set L ⊆ P consists of all overvotes (resp., undervotes) from the malicious
voter in P .

27

Example 6. Consider a 3-voting specification among two voters be Arthur and Bertha (indexed by 1 and 2,
respectively). Suppose there are six candidates, A, B, C, D, E, and F , and the voters are required to select
their top three without ranking them. Each candidate can only be selected once by a voter. Therefore, a
profile

P = (vote(1), vote(2))T =

[
A B C
D F F

]
,

indicates that Arthur casts on A, B, and C, and Bertha casts on D, E, and F , respectively.
Now consider an ill-formed profile

P ′ =

[
A B C A
D E F

]
,

which indicates that malicious voter Arthur casts two votes for A, and one vote each for B and C. If Π has
overvote identification, then there should be a mechanism to identify all votes (i.e., (A,B,C,A)) from the
dishonest Arthur, leading to a voting tally based on the votes [D,E, F] left.

Consider another ill-formed profile

P ′′ =

[
A B ⊥
D E F

]
,

which indicates that malicious voter Arthur casts only two votes (for A and B, respectively), and abstains
from casting his third vote. If Π has undervote identification, then there should be a mechanism to identify
all votes (i.e., (A,B)) from the dishonest Arthur, again leading to a voting tally based on the votes [D,E, F]
left. ◁

Theorem 7 (Negative result on privacy). Let Γ = (V = [n], E , D,S) be a k-voting specification, and Π
be an ABB-based non-interactive voting protocol for Γ . If Π has overvote identification and privacy, then it
is impossible for Γ to have undervote identification.

The proof is deferred to Appendix K.2.

Remark 9. The negative result in Theorem 7 holds only for non-interactive settings. For interactive voting
settings, it might be possible to achieve both privacy and undervote detectable. For example, after uploading
vote = (vote1, ..., votek), each voter may generate a non-interactive zero-knowledge (NIZK) proof to show
that they indeed follow the voting rule and assign exactly k votes. However, to hide the correlation among
different votes, the instance of the NIZK language needs to include all votes from other voters. That said, a
voter needs to wait for the publication of others’ voting results before generating proof and completing the
voting process, and this does not satisfied the definition of non-interactive voting.

Remark 10. In general, overvote is considered to be more pernicious than undervote, and in many cases
undervote is a permitted choice (as there is usually an option to abstain). Therefore, when designing a voting
scheme, avoiding overvote is a more relevant goal—even undervote cannot be guaranteed simultaneously.

6 Instantiating k-LRS from Aggregatable Identification Schemes

In this section we introduce aggregatable identification schemes (AIS), and show a generic construction of
k-LRS from (k + 1)-AIS. We defer the construction from the SIS assumption and the security analysis in
Appendix D due to space limitation.

6.1 Identification Schemes

Definition 13 (Identification schemes). An identification scheme (also referred to as a Sigma protocol)
is a three-move protocol between a prover P and a verifier V.

28

– pp ← Setup(1λ). The setup algorithm takes as input the security parameter and outputs a randomly
sampled public parameter pp ∈ PP, which defines the key space SK×PK, the extended secret key space
S̈K, the commitment space CMT , the challenge space CH and the response space RSP. Here S̈K is used
for defining the special soundness below, and SK ⊆ S̈K.

– (sk, pk) ← Gen(pp). The key generation algorithm takes as input pp and outputs a pair of secret and
public keys (sk, pk). In more details, Gen first samples a random sk from SK, and then computes the
corresponding pk from sk via a one-way function defined by pp, i.e., pk := fpp(sk).

– ⟨P,V⟩. The interactive 3-move protocol between a prover P with sk and a verifier V with pk.

• In the first move, P sends out a commitment cmt computed from pp and randomness ρ, i.e., cmt←
Commit(pp; ρ).

• In the second move, V sends a challenge ch ∈ CH.
• In the third move, P sends a response rsp computed from sk, ch, and ρ, i.e., rsp ←

Response(sk, ch, ρ).
• There is a verification algorithm Ver(pp, pk, (cmt, ch, rsp)) that outputs a bit, indicating the validity

of a transcript (cmt, ch, rsp).
Moreover, Ver is defined via a deterministic algorithm Sim(pp, pk, ch, rsp) that outputs a commitment
cmt′, and Ver(pp, pk, (cmt, ch, rsp)) = 1 if and only if cmt′ = cmt.

Public-coin protocols. The protocol ⟨P,V⟩ is public-coin if ch in the second move is randomly sampled
from CH. By default, in this work, we only consider identification schemes with public-coin protocols.

Correctness. For every pp and (sk, pk)← Gen(pp), if P and V follow the 3-move protocol honestly, then V
will accept with all but negligible probability.

Besides correctness, we additionally require the following properties.

– One-wayness. The public parameter pp defines a one-way function fpp(·) that maps an (extended)

secret key sk ∈ S̈K to a public key pk ∈ PK. Meanwhile, given pp← Setup(1λ) and pk where (sk, pk)←
Gen(pp), it is computationally infeasible to output sk′ ∈ S̈K such that fpp(sk

′) = pk.
– κ-min-entropy. For pp ← Setup(1λ) and (sk, pk) ← Gen(pp), it holds that H∞(cmt) ≥ κ, where cmt

is the first message in the protocol ⟨P,V⟩.
– ϵ-special soundness. For pp ← Setup(1λ) and (sk, pk) ← Gen(pp), given two valid transcripts

(cmt, ch, rsp) and (cmt, ch′, rsp′) such that both ch and ch′ satisfy a uniform distribution over CH,
there exists an algorithm Extract that with probability at least ϵ extracts a secret key sk′ ∈ S̈K of pk
from (ch, rsp) and (ch′, rsp′). Namely, Pr[sk′ ← Extract(ch, rsp, ch′, rsp) : fpp(sk

′) = pk] ≥ ϵ, where the
probability space is taken over the choice of pp, (sk, pk), ch and ch′.

– Simulatability. There exists an efficient simulator Sim = (Sim1,Sim2) s.t., for any pp, (sk, pk) ←
Gen(pp) and ch ∈ CH, Sim(pp, pk, ch) outputs a simulated transcript (cmt, ch, rsp) that is statistically
close to a transcript outputted by an honest execution of ⟨P,V⟩ conditioned on the the challenge being
ch. More precisely, the simulation is done by first sampling rsp according to some distribution, i.e.,
rsp← Sim1(), and then computing cmt via cmt← Sim2(pp, pk, ch, rsp).
If ⟨P,V⟩ is public-coin, we simply omit the input ch by writing Sim(pp, pk).

– Q-pseudorandomness. It is computationally infeasible to distinguish the following two distributions(
pp pp1 pp2 ... ppQ

fpp(sk) fpp1
(sk1) fpp2

(sk) ... fppQ
(sk)

)
and

(
pp pp1 pp2 ... ppQ

fpp(sk) u1 u2 ... uQ

)
,

where pp, pp1, ..., ppQ are independent and random parameters, sk is a randomly sampled secret key, and
u1, ..., uQ are random elements in the public key space PK.
If Q can be any polynomial of the security parameter, we simply call it pseudorandomness.

Definition 14 (Homomorphism on coefficient space F). We say an identification scheme is homo-
morphic on coefficient space F, if it satisfies the following properties.

29

– For any pp and valid key pair (sk, pk), any coefficient a ∈ F, we define an operation · that maps pk to
another public key a · pk ∈ PK.

– a · ρ ∈ R for any a ∈ F and ρ ∈ R, where R is the randomness space in Commit.
– For any pp and (sk, pk), let (cmt, ch, rsp) be a transcript where cmt ← Commit(pp; ρ) and rsp ←

Response(sk, ch, ρ). There is a coefficient-verification algorithm CoeVer(pp, epk, (ecmt, ch, rsp), a) that
outputs the same result as the verification algorithm Ver(pp, pk, (cmt, ch, rsp)), where epk := a · pk, and
ecmt ← Commit(pp; a · ρ). Moreover, there simulator Sim = (Sim1,Sim2) in Def. 13 can be extended to
output a simulated transcript (ecmt, ch, rsp) that is statistically close to the output by an honest execution,
where rsp← Sim1(), and ecmt← Sim2(pp, epk, ch, a).

6.2 Aggregatable Identification Schemes

Now, we propose the concept of aggregatable identification schemes, which serves as the main building block
in our k-linkable ring signatures (k-LRS) with unconditional anonymity.

Definition 15 ((k + 1)-Aggregatable identification schemes). Let k ∈ N+. A (k + 1)-aggregatable
identification scheme is defined as an identification scheme in Def. 13 with the following additional properties.

– Aggregation. For (k+1) valid key pairs (sk1, pk1), ..., (skk+1, pkk+1) under (k+1) different parameters
pp1, ..., ppk+1, there exist two deterministic algorithms AggrPK and AggrCMT satisfying the following
properties.

• p̃k ← AggrPK(pk1, ..., pkk+1). The algorithm AggrPK aggregates all public keys into a public key p̃k

via operation “+”, i.e., p̃k :=
∑

i∈[k+1] pki.

• c̃mt ← AggrCMT(cmt1, ..., cmtk+1). The algorithm AggrCMT aggregates all commitments into a
commitment c̃mt, where cmti ← Commit(ppi; ρi) for all i ∈ [k + 1].

• pp := (pp1, ..., ppk+1) defines another 3-move protocol with key space SKk+1 × PK, the extended

secret key space S̈Kk+1
, commitment space CMT , challenge space CH, and response space RSPk+1,

and sk := (sk1, ..., skk+1) is a corresponding secret key under pp and p̃k. Namely, fpp(sk) = p̃k.
• Correctness. Let rspi ← Response(ski, ch, ρi) for all i ∈ [k+1], and rsp := (rsp1, ..., rspk+1). Then
with overwhelming probability (c̃mt, ch, rsp) is a valid transcript, where the probability is taken over
the choices of {ρi}i∈[k+1], and ch.

• Moreover, it has one-wayness, min-entropy, special soundness, simulatability, and pseudorandomness,
as defined in a canonical IS scheme.

– Collision resistance of secret key. Given pp, sk = (sk1, ..., skk+1) generated from Setup and Gen,

and the aggregated public key p̃k, it is computationally infeasible to find two distinct secret keys sk, sk′ ∈
S̈Kk+1

such that fpp(sk) = fpp(sk
′).

– Uniformity. Assume pp = (pp1, ..., ppk+1) is randomly sampled. Fixing any sk1, ..., skk, if skk+1 is

distributed uniformly, then p̃k has a distribution statistically close to the uniform distribution over P̃K,
where p̃k ← AggrPK(pk1, ..., pkk+1), and pki := fppi

(ski) for i ∈ [k + 1].

Definition 16 (Downward compatible AIS). Let AIS be a (k + 1)-AIS with k ∈ N+. We say AIS is
downward compatible if it is also a k′-AIS for any k′ ∈ N and k′ < k.

Definition 17 (Homomorphism for AIS). We say a k-AIS is homomorphic on coefficient space F, if it
additionally satisfies the following.

– For any coefficients a1, ..., ak ∈ F, any k valid key pairs (sk1, pk1), ..., (skk, pkk) under k different pa-
rameters pp1, ..., ppk, let (c̃mt, ch, rsp = (rsp1, ..., rspk)) be a valid transcript for AIS, where cmti :=
Commit(ppi; ρi), rspi ← Response(ski, ch, ρi) for i ∈ [k], and c̃mt ← AggrCMT(cmt1, ..., cmtk). Then

there is a coefficient-verification algorithm CoeVer(pp, ẽpk, (ẽcmt, ch, rsp), a1, ..., ak) that outputs the

same result as the verification algorithm Ver(pp, p̃k, (c̃mt, ch, rsp)), where ẽpk ← AggrPK(a1 · pk1, ..., ak ·
pkk), and ẽcmt← AggrCMT(Commit(pp1; a1 · ρ1), ...,Commit(ppk; ak · ρk)).

30

Moreover, the simulator Sim = (Sim1,Sim2) can be extended to output a simulated transcript

(ẽcmt, ch, rsp) that is statistically close to the output by an honest execution, where rsp ← Sim1(),

and ẽcmt← Sim2(pp, ẽpk, ch, a1, ..., ak).

– Infeasiblity of kernel. For randomly sampled {pki}i∈[k], it is computationally infeasible to find a group

of efficients (a1, ..., ak) ∈ Fk such that
∑

i∈[k] ai · pki = 0PK, where 0PK is the unit elements in the group
PK.

6.3 DL-based AIS

In this subsection we show instantiation of (k + 1)-AIS based on the DL assumption. Let GGen be a group
generation algorithm that outputs (G, q, g), where G is a cyclic group of prime order q with generator g.

Definition 18 (The DL assumption). The discrete logarithm (DL) assumption states that, for any PPT
adversary A, its advantage

AdvdlG,A(λ) := Pr[x
$← Zq : A(G, q, g, gx) = x]

is negligible over λ.

Definition 19 (The FindRep assumption [Bra93]). The (k+1)-find representation ((k+1)-FindRep)
assumption states that, for any PPT adversary A, its advantage

AdvfindrepG,k+1,A(λ) := Pr

[
For i ∈ [k + 1] : ωi

$← Zq; gi := gωi

((x1, ..., xk+1), (x
′
1, ..., x

′
k+1))← A(G, q, g1, ..., gk+1)

:
(x1, ..., xk+1) ̸= (x′

1, ..., x
′
k+1)

∧
∏

i∈[k+1] g
xi
i =

∏
i∈[k+1] g

x′
i

i

]

is negligible over λ.

It is easy to see that the (k + 1)-FindRep assumption implies k-FindRep assumption for all k ≥ 1, and
the 1-FindRep assumption is just the DL assumption. On the other hand, the DL assumption implies the
k-FindRep assumption with a loss factor k.

The (k + 1)-FindRep assumption also implies the following.

Pr

For i ∈ [k + 1] : ωi
$← Zq; gi := gωi ;X

$← G
(x1, ..., xk+1)← A(G, q, g1, ..., gk+1, X)

: X =
∏

i∈[k+1]

gxi
i

 ≤ negl(λ),

Pr

For i ∈ [k + 1] : ωi
$← Zq; gi := gωi ;xi

$← Zq;X :=
∏

i∈[k+1] g
xi
i

(x′
1, ..., x

′
k+1)← A(G, q, g1, ..., gk+1, X, x1, ..., xk)

: X =
∏

i∈[k+1]

g
x′
i

i

 ≤ negl(λ),

Pr

 For i ∈ [k + 1] : ωi
$← Zq; gi := gωi

(x1, ..., xk+1)← A(G, q, g1, ..., gk+1)
: (x1, ..., xk+1) ̸= 0 ∧ 0G =

∏
i∈[k+1]

gxi
i

 ≤ negl(λ).

Definition 20 (The DDH assumption). The decisioal Diffie-Hellman (DDH) assumption states that, for
any PPT adversary A, its advantage

AdvddhG,A(λ) :=
∣∣∣Pr[x, y $← Zq : A(G, q, g, gx, gy, gxy) = 1]− Pr[x, y, z

$← Zq : A(G, q, g, gx, gy, gz) = 1]
∣∣∣

is negligible over λ.

It has been proved that the DDH assumption implies the following with a tight reduction [EHK+17,
GHKW16], for any Q = poly(λ).

31

Setup(1λ):

(G, q, g)← GGen(1λ)
Return pp := (G, q, g)

Gen(pp):

x
$← Zq; X := gx

Return (sk, pk) := (x,X).

⟨P,V⟩:
P(sk = x) V(pk = X)

r
$← Zq

cmt:=gr−−−−−−−−−−−−−−−→
ch←−−−−−−−−−−−−−−− ch

$← Zq

rsp := r − ch · x rsp−−−−−−−−−−−−−−−→ Return 1 if

cmt = grsp ·Xch?

Fig. 5. The DL-based identification scheme [Sch91].

AdvddhG,A(λ) :=

∣∣∣∣∣∣∣∣
Pr

[
x, ω1, ..., ωQ

$← Zq : A
(
G, q,

g gω1 ... gωQ

gx gω1x ... gωQx

)
= 1

]
−Pr

[
x, ω1, ..., ωQ, u1, ..., uQ

$← Zq : A
(
G, q,

g gω1 ... gωQ

gx gu1 ... guQ

)
= 1

]
∣∣∣∣∣∣∣∣ ≤ negl(λ).

Now, we show the first (k+1)-AIS scheme from the DL assumption in Fig. 5. Here pp = (G, q, g) defines
SK = Zq, PK = G, and the extended secret key space S̈K = SK = Zq.

Theorem 8. If the DDH assumption holds in G (which implies that the DL assumption holds in G), then the
scheme in Fig. 5 is a secure identification scheme. More precisely, it has correctness, one-wayness, (log q)-
min-entropy, (1 − 1/q)-special soundness, perfect simulatability, and pseudorandomness. Moreover, it has
homomorphism on coefficient space Z∗

q .

Proof. We omit the proofs for the security of identification but just show its homomorphism. Namely, given
a ∈ Z∗

q , a valid transcript (cmt = gr, ch, rsp), epk = Xa and ecmt = ga·r, the coefficient-verification

algorithm CoeVer(pp, epk, (ecmt, ch, rsp), a) returns whether ecmt = grsp·a · (epk)ch. ⊓⊔

Aggregation. Let (G, q, g) ← GGen(1λ). For i ∈ [k + 1], ωi
$← Zq, and ppi := (G, q, gi := gωi). Let

(ski = xi, pki = Xi = gxi
i) be (k + 1) valid key pairs under {ppi}i∈[k+1], the algorithms AggrPK and

AggrCMT are defined as follows.

– AggrPK(pk1, ..., pkk+1) returns p̃k :=
∏

i∈[k+1] pki =
∏

i∈[k+1] g
xi
i .

– Let cmti := grii for i ∈ [k + 1]. AggrCMT(cmt1, ..., cmtk+1) returns c̃mt :=
∏

i∈[k+1] cmti =
∏

i∈[k+1] g
ri
i .

– pp := (pp1, ..., ppk+1) defines the 3-move identification protocol in Fig. 6.

⟨P,V⟩:
P(sk = (x1, ..., xk+1)) V(p̃k)

r1, ..., rk+1
$← Zq

c̃mt :=
∏

i∈[k+1] g
ri
i

c̃mt−−−−−−−−−−−−−−−→

ch←−−−−−−−−−−−−−−− ch
$← Zq

For i ∈ [k + 1] : rspi := ri − ch · xi

rsp := (rsp1, ..., rspk)
rsp−−−−−−−−−−−−−−−→

Return 1 if

c̃mt =
∏

i∈[k+1] g
rspi
i · p̃k

ch
?

Fig. 6. The aggregation of the DL-based identification scheme.

32

Theorem 9. If the DDH assumption (equivalently, the DL assumption and the (k+1)-FindRep assumption)
holds in G, then the scheme above is a secure (k + 1)-AIS scheme. More precisely, it has correctness, one-
wayness, (log q)-min-entropy, (1 − 1/q)-special shoundness, perfect simulatability, and pseudorandomness.
Moreover, it has downward compatibility and homomorphism on coefficient space Z∗

q .

Proof. The correctness is straightforward. Now, we show the aggregation forms a secure 3-move identification
protocol.

One-wayness. Let pp = (G, q, g1, ..., gk+1) and sk = (x1, ..., xk+1). Define p̃k = fpp(sk) =
∏

i∈[k+1] g
xi
i .

Meanwhile, for randomly sampled pp and sk, the aggregated public key p̃k distributes uniformly over G.

Under the (k + 1)-FindRep assumption, given only pp and p̃k, it is computationally infeasible to output sk′

s.t. fpp(sk
′) = p̃k.

Min-entropy. If r1, ..., rk+1 are randomly sampled from Zq, then c̃mt =
∏

i∈[k+1] g
ri
i is a uniform distribution

over G and therefore it has a min-entropy log q.

Special soundness. Let (c̃mt, ch, rsp = (rsp1, ..., rspk+1)) and (c̃mt, ch′, rsp′ = (rsp′1, ..., rsp
′
k+1)) be two

valid transcripts and ch, ch′ $← Zq. Namely,

c̃mt =
∏

i∈[k+1]

grspi

i · p̃k
ch

=
∏

i∈[k+1]

g
rsp′

i
i · p̃k

ch′

.

With probability at least 1− 1/q we have ch ̸= ch′, and

p̃k =
∏

i∈[k+1]

g
(rsp′

i−rspi)(ch−ch′)−1

i .

Therefore, we can extract a secret key for p̃k under pp = (G, q, g1, ..., gk+1), which breaks the (k+1)-FindRep
assumption.

Perfect simulatability. Let ch be a random challenge. The simulator Sim = (Sim1,Sim2) which takes as

input (pp, p̃k, ch) and outputs a simulated transcript (c̃mt, ch, rsp = (rsp1, ..., rspk+1)) as follows.

1. Sim1() samples rspi
$← Zq for i ∈ [k + 1] and outputs rsp = (rsp1, ..., rspk+1).

2. Sim2(pp, p̃k, ch, rsp) outputs c̃mt :=
∏

i∈[k+1] g
rspi

i · p̃k
ch
.

It is easy to see that the simulated transcript distributes identically as the transcript from an honest
execution of ⟨P,V⟩.

Pseudorandomness. Let (g1, ..., gk), (h1,1, ..., h1,k), ..., (hQ,1, ..., hQ,k) be (Q+ 1) groups of generators ran-
domly sampled over G, and let x1, ..., xk be a group of secret keys. According to the DDH assumption, for
each i ∈ [k], the following two distributions are indistinguishable,(

gi hi,1 ... hi,Q

gxi
i hxi

i,1 ... hxi

i,Q

)
and

(
gi hi,1 ... hi,Q

gxi
i u1 ... uQ

)
,

where u1, ..., uQ
$← G. The pseudorandomness of the (k+ 1)-AIS scheme follows consequently by the hybrid

arguement.

Collision resistance of secret key. Under the (k+1)-FindRep assumption, given (G, q, g1, ..., gk+1), it is

infeasible to find (x1, ..., xk+1) ̸= (x′
1, ..., x

′
k+1) such that p̃k =

∏
i∈[k+1] g

xi
i =

∏
i∈[k+1] g

x′
i

i .

Uniformity. Fixed x1, ..., xk ∈ Zq, if xk+1
$← Zq, then p̃k =

∏
i∈[k] g

xi
i · g

xk+1

k+1 distributes uniformly over G.

Downward compatibility. This is straightforward.

33

Homomorphism on coefficient space Z∗
q and infeasiblilty of kernel. Consider a group of coeffi-

cients a1, ..., ak ∈ Z∗
q . Let (c̃mt, ch, rsp = (rsp1, ..., rspk)) be a transcript with c̃mt =

∏
i∈[k] g

ri
i . Define

ẽpk =
∏

i∈[k] pk
ai
i , and ẽcmt =

∏
i∈[k] g

airi
i . Then the coefficient-verification algorithm CoeVer(pp, ẽpk, (ẽcmt,

ch, rsp), a1, ..., ak) returns whether ẽcmt =
∏

i∈[k] g
rspiai

i · ẽpk
ch
. Meanwhile, according to the k-FindRep

assumption, given k randomly sampled public keys Xi, it is hard to find (a1, ..., ak) ∈ (Z∗
q)

k such that
0G =

∏
i∈[k] X

ai
i .

Moreover, given coefficients a1, ..., ak ∈ Z∗
q and ẽpk =

∏
i∈[k](g

xi
i)ai , the extended simulator outputs

(ẽcmt, ch, rsp = (rsp1, ..., rspk)) as follows.

1. Sim1() samples rspi
$← Zq for i ∈ [k] and outputs rsp = (rsp1, ..., rspk).

2. Sim2(pp, ẽpk, ch, rsp, a1, ..., ak) outputs ẽcmt :=
∏

i∈[k](g
rspi

i)ai · ẽpk
ch
.

⊓⊔

6.4 k-LRS from Aggregatable Identification Schemes

Let N be the total number of users and k ∈ N+ be the upper bound of signing times per user with
unlinkability. Let AIS be a downward campatible (k+1)-AIS with parameter space PP, key space SK×PK,
and extended secret key space S̈K ⊇ SK, and PP defines the commitment-challenge-response space CMT ×
CH×RSP for the corresponding identification protocol. Furthermore, AIS has homomorphism on coefficient
space F. Let H0 : {0, 1}∗ → PPk and H : {0, 1}∗ → CH be two hash functions. Our k-LRS scheme LRS is
constructed as follows.

– Setup: Invoke ppi ← AIS.Setup(1λ) for i ∈ [k + 1]. Return the public parameter pp := (pp1, ..., ppk+1).

– Key Generation: Let (ski, pki) ← AIS.Gen(ppi) for i ∈ [k + 1], and p̃k ← AIS.AggrPK(pk1, ..., pkk+1).

Return the secret key sk := (sk1, ..., skk+1) and the public key pk := p̃k.

– Sign: Let (pk(1), ..., pk(n)) be the public keys of n users in the ring. W.l.o.g., we assume the signer’s index

is 1. Parse sk(1) = (sk
(1)
1 , ..., sk

(1)
k+1). To sign on message msg under event label e, the signer generates

the signature as follows.

1. Let H0(e) = epp = (epp1, ..., eppk) ∈ PPk. For i ∈ [k], compute epki := feppi(sk
(1)
i).

2. Sample a1, ..., ak
$← F, and compute epk← AIS.AggrPK(a1 · epk1, ..., ak · epkk).

3. For i ∈ [k + 1], sample randomness ρi at random. Compute cmt
(1)
i ← AIS.Commit(ppi; ρi) for i ∈

[k+1], and ecmt
(1)
i ← AIS.Commit(eppi; ai ·ρi) for i ∈ [k]. Aggregate these commitments by c̃mt

(1)
←

AIS.AggrCMT(cmt
(1)
1 , ..., cmt

(1)
k+1) and ẽcmt

(1)
← AIS.AggrCMT(ecmt

(1)
1 , ..., ecmt

(1)
k).

4. For j = 2, 3, ..., n: Let ch(j) := H(c̃mt
(j−1)

, ẽcmt
(j−1)

, {ai}i∈[k], epk, {pk(ι)}ι∈[n],msg, e), and invoke
the simulators to generate the transcripts. I.e.,

rsp(j) = (rsp
(j)
1 , ..., rsp

(j)
k , rsp

(j)
k+1)← AIS.Sim1(ch

(j)),

c̃mt
(j)
← AIS.Sim2(pp, pk

(j), ch(j), (rsp
(j)
1 , ..., rsp

(j)
k+1)),

ẽcmt
(j)
← AIS.Sim2(epp, epk, ch

(j), (rsp
(j)
1 , ..., rsp

(j)
k), a1, ..., ak).

5. Let H(c̃mt
n
, ẽcmt

n
, {aj}j∈[k], epk, {pk(ι)}ι∈[n],msg, e) = ch(1).

Compute rsp(1) ← AIS.Response((sk
(1)
1 , ..., sk

(1)
k+1), ch

(1), (ρ1, ..., ρk+1)).

6. Return σ := (a1, ..., ak, epk, {c̃mt
(j)

, ẽcmt
(j)
}j∈[n], {rsp(j)}j∈[n]).

– Verify: For j ∈ [n], compute

ch(j) = H(c̃mt
(j−1)

, ẽcmt
(j−1)

, {aj}j∈[k], epk, {pk(ι)}ι∈[n],msg, e).

Let epp = H0(e). If for all j ∈ [n],

34

• AIS.Ver(pp, pk(j), c̃mt
(j)

, ch(j), rsp(j)) = 1, and

• AIS.CoeVer(epp, epk, (ẽcmt
(j)

, ch(j), rsp
(j)
|k), a1, ..., ak) = 1,

then output 1. Otherwise, output 0. Here rsp
(j)
|k denotes the first k parts of rsp(j).

– Link: Let {σℓ = (aℓ,1, ..., aℓ,k, epkℓ, ...)}ℓ∈[k+1] be (k+1) different signatures for the same event e. If there

is a solution of random variables (epk1, ..., epkk) ∈ PKk for the following linear equation system, then
return 1 (linked). Otherwise, return 0 (unlinked).

a1,1 · epk1 + a1,2 · epk2 + ...+ a1,k · epkk = epk1,
a2,1 · epk1 + a2,2 · epk2 + ...+ a2,k · epkk = epk2,
...
ak+1,1 · epk1 + ak+1,2 · epk2 + ...+ ak+1,k · epkk = epkk+1.

(7)

Correctness of verification. The correctness of verification follows from the correctness of AIS and its
homomorphism.

In more details, let σ = (a1, ..., ak, epk, {c̃mt
(j)

, ẽcmt
(j)
}j∈[n], {rsp(j)}j∈[n]) be a signature from user P1

with sk(1) = (sk
(1)
1 , ..., sk

(1)
k , sk

(1)
k+1) and pk(1), where pk(1) ← AIS.AggrPK(pk

(1)
1 , ..., pk

(1)
k+1).

– Verification on user P1 (the signer). Let (ρ1, ..., ρk, ρk+1) be the randomness used in the com-

mitment for user 1, and rsp
(1)
i ← Response(sk

(1)
i , ch(1), ρ

(1)
i) for all i ∈ [k + 1]. Note that

c̃mt
(1)
← AggrCMT(Commit(pp1; ρ1), ...,Commit(ppk+1; ρk+1)). According to the correctness of AIS,

with overwhelming probability (c̃mt, ch, rsp(1) = (rsp
(1)
1 , ..., rsp

(1)
k+1)) is a valid transcript under pp =

(pp1, ..., ppk+1) and pk(1), i.e., AIS.Ver(pp, pk(1), c̃mt
(1)

, ch(1), rsp(1)) = 1.
On the other hand, the event-related parameter epp = (epp1, ..., eppk) maps the first k secret keys

(sk
(1)
1 , ..., sk

(1)
k) into a group of event-related public keys (epk1, ..., epkk). Due to the homomorphism of

AIS, introducing the coefficients a1, ..., ak does not affect the correctness of verification. Namely,

AIS.CoeVer(epp, epk, (ẽcmt
(1)

, ch(1), rsp
(1)
|k), a1, ..., ak)

will return 1 if

AIS.Ver(epp,AggrPK(epk1, ..., epkk), (AggrCMT(Commit(epp1; ρ1), ...,Commit(eppk; ρk)), ch
(1), rsp

(1)
|k))

returns 1, which is guaranteed by the correctness of AIS. Recall that in AIS, the response is computed
from the secret key, the challenge, and the randomness ρ, and it is independent of the public parameter.

– Verification on other users. According to the simulatability of AIS, the simulated transcript distributes
statistically close to the transcript outputted from an honest execution of ⟨P,V⟩. Therefore, for all
j ∈ [n] \ {1}, with overwhelming probability it holds that

AIS.Ver(pp, pk(j), c̃mt
(j)

, ch(j), rsp(j)) = 1,

and
AIS.CoeVer(epp, epk, (ecmt(j), ch(j), rsp

(j)
|k), a1, ..., ak) = 1.

Correctness of linkability. Consider k + 1 different signatures {σℓ = (aℓ,1, ..., aℓ,k, epkℓ, ...)}ℓ∈[k+1] under
the same event e. Let H0(e) = (epp1, ..., eppk).

– If all these signatures are signed by the same signer holding secret key sk = (sk1, ..., skk, skk+1), then
its event-related public keys are (epk1, ..., epkk) = (fepp1

(sk1), ..., feppk
(skk)). According to the signing

algorithm, for all ℓ ∈ [k + 1], it holds that∑
i∈[k]

aℓ,i · epki = epkℓ.

Therefore, Link(e, σ1, ..., σk+1) will return 1.

35

– On the other hand, assume all these signatures are signed by two different users holding secret keys

sk(1) = (sk
(1)
1 , ..., sk

(1)
k , sk

(1)
k+1) and sk(2) = (sk

(2)
1 , ..., sk

(2)
k , sk

(2)
k+1), respectively. W.l.o.g., we assume the

first k signatures are signed using sk(1) and the last signature σk+1 is signed using sk(2). With overwhelm-
ing probability (aℓ,i)ℓ,i∈[k] forms an invertable matrix. And we can computed the shifted public keys

(epk
(1)
1 , ..., epk

(1)
k) = (fepp1

(sk11), ..., feppk
(sk

(1)
k)) of user 1, from (aℓ,i)ℓ,i∈[k] and (epk1, ..., epkk). Mean-

while, we have
∑

i∈[k] ak+1,i · epk(2)i = epkk+1, where (epk
(1)
1 , ..., epk

(1)
k) = (fepp1

(sk
(1)
1), ..., feppk

(sk
(1)
k))

are the event-related public keys of user 2. If Link(e, σ1, ..., σk+1) returns 1, then∑
i∈[k]

ak+1,i · epk(2)i = epkk+1 =
∑
i∈[k]

ak+1,i · epk(1)i .

In our scheme, epp is randomly sampled from PPk since H0(·) is modeled as a random oracle, and

sk(1) and sk(2) are sampled independently. Due to the infeasibility of kernel property, the above equation
holds with a negligible probability, as otherwise we find a group of coefficients (ak+1,1, ..., ak+1,k) such

that
∑

i∈[k] ak+1,i · (epk(2)i − epk
(1)
i) = 0PK. Namely, if (σ1, ..., σk+1) are signed by at least two different

users, then with overwhelming probability Link(e, σ1, ..., σk+1) will return 0, which concludes the proof
of correctness.

Theorem 10 (Security of k-LRS). If AIS is a (k + 1)-AIS with downward compatibility and homomor-
phism on F, then the k-LRS scheme above is secure, i.e.t, it has unforgeability, unconditional or computational
anonymity, linkability, and non-slanderability.

We defer Appendix D.2 for the security proof.

Acknowledgments. We would like to thank the anonymous reviewers of EUROCRYPT 2025 and CRYPTO
2025 for their insightful feedback and constructive suggestions, especially for highlighting the flaw in the
unconditional security argument and suggesting approaches to improve the efficiency of voting.

References

[ACST06] Au, M.H., Chow, S.S.M., Susilo, W., Tsang, P.P.: Short linkable ring signatures revisited. In: Atzeni,
A.S., Lioy, A. (eds.) Public Key Infrastructure, Third European PKI Workshop: Theory and Practice,
EuroPKI 2006, Lecture Notes in Computer Science, vol. 4043, pp. 101–115. Springer (2006)

[Adi08] Adida, B.: Helios: Web-based open-audit voting. In: van Oorschot, P.C. (ed.) Proceedings of the 17th
USENIX Security Symposium, July 28-August 1, 2008, San Jose, CA, USA, pp. 335–348. USENIX
Association (2008)

[AOS02] Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys. In: Zheng, Y. (ed.)
Advances in Cryptology - ASIACRYPT 2002, Lecture Notes in Computer Science, vol. 2501, pp. 415–
432. Springer (2002)

[AOZZ15] Alwen, J., Ostrovsky, R., Zhou, H.S., Zikas, V.: Incoercible multi-party computation and universally
composable receipt-free voting. In: Advances in Cryptology–CRYPTO 2015: 35th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II 35, pp. 763–780. Springer
(2015)

[BBG+22] Balla, D., Behrouz, P., Grontas, P., Pagourtzis, A., Spyrakou, M., Vrettos, G.: Designated-verifier link-
able ring signatures with unconditional anonymity. In: Poulakis, D., Rahonis, G. (eds.) Algebraic
Informatics - 9th International Conference, CAI 2022, Lecture Notes in Computer Science, vol. 13706,
pp. 55–68. Springer (2022)

[BEHG20] Boneh, D., Eskandarian, S., Hanzlik, L., Greco, N.: Single secret leader election. In: Proceedings of the
2nd ACM Conference on Advances in Financial Technologies, pp. 12–24 (2020)

[BEHM22] Bootle, J., Elkhiyaoui, K., Hesse, J., Manevich, Y.: Dualdory: logarithmic-verifier linkable ring signatures
through preprocessing. In: European Symposium on Research in Computer Security, pp. 427–446.
Springer (2022)

36

[BF78] Brams, S., Fishburn, P.: Approval Voting. American Political Science Review vol. 72(3), pp. 831–847
(1978)

[BGK+21] Behrouz, P., Grontas, P., Konstantakatos, V., Pagourtzis, A., Spyrakou, M.: Designated-verifier linkable
ring signatures. In: Park, J.H., Seo, S. (eds.) Information Security and Cryptology - ICISC 2021 - 24th
International Conference, Seoul, South Korea, December 1-3, 2021, Revised Selected Papers, Lecture
Notes in Computer Science, vol. 13218, pp. 51–70. Springer (2021)

[BH18] Boyen, X., Haines, T.: Forward-secure linkable ring signatures from bilinear maps. Cryptogr. vol. 2(4),
p. 35 (2018)

[BHM08] Backes, M., Hritcu, C., Maffei, M.: Automated verification of remote electronic voting protocols in the
applied pi-calculus. In: Proceedings of the 21st IEEE Computer Security Foundations Symposium, CSF
2008, Pittsburgh, Pennsylvania, USA, 23-25 June 2008, pp. 195–209. IEEE Computer Society (2008)

[BKP20] Beullens, W., Katsumata, S., Pintore, F.: Calamari and falafl: Logarithmic (linkable) ring signatures
from isogenies and lattices. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Lecture Notes in Com-
puter Science, vol. 12492, pp. 464–492. Springer (2020)

[BL16] Bultel, X., Lafourcade, P.: k-times full traceable ring signature. In: 11th International Conference on
Availability, Reliability and Security, ARES 2016, pp. 39–48. IEEE Computer Society (2016)

[BN06] Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general forking lemma.
In: Juels, A., Wright, R.N., di Vimercati, S.D.C. (eds.) Proceedings of the 13th ACM Conference on
Computer and Communications Security, CCS 2006, pp. 390–399. ACM (2006)

[BPW23] Boneh, D., Partap, A., Waters, B.: Accountable multi-signatures with constant size public keys. Cryp-
tology ePrint Archive (2023)

[Bra93] Brands, S.: Untraceable off-line cash in wallets with observers (extended abstract). In: Stinson, D.R.
(ed.) Advances in Cryptology - CRYPTO ’93, Lecture Notes in Computer Science, vol. 773, pp. 302–318.
Springer (1993)

[BT94a] Benaloh, J., Tuinstra, D.: Receipt-free secret-ballot elections. In: Proceedings of the twenty-sixth annual
ACM symposium on Theory of computing, pp. 544–553 (1994)

[BT94b] Benaloh, J.C., Tuinstra, D.: Receipt-free secret-ballot elections (extended abstract). In: Leighton, F.T.,
Goodrich, M.T. (eds.) Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Com-
puting, 23-25 May 1994, Montréal, Québec, Canada, pp. 544–553. ACM (1994)

[BY86] Benaloh, J.C., Yung, M.: Distributing the power of a government to enhance the privacy of voters.
In: Proceedings of the fifth annual ACM symposium on Principles of distributed computing, pp. 52–62
(1986)

[CDS94] Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness
hiding protocols. In: Desmedt, Y. (ed.) Advances in Cryptology - CRYPTO ’94, Lecture Notes in
Computer Science, vol. 839, pp. 174–187. Springer (1994)

[CEL+23] Chow, S.S., Egger, C., Lai, R.W., Ronge, V., Woo, I.K.: On sustainable ring-based anonymous systems.
In: 2023 IEEE 36th Computer Security Foundations Symposium (CSF), pp. 568–583. IEEE (2023)

[CGS97] Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-authority election
scheme. European transactions on Telecommunications vol. 8(5), pp. 481–490 (1997)

[CH91] Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) Advances in Cryptology - EURO-
CRYPT ’91, Lecture Notes in Computer Science, vol. 547, pp. 257–265. Springer (1991)

[Cha81] Chaum, D.L.: Untraceable electronic mail, return addresses, and digital pseudonyms. Communications
of the ACM vol. 24(2), pp. 84–90 (1981)

[CHK+06] Camenisch, J., Hohenberger, S., Kohlweiss, M., Lysyanskaya, A., Meyerovich, M.: How to win the
clonewars: efficient periodic n-times anonymous authentication. In: Juels, A., Wright, R.N., di Vimercati,
S.D.C. (eds.) CCS 2006, pp. 201–210. ACM (2006)

[CHL05] Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In: Cramer, R. (ed.) EUROCRYPT
2005, vol. 3494, pp. 302–321. Springer (2005)

[CLW08] Chow, S.S.M., Liu, J.K., Wong, D.S.: Robust receipt-free election system with ballot secrecy and verifi-
ability. In: Proceedings of the Network and Distributed System Security Symposium, NDSS 2008. The
Internet Society (2008)

[CLZ23] Choi, W., Liu, X., Zikas, V.: Blockchain governance via sharp anonymous multisignatures. IACR Cryp-
tol. ePrint Arch. p. 1881 (2023)

[CZZ+16] Chondros, N., Zhang, B., Zacharias, T., Diamantopoulos, P., Maneas, S., Patsonakis, C., Delis, A.,
Kiayias, A., Roussopoulos, M.: D-DEMOS: A distributed, end-to-end verifiable, internet voting system.
In: 36th IEEE International Conference on Distributed Computing Systems, ICDCS 2016, Nara, Japan,
June 27-30, 2016, pp. 711–720. IEEE Computer Society (2016)

37

[DKNS04] Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad hoc groups. In: Cachin,
C., Camenisch, J. (eds.) Advances in Cryptology - EUROCRYPT 2004, Lecture Notes in Computer
Science, vol. 3027, pp. 609–626. Springer (2004)

[DKR06] Delaune, S., Kremer, S., Ryan, M.: Coercion-resistance and receipt-freeness in electronic voting. In:
19th IEEE Computer Security Foundations Workshop, (CSFW-19 2006), 5-7 July 2006, Venice, Italy,
pp. 28–42. IEEE Computer Society (2006)

[DKR10] Delaune, S., Kremer, S., Ryan, M.: Verifying privacy-type properties of electronic voting protocols: A
taster. In: Chaum, D., Jakobsson, M., Rivest, R.L., Ryan, P.Y.A., Benaloh, J., Kutylowski, M., Adida, B.
(eds.) Towards Trustworthy Elections, New Directions in Electronic Voting, Lecture Notes in Computer
Science, vol. 6000, pp. 289–309. Springer (2010)

[DV09] Dallot, L., Vergnaud, D.: Provably secure code-based threshold ring signatures. In: Parker, M.G. (ed.)
Cryptography and Coding 2009, Lecture Notes in Computer Science, vol. 5921, pp. 222–235. Springer
(2009)

[EHK+17] Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for diffie–hellman as-
sumptions. Journal of cryptology vol. 30, pp. 242–288 (2017)

[FS86] Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems.
In: Odlyzko, A.M. (ed.) Advances in Cryptology - CRYPTO ’86, Lecture Notes in Computer Science,
vol. 263, pp. 186–194. Springer (1986)

[FS07] Fujisaki, E., Suzuki, K.: Traceable ring signature. In: Okamoto, T., Wang, X. (eds.) Public Key Cryp-
tography - PKC 2007, Lecture Notes in Computer Science, vol. 4450, pp. 181–200. Springer (2007)

[GHKW16] Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly cca-secure encryption without pairings. In: Annual In-
ternational Conference on the Theory and Applications of Cryptographic Techniques, pp. 1–27. Springer
(2016)

[GMS21] Gersbach, H., Mamageishvili, A., Schneider, M.: Vote delegation and misbehavior. In: Caragiannis, I.,
Hansen, K.A. (eds.) SAGT 2021, Lecture Notes in Computer Science, vol. 12885, p. 411. Springer (2021)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A completeness theorem for
protocols with honest majority. In: Aho, A.V. (ed.) Proceedings of the 19th Annual ACM Symposium
on Theory of Computing, 1987, pp. 218–229. ACM (1987)

[GPS25] Grontas, P., Pagourtzis, A., Spyrakou, M.: Voting with coercion resistance and everlasting privacy using
linkable ring signatures. Cryptology ePrint Archive (2025)

[Gro03] Groth, J.: A verifiable secret shuffle of homomorphic encryptions. In: Desmedt, Y. (ed.) Public Key
Cryptography - PKC 2003, Lecture Notes in Computer Science, vol. 2567, pp. 145–160. Springer (2003)

[Har25] Hara, K.: A linkable ring signature scheme with unconditional anonymity in the standard model. The-
oretical Computer Science p. 115093 (2025)

[HC24] Hui, X., Chau, S.C.K.: Llring: logarithmic linkable ring signatures with transparent setup. In: European
Symposium on Research in Computer Security, pp. 299–319. Springer (2024)

[HKSS22] Haque, A., Krenn, S., Slamanig, D., Striecks, C.: Logarithmic-size (linkable) threshold ring signatures
in the plain model. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) Public-Key Cryptography - PKC
2022, Lecture Notes in Computer Science, vol. 13178, pp. 437–467. Springer (2022)

[HS00] Hirt, M., Sako, K.: Efficient receipt-free voting based on homomorphic encryption. In: International
Conference on the Theory and Applications of Cryptographic Techniques, pp. 539–556. Springer (2000)

[HS12] Heather, J., Schneider, S.A.: A formal framework for modelling coercion resistance and receipt freeness.
In: Giannakopoulou, D., Méry, D. (eds.) FM 2012: Formal Methods - 18th International Symposium,
Paris, France, August 27-31, 2012. Proceedings, Lecture Notes in Computer Science, vol. 7436, pp.
217–231. Springer (2012)

[IKOS06] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography from anonymity. In: 47th Annual
IEEE Symposium on Foundations of Computer Science (FOCS 2006), 21-24 October 2006, Berkeley,
California, USA, Proceedings, pp. 239–248. IEEE Computer Society (2006)

[JCJ10] Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In: Chaum, D., Jakobsson,
M., Rivest, R.L., Ryan, P.Y.A., Benaloh, J., Kutylowski, M., Adida, B. (eds.) Towards Trustworthy
Elections, New Directions in Electronic Voting, Lecture Notes in Computer Science, vol. 6000, pp.
37–63. Springer (2010)

[JP10] Jonker, H., Pieters, W.: Anonymity in voting revisited. In: Chaum, D., Jakobsson, M., Rivest, R.L.,
Ryan, P.Y.A., Benaloh, J., Kutylowski, M., Adida, B. (eds.) Towards Trustworthy Elections, New Di-
rections in Electronic Voting, Lecture Notes in Computer Science, vol. 6000, pp. 216–230. Springer
(2010)

38

[JV06] Jonker, H.L., de Vink, E.P.: Formalising receipt-freeness. In: Katsikas, S.K., López, J., Backes, M.,
Gritzalis, S., Preneel, B. (eds.) Information Security, 9th International Conference, ISC 2006, Samos
Island, Greece, August 30 - September 2, 2006, Proceedings, Lecture Notes in Computer Science, vol.
4176, pp. 476–488. Springer (2006)

[KAPS20] Khan, N., Ahmad, T., Patel, A., State, R.: Blockchain governance: An overview and prediction of
optimal strategies using nash equilibrium. CoRR vol. abs/2003.09241 (2020)

[KL22] Kiayias, A., Lazos, P.: Sok: Blockchain governance. In: Herlihy, M., Narula, N. (eds.) AFT 2022,
Cambridge, MA, USA, September 19-21, 2022, pp. 61–73. ACM (2022)

[KT09] Küsters, R., Truderung, T.: An epistemic approach to coercion-resistance for electronic voting protocols.
In: 30th IEEE Symposium on Security and Privacy (SP 2009), 17-20 May 2009, Oakland, California,
USA, pp. 251–266. IEEE Computer Society (2009)

[KTV11] Küsters, R., Truderung, T., Vogt, A.: Verifiability, privacy, and coercion-resistance: New insights from
a case study. In: 32nd IEEE Symposium on Security and Privacy, SP 2011, 22-25 May 2011, Berkeley,
California, USA, pp. 538–553. IEEE Computer Society (2011)

[KTV12] Küsters, R., Truderung, T., Vogt, A.: A game-based definition of coercion resistance and its applications.
Journal of Computer Security vol. 20(6), pp. 709–764 (2012)

[KZZ15a] Kiayias, A., Zacharias, T., Zhang, B.: DEMOS-2: scalable E2E verifiable elections without random
oracles. In: Ray, I., Li, N., Kruegel, C. (eds.) Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, Denver, CO, USA, October 12-16, 2015, pp. 352–363. ACM
(2015)

[KZZ15b] Kiayias, A., Zacharias, T., Zhang, B.: End-to-end verifiable elections in the standard model. In: Os-
wald, E., Fischlin, M. (eds.) Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30,
2015, Proceedings, Part II, Lecture Notes in Computer Science, vol. 9057, pp. 468–498. Springer (2015)

[LASZ14] Liu, J.K., Au, M.H., Susilo, W., Zhou, J.: Linkable ring signature with unconditional anonymity. IEEE
Trans. Knowl. Data Eng. vol. 26(1), pp. 157–165 (2014)

[LAZ19] Lu, X., Au, M.H., Zhang, Z.: Raptor: A practical lattice-based (linkable) ring signature. In: Deng, R.H.,
Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019, Lecture Notes in Computer Science, vol.
11464, pp. 110–130. Springer (2019)

[LJP10] Langer, L., Jonker, H., Pieters, W.: Anonymity and verifiability in voting: Understanding (un)linkability.
In: Soriano, M., Qing, S., López, J. (eds.) Information and Communications Security - 12th Interna-
tional Conference, ICICS 2010, Barcelona, Spain, December 15-17, 2010. Proceedings, Lecture Notes in
Computer Science, vol. 6476, pp. 296–310. Springer (2010)

[LJW+19] Lyu, J., Jiang, Z.L., Wang, X., Nong, Z., Au, M.H., Fang, J.: A secure decentralized trustless e-voting
system based on smart contract. In: 18th IEEE International Conference On Trust, Security And Privacy
In Computing And Communications / 13th IEEE International Conference On Big Data Science And
Engineering, TrustCom/BigDataSE 2019, Rotorua, 2019, pp. 570–577. IEEE (2019)

[LLXZ20] Liu, A., Lu, Y., Xia, L., Zikas, V.: How private are commonly-used voting rules? In: Adams, R.P.,
Gogate, V. (eds.) Proceedings of the Thirty-Sixth Conference on Uncertainty in Artificial Intelligence,
UAI 2020, virtual online, August 3-6, 2020, Proceedings of Machine Learning Research, vol. 124, pp.
629–638. AUAI Press (2020)

[LQT20] Lueks, W., Querejeta-Azurmendi, I., Troncoso, C.: Voteagain: A scalable coercion-resistant voting sys-
tem. CoRR vol. abs/2005.11189 (2020)

[LRR+19] Lai, R.W., Ronge, V., Ruffing, T., Schröder, D., Thyagarajan, S.A.K., Wang, J.: Omniring: Scaling
private payments without trusted setup. In: Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, pp. 31–48 (2019)

[LW05] Liu, J.K., Wong, D.S.: Linkable ring signatures: Security models and new schemes. In: Gervasi, O.,
Gavrilova, M.L., Kumar, V., Laganà, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) Computa-
tional Science and Its Applications - ICCSA 2005, Lecture Notes in Computer Science, vol. 3481, pp.
614–623. Springer (2005)

[LW06] Liu, J.K., Wong, D.S.: Enhanced security models and a generic construction approach for linkable ring
signature. International Journal of Foundations of Computer Science vol. 17(06), pp. 1403–1422 (2006)

[LWW04] Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signature for ad hoc groups
(extended abstract). In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) Information Security and
Privacy: 9th Australasian Conference, ACISP 2004, Lecture Notes in Computer Science, vol. 3108, pp.
325–335. Springer (2004)

39

[Lyu08] Lyubashevsky, V.: Lattice-based identification schemes secure under active attacks. In: Cramer, R.
(ed.) Public Key Cryptography - PKC 2008, Lecture Notes in Computer Science, vol. 4939, pp. 162–
179. Springer (2008)

[MH96] Michels, M., Horster, P.: Some remarks on a receipt-free and universally verifiable mix-type voting
scheme. In: International Conference on the Theory and Application of Cryptology and Information
Security, pp. 125–132. Springer (1996)

[Nef01] Neff, C.A.: A verifiable secret shuffle and its application to e-voting. In: Reiter, M.K., Samarati, P.
(eds.) CCS 2001, pp. 116–125. ACM (2001)

[Oka97] Okamoto, T.: Receipt-free electronic voting schemes for large scale elections. In: Christianson, B., Crispo,
B., Lomas, T.M.A., Roe, M. (eds.) Security Protocols, 5th International Workshop, Paris, France, April
7-9, 1997, Proceedings, Lecture Notes in Computer Science, vol. 1361, pp. 25–35. Springer (1997)

[PBD05] Peng, K., Boyd, C., Dawson, E.: Simple and efficient shuffling with provable correctness and ZK privacy.
In: Shoup, V. (ed.) Advances in Cryptology - CRYPTO 2005, Lecture Notes in Computer Science, vol.
3621, pp. 188–204. Springer (2005)

[RAVR21] Russo, A., Anta, A.F., Vasco, M.I.G., Romano, S.P.: Chirotonia: A scalable and secure e-voting frame-
work based on blockchains and linkable ring signatures. In: Xiang, Y., Wang, Z., Wang, H., Niemi, V.
(eds.) 2021 IEEE International Conference on Blockchain, Blockchain 2021, pp. 417–424. IEEE (2021)

[RST01] Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) Advances in Cryptology
- ASIACRYPT 2001, Lecture Notes in Computer Science, vol. 2248, pp. 552–565. Springer (2001)

[SALY17] Sun, S., Au, M.H., Liu, J.K., Yuen, T.H.: Ringct 2.0: A compact accumulator-based (linkable ring
signature) protocol for blockchain cryptocurrency monero. In: Foley, S.N., Gollmann, D., Snekkenes, E.
(eds.) Computer Security - ESORICS 2017, Lecture Notes in Computer Science, vol. 10493, pp. 456–474.
Springer (2017)

[Sch91] Schnorr, C.: Efficient signature generation by smart cards. J. Cryptol. vol. 4(3), pp. 161–174 (1991)

[Sho06] Shoup, V.: A computational introduction to number theory and algebra. Cambridge University Press
(2006)

[SK95] Sako, K., Kilian, J.: Receipt-free mix-type voting scheme - A practical solution to the implementation
of a voting booth. In: Guillou, L.C., Quisquater, J. (eds.) Advances in Cryptology - EUROCRYPT
’95, International Conference on the Theory and Application of Cryptographic Techniques, Saint-Malo,
France, May 21-25, 1995, Proceeding, Lecture Notes in Computer Science, vol. 921, pp. 393–403. Springer
(1995)

[TFS04] Teranishi, I., Furukawa, J., Sako, K.: k-times anonymous authentication (extended abstract). In: Lee,
P.J. (ed.) Advances in Cryptology - ASIACRYPT 2004, Lecture Notes in Computer Science, vol. 3329,
pp. 308–322. Springer (2004)

[TS06] Teranishi, I., Sako, K.: k -times anonymous authentication with a constant proving cost. In: Yung,
M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) Public Key Cryptography - PKC 2006, Lecture Notes in
Computer Science, vol. 3958, pp. 525–542. Springer (2006)

[TW05] Tsang, P.P., Wei, V.K.: Short linkable ring signatures for e-voting, e-cash and attestation. In: Deng,
R.H., Bao, F., Pang, H., Zhou, J. (eds.) Information Security Practice and Experience, First International
Conference, ISPEC 2005, Lecture Notes in Computer Science, vol. 3439, pp. 48–60. Springer (2005)

[TWC+04] Tsang, P.P., Wei, V.K., Chan, T.K., Au, M.H., Liu, J.K., Wong, D.S.: Separable linkable threshold
ring signatures. In: Canteaut, A., Viswanathan, K. (eds.) Progress in Cryptology - INDOCRYPT 2004,
Lecture Notes in Computer Science, vol. 3348, pp. 384–398. Springer (2004)

[VH21] Venugopalan, S., Homoliak, I.: Always on voting: A framework for repetitive voting on the blockchain.
CoRR vol. abs/2107.10571 (2021)

[XLAZ24] Xue, Y., Lu, X., Au, M.H., Zhang, C.: Efficient linkable ring signatures: new framework and post-
quantum instantiations. In: European Symposium on Research in Computer Security, pp. 435–456.
Springer (2024)

[Yao82] Yao, A.C.: Protocols for secure computations (extended abstract). In: 23rd Annual Symposium on
Foundations of Computer Science, pp. 160–164. IEEE Computer Society (1982)

[YNKM24] Yu, A., Nguyen, H.H., Kate, A., Maji, H.K.: Unconditional security using (random) anonymous bulletin
board. IACR Cryptol. ePrint Arch. p. 101 (2024)

[YSL+20] Yuen, T.H., Sun, S., Liu, J.K., Au, M.H., Esgin, M.F., Zhang, Q., Gu, D.: Ringct 3.0 for blockchain
confidential transaction: Shorter size and stronger security. In: Bonneau, J., Heninger, N. (eds.) Financial
Cryptography and Data Security - 24th International Conference, FC 2020, Lecture Notes in Computer
Science, vol. 12059, pp. 464–483. Springer (2020)

40

[YWM+22] Ye, Q., Wang, M., Meng, H., Xia, F., Yan, X.: Efficient linkable ring signature scheme over ntru lattice
with unconditional anonymity. Computational Intelligence and Neuroscience vol. 2022(1), p. 8431874
(2022)

[ZK02] Zhang, F., Kim, K.: Id-based blind signature and ring signature from pairings. In: Zheng, Y. (ed.)
Advances in Cryptology - ASIACRYPT 2002, Lecture Notes in Computer Science, vol. 2501, pp. 533–
547. Springer (2002)

41

A Limitation of Liu et al.’s LRS Scheme

In this section we present a concrete attack showing that the LRS scheme in [LASZ14] does not achieve
linkability (cf. Def. 4).

Let G be a cyclic group of order q, and g1, g2 are two random generators. The LRS scheme in [LASZ14]
is shown as follows. Here H0 : {0, 1}∗ → G, H : {0, 1}∗ → Z∗

q are two hash functions which are modeled as
random oracles.

Setup(1λ):

Return pp := (G, q, g1, g2)

Gen(pp):

x1, x2
$← Zq; X := gx1

1 gx2
2

Return (sk, pk) := ((x1, x2), X)

Ver(R,PKR, e,msg, σ):

ge := H0(e)

cmt′ := gz11 gz22
∏

j∈[n](X
(j))c

(j)

ecmt′ := gz1e
∏

j∈[n](pid)
c(j)

If
∑

j∈[n] c
(j) = H(PKR, pid, cmt′, ecmt′, e,msg):

return 1
Otherwise: reutnr 0

Sign(PKR, sk
(δ), e,msg):

Parse sk(δ) = (x1, x2), PKR = (X(1), X(2), ..., X(n))
ge := H0(e); pid := gx1

e

r1, r2, c
(1), ..., c(δ−1), c(δ+1), ..., c(n) $← Zq

cmt := gr11 gr22
∏

j∈[n],j ̸=δ(X
(j))c

(j)

ecmt := gr1e
∏

j∈[n],j ̸=δ(pid)
(c(j))

c0 := H(PKR, pid, cmt, ecmt, e,msg)

c(δ) := c0 −
∑

j∈[n],j ̸=δ c
(j)

z1 := r1 − c(δ)x1; z2 := r2 − c(δ)x2

Return σ := (pid, z1, z2, c
(1), ..., c(n))

Link(e, σ1, σ2):

Parse σ1 = (pid1, ...) and σ2 = (pid2, ...)
If pid1 = pid2: return 1
Otherwise: return 0

Fig. 7. The LRS scheme in [LASZ14].

Theorem 11. The LRS scheme in Fig. 7 does not achieve linkability defined in Def. 4.

Proof. To prove this theorem, we show that an adversary knowing two secret keys can generate three signa-
tures which are pairwise unlinked.

Consider a ring of three signers with public key list PKR = (X(1), X(2), X(3)), and the first two secret

keys sk(1) = (x
(1)
1 , x

(1)
2) and sk(2) = (x

(2)
1 , x

(2)
2) are known to the adversary A. Fixed event e and ge := H0(e),

the adversary A can first generate two unlinked signatures using sk(1) and sk(2), respectively. Now A aims

to forge a signature σ = (pid, z1, z2, c
(1), ..., c(n)) such that pid ̸= g

x
(1)
1

e and pid ̸= g
x
(2)
1

e .
A forges as follows.

1. Sample re, r1, r2, c
(3) $← Zq, and x̃

$← Zq \ {x(1)
1 , x

(2)
1 }.

2. Compute pid := gx̃e , cmt := gr11 gr22 (X(3))c
(3)

, and ecmt := gree (pid)c
(3)

.
3. Compute c0 := H(PKR, pid, cmt, ecmt, e,msg).

4. Compute c(1), c(2), z1, z2 satisfying the following four equations (with the knowledge of (x
(1)
1 , x

(1)
2) and

(x
(2)
1 , x

(2)
2)):

c(1) + c(2) = c0 − c(3)

r1 = z1 + c(1)x
(1)
1 + c(2)x

(2)
1

r2 = z2 + c(1)x
(1)
2 + c(2)x

(2)
2

re = z1 + x̃(c(1) + c(2))

5. Return σ = (pid, z1, z2, c
(1), c(2), c(3)).

42

First, the four equations above imply that

cmt = gz11 gz22 (X(1))c
(1)

(X(2))c
(2)

(X(3))c
(3)

and ecmt = gz1e (gx̃e)
c(1)+c(2)+c(3) .

Namely, σ is a valid forgery. Furthermore, σ is unlinked to the signatures generated from sk(1) and sk(2),

since pid ̸= g
x
(1)
1

e and pid ̸= g
x
(2)
1

e . Therefore, A successfully breaks the linkability of the scheme. ⊓⊔

B The Insecurity of Bultel and Lafourcade’s Scheme

In this section we show that Bultel and Lafourcade’s scheme [BL16] does not achieve traceability as the
authors claimed.

We first quickly review the TRS scheme in [BL16]. Let G1,G2 and Gt be groups of prime order q, and g1
is a generator of G1, g2 is a generator of G2, e : G1 ×G2 → Gt is a non-degenerate bilinear map. Two hash
functions are defined as H0 : {0, 1}∗ → G1, and H2 : {0, 1}∗ → Z∗

q .
The scheme involves a non-interactive zero-knowledge proof (NIZK) scheme to show that

(T1, T2, T3, T4, T5) in the signature are well-formed, and the corresponding (x(j), x
(j)
i) is a secret key of

some public key in PKR. The authors cite the 1-out-of-n proof skill in [CDS94]. For simplicity, we omit
the details here, and merge the “Match” algorithm and the “Trace” algorithm in [BL16] into one algorithm
Trace here. We also omit the details of how to extend Trace to detect all signatures from one actual signer,
since it is out of the insecurity identified below.

Setup(1λ):

Return pp = (G1,G2,Gt, q, g1, g2, e,H0, H1)

Gen(pp, k):

x, x1, ..., xk
$← Z∗

q

X := gx1 ; X1 := gx1
1 , ..., Xk := g

xk
1

Return (sk, pk) = ((x, x1, ..., xk), (X,X1, ..., Xk))

Sign(sk(j), PKR, e,msg, i): // User j invokes the i-th signing

Parse sk(j) = (x(j), x
(j)
1 , ..., x

(j)
k)

r
$← Z∗

q

A := H0(e, 0); B := H0(e, 1); C := H0(e, 2); W := H0(e, 3)
u := H1(e,msg, 0, gr2); v := H1(e,msg, 1, gr2)

T1 := Ax
(j)
i ; T2 := Bx

(j)
i · gu·x

(j)

1 ;

T3 := Cx
(j)
i ·W v·x(j)

; T4 := gr2

T5 := e(W,T4)
(x(j))

π ← NIZK.Prove(T1, T2, T3, T4, T5, PKR)
Return σ := (T1, T2, T3, T4, T5, π)

Ver(PKR, e,msg, σ):

Parse σ = (T1, T2, T3, T4, T5, π)
Compute A,B,C,W, u, v as Sign
Return NIZK.Ver((T1, T2, T3, T4, T5, PKR), π)

Link(e, σ1, σ2):

Parse σ1 = (T1,1, T1,2, T1,3, T1,4, T1,5, π1)
Parse σ2 = (T2,1, T2,2, T3,3, T4,4, T5,5, π1)
If T1,1 = T2,1: return 1
Otherwise: return 0

Trace(e,msg1, σ1,msg2, σ2,msg, σ):

If Link(e, σ1, σ2) = 0: return ⊥
Parse σ1 = (T1,1, T1,2, T1,3, T1,4, T1,5, π1)
Parse σ2 = (T2,1, T2,2, T3,3, T4,4, T5,5, π1)
u1 := H1(e,msg1, 0, T1,4); v1 := H1(e,msg1, 1, T1,4)
u2 := H1(e,msg2, 0, T2,4); v1 := H1(e,msg2, 1, T2,4)

id := (T1,2/T2,2)
(u1−u2)

−1

Return id // return an identity of the signer

Fig. 8. The TRS scheme in [BL16].

Correctness of Trace. The authors argued the correctness of Trace as follows.

id =

(
T1,2

T2,2

)(u1−u2)
−1

=

(
Bx

(j)
i · gu·x(j)

1

Bx
(j)
i · gu·x(j)

1

)(u1−u2)
−1

= gx
(j)

1 ,

where for b ∈ {0, 1}, ub = H1(e,msgb, 0, g
rb
2), and rb is the randomness used in signing. Given gx

(j)

1 , a part
of the public key, the identity of the signer is exposed.

43

On the insecurity of Bultel’s scheme. The correctness of trace heavily relies on u1 ̸= u2. In case H1(·)
is modeled as a random oracle, this is statistically equal to r1 ̸= r2. However, a malicious signer, who signs
twice with the same count index i ∈ [k], can always take the same randomness of r when signing, and hence
make the trace algorithm fail. We emphasize that this would not result in a repeated signature, since there
is randomness in generating a NIZK proof.

As a result, an adversary accessing to a secret key of a signer, is able to generate k + 1 signatures w.r.t.
the same event e and make the trace algorithm fail. Therefore, A breaks the securtity of traceability defined
in [BL16].

C Impossiblity of Traceable Ring Signatures with Unconditional Anonymity

In this part we show that in traceable ring signatures [FS07] (an extension of LRS, of which the link algorithm
will additionally output a public key when returning “linked”), it is impossible to achieve unconditional
anonymity.

We first recall the definition of traceable ring signatures.

Definition 21 (Traceable ring signatures [FS07]). A traceable ring signature (TRS) scheme is defined
the same as a 1-LRS scheme (i.e., k = 1) in Def. 1, except that the algorithm Link is replaced with the
following algorithm Trace.

– {0, 1} × (PK ∪ {⊥}) ← Trace(e, σ1, σ2). The trace algorithm takes as input an event label e and two
signatures σ1, σ2, and outputs a bit as well as a public key or a failure symbol ⊥.

Correctness of Trace. Let N ∈ N+. For any R1, R2 ⊆ [N] and δ1 ∈ R1, δ2 ∈ R2, any event e and messages
msg1,msg2, σ1 ← Sign(PKR1 , sk

(δ1), e,msg1);σ2 ← Sign(PKR2 , sk
(δ2), e,msg2), it holds with overwhelming

probability that

Trace(e, σ1, σ2) =

(0,⊥) if δ1 ̸= δ2,

(1,⊥) if δ1 = δ2,msg1 = msg2,

(1, pk(δ1)) if δ1 = δ2,msg1 ̸= msg2,

where pp ← Setup(1λ, k = 1), (sk(1), pk(1)), ..., (sk(N), pk(N)) ← Gen(pp), σ1 ← Sign(PKR1
, sk(δ1), e,msg1),

σ2 ← Sign(PKR2 , sk
(δ2), e,msg2), and the probability is taken over the choice of Setup,Gen, and Sign.

Theorem 12. Traceable ring signatures cannot achieve unconditional anonymity (cf. Def. 3).

Proof. We prove this theorem via a simple example. Consider a ring of two signers R = {δ0, δ1}. Let b be the
secret bit in the unconditional anonymity experiment ExpanonyA,k=1(λ). After a query Chall(b, R, δ0, δ1, e,msg,
msg′′) for random e and msg,msg′′, the adversary A obtain two signatures (σ∗, ·) where σ∗ is a signature for
msg from δb (we omit the second signature returned from the experiment). Now, A’s goal is to decide the
value of b.

From the argument in [LASZ14], we know for unconditionally traceable/link ring signatures, there must
be more than one secret key corresponding to a public key. W.l.o.g., we assume that for a public key pk,
there exists at most η ∈ N+ corresponding secret keys sk1,, skη, and the key generation algorithm first
samples a secret key randomly, and then computes the corresponding public key via some one-way function
defined by pp.

In ExpanonyA,k=1(λ), let sk(0), sk(1) be the secret keys of δ0 and δ1, respectively, and pk(0) and pk(1) be

the corresponding public keys. Given pk(0), the all-powerful adversary searches all η possible secret keys

{sk(0)1 , ..., sk
(0)
η } of pk(0), and then signs message msg′ ̸= msg under event e with sk

(0)
i (i ∈ [η]) to obtain a

signature σi. If there exists i ∈ [η] such that Trace(e, σ∗, σi) = (1, pk(0)), then A outputs b′ = 0. Otherwise
A outputs b′ = 1.

Now, we analyze the advantage of A. First consider the case b = 0, i.e., σ∗ is signed using δ0’s secret

key sk(0). In this case, there must exists s ∈ [η] such that sk(0) = sk
(0)
s , and subsequently Trace(e, σ∗, σs) =

(1, pk(0)) according to the correctness of trace. Therefore, A will output b′ = 0 with overwhelming probability.

44

Then we analyze the case b = 1. For all i ∈ [η], sk
(0)
i is a secret key corresponding to pk(0) and σi is a

signature signed using sk
(0)
i . Recall that σ∗ is signed using δ1’s secret key sk(1). Therefore, Trace(e, σ∗, σi)

will return (0,⊥) due to the correctness of trace, and A will output b′ = 1 with overwhelming probability.
Namely, A’s advantage is almost 1/2, showing that it is not unconditionally anonymous at all. ⊓⊔

Remark 11. In our k-LRS scheme, as well as Liu et al.’s LRS scheme [LASZ14], only a part of the secret key is
revealed through the signature, and the public key remains uniformly distributed as long as the unrevealed
part of the secret key is uniformly distributed. Consequently, for an information-theoretic adversary, the
knowledge of the partial secret key (derived from the signature(s)) provides no advantage in tracing the
corresponding public key since any two distinct public keys are equally likely to share the revealed portion
as a partial secret key.

D Deferred Material in Construction

In this section we provide the SIS-based construction of (k + 1)-AIS and the proof of Theorem 7.

D.1 SIS-based AIS

Definition 22 (The SIS assumption). Let n = n(λ),m, q be positive integers and β be a positive real.
The short integer solution (SIS) assumption states that for any PPT adversary A, the advantage

Advsis[n,m,q,β],A(λ) := Pr[A
$← Zn×m

q ;x← A(A) : Ax = 0n ∧ x ̸= 0m ∧ ||x|| ≤ β]

is negligible in λ.

Lemma 1 (Leftover hash lemma [Lyu08]). Let X be a subset of Zm
q . Then for all but a 2

n log q−log |X|
4

fraction of all A ∈ Zn×m
q , we have

∆(Ax,u) ≤ 2
n log q−log |X|

4 ,

where x
$← X and u

$← Zn
q .

We recall the SIS-based identification scheme in [Lyu08] in Fig. 9. Here pp = A defines SK = {0, 1}m,
PK = Zn

q , and the extended secret key space S̈K = {x ∈ Zm
q | ||x|| ≤ 10m1.5}. SAFE is defined as

{1, ..., 10m − 1}m. For the purpose of aggregation, in this work, we change the sampling of rJιK (ι ∈ [t])
from {0, 1, ..., 10m − 1}m instead of {0, 1, ..., 5m − 1}m in [Lyu08]. This change leads to a scheme with a
smaller correctness error, but on the other hand, it requires a stricter parameter due to the hardness of the
underlying SIS problem.

Theorem 13. Assume m ≥ 10, m = Q⌈n log n⌉ for some constant Q, and the [n,m, q, β]-SIS assump-
tion holds for β = 20m1.5, then the scheme in Fig. 9 is a secure identification scheme. More precisely, it
has correctness error less that 2−t/14, one-wayness, (tn log q)-min-entropy, (1 − 2−t/6))-special soundness,
simulatability, and Q/4-pseudorandomness. Moreover, it has homomorphism on coefficient space Z∗

q .

Proof. The proof roughly follows the proof in [Lyu08].

Correctness. For ι ∈ [t], unless cJιK = 1 and rJιK + x /∈ SAFE, the response zJιK will always pass the
verification and hence dJιK = 1. Therefore,

Pr[dJιK = 1] ≥ Pr[cJιK = 0] + Pr[cJιK = 1]Pr[rJιK + x ∈ SAFE | cJιK = 1]

= 1/2 + 1/2 · (1− 1/10m)m

≥ 0.95, for m ≥ 10.

45

Setup(1λ):

A
$← Zn×m

q

Return pp := A

Gen(pp):

x
$← {0, 1}m; y := Ax

Return (sk, pk) := (x,y).

⟨P,V⟩:
P(sk = x) V(pk = y)

For ι ∈ [t] :

rJιK $← {0, 1, ..., 10m− 1}m

sJιK := ArJιK

cmt:=(sJ1K,...,sJtK)−−−−−−−−−−−−−−−→

ch=(cJ1K,...,cJtK)←−−−−−−−−−−−−−−− ch
$← {0, 1}t

For ι ∈ [t] :

If cJιK = 1 ∧ rJιK + x /∈ SAFE

zJιK :=⊥
Else

zJιK := rJιK + cJιKx

rsp:=(zJ1K,...,zJtK)−−−−−−−−−−−−−−−→

For ι ∈ [t] :

If AzJιK = sJιK + cJιKy ∧ ||zJιK|| ≤ 10m1.5

dJιK := 1
Else

dJιK := 0

Return 1 if
∑

ι∈[t] d
JιK ≥ 0.8t

Fig. 9. The SIS-based identification scheme [Lyu08]

Let sum =
∑

ι∈[t] d
JιK. By Chernoff bound, we have

correctness error = Pr[sum < 0.8t] = Pr[sum < (0.95− 0.15)t] ≤ e−2t(0.15)2 ≤ 2−t/20.

One-wayness. Let pp = A ∈ Zn×m
q and sk = x ∈ S̈K = {x ∈ Zm

q | ||x|| ≤ 10m1.5}. Define fpp(sk) = Ax.
If an adversary A can break the one-wayness, then we can construct a reduction algorithm that breaks the
SIS assumption as follows.

Given A, the reduction algorithm first samples x
$← {0, 1}m, and then passes the public parameter and

the public key (A,Ax) to A. According to Lemma 8 in [Lyu08], with overwhelming probability there exists
a distinct x′ ∈ {0, 1}m ⊂ S̈K such that Ax = Ax′. And if A returns x′ ̸= x, which happens with probability
at least 1/2, then (x− x′) is a solution to the SIS(A) problem.

Min-entropy. According to Lemma 1, ArJιK is statistically close to uniform distribution over Zn
q if rJιK

distributes uniformly over Zm
q . Therefore, the identification scheme has a min-entropy about tn log q.

Special soundness. Let ((sJ1K, ..., sJtK), (cJ1K, ..., cJtK), (zJ1K, ..., zJtK)) and ((sJ1K, ..., sJtK), (cJ1K′, ..., cJtK′),

(zJ1K′, ..., zJtK′)) be two valid transcripts. First, if there exists ι∗ ∈ [t] s.t. cJι∗K ̸= cJι∗K′ and zJι∗K, zJι∗K′ ̸=⊥,
then from the equation (w.l.o.g. we assume cJι∗K − cJι∗K′ = 1)

A(zJι∗K − zJι∗K′) = y

we can extract a solution (zJι∗K− zJι∗K′) to the SIS(A) problem, and ||zJι∗K− zJι∗K′|| ≤ ||(zJι∗K)||+ ||zJι∗K′|| ≤
20m1.5.

Next we argue that the above case happens with probability at least (1− 2−t/6)). Recall that cJιK, cJιK′ $←
{0, 1} for ι ∈ [t]. If

∑
ι∈[t] |cJιK − cJιK′| > 0.2, then by the pigeonhole principle there must exists ι∗ ∈ [t] s.t.

cJι∗K ̸= cJι∗K′ and zJι∗K, zJι∗K′ ̸=⊥. Due to the Chernoff bound, we have

Pr[
∑
ι∈[t]

|cJιK − cJιK′| < 0.2t] ≤ e−2t(0.3)2 < 2−t/6.

Simulatability. [Lyu08] does not present a simulator for the zero-knowledge property (instead, [Lyu08]
shows the scheme is witness indistinguishable). Here we present an efficient simulator Sim = (Sim1,Sim2) as
follows.

46

1. Let ch = (cJ1K, ..., cJtK) ∈ {0, 1}t be the challenge. For ι ∈ [t] and ζ ∈ [m], sample bJιK[ζ]← χ, where χ is
a biased binary distribution with 0-probability equal to 1/10m.

2. For ι ∈ [t]:
(a) if cJιK = 1 and there exists ζ ∈ [m] s.t. bJιK[ζ] = 0, then Sim1(ch) outputs zJιK :=⊥, and

Sim2(pp, pk, ch, rsp) outputs sJιK := ArJιK, where rJιK := (rJιK[1], ..., rJιK[m]), and rJιK[ζ] := 0 if

bJιK[ζ] = 0 and rJιK[ζ]
$← {1, ..., 10m − 1} if bJιK[ζ] = 1 (that is, we always assume x[ζ] = 0 when

simulating);

(b) else if cJιK = 1, Sim1(ch) outputs z
JιK $← {1, ..., 10m−1}m (the SAFE range), and Sim2(pp, pk, ch, rsp)

outputs sJιK := AzJιK − y;
(c) else if cJιK = 0, Sim1(ch) outputs zJιK := rJιK, and Sim2(pp, pk, ch, rsp) outputs sJιK := AzJιK with

rJιK $← {0, ..., 10m− 1}m.
3. The simulated transcript is (cmt = (sJ1K, ..., sJtK), ch, rsp = (zJ1K, ..., zJtK)).

Analysis of Sim: First, the probability that zJιK =⊥ in the simulation is equal to that in a real execution.
For the ι-th execution (ι ∈ [t]):

– Case (a): If the ζ-th element of rJιK[ζ] + x[ζ] (ζ ∈ [m]) is UNSAFE, then rJιK[ζ] = 0 if x[ζ] = 0, and
rJιK[ζ] = 10m− 1 if x[ℓ] = 1. If the ζ-th element (ζ ∈ [m]) is SAFE, then rJιK[ζ] is uniformly distributed
in {1, ..., 10m − 1} if x[ζ] = 0 or {0, ..., 10m − 2} if x[ζ] = 1. With high probability, there are very few
unsafe points among total m choices, which means that r ∈ Y ⊆ {0, ..., 10m− 1}m with |Y | very large.
Then, according to Lemma 1, Ar is statistically close to uniform vector u ∈ Zn

q . That is, in the case of
UNSAFE, the simulated transcript is statistically indistinguishable.

– Case (b): In the SAFE case, for all ζ ∈ [m], rJιK[ζ] + x[ζ] is a random distribution over {1, ..., 10m− 1},
no matter x[ζ] = 0 or x[ζ] = 1. Therefore, the simulation is perfect.

– Case (c): the simulation is perfect.

Q/4-pseudorandomness. Let A,A1, ...,AQ ∈ Zn×m
q be two random matrices, and let x ∈ {0, 1}m be a

secret key sampled uniformly. By applying Lemma 1 on the matrix Ã := (A⊤||A1
⊤||...||AQ

⊤)⊤ ∈ ZQn×m
q ,

(Ã, Ãx) is statistically close to (Ã,v), where v
$← ZQn

q , which implies that the following two distributions
are indistinguishable:

A Ax
A1 A1x
...

...
AQ AQx

 and

A Ax
A1 u1

...
...

AQ uQ

 ,

where u1, ...,uQ
$← Zn

q .
18

Homomorphism on coefficient space Z∗
q . Given a ∈ Z∗

q and a transcript (cmt, ch, rsp) =

((sJ1K, ..., sJtK), (cJ1K, ..., cJtK), (zJ1K, ..., zJtK)) where (sJ1K, ..., sJtK) = (ArJ1K, ...,ArJtK), the coefficient-
verification algorithm
CoeVer(pp, epk, (ecmt, ch, rsp), a) works as follows. Here epk = a · pk = ay ∈ Zn

q , and ecmt =

(asJ1K, ..., asJtK) = (A(arJ1K), ...,A(arJtK)).

1. For ι ∈ [t]: if aAzJιK = (asJιK) + cJιK(ay) and ||zJιK|| ≤ 10m1.5, then set dJιK := 1; otherwise set dJιK := 0.
2. Return 1 if

∑
i∈[t] d

JιK ≥ 0.8t and 0 otherwise.

Given coefficient a ∈ Z∗
q and epk = a · pk = ay, the simulator Sim = (Sim1,Sim2) above can be extended

to output a simulated coefficient-transcript (ecmt, ch, rsp) as follows.

18 The pseudorandomness of the SIS-based scheme does not rely on any hardness assumption. However, it holds only
for a constant Q, different from the DDH-based construction where Q can be any polynomial size. This results to
a shortcoming of the SIS-based k-LRS scheme that the total number of events one can sign is bounded.

47

1. Let ch = (cJ1K, ..., cJtK) ∈ {0, 1}t be the challenge. For ι ∈ [t] and ζ ∈ [m], sample bJιK[ζ]← χ, where χ is
a biased binary distribution with 0-probability equal to 1/10m.

2. For ι ∈ [t]:
(a) if cJιK = 1 and there exists ζ ∈ [m] s.t. bJιK[ζ] = 0, then Sim1(ch) outputs zJιK :=⊥, and

Sim2(pp, pk, ch, rsp, a) outputs asJιK := aArJιK, where rJιK := (rJιK[1], ..., rJιK[m]), and rJιK[ζ] := 0

if bJιK[ζ] = 0 and rJιK[ζ]
$← {1, ..., 10m− 1} if bJιK[ζ] = 1;

(b) else if cJιK = 1, Sim1(ch) outputs zJιK $← {1, ..., 10m − 1}m (the SAFE range), and
Sim2(pp, pk, ch, rsp, a) outputs as

JιK := aAzJιK − (ay);
(c) else if cJιK = 0, Sim1(ch) outputs z

JιK := rJιK, and Sim2(pp, pk, ch, rsp) outputs as
JιK := aAzJιK with

rJιK $← {0, ..., 10m− 1}m.
3. The simulated transcript is (ecmt = (asJ1K, ..., asJtK), ch, rsp = (zJ1K, ..., zJtK)).

⊓⊔

Aggregation. Define SAFE = {0, 1, ..., 10m− 1}km+m. For i ∈ [k + 1], let ppi := Ai
$← Zn×m

q . Define pp :=

(pp1, ..., ppk+1) = A = (A1||...||Ak+1) ∈ Zn×(km+m)
q . For (k + 1) valid key pairs (ski = xi, pki = yi = Aixi)

under ppi, the algorithms AggrPK and AggrCMT are defined as follows.

– AggrPK(pk1, ..., pkk+1) returns p̃k :=
∑

i∈[k+1] pki = y =
∑

i∈[k+1] yi.

– For i ∈ [k + 1], let cmti := (Air
J1K
i , ...,Air

JtK
i) with r

JιK
i

$← {0, 1, ..., 10m − 1}m for ι ∈ [t].

AggrCMT(cmt1, ..., cmtk+1) returns c̃mt := (sJ1K, ..., sJtK) = (
∑

i∈[k+1] Air
J1K
i , ...,

∑
i∈[k+1] Air

JtK
i).

– pp := (pp1, ..., ppk+1) defines the 3-move identification protocol in Fig. 10.

⟨P,V⟩:
P(sk = x = (x1, ...,xk+1)) V(p̃k = y)

For ι ∈ [t] :

rJιK $← {0, 1, ..., 10m− 1}km+m

sJιK := ArJιK

c̃mt:=(sJ1K,...,sJιK)−−−−−−−−−−−−−−−→

ch=(cJ1K,...,cJtK)←−−−−−−−−−−−−−−− ch
$← {0, 1}t

For ι ∈ [t] :

If cJιK = 1 ∧ rJιK + x /∈ SAFE

z
JιK
i :=⊥

Else

zJιK := rJιK + cJιKx

rsp:=(zJ1K,...,zJtK)−−−−−−−−−−−−−−−→

For ι ∈ [t] :

If AzJιK = sJιK + cJιKy

∧ ||zJιK|| ≤ (10
√
k + 1)m1.5

dJιK := 1
Else

dJιK := 0

Return 1 if
∑

i∈[t] d
JιK ≥ 0.55t

Fig. 10. The aggregation of the SIS-based identification scheme

In fact, the aggregated protocol is the same as before if we view (k+1)m in the aggregation as m in the

original one and view (A1||A2||...||Ak+1) ∈ Zn×(km+m)
q as the parameter A ∈ Zn×m

q .

Theorem 14. Assume k ≤ 4, m ≥ 10, k ≪ n, m = Q⌈n log n⌉ for constant Q, and the [n,m, q, β]-SIS
assumption holds for β = 20

√
k + 1m1.5, then the scheme above is a secure (k + 1)-AIS scheme. More pre-

cisely, it has correctness error less than 2−t/400, one-wayness, (tn log q)-min-entropy, (1 − 2−t/200)-special
soundness, simulatability, and Q/4-pseudorandomness. Moreover, it has downward compatibility and homo-
morphism on coefficient space Z∗

q .

48

Proof. Correctness. For ι ∈ [t], unless cJιK = 1 and rJιK + x /∈ SAFE, the response zJιK will always pass the
verification and hence dJιK = 1. Therefore,

Pr[dJιK = 1] ≥ Pr[cJιK = 0] + Pr[cJιK = 1]Pr[rJιK + x ∈ SAFE | cJιK = 1]

= 1/2 + 1/2 · (1− 1/10m)km+m

≥ 0.6, for m ≥ 10, k ≤ 4.

Let sum =
∑

ι∈[t] d
JιK. By Chernoff bound, we have

correctness error = Pr[sum < 0.55t] = Pr[sum < (0.6− 0.05)t] ≤ e−2t(0.05)2 ≤ 2−t/400.

One-wayness. Let pp = A ∈ Zn×(km+m)
q and sk = x ∈ S̈K = {x ∈ Zkm+m

q | ||x|| ≤ (10
√
k + 1)m1.5}.

Define fpp(sk) = Ax. If an adversary A can break the one-wayness, then we can construct a reduction
algorithm that breaks the SIS assumption as follows.

Given A, the reduction algorithm first samples x
$← {0, 1}km+m, and then passes the public parameter

and the public key (A,Ax) to A. According to Lemma 8 in [Lyu08], with overwhelming probability there
exists a distinct x′ ∈ {0, 1}km+m ⊂ S̈K such that Ax = Ax′. And if A returns x′ ̸= x, which happens with
probability at least 1/2, then (x− x′) is a solution to the SIS(A) problem.

Min-entropy. Note that c̃mt := (sJ1K, ..., sJtK) = (
∑

i∈[k+1] Air
J1K
i , ...,

∑
i∈[k+1] Air

JtK
i), where r

JιK
i ←

{0, 1, ..., 5m − 1}m for all i ∈ [k + 1] and ι ∈ [t]. According to Lemma 1, Air
JιK
i is statistically close to

uniform vector u ∈ Zn
q . Therefore, c̃mt has a min-entropy about tn log q.

Special soundness. Let ((sJ1K, ..., sJtK), (cJ1K, ..., cJtK), (zJ1K, ..., zJtK)) and ((sJ1K, ..., sJtK), (cJ1K′, ..., cJtK′),

(zJ1K′, ..., zJtK′)) be two valid transcripts. First, if there exists ι∗ ∈ [t] s.t. cJι∗K ̸= cJι∗K′ and zJι∗K, zJι∗K′ ̸=⊥,
then from the equation (w.l.o.g. we assume cJι∗K − cJι∗K′ = 1)

A(zJι∗K − zJι∗K′) = y

we can extract a solution (zJι∗K − zJι∗K′) to the SIS problem, and ||zJι∗K − zJι∗K′|| ≤ ||(zJι∗K)|| + ||zJι∗K′|| ≤
(20
√
k + 1)m1.5.

Next we argue that the above case happens with probability at least (1−2−t/200). Recall that cJιK, cJιK′ $←
{0, 1} for ι ∈ [t]. If

∑
ι∈[t] |cJιK − cJιK′| > 0.45t, then by the pigeonhole principle there must exists ι∗ ∈ [t] s.t.

cJι∗K ̸= cJι∗K′ and zJι∗K, zJι∗K′ ̸=⊥. Due to the Chernoff bound, we have

Pr[
∑
ι∈[t]

|cJιK − cJιK′| < 0.45t] ≤ e−2t(0.05)2 < 2−t/200.

Simulatability. The simulator is similar to that in the original IS scheme, and we omit it here.

Q/4-pseudorandomness. Similar to the analysis in the original IS scheme, the Q/4-pseudorandomness
holds or each secret key xi (i ∈ [k]), due to Lemma 1.19

Collision resistance of secret key. Given randomly sampled A = (A1||...||Ak+1) ∈ Zkm+m
q , if the

adversary finds two distinct extended secret keys x = (x1; ...;xk=1),x
′ = (x′

1; ...;x
′
k+1) ∈ Zkm+m

q s.t. ||x|| ≤
(10
√
k + 1)m1.5 and ||x′|| ≤ (10

√
k + 1)m1.5, then ∆x := x− x′ is a short solution for the SIS(A) problem,

and ||∆x|| ≤ (20
√
k + 1)m1.5 +

√
km+m.

Uniformity. Let Ai
$← Zn×m

q for all i ∈ [k+1]. Then according to Lemma 1, the function fAi
(·) : {0, 1}m×

Zn
q defined as fAi

(x) := Aix is a randomness extractor. Therefore, fixed any x1, ...,xk, if skk+1 = xk+1

19 As discussed before, the pseudorandomness holds only for a constant Q.

49

distributes uniformly over {0, 1}m, then y :=
∑

i∈[k] Aixi + Ak+1xk+1 is statistically close to a uniform
vector over Zn

q .

Downward compatibility. This is straightforward.

Homomorphism on coefficient space Z∗
q and infeasibility of kernel. Given a group of coef-

ficients a1, ..., ak ∈ Z∗
q , a transcript (cmt, ch, rsp) = ((sJ1K, ..., sJtK), (cJ1K, ..., cJtK), (zJ1K, ..., zJtK)) where

sJιK =
∑

i∈[k] s
JιK
i =

∑
i∈[k] Air

JιK
i and zJιK = (z

JιK
1 , ..., z

JιK
k) for ι ∈ [t], the coefficient-verification algorithm

CoeVer(pp, ẽpk, (ẽcmt, ch, rsp), a1, ..., ak) works as follows. Here

ẽpk =
∑
i∈[k]

ai(Aixi),

ẽcmt = (
∑
i∈[k]

ais
J1K
i , ...,

∑
i∈[k]

ais
JtK
i) = (

∑
i∈[k]

Ai(air
J1K
i), ...,

∑
i∈[k]

Ai(air
JtK
i)).

1. For ι ∈ [t]: if
∑

i∈[k] aiAiz
JιK
i =

∑
i∈[k](ais

JιK
i)+cJιKẽpk and ||zJιK|| ≤ 10m1.5, then set dJιK := 1; otherwise

set dJιK := 0.
2. Return 1 if

∑
i∈[t] d

JιK ≥ 0.8t and 0 otherwise.

Meanwhile, given k randomly sampled public keys y1, ...,yk ∈ Zn
q , if k ≪ n, then with high probability

y1, ...,yk are linear independent, which means that there exits no a1, ..., ak ∈ Z∗
q such that

∑
i∈[k] aiyi = 0n.

⊓⊔

Remark 12 (On the choice of k). From the argument, we can see that k cannot be too large as, otherwise,
the security bound will be very loose, resulting in an SIS assumption with stricter parameters. In this
construction, we assume k ≤ 4, which covers most cases of applications in the voting system.

D.2 Security of k-LRS

Theorem 10 (Security of k-LRS). If AIS is a (k+1)-AIS with downward compatibility and homomorphism
on F, then the k-LRS scheme above is secure, i.e.t, it has unforgeability, unconditional or computational
anonymity, linkability, and non-slanderability.

Proof. Unforgeability. We prove the unforgeability of k-LRS via a series of hybrid games G0, ...,G3. We
argue that every two adjacent games are indistinguishable, and in the last game G3, the adversary’s advantage
is negligible.

Game G0. This is the original unforgeability experiment between the challenger C and the adversary A.

Game G1. In this game, the challenge C makes a guess Scorr on the set of corrupted users Scorr at the
beginning of the experiment. If Scorr ̸= Scorr at the end, then C aborts and outputs ⊥.

According to the complexity argument, if A has a non-negligible advantage in G0, then A has a non-
negligible advantage in G1.

Game G2. In this game, upon receiving a query Sign(R, δ, e,msg) s.t. δ /∈ Scorr, instead of returning a

signature signed by sk(δ) = (sk
(δ)
1 , ..., sk

(δ)
k , sk

(δ)
k+1), the challenger C works as follows.

1. Let H0(e) = epp = (epp1, ..., eppk). For i ∈ [k], compute epki := feppi
(sk

(δ)
i).

2. a1, ..., ak
$← F, and compute epk := AggrPK(a1 · epk1, ..., ak · epkk).

3. Randomly sample a challenge ch(δ) ← CH, and invoke the simulators to generate the two transcripts

(c̃mt
(δ)

, ch(δ), rsp(δ)) and (ẽcmt
(δ)

, ch(δ), rsp
(δ)
|k).

50

4. Let (pk(1), ..., pk(n)) be the public keys of n users in R. For j = δ + 1, ...n, ..., δ − 1, let ch(j) =

H(c̃mt
(j−1)

, ẽcmt
(j−1)

, {ai}i∈[k], epk, {pk(ι)}ι∈[n],msg, e). Invoke the simulators to generate transcripts

(c̃mt
(j)

, ch(j), rsp(j)) and (ẽcmt
(j)

, ch(j), rsp
(j)
|k).

5. Program H such that H(c̃mt
δ−1

, ẽcmt
δ−1

, {ai}i∈[k], epk, {pk(ι)}ι∈[n],msg, e) = ch(δ), and return σ :=

(a1, ..., ak, epk, {c̃mt
(j)

, ẽcmt
(j)
}j∈[n], {rsp(j)}j∈[n]). If H has already been defined on this input, then C

aborts the experiment and outputs ⊥.

If the reprogram in Step 5 does not fail, then Sign in G2 performs statistically close to that in G1, due
to the simulatability of AIS. Meanwhile, thanks to the min-entropy of AIS, with overwhelming probability

H(c̃mt
δ−1

, ...) has never been queried before, either by the adversary A or by the challenger C. Therefore,
G1 and G2 are indistinguishable.

Note that in G2, for an uncorrupted user δ, its secret key sk(δ) = (sk
(δ)
1 , ..., sk

(δ)
k , sk

(δ)
k+1) is used only for

generating the event-related public keys. Furthermore, only the first k parts of sk(δ) are required.

Game G3. In this game, C samples (ŝk
(δ)

1 , ..., ŝk
(δ)

k) for every δ /∈ Scorr independently at the beginning. Upon

receiving a query Sign(R, δ, e,msg), C uses (ŝk
(δ)

1 , ..., ŝk
(δ)

k) instead of the original secret key (sk
(δ)
1 , ..., sk

(δ)
k)

of user δ to generate the shifted public keys.
G3 and G2 are indistinguishable due to the following equations.((

pp1, ..., ppk+1, sk1, ..., skk, p̃k
) ∣∣∣∣∣For i ∈ [k + 1] : ppi ← Setup(1λ), (ski, pki)← Gen(ppi)

p̃k ← AggrPK(pk1, ..., pkk+1)

)

≈

((
pp1, ..., ppk+1, sk1, ..., skk, p̃k

) ∣∣∣∣∣For i ∈ [k + 1] : ppi ← Setup(1λ), (ski, pki)← Gen(ppi)

p̃k
$← PK

)

≡

((
pp1, ..., ppk+1, ŝk1, ..., ŝkk, p̃k

) ∣∣∣∣∣For i ∈ [k + 1] : ppi ← Setup(1λ), (ŝki, p̂ki)← Gen(ppi)

p̃k
$← PK

)

≈

(pp1, ..., ppk+1, ŝk1, ..., ŝkk, p̃k
) ∣∣∣∣∣

For i ∈ [k + 1] : ppi ← Setup(1λ)

(ski, pki), (ŝki, p̂ki)← Gen(ppi)

p̃k ← AggrPK(pk1, ..., pkk+1)

Here “≈” in line 2 and line 4 are due to the uniformity of AIS.

Now we argue that A’s advantage in G3 is negligible, as otherwise, there exists an extractor that extracts

an extended secret key s̈k
(δ)

= (s̈k
(δ)

1 , ..., s̈k
(δ)

k+1) ∈ S̈K
k+1

of some uncorrupted user δ, given only pp and

pk(δ).
More precisely, let (R∗, e∗,msg∗, σ∗) be A’s final forgery and σ∗ =

(a∗1, ..., a
∗
k, epk

∗, {c̃mt
∗(j)

, ẽcmt
∗(j)
}j∈R∗ , {rsp∗(j)}j∈R∗). Let

ch∗(j) = H(c̃mt
∗j
, ẽcmt

∗(j)
, {a∗i }i∈[k], epk

∗, {pk(ι)}ι∈[R∗],msg∗, e∗)

for all j ∈ R∗. For A to win in G3, it must have queried ch∗(j) for all j ∈ R∗. Therefore, C can locate a user
δ ∈ R∗ such that A queries ch∗(δ) at last. Note that at the time when A querying ch∗(δ), the commitments

c̃mt
∗(δ)

and ẽcmt
∗(δ)

are fixed in the hash list maintained by C, and (c̃mt
∗(δ)

, ch∗(δ), rsp∗(δ)) is a valid

transcript under pp and pk(δ).
Let θ be the user preceding δ in R∗. Now we rewind the running of G3 to the position when A queries

H(c̃mt
∗(θ)

, ẽcmt
∗(θ)

, {a∗i }i∈[k], epk
∗, {pk(ι)}ι∈[R∗], msg∗, e∗), and return an independent and randomly sam-

pled ch∗(δ)′ to A. According to the forking lemma [BN06], with non-negligible probability A will return

51

another valid transcript (c̃mt
∗(δ)

, ch∗(δ)′, rsp∗(δ)
′
) under pp and pk(δ). Meanwhile, both ch∗(δ) and ch∗(δ)′ are

sampled from a uniform distribution. According to the special soundness of (k+1)-AIS, there is an extractor

that extracts an extended secret key s̈k
(δ)

from these two valid transcripts, given only pp and pk(δ), which
breaks the one-wayness of AIS.

Unconditional Anonymity. We use two games, G0 and G1 to prove the unconditional anonymity, where
G0 is just the original unconditional anonymity experiment.

Game G1. In this game, upon receiving a query Sign(R, δ, e,msg) or a query Chall(b, R, δ0, δ1, e,
msg0,msg1), C uses the simulator to generate valid transcripts for all users in R, just like G2 in the proof of
unforgeability. Following the same argument as before, we know G1 and G0 are statistically close.

Recall that for each secret key, the adversary can obtain at most k signatures from either signing or-
acle Sign or challenge oracle Chall. In G1, the only information A gets is two groups of partial secret

keys (sk
(0)
1 , ..., sk

(0)
k) (used for signing msg0) and (sk

(1)
1 , ..., sk

(1)
k) (used for signing msg1). However, due

to the uniformity of (k + 1)-AIS, fixed the first k parts of the secret key, p̃k ← AggrPK(fpp1
(sk

(b)
1), ...,

fppk
(sk

(b)
k), fppk+1

(sk
(b)
k+1)) distributes uniformly as long as sk

(b)
k+1 distributes uniformly (b ∈ {0, 1}). There-

fore, the probability (sk
(0)
1 , ..., sk

(0)
k) is linked to pk(δ0) and the probability (sk

(1)
1 , ..., sk

(1)
k) is linked to pk(δ1)

are the same, and unconditional anonymity holds as a result.

Computational Anonymity. We use three games, G0, G1, and G2 to prove the computational anonymity.
Recall that the adversary now can query signing oracle Sign and challenge oracle Chall multiple times for
different events, as long as the signing time for each event is bounded by k.

Game G0. This is just the original computational anonymity experiment between the challenger C and the
adversary A.

Game G1. In this game, upon receiving a query Sign(R, δ, e,msg) or a query Chall(b, R, δ0, δ1, e,
msg0,msg1), C uses the simulator to generate valid transcripts for all users in R, just like G2 in the proof of
unforgeability. Following the same argument as before, we know G1 and G0 are statistically close.

Game G2. In this game, whenever a signature of δ ∈ [N] on event e is generated, instead of using the secret

key (sk
(δ)
1 , ..., sk

(δ)
k), the challenger C independently samples a group of public keys (epkδe,1, ..., epk

(δ)
e,k), and

uses them to generate the event-related public key epk := AggrPK(a1 · epk(δ)e,1 , ..., ak · epk
(δ)
e,k). Meanwhile, C

records (epkδe,1, ..., epk
(δ)
e,k) to ensure that the same key is used for the same user δ w.r.t. the same event e.

G2 and G1 are indistinguishable due to the pseudorandomness of (k + 1)-AIS. Furthermore, it is easy to
see that in G2, the experiment when b = 0 is identical to the experiment when b = 1, which finishes the proof
of the computational anonymity.

Linkability. Let Scorr be the set of users corrupted by A. W.l.o.g., we assume A first uses the corrupted
secret keys to generate k · |Scorr| different signatures under some event e∗, and H0(e

∗) = (epp1, ..., eppk).

Now, A’s goal is to generate a valid forgery σ∗ = (a1, ..., ak, epk, {c̃mt
(j)

, ẽcmt
(j)
}j∈[n], {rsp(j)}j∈[n]) such

that epk ̸=
∑

i∈[k] ai · feppi
(sk

(j)
i) for any corrupted user j ∈ Scorr. Otherwise, the algorithm Link will return

1 and A fails in ExplinkA,k (λ).
Recall thatH(·) is modeled as a random oracle. Following the same argument in the proof of unforgeability,

there exists a δ such that A queries ch(δ) at last among all ch(j) in the ring, and (c̃mt
(δ)

, ch(δ), rsp(δ)) is

a valid transcript under pp and pk(δ). The challenge C rewinds the simulation of ExplinkA,k (λ) and returns an

independent and randomly sampled ch(δ)′. Then again according to the forking lemma [BN06], with non-

negligible probability A will return another valid transcript (c̃mt
(δ)

, ch(δ)′, rsp(δ)
′
) in the forgery. By the

special soundness of (k + 1)-AIS, we can extract an extended secret key s̈k
(δ)

, given only pp and pk(δ).

52

Let sk(δ) be the secret key of user δ sampled at the beginning of ExplinkA,k (λ). If s̈k
(δ)

= sk(δ), then A fails in

ExplinkA,k (λ). And if s̈k
(δ)
̸= sk(δ), then we can construct a reduction algorithm to break the collision resistance

of the secret key for (k + 1)-AIS. This concludes the proof of linkability.

Non-slanderability. Let (e∗, δ∗, {(R∗
i ,msg∗i , σ

∗
i)}i∈[k+1]) be A’s final output in Expnon-slA,k (λ), where the first

k signatures are signed using sk(δ
∗), and the last one

σ∗
k+1 = (a1, ..., ak, epk, {c̃mt

(j)
, ẽcmt

(j)
}j∈[R∗

k+1]
, {rsp(j)}j∈[R∗

k+1]
)

is forged by A. Similarly, since H(·) works as a random oracle, we can locate a user δ′ such that A queries
ch(δ′) at last among all users in R∗

k+1. We analyze the following three cases.

– Case 1. δ′ /∈ Scorr. Since δ′ has not been corrupted, A breaks the unforgeability in this case, which
happens with negligible.

– Case 2. δ′ ∈ Scorr. Let sk(δ
′) = (sk

(δ′)
1 , ..., sk

(δ′)
k , sk

(δ′)
k+1) be the secret key of pk(δ

′). Similar to the argument

above, by rewinding we can extract an extended secret key s̈k
(δ′)

= (s̈k
(δ′)

1 , ..., s̈k
(δ′)

k , s̈k
(δ′)

k+1) for pk
(δ′).

• Case 2.1. s̈k
(δ′)
̸= sk(δ

′). In this case, we can construct a reduction algorithm that breaks the collision
resistance of the secret key for (k + 1)-AIS.

• Case 2.2 s̈k
(δ′)

= sk(δ
′). Let H0(e

∗) = (epp1, ..., eppk). From the k signatures signed by sk(δ
∗) =

(sk
(δ∗)
1 , ..., sk

(δ∗)
k , sk

(δ∗)
k+1), the event-related public keys

(epk
(δ∗)
1 , ..., epk

(δ∗)
k) = (fepp1

(sk
(δ∗)
1), ..., feppk

(sk
(δ∗)
k))

of δ∗ are totally exposed. At the same time, the event-related public keys (epk
(δ′)
1 , ..., epk

(δ′)
k) =

(fepp1(sk
(δ′)
1), ..., feppk

(sk
(δ′)
k)) of δ′ are fixed. Namely, the adversary A has to find a group of coeffi-

cients (a1, ..., ak) such that
∑

i∈[k] ai · epk
(δ∗)
i =

∑
i∈[k] ai · epk

(δ′)
i , i.e.,

∑
i∈[k] ai · (epk

(δ∗)
i − epk

(δ′)
i) =

0PK. Recall that both epk
(δ∗)
i and epk

(δ′)
i are distributed uniformly over PK (by the uniformity of

AIS). According to the infeasibility of kernel property, this is infeasible for A.
⊓⊔

E Concrete Schemes

In this section we show the concrete schemes of k-LRS from the DL/DDH assumption and the SIS assumption,
respectively.

E.1 Concrete Scheme from the DL/DDH Assumption

Let G is a cyclic group of order q with generator g, and H0 : {0, 1}∗ → G, H : {0, 1}∗ → Zq are two hash
functions. The DL-based k-LRS scheme is presented as follows.

– Setup: For i ∈ [k + 1], ωi
$← Z∗

q , gi := gωi . Return pp := (G, q, g1, ..., gk+1).

– Key Generation: For i ∈ [k + 1], xi
$← Zq, Xi :=

∏
i∈[k+1] g

xi
i , X :=

∏
i∈[k+1] Xi. Return (sk, pk) :=

((x1, ..., xk+1), X).
– Sign: Let PKR = (X(1), ..., X(n)) be the set of public keys in the ring. W.l.o.g., we assume the signer’s

index is 1. To sign a message msg under event label e, the signer does as follows.

1. Sample a1, ..., ak
$← Z∗

q , compute H0(e) = (e1, ..., ek) ∈ Gk, and X̃ :=
∏

i∈[k] e
aix

(1)
i

i .

53

2. r1, ..., rk+1
$← Zq, compute c̃mt

(1)
:=
∏

i∈[k+1] g
ri
i , ẽcmt

(1)
:=
∏

i∈[k] e
airi
i .

3. For j = 2, ..., n:

(a) Zq ∋ ch(j) := H(c̃mt
(j−1)

, ẽcmt
(j−1)

, a1, ..., ak, X̃, PKR, e,msg).

(b) z
(j)
1 , ..., z

(j)
k+1

$← Zq.

(c) c̃mt
(j)

:=
∏

i∈[k+1] g
z
(j)
i

i · (X(j))ch
(j)

, ẽcmt
(j)

:=
∏

i∈[k] e
aiz

(j)
i

i · X̃ch(j)

.

4. ch(1) := H(c̃mt
(n)

, ẽcmt
(n)

, a1, ..., ak, X̃, PKR, e,msg).

5. For i ∈ [k + 1]: z
(1)
i := ri − x

(1)
i · ch(1).

6. Return σ :=

(
a1, ..., ak, X̃, {c̃mt

(j)
, ẽcmt

(j)
, z

(j)
1 , ..., z

(j)
k+1}j∈[n]

)
.

– Verification: Let PKR = (X(1), ..., X(n)). For j ∈ [n], compute ch(j) := H(c̃mt
(j−1)

, ẽcmt
(j−1)

,

a1, ..., ak, X̃, PKR, e,msg) (user n is also referred to as user 0). If

c̃mt
(j)

=
∏

i∈[k+1]

g
z
(j)
i

i (X(j))ch
(j)

∧ ẽcmt
(j)

:=
∏
i∈[k]

e
aiz

(j)
i

i · X̃ch(j)

,

holds for all j ∈ [n], return 1; otherwise return 0.

– Link: Let

(
σι = (aι,1, ..., aι,k, X̃ι, {c̃mt

(j)

ι , ẽcmt
(j)

ι , z
(j)
ι,1 , ..., z

(j)
ι,k+1})

)
ι∈[k+1]

be k + 1 signatures for the

same event e (note that different σι may contain different rings). Let H0(e) = (e1, ..., ek). If there exists
a solution (epk1, ..., epkk) ∈ Gk for the following linear equation system

epk
a1,1

1 · epka1,2

2 · ... · epka1,k

k = X̃1,

epk
a2,1

1 · epka2,2

2 · ... · epka2,k

k = X̃2,

...

epk
ak+1,1

1 · epkak+1,2

2 · ... · epkak+1,k

k = X̃k+1,

then return 1 (linked). Otherwise, return 0 (unlinked).

E.2 Concrete Scheme from the SIS Assumption

Let H0 : {0, 1}∗ → (Zn×m
q)k and H : {0, 1}∗ → {0, 1}t be two hash functions. Define SAFE := {0, 1, ..., 10m−

1}km+m. The SIS-based k-LRS is presented as follows.

– Setup: For i ∈ [k + 1], sample Ai
$← Zn×m

q . Return pp := A = (A1||...||Ak+1).

– Key Generation: For i ∈ [k+1], xi
$← {0, 1}m. Set x⊤ := (x⊤

1 ||...||x⊤
k+1) and y :=

∑
i∈[k+1] Aixi. Return

(sk, pk) := (x,y).
– Sign: Let PKR = (y(1), ...,y(n)) be the set of public keys in the ring20. W.l.o.g., we assume the signer’s

index is 1. To sign a message msg under event label e, the signer does as follows.

1. Sample a1, ..., ak
$← Z∗

q , compute H0(e) = (Ae,1, ...,Ae,k) ∈ (Zn×m
q)k, and ỹ :=

∑
i∈[k] aiAe,ix

(1)
i .

2. For ι = 1, ..., t: (the underlying identification protocol repeats t times)

(a) rι,1, ..., rι,k+1
$← {0, 1, ..., 10m− 1}m, and r⊤ι := (r⊤ι,1||...||r⊤ι,k+1).

(b) c̃mt
(1)

ι :=
∑

i∈[k+1] Airι,i = Arι, ẽcmt
(1)

ι :=
∑

i∈[k] aiAe,irι,i.

(c) c̃mt
(1)

:= (c̃mt
(1)

1 , ..., c̃mt
(1)

t), and ẽcmt
(1)

:= (ẽcmt
(1)

1 , ..., c̃mt
(1)

t).
3. For j = 2, ..., n:

(a) {0, 1}t ∋ ch(j) := H(c̃mt
(j−1)

, ẽcmt
(j−1)

, a1, ..., ak, ỹ, PKR, e,msg).

20 Here we slightly abuse the notion n to keep consistency with earlier sections.

54

(b) For ι ∈ [t] and ζ ∈ [km + m], sample bι[ζ] ← χ, where χ is a biased binary distribution with
0-probability equal to 1/10m.

(c) For ι ∈ [t], sample rι,1, ..., rι,k+1
$← {0, 1, ..., 10m− 1}m, and r⊤ι := (r⊤ι,1||...||r⊤ι,k+1).

i. if ch
(j)
ι = 1 and there exists ζ ∈ [km + m] such that bι[ζ] = 0, then define zι =⊥, sι :=∑

i∈[k+1] Airι,i = Arι, and tι :=
∑

i∈[k] aiAe,irι,i.

ii. else if ch
(j)
ι = 1, sample zι,1, ..., zι,k+1

$← {0, 1, ..., 10m − 1}m, and compute sι :=∑
i∈[k+1] Aizι,i − y(j), and tι :=

∑
i∈[k] aiAe,izι,i − ỹ.

iii. else if ch
(j)
ι = 0, define zι := rι, sι := Azι and tι :=

∑
i∈[k] aiAe,izι,i, where z⊤ι =

(z⊤ι,1||...||z⊤ι,k+1).

(d) Define c̃mt
(j)

:= (s
(j)
1 , ..., s

(j)
ι , ..., s

(j)
t) and ẽcmt

(j)
:= (t

(j)
1 , ..., t

(j)
ι , ..., t

(j)
t).

4. ch(1) := H(c̃mt
(n)

, ẽcmt
(n)

, a1, ..., ak, ỹ, PKR, e,msg).
5. For ι ∈ [t]:

(a) if ch
(1)
ι = 1 and x(1) + rι /∈ SAFE, set z

(1)
ι :=⊥.

(b) otherwise, z
(1)
ι := rι + ch

(1)
ι · x(1).

6. Return σ :=

(
a1, ..., ak, ỹ, {c̃mt

(j)
, ẽcmt

(j)
, rsp(j) := {zι}ι∈[t]}j∈[n]

)
– Verification: Let PKR = (y(1), ...,y(n)) be the set of public keys. For j = 1, ..., n, compute ch(j) :=

H(c̃mt
(i−1)

, ẽcmt
(i−1)

, a1, ..., ak, ỹ, PKR, e,msg) (user n is also referred as user 0).
1. For j ∈ [n], define sum(j) = 0.
2. For j ∈ [n] and ι ∈ [t], if

Az(j)ι = c̃mt
(j)

+ ch(j)
ι · y(j) ∧

∑
i∈[k]

aiAe,iz
(j)
ι,i = ẽcmt

(j)
+ ch(j)

ι · ỹ,

and ||z(j)ι || ≤ (10
√
k + 1)m1.5, then sum(j) := sum(j) + 1.

3. If sum(j) ≥ 0.55t for all j ∈ [n], then return 1, otherwise, return 0.
– Link: Let {σℓ = (aℓ,1, ..., aℓ,k, ỹℓ, ...)}ℓ∈[k+1] be (k + 1) signatures for the same event e. Let H0(e) =

(Ae,1, ...,Ae,k). If there exists a solution (epk1, ..., epkk) ∈ (Zn
q)

k for the following linear equation system,
a1,1 · epk1 + a1,2 · epk2 + ...+ a1,k · epkk = ỹ1,

a2,1 · epk1 + a2,2 · epk2 + ...+ a2,k · epkk = ỹ2,

...

ak+1,1 · epk1 + ak+1,2 · epk2 + ...+ ak+1,k · epkk = ỹk+1,

then return 1 (linked). Otherwise, return 0 (unlinked).

Remark 13. The SIS-based instantiation above achieves unforgeability but not strong unforgeability, since
given a valid signature, an adversary can easily obtain another valid signature by switching some z (the
response in AIS) to ⊥.

Remark 14 (On the parameter of the SIS-based construction). The SIS-based construction above supports
only a small parameter k (e.g., k ≤ 4), as larger values would result in an unacceptably high correctness
error. Meanwhile, each signer can issue signatures for at most a constant number Q of different events (e.g.,
Q ≤ 10) to ensure anonymity.

F Multi-Event LRS: Definition and Generic Construction from k-LRS

In this section we formally define multi-event LRS (MLRS) and its security requirements, and show a generic
construction from k-LRS.

55

F.1 Defnition of Multi-Event LRS

Definition 23 ((k1, ..., kM)-MLRS). Let M,k1, ..., kM ∈ N+. A (k1, ..., kM)-multi-event linkable ring sig-
nature ((k1, ..., kM)-MLRS) scheme consists of the following five algorithms. Namely,
(k1, ..., kM)-MLRS = (Setup,Gen,Sign,Ver, Link).

– pp ← Setup(1λ,M, k1, ..., kM). The setup algorithm takes as input the security parameter 1λ, the upper
bounds of event index M and unlinked signing bounds for different events k1, ..., kM , and outputs a public
parameter pp.

– (sk, pk) ← Gen(pp): The key generation algorithm takes as input pp, and outputs a pair of secret and
public keys (pk, sk). W.l.o.g., we assume pp is contained in pk.

– σ ← Sign(PKR, sk
(δ), e1, ..., eM ,msg): The signing algorithm takes as input a group of public keys PKR,

the secret key sk(δ) of user δ ∈ R, event labels e1, ..., eM and a message msg, and outputs a signature σ.
– 1/0 ← Ver(PKR, e1, ..., eM ,msg, σ): The verification algorithm Ver takes as input R, PKR, e1, ..., eM ,

msg and σ, and outputs a bit indicating the validity of σ.
We say that a signature σ (w.r.t. events e1, ..., eM , message msg and ring R) is valid (resp., invalid), if
Ver(PKR, e1, ..., eM ,msg, σ) = 1 (resp.,
Ver(PKR, e1, ..., eM ,msg, σ) = 0).

– 1/0← Link(π, eπ, σ1, ..., σkπ+1): The link algorithm that takes as input an event index π ∈ [M], an event
label eπ and (kπ + 1) signatures σ1, ..., σkπ+1, and outputs a bit, where 1 indicates that these (kπ + 1)
signatures are linked to one actual signer, and 0 indicates unlinked.

Correctness.

1. Let M,N, k1, ..., kM ∈ N+. For any R ⊆ [N] and δ ∈ R, any events (e1, ..., eM) and message msg, it
holds that

Pr

 pp← Setup(1λ,M, k1, ..., kM)
(sk(1), pk(1)), ..., (sk(N), pk(N))← Gen(pp)

σ ← Sign(PKR, sk
(δ), e1, ..., eM ,msg)

: Ver(PKR, e1, ..., eM ,msg, σ) = 0

 ≤ negl(λ).

2. Let M,N, k1, ..., kM ∈ N+. For any π ∈ [M], any Ri ⊆ [N] and δi ∈ Ri (i ∈ [kπ + 1]), any event eπ and
messages msg1, ...,msgkπ+1, it holds that

Pr

 pp← Setup(1λ,M, k1, ..., kM)

(sk(1), pk(1)), ..., (sk(N), pk(N))← Gen(pp)

σi ← Sign(PKRi , sk
(δi), ..., eπ, ...,msgi)

: Link(π, eπ, σ1, ..., σkπ+1) = 1

 = 1, if δ1 = δ2 = ... = δkπ+1;

Pr

 pp← Setup(1λ,M, k1, ..., kM)

(sk(1), pk(i)), ..., (sk(N), pk(N))← Gen(pp)

σi ← Sign(PKRi , sk
(δi), ..., eπ, ...,msgi)

: Link(π, eπ, σ1, ..., σkπ+1) = 1

 ≤ negl(λ), otherwise.

Remark 15. It is naturally required that for two different event indexes π1 ̸= π2, the two corresponding event
spaces are disjoint. That is, an event label e under index π1 cannot be used as a label under index π2. This
can be easily achieved by adding the index as a prefix of the event string.

As for security, we require unforgeability, (unconditional) anonymity, linkability, and non-slanderability
for (k1, ..., kM)-MLRS.

Unforgeability. The adversary cannot forge a signature for a new message on behalf of a ring R in which
it is not included.

(Unconditional) anonymity. For any event index π and the corresponding signing bound kπ, given at
most kπ ring signatures, the adversary (even it is computationally unbounded) cannot detect which
signer actually signed them.

Linkability. The adversary who corrupts at most s signers cannot output (s · kπ + 1) different signatures
such that, every (kπ + 1) of them are unlinked under the same event eπ.

56

Non-slanderability. After seeing kπ signatures from one honest signer under some event eπ, the adversary
cannot generate a valid forgery that makes these kπ + 1 signature linked.

More formally, we define the security properties via the following experiments.

Definition 24 (Unforgeability of (k1, ..., kM)-MLRS). Let MLRS be a (k1, ..., kM)-MLRS scheme. We

say that MLRS has unforgeability, if, AdvunforgA,k1,...,kM
(λ) := Pr[ExpunforgA,k1,...,kM

(λ) = 1] ≤ negl(λ) holds for all

PPT adversary A, where the experiment ExpunforgA,k1,...,kM
(λ) is defined in Fig. 11.

Expunforg
A,k1,...,kM

(λ):

pp← Setup(1λ,M, k1, ..., kM)

For j ∈ [N]: (sk(j), pk(j))← Gen(pp)
S := Scorr := ∅
(R∗, e∗1, ..., e

∗
M ,msg∗, σ∗)← ASign(···),Corr(·)({pk(j)}j∈[N])

If R∗ ⊆ [N] ∧ R∗ ∩ Scorr = ∅ ∧ (R∗, e∗1, ..., e
∗
M ,msg∗, ·) /∈ S

∧ Ver(PKR∗ , e∗1, ..., e
∗
M ,msg∗, σ∗) = 1:

output 1
Otherwise: output 0

Sign(R, δ, e1, ..., eM ,msg):

If R ⊈ [N] ∨ δ /∈ R: return ⊥
σ ← Sign(PKR, sk

(δ), e1, ..., eM ,msg)
S := S ∪ {(R, e1, ..., eM ,msg, σ)}
Return σ

Corr(j):

Scorr := {j}
Return sk(j)

Fig. 11. The unforgeability experiment of (k1, ..., kM)-MLRS.

Definition 25 ((Unconditional) anonymity of (k1, ..., kM)-MLRS). Let MLRS be a (k1, ..., kM)-MLRS
scheme. We say that MLRS has anonymity, if, AdvanonyA,k1,...,kM

(λ) := |Pr[ExpanonyA,k1,...,kM
(λ) = 1]−1/2| ≤ negl(λ)

holds for all PPT adversary A, where ExpanonyA,k1,...,kM
(λ) is defined in Fig. 12.

If AdvanonyA,k1,...,kM
(λ) ≤ negl(λ) even for all powerful adversary A, then we say MLRS has unconditional

anonymity.

Expanony
A,k1,...,kM

(λ):

b
$← {0, 1}

pp← Setup(1λ,M, k1, ..., kM)
Spair := ∅
For j ∈ [N]:

(sk(j), pk(i))← Gen(pp)

T [j] := 0

For all δ, e: L[δ, e] := 0

b′ ← ASign(···),Chall(b,···)({pk(j)}j∈[N])

If b = b′: output 1
Otherwise: output 0

Sign(R, δ, e1, ..., eM ,msg):

If R ⊈ [N] ∨ δ /∈ R: return ⊥
σ ← Sign(PKR, sk

(δ), e1, ..., eM ,msg)
For ι ∈ [M]: + + L[δ, eι]
+ + T [δ]
Return σ

Chall(b,R, δ0, δ1, e1, ..., eM ,msg0,msg1):

If R ⊈ [N] ∨ δ0 /∈ R ∨ δ1 /∈ R: return ⊥
If T [δ0] ≥ minι(kι) ∨ T [δ1] ≥ minι(kι): return ⊥
For ι ∈ [M]: if L[δ0, eι] ≥ kι ∨ L[δ1, eι] ≥ kι: return ⊥
For ι ∈ [M]: + + L[δ0, eι], + + L[δ1, eι]
σ0 ← Sign(PKR, sk

(δ0⊕b), e1, ..., eM ,msg0)

σ1 ← Sign(PKR, sk
(δ1⊕b), e1, ..., eM ,msg1)

Return (σ0, σ1)

Fig. 12. The anonymity experiment of (k1, ..., kM)-MLRS, where the hightlighted codes are only shown in the
unconditional anonymity experiment.

57

Definition 26 (Linkability of (k1, ., , , .kM)-MLRS). Let MLRS be a (k1, ..., kM)-MLRS scheme. We say
that MLRS has unforgeability, if, AdvlinkA,k1,...,kM

(λ) := Pr[ExplinkA,k1,...,kM
(λ) = 1] ≤ negl(λ) holds for all PPT

adversary A, where the experiment ExplinkA,k1,...,kM
(λ) is defined in Fig. 13.

Explink
A,k1,...,kM

(λ):

pp← Setup(1λ,M, k1, ..., kM)

For j ∈ [N]: (sk(j), pk(j))← Gen(pp)
For all δ, e: L[δ, e] := 0
S := Scorr := ∅
(π∗, e∗, {(R∗

i ,msg∗i , {ei,ι}ι∈[M], σ
∗
i)}i∈[ℓ])← ASign(···),Corr(·)({pkj}j∈[N])

If (∀i ∈ [ℓ] : (R∗
i , ei,1, ..., ei,M ,msg∗i , ·) /∈ S

∧ Ver(PKR∗
i
, {ei,ι}ι∈[M],msg∗i , σ

∗
i) = 1 ∧ ei,π∗ = e∗

)
∧ (∀G ⊆ [ℓ], |G| = kπ∗ + 1 : Link(π∗, e∗π∗ , {σ∗

i }i∈G) = 0)
∧ |Scorr| ≤ ⌊(ℓ− 1)/kπ∗⌋ : output 1

Otherwise: output 0

Sign(R, δ, e1, ..., eM ,msg):

If R ⊈ [N] ∨ δ /∈ R: return ⊥
For ι ∈ [M]: if L[δ, eι] ≥ kι: return ⊥
For ι ∈ [M]: + + L[δ, eι]
σ ← Sign(PKR, sk

(δ), e1, ..., eM ,msg)
S := S ∪ {(R, e1, ..., eM ,msg, σ)}
Return σ

Corr(j):

Scorr := Scorr ∪ {j}
Return sk(j)

Fig. 13. The linkability experiment of (k1, ..., kM)-MLRS.

Definition 27 (Non-slanderability of (k1, ., , , .kM)-MLRS). Let MLRS be a (k1, ..., kM)-MLRS scheme.
We say MLRS has unforgeability, if Advnon-slA,k1,...,kM

(λ) := Pr[Expnon-slA,k1,...,kM
(λ) = 1] ≤ negl(λ) holds for all

PPT adversary A, where the experiment Expnon-slA,k1,...,kM
(λ) is defined in Fig. 14.

Expnon-sl
A,k1,...,kM

(λ):

pp← Setup(1λ,M, k1, ..., kM)

For j ∈ [N]: (sk(j), pk(j))← Gen(pp)
S := Scorr := ∅
For all δ, e: L[δ, e] := 0
(π∗, e∗, δ∗, {(R∗

i ,msg∗i , {ei,ι}ι∈[M], σ
∗
i)}i∈[kπ∗+1])

← ASign(···),Corr(·)({pk(j)}j∈[N])

If {(R∗
i , δ

∗, {ei,ι}ι∈[M],msg∗i , σ
∗
i)}i∈[kπ∗] ⊆ S

∧ (R∗
kπ∗+1, δ

∗, {ekπ∗+1,ι}ι∈[M],msg∗kπ∗+1, ·) /∈ S
∧ (∀i ∈ [kπ∗ + 1] : ei,π∗ = e∗)
∧ Ver(PKR∗

kπ∗+1
, {ekπ∗+1,ι}ι∈[M],msg∗kπ∗+1, σ

∗
kπ∗+1) = 1

∧ Link(π∗, e∗π∗ , {σ∗
i }i∈[kπ∗+1]) = 1 ∧ δ∗ /∈ Scorr :

output 1
Otherwise: output 0

Sign(R, δ, e1, ..., eM ,msg):

If R ⊈ [N] ∨ δ /∈ R: return ⊥
For ι ∈ [M]: if L[δ, eι] ≥ kι: return ⊥
For ι ∈ [M]: + + L[δ, eι]
σ ← Sign(PKR, sk

(δ), e1, ..., eM ,msg)
S := S ∪ {(R, δ, e1, ..., eM ,msg, σ)}
Return σ

Corr(j):

Scorr := {j}
Return sk(j)

Fig. 14. The non-slanderability experiment of (k1, ..., kM)-MLRS.

F.2 Generic Construction from k-LRS

Let N be the total number of users, M be the total number of event indexes, and k1, ..., kM be the upper
bounds of signing times w.r.t. different event indexes. Let k1-LRS, ..., kM -LRS be a series of LRS schemes.
Our MLRS scheme (k1, ..., kM)-MLRS is constructed as follows.

– Setup: For all i ∈ [M]: ppi ← ki-LRS.Setup(1
λ, ki). Return the public parameter pp := (pp1, ..., ppM).

58

– Key Generation: For all i ∈ [M]: (ski, pki)← ki-LRS.Gen(ppi). Return the secret key sk = (sk1, ..., skM)
and pk = (pk1, ..., pkM).

– Sign: Let (pk(1), ..., pk(n)) be the public keys of n users in the ring, and assume the signer’s index is 1.
To sign the message msg under event (e1, ..., eM), the signer does as follows.
1. Let msg := (R||msg||e1||...||eM).

2. Parse sk(1) = (sk1, ..., skM). For i ∈ [M], use ski to sign msg under event ei, i.e., σi ←
ki-LRS.Sign(PKR, ski, ei,msg).

3. Return σ := (σ1, ..., σM).
– Verify: For all i ∈ [M], let PKR,i be the assembly of the i-parts of public keys for users in R. If

ki-LRS.Ver(PKR,i, ei,msg, σi) = 1 for all i ∈ [M], then return 1. Otherwise, return 0.
– Link: Let {σi = (σi,1, ..., σi,M)}i∈[kπ+1] be (kπ +1) signatures whose corresponding π-th event labels are

eπ. Return kπ-LRS.Link(eπ, σ1,π, ..., σkπ+1,π).

Correctness. The correctness of (k1, ..., kM)-MLRS follows directly from the correctness (of both verification
and linkability) of the underlying LRS schemes k1-LRS, ..., kM -LRS.

Theorem 15. If k1-LRS, ..., kM -LRS are secure LRS schemes (i.e., they have unforgeability, uncondi-
tional (resp., computational) anonymity, linkability, and non-slanderability), then the MLRS scheme
(k1, ..., kM)-MLRS constructed above is secure, i.e., it has unforgeability, unconditional (resp., computational)
anonymity, linkability, and non-slanderability.

Proof. The proof is straightforward and we describe the sketch here.

Unforgeability. Let (R∗, e∗1, ..., e
∗
M ,msg∗, σ∗) be A’s final forgery and σ∗ = (σ∗

1 , ..., σ
∗
M). Recall A has never

queried the signing oracle with (R∗, e∗1, ..., e
∗
M ,msg∗), as otherwise A fails in the unforgeability experiment.

Therefore,
msg∗ := (R∗||msg∗||e∗1||...||e∗M)

has never occurred in the simulation of the signing oracle, and (R∗, e∗1,msg∗, σ∗
1) is a valid message-signature

pair for k1-LRS, which means that A breaks the unforgeability of k1-LRS (the same case for i = 2, ...,M).

Unconditional Anonymity. We use a series of hybrid games G0, ...,GM to prove the unconditional
anonymity.

Game Gi (0 ≤ i ≤M). In this game, upon receiving Chall(R, δ0, δ1, e1, ..., eM ,msg0,msg1), the challenger
C first sets msg0 := (R||msg0||e1||...||eM) and msg1 := (R||msg1||e1||...||eM), and then does the followings.

– For j ≤ i, it signs msg0 using δ(1)’s j-th secret key to get σj,0, and signs msg1 using δ(0)’s j-th secret key
to get σj,1.

– For i < j ≤ M , it signs msg0 using δ(0)’s j-th secret key to get σj,0, and signs msg1 using δ(1)’s j-th
secret key to get σj,1.

– Finally it returns (σ0, σ1) := ((σ0,1, ..., σ0,M), (σ1,1, ..., σ1,M)).

It is easy to see that G0 is just the experiment ExpanonyA,k1,...,kM
(λ) with b = 0, and GM is just the experiment

ExpanonyA,k1,...,kM
(λ) with b = 1. Meanwhile, the adjacent two games Gi and Gi+1 (0 ≤ i < M) are statistically

indistinguishable due to the unconditional anonymity of ki-LRS. Then the anonymity of (k1, ..., kM)-MLRS
holds as a result.

Computational Anonymity. The proof of computational anonymity is similar as above and we omit here.

Linkability. Let (π∗, e∗, {(R∗
i ,msg∗i , {ei,ι}ι∈[M], σ

∗
i)}i∈[ℓ]) be A’s final output in ExplinkA,k1,...,kM

(λ), and σ∗
i =

(σ∗
i,1, ..., σ

∗
i,M). Recall that all these signatures share the same π∗-th event label e∗. We focus on the π∗-th

parts of all signatures, i.e., {σ∗
i,π∗}i∈[ℓ]. If A wins, then we have

1. ∀i ∈ [ℓ]: kπ∗ -LRS.Ver(PKR∗
i ,π

∗ , ei,π∗ ,msg∗i , σ
∗
i,π∗) = 1, where

msg∗i := (R∗
i ||msg∗i ||ei,1||...||ei,M).

59

2. ∀G ⊆ [ℓ] s.t. |G| = kπ∗ + 1: kπ∗ − LRS.Link(e∗, {σ∗
i,π∗}i∈G) = 0.

3. |Scorr| ≤ ⌊(ℓ− 1)/kπ∗⌋.

Namely, A breaks the linkability of kπ∗ -LRS.

Non-slanderability. The arguement is similar as above. Let

(π∗, e∗, δ∗, {(R∗
i ,msg∗i , {ei,ι}ι∈[M], σ

∗
i)}i∈[kπ∗+1])

be A’s final output in Expnon-slA,k1,...,kM
(λ), and σ∗

i = (σ∗
i,1, ..., σ

∗
i,M). Recall that all these signatures share the

same π∗-th event label e∗. We focus on the π∗-th parts of all signatures, i.e., {σ∗
i,π∗}i∈[ℓ]. If A wins, then we

have

1. The first kπ∗ signatures come from the signing oracle, i.e.,

{(R∗
i , δ

∗, {ei,ι}ι∈[M],msg∗i , σ
∗
i)}i∈[kπ∗] ⊆ S.

2. The last signature is outside of S, i.e.,

(R∗
kπ∗+1, δ

∗, {ekπ∗ ,ι}ι∈[M],msg∗kπ∗+1, σ
∗
kπ∗+1) /∈ S.

3. kπ∗ -LRS.Ver(PKR∗
kπ∗+1,π

∗ , e∗,msg∗kπ∗+1, σ
∗
kπ∗+1,π∗) = 1, where

msg∗kπ∗+1 := (R∗
kπ∗+1||msg∗kπ∗+1||ekπ∗+1,1||...||ekπ∗+1,M).

4. kπ∗ -LRS.Link(e∗, {σi,π∗}i∈[kπ∗+1]) = 1.

Namely, A breaks the non-slanderability of kπ∗ -LRS. ⊓⊔

G Discussions

G.1 On the Necessity of Stateless k-LRS and Linking All k + 1 Signatures

Although statelessness is not a necessary, but rather a flourish property in many (signature-based) voting
cases, it is still desirable in the case where there are many phases of a voting event. Additionally, statelessness
is the golden and standard property in the syntax of signatures (including k-LRS), and it is natural and
desirable to make a k-LRS scheme stateless. This is not only for voting, but also for all other applications
of k-LRS.

The trivial solution from “using LRS k times” (see the technical overview in Sec. 1.3) cannot achieve
k-linkability (linking all k + 1 signatures) as ours. In voting, there are two main benefits of this property.
First, this prevents the tally inconsistency caused from canceling just part of the vote. Suppose we allow
voters to overvote but remove only the excessive part of their signatures. In such cases, say k = 2, if three
signatures are linked, what signature should be chosen to be removed? This might require a more complex,
error-prone structure. Second, this creates an incentive for voters to follow the rule because otherwise they
will be penalized.

Detailed Comparion with [BL16] . As we mentioned in the related work, both [BL16] and our work achieve
k-linkability, and the stateful scheme in [BL16] can be viewed as an extension of the “using LRS k times”
paradigm. Regardless of the insecurity of [BL16] (Appendix B), our scheme is superior to [BL16] in: (1)
statelessness; (2) public key size (O(1) v.s. O(k)), but worse than [BL16] in: (3) signing/verification time
(O(kn) v.s. O(n)).

G.2 Other Applications of k-LRS

We discuss additional applications of k-LRS as follows.

60

Trial Browsing of Contents. In trial browsing of contents [TFS04], a server aims to allow users anonymously
browse content such as movies and music on trial. At the same time, the server wants to bound the number of
times a user can access the service, avoiding a moocher using it excessively. Let k be the bound predetermined
by the server. Then this problem can be solved via a k-LRS scheme as follows. The server maintains a log
which contains all queries from anonymous users. Every time a user requests a service from the server, it
generates a k-LRS signature for this request under the event label the identity of the server, and then sends
the message-event-signature tuple to the server. Via the link algorithm, the server can check within the log
whether there are already exist k signatures that make these (k+1) signatures linked, i.e., whether the user
has already used all its k trials. At the same time, the identity of the user is hidden due to the anonymity
of k-LRS.

K-times Anonymous Authentication. In the classical “client-server” scenario, the client needs to authenticate
itself to the server anonymously. At the same time, the server might want to limit the number of times each
client can access it. For example, a basic member of a music website can download up to 10 tracks of music
every month. To acheive this goal, the client signs its request every time using a k-LRS scheme, hiding its
real identity from a group of clients. The server, who maintains a log for every request and checks the validity
via the link algorithm, can guarantee that no request from a client will get accepted if it exceeds the limit.

Anonymous Veto. An anonymous veto [BL16] scheme allows members of a group to anonymously express
up to k vetoes. For instance, in a decision-making process, each participant can anonymously veto up to k
options without revealing their identity. This ensures that individuals can express their objections without
fear of retribution or bias. Similar to the application in voting, this problem can be solved perfectly via a
k-LRS scheme.

G.3 Further Discussion on AIS

We formalize the concept of (k+1)-aggregatable identification schemes (AIS) to refine the core technique used
in constructing k-LRS, and provide two instantiations based on the DL assumption (or the DDH assumption)
and the SIS assumption, respectively. Except k-LRS, AIS may also contribute to the construction of threshold
ring signatures, multi-signatures, and related schemes. In a recent work [BPW23], Boneh, Partap, and Waters
introduced the concept of accountable multi-signatures with constant size public keys, where a single public
signature aggregation key pkc is generated during setup and used for verification. AIS appears to have
potential applications in constructing accountable multi-signatures, which we leave for our future work.

H Anonymous Bulletin Board

We recall the definition of Anonymous Bulletin Boards [IKOS06, YNKM24] in this section.

Definition 28 (Anonymous Bulletin Boards). Let P (1), ..., P (n) be n parties. An anonymous bulletin
board ABB among P (1), ..., P (n) is a functionality such that,

– in the writing phase, ABB takes a set of messages X(j) := {x(j)
1 , ..., x

(j)
Nj
} as inputs from every party P (j)

(j ∈ [n]), and

– in the reading phase, ABB outputs a set of messages Γ := {y1, y2, ..., y∑
j Nj
}, where Γ is obtained by

applying a random permutation S∑
j Nj

on the set
⋃
X(j).

We can also define ABBs such that all elements in Γ are sorted according to a canonical ordering. A
crucial property for ABB is that, by examining Γ alone, it should be impossible to determine which elements
in Γ orginated from X(j), for any j ∈ [n].

61

I Mode 3 Borda Count from MLRS

In this section we consider Mode 3 for the Borda count (a.k.a. Borda voting), where there are q candidates
C1..., Cq, and each voter is eligible to cast a sort of those q candidates as their votes. More formally, E ⊆ [q]∗q.
This can be regarded as the case where each voter assigns (up to q times) points to candidates based on
their ranking.

Canonical Borda count forbids voters from undervoting. However, as shown in Theorem 7, undervote
identification can not be guaranteed simultaneously with privacy. Therefore, in this paper we consider the
variant of Borda voting where undervote is allowed (for consistency we still call it the Borda voting). In the
following, we show how to achieve Mode 3 by (1, 1)-MLRS (cf. Appendix F for formal definitions): the vote
of a voter u on candidate Ci and ranking ji ∈ [q] is in the form of

(Ci||ji||(stri, σi))) ,

and σi is a (1, 1)-MLRS signature w.r.t. message (“VOTE:” || Ci || ji || stri) and dual-event label (“CAN-
DIDATE: Ci”, “RANKING: ji”).

We omit the other details, including the preparing, voting, and counting phases, since they are almost
identical to the other modes and trivial. We can employ the same methods as in Mode 2 to achieve the
“remove all” property by requiring each vote to include signatures for all q candidates, with a higher weight
assigned to the intended candidate.

Similar as Mode 2 voting, here the above Mode 3 voting achieves computationally privacy rather than
unconditional privacy, since the secret key of the underlying (1, 1)-MLRS is used to sign signatures under
different event labels and therefore the total signing time may exceed the bound.

J Relaxed Mode 2 Voting and Simpler Constructions from k-LRS and MLRS

In this section we consider two relaxed variants of Mode 2 voting, and show simpler constructions from
k-LRS and MLRS.

Variant 1 (Multi-voting without restriction). Each voter has at most k votes, and they can cast any
number of votes to any candidate or abstain. We design a protocol from k-LRS as follows.

Assume a voter wants to vote on a candidate Ci (i ∈ [q]). The voter signs the message
(“VOTE:” || Ci || str”) under event label (“VOTE”) on behalf of V (the assemble of all voters) and gets a
k-LRS signature, where str is a randomly sampled string. Voters can vote multiple times for any candidate,
as long as its total number of voting does not exceed k.

Now a vote on Ci is in the form of
(Ci||str||σ) .

Then the voter upload all the message-event-signature tuples to the anonymous bulletin board.
It is easy to see that the protocol is correct, and the (unconditionally) privacy is achieved due to the

(unconditional) anonymity of k-LRS.

Variant 2 (Multi-voting with a maximum number on each candidate). Each voter has at most
k = k1 votes, and they can cast up to k2 votes to any candidate or abstain. If a dishonest voter allocates
more than k2 votes to one candidate, then these repeated votes will be discarded (but other votes of this
dishonest voter remain). We design a Variant 2 voting system from (k1, k2)-MLS scheme as follows.

Assume a voter wants to vote on some candidate Ci (i ∈ [q]). The voter generates a random string str
and signs the message (“VOTE:” || Ci || str”) under event labels ((“VOTE”), (“CANDIDATE:” || Ci)) on
behalf of V, and gets a signature σ. The voter can repeat this up to k times.

Now a vote on Ci is in the form of
(Ci||str||σ).

Finally, it uploads all the message-event-signature tuples to the anonymous bulletin board.

62

If a malicious voter votes mote than k1 times or votes more than k2 times on the same candidate, then
all signatures contained in the votes will be linked on the first event label or the second event label, an hence
be discarded, ensuring the correctness of the protocol. Moreover, privacy is achieved due to the anonymity
of (k1, k2)-MLRS.

Achieving Mode 2 from MLRS. We can also design a Mode 2 voting system from (w, t)-MLRS, where
the i-th vote of a voter u on candidate Cci is in the form of(

Cci ||(stri,1, σi,1)||...||(stri,x, σi,x)||(str′i,1, σ′
i,1)||...

...||(str′i,ci−1, σ
′
ci−1)||(str′i,ci+1, σ

′
ci+1)||...||(str′i,q, σ′

i,q)
)
,

and

1. For j ∈ [x], σi,j is a (w, t)-MLRS signature w.r.t. message (“VOTE:” || Cci || stri,j) and dual-event label
(“VOTE”, “CANDIDATE: Cci”).

2. For j ∈ [q]\{ci}, σ′
i,j is a (w, t)-MLRS signature w.r.t. message (“VOTE:” || Cci || str′i,j) and dual-event

label (“VOTE”, “CANDIDATE: Cj”).

However, in this case we have to set (q + x − 1)k ≤ w, resulting a very large w. Therefore, we take the
double-layer pattern here in order to get high efficiency.

K Deferred Proofs

K.1 Proofs of Theorems for Voting Modes

Proof (of Theorem 4 (Security of Mode 1 Voting Variant 1)). Recall that the protocol is non-interactive,
and therefore, malicious voters cannot influence the result except by uploading their votes to the ABB.
Obviously, the votes should satisfy the specific form defined by the rule; otherwise, they will be discarded
immediately during the counting phase.

We present the following two facts to show that the counting results are correct.

1. All votes from honest voters (who vote/sign no more than k times) will remain. This is guaranteed by
the randomness of str and the non-slanderability of k-LRS and LRS. Recall that if two message-event-
signature tuples contain the same random string, then one of them will be discarded. While for honestly
generated votes, this happens with negligible probability. Moreover, according to the non-slanderability
of both k-LRS and LRS, even after seeing at most k votes from an honest voter, an attacker still cannot
forge a new vote (with a non-repeated random string) that makes either σ̂ or σ′ in those votes or linked.

2. All votes from dishonest voters (who vote/sign more than k times) will be identified and discarded.
Recall that a vote is in the form of (str||σ̂||σ′). If a malicious voter votes mote than k times, then by the
pigeonhole principle, there are at least one pair of votes whose σ′ will be linked, due to the linkability of
LRS. Furthermore, due to the linkability of k-LRS, if the malicious signer signs more than k times in total,
then all signatures σ̂ contained in the votes will be linked.21 Moreover, thanks to the non-slanderability,
malicious voters cannot invalidate votes from honest voters, as analyzed above.

The voting system has anonymity due to the anonymity of k-LRS and LRS.22 Furthermore, the smessage-
event-signature tuples from a specific voter is confused among all ℓ (valid) tuples after the permutation by
ABB, and no information is revealed except that the candidate gets exactly a score of ℓ, and hence the
privacy is guaranteed. ⊓⊔
21 Of course a voter v might sign twice using the same secret key sk′

i of LRS but the total votes v casted does not
exceet k. In this case, v does not break the voting rule and hence there is no need to discard v’s votes.

22 This variant achieves computational anonymity only due to the computational anonymity of the underlying LRS
scheme.

63

Proof (of Theorem 6 (Security of Mode 2 Voting)). The protocol is non-interactive, and therefore malicious
voters cannot influence the result except by uploading their votes to the ABB. To show that the counting
results are correct, we claim the following two facts.

1. All voters from honest voters will remain. This is guaranteed by the randomness of str and the non-
slanderability property of k-LRS and t-LRS, and the fact that k+k2(x−1) ≤ t (recall that k1 = k). Here
non-slanderability ensures that malicious voters cannot invalidate votes from honest voters by uploading
any forge message-event-signature tuples and make them to be linked with honestly generated signatures.

2. All votes from dishonest voters (who vote/sign more than k times or vote/sign more than k2 times on
the same candidate) will be identified and discarded. First, due to the linkability of k-LRS, no dishonest
voter can vote more than k times, as otherwise there would be (k + 1) votes that contain linked outer
signature σi. Second, if one votes on the same candidate, say C, at least k2 +1 times, then there should
be at least (k2 + 1)x inner signatures σi,j under event label (“CANDIDATE:” || C). According to the
linkability of t-LRS and the fact that (k2+1)x > t, all these signatures are linked, and consequently votes
for other candidates (which contains at least one inner signature under event label (“CANDIDATE:” ||
C)) from this dishonest voter can be identified and hence discarded.

The voting system has (computational) anonymity due to the anonymity of k-LRS and t-LRS. Further-
more, the message-event-signature tuples from a specific voter is confused among all (valid) tuples after the
permutation by ABB. Therefore, no information is revealed except that the vote itself is valid, and hence
the privacy is guaranteed. ⊓⊔

K.2 Proof of the Negative Result on Privacy

Proof (of Theorem 7). We prove the theorem via a counterexample. Consider a 3-voting specification where
there are six candidates A,B,C,D,E, F and two voters, and each voter is expected to select exactly 3
candidates.

A distribution of a non-overvoted profile23 can be denoted as

P =

(
vote

(1)
1 , vote

(1)
2 , vote

(1)
3

vote
(2)
1 , vote

(2)
2 , vote

(2)
3

)
,

where the first row contains the three votes of the first voter, and the second row contains the three votes

of the second voter, and for i ∈ {1, 2, 3}, j ∈ {1, 2}, vote(j)i ∈ {A,B,C,D,E, F} or vote(j)i =⊥ (i.e., the j-th
voter abstains from casting their i-th vote).

In this work, we consider ABB-based non-interactive setting, and each vote vote
(j)
i uploaded to ABB is

attached with a signature π (or more generally, a certificate or a proof), showing the validity of vote
(j)
i .

According to privacy, it holds that(
(A, πA), (B, πB), (C, πC)
(D,πD), (E, πE), (F, πF)

)
ind.
≈
(
(A, πA), (E, πE), (C, πC)
(D,πD), (B, πB), (F, πF)

)
.

Namely, from the state of ABB, no adversary can distinguish the case where the first voter votes for A,B,C,
and the second voter votes for D,E, F , from the case where the first voter votes for A,E,C, and the second
voter votes for D,B,F .

The equation above implies that ([Sho06], Theorem 8.32)(
(A, πA), (B, πB), ⊥
(D,πD), (E, πE), (F, πF)

)
ind.
≈
(
(A, πA), (E, πE), ⊥
(D,πD), (B, πB), (F, πF)

)
.

23 If the profile is overvoted, we first modify it to a non-overvoted profile by identifying all overvotes and replacing
them with empty strings in accordance with the overvote identification.

64

On the other hand, according to the undervote identification, if the first voter abstains from casting their
third vote, then all their previous votes would be identified. Namely, if the certificated profile (from ABB) is(

(A, πA), (B, πB), ⊥
(D,πD), (E, πE), (F, πF)

)
,

then ((A, πA), (B, πB)) can be identified and hence removed, leaving a profile (D,E, F) left.
Similarly, if the certificated profile is(

(A, πA), (E, πE), ⊥
(D,πD), (B, πB), (F, πF)

)
,

then ((A, πA), (E, πE)) can be identified and hence removed, and the profile left is (D,B,F), which is clearly
distinguishable from (D,E, F). That is, the distributions(

(A, πA), (B, πB), ⊥
(D,πD), (E, πE), (F, πF)

)
and

(
(A, πA), (E, πE), ⊥
(D,πD), (B, πB), (F, πF)

)
are distinguishable, which leads to a conflict. ⊓⊔

65

	K-Linkable Ring Signatures and Applications in Generalized Voting
	Introduction
	Our Contributions
	Related Work
	Technical Overview

	Preliminaries
	k-Linkable Ring Signatures
	Applications in Voting Systems
	Non-Interactive Voting over Anonymous BB
	Instantiating Different Voting Rules
	Mode 1 Voting from k-LRS
	Approaches of Reducing the Complexity of Linking
	Mode 2 Voting from k-LRS and t-LRS

	Negative Result on Privacy
	Instantiating k-LRS from Aggregatable Identification Schemes
	Identification Schemes
	Aggregatable Identification Schemes
	DL-based AIS
	k-LRS from Aggregatable Identification Schemes

	Limitation of Liu et al.'s LRS Scheme
	The Insecurity of Bultel and Lafourcade's Scheme
	Impossiblity of Traceable Ring Signatures with Unconditional Anonymity
	Deferred Material in Construction
	SIS-based AIS
	Security of k-LRS

	Concrete Schemes
	Concrete Scheme from the DL/DDH Assumption
	Concrete Scheme from the SIS Assumption

	Multi-Event LRS: Definition and Generic Construction from k-LRS
	Defnition of Multi-Event LRS
	Generic Construction from k-LRS

	Discussions
	On the Necessity of Stateless k-LRS and Linking All k+1 Signatures
	Other Applications of k-LRS
	Further Discussion on AIS

	Anonymous Bulletin Board
	Mode 3 Borda Count from MLRS
	Relaxed Mode 2 Voting and Simpler Constructions from k-LRS and MLRS
	Deferred Proofs
	Proofs of Theorems for Voting Modes
	Proof of the Negative Result on Privacy

