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Abstract. The rational secret sharing problem (RSS) considers incen-
tivizing rational parties to share their received information to reconstruct
a correctly shared secret. Halpern and Teague (STOC’04) demonstrate
that solving the RSS problem deterministically with explicitly bounded
runtime is impossible, if parties prefer learning the secret than not learn-
ing, and they prefer fewer other parties to learn.
To overcome this impossibility result, we propose RSS with competi-
tion. We consider a slightly different yet sensible preference profile: Each
party prefers to learn the secret early and prefers fewer parties learn-
ing before them. This preference profile changes the information-hiding
dynamics among parties in prior works: First, those who have learned
the secret are indifferent towards or even prefer informing others later;
second, the competition to learn the secret earlier among different access
groups in the access structure facilitates information sharing inside an
access group. As a result, we are able to construct the first determinis-
tic RSS algorithm that terminates in at most two rounds. Additionally,
our construction does not employ any cryptographic machinery (being
fully game-theoretic and using the underlying secret-sharing scheme as a
black-box) nor requires the knowledge of the parties’ exact utility func-
tion. Furthermore, we consider general access structures.

⋆ This work is mostly done while the author was a Ph.D. candidate at Purdue Uni-
versity.
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1 Introduction

Secret sharing is one of the fundamental building blocks of modern cryptography.
An m-out-of-n secret sharing scheme shares one secret among n parties and
then m people together can reconstruct this secret. In this access structure, any
m parties form an access group. However, this threshold secret sharing notion
naturally assumes at least m parties are honest (i.e., follow the protocol exactly)
to ensure a successful reconstruction. Such an assumption can be strong in some
applications. Therefore, Halpern and Teague [12] proposed the rational secret
sharing (RSS) problem.

In particular, RSS only assumes that the participants are rational, and aims
to achieve fair reconstruction. Informally, a fair reconstruction in an RSS proto-
col run by rational (and possibly also malicious parties) allows rational parties
to all learn the secret. Here, a rational party follows some preference profile when
taking an action. As an example, the preference profile in [12] is that rational
parties prefer learning the secret over not learning and prefer that fewer others
also learn the secret. Under this profile, it was shown in [12] that it is impossible
to build a fair reconstruction that is deterministic and runs for a known bounded
number of rounds. Intuitively, this is because in the last round, not sharing dom-
inates sharing when (m− 1) other parties share. Then via backward induction,
the Nash equilibrium that survives iterated deletion of dominated strategies from
the last to the first round is each rational party sharing no information.



To circumvent such an impossibility result, past works have taken a few
different routes: (1) adding randomness so that reconstruction terminates prob-
abilistically, and parties can penalize those not sending shares in the previous
round by aborting [12,17,1], (2) considering different preference profiles, e.g.,
only preferring learning [1], (3) considering infinite or unknown rounds of recon-
struction, where backward induction no longer applies, and defecting can always
be penalized, or (4) discussing repeated reconstructions for many secrets where
parties can penalize cheating parties in later runs reconstructing a different se-
cret [23]. Among these approaches, (1), (3), and (4) share the same intrinsic
rationale: parties who do not honestly help reconstruction get penalized, which
promotes cooperation. Following this idea, one may also consider RSS to be part
of a larger protocol where penalties can be applied outside RSS executions. How-
ever, one issue with this method together with approaches (3) and (4) is that
they are not as generic as (1) and (2). Thus, we avoid such non-generic settings.

For approach (1), previous works have explored randomized RSS protocols
based on Shamir’s secret sharing scheme [27]. The protocol typically proceeds
in rounds. In each round, each party decides whether to send their correct share
to others or not. Each round is an actual reconstruction round for the secret
with some probability α ∈ (0, 1): If a round is not an actual reconstruction
round, the secret is not successfully reconstructed, and parties start a new round.
Parties abort if others deviate from sharing in the previous round. Otherwise,
the protocol terminates when it hits an actual reconstruction round. Here, α is
parameterized with parties’ utility functions in a way such that rational parties
are incentivized to share.

To design such a randomized RSS algorithm, past works have used some
heavy tools, including simultaneous broadcast (SBC) [5] (or time-delayed encryp-
tion (TDE) [20], homomorphic time-lock puzzles (HTLP) [22], verifiable random
function (VRF) [24]), along with a trusted mediator or a secure multiparty com-
putation (MPC) protocol [10], and digital signatures [12,11,1,20,17,18,25,8,19,3]
[15,16]. With these primitives and given a proper α, sending shares to others is
made the equilibrium strategy (in the respective equilibrium in each past work).
We give a more detailed description of these RSS protocols in Section 2 and a
summary in Table 1. However, there are several major issues with these solu-
tions: (1) they use heavy machinery and thus lack practicality; (2) α may be
small, meaning that the protocol can potentially last many rounds (e.g., hun-
dreds with α < 0.01); (3) α is set according to the utility function of each party
and thus the function must be known explicitly. These issues are also detailed
in Section 2.

An alternative preference profile. To avoid the above drawbacks, we choose
the route of devising a different yet still sensible preference profile. In practice,
information can be time-sensitive: People may not only prefer learning the infor-
mation but also prefer learning it earlier than others, since this may give them
advantages. For example, in stock markets, people who learn information earlier
can front-run others and make a profit. Moreover, for people who have already
learned and capitalized on the secret, they may still prefer others learning it

3



than not. For instance, others buying the same stock after oneself increases the
bid prices. On the other hand, people who have not learned still prefer learning
than not learning. In the same example, not learning incurs opportunity costs.

With this intuition in mind, we consider a preference profile accounting for
time and competition: Rational parties prefer learning the secret in earlier rounds
and prefer fewer parties learning the secret before themselves. However, they still
prefer learning it than not.

This profile especially applies to RSS in the following applications. (1) It
applies where the secrets generate time-sensitive returns and can be capitalized
fast, e.g., the reconstructed secret indicates investment opportunities. In this
case, learning the secret earlier yields higher profits and one is indifferent to-
wards informing others after acting on the information. (2) It also applies where
parties benefit from others taking a certain predictable action after learning the
secret, e.g., buying the same stocks as oneself. In this case, one prefers inform-
ing others after learning. (3) It also applies to applications where accomplishing
computation tasks faster facilitates progress, e.g., distributed computing proto-
cols [9] where a supermajority of parties reconstructing a secret– such as the
randomness– early can form a committee to make progress.

1.1 Contributions

New preference profile. We first formally define the new preference profile
that provides a new direction to circumvent the impossibility. Intuitively, under
the updated preference profile, rational parties are naturally encouraged to share
information inside their access groups to learn the secret quickly and before other
access groups.1 Indeed, we show that sharing information in the first or second
round is the subgame perfect equilibrium (in the scheme below), which is stronger
than the Nash equilibrium (NE) used in prior works.

Deterministic RSS construction. With this new preference profile, we pro-
vide a deterministic RSS scheme (with general access structure, see Section 3.2
for details) that terminates in two rounds without requiring simultaneous com-
munication. In particular, it has the following advantages:

• No heavy cryptographic machinery: Major previous works [12,11,1,20,17,18]
[25,8,19,3,15,16] focus on probabilistic termination of the protocol and avoid
parties’ gaining information advantages in the reconstruction game by either
enforcing simultaneous movements with SBC or other heavy tools including
timed primitives and VRF.
In contrast, we lift all these requirements: we do not even request broadcast
channels and allow parties to move sequentially. 2 We also do not need a
trusted mediator or MPC functioning as a mediator during reconstruction.

1 Except for the singleton access structure (i.e., all parties need to participate to
recover the secret).

2 Sequential actions further allow the reconstruction to operate in network asynchrony.
However, since our preference profile is more reasonable in network synchrony (to
make “time-sensitiveness” relevant), we only discuss asynchrony setting briefly in
appendix B.
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• Knowledge about the utility function is not required. The previous random-
ized protocols require the knowledge of participants’ exact utility functions to
parameterize α, the protocol termination parameter, properly. Such knowl-
edge is not needed in deterministic reconstruction.

• Arbitrary side information does not affect the protocol. As pointed out by
Asharov and Lindell [3], access to auxiliary information about the secret
motivates deviation from the equilibrium of information sharing in random-
ized RSS protocols that do not rely on SBC. Intuitively, the informed party
can potentially reconstruct and recognize the secret without sharing and
entering the next round. Lysyanskaya and Segal [19] circumvent this by uti-
lizing TDE to hide the reconstructed output for a sufficiently long time. Our
updated preference profile allows RSS to accommodate side information be-
cause each round is needed for actual reconstruction (unlike prior works
where each round is only for actual reconstruction with some probability),
and auxiliary information does not give informed parties an advantage.

• Small complexity overhead. The reconstruction of our scheme terminates in
constant rounds. It also has little communication and computation over-
head, and the share size is unchanged from generic secret sharing schemes.
Furthermore, when the randomness of the schemes relies on secret sharing
schemes (e.g., distributed randomness beacons and asynchronous distributed
key generation), randomized RSS faces circularity or expensive setups, while
our deterministic RSS avoids them.

2 Prior work on RSS

We summarize the prior works in table 1 and show how they compared to ours,
and elaborate on each of them below. We also summarize the solution concepts
used in prior works in Appendix A.

First generation RSS. Halpern and Teague [12] consider the following pref-
erence profile for parties: (U1) rational parties’ utilities only depend on the
outcome of the reconstruction; (U2) each rational party prefers learning the se-
cret than not; (U3) when one learns the secret, it prefers fewer other parties who
also learn the secret. The solution concept utilized for solving the reconstruc-
tion game is Nash equilibrium (NE) where no party can increase their utility by
unilaterally deviating from the equilibrium. They first show that the NE for the
reconstruction game in a single access group is parties not sending their shares
to others. They demonstrate that it is impossible to have a deterministic RSS
protocol with a known finite number of rounds under preferences (U1)-(U3).
The authors then devise a randomized RSS protocol where each round is an
actual reconstruction round with probability α, and parties run the protocol
until accomplishing an actual reconstruction round or after detecting deviating
behaviors of not sending shares. In this way, rational parties are incentivized to
broadcast shares. The RSS protocol applies to n ≥ 3 parties (due to how the
protocol realizes the probabilistic termination). It utilizes an online dealer who
continuously issue shares, a trusted mediator for coordinating reconstruction,
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and SBC for enforcing simultaneous moves of parties. This first proposal has the
following limitations:

1. An online trusted dealer is needed.
2. The protocol does not handle 2-out-of-2 secret sharing and does not have

coalition resistance.
3. The protocol does not tolerate malicious parties.
4. SBC is needed.
5. The RSS designer needs to know the parties’ utility functions to decide α.
6. The round complexity is O(α−1).

Second generation RSS. Gordon and Katz [11] propose a simpler RSS pro-
tocol for n ≥ 2 parties: In each round, an honest dealer shares the actual secret
which is in some field with probability α and otherwise, she shares a random
element outside this field. Lysyanskaya and Triandopoulos [20] consider mali-
cious parties and propose a scheme that tolerates (⌈n/2⌉ − 1) malicious parties
with MPC and zero-knowledge proofs. Abraham et al. [1] introduce the (k, t)-
robustness notion for equilibrium strategies where a set of k ≥ 1 parties form
a coalition in playing the reconstruction game, and another set of t parties be-
have arbitrarily. For a base m-out-of-n Shamir’s secret sharing scheme (n ≥ 2),
they propose a (k, t)-robust RSS protocol terminates in expected two rounds for
k < m ≤ n− k and O(α−1) rounds for k < m ≤ n provided that parties’ utility
functions satisfy some additional conditions. This generation of protocols resolve
issues 1, 2, 3 and partly 6 above. However, issues 4 and 5 remain unsolved. Be-
sides, SBC is still the main inefficiency source, on top of other newly introduced
heavy tools.

Third generation RSS. Kol and Naor [18,17] remove the dependence on SBC
in previous RSS protocols and adopt a stronger solution concept, strict NE12

when solving the reconstruction game. However, [18,17] introduce high round
complexity. Fuchsbauer et al. [8] utilize VRF [24] to remove the reliance on SBC
and preserve the round complexity O(α−1). Moreover, the protocol applies to
asynchronous network. However, without SBC, randomized RSS inherently does
not allow for access to side information since an informed party can recognize a
reconstruction round before sharing [3].

To accommodate side information, Lysyanskaya and Segal [19] assume com-
putationally bounded parties and network synchrony, and utilize TDE to hide
reconstruction results until the next round. Additionally, they assume parties
prefer misleading others to wrong outputs and not learning the secret to every-
one learning the secret. De and Pal [7] build on [19], and continue to adopt TDE
for hiding shares. Side information is distributed by the dealer to help parties
decide whether the reconstructed secret is correct. Knapp and Quaglia [16] build
upon [7] and improve on computation overhead by employing HTLP instead of
TDE. In [14], Kawachi et al. build verifiable RSS upon another RSS plus verifi-
able/authenticated SS (and they use [8] as the underlying RSS) – which means
that they inherit all the assumptions from the underlying RSS – and achieve

12 In a strict NE, each party’s equilibrium strategy generates strictly higher utility.
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constant rounds in expectation. While these works relax the SBC requirement
resolving issue 4, and [14] solves issue 6 (but cannot tolerate side information),
the constructions are still randomized and rely on other heavy cryptographic
tools or additional assumptions on rational parties’ preferences.

3 Model and definitions

3.1 System and network

There are n parties functioning as share holders. They can have side information
about the secret of interest. The parties are either rational and act in a utility-
maximizing manner or malicious and behave arbitrarily. We start by assuming
that the parties are rational and consider malicious parties in Section 6.

Parties are connected via authenticated point-to-point channels. Their mes-
sages are digitally signed. The network is synchronous, meaning that there is
a known finite time bound ∆: For a message sent at some time t, it is delivered
by time t+∆. We define one round to be ∆ time. We assume a party learning a
secret in a round x can capitalize on the information faster than a party learning
it in a higher round ≥ x+ 1.

3.2 Secret sharing

This section recalls the definition of secret sharing. In this paper, we consider a
more general secret sharing setting, allowing a general access structure, instead
of only the threshold setting (i.e., m-out-of-n secret sharing). At a high level, it
means that there exist multiple sets of participants, and each of these individual
sets of participants can reconstruct the secret among themselves. All these sets
together form an access structure A. m-out-of-n is a special access structure,
where each individual set is simply m out of these n participants. These are
defined more formally below.

Access structure. Consider a secret sharing scheme run by n parties, [n] =
{1, . . . , n}. A general access structure A ⊆ 2[n] is a subset of the power set of
the party set. We address each set in A as an access group. The m-out-of-n
threshold secret sharing scheme has access structure A(m) = {S ⊆ [n] : |S| ≥
m}. For clarity in analysis, we consider only the minimal access groups in A
where each party in the set is needed for reconstruction and truncate their strict
supersets, which we denote as A⋆. For example, the minimal threshold access
structure is A⋆(m) = {S ⊆ [n] : |S| = m}.

The n parties can have asymmetric status in A in terms of the number of
ways to reconstruct the secret. For instance, one party can be present in every
access group and is needed by each group for secret reconstruction while this
party only needs shares from any group. We capture this asymmetry by defining
a new notion, rank, and let function γ(·) compute the rank of the input.

Definition 1 (Rank). The initial rank of a party i in a minimal access struc-
ture A⋆ is γ(i) = |{S ∈ A⋆ : i ∈ S}|.

8



A party present in every access group has rank |A⋆|, and we say that such a
party is universal when |A⋆| > 1. We let the lowest possible rank be 1 for non-
triviality. Parties in m-out-of-n Shamir’s scheme have symmetric status: They
have the same rank

(
n−1
m−1

)
.

Next, we define a reconstruction freedom notion to measure how much a
party depends on another party to reconstruct the secret.

Definition 2 (Reconstruction freedom). For i, j ∈ [n], the reconstruction
freedom of a party j from party i is freej(i) = |{S ∈ A⋆ : j ∈ S, i /∈ S}|.

Secret sharing scheme. A secret sharing scheme is a tuple of two algorithms
(Share(·),Rec(·)):

– [s] := (s1, . . . , sn) ← Share(m): Given the secret m as input, output the
shares for each party.

– m′ ← Rec([s]A) where [s]A are the shares held by parties in a set A: Given
a set of shares, deterministically reconstructs a secret.

The security of a secret sharing scheme requires correctness where any group of
parties in the access structure can reconstruct the secret successfully, i.e., m′ = m
if A ∈ A, and privacy where any group of parties that does not appear in A do
not learn anything about the secret from their received shares.

We will assume a secure secret sharing scheme defined for honest and mali-
cious parties, and develop a RSS reconstruction algorithm that makes closed-box
use of its reconstruction function Rec(·).

3.3 Reconstruction game definitions

This section introduces concepts that are needed for our proof, arguing why our
construction satisfies our requirement via game theoretic arguments.

Game representation. In game theory, a normal-form game captures the
outcomes of participants playing certain strategies at the same time and receiving
respective utilities. It can be formalized with (1) the set of parties, (2) the actions
available to each party, and (3) the utility function of each party, which maps an
outcome to a real number.

Our solution does not rely on SBC and therefore, allows the parties to move
sequentially. Note that in the reconstruction game, sequential move does not
mean that each party has to wait for other parties to act before taking an action
but that they act in each round and take others’ prior actions into consideration.
When the game involves sequential moves of parties, we need to additionally
capture a few more concepts, including the actions available at each point of
the game, parties’ knowledge of others’ past actions and their own past moves,
and parties’ beliefs about others’ future actions. Such a game is addressed and
expressed as an extensive form game: It can be formalized with the three com-
ponents (1)-(3) as before together with (4) the party’s knowledge of the past,
and (5) the party’s beliefs of the future when it is her turn to move.
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Solution concepts. A strategy is a probability distribution over all available ac-
tions, and a strategy profile records the strategies of all parties. Strategy profiles
that have certain desired properties are called equilibrium strategies or solution
concepts, e.g., the equilibrium where no party increases her utility by unilaterally
deviating from a strategy profile is called the Nash equilibrium (NE).

Definition 3 (NE). Let ({Ai}i∈[n], {ui}i∈[n]) denote a game where Ai is party
i’s action space and ui is utility function of i. Let σi be a probability distribution
on actions in Ai. A vector of distributions σ = (σ1, . . . , σn) is the NE if

∀i ∈ [n],∀σ′
i ̸= σi, ui(σ) ≥ ui(σ

′
i, σ−i)

Since NE is susceptible to empty threats13, we turn to its refinements to solve
sequential games. Specifically, the solution concept that we adopt for solving
the reconstruction game is subgame perfect equilibrium (SPE [26]), where the
equilibrium strategy profile specifies the NE strategies for each rational party
for any subgame.

Definition 4 (SPE). A Nash equilibrium is said to be an SPE if and only if it
is a NE in every subgame of the original game.

Alternatively, one can consider sequential equilirbium: parties hold beliefs about
others’ past moves when selecting the utility-maximizing strategies at their turn
to move, and their equilibrium strategy profile turns out to be consistent with
each other’s beliefs. We adopt SPE instead because parties can observe others’
actions, e.g., sharing information or staying silent.

4 Preference profiles

This section starts with the preference profiles introduced in prior works and
what we modify to obtain a new preference profile that we work on.

Preference profiles assumed in prior works. Let outi(r) denote whether
party i learns the secret in a complete run r of the reconstruction game, i.e., from
the start of the reconstruction algorithm until reconstruction is no longer possible
even if all remaining parties are honest. outi(r) = 1 indicates that i learns the
secret and 0 otherwise. We let out(r) indicate the outcome for all parties in [n].
We denote the utility function of party i as ui(·) and i’s utility from obtaining
the outcome of run r as ui(r). In prior works, the assumed preference profile for
any rational party i ∈ [n] is as follows:

• (U1) For any two runs r, r′, if out(r) = out(r′), then ui(r) = ui(r
′).

13 Consider the Ultimatum game among two parties. One party proposes a way to
divide a sum of money between them. If the other party accepts, then the money is
divided accordingly; otherwise, both receive nothing. The responder can threaten to
accept only fair offers, but this threat is not credible: given any non-zero amount,
the only rational action for the responder is to accept.
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• (U2) For any two runs r, r′, if outi(r) = 1 and outi(r
′) = 0, then ui(r) >

ui(r
′).

• (U3) For any two runs r, r′, if outi(r) = outi(r
′), ∀j ̸= i, outj(r) ≤ outj(r

′)
and ∃j ̸= i, outj(r) < outj(r

′), then ui(r) > ui(r
′).

Here U1 means that each party’s utility depends only on the overall outcome.
U2 means that a party strictly prefers learning the secret. U3 means that parties
strictly prefer fewer other parties who also learn the secret.

Our preference assumption. We update the preference profile U1 and U3 to
take the timing of learning the secret into consideration: Parties prefer to learn
the secret fast14 and strictly prefer fewer parties who learn the secret before
themselves. Note that a party still prefers learning the secret than not learning
it, and thus U2 remains the same. Also note that we adopt a weaker assumption
on the timing of learning: If parties strictly prefer learning the secret earlier, the
analysis still applies.

Let iti(r) denote the earliest “round” where i learns the secret in a run r.
Note that iti(r) = ∞ if i does not learn the secret. The updated preference
profile is as follows:

• (U1⋆) For any two runs r, r′ where out(r) = out(r′), if iti(r) = iti(r
′), then

ui(r) = ui(r
′), and if iti(r) < iti(r

′), then ui(r) ≥ ui(r
′).

• (U3⋆) For any two runs r, r′ where out(r) = out(r′), if |{j ∈ [n] ∧ j ̸= i :
itj(r) < iti(r)}| < |{j ∈ [n] ∧ j ̸= i : itj(r

′) < iti(r
′)}|, then ui(r) > ui(r

′).

Here we do not explicitly formalize a party’s preference towards letting others
learn after learning the secret. However, we have assumed that parties learning
the secret earlier profit from it earlier (Section 3.1). Then naturally, a party is
indifferent to informing others after acting on the knowledge of the secret. In
certain applications, they may find it strictly preferable to share with others,
such as in the example in Section 1.

5 Fair reconstruction under the new preference profile

5.1 Order of events

To argue the security of our scheme, we need to first define a secret reconstruction
game (see section 3.3 for a game definition).

In the reconstruction game, the action space for each party includes: (1)
abort, (2) enter a new round, and (3) send one’s share(s) to one or more parties.
15 During reconstruction, one can tell if a party has taken actions (1) and (2) due

14 This is because we assumed that parties learning the secret in earlier rounds can
profit from it faster (Section 3.1).

15 Note that here we do not consider sending a fake share, since if the underlying base
secret-sharing scheme is not verifiable, the transformed RSS scheme is not verifiable.
To obtain verifiable RSS, one can simply use a verifiable secret-sharing scheme and
our transformation naturally extends to the verifiable setting.
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to network synchrony, and action (3) directly if they are one of the recipient(s).
This allows us to adopt SPE as the solution concept since rational parties can
observe others’ prior actions.

Given network synchrony, we can describe the reconstruction game in rounds.
Specifically, we consider running the reconstruction algorithm among the par-
ties only for a finite known number of rounds, T ≥ 1. Note that if we let T be
infinite, parties sending their shares or fair reconstruction can be made the equi-
librium [21] with punishment on deviators. We focus on a finite known T because
it is harder to encourage cooperation in this setting, which is also indicated by
the impossibility result [12].

Now, consider the following secret reconstruction game G (proceeding in
rounds) given a pre-defined integer T ≥ 1.

In each round i = 1, . . . , T + 1:

(1) If i = T +1 or if each access group in A⋆ has at least one aborted party, the
game terminates.

(2) The parties in each access group with no aborted members decide whether
to take one of the three actions in time ∆ (after which a round ends). After
each party takes an action, enter the next round and go to step (1).

One might notice that in Step (1), checking if the game has terminated may
induce a computation complexity that is exponential in the number of parties
due to the size of the access structure. We note that this game is conceptual and
only for reasoning about parties’ actions. It does not indicate the computation
complexity of our actual RSS protocol (to be presented in Figure 1).

5.2 Game analysis

Now, we discuss the intuition of why under the preference profile introduced
in section 4, rational parties intend to reconstruct the secret in G. As in prior
works, we aim for a fair reconstruction where all rational parties learn the secret.

Intuitions. We start with a simple case: consider an access structure with a
universal party (who appears in every group, with rank |A⋆| > 1). Let u ∈ [n] be
one universal party. u can ensure that it becomes the first to learn the secret by
committing to only sharing information after receiving all other shares from (at
least) one access group. Note that this may not be credible. After recovering the
secret, u can then send all shares from one access group to other non-universal
parties so that they all learn the secret after u. Then non-universal parties are
better off sending their shares in the first round, since the universal party would
send them the shares afterwards. We later show that this strategy profile is an
SPE, and the reconstruction game terminates in two rounds without requiring
SBC (case (b) in Theorem 1).

Next, consider a non-singleton access structure (|A⋆| > 1) with only non-
overlapping parties (i.e., every party has rank 1). In this case, parties are in-
centivized to share information in the first round. This is because (1) learning
the secret faster generates higher returns, (2) deviating from sharing does not
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improve one’s utility (since others would learn at most as fast as them but not
sooner), and (3) deviating from the sharing strategy may even decrease one’s
utility if other access groups successfully reconstruct in the first round. The
competition among access groups who do not need each other’s shares promotes
cooperation in secret reconstruction inside an access group. The strategy profile
of sharing information in the first round is an SPE, and the reconstruction game
terminates in one round without requiring SBC. This is formalized as case (a)
in Theorem 1.

Finally, consider a non-singleton access structure with only non-universal
parties who have ranks ∈ [1, |A⋆| − 1], and at least one party has rank > 1.
Consider a party i with rank x > 1, i.e., rank(i) = x > 1. Let A1, . . . , Ax be
the x access groups that i is in, and A = ∪xj=1Aj . If for any party j ̸= i in
set A, freej(i) = 0. Then i is a locally universal party for parties in set A. The
reasoning in the first case described in the beginning applies: i sends everyone
else shares after receiving all the other shares from at least one group. If there
exists a party j such that freej(i) > 0, i now has incentives to share in the first
round because otherwise, other access groups may reconstruct before it. This is
formalized as case (c) in Theorem 1. Note that this includesm-out-of-n threshold
secret sharing for all m < n.

Solve for SPE. We now formally state and prove the main results for RSS
under preference profile U1⋆, U2, and U3⋆.

Theorem 1. Consider a secret sharing scheme with minimal access structure
A⋆ on party set [n] where |A⋆| > 1. Suppose rational parties have preference
profiles U1⋆, U2, and U3⋆, and the reconstruction algorithm is run for at most
a finite T rounds for some finite integer T > 1.

(a) If ∀i ∈ [n], γ(i) = 1, there exists a deterministic RSS scheme that terminates
in 1 round.

(b) If ∃i ∈ [n] such that γ(i) = |A⋆|, there exists a deterministic RSS scheme
that terminates in at most 2 rounds.

(c) In other cases, there exists a deterministic RSS scheme that terminates in
at most 2 rounds.

Proof. We use backward induction to solve for the SPE. For clarity, let party
i receive utility ωi from learning the secret in the first round, lose ϵik when k
parties learn the secret before themselves (0 ≤ k ≤ n − 1), lose τ ij if one learns

the secret in the j-th round (1 ≤ j ≤ T ), and lose τ iT+1 if i does not learn the
secret. We have 0 = τ i1 ≤ τ i2 ≤ . . . ≤ τ iT < τ iT+1 to reflect party i’s desire to learn
the secret sooner, and 0 = ϵi0 < ϵi1 < . . . < ϵin−1 to express its preference of not
learning after others. For example, if party i learns the secret after (n− 2) other
parties in the second round, its utility equals (ωi − ϵin−2 − τ i2).

Setting (a): We first show that in setting (a), the SPE in the reconstruction game
is that parties sen their shares to each other in the first round. The equilibrium
strategy of sharing information in the first round gives each party utility ω.
Without loss of generality (abbreviated as WLOG hereon), consider an access
group A with m parties {1, . . . ,m}. Consider any party i ∈ A.
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• In round T , all parties in A sharing gives each party i ∈ A utility (ωi −
ϵin−m−τ iT ) in the worst case where other access groups have already learned
the secret (i.e., all the other m − n parties have learned) and (ωi − τ iT ) in
the best case where no other access groups have successfully reconstructed.
More generally, suppose x parties have already learned the secret in prior
rounds, this quantity is (ωi−ϵix−τ iT ). All parties sharing in round T is a NE
of the remaining game since no party can increase their utility by deviating
towards the action of entering the next round without sharing. Each party
not sharing or any ≤ (m − 2) parties sharing are also NEs since no party
can increase their utility unilaterally, which is at most −τ iT+1. However, the
latter NEs will be eliminated when we reason backwards.

• In round (T −1), all parties in A sharing gives each party i utility (ωi− ϵix−
τ iT−1) when x parties from other groups have already learned. All parties in
A sharing is an NE of the remaining game given any x ∈ [0, n−m], because
(ωi − ϵix − τ iT−1) ≥ (ωi − ϵix − τ iT ) > (ϵi0 − τ iT+1).

Intuitively, if all parties are going to share in the last round or ≤ m− 2 parties
share, then sharing in the second to last round provides higher utility. We apply
this reasoning until round 1. Sharing in round 1 is a NE of the remaining subgame
since ωi ≥ ωi − ϵix − τ i2 for each party i ∈ A where x is the number of parties
that have learned the secret in round 1. We can apply this reasoning in each
non-overlapping access group. This then concludes the SPE for setting (a). We
give the RSS protocol for setting (a) in Figure 1.

Setting (b): We next show that in the setting described in (b), the SPE is as
follows: In the first round, non-universal parties send their shares to universal
parties, and universal parties send shares among each other; in the second round,
universal parties send collected shares to non-universal parties that have sent
them shares in round one. First, consider the case where there is exactly one
universal party. WLOG, let this party be party 1. Consider any access group A
with m parties {1, . . . ,m}.

We have established that after learning the secret, sharing is at least a weakly
dominant strategy for the universal party since we assume parties learning the
secret earlier can capitalize on it earlier (discussed by the end of Section 4).
Next, the universal party 1 can adopt the following strategy: only after learning
the secret, share the collected shares with parties who have sent shares to it in
the next round (if not already). This is credible until the round 1 < R ≤ T where
τ1R > τ11 and τ1R−1 = τ11 with R > 2, and for any other party i, τ iR−1 − τ i1 > ϵi1.
This means that the universal party does not mind delaying learning the secret
to a round R − 1 as long as it can learn first, while others prefer learning the
secret earlier even if they have to let one party learn before them.

We first consider the non-credible case. Since the threat is completely non-
credible, we treat the universal party as normal parties. Similar to setting (a),
in round T , all parties in A sharing or any ≤ m− 2 parties sharing are the NEs.
In round T − 1 to round 1, all parties in A sharing is the NE.

We next reason about the case with a credible universal party.
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• In round T , all parties in A (including party 1) sharing is an NE for the
subgame if party 1 has not yet learned the secret, where each non-universal
party i earns utility (ωi− ϵix− τ iT ) when 0 ≤ x ≤ n−m parties in B = [n]\A
have learned the secret. Any ≤ m− 3 parties sharing (regardless of whether
party 1 has learned the secret or not) are also NEs for the remainder of the
reconstruction game, where each non-universal party in A earns (−ϵix−τ iT+1).

• In round (T − 1) until round (R− 1), we have the same NEs as round T .
• In round (R − 2), the universal party 1 plays the strategy in the threat.
If 1 has learned the secret, non-universal parties in A sending shares to the
universal party is the NE as sharing produces higher utility in some scenarios,
e.g., when some other parties who have not yet learned the secret send shares
to 1 in round (R − 2), and at least the same utility as not sharing in other
scenarios. If 1 has not yet learned the secret, all parties in A sharing is an
NE if (τ iR−1 − τ iR−2) > ϵi1 for all non-universal party i ∈ A. Any ≤ m − 3
parties sharing are also NEs for the remainder of the game regardless of the
relationship between (τ iR−1 − τ iR−2) and ϵi1.

• In round 1, no party has learned the secret yet, and party 1 plays the strategy
in the threat. If non-universal parties in A send shares to 1, they learn the
secret in round 2. If all others learn the secret in a round ≤ 2, sharing
produces strictly higher utility as learning in later rounds 3, 4 and so on.
If there exists some other party who learns in a higher round, then sharing
produces at least the same utilities.

Next, we consider the scenario where there are multiple universal parties.
WLOG, we let there be ku > 1 universal parties and denote them as 1, . . . , ku.
Consider any access group A with m parties {1, . . . , ku, . . . ,m}, and we can
apply the above reasoning in the same way. Note that same as before, we only
consider universal parties who can issue credible threats, i.e., τuRu

< τu1 and

τuRu−1 = τu1 for each universal party u with Ru > 2 as well as τ iR−1 − τ i1 > ϵiku

where R = min{R1, . . . , Rku
} for any other party i ∈ A.

• In round T , if universal parties have not learned the secret, all parties in A
sharing is an NE for the subgame. Any ≤ m− ku − 2 parties (excluding the
universal parties) sharing are also NEs.

• In round (T − 1) until round (R− 1), we have the same NEs as round T .
• In round (R−2), the universal parties play the strategy in the threat. If uni-
versal parties have learned the secret, the non-universal parties in A sending
shares to the universal parties is the NE as sharing produces higher utility in
some scenarios, e.g., when some other parties who have not yet learned the
secret send shares to universal parties in round (R−2), and at least the same
utility as not sharing in other scenarios. If universal parties have not learned
the secret, all parties in A sharing is an NE if (τ iR−1 − τ iR−2) > ϵiku

for all
non-universal party i ∈ A. Any ≤ m− 3 parties sharing are also NEs for the
remainder of the game regardless of the relationship between (τ iR−1 − τ iR−2)
and ϵiku

.
• In round 1, no party has learned the secret yet, and universal parties play
the strategy in the threat. Same as the previous case of a single universal
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party, sharing and learning the secret in round 2 produces at least the same
utility as not sharing and learning in later rounds. Similar to case (a), the
universal parties share with each other in round 1. Briefly, sharing among
universal parties in the last round is an NE, and sharing earlier produces at
least the same utility as sharing in the last round T .

Then the equilibrium strategy profiles take at most two rounds. This concludes
the SPE for setting (b). We give the RSS protocol for setting (b) in Figure 1.

Setting (c): We finally analyze setting (c). We say a subset of ku parties in a
group A, denoted as Au ⊂ A, is locally universal if the following holds: (1)
any party u ∈ Au has rank > 1, and for each party u, there exists a round
Ru > 2 such that τuRu−1 = τu1 and τuRu

> τu1 ; (2) for any other party i ∈ A\Au,
freej(u) = 0∀u ∈ Au, i.e., other parties have to rely on this group’s shares in

reconstruction, and (τ jR−1− τ j1 ) > ϵiku
where R = min{R1, . . . , Rku

}. Combining
the analysis for settings (a) and (b), the SPE in scenario (c) is as follows: For
access groups with locally universal parties, in the first round, parties that are
not locally universal send their shares to the locally universal parties, who send
shares among themselves in the first round and send their shares to the non-
locally universal parties in the second round; For access groups without universal
parties, parties send their shares to their group members in the first round.

5.3 RSS protocols

Let the secret message m of length ℓ be in space {0, 1}ℓ. Consider any base secret
sharing scheme (Share(·),Rec(·)) with respect to minimal access structure A⋆.
In the sharing phase, the dealer generates shares [s]← Share(m) and distributes
shares si to each party i ∈ [n]. We give the simple reconstruction routines under
settings (a)-(c) in Figure 1.

Communication and computation complexity. In all three settings, the
protocol terminates in at most two rounds. In the worst case, each party needs
to send its share to all other parties, resulting in quadratic communication com-
plexity. The computation complexity is bounded by the reconstruction algorithm
Rec(·) of the underlying secret sharing algorithm.

6 Extension

Coalitions. Due to the preference profile, the analysis applies to any coalition
size. We only need to treat the coalition as a single party in analysis, including
determining its rank and steps to take in reconstruction.

Malicious parties. A malicious party can act arbitrarily, including rushing (as
we do not require SBC or timed primitives) and never sending their shares. For
malicious parties, consider the hypergraph constructed from A: each party is a
vertex; each access group is a hyperedge. The minimum cover t⋆ of this graph
gives the maximum number of tolerable malicious parties t⋆−1. This means that
when there exist universal parties in A, we cannot tolerate even one malicious
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Reconstruction routine 1

▷ Applicable to setting (a), setting (b) and (c) where universal parties are not credible and
setting (c) where an access group has no locally universal parties.

1. Each party i multicasts (i.e., sends a message to one or more parties) si
to all parties in their access groups. Wait for ∆ time (i.e., one round):
– If i collects all the shares sA for its access group, denoted as A ∈ A⋆, i

reconstructs to obtain m← Rec(sA) and terminates.
– Otherwise, i aborts.

Reconstruction routine 2

▷ Applicable to setting (b) with credible universal parties. Note that non-credible universal
parties are treated as normal parties.

1. Each non-universal party i multicasts si to to all parties in their access
groups. Each universal party u with multicast su to all the other universal
parties. Wait for ∆ time (i.e., one round):
– If a universal party u collects all the shares in any of its access group,

denoted as A ∈ A⋆, u reconstructs to obtain m← Rec(sA) and enters
into round 2. Otherwise, u aborts.

– Non-universal parties enter into round 2.
2. u multicasts sA to parties who have sent u shares in round 1 and
terminates. Non-universal parties reconstruct m← Rec(sA) and
terminates.

Reconstruction routine 3

▷ Applicable to setting (c) with credible locally universal parties. Note that non-credible
universal parties are treated as normal parties.

1. Each party i who is not locally universal multicasts si to all parties in
their acccess groups. Each locally universal party u sends su to other
locally universal parties present in the same access groups. Wait for ∆
time (i.e., one round).
– If a locally universal party u collects all the shares in any of the access

group A ∈ A⋆, u reconstructs to obtain m← Rec(sA), and enters into
round 2. Otherwise, u aborts.

– Non-locally-universal parties enter into round 2.
2. u multicasts sA to parties who have sent u shares. Non-locally-universal
parties reconstruct m← Rec(sA) and terminates.

Fig. 1: RSS reconstruction algorithms.

corruption. Note that, however, commonly used access structures such as the
threshold structure do not have a universal party intrinsically because of the
need for robustness.

Thus, to tolerate malicious parties, we first require that all the malicious
parties together do not cover all access groups. Then, we slightly modify the
current reconstruction algorithm: Instead of letting parties abort after learning
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the secrets, we let each party eventually multi-cast the secret in round T . This
then makes sure at least one rational group recovers the secret, and other rational
parties also learn the secret. Hence, the analysis of the rational parties remain
unchanged.

MPC. Halpern and Teague [12] and Abraham et al. [1] note that the results
for secret sharing apply to secure multi-party computation assuming a trusted
third party and correct inputs from rational parties. The trusted mediator can
perform the computation and secret-share the result among participants.

Consider the sharing phase. We follow prior RSS protocols and focus on
designing a (fair) reconstruction algorithm, as it involves multiple interacting
parties. Moreover, in our deterministic protocol, we do not require the dealer to
re-issue actual or fake secrets as in prior works with randomized protocols. The
dealer only sends shares to parties once and no more interaction is needed after-
ward. However, as an interesting future direction, one can examine the sharing
phase of RSS as a part of a larger protocol such as MPC where the dealer can
also be a share holder.

Verifiable secret sharing (VSS). Replacing the underlying secret sharing
scheme in our construction with VSS does not change our analysis or scheme. In
the analysis, first, the action of “sending a wrong share” is equivalent to “entering
the next round” without sharing due to share verifiability. Second, our scheme
does not employ any cryptographic tools (unlike prior works), and our solution
concept does not depend on computational assumptions on parties (i.e., our
SPE holds for computationally bounded parties as well). In the protocol, our
construction uses the underlying secret sharing scheme as a closed-box: what
happens inside is orthogonal to our analysis.

When |A| = 1. One condition not discussed in Theorem 1 is when there is only
one access group (e.g., n-out-of-n secret sharing). In this case, no competition
exists. Therefore, the proof in Section 5.2 does not intuitively work. To make
our construction work, we simply modify our preference profile for the parties
to strictly prefer learning the secrets sooner than later. In other words, changing
U1⋆ to the following (difference marked in blue): (U1⋆⋆) For any two runs r, r′

where out(r) = out(r′), if iti(r) = iti(r
′), then ui(r) = ui(r

′), and if iti(r) <
iti(r

′), then ui(r) > ui(r
′).
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A Compare solution concepts

ϵ-NE. NE can be relaxed to ϵ-NE to admit more equilibria.

Definition 5 (ϵ-NE). Let ({Ai}i∈[n], {ui}i∈[n]) denote a game and σi denote
a probability distribution over actions in Ai. Given a small constant ϵ > 0, a
vector of distributions σ = (σ1, . . . , σn) is an ϵ-NE if

∀i ∈ [n],∀σ′
i ̸= σi, ui(σ) ≥ ui(σ

′
i, σ−i) + ϵ

Computational NE. In cryptographic protocols, parties are typically compu-
tationally bounded, allowing relaxing NE to computationally bounded parties.

Definition 6 (Computational NE). Let ({Ai}i∈[n], {ui}i∈[n]) denote a game
and σi denote a probability distribution over actions in Ai. Given a security
parameter κ and probablistic polynomial time players, a vector of distributions
σ = (σ1, . . . , σn) is a computational NE if

∀i ∈ [n],∀σ′
i ̸= σi, ui(σ) ≥ ui(σ

′
i, σ−i) + negl(κ)

where negl(·) is a negligible function of the input.

Strict NE. When the NE strategy profile specifies the strictly dominant strat-
egy for each party, it is called a strict NE. When the guarantee is information
theoretic, it is called information-theoretic strict NE, and computation strict NE
is defined accordingly.

Trembling-hand NE. The idea behind trembling hand NE is to accommodate
errors on other players’ side: even when other players make a small mistake
when playing the equilibrium strategy, a player’s best response is still to play
the equilibrium strategy. The error can also originate from “out-of-band” event
such as network failures. A proper definition hinges on defining the small error
tolerance in specific applications.

Definition 7 (Trembling-hand NE [13]). Let ({Ai}i∈[n], {ui}i∈[n]) denote a
game, σi denote a probability distribution on actions in Ai for each i, and δ(·, ·)
measure the distance between two input distributions (e.g., statistical distance).
Let ϵ > 0 be a small constant. A vector of distributions σ = (σ1, . . . , σn) is the
stable NE with respect to ϵ trembling if

∀i ∈ [n],∀σ′
i ̸= σ′

i,∀σ′
−i such that δ(σ−i, σ

′
−i) < ϵ, ui(σi, σ

′
−i) ≥ ui(σ

′
i, σ

′
−i)

Bayesian NE. Ong et al. [25] consider uncertainty of other players’ types, i.e.,
rational or honest, and model the reconstruction game as a sequential game with
incomplete information.

Definition 8 (Bayesian NE). Let ({Ai}i∈[n], {ui}i∈[n]) denote a game, σi de-
note a probability distribution over actions in Ai, and µ denote the distribution
of player types. A vector of distributions σ = (σ1, . . . , σn) is a Bayesian NE if

∀i ∈ [n],∀σ′
i ̸= σi, ui(µ, σ) ≥ ui(µ, (σ

′
i, σ−i))
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B Discussion on Network Asynchrony

Now we discuss the case when the network is asynchronous, i.e., there is no finite
bound on the message delay. In this case, the round notion in section 3 is no
longer well-defined, since ∆ does not exist anymore. Therefore, we need to deal
with two issues: (1) we need to redefine our preference profile to remove the
reliance on ∆ while still capturing the relative order of events; (2) we need to
modify our algorithm to remove the reliance on ∆.

Redefine “round”. First, we redefine “round” to be the steps of actions
instead of being ∆ time. In other words, round i for participant j starts when
j sends the i-th message out and ends when it sends the (i+ 1)-th message out
or terminates. With this modifications, our preference file remains unchanged,
since it relies only on rounds instead of ∆ directly.

Change of the protocol in Figure 1. First, when a party takes the action of
not sharing but directly “entering the next round”, we require the party to send
a dummy message. Next, to modify our scheme, we use a similar strategy as [8]:
Instead of waiting for∆ time, a party waits until they obtain enough information
to take the next action. For example, in setting (a), each party i waits for all
the shares sA in its access group. If the shares are received, it reconstructs the
secret and terminates; if a dummy message is received, it aborts. This does not
change our analysis.

Note that if we consider malicious parties who can always stay silent and do
not send any dummy messages, we assume they do not cover all access groups
for the same reason discussed in Section 6. This means that there exists at least
one access group consisting of only rational parties. Rational parties are not in-
centivized to enter a new round without signaling as this increases their round
number without facilitating other parties’ next action (because it is indistin-
guishable from delayed messaging in other parties’ perspectives).

Incompatibility with our motivation. While our scheme can indeed to be
modified to fit the asynchrony setting as above, the asynchrony setting itself
does not suit our motivation very well. In particular, with the “round” defined
above, it is hard to motivate that one may preferring learning in one round than
the other, since the second round of one party can be later than the third round
of the other party in terms of global time. However, with asynchrony, it is hard
to define “round” with respect to the global time directly. Therefore, asynchrony
deviates from our original motivation of time-sensitive secrets. Of course, even
with this definition, it still makes sense that one prefers learning in their first
round rather than their second round. However, due to the subtlety above, we
only discuss asynchrony in the appendix for completeness.

C Simple Solution with A Public Bulletin Board

Lastly, we discuss a simple solution to RSS that is orthogonal to our main
direction (i.e., having a new preference profile). This solution is less generic
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than our main direction, but adopts the preference profile proposed in [12], and
thus may be of independent interest.

This simple solution is to use a public blockchain system with payment execu-
tion functions. Similar to previous works [6,4,2] for ensuring correct executions
in secure computations, we can devise a straightforward solution to the RSS
problem using such a system. (i) Each party first makes a sufficient deposit. (ii)
The dealer then generates and distributes shares to each party according to any
publicly verifiable secret sharing (PVSS) scheme [28]. (iii) During reconstruction,
each party sends shares to the blockchain system. The deposits of parties not
sharing correct information are taken to be distributed to others. As long as
the deposit is sufficiently large, rational parties are incentivized to share correct
information. This solution inherits the assumptions of the underlying blockchain
system. Since it costs to post to blockchains, running a larger protocol with
many secret sharing instances can become uneconomical. Further, our generic
solution does not require PVSS but works with any secret sharing schemes.
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