
Robust Non-Interactive Zero-Knowledge Combiners

Michele Ciampi1, Lorenzo Magliocco2, Daniele Venturi2, and Yu Xia1

1The University of Edinburgh, UK
{michele.ciampi, yu.xia}@ed.ac.uk

2Sapienza University of Rome, Italy
{magliocco, venturi}@di.uniroma1.it

February 15, 2025

Abstract

A t-out-of-n robust non-interactive zero-knowledge (NIZK) combiner is a construction that,
given access to n candidate instantiations of a NIZK for some language, itself implements
a NIZK for the same language. Moreover, the combiner is secure, assuming at least t of
the given candidates are secure. In this work, we provide the first definition of combiners
for NIZK, and prove that no robust NIZK combiner exists assuming t ≤ ⌊n/2⌋ (unless the
polynomial hierarchy collapses).

On the positive side, we provide different constructions of robust NIZK combiners for
t > ⌊n/2⌋. In particular, we show how to obtain:

• A black-box combiner working for a special class of homomorphic languages where n, t
are polynomial and t > ⌊n/2⌋.

• A non-black-box combiner working for any language, where n, t are constant and t >
⌊n/2⌋.

• A non-black-box combiner working for any language, where n, t are polynomial and
t > ⌊2n/3⌋.

1 Introduction

A short story. Once upon a time, there was a little girl called Cryptess. She was smart
and had a passion for crypto puzzles. She loved walking through her favourite forest, especially
while thinking about the next hard problem to attack. One day, while wandering through the
forest without thinking about where to go, she found herself in front of a beautiful glade. She
had the impression1 she had been already there before, but could not remember, so she entered
the glade.

Once inside, she found a fairy flapping her wings and staring at her. The fairy said: “Wel-
come back, little Cryptess. I am the fairy Cryptophia and since you have found my magical
glade, I grant you one wish.” Cryptess thought about it for a second, then she asked: “Do
you know about zero-knowledge proofs?”. “Of course I do!”, replied the fairy. Then, Cryptess
continued: “Here is my wish then. I give you two non-interactive zero-knowledge proof systems,
out of which at least one is secure but you don’t know which one. I wish you design a non-
interactive zero-knowledge proof system, based on the two I gave you, that is always secure.”.
Cryptophia immediately replied: “I am sorry. Unfortunately, what you ask for is impossible.”

1Indeed, she was right [Mit13], but for some reason she had forgotten about it.

1

mailto:michele.ciampi@ed.ac.uk
mailto:yu.xia@ed.ac.uk
mailto:magliocco@di.uniroma1.it
mailto:venturi@di.uniroma1.it

Cryptess was surprised at first, but after some moment of thought something kicked in her head.
Then, the glade disappeared and the little girl found herself on the ground, in the middle of the
forest. “Maybe, if I assume three proof systems instead of two...” Then, she smiled, and ran
home. Now, she knew what to do.

1.1 Robust NIZK combiners

A combiner C for a primitive P is a cryptographic construction that, given access to two or more
candidate instantiations of P, itself implements the primitive P. In particular, C is called a
t-out-of-n robust P-combiner if C is secure assuming at least t < n of the candidates P1, . . . ,Pn

are secure. Of course, depending on the actual primitive P, security can be formalized in
different ways, and, indeed, robust combiners have been studied in the literature for a plethora
of cryptographic primitives including hash functions, oblivious transfer, functional encryption
schemes, and more. We review some of these results in Section 1.4.

In this paper, we study robust non-interactive zero-knowledge (NIZK) combiners in the
common reference string (CRS) model [BFM88]. This allows us to provide a formal framework to
combine NIZK protocols with different potential weaknesses. As a concrete example, one could
combine NIZKs relying on assumptions of different flavours, including heuristic assumptions
widely used for real-world deployments and assumptions that may be less resilient to the test of
time (e.g., ones threatened by quantum computers). As another example, it could be meaningful
to combine implementations developed from different vendors or open-source projects, as they
might not match the respective theoretical specification. For instance, implementations may be
tampered with by its maintainers (e.g., with backdoors), or setup parameters may have been
generated maliciously (e.g., by revealing trapdoors to some adversarial entity).

A review of NIZK proof systems. A NIZK proof system for a language L ⊆ {0, 1}∗ allows
a prover to convince a verifier (both modelled as PPT algorithms) about the veracity of a shared
statement x ∈ L using a single message π (called the proof). The prover is additionally given as
input a witness w to x ∈ L, and both the prover and the verifier are also given a CRS—denoted
σ—that is initialized at setup. A NIZK proof system is said to be complete if for all x ∈ L, and
for all honestly sampled CRSs, the honest prover always convinces the honest verifier about the
veracity of the statement. As for security, NIZK proof systems are required to satisfy different2

properties. We recall the most important ones below.

Soundness: No computationally3 unbounded malicious prover (given the CRS σ) can pro-
duce an accepting proof π∗ for a false statement x ∈ {0, 1}∗ that is accepted by the verifier.

Proof of knowledge: For some languages, false statements simply do not exist, thus mak-
ing soundness trivial to achieve. In such cases, a stronger form of soundness (called proof
of knowledge) is required, which roughly says that any successful prover must in fact know
a witness. The latter is formalized by the existence of a PPT extractor E(ξ, x, π) that for
every (possibly adversarial) accepting proof π outputs a valid witness w̃ to x ∈ L with high
probability; the extractor is facilitated by a trapdoor ξ that is generated along with the CRS
σ.

Zero knowledge: For every true statement x ∈ L, honestly computed proofs π reveal
nothing about the witness. The latter is formalized by the existence of a PPT simulator
2In fact, one can consider further security properties (such as witness indistinguishability or simulation

soundness), but in this paper we only focus on the properties above.
3When soundness holds computationally, we speak of arguments instead of proofs.

2

S(τ, x) that outputs a proof π̃ that is computationally indistinguishable from an honestly
computed proof π; the simulator is facilitated by a trapdoor τ that is generated along with
the CRS σ. This corresponds to so-called black-box zero knowledge; in the non-black-box
case, for every adversary there exists an adversary-dependent simulator.

Some care must be taken when defining robustness of combiners for any primitive P: In
fact, one cannot just say that a combiner C is robust if C is secure assuming at least t of the
n candidates P1, . . . ,Pn are secure. This is because the combiner C could always ignore all of
the n candidates and construct the primitive P from scratch. For this reason, when defining
robustness, one must always make the underlying reduction explicit, by asking that, for every
adversary A breaking security of C, there exists a reduction Red (with running time at most a
polynomial factor slower than the running time of A) that breaks security of at least n− t + 1
of the given candidates. This way, we are ensured that C is secure assuming at least t of the
candidates are secure, and moreover C cannot construct P from scratch (as ensured by the
existence of the above reduction).

1.2 Our contributions

We give the first definitions, impossibilities, and constructions for t-out-of-n robust NIZK com-
biners. Our definition of robustness considers different levels of black-boxness along three di-
mensions: (i) whether the combiner C accesses P1, . . . ,Pn as a black-box; (ii) whether the
knowledge extractor (in the case of knowledge soundness) accesses the adversary as a black-
box; (iii) whether the zero-knowledge simulator accesses the adversary as a black-box. See
Section 3 for the formal definitions. For simplicity, in the rest of this introduction, we only
focus on dimension (i) and always assume black-box extraction and simulation (however, our
results also cover non-black-box extraction and simulation).

Our notion of robust NIZK combiners does not require that t of the n candidate proof
systems satisfy both (knowledge) soundness and zero-knowledge. Rather, it suffices that t
candidates are (knowledge) sound and t candidates are zero-knowledge, but these two subsets
may not be identical. Hence, ours are multi-property combiners as defined by Fischlin, Lehman
and Pietrzak [FL08, FLP08, FLP14]. On the other hand, all of our constructions require that
all of the candidates have a negligible completeness error; this assumption is common in the
literature on combiners.4 We also argue that any robust NIZK combiner satisfying our definition,
when instantiated with at least t good NIZK candidates, yields a NIZK satisfying the standard
definitions of (knowledge) soundness and zero-knowledge, and thus it can be employed directly
in any application requiring these properties.

After having formally defined the notion of robust NIZK combiners, in Section 4, we prove
two negative results. First, we show that there is no t-out-of-n (even non-black-box) robust
NIZK combiner for t ≤ ⌊n/2⌋ (unless the polynomial hierarchy collapses). Second, we prove
that t-out-of-n black-box robust NIZK combiners for t ≤ ⌊n/2⌋ only exist for trivial languages,
even assuming that t of the underlying NIZK candidates are both sound and zero-knowledge
(i.e., the second impossibility result even holds for combiners that are not multi-property). To
complement the above negative results, we provide constructions of robust NIZK combiners. In
particular, we obtain three different (and incomparable) combiners (see Table 1):

• Our first construction (cf. Section 5) yields a t-out-of-n black-box robust NIZK combiner
assuming t > ⌊n/2⌋, where n, t = poly(λ). This construction only works for NIZK proofs
and arguments (of knowledge) supporting so-called homomorphic languages [Cra96], as

4But note that in the setting of NIZK proof systems, one can always amplify non-negligible completeness to
overwhelming completeness (at the price of a larger running time for the prover).

3

Combiner Threshold Type Input/Output Language Proof Size
§5 t > ⌊n/2⌋ Black-box Homomorphic n · |π|
§6 t > ⌊n/2⌋, n, t = O(1) Non-black-box NP poly(|π|)
§7 t > ⌊2n/3⌋ Non-black-box NP n · |π|+ poly(|x|, |w|, λ)

Table 1: Comparing our results for robust NIZK combiners in terms of threshold parameters, type of
black-boxness, supported language, and proof size. In particular by Input/Output Language, we refer to
both the language that must be supported by the input candidates and the language supported by the
NIZK returned from the combiner. From the table, it can be seen that all our combiners are language
preserving. We assume that all the input protocols issue proofs of size at most |π| (where |π| is at least
polynomial in the security parameter λ). We note that the first and the second construction preserve
the succinctness of the input candidates.

defined by Maurer [Mau09], which essentially means that the witness w belongs to a group
(G, ⋆) and the statement x belongs to a group (H,⊗), and moreover there is a function
f : G→ H such that f(x)⊗ f(y) = f(x ⋆ y) and f is one-way function (i.e., it is infeasible
to compute x from f(x) for a randomly chosen x). Concrete examples of such languages
include the language for proving the knowledge of a discrete logarithm, that a tuple is
Diffie-Hellman, the equality of embedded values, and more.

• Our second construction (cf. Section 6) yields a t-out-of-n non-black-box robust NIZK
combiner assuming t > ⌊n/2⌋, where n, t = O(1). This construction works for arbitrary
languages, and supports both NIZK arguments and proofs (of knowledge).

• Our third construction (cf. Section 7) yields a t-out-of-n non-black-box robust NIZK
combiner assuming t > ⌊2n/3⌋, where n, t = poly(λ). This construction also works for
arbitrary languages, but only supports proofs (of knowledge).

Due to our impossibility results, our first and second constructions are essentially tight in
terms of achievable parameters. We leave it as an interesting open problem to construct a robust
NIZK combiner supporting all of NP for the parameters regime t > ⌊n/2⌋ with n, t = poly(λ).

1.3 Technical overview

Below, we give an overview of the main technical ideas behind our results.

1.3.1 Impossibility results

We start by explaining how to prove that no robust NIZK combiner exists without assuming
the majority of the candidates being good. Let n = 2 and t = 1, and assume that there exists a
1-out-of-2 robust NIZK combiner C. Consider the following dummy NIZK candidates: (i) the
prover in P1, upon input (x, w), always outputs 0 and the verifier only accepts 0 as a proof; (ii)
the prover in P2, upon input (x, w), always outputs w and the verifier accepts if and only if w
is a valid witness for x. Clearly, P1 is unconditionally zero-knowledge but not sound, whereas
P2 is unconditionally sound but not zero-knowledge.

Yet, the definition of robust combiner implies that C must work for P1 and P2. In particular,
given any unbounded adversary that breaks the zero-knowledge (resp. soundness) property of C,
there exists a reduction, with at most a polynomial slowdown, that breaks the zero-knowledge
(resp. soundness) property of both P1 and P2; but this is impossible, as P1 is uncondition-
ally zero-knowledge (resp. P2 is unconditionally sound). It follows that C is both uncondi-
tionally sound and zero-knowledge, which is also impossible (unless the polynomial hierarchy

4

collapses [Ps05]). We conclude that C cannot exist. Note that, for the above argument, it is
completely irrelevant whether the combiner is black-box or not. For more detail, we refer to
Section 4.

Impossibility for robust combiners that are not multi-property. We note that the
proof we have just sketched crucially relies on the fact that C is a multi-property combiner.
This, informally, requires that the combiner works, even if one instance is zero-knowledge (but
not sound) and the other instance is sound (but not zero-knowledge). It is natural to ask
whether the impossibility holds when the combiner receives as input one scheme that is both
zero-knowledge and sound (while the other scheme having no security at all). We prove that a
combiner that makes black-box use of the input primitives can be secure in the setting where
t ≤ ⌊n/2⌋ only when proving instances of trivial languages. At a high level, (for the case n = 2,
t = 1, and assuming that C has oracle access to the primitives) the proof works as follows. Let C
be a secure combiner that works in the setting we are considering now. Clearly, such a combiner
should work even when executed with two candidate schemes that are both zero-knowledge and
sound. We denote these schemes with Π1 and Π2. Note that because C has only oracle access to
the input instances, then it must be that CO1,Π2 is still zero-knowledge and sound for any oracle
O1 that acts as the insecure instance, fully controlled by the adversary.5 This, in particular
must hold if the oracle acts exactly like the zero-knowledge simulator of Π1, which we denote
with S1.

By assumption, CO1,Π2 is zero-knowledge, then there exists S, such that for any adversary
{SO1} ≈ {CO1,Π2}. We consider now CΠ1,O2 . For the same argument as before, such a combiner
must be secure with respect to any oracle O2. In particular, consider the case where O2 behaves
exactly like the zero-knowledge simulator S2 of Π2. We now design an adversary P⋆ who breaks
the soundness of CΠ1,O2 as follows.
P⋆ runs SO1 (the zero-knowledge simulator for the scheme CO1,Π2 described above) on

input a false instance for a membership hard language, and emulates O1 as follows. Whenever
S makes a query to O1, P⋆ queries Π1 and returns the answer to S. Whenever S wants to
output something with respect to any of the algorithms of Π2, P⋆ mirrors this behavior via O2
(that we recall is fully controlled by P⋆). When S returns a proof π, P⋆ returns π and stops. We
observe that π must be an accepting proof, as the output distribution of P⋆ is computationally
indistinguishable from that of SO1 .

We finally note that in the above proof, we have assumed that C has oracle access to the
schemes, but we can get rid of this assumption and make the arguments work for the case where
C has only black-box access to the primitives. This can be done by assuming pseudo-random
functions (PRFs) and by using the output of a PRF to obtain the randomness for the input
schemes, instead of using randomness provided as input to the oracle from the caller. For a
more formal proof, we refer the reader to Section 4.

1.3.2 Combiner for homomorphic languages

We start with the combiner for homomorphic languages. For simplicity, we describe the com-
biner for proving knowledge of the discrete logarithm w ∈ Zq of a group element x = gw ∈ G
(where g is the generator of the cyclic group G with order q). In the formal part of the paper,
we give a more general construction that works for a large class of homomorphic languages,

5The fact that one of the candidate is not secure, means that, potentially, it could be fully controlled by
the adversary (i.e., the adversary can see all the inputs given to the protocols, and decide the output of such
protocols).

5

as defined by Maurer [Mau09]. Concrete examples of such languages include Diffie-Hellman,
Guillou-Quisquater, proofs for equality of embedded values, and more.

Assume we have n NIZK argument systems P1, . . . ,Pn, each for proving knowledge of the
discrete logarithm of a group element. We aim at constructing a combiner that returns a NIZK
argument system P for the language of discrete logarithms and which guarantees security (i.e.,
zero-knowledge and knowledge soundness) assuming that t out of the n input schemes are
secure.6 The prover takes a random polynomial p of degree t − 1 such that p(0) = w, and
computes the shares (i, p(i)) for each i ∈ [n], thus obtaining a t-out-of-n Shamir’s secret sharing
of the witness w. Then, the prover derives n sub-statements xi ← gp(i) and runs the prover
algorithm of the scheme Pi on input the sub-statement xi and its witness p(i) for each i ∈ [n],
obtaining a proof πi. The final proof π consists of all the generated proofs {πi}i∈[n] and all the
sub-statements {xi}i∈[n]. The verifier first checks that all the proofs are accepting (with respect
to each individual scheme), and then runs the reconstruction of Shamir’s secret sharing “in the
exponent” in order to check that gp(0) equals x and that gp(i) equals xi for all i ∈ [n]. The latter
is possible because Shamir’s reconstruction is based on Lagrange interpolation, which basically
just requires the verifier to sum t polynomial evaluations (multiplied by some constant), and the
latter can be done “in the exponent” by exploiting the homomorphic properties of the function
f(α) = gα between the groups G and H (with H = G in this case).

Zero-knowledge is guaranteed because the witnesses wi of at least t of the sub-statements
xi are protected (thanks to the assumption that t candidates are zero-knowledge and that
t > ⌊n/2⌋), hence the privacy property of Shamir’s secret sharing implies that the witness w
is protected. Knowledge soundness is guaranteed by the fact that, for at least t of the sub-
statements xi, the proof will be generated using a knowledge sound candidate, hence, it will
be possible to extract t shares (polynomial evaluations), which we can use to reconstruct a
candidate witness w′. It remains to argue that w′ corresponds to w. But this must be the case,
given that gp(0) = gw′ .

1.3.3 Recursive proof combiner

The combiner we have just described works for a limited class of languages. Next, we propose
a NIZK combiner that supports all of NP, assuming the underlying candidates also support all
of NP. To simplify the description of our scheme, let us consider here the case where n = 3
and t = 2. The prover performs a recursive proof, using all possible combinations of the given
candidates. In other words, the prover computes a proof that x ∈ L using the i-th candidate,
thus obtaining a proof πi; then, using the scheme j (with j > i) it proves the following: “I
know a proof πi for the statement x ∈ L which the verifier of the scheme Pi would accept”. We
denote this latter proof with πi,j . The prover proceeds as above for each i, j ∈ {1, 2, 3} with
j > i, and finally it sends to the verifier π1,2, π1,3, π2,3. The verifier accepts if all three proofs
are accepting.

The above scheme is zero-knowledge, because every proof πi,j hides the witness: either
the i-th candidate is zero-knowledge (and hence w is protected), or the j-th candidate is zero-
knowledge (and hence the proof πi, that could have leaked something about the witness, remains
hidden to the adversary). Note that this holds given that t > ⌊n/2⌋. Knowledge soundness
holds, because there exists at least one recursive proof πi,j , generated using the i-th and the j-th
candidates which are both knowledge sound (this again follows from the fact that t > ⌊n/2⌋).
The construction can be extended to the case where n and t are arbitrary, but to keep the

6Here, for simplicity, when we say that a scheme is secure, we mean that it enjoys both zero-knowledge and
(knowledge) soundness. However, we remark that our construction also works in case the subsets of candidates
that are either zero-knowledge or (knowledge) sound are not identical.

6

running time of the prover polynomial, we must require that n and t are constant.

1.3.4 MPC-in-the-head combiner

With our third construction we want to remove the limitation on n and t, while still supporting
all of NP. The construction is inspired by the MPC-in-the-head approach proposed in [IKOS07],
and a similar approach has been used in [GJS19] to construct amplifiers for zero-knowledge from
sub-exponentially secure public-key encryption.

Our combiner is based on an n-party information-theoretic multi-party computation (MPC)
protocol for the following function g: given as input n shares of a t-out-of-n secret sharing
scheme, perform the reconstruction thus obtaining a value w, and return 1 if and only if w is a
valid witness for x. The MPC protocol guarantees security as long as k parties are corrupted
(with k < n/2).

To simplify the description of the combiner, let us first assume that the combiner has access
to a non-interactive commitment scheme; we will explain later how to remove this assumption.
Let pt1, . . . , ptn be the n parties of the MPC protocol. The prover of our combiner computes
a t-out-of-n secret sharing of the witness w, thus obtaining the shares w1, . . . , wn, and executes
the MPC protocol for the above function g in its head simulating the role of each party pti with
input wi. This process generates, for each party pti, a set of ingoing and outgoing messages
that we denote with in-outi for i ∈ [n]. The prover then, for each i ∈ [n], commits to these
messages and uses the candidate Pi to prove that the messages in in-outi correspond to the view
generated by running party pti of the above MPC protocol. The prover finally sends all the
generated proofs and all the commitments to the values in-outi.

The verifier first checks that there is a match between the commitments corresponding to the
ingoing messages of a party pti and the outgoing messages of all the other parties, and accepts
the proof if all the proofs are valid. Intuitively, the zero-knowledge property is guaranteed
given that t shares are protected by the zero-knowledge property of the t secure candidates, and
moreover, the security of the MPC protocol guarantees that, even if the messages of k parties
are controlled by the adversary (hence, the adversary knows the input of these parties), then the
shares of the honest parties are still protected thanks to the hiding property of the commitment.
Hence, due to the privacy of the secret sharing scheme, the witness itself is protected.

To argue (knowledge) soundness, ideally we would like to rely on the correctness of the MPC
protocol, similarly to what is done in [IKOS07]. Unfortunately, we cannot do that, given that a
dishonest prover can compute some of the messages in a malicious way, which rules out relying
on the correctness or on the security of the MPC protocol. To solve this problem we require
the MPC protocol to be robust. This property was used also in [IKOS07] to prove some of their
results. The robustness property requires that even if the randomness used by the honest parties
is chosen adversarially, and n− t parties are fully controlled by the adversary, then the output
of the honest parties is always correct. One possible instantiation of such an MPC protocol
is [BGW88], which tolerates a corruption threshold of k < ⌊n−1

3 ⌋, and, as claimed in [GMO16],
is also robust.

It remains to explain how to remove the assumption that the combiner is given access to
a secure non-interactive commitment scheme. Basically, we do that by having the combiner
construct a non-interactive commitment scheme using the given NIZK candidates themselves.
More precisely, we rely on the fact [HN24, LMP24] that one-way functions exist if: (i) every
language in NP has a zero-knowledge proof argument (i.e., NP ⊆ ZKA), and (ii) ZKA contains
non-trivial languages (i.e., ZKA ̸⊆ ioP/poly). Hence, our combiner can first obtain a one-way
function candidate fi using the NIZK candidate Pi, combine7 the one-way function candidates

7Robust combiners for one-way functions are well-known [Her05], for instance the classical concatenation

7

{fi}i∈[n] into a secure one-way function construction f , and finally use f to obtain8 a two-round
commitment using Naor’s construction [Nao91], that we can make non-interactive by plugging
the first round of the commitment in the CRS. This makes our combiner unconditional under
assumptions (i) and (ii); however, note that if assumption (i) does not hold it is impossible
to obtain robust NIZK combiners for all of NP. Moreover, if (ii) does not hold, we have that
NP ⊆ ioP/poly (as NP ⊆ ZKA must hold, and ZKA ⊆ ioP/poly). Also note that since Naor’s
commitment yields a non-interactive commitment (in the CRS model) with statistical binding
(and computational hiding), the final combiner only works for proofs (and not for arguments);
additionally, since the prover runs the NIZK candidates to prove a statement involving the com-
mitments (which, in turn, are obtained using the NIZK candidates themselves), the combiner
is non-black-box in the use of the candidates.

1.4 Related works

Combiners. Several previous works have considered and applied the concept of combiners,
either implicitly or explicitly. The first formal treatment of robust combiners is due to Harnik et
al. [HKN+05], in the setting of oblivious transfer and key agreement protocols. In particular, this
was the first work pointing out the necessity of making the reduction explicit in the definition,
in order to rule out trivial solutions that ignore the underlying candidates.

Most relevant to our work is Sommer’s Master Thesis [Som06] that studies robust combiners
for interactive proof systems. This work rules out very specific forms of robust combiners (e.g.,
those that are deterministic or that work by splitting the statement into multiple parts).

A long line of research studies robust combiners for hash functions [FL08, FLP08, Mit13,
MP14]. In this context, it is particularly challenging to obtain short combiners, in which the
output length of the combiner is significantly shorter than the concatenation of the candi-
dates’ outputs. While there are lower bounds for short robust hash functions combiners [BB06,
CRS+07, Pie07, Pie08, Mit12], recent work has shown that such lower bounds can be over-
come in the random oracle model [DFG+23]. Robust combiners have also been considered
for other cryptographic primitives, including public-key encryption [HKN+05, DK05], oblivi-
ous transfer [HKN+05, Som06, MPW07, CDFR17, FR24], commitment schemes [Som06], pri-
vate information retrieval [MP06], key encapsulation mechanisms [GHP18], authenticated en-
cryption with associated data [PR20], obfuscators [AJS17, FHNS16], and functional encryp-
tion [AJN+16, ABJ+19, JMS20].

Amplifiers. A recent line of work studies amplification of NIZK proof and argument sys-
tems [GJS19, BKP+24, BG24]. Intuitively, a NIZK amplifier takes as input an (εs, εz)-weak
NIZK—where the soundness and zero-knowledge errors are, respectively, εs, εz for εs +εz < 1—
and turns it into a NIZK (for the same language) with negligible soundness and zero-knowledge
errors. NIZK amplifiers imply NIZK combiners: by selecting at random one of the NIZK proof
systems given to the combiner, we get a weak NIZK that we can then amplify. Following this
approach, one obtains [BG24]:

• A robust combiner for NIZK arguments assuming polynomially-secure public-key encryp-
tion.

• A robust combiner for NIZK proofs assuming polynomially-secure one-way functions.
In contrast, our combiners are unconditional in the sense that they do not require any additional
assumptions besides the fact that t out of n of the given NIZK proofs systems are secure.
combiner with input splitting would work.

8Naor’s construction requires a pseudorandom generator, which can be constructed from one-way func-
tions [HILL99].

8

Another limitation is that the approach based on amplifiers currently does not seem to preserve
the proof/argument of knowledge property of the input protocols, while all of our combiners
do. We also note that if we want to design a combiner that works when the input candidates
are proof systems (with unconditional soundness) and we do not care about the property of
PoK/AoK, then we can obtain the following combiner that works for any threshold t > n/2.
On input n NIZK proof system candidates the combiner constructs a OWF using the technique
described in Section 1.3 (§MPC-in-the-head combiner), picks a random NIZK input candidate
and applies the amplifier of [BG24] (we can use this amplifier given that it only requires the
existence of OWFs and a weak NIZK as input). However, such an approach does not work if the
input candidates are argument systems, as in this case the best-known combiner [BG24] requires
the existence of public-key encryption. In summary, the combiner we have just sketched works
only for proof systems, while in this paper we propose (unconditional) combiners that work for
both argument and proof systems while preserving the PoK/AoK property (if any) of the input
protocols.

2 Notation

We denote the set of natural numbers with N, and the set of integers of prime order q with Zq.
We denote “←” as the assigning operator (e.g., to assign to a the value of b we write a ← b),
and “ $←” as the sample operator (e.g., x

$← Q denotes the sampling of x from a distribution
Q). We use “=” to check equality of two different elements. We use poly(·) to indicate a generic
polynomial function, negl(·) to denote a negligible function, and nonnegl(·) to denote a non-
negligible function. We use ≈c (resp. ̸≈c) to denote computational indistinguishability (resp.
distinguishability) of two ensembles. We use ≈p to denote that two ensembles are identical.
While referring to a set T , we denote Tj as the subset containing the first j indices of T . With
respect to an NP language L, we denote RL(x, w) as its corresponding NP-relation.

3 Defining combiners

Our combiner definitions follow the spirit of the notion for hash-function combiners proposed
in [Pie08]. At a high level, in [Pie08], the authors defines black-box combiners for collision
resistant hash functions as a tuple of algorithms (C,A), where C is the algorithm combining
n candidates (the hash function protocols in the case of [Pie08]). At a high level, the security
required from a t-out-of-n combiner requires that if an adversary breaks the security of the
combiner, then there exists a reduction that breaks the security of at least n− t + 1 candidates.
This captures the fact that the security of the combiner relies only on the security of at least t
input candidates, and no additional cryptographic assumption is used (i.e., it prevents the com-
biner from just ignoring the input candidate and creating from scratch a hash function). In this
work, we follow a similar blueprint and extend it to the case of non-interactive zero-knowledge
proofs, formally defining combiners for each of the properties that one expects from a zero-
knowledge proof: correctness, soundness, zero-knowledge, and proof/argument of knowledge.
In our definition, we capture the case where the combiner could have black-box or non-black-box
access to the underlying primitives. Our definitions are general enough to also capture both
notions of black-box and non-black-box simulation (resp. extraction) for the zero-knowledge
(resp. argument/proof of knowledge) case.

Finally, we argue that combiners that satisfy our definition also satisfy the standard notions
of zero-knowledge, soundness, and argument/proof of knowledge if sufficiently many (t) of the
input candidates satisfy the standard notions of zero-knowledge, soundness, and argument/proof

9

of knowledge. Below, we provide formal definitions and the formal arguments of the above
claims.

3.1 Formalizing correctness

From a correctness standpoint, our goal consists of combining non-interactive complete proto-
cols, which we formally define as follows.

Definition 1 (Set of Non-Interactive Complete Protocols FNI for the language L). Let Π =
(setup,P,V) be a tuple of algorithms defined as follows:

• setup(1n, 1λ) takes as input a statement of length n and the unary description of the
security parameter λ. It outputs a public parameter pp.

• P(pp, x, w) takes as the input a public parameter pp, a statement x and a witness w, s.t.
(x, w) ∈ RL. It outputs a proof π.

• V(pp, x, π) takes as the input a public parameter pp, a statement x and a proof π. It
outputs 1 to accept and 0 to reject.

Then, Π ∈ FNI if, for all λ ∈ N and all (x, w) ∈ RL, where L is an NP language, it holds that:

Pr
[
V(pp, x,P(pp, x, w)) = 1 | pp

$← setup(1|x|, 1λ)
]
≥ 1− negl(λ).

With that, we can properly characterize correctness for FNI combiners. Roughly, whenever one
defines a combiner C that combines FNI candidates, C itself has to be a FNI.

Definition 2 (Correctness of an n-candidate FNI-combiner). Let C be a PPT algorithm. C is
a correct n-candidate FNI-combiner if the following holds:

∀PPT f1, . . . , fn ∈ FNI, Cf1,...,fn ∈ FNI.

3.2 Combiners for soundness, ZK, and AoK

In what follows, we provide separate definitions of combiners for soundness, zero-knowledge,
and argument-of-knowledge. All our definitions have a label α ∈ {B, N} that specifies whether
the combiner has black-box access (α = B) or non-black-box access (α = N) to its candidates.
Moreover, for zero-knowledge and argument-of-knowledge, we extend our label to αβ ∈ {B, N}2
in order to capture whether the primitive being realized is black-box or non-black-box in the
use of the adversary. For instance, a NB combiner has non-black-box access to its candidates
and realizes black-box zero-knowledge (i.e., there exists a universal simulator).

3.2.1 Combiners for soundness

To define combiners for soundness, we find it convenient to define the relation RSound. This re-
lation contains all the tuple (protocol, adversary), such that the adversary breaks the soundness
of the protocol. We will then define a combiners for soundness, as follows. Let C be a correct
combiner that works having as input n candidates f1, . . . , fn ∈ FNI. If there exists A such that
(C,A) ∈ RSound (i.e., C is not sound), then there must exist n− t + 1 adversaries (reductions)
Redi1 , . . . , Redin−t+1 such that (fij , Redij) ∈ RSound for all j ∈ [n− t + 1] (i.e., there are at least
n− t + 1 candidates that are not sound).

Below, we provide the formal definitions of the relation and of a sound combiner.

10

Definition 3 (RSound). Let Π ∈ FNI, and let A (i.e., the adversary) be a PPT algorithm. We
say that (Π,A) ∈ RSound if the following holds:

Pr
[
V(pp, x, π) = 1 ∧ x /∈ L | pp

$← setup(1|x|, 1λ); (x, π) $← A(pp)
]
≥ nonnegl(λ).

Definition 4 (t-out-of-n type ∈ {B, N} Sound Combiners). Let C be a correct n-candidate FNI-
combiner, and let Red be a PPT algorithm (i.e., the reduction). We say that C is a t-out-of-n
type ∈ {B, N} sound combiner if, after ordering the quantifiers according to type in Table 2, the
following holds:

(Cf1,...,fn ,Af1,...,fn) ∈ RSound =⇒
∃I = {i1, . . . , in−t+1} ⊆ [n] s.t.,∀ij ∈ I, (fij , RedA,fij) ∈ RSound.

type Structural quantifiers
B ∃C ∀f1, . . . , fn ∈ F
N ∀f1, . . . , fn ∈ F ∃C

Table 2: Classification of sound combiners.

Connections with the standard soundness notion. We note that the above definition
implies that if the combiner is run having at least t input candidates that are sound according
to the standard definition of soundness (we recall this in Definition 16), then it must be that
C satisfies the standard notion of soundness as well. This holds because, if t of the input
candidates (f1, . . . , fn) are sound, it means that for each of these t candidates no adversary can
ever prove a false statement. More formally, if the j-th candidate is sound, then there exists no
adversary Redj , such that (fj , Redj) ∈ RSound. Hence, if there exists an adversary A such that
our combiner is not sound (i.e., (C,A) ∈ RSound), then it must be possible to design n − t + 1
reductions that contradict the soundness of n − t + 1 of the input candidates. But this would
contradict the fact that t input candidates are sound.

In a nutshell, if the combiner is executed with t input instances that are sound (under the
standard definition of soundness recalled in Definition 16), then the combiner is also sound as
per Definition 16.

3.2.2 Combiners for zero-knowledge

Following a similar approach, we define combiners for the zero-knowledge property. First,
we define the relation RZK. A tuple (protocol, simulator, adversary) belongs to RZK if the
adversary distinguishes between proofs generated using the honest prover of the protocol and
proofs generated from the simulator.

We then use this relation to formalize the notion of combiners for black-box and non-black-
box zero-knowledge by properly ordering the quantifiers for the adversary and the simulator.
For example in the case of black-box zero-knowledge combiners, we say that a combiner C,
running on input n candidates f1, . . . , fn is secure if the following happens: if for all simulators
S there exists an A such that (C,S,A) belongs to RZK, then for all possible choice of simulators
Si1 , . . . ,Sin−t+1 there exists a sequence of adversaries Redi1 , . . . , Redin−t+1 such (fij ,Sij , Redij) ∈
RZK. In other words, if the combiner is not zero-knowledge, then it must be that at least n−t+1
input candidates are not zero-knowledge as well. The formal definitions follow.

11

Definition 5 (RZK). Let Π ∈ FNI, and let A and S = (S0,S1) be PPT algorithms. Let REAL =
{(pp, x, w, π) | pp

$← setup(1|x|, 1λ); (x, w) $← A(pp); π
$← P(pp, x, w)}λ∈N and IDEALS =

{(pp, x, w, π) | (pp, τ) $← S0(1|x|, 1λ); (x, w) $← A(pp); π
$← S1(pp, τ, x)}λ∈N. We say that

(Π,A,S) ∈ RZK if the following holds:

Pr
[
b = b′

∣∣∣∣ b
$← {0, 1}

b′ ← A(pp, x, w, π)
; (pp, x, w, π) $←

{
REAL if b = 0
IDEALS if b = 1

]
≥ 1

2 + nonnegl(λ).

Definition 6 (t-out-of-n type ∈ {B, N}2 Non-Interactive Zero-Knowledge Combiners). Let C
be a correct n-candidate FNI-combiner. We say C is a t-out-of-n type ∈ {B, N}2 zero-knowledge
combiner if, after having ordered the quantifiers according to type in Table 3, the following holds
(combZKQuant, candZKQuant are also defined in Table 3):

combZKQuant s.t. (Cf1,...,fn , (Af1,...,fn ,S)) ∈ RZK =⇒
∃I = {i1, . . . , in−t+1} ⊆ [n] s.t. the following holds:

∀ij ∈ I, candZKQuant s.t. (fij , (RedA,fij ,Sij)) ∈ RZK.

type Structural quantifiers combZKQuant candZKQuant
BB ∃C∀f1, . . . , fn ∈ F ∀S∃A ∀Sij ∃RedA,fij

BN ∃C∀f1, . . . , fn ∈ F ∃A∀S ∃RedA,fij ∀Sij

NB ∀f1, . . . , fn ∈ F∃C ∀S∃A ∀Sij ∃RedA,fij

NN ∀f1, . . . , fn ∈ F∃C ∃A∀S ∃RedA,fij ∀Sij

Table 3: Classification of zero-knowledge combiners.

Connections with the standard ZK notion. In this discussion, we focus on the BB case,
but the same arguments hold for any case.

We observe that, if a combiner that satisfies our definition is executed with at least t input
candidates that are secure, then the combiner satisfies the standard notion of zero-knowledge.
When we say a candidate is secure, we mean that it satisfies the standard notion of zero-
knowledge (we recall this in Definition 17). This standard (black-box) notion of zero-knowledge
requires that there exists a simulator S such that no adversary can distinguish between tran-
scripts generated using the prover and transcripts generated using S. This, in particular, means
that no reduction can exist that contradicts the security of t of the input candidates.

Hence, if our combiner is executed using at least t candidates that are secure, then any
adversary that contradicts the zero knowledge of our combiner would necessarily contradict
the security of n − t + 1 of the input candidates. But this would contradict the security of at
least one of the candidates that are believed to be secure. This implies that, whenever t input
candidates satisfy the standard notion of zero knowledge, the protocol obtained by running a
combiner satisfies the standard zero-knowledge security notion as well. As such, our combiner
can be used in any application where it is needed to have a zero-knowledge protocol.

3.2.3 Combiners for argument-of-knowledge

Following the same approach, we define below the notion of a secure combiner for arguments of
knowledge.

12

Definition 7 (RAoK). Let Π ∈ FNI, and let A and E = (E0, E1) be PPT algorithms. We say
that (Π, (A, E)) ∈ RAoK if the following holds:

Pr
[
A(pp) = 1 | pp

$← setup(1|x|, 1λ)
]
̸≈c Pr

[
A(pp) = 1 | (pp, ξ) $← E0(1|x|, 1λ)

]
,

or

Pr
[
(x, w) ∈ RL,V(pp, x, π) = 1

∣∣∣∣ (pp, ξ) $← E0(1n, 1λ); (x, π)← A(pp)
w ← E1(pp, ξ, x, π)

]
< 1− negl(λ).

Definition 8 (t-out-of-n type ∈ {B, N}2 Non-Interactive Argument-of-Knowledge combiner).
Let C be a correct n-candidate FNI-combiner. We say C is a t-out-of-n type zero-knowledge
combiner if, after having ordered the quantifiers according to type in in Table 4, the following
holds (combZKQuant, candZKQuant are also defined in Table 4):

combAoKQuant s.t. (Cf1,...,fn , (Af1,...,fn , E)) ∈ RAoK =⇒
∃I = {i1, . . . , in−t+1} ⊆ [n] s.t. the following holds:

∀ij ∈ I, candAoKQuant s.t. (fij , (RedA,fij , Eij)) ∈ RAoK.

type Structural quantifiers combAoKQuant candAoKQuant
BB ∃C∀f1, . . . , fn ∈ F ∀E∃A ∀Eij ∃RedA,fij

BN ∃C∀f1, . . . , fn ∈ F ∃A∀E ∃RedA,fij ∀Eij

NB ∀f1, . . . , fn ∈ F∃C ∀E∃A ∀Eij ∃RedA,fij

NN ∀f1, . . . , fn ∈ F∃C ∃A∀E ∃RedA,fij ∀Eij

Table 4: Classification of argument-of-knowledge combiners.

Following similar arguments used in the soundness and zero-knowledge cases, we can claim
that an AoK combiner executed on input t primitives that satisfies the standard notion of AoK
(which we recall in Definition 19) also satisfies the standard AoK notion.

Remark 1. Sometimes we also consider statistically sound combiners and proof-of-knowledge
combiners. We do not provide explicit definitions for these cases, as it suffices to consider
unbounded adversaries within the respective relations (i.e., RAoK,RZK).

4 Impossibility Result for t ≤ ⌊n
2⌋

In this section, we show that no t-out-of-n NIZK combiner exists for NP unless the polynomial
hierarchy collapses for t ≤ ⌊n

2 ⌋. We also provide an impossibility result for a stronger setting,
showing that no t-out-of-n NIZK combiner exists for NP exists even if we allow t of the input
candidates to be both sound and zero-knowledge at the same time. The latter impossibility
result applies only to combiners that have black-box access to candidates.

Theorem 1. Let {Πi, . . . , Πn} be a set of non-interactive complete candidates (i.e., ∀i ∈
[n], Πi ∈ FNI). If there exists a t-out-of-n combiner CΠ1,...,Πn for the language L that is both
α sound (according to Definition 4) and αβ zero-knowledge (according to Definition 6), with
α, β ∈ {B, N} (i.e., the combiner returns a protocol that is both sound and zero-knowledge), then
either t > ⌊n

2 ⌋ or L ⊆ coAM ∩ AM.

13

Proof. Let C be a 1-out-of-2 combiner for some NP-language L. This combiner works assuming
that the input protocols are for two languages Lzk and Lpok. Let us consider the following two
NIZK candidates Πzk = (setupzk,Pzk,Vzk) and Πpok = (setuppok,Ppok,Vpok) respectively for
the languages Lzk and Lpok. The setup algorithms of both Πzk and Πpok return nothing. The
prover Pzk, on input a statement and a witness, returns 0. The verifier accepts a proof πzk for
a statement x only if πzk = 0. The prover Ppok on input a statement x and a witness w returns
the witness w. The verifier accepts a proof π only if w is a valid witness for x. In summary,
we have that Πzk is unconditional zero-knowledge (but not sound), and Πpok is unconditional
sound (but not zero-knowledge).

By assumption, C is a valid combiner that on input Πzk and Πpok returns a new scheme
Π. By the definition of secure combiner, we have that if there exists an adversary, running in
time t, that attacks successfully the zero-knowledge (the soundness) of Π, then we can design
n − t + 1 = 2 reductions to the zero-knowledge (the soundness) properties of both schemes,
each (the reductions) running in time poly(t). We are going to prove that it is impossible
to construct these two reductions. Proving this implies that the scheme produced by C is
unconditional sound and unconditional zero-knowledge, which implies that L ⊆ coAM ∩ AM
due to [Ps05]. To conclude the proof we now need to argue that no adversary (even unbounded)
can break the security of C. Assume that an unbounded adversary breaks the zero-knowledge
of C. By the definition of secure combiners, this must imply the existence of two (unbounded)
reductions, one that breaks the zero-knowledge property of Πzk, and one that breaks the zero-
knowledge of Πpok. Let us focus on the reduction to the security for Πzk. A successful reduction
Redzk needs to tell apart if a proof of Πzk is simulated or not. However, no such Redzk can
exist, as the zero-knowledge property of Πzk is unconditional. Hence, it is impossible to have
two reductions, which implies that the scheme obtained by running C retains its zero knowledge
even against unbounded adversaries. Let us now turn our attention to the soundness of C.
Similarly, in this case, we need to argue that if there exists a corrupted prover that generates
proofs for false statements, then we have a reduction Redpok to the soundness of Πpok and a
reduction to the soundness of Πzk. We observe that the soundness of Πpok is unconditional,
hence, no such reduction Redpok can exist. This concludes the proof, as we have argued that the
scheme obtained by running C on inputs Πzk and Πpok retains both the zero-knowledge and the
sound property against unbounded adversaries. But due to [Ps05], such a scheme exists only
for languages in coAM ∩ AM.

Theorem 2. Let T = {Πi, . . . , Πn} ∈ with Πi ∈ FNI for each i ∈ [n], and let K ⊆ T with
|K| = t be such that each Π ∈ T is both sound and zero-knowledge (according to Definitions 16
and 17, respectively). If PRFs exist (as per Definition 11), and there exists a combiner CΠ1,...,Πn

that is both a t-out-of-n B sound combiner (according to Definition 4) and a t-out-of-n BB ZK
combiner (according to Definition 6) for the language L, then either t > ⌊n

2 ⌋ or L ⊆ BPP/poly.

Proof. The high-level idea of the proof consists of arguing that a malicious prover is able to run
a valid simulator in a real-world execution of the combiner, thus contradicting the soundness
of the combiner. In what follows, we exhibit a proof for (n, t) = (2, 1), which can be trivially
extended to the general case of (n, t) with t ≤ ⌊n

2 ⌋. We start the proof by assuming that the
combiners have oracle access instead of black-box access to the candidates. We then argue how
to get rid of such simplification.

Let C be a combiner as per the theorem statement. C has access to two oracles O1 and O2,
representing the input candidates. If one of the candidates is compromised, this means that the
adversary has full control over the oracle representing that primitive (i.e., the adversary can
see all the inputs to the oracle and program the replies). We denote with O⋆

i with i ∈ [1, 2] the
oracle controlled by the adversary. We denote the distribution of honest proofs generated via

14

the combiner (i.e., proofs generated using the honest prover provided by the combiner) with
{CO1,O2}.

Fact 1. Let now Π1 ∈ FNI and Π2 ∈ FNI be both sound and zero-knowledge according to
Definition 16 and Definition 17, respectively. By the assumption that Π1 is zero-knowledge,
{CΠ1,Π2} ≈c {CS1,Π2}.

Fact 2: “The adversary runs the simulated oracle in the real-world”. Assume the
first oracle is corrupted: O⋆

1 and consider the distribution {CO⋆
1 ,Π2}. The adversary can program

the behaviour of O1 to match that of S1 (e.g., by controlling the respective trapdoors). Hence,
{CS1,Π2} ≡ {CO⋆

1 ,Π2}.

Fact 3: “Characterizing the simulator of the combiner”. By contradiction, C is a 1-out-
of-2 BB ZK combiner. This means, in particular, that {CO⋆

1 ,Π2} admits a simulator SO⋆
1 such

that {CO⋆
1 ,Π2} ≈c {SO⋆

1}. Crucially, SO⋆
1 succeeds in simulating the protocol by only leveraging

on the secure scheme Π2 (e.g., by generating its respective trapdoors).

Breaking soundness of the combiner. Let us consider the case in which the adversary,
instead, breaks scheme Π2 and programs its respective oracle O2 to behave as S2. For the same
argument provided in Facts 1 and 2, it holds that {CΠ1,Π2} ≈c {CΠ1,S2}. Moreover, from Facts
1 and 2, we also have that {CΠ1,Π2} ≈c {SO1}. Hence, {CΠ1,O2} ≈c {SO1}.

Next, we show that a malicious prover P∗ that controls the oracle O2 can run SO1 . To do so,
we first observe that P∗ has the same control over O2 that SO1 has. Moreover, any query that
SO1 would have issued to its oracle O1 is simply forwarded to the oracle Π1 of the combiner.
Finally, we observe that SO1 always outputs accepting proofs even on false statements, unless
L ∈ BPP/poly. But this contradicts the assumption that C is a 1-out-of-2 B sound combiner.

From oracle access to black-box access. In the proof above, we exclusively provide com-
biners oracle access to candidates. This means that the oracles are allowed to sample their
own internal randomness. Next, we show how to extend our results to the black-box setting by
additionally assuming a PRF F . We redefine each oracle O to a different oracle O′ that, upon
input of some randomness r, simply evaluates Fk(r), where k is hardwired inside the O′, and
F is a pseudo-random function.

5 Combiner for Homomorphic Languages

In this section, we define a t-out-of-n BB NIZKAoK/PoK combiner, with t > n/2, that may
be used to prove the class of languages described in [Mau09] which are denoted as homomor-
phic languages [Cra96]. A homomorphic language LHL is defined with respect to the groups
(G, ⋆), (H,⊗) and a homomorphism f : G→ H (i.e., f(x)⊗ f(y) = f(x ⋆ y)), and is represented
by the set {x | ∃w s.t. f(w) = x}.

Some examples of these languages are the languages of discrete logarithm instances, the
language of Diffie-Hellman tuples, the languages of valid Pedersen commitments, and many
more. We refer to [Mau09] for more details, and also to Appendix B for a few concrete examples.
Before presenting how our combiner works, we need to introduce some additional notation and
technical tools.

15

Hyperoperations. Notationally, we use hyperoperations as in [Goo47]. Let w be an element
in group G. We denote w{2⋆}v as the result of w ⋆ w ⋆ . . . ⋆ w︸ ︷︷ ︸

v copies of w

, with v ∈ Zq. We compactly

represent a0 ⋆ a1 ⋆ . . . ⋆ an with the symbol
n

⋆
i=0

ai, and a0⊗a1⊗ . . .⊗an with the symbol
n⊗

i=0
ai.

Finally, if f is a group homomorphism as defined above, the following facts hold:

f(w){2⊗}v = f(w{2⋆}v) (1)

⊗
j∈[n]

f(wj) = f(⋆
j∈[n]

wj) (2)

Fact 1 holds, as:

f(w){2⊗}v = f(w)⊗ f(w)⊗ . . .⊗ f(w)︸ ︷︷ ︸
v copies of f(w)

= f (w ⋆ w ⋆ . . . ⋆ w)︸ ︷︷ ︸
v copies of w

= f(w{2⋆}v)

Fact 2 holds, as:

⊗
j∈[n]

f(wj) = f(w1)⊗ . . .⊗ f(wn) = f(w1 ⋆ . . . ⋆ wn) = f(⋆
j∈[n]

wj)

Shamir’s secret sharing scheme. We propose a version of Shamir’s secret-sharing scheme
that works in (G, ⋆), which allows performing the standard sharing and reconstruction opera-
tions. Moreover, we design a special reconstruction algorithm that we denote with reconstructH,
which allows performing the reconstruction homomorphically, exploiting the properties of the
homomorphic language. More details follow.

The sharing algorithm shareG takes as input w, where w is an element of group G, and
samples t− 1 random group elements a1, . . . , at−1 by using the generation algorithm GenG(1λ)
(this algorithm just samples uniformly at random elements from G). A polynomial p of degree
t − 1 is defined by using coefficient ai, and by setting a0 = w. The shares are computed by
evaluating p(i), for i ∈ [n]:

shareG(w): a1, . . . , at−1
$← GenG(1λ). Output {wi ← w ⋆

t−1

⋆
j=1

(aj{2⋆}ij)}i∈[n]

The reconstructG algorithm takes as input a subset S = {si}i∈I of t shares, where I =
i1, . . . , it ∈ Zt

q is a set of evaluation points of the polynomial, and uses Lagrange interpolation
to recompute p(0) (i.e., the secret):

reconstructG({si}i∈I): Output w ←⋆
j∈I

(si{2⋆}(
∏

k∈I,k ̸=j

k

k − j
))

Since Shamir’s secret sharing scheme relies on Lagrange interpolation, it is possible to recon-
struct points in the polynomial that are different from the secret (i.e., points evaluated in
l ̸= 0). To this extent, we denote the modified version of reconstructG as reconstructG.
reconstructG takes as input a subset S = {si}i∈I of t shares and an index l /∈ I of the point
to be reconstructed, and works as follows:

reconstructG({si}i∈I , l): Output wl ←⋆
j∈I

(si{2⋆}(
∏

k∈I,k ̸=j

l − k

j − k
)).

We remark that reconstructG(·, 0) = reconstructG(·).
Finally, if f is a group homomorphism as defined above, having access to a subset S of size

t of functions of the shares (i.e., {f(si)}i∈I) allows the reconstruction of a function of the point

16

in the polynomial (i.e., xl = f(sl) for l /∈ I) as follows:

xl ←⊗
j∈I

(f(si){2⊗}(
∏

k∈I,k ̸=j

l − k

j − k
))

We denote the reconstruction operation above as reconstructH({xi}i∈I , l). The correctness
of this operation follows by applying Fact 1 and Fact 2:

xl ←⊗
j∈I

(f(si){2⊗}(
∏

k∈I,k ̸=j

l − k

j − k
)) = f(⋆

j∈I

(si{2⋆}(
∏

k∈I,k ̸=j

l − k

j − k
)))

= f(reconstructG({si}j∈I , l) = f(wl)

In the rest of the paper, whenever we talk about homomorphic languages LHL with respect
to the groups (G, ⋆), (H,⊗) and a homomorphism f : G → H, we implicitly require that the
algorithms (shareG, reconstructG), as defined here, satisfy correctness and perfect security of
Shamir’s secret sharing scheme (respectively, Definition 14 and Definition 15). Looking ahead,
the correctness property will be used within the proof of Theorem 3, and the perfect security
property will be used within the proof of Theorem 5. In Appendix B we give a few concrete
examples of such homomorphic languages and associated sharing and reconstruction operations.

5.1 Combiner description

We are now ready to describe how our combiner works. Let {Πk = (setupk,Pk,Vk)}k∈[n] be
non-interactive protocols for the homomorphic language LHL defined above. These protocols
represent the input primitives of the combiner. Let x be the theorem the verifier wants to verify.
At a high level in our scheme the prover secret shares the witness w using our secret sharing
scheme, and computes n sub-statements by evaluating f on each obtained share. Then the
prover proves that each of these sub-statements belongs to the homomorphic language, using
the input candidates (the k-th input candidate Πk is used to prove the k-th sub-statement).
The verifier picks the first t sub-statements and homomorphically reconstructs the polynomial
in H by running reconstructH. The verifier then accepts if all the proofs are accepting, and the
homomorphic reconstruction matches with the theorem x and with all of the sub-statements.
We formally describe our combiner CHL = (Csetup, Cprove, Cvrfy) in Figure 5.1:

Figure 5.1: Combiner CHL

• Csetup(1l, 1λ): Compute ppk
$← setupk(1l, 1λ), for k ∈ [n]. Output pp← {ppk}k∈[n].

• Cprove(pp, x, w):
– Compute (w1, . . . , wn) $← shareG(w).
– Compute xk ← f(wk), for k ∈ [n].
– Compute πk ← Pk(ppk, xk, wk), for k ∈ [n].
– Output π ← ({πk}k∈[n], {xk}k∈[n]).

• Cvrfy(pp, x, π):
– Parse (pp, π) as ({ppk}k∈[n], {πk}k∈[n], {xk}k∈[n]). Set x0 ← x.
– If Vk(ppk, xk, πk) outputs 0 for some k ∈ [n], output 0. Otherwise, for each

k ∈ [n] \ [t] ∪ {0}, behave as follows:
- Compute x′

k ← reconstructH({xj}j∈[t], k).
- Check whether x′

k = xk. If the check fails then return 0.
– Return 1.

17

5.2 Proof sketch

Before formally stating and proving our theorems, we provide a high-level overview of how our
proofs work.

Soundness. To show that CHL is sound, we argue that the only way the adversary can produce
an accepting proof for a statement x /∈ LHL is by having sufficiently-many reductions (i.e.,
n − t + 1) to soundness of the underlying candidates. Suppose by contradiction that a prover
can make a verifier accept a proof for a false statement (i.e., x is s.t. f(w) ̸= x for all w) and
that only n − t reductions to the soundness are possible. This means that there are at least t
sub-statements that are valid (i.e., they belong to LHL). Moreover, if the verifier of our combiner
has accepted the proof, this means that the witnesses for all the sub-statements represent points
that belong to the same polynomial of degree t− 1. In particular, this polynomial is univocally
determined by the witnesses of the t valid sub-statements (that exist by contradiction). Given
that this polynomial evaluated on 0 is equal to x (this holds because the verifier has accepted
the proof) then the correctness of our secret sharing scheme and the homomorphic property of
the language guarantees that x belongs to the language.

Zero-knowledge. Proving the zero-knowledge of this (and of the other schemes we propose)
requires some particular care. The traditional way to prove the zero-knowledge of our pro-
tocol would be to design a zero-knowledge simulator that executes the simulators of t of the
candidates. To prove that the output of this simulator is indistinguishable from the output
of an adversarial verifier when interacting with an honest prover, we design a chain of indis-
tinguishable hybrid experiments, the first corresponding to the experiment where the proof is
generated via an honest prover, and the last corresponding to the simulated experiment. If by
contradiction our simulator is not good (i.e., zero-knowledge does not hold) this would imply
that a pair of adjacent hybrids is not indistinguishable, hence, a reduction to a cryptographic
primitive can be performed.

In the proof we have just sketched, we have that if by contradiction zero-knowledge does not
hold, then we have one reduction. However, our security definition states that if zero-knowledge
does not hold, then it must be possible to create n−t+1 reductions. Clearly, the proof approach
we have discussed does not achieve what we want. Indeed, the above approach does not really
make sense as our simulator does not know for which of the candidates the simulator should be
run.

We recall that our definition of combiner states that if the combiner is not zero-knowledge
then it should be possible to perform n− t + 1 reductions to zero-knowledge of the candidates.
In particular, this means that if the combiner is not zero-knowledge, then every zero-knowledge
simulator we design can be attacked. The intuition is that to prove the security of our scheme, we
need to design multiple simulators, such that any time an adversary wins against one simulator,
we can create a new reduction to different input candidates. We construct these multiple
simulators as follows.

Each simulator ST is parameterized by a set T containing t distinct indices in [n], and
runs the simulators for the candidates whose indices are in T . We design a sequence of hybrid
arguments in which we gradually replace all the sub-proofs generated by all the candidates
in T , using real shares of the witness, with simulated sub-proofs. After these sub-proofs are
simulated, we replace the n − t remaining shares of the witness with random group elements.
Because there cannot exist a good simulator, the output of ST must be distinguishable, for all
T ⊆ [n] with |T | = t. But this means that there exists an adversary A that is able to distinguish
two adjacent hybrids of the hybrid chain (say, Hi∗−1 and Hi∗), and we can therefore state that

18

there exists one reduction to zero-knowledge of candidate Πi∗ .
Intuitively, whenever some A breaks zero-knowledge of candidate Πi∗ in ST by distinguishing

the output of a specific protocol Πi∗ , it also breaks all the other ST ′ for T ̸= T ′ that contain
candidate Πi∗ within their chain of hybrids. However, there still exist simulators that do not
include Πi∗ as part of their hybrid chain. Therefore, (a possibly different) A has to break zero-
knowledge of another candidate. By a combinatorics argument, the only way all

(n
t

)
simulators

can be broken is by breaking zero-knowledge for at least n− t + 1 candidates.

Argument of Knowledge. The proof for the AoK property is similar in spirit to the zero-
knowledge one: we construct an extractor ET which is parameterized by a set T containing t
distinct indices in [n], and runs the extractors for the candidates in T . Then, we show that
either ET successfully extracts a witness, or there exists at least one reduction to AoK of one
of the candidates whose indices are in T .

The first portion of the proof consists of an hybrid argument in which we gradually replace
all the public parameters generated by setup algorithms of the candidates with ones generated
by trapdoor setup algorithms. As for zero-knowledge, if some adversary detects any variation
within the hybrid chain, we have a reduction to argument-of-knowledge of a specific candidate.

After that, the extractor attempts to run all the extractors for the primitives indexed by
T to recompute a witness from an accepting proof (x, π) supplied by the adversary. For that,
we argue that the only way the extractor may output the witness is by successfully running
the extractor for all the candidates whose indices are in T . Hence, it suffices for one extractor
of the candidates to fail to cause ET to fail. For this scheme this is indeed the case, as each
extractor extracts a share of the witness wi, and the only way w can be extracted is by running
the reconstruction procedure of Shamir’s secret sharing scheme with these t shares.

The proof concludes with the same combinatorics argument used for the proof of zero-
knowledge, with the only difference being that reductions may exist either because some ad-
versary distinguishes the setup generation algorithm of one of the candidates, or because some
adversary produces an accepting proof (x, π) for which a candidate fails to extract a share of
the witness.

5.3 Formal analysis

Below we provide the formal theorems that we have just sketched above.

Theorem 3. The construction in Figure 5.1 is a correct n-candidate FNI-combiner for the
language LHL, as per Definition 2, for n, t ∈ poly(λ).

Theorem 4. The construction in Figure 5.1 is a t-out-of-n B sound combiner for the language
LHL, as per Definition 4, for t > n

2 and n, t ∈ poly(λ).

Theorem 5. The construction in Figure 5.1 is a t-out-of-n BB ZK combiner for the language
LHL, as per Definition 6, for t > n

2 and n, t ∈ poly(λ).

Theorem 6. The construction in Figure 5.1 is a t-out-of-n BB AoK combiner for the language
LHL, as per Definition 8, for t > n

2 and n, t ∈ poly(λ).

As already remarked in the technical overview, if the input candidates are statistically sound
(resp. proof-of-knowledge), Theorem 4 (resp. Theorem 6) yield a statistically-sound (resp.
proof-of-knowledge) combiner. The formal proofs of these theorems are deferred, respectively,
to Appendix C.1, Appendix C.2, Appendix C.3, and Appendix C.4.

19

6 Recursive proof combiner

In this section we define a t-out-of-n NB NIZKAoK/PoK combiner, with t > n
2 and n, t ∈ O(1),

that generates proofs by “nesting” proofs of the candidates.

6.1 Nesting proof systems

Nesting proofs fundamentally entails two operations:
• Computing the “innermost” proof. The innermost proof is generated by using a proof

system to prove knowledge of a witness w for a statement x with respect to language L.
• Computing an “intermediate” proof. An intermediate proof consists of using a proof sys-

tem to prove knowledge of an accepting proof π generated by another (possibly different)
proof system. More formally, the NP-language for a scheme Πj that proves knowledge of
an accepting proof generated with scheme Πj−1 is defined as Lj = {(Vj−1, ppj−1, xj−1) |
∃πj−1 s.t. Vj−1(ppj−1, xj−1, πj−1) = 1}.

The second operation can be applied recursively, and the last intermediate proof will be output
in the clear. Intuitively, if such a proof is accepting, it proves that the entire chain of proofs was
generated correctly. Moreover, the presence of intermediate proofs is what makes the combiner
NB, as the construction is quantified after the specific instantiations of the candidates Π1, . . . , Πn

are quantified.

6.2 Combiner description

The combiner takes as input n non-interactive protocols Πk = (setupk,Pk,Vk) ∈ FNI as per
Definition 1, for k ∈ [n], which work for any NP language L. From a high-level perspective,
the prover generates

(n
t

)
proofs, each with a different subset of t out of n candidates. For each

proof, the candidate with the lowest index generates the innermost proof by using statement x
and witness w. After that, intermediate proofs are generated recursively by using all the other
candidates in the specific subset. We formally describe our combiner CPoP = (Csetup, Cprove, Cvrfy)
in Figure 6.1.

Figure 6.1: Combiner CPoP

• Csetup(1l, 1λ): Compute ppk
$← setupk(1l, 1λ), for k ∈ [n]. Output pp← {ppk}k∈[n].

• Cprove(pp, x, w):

– Index all possible subsets containing t of the n candidates with set S = {Si}i∈(n
t).

– For Si ∈ S, denote {si,1, . . . , si,t} as the indices of the candidates for this specific
subset sorted in lexicographic order. Then, compute proof πPoP

i as follows:
∗ Compute the innermost proof πsi,1 ← Psi,1(ppsi,1 , x, w). The language asso-

ciated to this proof is Lsi,1 = {x | ∃w s.t. (x, w) ∈ RL}.
∗ For j ∈ [2, . . . , t], let xsi,j ← (Vsi,j−1 , ppsi,j−1 , xsi,j−1). Compute intermediate

proof πsi,j ← Psi,j (ppsi,j , xsi,j , πsi,j−1). The language associated to the j-th
proof is Lj = {xsi,j | ∃πsi,j−1 s.t. Vsi,j−1(ppsi,j−1 , xsi,j−1 , πsi,j−1) = 1}.

∗ Set πPoP
i ← πsi,t .

– Set π ← {πPoP
i }i∈(n

t). Output π.

• Cvrfy(pp, x, π):

20

– Parse π as {πPoP
i }i∈(n

t).

– Index all possible subsets containing t of the n candidates with set S = {Si}i∈(n
t).

– For Si ∈ S, denote {si,1, . . . , si,t} as the indices of the candidates for this specific
subset sorted in lexicographic order. Then, run Vsi,t(ppsi,t , xsi,t , πi).

– If any of the verifier runs above outputs 0, output 0. Otherwise, output 1.

6.3 Formal analysis

In what follows, we provide formal theorems for correctness, zero-knowledge, and argument-
of-knowledge of this construction.9 Similarly to the previous section, as long as the input
candidates are proof-of-knowledge, Theorem 9 yields a proof-of-knowledge combiner.

Theorem 7. The construction in Figure 6.1 is a correct n-candidate FNI-combiner for any NP
language L, as per Definition 2, for n, t ∈ O(1).

The formal proof of correctness is deferred to Appendix C.5.

Theorem 8. The construction in Figure 6.1 is a t-out-of-n NB ZK combiner for any NP
language L, as per Definition 6, for t > n

2 and n, t ∈ O(1).

Proof (Theorem 8). The structure of this proof is the same as the one sketched in Section 5.2.
First, we construct a simulator ST , and argue that either its output is indistinguishable from the
output of the real prover, or there exists at least one reduction to zero-knowledge of one of the
candidates whose indices are in T . We describe such a ST in Lemma 1. Given that this lemma
follows traditional proof techniques, we defer its analysis to Appendix C.6. Then, we argue in
Lemma 2 that the existence of adversaries who break zero-knowledge of the combiner implies
the existence of sufficiently-many reductions to zero-knowledge of the underlying candidates,
concluding the proof.

Lemma 1. There exists a simulator ST for which either {REAL} ≈c {IDEALST }, or there exists
a reduction to zero-knowledge of at least one of the candidates {Πk}k∈T .

Lemma 2. The existence of adversaries breaking zero-knowledge of all possible simulators ST ,
as described in Lemma 1, yields reductions to zero-knowledge of at least n − t + 1 distinct
candidates.

Proof. Let S0 be a set of cardinality
(n

t

)
containing all the possible instantiations of ST as

described in Lemma 1 (i.e., by considering all the possible choices of T out of the n candidates).
The fact that the combiner is not zero-knowledge (as per Definition 6) implies that no simulator
in S0 can be such that {REAL} ≈c {IDEALST }. Moreover, Lemma 1 prescribes that if {REAL} ̸≈c

{IDEALST }, there exists a reduction to at least one of the candidate schemes identified by an
index in T . Let i1 ∈ [n] be such an index. This means that there exists an adversary A
is able to break zero-knowledge for scheme Πi1 , i.e., A breaks all possible simulators of Πi1 .
Observe that any simulator that is parameterized by a T containing i1 is such that {REAL} ̸≈c

{IDEALST }. However, there still exists a set S1 of cardinality
(n−1

t

)
containing all the simulators

9For this scheme, we do not prove soundness in isolation, as the only way we know how to prove such property
would be to additionally assume sufficiently-many candidates to be AoK. Nevertheless, the proof we show for
AoK suffices, given that AoK implies soundness.

21

parameterized by a T that do not contain i1. Since there should exist (a possibly different) A
that breaks all the simulators in S1, an index i2 ∈ [n] distinct from i1 exists. This means that
A is able to break zero-knowledge for scheme Πi2 . Generalizing the above, we denote Ij as the
set of indices of cardinality j for which some A is able to break zero-knowledge of the respective
candidate Πik

. We further denote Sj as the set of simulators that are parameterized by a T
that does not contain any ik ∈ Ij . The cardinality of Sj is

(n−j
t

)
. Since A must also break all

the simulators in Sj , there exists another index i∗ ∈ [n] \ Ij related to a scheme Πi∗ for which
A breaks its ZK property.

In order to have |Sj | = 0, it suffices to show that t > n− j. The minimum j for which this
condition holds is j = n− t + 1, as

(t−1
t

)
= 0. Hence, the existence of adversaries breaking zero-

knowledge of the combiner implies the existence of at least n−t+1 reductions to zero-knowledge
of distinct candidates, concluding the proof.

Theorem 9. The construction in Figure 6.1 is a t-out-of-n NB PAoK-combiner for any NP
language L, as per Definition 8, for t > n

2 and n, t ∈ O(1).

Proof (Theorem 9). Following Section 5.2, we construct an extractor ET and prove in Lemma 3
that either it successfully extracts a witness, or there exists at least one reduction to AoK of one
of the candidates whose indices are in T . Given that this lemma follows traditional proof tech-
niques, we defer its analysis to Appendix C.7. From there, one can exhibit an argument similar
to Lemma 2 to argue that the existence of adversaries who break AoK of the combiner implies
the existence of sufficiently-many reductions to AoK of the underlying candidates, concluding
the proof. This step is the same for all our combiners, and is formally proved in Lemma 12.

Lemma 3. There exists an extractor ET for which either a witness w is successfully extracted
from an accepting proof, or there exists a reduction to argument-of-knowledge of at least one of
the candidates {Πk}k∈T .

7 MPC-in-the-head approach

In this section we define a t-out-of-n NB NIZKPoK combiner, with t > ⌊2
3⌋n, that relies on

MPC-in-the-head techniques and may be used for all of NP.

7.1 Notation and building blocks

In what follows, we introduce notation and building blocks we use specifically within this com-
biner.

7.1.1 Secure Multiparty Computation (MPC) Definitions

We follow the same definition from [IKOS07]. An n-party protocol Π = (P1, . . . , Pn) is an n-
tuple of probabilistic polynomial-time (PPT) interactive Turing machines (ITMs). Each party
Pi is initialized with a local input wi ∈ {0, 1}∗ and random coins ri ∈ {0, 1}∗. All the parties
share a public input x ∈ {0, 1}∗. In this paper, we mainly focus on R-round MPC protocols
that securely realize an n-party functionality f , where f maps the input (x, w1, . . . , wn) to an
n-tuple of outputs (when only a single output is specified, this output is assumed to be given
to all parties).

In this paper, instead of letting every party share the input x, we hardcode x in the function
f . All the MPC protocols we use will have this structure; hence, this will be implicit from here
onwards.

22

7.1.2 Notation for MPC

Rather than viewing a protocol Π as an n-tuple of interactive Turing machines, it is con-
venient to view each Turing machine as a sequence of multiple algorithms: frst-msgi, to
compute Pi’s first messages to its peers; nxt-msgk

i , to compute Pi’s k-th round messages for
2 ≤ k ≤ R; and outputi, to compute Pi’s output. Thus, a protocol Π can be defined as
{(frst-msgi, nxt-msgk

i , outputi)}i∈[n],k∈[R]\{1}. The syntax of the algorithms is as follows:

• frst-msgi(wi; ri) → (msg1
i→1, . . . , msg1

i→n) produces the first-round messages of party Pi

to all parties. If the message is sent over a broadcast channel, it holds that msg1
i→1 =

msg1
i→2 = · · · = msg1

i→n. Note that a party’s message to itself can be considered to be its
state.

• nxt-msgk
i (wi, {msgl

j→i}j∈[n],l∈[k−1]; ri) → (msgk
i→1, . . . , msgk

i→n) produces the k-th round
messages of party Pi to all parties.

• outputi(wi, {msgk
j→i}j∈[n],k∈[R]; ri)→ yi produces the output returned to party Pi.

We note that, unless needed, to not overburden the notation, we do not pass the random coin
r as an explicit input of the cryptographic algorithms. In addition, we define the view of party
Pi and the consistency of views as follows:

Definition 9 (View). The view viewi of party Pi is defined as the input wi, the randomness ri,
and the all the messages Pi sends (denoted as msgi,out, with msgi,out ← {msgk

i→j}j∈[n]\{i},k∈[R])
and receives (denoted as msgi,in, with msgi,in ← {msgk

j→i}j∈[n]\{i},k∈[R]) during the execution of
the MPC protocol.

Definition 10 (View Consistency). A pair of views viewi and viewj are consistent (with respect
to the protocol Π realizing fx) if {msgk

i→j}k∈[R] is identical to {msgk
j→i}k∈[R] and vice versa.

7.1.3 Building blocks

This combiner requires the following primitives:
• n non-interactive protocols Πk = (setupk,Pk,Vk) ∈ FNI as per Definition 1, for k ∈ [n],

which work for any NP language L.
• A t-out-of-n secret sharing scheme SS = (share, reconstruct), as per Definition 13.
• A statistically binding and computationally hiding non-interactive string commitment

NIC = (setup, commit, open), as per Definition 12.
• An MPC protocol ΠMPC = {(frst-msgi, nxt-msgk

i , outputi)}i∈[n],k∈[R]\{1} that realizes the
function fx (Figure 7.1) with perfect K-robustness (as per Definition 23) in the malicious
model and perfect K-privacy (as per Definition 22) in the semi-honest model, where K =
(n− t).

Figure 7.1: Function fx

Inputs: w1, . . . , wn.
Hardcoded: The statement x.
Output: If (x, reconstruct({wj}j∈[t])) ∈ RL, output 1. Otherwise output 0.

23

7.2 From NIZK candidates to non-interactive commitments

Among the primitives for this construction, we require a commitment scheme that is computa-
tionally hiding. This is incompatible with our formalization of combiners, given that an adver-
sary breaking the security of the combiner can now yield a reduction to the newly-introduced
(computational) assumption, rather than n − t + 1 reductions to the security of the underly-
ing candidates. In what follows, we show that it is possible to instantiate statistically binding
non-interactive string commitments by exclusively relying on the security of the candidates.
Formally, we prove the following lemma:

Lemma 4. Let {Πk = (setupk,Pk,Vk)}k∈[n] ∈ FNI be non-interactive protocols, as per Defi-
nition 1, for any NP language L. Let t of the candidates be sound and t of the candidates be
zero-knowledge, with t > n/2. Assuming that NP ⊆ ZKA and that ZKA ⊈ ioP/poly, there exists
an efficient construction of statistically binding non-interactive string commitments in the CRS
model.

Proof. The high-level idea of the proof consists in expanding the following chain of implications:
t-out-of-n NIZK candidates =⇒ 1-out-of-n OWFs =⇒ OWF =⇒ PRG =⇒ non-interactive
commitments.

• t-out-of-n NIZK candidates =⇒ 1-out-of-n OWF candidates. Let Ssnd be the set
of sound candidates and Szk be the set of ZK candidates. Since t > n/2, Ssnd ∩ Szk ̸= ∅.
Hence, at least one candidate is both sound and zero-knowledge. Given that we assume
NP ⊆ ZKA and that ZKA ⊈ ioP/poly, we can invoke [LMP24, Theorem 1.1] on each of
the candidates, obtaining a set of n candidate functions {fi}i∈[n]. Since at least one of
the candidates is both sound and zero-knowledge, at least one of the functions will be a
OWF.

• 1-out-of-n OWF candidates =⇒ OWF. [Her05, Lemma 4.1] shows a combiner
that splits the input among the function candidates (e.g., by XOR), and then simply
concatenates the output of all the candidates. More explicitly, as long as there exists
an index i for which fi is a OWF, f(x) = f1(x1)|| . . . ||fn(xn) is also a OWF, with x =
x1 ⊕ x2 ⊕ · · · ⊕ xn.

• OWF =⇒ PRG. By [HILL99], there exists a PRG that may be instantiated by a OWF.
• PRG =⇒ NI-Com. Following [MP12], Naor’s bit commitment scheme [Nao91] can

be made non-interactive by moving the randomness of the receiver to the CRS that is
statistically binding and computationally hiding. Once we have a non-interactive bit
commitment scheme, we also have a non-interactive string commitment scheme.

Further remarks. Proving this lemma requires that NP ⊆ ZKA and that ZKA ⊈ ioP/poly.
As hinted throughout the technical overview, if the first assumption does not hold, it means
that there exists a language in NP that does not admit zero-knowledge arguments. Hence, no
combiner for all of NP can exist. From here, if the second assumption is falsified, it would imply
that NP ⊆ ioP/poly. At the same time, This transformation is also the reason we restrict our
combiner to only proofs instead of arguments. Looking ahead, we will use statistical binding in
soundness and computational hiding in zero-knowledge. While the former is unconditional, the
latter implies reductions to both soundness and zero-knowledge of the underlying candidates.
This is the case, given that the first transformation of Lemma 4 simultaneously requires both
properties. By restricting our attention to proofs, soundness also becomes unconditional. Hence,
we do not have any reduction to soundness within the proof for zero-knowledge.

24

7.3 Combiner description

We are now ready to define our combiner. The construction is very similar to [GJS19]. Intu-
itively, the prover secret shares the witness w, runs the MPC protocol ΠMPC to generate views
of all parties, uses the non-interactive commitment scheme to commit to each of these views
(which, again, include the input, randomness, and sent/received messages of the party they
relate to) the sent and received messages of all the parties. Then, for each party, it uses a NIZK
candidate to prove that the commitments related to that party are computed correctly and the
committed values are from an execution of ΠMPC for which the party’s output is 1. The verifier
checks whether all the sub-proofs are accepting, and checks whether the commitment corre-
sponding to outgoing messages are consistent with the commitment corresponding to inbound
messages. If all the checks succeed, the verifier outputs 1. Formally, we define our combiner
CMPC = (Csetup, Cprove, Cvrfy) in Figure 7.2.

Figure 7.2: Combiner CMPC

• Csetup(1l, 1λ): Compute ppk
$← setupk(1l, 1λ), for k ∈ [n]. Compute ppNIC

$←
setup(1λ). Output pp← {ppk}k∈[n] ∪ {ppNIC}.

• Cprove(pp, x, w):

– Compute (w1, . . . , wn) $← share(w).
– Run MPC protocol ΠMPC, where every party Pi (i ∈ [n]) takes wi as input,

and uses uniformly randomly sampled value ri as the randomness. Obtain
view1, . . . , viewn from the execution of ΠMPC.

– For i ∈ [n], j ∈ [n], compute (comi,j , oi,j) ← commit(ppNIC, {msgk
i→j}k∈[R]), and

(comj,i, oj,i)← commit(ppNIC, {msgk
j→i}k∈[R]).

– For i ∈ [n], set x′
i ← ({comi,j}j∈[n], {comj,i}j∈[n]) and w′

i ←
(viewi, {oi,j}j∈[n], {oj,i}j∈[n]).

– For k ∈ [n], compute πk = Pk(ppk, (ppNIC, x′
k), w′

k). The language associated

to the sub-proofs πi is Li,MPC =
{

(ppNIC, {comi,j}j∈[n], {comj,i}j∈[n])
∣∣∣∣ ∀k ∈

[R] \ {1},∃(viewi, {oi,j}j∈[n], {oj,i}j∈[n]), {msg1
i→j}j∈[n] = frst-msgi(wi; ri) ∧

{msgk
i→j}j∈[n] = nxt-msgk

i (wi, {msgl
j→i}j∈[n],l∈[k−1]; ri) ∧ 1 =

outputi(wi, msgi,in; ri) ∧ ∀j ∈ [n], open(comi,j , oi,j) = {msgk
i→j}k∈[R] ∧

open(comj,i, oj,i) = {msgk
j→i}k∈[R]

}
.

– Output π = ({πk}k∈[n], {x′
k}k∈[n]).

• Cvrfy(pp, x, π): Output 1 if all following conditions hold:

– Compute Vk(ppk, (ppNIC, x′
k), πk) for k ∈ [n], and all Vk outputs 1.

– Parse {x′
k}k∈[n] as {({comk,j}j∈[n], {comj,k}j∈[n])}k∈[n]. For k ∈ [n], j ∈ [n], there

exists j ̸= k s.t. comk,j = comj,k.

We remark that, even though all the proofs for the remainder of this section work for t > n/2,
we rely on the instantiation of ΠMPC as in BGW [BGW88]. In [GMO16], the authors claim
that such a protocol is ⌊n−1

3 ⌋-private, perfect ⌊n−1
3 ⌋-robust protocol, and use it to instantiate

the protocol of [IKOS07].

Theorem 10. The construction in Figure 7.2 is a correct n-candidate FNI-combiner for any

25

NP language L, as per Definition 2, for n, t ∈ poly(λ).

Theorem 11. The construction in Figure 7.2 is a t-out-of-n N statistically-sound combiner for
any NP language L for t > n

2 and n, t ∈ poly(λ).

Theorem 12. The construction in Figure 7.2 is a t-out-of-n NB ZK combiner for any NP
language L, as per Definition 6, for t > n

2 and n, t ∈ poly(λ).

Theorem 13. The construction in Figure 7.2 is a t-out-of-n NB PoK combiner for any NP
language L for t > n

2 and n, t ∈ poly(λ).

The formal proofs of these theorems follow the same structure of the previous combiners, and are
deferred, respectively, to Appendix C.8, Appendix C.9, Appendix C.10, and Appendix C.11.

Acknowledgements

Daniele Venturi is member of the Gruppo Nazionale Calcolo Scientifico Istituto Nazionale di Alta
Matematica (GNCS-INdAM). His reaserch was supported by project SERICS (PE00000014)
and by project PARTHENON (B53D23013000006), under the MUR National Recovery and Re-
silience Plan funded by the European Union—NextGenerationEU, and by project BEAT, funded
by Sapienza University of Rome. Lorenzo Magliocco was supported by project PARTHENON
(B53D23013000006), under the MUR National Recovery and Resilience Plan funded by the
European Union—NextGenerationEU, and by project BEAT, funded by Sapienza University of
Rome. Michele Ciampi was supported by the Sunday Group, Inc. and by the Input Output
Research Hub (IORH) of the University of Edinburgh.

References

[ABJ+19] Prabhanjan Ananth, Saikrishna Badrinarayanan, Aayush Jain, Nathan Manohar,
and Amit Sahai. From FE combiners to secure MPC and back. In Dennis Hofheinz
and Alon Rosen, editors, TCC 2019: 17th Theory of Cryptography Conference,
Part I, volume 11891 of Lecture Notes in Computer Science, pages 199–228, Nurem-
berg, Germany, December 1–5, 2019. Springer, Cham, Switzerland.

[AJN+16] Prabhanjan Ananth, Aayush Jain, Moni Naor, Amit Sahai, and Eylon Yogev. Uni-
versal constructions and robust combiners for indistinguishability obfuscation and
witness encryption. In Matthew Robshaw and Jonathan Katz, editors, Advances in
Cryptology – CRYPTO 2016, Part II, volume 9815 of Lecture Notes in Computer
Science, pages 491–520, Santa Barbara, CA, USA, August 14–18, 2016. Springer,
Berlin, Heidelberg, Germany.

[AJS17] Prabhanjan Ananth, Aayush Jain, and Amit Sahai. Robust transforming com-
biners from indistinguishability obfuscation to functional encryption. In Jean-
Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology – EURO-
CRYPT 2017, Part I, volume 10210 of Lecture Notes in Computer Science, pages
91–121, Paris, France, April 30 – May 4, 2017. Springer, Cham, Switzerland.

[BB06] Dan Boneh and Xavier Boyen. On the impossibility of efficiently combining col-
lision resistant hash functions. In Cynthia Dwork, editor, Advances in Cryptology
– CRYPTO 2006, volume 4117 of Lecture Notes in Computer Science, pages 570–
583, Santa Barbara, CA, USA, August 20–24, 2006. Springer, Berlin, Heidelberg,
Germany.

26

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and
its applications (extended abstract). In 20th Annual ACM Symposium on Theory of
Computing, pages 103–112, Chicago, IL, USA, May 2–4, 1988. ACM Press.

[BG24] Nir Bitansky and Nathan Geier. Amplification of non-interactive zero knowledge,
revisited. In Leonid Reyzin and Douglas Stebila, editors, Advances in Cryptology
– CRYPTO 2024, Part IX, volume 14928 of Lecture Notes in Computer Science,
pages 361–390, Santa Barbara, CA, USA, August 18–22, 2024. Springer, Cham,
Switzerland.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract). In
20th Annual ACM Symposium on Theory of Computing, pages 1–10, Chicago, IL,
USA, May 2–4, 1988. ACM Press.

[BKP+24] Nir Bitansky, Chethan Kamath, Omer Paneth, Ron D. Rothblum, and
Prashant Nalini Vasudevan. Batch proofs are statistically hiding. In Bojan Mo-
har, Igor Shinkar, and Ryan O’Donnell, editors, 56th Annual ACM Symposium on
Theory of Computing, pages 435–443, Vancouver, BC, Canada, June 24–28, 2024.
ACM Press.

[CDFR17] Ignacio Cascudo, Ivan Damg̊ard, Oriol Farràs, and Samuel Ranellucci. Resource-
efficient OT combiners with active security. In Yael Kalai and Leonid Reyzin, edi-
tors, TCC 2017: 15th Theory of Cryptography Conference, Part II, volume 10678 of
Lecture Notes in Computer Science, pages 461–486, Baltimore, MD, USA, Novem-
ber 12–15, 2017. Springer, Cham, Switzerland.

[Cra96] Ronald Cramer. Modular design of secure yet practical cryptographic protocols. Ph.
D.-thesis, CWI and U. of Amsterdam, 2, 1996.

[CRS+07] Ran Canetti, Ronald L. Rivest, Madhu Sudan, Luca Trevisan, Salil P. Vadhan, and
Hoeteck Wee. Amplifying collision resistance: A complexity-theoretic treatment.
In Alfred Menezes, editor, Advances in Cryptology – CRYPTO 2007, volume 4622
of Lecture Notes in Computer Science, pages 264–283, Santa Barbara, CA, USA,
August 19–23, 2007. Springer, Berlin, Heidelberg, Germany.

[DFG+23] Yevgeniy Dodis, Niels Ferguson, Eli Goldin, Peter Hall, and Krzysztof Pietrzak. Ran-
dom oracle combiners: Breaking the concatenation barrier for collision-resistance.
In Helena Handschuh and Anna Lysyanskaya, editors, Advances in Cryptology –
CRYPTO 2023, Part II, volume 14082 of Lecture Notes in Computer Science, pages
514–546, Santa Barbara, CA, USA, August 20–24, 2023. Springer, Cham, Switzer-
land.

[DK05] Yevgeniy Dodis and Jonathan Katz. Chosen-ciphertext security of multiple encryp-
tion. In Joe Kilian, editor, TCC 2005: 2nd Theory of Cryptography Conference,
volume 3378 of Lecture Notes in Computer Science, pages 188–209, Cambridge,
MA, USA, February 10–12, 2005. Springer, Berlin, Heidelberg, Germany.

[FHNS16] Marc Fischlin, Amir Herzberg, Hod Bin Noon, and Haya Shulman. Obfuscation
combiners. In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptol-
ogy – CRYPTO 2016, Part II, volume 9815 of Lecture Notes in Computer Science,
pages 521–550, Santa Barbara, CA, USA, August 14–18, 2016. Springer, Berlin,
Heidelberg, Germany.

27

[FL08] Marc Fischlin and Anja Lehmann. Multi-property preserving combiners for hash
functions. In Ran Canetti, editor, TCC 2008: 5th Theory of Cryptography Con-
ference, volume 4948 of Lecture Notes in Computer Science, pages 375–392, San
Francisco, CA, USA, March 19–21, 2008. Springer, Berlin, Heidelberg, Germany.

[FLP08] Marc Fischlin, Anja Lehmann, and Krzysztof Pietrzak. Robust multi-property com-
biners for hash functions revisited. In Luca Aceto, Ivan Damg̊ard, Leslie Ann Gold-
berg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors,
ICALP 2008: 35th International Colloquium on Automata, Languages and Program-
ming, Part II, volume 5126 of Lecture Notes in Computer Science, pages 655–666,
Reykjavik, Iceland, July 7–11, 2008. Springer, Berlin, Heidelberg, Germany.

[FLP14] Marc Fischlin, Anja Lehmann, and Krzysztof Pietrzak. Robust multi-property com-
biners for hash functions. Journal of Cryptology, 27(3):397–428, July 2014.

[FR24] Oriol Farràs and Jordi Ribes-González. One-out-of-q OT combiners. IEEE Trans.
Inf. Theory, 70(4):2984–2998, 2024.

[GHP18] Federico Giacon, Felix Heuer, and Bertram Poettering. KEM combiners. In Michel
Abdalla and Ricardo Dahab, editors, PKC 2018: 21st International Conference on
Theory and Practice of Public Key Cryptography, Part I, volume 10769 of Lecture
Notes in Computer Science, pages 190–218, Rio de Janeiro, Brazil, March 25–29,
2018. Springer, Cham, Switzerland.

[GJS19] Vipul Goyal, Aayush Jain, and Amit Sahai. Simultaneous amplification: The case
of non-interactive zero-knowledge. In Alexandra Boldyreva and Daniele Micciancio,
editors, Advances in Cryptology – CRYPTO 2019, Part II, volume 11693 of Lecture
Notes in Computer Science, pages 608–637, Santa Barbara, CA, USA, August 18–22,
2019. Springer, Cham, Switzerland.

[GMO16] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo: Faster zero-
knowledge for Boolean circuits. In Thorsten Holz and Stefan Savage, editors,
USENIX Security 2016: 25th USENIX Security Symposium, pages 1069–1083,
Austin, TX, USA, August 10–12, 2016. USENIX Association.

[Goo47] Reuben Louis Goodstein. Transfinite ordinals in recursive number theory. The
Journal of Symbolic Logic, 12(4):123–129, 1947.

[Her05] Amir Herzberg. On tolerant cryptographic constructions. In Alfred Menezes, editor,
Topics in Cryptology – CT-RSA 2005, volume 3376 of Lecture Notes in Computer
Science, pages 172–190, San Francisco, CA, USA, February 14–18, 2005. Springer,
Berlin, Heidelberg, Germany.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseu-
dorandom generator from any one-way function. SIAM Journal on Computing,
28(4):1364–1396, 1999.

[HKN+05] Danny Harnik, Joe Kilian, Moni Naor, Omer Reingold, and Alon Rosen. On robust
combiners for oblivious transfer and other primitives. In Ronald Cramer, editor,
Advances in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture Notes in
Computer Science, pages 96–113, Aarhus, Denmark, May 22–26, 2005. Springer,
Berlin, Heidelberg, Germany.

28

[HN24] Shuichi Hirahara and Mikito Nanashima. One-way functions and zero knowledge.
In Bojan Mohar, Igor Shinkar, and Ryan O’Donnell, editors, 56th Annual ACM
Symposium on Theory of Computing, pages 1731–1738, Vancouver, BC, Canada,
June 24–28, 2024. ACM Press.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge
from secure multiparty computation. In David S. Johnson and Uriel Feige, editors,
39th Annual ACM Symposium on Theory of Computing, pages 21–30, San Diego,
CA, USA, June 11–13, 2007. ACM Press.

[JMS20] Aayush Jain, Nathan Manohar, and Amit Sahai. Combiners for functional en-
cryption, unconditionally. In Anne Canteaut and Yuval Ishai, editors, Advances in
Cryptology – EUROCRYPT 2020, Part I, volume 12105 of Lecture Notes in Com-
puter Science, pages 141–168, Zagreb, Croatia, May 10–14, 2020. Springer, Cham,
Switzerland.

[LMP24] Yanyi Liu, Noam Mazor, and Rafael Pass. A note on zero-knowledge for NP and
one-way functions. Electron. Colloquium Comput. Complex., TR24-095, 2024.

[Mau09] Ueli M. Maurer. Unifying zero-knowledge proofs of knowledge. In Bart Preneel,
editor, AFRICACRYPT 09: 2nd International Conference on Cryptology in Africa,
volume 5580 of Lecture Notes in Computer Science, pages 272–286, Gammarth,
Tunisia, June 21–25, 2009. Springer, Berlin, Heidelberg, Germany.

[Mit12] Arno Mittelbach. Hash combiners for second pre-image resistance, target collision re-
sistance and pre-image resistance have long output. In Ivan Visconti and Roberto De
Prisco, editors, SCN 12: 8th International Conference on Security in Communica-
tion Networks, volume 7485 of Lecture Notes in Computer Science, pages 522–539,
Amalfi, Italy, September 5–7, 2012. Springer, Berlin, Heidelberg, Germany.

[Mit13] Arno Mittelbach. Cryptophia’s short combiner for collision-resistant hash functions.
In Michael J. Jacobson Jr., Michael E. Locasto, Payman Mohassel, and Reihaneh
Safavi-Naini, editors, ACNS 13: 11th International Conference on Applied Cryptog-
raphy and Network Security, volume 7954 of Lecture Notes in Computer Science,
pages 136–153, Banff, AB, Canada, June 25–28, 2013. Springer, Berlin, Heidelberg,
Germany.

[MP06] Remo Meier and Bartosz Przydatek. On robust combiners for private information
retrieval and other primitives. In Cynthia Dwork, editor, Advances in Cryptology
– CRYPTO 2006, volume 4117 of Lecture Notes in Computer Science, pages 555–
569, Santa Barbara, CA, USA, August 20–24, 2006. Springer, Berlin, Heidelberg,
Germany.

[MP12] Mohammad Mahmoody and Rafael Pass. The curious case of non-interactive
commitments - on the power of black-box vs. non-black-box use of primitives.
In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology –
CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages 701–
718, Santa Barbara, CA, USA, August 19–23, 2012. Springer, Berlin, Heidelberg,
Germany.

[MP14] Bart Mennink and Bart Preneel. Breaking and fixing cryptophia’s short combiner.
In Dimitris Gritzalis, Aggelos Kiayias, and Ioannis G. Askoxylakis, editors, CANS

29

14: 13th International Conference on Cryptology and Network Security, volume
8813 of Lecture Notes in Computer Science, pages 50–63, Heraklion, Crete, Greece,
October 22–24, 2014. Springer, Cham, Switzerland.

[MPW07] Remo Meier, Bartosz Przydatek, and Jürg Wullschleger. Robuster combiners for
oblivious transfer. In Salil P. Vadhan, editor, TCC 2007: 4th Theory of Cryptography
Conference, volume 4392 of Lecture Notes in Computer Science, pages 404–418,
Amsterdam, The Netherlands, February 21–24, 2007. Springer, Berlin, Heidelberg,
Germany.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. Journal of Cryptology,
4(2):151–158, January 1991.

[Pie07] Krzysztof Pietrzak. Non-trivial black-box combiners for collision-resistant hash-
functions don’t exist. In Moni Naor, editor, Advances in Cryptology – EURO-
CRYPT 2007, volume 4515 of Lecture Notes in Computer Science, pages 23–33,
Barcelona, Spain, May 20–24, 2007. Springer, Berlin, Heidelberg, Germany.

[Pie08] Krzysztof Pietrzak. Compression from collisions, or why CRHF combiners have a
long output. In David Wagner, editor, Advances in Cryptology – CRYPTO 2008,
volume 5157 of Lecture Notes in Computer Science, pages 413–432, Santa Barbara,
CA, USA, August 17–21, 2008. Springer, Berlin, Heidelberg, Germany.

[PR20] Bertram Poettering and Paul Rösler. Combiners for AEAD. IACR Transactions on
Symmetric Cryptology, 2020(1):121–143, 2020.

[Ps05] Rafael Pass and Abhi shelat. Unconditional characterizations of non-interactive
zero-knowledge. In Victor Shoup, editor, Advances in Cryptology – CRYPTO 2005,
volume 3621 of Lecture Notes in Computer Science, pages 118–134, Santa Barbara,
CA, USA, August 14–18, 2005. Springer, Berlin, Heidelberg, Germany.

[Som06] Christian Sommer. Robust Combiners for Cryptographic Primitives. Master thesis,
ETH Zurich, 2006.

30

A Deferred definitions

In this section of the appendix, we report definitions that are already used in the literature.

Definition 11 (Pseudorandom function). A pseudorandom function (PRF) is a family of func-
tions Fs : {0, 1}k → {0, 1}l, indexed by a key s ∈ {0, 1}λ, for which the following holds:

• Fs(x) is efficiently computable, given s and x;
• For all PPT adversaries A, the following holds:

Pr
[
AFs(·)(1λ) = 1

]
− Pr

[
AR(·)(1λ) = 1

]
≤ negl(λ)

where s
$← {0, 1}λ and R : {0, 1}k → {0, 1}l, with R being a random function.

Definition 12 (Non-interactive string commitment). A non-interactive string-commitment
scheme com = (S, R) for message space M is composed of an efficient sender S and an ef-
ficient receiver R for which the following conditions hold:

• Completeness.

Pr
[
open(pp, com, o) = m | pp

$← setup(1λ); (com, o)← commit(pp, m)
]
≥ 1− negl(λ)

• Computational Hiding. Let pp
$← setup(1λ). Then, for all m0 ̸= m1, with m0, m1 ∈

M:
commit(pp, m0) ≈c commit(pp, m1)

• Computational Binding. For all PPT algorithms S′ and all m0 ̸= m1, with m0, m1 ∈
M:

Pr
[
open(pp, com, o0) = m0 ∧ open(pp, com, o1) = m1

∣∣∣∣ pp
$← setup(1λ)

(com, o0, o1)← S′(pp)

]
≤ negl(λ)

If the properties above hold against unbounded adversaries, we refer to statistical hiding and
statistical binding, respectively.

Secret sharing. We provide a generic definition of a t-out-of-n secret sharing scheme (that
we use in Section 7).

Definition 13 (t-out-of-n secret sharing scheme). A t-out-of-n secret sharing scheme is a pair
of algorithms (share, reconstruct) that behaves as follows:

• share is a randomized algorithm that, on input a secret m, outputs a set of n shares
(s1, . . . , sn).

• reconstruct is a deterministic algorithm that, on input t shares (s1, . . . , st), outputs the
secret m.

The scheme satisfies the correctness property if, ∀m, ∀S = {i1, . . . , it} ⊆ {1, . . . , n} of size t, it
holds that:

Pr
share(m)→(s1,...,sn)

[reconstruct(si1 , . . . , sit) = m] = 1

In addition, the scheme satisfies perfect security if, ∀m, m′, ∀S ⊆ {1, . . . , n}, where |S| < t,
the following holds:

{(si : i ∈ S) | (s1, . . . , sn)← share(m)} ≈p {(s′
i : i ∈ S) | (s′

1, . . . , s′
n)← share(m′)}

31

Additionally, we specify properties we require from the secret sharing scheme in Section 5
(which are similar to some of the basic properties of the Shamir’s secret sharing).

Definition 14 (Correctness). We say the scheme satisfy the correctness property if, ∀m, ∀S =
{i1, . . . , it} ⊆ {1, . . . , n} of size t, it holds that:

Pr
shareG(m)→(s1,...,sn)

[reconstructG(si1 , . . . , sit) = m] = 1

Additionally, we require that for any set S = {i1, . . . , it} ⊆ [n], the following holds: ∀k ∈
[n] \ S,

Pr
shareG(m)→(s1,...,sn)

[reconstructG((si1 , . . . , sit), k) = sk] = 1

Definition 15 (Perfect security). We say that (shareG, reconstructG) satisfies perfect security
if, ∀m, m′, ∀S ⊆ {1, . . . , n}, where |S| < t, the following holds:

{(si : i ∈ S) | (s1, . . . , sn)← shareG(m)} ≈p {(s′
i : i ∈ S) | (s′

1, . . . , s′
n)← shareG(m′)}

Standard security properties of non-interactive proof systems. Next, we report stan-
dard counterparts of the security definitions we consider for our combiners (i.e., soundness,
zero-knowledge, and argument-of-knowledge), providing both the black-box and the non-black-
box flavours when applicable.

Definition 16 (Soundness). Let Π ∈ FNI. We say Π is sound if, for all PPT algorithms A,
the following holds:

Pr
[
V(pp, x, π) = 1 ∧ x /∈ L | pp

$← setup(1|x|, 1λ); (x, π) $← A(pp)
]

< negl(λ).

Definition 17 (Black-box Non-Interactive Zero Knowledge). Let Π ∈ FNI. Let REAL =
{(pp, x, w, π) | pp

$← setup(1|x|, 1λ); (x, w) $← A(pp); π
$← P(pp, x, w)}λ∈N and IDEALS =

{(pp, x, w, π) | (pp, τ) $← S0(1|x|, 1λ); (x, w) $← A(pp); π
$← S1(pp, τ, x)}λ∈N. We say that Π

satisfies black-box zero-knowledge if there exists a PPT algorithm S such that, for all PPT
algorithms A, the following holds:

Pr
[
b = b′

∣∣∣∣ b
$← {0, 1}

b′ ← A(pp, x, w, π)
; (pp, x, w, π) $←

{
REAL if b = 0
IDEALS if b = 1

]
≤ 1

2 + negl(λ).

Definition 18 (Non-Black-Box Non-Interactive Zero-Knowledge). Let Π ∈ FNI. Let REAL =
{(pp, x, w, π) | pp

$← setup(1|x|, 1λ); (x, w) $← A(pp); π
$← P(pp, x, w)}λ∈N and IDEALS =

{(pp, x, w, π) | (pp, τ) $← S0(1|x|, 1λ); (x, w) $← A(pp); π
$← S1(pp, τ, x)}λ∈N. We say that Π

satisfies non-black-box zero-knowledge if, for all PPT algorithms A, there exists a PPT algorithm
S for which the following holds:

Pr
[
b = b′

∣∣∣∣ b
$← {0, 1}

b′ ← A(pp, x, w, π)
; (pp, x, w, π) $←

{
REAL if b = 0
IDEALS if b = 1

]
≤ 1

2 + negl(λ).

Definition 19 (Black-Box Argument-of-Knowledge). Let Π ∈ FNI. We say that Π satisfies
black-box argument-of-knowledge if there exists a PPT algorithm E such that, for all PPT algo-
rithms A, the following holds:

Pr
[
A(pp) = 1 | pp

$← setup(1|x|, 1λ)
]
≈c Pr

[
A(pp) = 1 | (pp, ξ) $← E0(1|x|, 1λ)

]
,

32

and

Pr
[
(x, w) ∈ RL,V(pp, x, π) = 1

∣∣∣∣ (pp, ξ) $← E0(1n, 1λ); (x, π)← A(pp)
w ← E1(pp, ξ, x, π)

]
≥ 1− negl(λ).

Definition 20 (Non-Black-Box Argument-of-Knowledge). Let Π ∈ FNI. We say that Π satisfies
non-black-box argument-of-knowledge if, for all PPT algorithms A, there exists a PPT algorithm
E for which the following holds:

Pr
[
A(pp) = 1 | pp

$← setup(1|x|, 1λ)
]
≈c Pr

[
A(pp) = 1 | (pp, ξ) $← E0(1|x|, 1λ)

]
,

and

Pr
[
(x, w) ∈ RL,V(pp, x, π) = 1

∣∣∣∣ (pp, ξ) $← E0(1n, 1λ); (x, π)← A(pp)
w ← E1(pp, ξ, x, π)

]
≥ 1− negl(λ).

MPC properties. In what follows, we report MPC properties following from [IKOS07].
Definition 21 (Correctness). Let fx(w1, . . . , wn) : ({0, 1}∗)n → ({0, 1}∗)n with a hardcoded
value x ∈ {0, 1}∗ be an n-party function. A protocol Π realizes the function fx with perfect
correctness if for all inputs w1, . . . , wn, the probability that the output of some player is different
from the output of fx is 0, where the probability is over the independent choices of the randomness
r1, . . . , rn.
Definition 22 (K-Privacy). Let fx(w1, . . . , wn) : ({0, 1}∗)n → ({0, 1}∗)n with a hardcoded value
x ∈ {0, 1}∗ be an n-party function. We denote the joint view viewI(w1, . . . , wn) as the views
of parties Pi (i ∈ I), corresponding to the execution where every Pi’s input is wi. We denote
fx,I(w1, . . . , wn) the output of function fx(w1, . . . , wn) received by the parties whose indices are
in the set I. A protocol Π realizes the function fx with perfect K-Privacy if there is a PPT
simulator S s.t. for all inputs (w1, . . . , wn), and every set of corrupted players I ⊆ [n] with
at most size K, the joint view viewI(w1, . . . , wn) of parties in I is identically distributed to
S(I, x, {wk}k∈[I], fx,I(w1, . . . , wn)). We note that when we say “corrupted”, we mean semi-
honest, i.e., parties will follow the protocol specification.
Definition 23 (K-Robustness). Let fx(w1, . . . , wn) : ({0, 1}∗)n → ({0, 1}∗)n with a hardcoded
value x ∈ {0, 1}∗ be an n-party function. A protocol Π realizes the function fx with perfect K-
Robustness if it is perfectly correct (Definition 21) in the presence of a semi-honest adversary,
and moreover for any computational unbounded malicious adversary corrupting a set I with at
most size K, and for any inputs (w1, . . . , wn), if there is no (w′

1, . . . , w′
n) s.t. fx(w′

1, . . . , w′
n) = 1,

then the probability that some honest parties output 1 in an execution of Π realizing fx is 0.

B Concrete instantiations of homomorphic languages and reconstructH

In this section, we report concrete instantiations of reconstructH for some of the homomorphic
languages presented in [Mau09].

We also note that, in the following examples, the witness is either in Zq or Zq × Zq. When
the witness is in Zq, we know Zq is actually a finite field, and the secret sharing scheme (shareG,
reconstructG) in Section 5 satisfies correctness (as per Definition 14) and perfect security (as
per Definition 15). Regarding Zq × Zq, if we consider the addition operator as component-wise
addition, and the multiplication operator as component-wise multiplication, then Zq × Zq is
a finite field, and the correctness and perfect security of (shareG, reconstructG) also holds.
Intuitively, for this case, we secret share each component of the witness, and perform the
reconstruction component-wise.

33

DLOG. In DLOG, (G, ⋆) = (Zq, +), and (H,⊗) = (H, ·), with H being a group of prime order
q. The homomorphic group operation is defined as:

G→ H : w → f(w) = gw

Therefore, {2⋆} = ·, and {2⊗} = exp. More specifically:
• f(w1) · f(w2) = gw1 · gw2 = gw1+w2 = f(w1 + w2)
• f(w) exp v = gw exp v = gw · gw · · · · · gw︸ ︷︷ ︸

v copies of gw

= gw·v = f(w · v)

For completeness, we also instantiate the generic shareG of Section 5 with the operators defined
above:

• shareG(w): a1, . . . , at−1
$← GenG(1λ). Output {wi ← w + ∑t−1

j=1(aj · ij)}i∈[n]

• reconstructG({si}i∈I , l): Output wl ←
∑

j∈I(si · (
∏

k∈I,k ̸=j
l−k
j−k))

We expand reconstructH in terms of reconstructG, as in Section 5.

x′
l =⊗

j∈I

(xj{2⊗}(
∏

k∈I,k ̸=j

l − k

j − k
))

=
∏
j∈I

(gwj exp(
∏

k∈I,k ̸=j

l − k

j − k
))

=
∏
j∈I

(gwj ·(
∏

k∈I,k ̸=j
l−k
j−k

))

= g
∑

j∈I
wj ·(

∏
k∈I,k ̸=j

l−k
j−k

)

= gwl = f(reconstructG({wj}j∈I , l)) = f(wl) = xl

DH tuples. In DH, f(w) = (gw, hw), (G, ⋆) = (Zq, +), and (H,⊗) = (H×H,⊙), with H being
a group of prime order q. The homomorphic group operation is defined as:

G→ H× H : w → f(w) = (gw, hw)

The group operation of H ⊙ is the Hadamard product (i.e., the component-wise product), with
its matching hyperoperation {2⊙} being the component-wise exponentiation. More specifically:

• f(w1)⊙ f(w2) = (gw1 · gw2 , hw1 · hw2) = (gw1+w2 , hw1+w2) = f(w1 + w2)
• f(w){2⊙}v = f(w)⊙ f(w)⊙ . . .⊙ f(w)︸ ︷︷ ︸

v copies of f(wi)

= (gw·v, hw·v) = f(w · v)

The algorithms shareG, reconstructG are exactly the same as in the previous example. We
expand reconstructH in terms of reconstructG, as in Section 5.

x′
l =⊗

j∈I

(xj{2⊗}(
∏

k∈I,k ̸=j

l − k

j − k
))

=⊙
j∈I

((gwj , hwj){2⊙}(
∏

k∈I,k ̸=j

l − k

j − k
))

=⊙
j∈I

(gwj ·(
∏

k∈I,k ̸=j
l−k
j−k

)
, h

wj ·(
∏

k∈I,k ̸=j
l−k
j−k

))

= (g
∑

j∈I
wj ·(

∏
k∈I,k ̸=j

l−k
j−k

)
, h

∑
j∈I

wj ·(
∏

k∈I,k ̸=j
l−k
j−k

))
= (gwl , hwl) = f(reconstructG({wj}j∈I , l)) = f(wl) = xl

34

Pedersen commitments. In Pedersen commitments, f(w1, w2) = hw1
1 hw2

2 , (G, ⋆) = (Zq ×
Zq, ⋆), with ⋆ being the component-wise addition, with its matching hyperoperation {2⋆} being
the component-wise multiplication, and (H,⊗) = (H, ·), with H being a group of prime order q.
The homomorphic group operation is defined as:

Zq × Zq → H : (w1, w2)→ f(w1, w2) = hw1
1 hw2

2

We expand the homomorphic operations as follows:
• f(a)⊗ f(b) = (ha1

1 ha2
2) · (hb1

1 hb2
2) = ha1+b1

1 ha2+b2
2 = f(a ⋆ b)

• f(a){2⊗}v = (ha1
1 ha2

2) · (ha1
1 ha2

2) . . . (ha1
1 ha2

2)︸ ︷︷ ︸
v copies of a = (a1, a2)

= f(hva1
1 hva2

2) = f(a{2⋆}v)

For completeness, we also report shareG instantiated with the operators defined above. Intu-
itively, we secret share each component of the witness on a different polynomial, and perform
the reconstruction component-wise:

• shareG(w = (w1, w2)): (a1,1, a2,1) . . . , (a1,t−1, a2,t−1) $← GenG(1λ). Output {(w1,i, w2,i)←
(w1 + ∑t−1

j=1(a1,j · ij), w2 + ∑t−1
j=1(a2,j · ij))}i∈[n]

• reconstructG({(s1,i, s2,i)}i∈I , l):
Output w = (w1, w2)← (∑j∈I(s1,i · (

∏
k∈I,k ̸=j

l−k
j−k)), ∑

j∈I(s2,i · (
∏

k∈I,k ̸=j
l−k
j−k)))

We expand reconstructH in terms of reconstructG, as in Section 5.

x′
l =⊗

j∈I

(xj{2⊗}(
∏

k∈I,k ̸=j

l − k

j − k
))

=
∏
j∈I

(ha1,j

1 h
a2,j

2) exp(
∏

k∈I,k ̸=j

l − k

j − k
))

=
∏
j∈I

(h
a1,j ·(

∏
k∈I,k ̸=j

l−k
j−k

)
1 h

a2,j ·(
∏

k∈I,k ̸=j
l−k
j−k

)
2

= h

∑
j∈I

a1,j ·(
∏

k∈I,k ̸=j
l−k
j−k

)
1 h

∑
j∈I

a2,j ·(
∏

k∈S,k ̸=j
l−k
j−k

)
2

= f(reconstructG({(a1,j , a2,j)}j∈I), l) = f(al) = xl

C Security proofs

In this section we report the proofs of security that were deferred throughout the composition.

C.1 Combiner for homomorphic languages: correctness

Proof (Theorem 3). In order for the construction to be an n-candidate FNI-combiner, the fol-
lowing has to hold:

Pr
[
Cvrfy(pp, x, Cprove(pp, x, w)) = 1 | pp

$← Csetup(1|x|, 1λ)
]
≥ 1− negl(λ)

Intuitively, this happens if both (i) all sub-proofs are accepting, and (ii) all reconstructed values
are consistent with the same polynomial, which evaluates to x in 0. We explore the two events
separately.

35

Event 1. Let Ecorr,k as the event that the k-th sub-proof is accepting. We denote Ecorr as the
event that all sub-proofs are accepting, i.e.:

Pr[Ecorr] =
n∏

k=1
Pr[Ecorr,k]

For t ∈ poly(λ), the aforementioned quantity is overwhelming. By Bernoulli’s inequality (i.e.,
(1 + x)n ≥ 1 + nx), the following holds:

Pr[Ecorr] ≥ (min
k
{Pr[Ecorr,k]})n

≥ (1− negl(λ))poly(λ)

≥ 1− negl(λ)poly(λ)
≥ 1− negl(λ)

Event 2. The verifier computes x′
l = reconstructH({xj}j∈[t], l), for l ∈ [n]\[t]∪{0}. Following

Section 5, this is equivalent to f(reconstructG({sj}j∈[t], l)). By correctness of Shamir’s secret
sharing (as per Definition 14), the verifier successfully reconstructs the sub-statement x′

l =
f(wl) = xl with probability 1.

C.2 Combiner for homomorphic languages: soundness

Proof (Theorem 4). Assume by contradiction that the construction CHL is not sound. Then,
there exists a PPT algorithmA for which (CHL,A) ∈ RSound as per Definition 4. This means that
A outputs an accepting proof π for the combiner for a statement x /∈ LHL with non-negligible
probability. The verifier parses (x, π) as {xk, πk}k∈[n], and behaves according to the protocol
description. In particular, the verifier checks that (i) each sub-proof πi verifies against the
verifier of candidate i Vi, and (ii) each sub-statement xi is an evaluation of the same polynomial
of degree t− 1 in i.

In order to prove soundness for our combiner, it suffices to show that any accepting proof for
an x /∈ LHL must yield a set of indices I = {i1, . . . , in−t+1} such that (Πik

, RedA,Πik) ∈ RSound
for all ik ∈ I. We prove that this fact holds in Lemma 5, and specify the behaviour of RedA,Πik

next.
Figure C.1: Reduction RedA,Πik

• Receive public parameters pp′
ik

from the challenger C.

• Compute pp
$← Csetup(1l, 1λ). Parse pp as {ppj}j∈[n]. Replace ppik

with pp′
ik

.
• Forward pp to A.
• Upon receiving (x, π) from A, Parse π as {πk, xk}k∈[n].
• Forward (xik

, πik
) to C.

Lemma 5. For t > n
2 , any accepting proof π for the combiner related to a statement x /∈ LHL

must include at least n− t + 1 distinct indices I = {i1, . . . , in−t+1} for which (Πik
, RedA,Πik) ∈

RSound for all ik ∈ I.

Proof. Assume by contradiction that the lemma statement does not hold. Then, there exists an
accepting proof π for the combiner related to a statement x /∈ LHL that includes at most n− t

36

distinct indices I = {i1, . . . , in−t} for which πik
is an accepting proof for a statement xik

/∈ LHL
for candidate Πik

, with ik ∈ I.
Since the verifier of the combiner accepts proof π, all sub-proofs are accepting. In particular,

this means that there exists a subset I ′ containing sub-proofs {πik
}ik /∈I that do not yield reduc-

tions to soundness. Given that these proofs are accepting, they relate to sub-statements that
are in the language. We observe that, by assumption, the cardinality of set I ′ is n− (n− t) = t.
In what follows, we denote the set of shares identified by I ′ as S = {xi}i∈I′ .

In order for the verifier of the combiner to accept proof π, it should be the case that
x = reconstructH({xk}k∈I′ , 0), i.e.:

x =⊗
j∈I′

(xj{2⊗}(
∏

k∈I′,k ̸=j

k

k − j
))

Since all the sub-statements in S are in the language (i.e., ∀j ∈ I ′, xj = f(wj)), the following
holds:

x =⊗
j∈I′

(f(wj){2⊗}(
∏

k∈I′,k ̸=j

k

k − j
))

Then, we apply the homomorphism of f by invoking Fact 1 and Fact 2:

x =⊗
j∈I′

(f(wj){2⊗}(
∏

k∈I′,k ̸=j

k

k − j
))

= f(⋆
j∈I′

(wj{2⋆}(
∏

k∈I′,k ̸=j

k

k − j
)))

= f(reconstructG({wj}j∈I′ , 0))
= f(w)

Note that, by the assumption of t > n
2 , the reconstruction of the secret out of the n shares is

uniquely determined by any set of size t. Hence, set S uniquely determines the secret f(w).
This is a contradiction to the assumption that x /∈ LHL, as x = f(w). Therefore, any accepting
proof π for the combiner for a statement x /∈ LHL implies the existence of at least n − t + 1
reductions to soundness of the underlying candidates.

C.3 Combiner for homomorphic languages: zero-knowledge

Proof (Theorem 5). Following Section 5.2, we construct a simulator ST and prove in Lemma 6
that either its output is indistinguishable from the output of the real prover, or there exists at
least one reduction to zero-knowledge of one of the candidates whose indices are in T . With
that, we can use exactly the same the combinatorics argument used to prove in Lemma 2.

Lemma 6. There exists a simulator ST for which either {REAL} ≈c {IDEALST }, or there exists
a reduction to zero-knowledge of at least one of the candidates {Πk}k∈T .

Proof. Let T = {i1, . . . , it} be a set of indices sorted in lexicographic order identifying candidates
Πi1 , . . . , Πit . Moreover, we recall that we denote Tj as the set containing the first j indices of
T , i.e., Tj = {i1, . . . , ij}. ST = (ST,0,ST,1) is constructed as follows:

37

Figure C.2: Simulator ST

ST,0(1l, 1λ):

• For l ∈ T , compute (ppl, τl)
$← S0

l (1l, 1λ).
• For i ∈ [n] \ T , compute ppi ← setupi(1l, 1λ).
• Compute pp← {ppk}k∈[n], τ ← {τk}k∈T .
• Return (pp, τ).

ST,1(pp, τ, x):

• Sample {ri}i∈[n]\T ∪T2t−n−1
$← GenG(1λ).

• For i ∈ [n] \ T ∪ T2t−n−1, compute x′
i ← f(ri). Let x′

0 ← x.
• For l ∈ T \ T2t−n−1, compute x′

l ← reconstructH({x′
j}j∈[n]\T ∪T2t−n−1∪{0}, l).

• For i ∈ [n]\T , compute πi ← Pi(ppi, x′
i, ri). For l ∈ T , compute πl ← S1

l (ppl, τl, x′
l).

• Return ({πk}k∈[n], {x′
k}k∈[n]).

The proof of this lemma goes through t + 3 hybrid experiments, where hybrid H0 is the same
as the real world, and hybrid Ht+2 is the same as the ideal world. We denote the output of
the adversary in hybrid Hi as outHi , for i ∈ {0, 1, . . . , t + 2}. Formally we prove that, for
j ∈ {1, . . . , t + 2} and for any PPT algorithm A, the following holds:∣∣∣∣ Pr[A(outHj−1) = 1]− Pr[A(outHj) = 1]

∣∣∣∣ ≤ negl(λ).

We define the hybrids as follows:
Figure C.3: Hybrid experiments H0, Hj , Ht+1, Ht+2, for 1 ≤ j ≤ t

H0, Hj , Ht+1 , Ht+2

1. ppk
$← setupk(1l, 1λ) for k ∈ [n]. pp← {ppk}k∈[n].

1. (ppk, τk) $← S0
k(1l, 1λ) for k ∈ Tj . ppi

$← setupi(1l, 1λ) for i ∈ [n] \ Tj . pp ←
{ppk}k∈[n].

2. Compute (x, w) $← A(pp)

3. Compute {wi}i∈[n] ← shareG(w).
For i ∈ [n], compute xi ← f(wi).

3. Sample {ri}i∈[n]\T ∪T2t−n−1
$← GenG(1λ).

For i ∈ [n] \ T ∪ T2t−n+1, compute x′
i ← f(ri). Let r0 ← w.

For l ∈ T \ T2t−n−1, compute wl ← reconstructG({ri}j∈[n]\T ∪T2t−n−1∪{0}, l). Com-
pute xl ← f(wl).

3. Sample {ri}i∈[n]\T ∪T2t−n−1
$← GenG(1λ).

For i ∈ [n] \ T ∪ T2t−n−1, compute x′
i ← f(ri). Let x′

0 ← x.
For l ∈ T \ T2t−n−1, compute x′

l ← reconstructH({x′
j}j∈[n]\T ∪T2t−n−1∪{0}, l).

4. πk ← Pk(ppk, xk, wk) for k ∈ [n]. π ← ({πk}k∈[n], {xk}k∈[n]).

38

4. πk ← S1
k(ppk, τk, xk) for k ∈ Tj . πi ← Pi(ppi, xi, wi) for i ∈ [n] \ Tj . π ←

({πk}k∈[n], {xk}k∈[n]).

4. πk ← S1
k(ppk, τk, xk) for k ∈ T . πi ← Pi(ppi, x′

i, ri) for i ∈ [n] \ T . π ←
({πk}k∈[n], {xk}k∈T \T2t−n−1 ||{x′

k}k∈[n]\T ∪T2t−n−1).

4. πk ← S1
k(ppk, τk, x′

k) for k ∈ T . πi ← Pi(ppi, x′
i, ri) for i ∈ [n] \ T . π ←

({πk}k∈[n], {x′
k}k∈[n]).

5. Run A(pp, x, π).

Intuitively, in the first t hybrids, the real proofs generated by the candidates in T are gradually
replaced with simulated proofs generated by their respective simulator. Note that, in principle,
it could be the case that some of these candidates are not zero-knowledge. Hence, the adversary
may be able to distinguish the output of two adjacent hybrids. This is acceptable as per the
lemma statement, since in this case we would have a reduction to ZK of that specific candidate.

In Ht+1, we replace t − 1 shares of the real witness w with t − 1 random group elements
in G. This is possible as shares of the real witness are used in at most t − 1 of the prover
algorithms of the candidates10. Hence, any adversary can leak at most t−1 of the shares, and it
is therefore unable to determine whether these are shares of w or random group elements. Since
this argument is information theoretical, the two hybrids are identically distributed. Finally,
the last hybrid is just a syntactic change that derives from homomorphic operations. Formally,
this lemma is proved by having Lemma 7, Lemma 8, and Lemma 9.

Lemma 7 (Transition from Hj−1 to Hj , for 1 ≤ j ≤ t). If there exists a PPT algorithm A for
which outHj−1 ̸≈c outHj , there exists a PPT algorithm RedA,Πij that breaks zero-knowledge of
the ij-th scheme.

Proof. Given A as in the theorem statement, we describe RedA,Πij in what follows:

Figure C.4: Reduction RedA,Πij

• Receive public parameters ppij from the challenger C.

• Compute (ppk, τk) $← S0
k(1l, 1λ) for k ∈ Tj−1. Compute ppi

$← setupi(1l, 1λ) for
i ∈ [n] \ Tj . Set pp← {ppk}k∈[n].

• Compute (x, w) $← A(pp).
• Compute {wi}i∈[n] ← shareG(w). Compute {xi ← f(wi)}i∈[n].
• Send {xij , wij} to C, and receive proof πij . This proof is generated either as
Pij (ppij , xij , wij) or S1

ij
(ppij , τij , xij).

• Compute πk ← S1
k(ppk, τk, xk) for k ∈ Tj−1. Compute πi ← Pi(ppi, xi, wi) for i ∈

[n] \ Tj .
• Set π ← ({πk}k∈[n], {xk}k∈[n]).

10More precisely, the real prover is used exactly in n − t of the candidates. Therefore, H1 removes the
dependency on the witness from all the proofs generated by real provers, as well as the first t−1−(n−t) = 2t−n−1
elements of the set T (i.e., T2t−n−1). From the honest majority assumption, the cardinality of T2t−n−1 is always
greater or equal to 0. Looking ahead, this enables that the reconstruction procedure in H2 to be carried out with
sufficiently-many shares.

39

• Run A(pp, x, π) and output whatever A outputs.

If C provides a real proof, we are in hybrid Hj−1. Otherwise, we are in hybrid Hj . Therefore,
RedA,Πij retains the same distinguishing advantage of A, breaking ZK of candidate Πij .

Lemma 8 (Transition from Ht to Ht+1). outHt and outHt+1 are identically distributed.

Proof. Assume by contradiction there exists an unbounded algorithm A that can distinguish
outHt from outHt+1 . Then, we can construct the following adversary AA,SS breaking security
(as per Definition 15) of the t-out-of-n Shamir’s secret sharing scheme:

Figure C.5: Adversary AA,SS

• Compute (ppk, τk) $← S0
k(1l, 1λ) for k ∈ T . ppi

$← setupi(1l, 1λ) for i ∈ [n] \ T .
pp← {ppk}k∈[n].

• Compute (x, w) $← A(pp), and forward w to the challenger C.
• Receive t−1 shares {si}i∈[n]\T ∪T2t−n+1 from C which are either shares of the real witness

w or random group elements {ri}i∈[n]\T ∪T2t−n−1
$← GenG(1λ).

• Set s0 ← w.
• For l ∈ T \ T2t−n−1, compute wl ← reconstructG({si}i∈[n]\T ∪T2t−n−1∪{0}, l).
• For l ∈ T \ T2t−n−1, compute xl ← f(wl). For i ∈ [n] \ T ∪ T2t−n−1 ∪ {0}, compute

xi ← f(si).
• For l ∈ T , compute πl ← S1

l (ppl, τl, xl). For i ∈ [n] \ T , compute πi ← Pi(ppi, xi, si).
• Set π ← {(πk, xk)}k∈[n].
• Run A(pp, x, π) and output whatever A outputs.

First, observe that AA,SS uses w alongside the shares si output by the challenger C in order to
reconstruct shares of the real w for i ∈ T \ T2t−n−1. This is necessary, as both Ht and Ht+1
simulate proofs for i ∈ T \ T2t−n−1 by supplying xi = f(wi) as the input to the simulators of
the candidates whose indices are in T \ T2t−n−1.

We now argue that AA,SS correctly reproduces the behavior of hybrids Ht and Ht+1 ac-
cording to the challenger’s behaviour. If the challenger shares the real witness w, all the proofs
in [n] \ T ∪ T2t−n−1 are generated exactly as in Ht (i.e., using shares of w). If the challenger
generates random group elements in G, all the proofs in [n] \ T ∪ T2t−n−1 are generated ex-
actly as in Ht+1 (i.e., using random group elements in G). Therefore, AA,SS retains the same
distinguishing advantage of A, breaking security of Shamir’s secret sharing scheme. This is a
contradiction; therefore, outHt = outHt+1 .

Lemma 9 (Transition from Ht+1 to Ht+2). outHt+1 and outHt+2 are identically distributed.

Proof. The proof follows by comparing how the sub-statements are generated and by applying
the property of homomorphic language. More precisely:

• Comparing {xl}l∈[n]\T ∪T2t−n−1. In both experiments, these sub-statements are generated
as f(rl) for a random rl ∈ G.

• Comparing x0. In Ht+1, x0 = f(r0), with r0 = w. In Ht+2, x0 = x. Since f(w) = x by
assumption, the two sub-statements are identical.

40

• Comparing {xl}l∈T \T2t−n−1.
In Ht+1, xl = f(wl), with wl = reconstructG({rj}j∈[n]\T ∪T2t−n−1∪{0}, l). In Ht+2,
xl = reconstructH({xj}j∈[n]\T ∪T2t−n−1∪{0}, l), with xj = f(rj). We show that these sub-
statements are identical by applying the homomorphic property of the language, similarly
to the proof for Theorem 3:

f(wl) = f(reconstructG({rj}j∈[n]\T ∪T2t−n−1∪{0}, l)

= f(⋆
j∈[n]\T ∪T2t−n−1∪{0}

(rj{2⋆}(
∏

k∈T \T2t−n−1,k ̸=j

l − k

j − k
)))

= ⊗
j∈[n]\T ∪T2t−n−1∪{0}

(f(rj){2⊗}(
∏

k∈T \T2t−n−1,k ̸=j

l − k

j − k
))

= reconstructH({f(rj)}j∈[n]\T ∪T2t−n−1∪{0}, l)
= reconstructH({xj}j∈[n]\T ∪T2t−n−1∪{0}, l)

C.4 Combiner for homomorphic languages: argument-of-knowledge

Proof (Theorem 6). Following Section 5.2, we construct an extractor ET and prove in Lemma 10
that either it successfully extracts a witness, or there exists at least one reduction to AoK of
one of the candidates whose indices are in T . Then, we argue in Lemma 12 that the exis-
tence of adversaries who break argument-of-knowledge of the combiner implies the existence of
sufficiently-many reductions to argument-of-knowledge of the underlying candidates, concluding
the proof.

Lemma 10. There exists an extractor ET for which either a witness w is successfully extracted
from an accepting proof, or there exists a reduction to argument-of-knowledge of at least one of
the candidates {Πk}k∈T .

Proof. Let T = {i1, . . . , it} be a set of indices sorted in lexicographic order identifying candidates
Πi1 , . . . , Πit . The extractor ET = (ET,0, ET,1) is constructed as follows:

Figure C.6: Extractor ET

ET,0(1l, 1λ):

• For k ∈ T , compute (ppk, ξk) $← E0
k (1l, 1λ).

• Compute pp← {ppk}k∈[n], ξ ← {ξk}k∈T .
• Return (pp, ξ).

ET,1(pp, ξ, x, π):
• For k ∈ T , parse the k-th component of π as (xk, πk). Compute wk ←
E1

k (ppk, ξk, xk, πk).
• Output w ← reconstructG({wj}j∈T).

As per Definition 7, an adversary may break argument-of-knowledge either by detecting the
introduction of trapdoor setups, or by outputting an accepting proof that causes any extractor
to fail. If either occurs, we exhibit a reduction to AoK of that specific candidate.

41

Introducing trapdoor setups. We define t hybrid experiments: in hybrid H0 all public
parameters for the candidates in T are generated by setup algorithms; in hybrid Ht, all public
parameters for the candidates in T are generated by trapdoor setup algorithms. We denote the
output of the adversary in hybrid Hi as outHi , for i ∈ {0, 1, . . . , t}. Formally, for j ∈ {1, . . . , t}
and for any PPT algorithm A, the following holds:∣∣∣∣ Pr[A(outHj−1) = 1]− Pr[A(outHj) = 1]

∣∣∣∣ ≤ negl(λ).

We define the hybrids as follows, and prove that the above holds in Lemma 11:
Figure C.7: Hybrid experiments H0, Hj , for 1 ≤ j ≤ t

H0, Hj

1. ppk
$← setupk(1l, 1λ) for k ∈ [n]. pp← {ppk}k∈[n].

1. (ppk, τk) $← S0
k(1l, 1λ) for k ∈ Tj . ppi

$← setupi(1l, 1λ) for i ∈ [n] \ Tj . pp ←
{ppk}k∈[n].

2. Run A(pp).

Lemma 11 (Transition from Hj−1 to Hj , for 1 ≤ j ≤ t). If there exists a PPT algorithm A
for which outHj−1 ̸≈c outHj , there exists a PPT algorithm RedA,Πij that breaks argument-of-
knowledge of the ij-th scheme.

Proof. Given A as in the theorem statement, we describe RedA,Πij in what follows:

Figure C.8: Reduction RedA,Πij

• Compute (ppk, τk) $← E0
k (1l, 1λ) for k ∈ Tj−1. Compute ppi

$← setupi(1l, 1λ) for
i ∈ [n] \ Tj .

• Receive public parameters ppij from the challenger C. These public parameters are
generated either by using setupij

(1l, 1λ) or E0
ij

(1l, 1λ).
• Set pp← {ppk}k∈[n].
• Run A(pp) and output whatever A outputs.

If C generates the public parameters using the setup algorithm, we are in hybrid Hj−1. Other-
wise, we are in hybrid Hj . Therefore, RedA,Πij retains the same distinguishing advantage of A,
breaking AoK of candidate Πij .

Extractor ET fails to extract a witness. If any reduction occurred throughout the chain
of hybrids, the existence of the extractor in Figure C.6 already implies a reduction to AoK for
one of the candidates, as prescribed by the lemma statement. Indeed, if the adversary is able to
distinguish whether any of the public parameters of candidates in T is generated by a trapdoor
setup algorithm (i.e., E0

k for some k ∈ T), its behaviour may change arbitrarily when interacting
with ET .

Conversely, if no reduction occurred so far, the adversary has at most an advantage of
t · negl(λ) in discerning the generation algorithm used for pp = {ppk}k∈[n]. Hence, it will always

42

output an accepting proof upon input pp except for negligible probability. Given that, the proof
continues only if no reduction was possible in the chain of hybrids, as the adversary interacts
with an extractor that controls the trapdoors used to generate pp.

We observe that the only way ET can reconstruct w is by successfully extracting all the sub-
witnesses in T and using the reconstruct algorithm of Shamir’s secret sharing scheme. Since
the verifier Cvrfy runs reconstructH as a consistency check, when all the checks pass, it means
that all sub-statements are shares of the statement x. By the property of reconstructH we
have in Section 5, all the t extracted shares are shares of w. Hence, by correctness of Shamir’s
secret sharing, we reconstruct w successfully.

Therefore, in order for ET to fail, it suffices for one of the sub-extraction procedures to fail,
as otherwise the reconstruction of Shamir’s secret sharing would have been successful and ET

would not have failed. Let i∗ be an index for which E1
i∗ fails to extract from (xi∗ , πi∗). Any

adversary that outputs an accepting proof (x, π) for the combiner that contains (xi∗ , πi∗) in
position i∗ immediately causes ET to fail, yielding a reduction to AoK of scheme Πi∗ . We
describe RedA,Πi∗ in what follows:

Figure C.9: Reduction RedA,Πi∗

• Receive public parameters pp′
i∗ from the challenger C.

• Compute pp
$← Csetup(1l, 1λ). Parse pp as {ppj}j∈[n]. Replace ppi∗ with pp′

i∗ .
• Forward pp to A.
• Upon receiving (x, π) from A, Parse π as {πk, xk}k∈[n].
• Forward (xi∗ , πi∗) to C.

Lemma 12. The existence of adversaries breaking argument-of-knowledge of ET as described in
Lemma 10 yields reductions to argument-of-knowledge for at least n− t + 1 distinct candidates.

Proof. The proof uses the same combinatorics argument described for the proof of Lemma 2.
In Lemma 10, we defined

(n
t

)
extractors, and the existence of adversaries breaking AoK for the

combiner can be used to also break the security of all the extractors. In particular, there exists
an index i∗ associated with candidate Πi∗ for which an adversary either detects the introduction
of the trapdoor generation algorithm, or makes sub-extractor E1

i∗ fail upon input an accepting
sub-proof. In order to break AoK for all the possible extractors, there should exist n − t + 1
such indices that are distinct, i.e., there should exist adversaries breaking AoK for n − t + 1
of the underlying schemes. The existence of these adversaries implies the existence of at least
n− t + 1 reductions to distinct candidates, concluding the proof.

C.5 Recursive proof combiner: correctness

Proof (Theorem 7). In order for the construction to be an n-candidate FNI-combiner, the fol-
lowing has to hold:

Pr
[
Cvrfy(pp, x, Cprove(pp, x, w)) = 1 | pp

$← Csetup(1|x|, 1λ)
]
≥ 1− negl(λ)

The verifier of the combiner accepts a proof if all the sub-proofs are accepting. Denoting Ecorr,i
as the event that the i-th sub-proof is accepting, we first argue that Pr[Ecorr,i] ≥ 1 − negl(λ)
for all i ∈

(n
t

)
. Given that πi is generated by nesting t candidates, the success probability of

43

generating an accepting πi depends on the event that all the sub-proofs generated in the chain
of proofs are accepting. Let Ecorr,ik be the event that the ik-th proof internally generated as part
of πi is accepting. Since t = O(1), we apply Bernoulli’s inequality (i.e., (1 + x)n ≥ 1 + nx) to
argue that Pr[Ecorr,i] is overwhelming:

Pr[Ecorr,i] =
t∏

k=1
Pr[Ecorr,ik]

≥ (min
k
{Pr[Ecorr,ik]})t

≥ (1− negl(λ))O(1)

≥ 1− negl(λ) ·O(1)
≥ 1− negl(λ)

Finally, we observe that, for t, n ∈ O(1),
(n

t

)
∈ O(1). Denoting Ecorr as the event that all

sub-proofs are accepting, we argue that Pr[Ecorr] is overwhelming:

Pr[Ecorr] =
(n

t)∏
i=1

Pr[Ecorr,i]

≥ (min
i
{Pr[Ecorr,i]})(

n
t)

≥ (1− negl(λ))O(1)

≥ 1− negl(λ)

C.6 Recursive proof combiner: zero-knowledge lemmas

Proof (Lemma 1). Let T = {i1, . . . , it} be a set of indices sorted in lexicographic order identi-
fying candidates Πi1 , . . . , Πit . ST = (ST,0,ST,1) is constructed as follows:

Figure C.10: Simulator ST

ST,0(1l, 1λ):

• For l ∈ T , compute (ppl, τl)
$← S0

l (1l, 1λ).
• For i ∈ [n] \ T , compute ppi ← setupi(1l, 1λ).
• Compute pp← {ppk}k∈[n], τ ← {τk}k∈[t].
• Return (pp, τ).

ST,1(pp, τ, x):
• Index all possible subsets containing t of the n candidates with set S = {Si}i∈(n

t).

• Denote STk as the set of all proofs containing candidate ik but not candidates in
Tk−1 (i.e., STk = {Si | ∀i ∈

(n
t

)
s.t. ik ∈ Si∧Si∩Tk−1 = ∅}). Denote every Si ∈ STk

as STk,i.
• For k ∈ [t], for STk,i ∈ STk , simulate as follows:

– Compute πTk,i ← S1
ik

(ppik
, τik

, xTk,i), where xTk,i ← ({Vl, ppl}l∈STk,i∧l<ik
, x),

and proceed as follows:
∗ If πTk,i is the outermost proof, set πPoP

Tk,i ← πTk,i.

44

∗ Otherwise, obtain πPoP
Tk,i by recursively running the prover algorithm

{Pl}l∈STk,i∧l>ik
, using πTk,i as a valid witness (i.e., an accepting proof), as

per the combiner description.

The proof of this lemma goes through t + 1 hybrid experiments, where hybrid H0 is the same
as the real world, and hybrid Ht is the same as the ideal world. We denote the output of the
adversary in hybrid Hi as outHi , for i ∈ {0, 1, . . . , t}. Formally we prove that, for j ∈ {1, . . . , t}
and for any PPT algorithm A, the following holds:∣∣∣∣ Pr[A(outHj−1) = 1]− Pr[A(outHj) = 1]

∣∣∣∣ ≤ negl(λ).

We define the hybrids as follows:
Figure C.11: Hybrid experiments H0, Hj , for 1 ≤ j ≤ t

H0, Hj

1. pp
$← Csetup(1l, 1λ).

1. (ppk, τk) $← S0
k(1l, 1λ) for i ∈ [j]. ppi

$← setupi(1l, 1λ) for i ∈ [n]\ [j]. pp← {ppi}i∈[n].

2. Index all possible subsets containing t of the n candidates with set S = {Si}i∈(n
t).

3. For Si ∈ S, compute πi as the honest prover.

3. Denote STk = {Si | ∀i ∈
(n

t

)
s.t. ik ∈ Si ∧ Si ∩ Tk−1 = ∅}. We denote every Si ∈ STk

as STk,i.
For k ∈ [j], for STk,i ∈ STk , simulate as follows:

• Compute πTk,i ← S1
ik

(ppik
, τik

, xTk,i), where xTk,i ← ({Vl, ppl}l∈STk,i∧l<ik
, x),

and proceed as follows:
– If πTk,i is the outermost proof, set πPoP

Tk,i ← πTk,i.
– Otherwise, obtain πPoP

Tk,i by recursively running the prover algorithm
{Pl}l∈STk,i∧l>ik

, using πTk,i as a valid witness (i.e., an accepting proof),
as per the combiner description.

For Si ∈ S \ {STk}k∈[j], compute πi as the honest prover of the combiner.

4. Set π ← {πPoP
i }i∈(n

t).

5. Run A(pp, x, π).

Intuitively, in Hj we simulate all the proofs containing candidate ij that were not already
simulated in any previous hybrid. If the proof to be simulated is the outermost one, the
dependency on the witness is removed by running the simulator for the outermost proof system.
In any other case, the simulation generates an accepting intermediate proof without knowing its
respective witness, which is used as a valid witness by recursively running the prover algorithm
as per the combiner description.

Finally, we argue that the simulator is indeed independent from the witness (i.e., that
all proofs were simulated) through a simple combinatorics argument. Hence, if no reduction

45

occurred throughout the hybrid chain, the simulator successfully removes the dependency of
the witness from all the

(n
t

)
proofs. We formalize the above in Lemma 13 and Lemma 14.

On the indistinguishability of the hybrid chain. If no reduction occurred, each simulated
proof yields an advantage to the adversary of negl(λ). Hence, the advantage of the adversary
from H0 to Ht is upper bounded by

(n
t

)
negl(λ). In order for this quantity to be negligible, it

should be the case that
(n

t

)
∈ poly(λ). Because we have n, t ∈ O(1),

(n
t

)
∈ O(1), satisfying our

requirement.

Lemma 13 (Transition from Hj−1 to Hj , for 1 ≤ j ≤ t). If there exists a PPT algorithm A
for which outHj−1 ̸≈c outHj , there exists a PPT algorithm RedA,Πij that breaks zero-knowledge
of the ij-th scheme.

Proof (Lemma 13). Similarly to the proof for Lemma 7, we describe a PPT reduction RedA,Πij

given A as in the theorem statement:

Figure C.12: Reduction RedA,Πij

• Receive public parameters ppij from the challenger C.

• Compute (ppk, τk) $← S0
k(1l, 1λ) for k ∈ Tj−1. Compute ppi

$← setupi(1l, 1λ) for
i ∈ [n] \ Tj . Set pp← {ppk}k∈[n].

• Compute (x, w) $← A(pp).
• Index all possible subsets containing t of the n candidates with set S = {Si}i∈(n

t).

• Denote STk = {Si | ∀i ∈
(n

t

)
s.t. ik ∈ Si ∧ Si ∩ Tk−1 = ∅}. We denote every Si ∈ STk

as STk,i.
• For k ∈ [j − 1], for STk,i ∈ STk , simulate proofs as per the description of Hj−1:
• Send (x, w) to C, and receive proofs {πPoP

l }
l∈STj . These proofs are either generated by

running the honest prover of the combiner, or by running S1
ij

, as described in Hj .

• For Si ∈ S \ {STk}k∈[j], compute πi as the honest prover of the combiner.
• Set π ← {πPoP

i }i∈(n
t).

• Run A(pp, x, π) and output whatever A outputs.

If C provides real proofs, we are in hybrid Hj−1. Otherwise, we are in hybrid Hj . Therefore,
RedA,Πij retains the same distinguishing advantage of A, breaking multi-proof ZK of candidate
Πij

11.

Lemma 14. The output of ST is independent from the witness.

Proof (Lemma 14). First, we observe that ST exclusively simulates all the proofs that include
any candidate {Πk}k∈T as part of their generation procedure. In order to show that the output
of ST is independent from the witness, we define a set of proofs S̄ that do not include any of
the candidates in T as part of their generation procedure. The cardinality of S̄ is

(n−t
t

)
. Since

11For convenience, we use multi-proof zero-knowledge. We remark that this is for compactness of notation in
the setup generation algorithm of the combiner, and comes without loss of generality. Indeed, the same can be
achieved without multi-proof ZK by generating a different trapdoor for each individual proof.

46

t > n/2 by assumption, it trivially holds that t > n − t. This implies that |S̄| = 0. Therefore,
all proofs are simulated.

C.7 Recursive proof combiner: argument-of-knowledge lemmas

Proof (Lemma 3). Let T = {i1, . . . , it} be a set of indices sorted in lexicographic order identi-
fying candidates Πi1 , . . . , Πit . The extractor ET = (ET,0, ET,1) is constructed as follows:

Figure C.13: Extractor ET

ET,0(1l, 1λ):
• For k ∈ T , compute (ppk, ξk) $← E0

k (1l, 1λ).
• Compute pp← {ppk}k∈[n], ξ ← {ξk}k∈T .
• Return (pp, ξ).

ET,1(pp, ξ, x, π):
• Parse π as {πPoP

i }i∈(n
t).

• Index all possible subsets containing t of the n candidates with set S = {Si}i∈(n
t).

• Select the proof π for which Si = T , and set πit ← π.
• For k ∈ {0, . . . , t− 2}, compute πit−k−1 = E1

it−k
(ppit−k

, ξit−k
, xit−k

, πit−k
).

• Output w = E1
i1(ppi1 , ξi1 , x, πi1)

Intuitively, the extractor picks the specific proof that was generated using all the candidates in
T , and runs the extractors in T recursively until a witness is extracted. Since π is parsed as a
set of

(n
t

)
proofs, and these proofs are enumerated by considering all the subsets of size t out of

n, such a proof always exists.
As per Definition 7, an adversary may break argument-of-knowledge either by detecting the

introduction of trapdoor setups, or by outputting an accepting proof that causes any extractor
to fail. If either occurs, we exhibit a reduction to AoK of that specific candidate. The former
step is the same for all our combiners, and is formally proved in Lemma 11. Intuitively, we
replace one setup at a time, and if the adversary distinguishes two adjacent hybrids we have a
reduction.

Given that no reduction occurred after introducing the trapdoor setups, we proceed with
analyzing ET . The only way ET can output w is by recursively extracting from the proof π
that was generated by running all the schemes in T . Because all candidates work for any NP
language L, they also work with the specific languages we have in Figure 6.1. Therefore, in
order for ET to fail, it suffices for one of the sub-extraction procedures to fail. Let i∗ be an
index for which E1

i∗ fails to extract from (xi∗ , πi∗). Any adversary that outputs an accepting
proof (x, π) for the combiner for which the extraction procedure, upon reaching scheme Πi∗ ,
fails to extract from (xi∗ , πi∗), immediately causes ET to fail. This yields a reduction to AoK
of scheme Πi∗ .

C.8 MPC-in-the-head approach: correctness

Proof (Theorem 10). In order for the construction to be an n-candidate FNI-combiner, the fol-
lowing has to hold:

Pr
[
Cvrfy(pp, x, Cprove(pp, x, w)) = 1 | pp

$← Csetup(1|x|, 1λ)
]
≥ 1− negl(λ)

47

Intuitively, this happens if (i) all sub-proofs are accepting, and (ii) the commitment correspond-
ing to the outgoing messages are consistent with the commitment corresponding to the inbound
messages. Because ΠMPC is honestly executed and the commitment are computed honestly,
then (ii) holds. Hence, it only remains to show that all the sub-proofs are accepting:

1. By perfect correctness of ΠMPC, fx of Figure 7.1 obtains w′ ← reconstruct({wj}j∈[t]),
where (w1, . . . , wn) $← share(w). By correctness of secret sharing scheme SS, we have
w′ = w. When (x, w) ∈ RL, fx outputs 1.

2. By Definition 1, for k ∈ [n], Vk will output 1 with probability at least 1−negl(λ) if and only
if (x′

k, w′
k) ∈ Rk,LMPC and Πk is for Lk,MPC. Since Πk ∈ FNI works for any NP language, it

will also work for Lk,MPC. By correctness of ΠMPC, (x′
k, w′

k) ∈ RLk,MPC . Therefore, all Vk

will output 1 with probability at least 1− negl(λ).

Hence, when (x, w) ∈ RL, the probability Cvrfy accepts is the same as the probability when all
sub-proofs are accepting, which is exactly the same as Event 1 in the proof of Theorem 3.

C.9 MPC-in-the-head approach: statistical soundness

Proof (Theorem 11). The proof is very similar to the proof of Theorem 4. The only difference
is that we need to argue that there must be n− t + 1 reductions to the statistical soundness of
the candidates by relying on the statistical binding of the non-interactive commitment scheme
and on the K-robustness of the MPC protocol.

Formally, assume by contradiction that there are at most n− t reductions. This means there
will be n − (n − t) = t sub-statements x′

k that are in the language Lk,MPC, which means that
there are t parties that output 1. By assumption, we know x /∈ L. This means that (x, w′) /∈ RL
holds for any w′. In this case, fx(w1, . . . , wn) must output 0.

Because the verifier accepts, the commitments corresponding to the outgoing messages are
consistent with the commitments corresponding to the inbound messages. In this case, we claim
that all pairs of views are consistent. Let Ebad be the event for which the unbounded (malicious)
prover P̃ produces two consistent commitments that open to inconsistent views. This means
that there exist two openings o0, o1 for the same commitment that open to the same value.
Given that NIC is statistically binding, this event happens only with negligible probability.

Hence, conditioning on Ebad not happening, all views come from the same execution of
ΠMPC realizing fx. In such an execution, by perfect K-robustness, when there are at most K
corrupted parties (controlled by a malicious adversary) that output 1, the other t parties must
output 0. Since perfect K-robustness holds unconditionally, we have a contradiction, as in this
case the verification procedure of the combiner must have been rejecting, because some parties
are outputting 0. This is the case as, in order to break K-robustness, at least one more party
should output 1. But the existence such a party would imply the existence of more reductions
to the underlying primitives, contradicting the assumption of having at most n− t reductions.

Therefore, any accepting proof π for the combiner for a statement x /∈ L implies the existence
of at least n− t + 1 reductions to statistical soundness of the underlying candidates. Once we
have at least n− t + 1 reductions, the proof is the same as the proof of Theorem 4.

C.10 MPC-in-the-head approach: zero-knowledge

Proof (Theorem 12). The structure of this proof is the same as the one of Theorem 5 and uses
exactly the same the combinatorics argument used to prove Lemma 2. It therefore suffices
to construct a simulator ST , and argue that either its output is indistinguishable from the

48

output of the real prover, or there exists at least one reduction to zero-knowledge of one of the
candidates whose indices are in T . We describe such a ST in Lemma 15.

Lemma 15. There exists a simulator ST of CMPC for which either {REAL} ≈c {IDEALST }, or
there exists a reduction to zero-knowledge of at least one of the candidates {Πk}k∈[T].

Proof. Let T = {i1, . . . , it} be a set of indices sorted in lexicographic order identifying candidates
Πi1 , . . . , Πit . Assume Gen is an algorithm that can sample uniformly random elements in the
space of shares of w. ST = (ST,0,ST,1) is constructed as follows:

Figure C.14: Simulator ST

ST,0(1l, 1λ):

• For l ∈ T , compute (ppl, τl)
$← S0

l (1l, 1λ).

• For i ∈ [n] \ T , compute ppi
$← setupi(1l, 1λ).

• Compute ppNIC
$← setup(1λ).

• Compute pp← {ppk}k∈[n] ∪ {ppNIC}, τ ← {τk}k∈T .
• Return (pp, τ).

ST,1(pp, τ, x):

• Sample {wj}j∈[n]\T
$← Gen(1λ). Run the K-privacy simulator SMPC([n] \

T, x, {wj}j∈[n]\T , 1) of ΠMPC to obtain the simulated views {viewj}j∈[n]\T .
• For i ∈ T , for j ∈ [n], set {msgk

i→j}k∈[R] = 0 in viewi and viewj . Complete viewi to
be consistent with {viewj}j∈[n]\T .

• For i ∈ [n], j ∈ [n], compute (comi,j , oi,j) ← commit(ppNIC, {msgk
i→j}k∈[R]), and

(comj,i, oj,i)← commit(ppNIC, {msgk
j→i}k∈[R]).

• For i ∈ [n], set x′
i ← ({comi,j}j∈[n], {comj,i}j∈[n]). For l ∈ [n] \ T , w′

l ←
(viewl, {ol,j}j∈[n], {oj,l}j∈[n]).

• For l ∈ T , compute πl ← S1
l (ppl, τl, (ppNIC, x′

l)). For i ∈ [n] \ T , compute πi ←
Pi(ppi, (ppNIC, x′

i), w′
i).

• Return ({πk}k∈[n], {x′
k}k∈[n]).

The proof of this lemma goes through t + 4 hybrid experiments, where hybrid H0 is the same
as the real world, and hybrid Ht+3 is the same as the ideal world. We denote the output of
the adversary in hybrid Hi as outHi , for i ∈ {0, 1, . . . , t + 3}. Formally we prove that, for
j ∈ {1, . . . , t + 3} and for any PPT algorithm A, the following holds:∣∣∣∣ Pr[A(outHj−1) = 1]− Pr[A(outHj) = 1]

∣∣∣∣ ≤ negl(λ).

We define the hybrids as follows:
Figure C.15: Hybrid experiments H0, Hj , Ht+1, Ht+2, Ht+3, for 1 ≤ j ≤ t

H0, Hj , Ht+1 , Ht+2 , Ht+3

1. ppk
$← setupk(1l, 1λ) for k ∈ [n]. ppNIC

$← setup(1λ). pp← {ppk}k∈[n] ∪ {ppNIC}.

49

1. (ppk, τk) $← S0
k(1l, 1λ) for k ∈ Tj . ppi

$← setupi(1l, 1λ) for i ∈ [n] \ Tj . ppNIC
$←

setup(1λ). pp← {ppk}k∈[n] ∪ {ppNIC}.

2. Compute (x, w) $← A(pp)

3. {wi}i∈[n] ← share(w). Run MPC protocol ΠMPC with input (w1, . . . , wn) to obtain
{viewi}i∈[n].

3. • {wi}i∈[n] ← share(w). Run MPC protocol ΠMPC with input (w1, . . . , wn) to
obtain {viewi}i∈[n].

• For i ∈ T , for j ∈ [n], set {msgk
i→j}k∈[R] = 0 in viewi and viewj .

3. • {wi}i∈[n] ← share(w). Run the K-privacy simulator SMPC([n] \
T, x, {sj}j∈[n]\T , 1) of ΠMPC to obtain the simulated views {viewj}j∈[n]\T .

• For i ∈ T , for j ∈ [n], set {msgk
i→j}k∈[R] = 0 in viewi and viewj . Complete

viewi to be consistent with {viewj}j∈[n]\T .

3. • Sample {wj}j∈[n]\T
$← Gen(1λ). Run the K-privacy simulator SMPC([n] \

T, x, {sj}j∈[n]\T , 1) of ΠMPC to obtain the simulated views {viewj}j∈[n]\T .
• For i ∈ T , for j ∈ [n], set {msgk

i→j}k∈[R] = 0 in viewi and viewj . Complete
viewi to be consistent with {viewj}j∈[n]\T .

4. For i ∈ [n], j ∈ [n], compute (comi,j , oi,j) ← commit(ppNIC, {msgk
i→j}k∈[R]), and

(comj,i, oj,i)← commit(ppNIC, {msgk
j→i}k∈[R]).

5. For i ∈ [n], set x′
i ← ({comi,j}j∈[n], {comj,i}j∈[n]) and w′

i ←
(viewi, {oi,j}j∈[n], {oj,i}j∈[n]).

6. πk ← Pk(ppk, (ppNIC, x′
k), w′

k) for k ∈ [n]. π ← ({πk}k∈[n], {x′
k}k∈[n]).

6. πk ← S1
k(ppk, τk, (ppNIC, x′

k)) for k ∈ Tj . πi ← Pi(ppi, (ppNIC, x′
i), w′

i) for i ∈ [n] \ Tj .
π ← ({πk}k∈[n], {x′

k}k∈[n]).

6. πk ← S1
k(ppk, τk, (ppNIC, x′

k)) for k ∈ T . πi ← Pi(ppi, (ppNIC, x′
i), w′

i) for i ∈ [n] \ T .
π ← ({πk}k∈[n], {x′

k}k∈[n]).

7. Run A(pp, x, π).

Intuitively, in the first t hybrids, the real proofs generated by the candidates in T are gradually
replaced with simulated proofs generated by their respective simulator. In Ht+1, we use the
computational hiding property of NIC to replace the messages sent by honest parties with the
message 0, and update the views accordingly so the commitments remain consistent. In Ht+2,
we run SMPC([n] \ T, x, {wj}j∈[n]\T , 1) in place of the MPC protocol to obtain simulated views
for the semi-honest parties. By K-privacy of ΠMPC, such a simulator exists. Finally, in Ht+3,
we replace n− t shares of the real witness w with n− t random elements in the same space of
shares of w. This is possible as shares of the real witness are used in at most n− t of the prover
algorithms of the candidates. Because t > n

2 , the adversary can leak at most ⌊n
2 ⌋ of the shares,

and is unable to determine whether these are shares of w or random elements. Formally, this

50

lemma is proved in Lemma 16, Lemma 17, Lemma 18, and Lemma 19

Lemma 16 (Transition from Hj−1 to Hj , for 1 ≤ j ≤ t). If there exists a PPT algorithm A
for which outHj−1 ̸≈c outHj , there exists a PPT algorithm RedA,Πij that breaks zero-knowledge
of the ij-th scheme.

Proof. Given A as in the theorem statement, we describe RedA,Πij in what follows:

Figure C.16: Reduction RedA,Πij

• Receive public parameters ppij from the challenger C.

• Compute (ppk, τk) $← S0
k(1l, 1λ) for k ∈ Tj−1. Compute ppi

$← setupi(1l, 1λ) for
i ∈ [n] \ Tj . Compute ppNIC

$← setup(1λ). Set pp← {ppk}k∈[n] ∪ {ppNIC}.

• Compute (x, w) $← A(pp).
• Compute {wi}i∈[n] ← share(w). Run MPC protocol ΠMPC with input (w1, . . . , wn) to

obtain {viewi}i∈[n].
• For i ∈ [n], j ∈ [n], compute (comi,j , oi,j) ← commit(ppNIC, {msgk

i→j}k∈[R]), and
(comj,i, oj,i)← commit(ppNIC, {msgk

j→i}k∈[R]).
• For i ∈ [n], set x′

i ← ({comi,j}j∈[n], {comj,i}j∈[n]) and w′
i ←

(viewi, {oi,j}j∈[n], {oj,i}j∈[n]).
• Send {x′

ij
, w′

ij
} to the challenger C, and receive proof πij . This proof is generated by

the challenger C either as Pij (ppij , (ppNIC, x′
ij

), w′
ij

) or S1
ij

(ppij , τij , (ppNIC, x′
ij

)).

• For k ∈ Tj−1, compute πk ← S1
k(ppk, τk, (ppNIC, x′

k)). For i ∈ [n] \ Tj , compute πi ←
Pi(ppi, (ppNIC, x′

i), w′
i).

• Set π ← ({πk}k∈[n], {x′
k}k∈[n]).

• Run A(pp, x, π) and output whatever A outputs.

If C provides a real proof, we are in hybrid Hj−1. Otherwise, we are in hybrid Hj . Therefore,
RedA,Πij retains the same distinguishing advantage of A, breaking ZK of candidate Πij .

Lemma 17 (Transition from Ht to Ht+1). outHt ≈c outHt+1.

Proof. The indistinguishability goes through nt intermediate hybrids Hs,e, with s ∈ [t] and
e ∈ [n]. The difference between two intermediate hybrids is that in Hs,e−1, (comis,ie , ois,ie) ←
commit(ppNIC, {msgk

is→ie
}k∈[R]), whereas in Hs,e, (comis,ie , ois,ie)← commit(ppNIC, 0). This way,

we effectively replace the set of messages from party is to party ie (i.e., {msgk
is→ie

}) with 0. We
note that, for s ̸= 1, Hs,0 is Hs−1,n. We also note that H1,0 is Ht, and Ht,n is Ht+1.

Assume by contradiction there exists a PPT algorithm A that can distinguish outHs,e−1 from
outHs,e . Then, we can construct the following adversary AA,NIC

i,j breaking computational hiding
of NIC.

Figure C.17: Adversary AA,NIC
s,e

• Receive public parameters pp from the challenger C.

• Compute (ppk, τk) $← S0
k(1l, 1λ) for k ∈ T . ppi

$← setupk(1l, 1λ) for i ∈ [n] \ T . Set
pp← {ppk}k∈[n] ∪ {pp}.

51

• Compute (x, w) $← A(pp).
• Compute {wi}i∈[n] ← share(w). Run MPC protocol ΠMPC with input (w1, . . . , wn) to

obtain {viewi}i∈[n].
• For i ∈ Ts:

– if i ̸= is, for j ∈ [n], set {msgk
i→j}k∈[R] = 0 in viewi and viewj .

– if i = is, for j ∈ Te−1, set {msgk
i→j}k∈[R] = 0 in viewi and viewj .

• For i ∈ [n], j ∈ [n], compute (comi,j , oi,j) ← commit(ppNIC, {msgk
i→j}k∈[R]), and

(comj,i, oj,i)← commit(ppNIC, {msgk
j→i}k∈[R]).

• Send 0 and {msgk
is→ie

}k∈[R] to the challenger C, and receive the commitment com′ that
could either be a commitment of 0 or a commitment of the messages. Set comis,ie ←
com′.

• For i ∈ [n], set x′
i ← ({comi,j}j∈[n], {comj,i}j∈[n]) and w′

i ←
(viewi, {oi,j}j∈[n], {oj,i}j∈[n]).

• For k ∈ T , compute πk ← S1
k(ppk, τk, (ppNIC, x′

k)). For i ∈ [n] \ T , compute πi ←
Pi(ppi, (ppNIC, x′

i), w′
i).

• Set π ← ({πk}k∈[n], {x′
k}k∈[n]).

• Run A(pp, x, π) and output whatever A outputs.

If C provides a real commitment, we are in intermediate hybrid Hs,e−1. Otherwise, we are in
intermediate hybrid Hs,e. Therefore, AA,NIC

s,e retains the same distinguishing advantage of A,
breaking computation hiding property of NIC. This is a contradiction; therefore, outHs,e−1 ≈c

outHs,e . By applying nt intermediate hybrids, we have outHt ≈c outHt+1 .
Finally we observe that, by Lemma 4, there exists a construction of computationally hiding

commitments that exclusively relies on the soundness and zero-knowledge of the NIZK candi-
dates. Given that we are considering statistical soundness, which is unconditional, we proceed
similarly to Theorem 11 by conditioning on the event that at least t candidates are statistically
sound. Since this event occurs with overwhelming probability and is unconditional, we exclu-
sively obtain reductions to zero-knowledge of the candidates. Hence, breaking computational
hiding of NIC implies breaking zero-knowledge of the candidates, as desired.

Lemma 18 (Transition from Ht+1 to Ht+2). outHt+1 and outHt+2 are identically distributed, if
ΠMPC has perfect K-privacy.

Proof. Assume by contradiction there exists an unbounded algorithm A that can distinguish
outHt+1 from outHt+2 . Then, we can construct the following adversary AA,MPC breaking perfect
K-privacy of ΠMPC:

Figure C.18: Adversary AA,MPC

• Compute (ppk, τk) $← S0
k(1l, 1λ) for k ∈ T . ppi

$← setupk(1l, 1λ) for i ∈ [n] \ T .
Compute ppNIC

$← setup(1λ). Set pp← {ppk}k∈[n] ∪ {ppNIC}.

• Compute (x, w) $← A(pp).
• Compute {wi}i∈[n] ← share(w). Send {wi}i∈[n] to the challenger C.

52

• The challenger C for K-privacy computes {viewj}j∈[n]\T either by running a real exe-
cution of the protocol or by using the K-privacy simulator S(I, x, {wk}k∈[I], 1), with
I = [n] \ T .

• For i ∈ T , for j ∈ [n], set {msgk
i→j}k∈[R] = 0 in viewi and viewj . Complete viewi to be

consistent with {viewj}j∈[n]\T .
• For i ∈ [n], j ∈ [n], compute (comi,j , oi,j) ← commit(ppNIC, {msgk

i→j}k∈[R]), and
(comj,i, oj,i)← commit(ppNIC, {msgk

j→i}k∈[R]).
• For i ∈ [n], set x′

i ← ({comi,j}j∈[n], {comj,i}j∈[n]). For l ∈ [n] \ T , w′
l ←

(viewl, {ol,j}j∈[n], {oj,l}j∈[n]).
• For l ∈ T , compute πl ← S1

l (ppl, τl, (ppNIC, x′
l)). For i ∈ [n] \ T , compute πi ←

Pi(ppi, (ppNIC, x′
i), w′

i).
• Set π ← ({πk}k∈[n], {x′

k}k∈[n]).
• Run A(pp, x, π) and output whatever A outputs.

If C produces views coming from real parties, we are in hybrid Ht+1. Otherwise, we are in
hybrid Ht+2. Therefore, RedA,Πij retains the same distinguishing advantage of A, breaking
perfect K-privacy of ΠMPC.

Lemma 19 (Transition from Ht+2 to Ht+3). outHt+2 and outHt+3 are identically distributed.

Proof. Assume by contradiction there exists an unbounded algorithm A that can distinguish
outHt+2 from outHt+3 . Then, we can construct the following adversary AA,SS breaking perfect
security of the t-out-of-n secret sharing scheme:

Figure C.19: Adversary AA,SS

• Compute (ppk, τk) $← S0
k(1l, 1λ) for k ∈ T . ppi

$← setupk(1l, 1λ) for i ∈ [n] \ T .
Compute ppNIC

$← setup(1λ). Set pp← {ppk}k∈[n] ∪ {ppNIC}.

• Compute (x, w) $← A(pp), and forward w to the challenger C.
• Receive n − t shares {sj}j∈[n]\T from the challenger C which are either shares of the

real witness w or random elements {rj}j∈[n]\T
$← Gen(1λ).

• Run the K-privacy simulator SMPC([n] \ T, x, {sj}j∈[n]\T , 1) of ΠMPC to obtain the
simulated views {viewj}j∈[n]\T .

• For i ∈ T , for j ∈ [n], set {msgk
i→j}k∈[R] = 0 in viewi and viewj . Complete viewi to be

consistent with {viewj}j∈[n]\T .
• For i ∈ [n], j ∈ [n], compute (comi,j , oi,j) ← commit(ppNIC, {msgk

i→j}k∈[R]), and
(comj,i, oj,i)← commit(ppNIC, {msgk

j→i}k∈[R]).
• For i ∈ [n], set x′

i ← ({comi,j}j∈[n], {comj,i}j∈[n]). For l ∈ [n] \ T , w′
l ←

(viewl, {ol,j}j∈[n], {oj,l}j∈[n]).
• For l ∈ T , compute πl ← S1

l (ppl, τl, (ppNIC, x′
l)). For i ∈ [n] \ T , compute πi ←

Pi(ppi, (ppNIC, x′
i), w′

i).
• Set π ← ({πk}k∈[n], {x′

k}k∈[n]).
• Run A(pp, x, π) and output whatever A outputs.

53

We now argue that AA,SS correctly reproduces the behavior of hybrids Ht+2 and Ht+3 according
to the challenger’s behaviour. If the challenger shares the real witness w, all the proofs in [n]\T
are generated exactly as in Ht+2 (i.e., using shares of w). If the challenger generates random
elements by using Gen, all the proofs in [n] \ T are generated exactly as in Ht+3. Also, because
we have t > n

2 , n − t ≤ t − 1. Therefore, AA,SS retains the same distinguishing advantage of
A, breaking perfect security of the t-out-of-n secret sharing scheme. This is a contradiction;
therefore, outHt+2 and outHt+3 and identically distributed.

C.11 MPC-in-the-head approach: proof-of-knowledge

Proof (Theorem 13). The structure of this proof is the same as the one of Theorem 6 and uses
exactly the same the combinatorics argument used to prove Lemma 12. It therefore suffices to
construct an extractor ET , and argue that either ET successfully extracts a witness, or there
exists at least one reduction to PoK of one of the candidates whose indices are in T . We describe
such an ET in Lemma 20.

Lemma 20. There exists an extractor ET for which either a witness w is successfully extracted
from an accepting proof, or there exists a reduction to PoK of at least one of the candidates
{Πk}k∈T .

Proof. Let T = {i1, . . . , it} be a set of indices sorted in lexicographic order identifying candidates
Πi1 , . . . , Πit . The extractor ET = (ET,0, ET,1) is constructed as follows:

Figure C.20: Extractor ET

ET,0(1l, 1λ):

• For k ∈ T , compute (ppk, ξk) $← E0
k (1l, 1λ).

• Compute ppNIC
$← setup(1λ).

• Compute pp← {ppk}k∈[n] ∪ {ppNIC}, ξ ← {ξk}k∈T .
• Return (pp, ξ).

ET,1(pp, ξ, x, π):
• For k ∈ T , parse the k-th component of π as (x′

k, πk). Compute w′
k ←

E1
k (ppk, ξk, (ppNIC, x′

k), πk). Parse w′
k as (viewk, {ok,j}j∈[n], {oj,k}j∈[n]). Take wk from

viewk.
• Output w ← reconstruct({wk}k∈T).

An adversary may break PoK either by detecting the introduction of trapdoor setups, or by
outputting an accepting proof that causes any extractor to fail. If either occurs, we exhibit a
reduction to PoK of that specific candidate.

Introducing trapdoor setups. This step is nearly the same as in the proof of Lemma 10
(the only difference is now the adversary is unbounded), and is therefore omitted.

Extractor ET fails to extract a witness. We conclude the proof exactly as the proof of
Lemma 10: given that no reduction occurred, we proceed with analyzing ET .

We observe that the only way ET can reconstruct w is by successfully extracting all the sub-
witnesses in T , and using the reconstruct algorithm of the t-out-of-n secret sharing scheme.
Because the verifier Cvrfy performs checks for the consistency of the commitments, when all the

54

checks pass, it means that all pair of views are consistent with the execution of ΠMPC because
NIC is statistically binding. The proof is the same as what we have in the proof of Theorem 11.

When all the sub-extraction procedures succeed, we can extract sub-witnesses from t sub-
proofs successfully. This implies that these sub-statements x′

k are in the language Lk,MPC,
meaning that the output of parties {Pk}k∈T is 1. It also means there are at most n− t parties
that output 0, satisfying K-robustness. Hence, the statement x is in the language, and using
these t sub-witnesses as the input of the t-out-of-n secret sharing scheme allows to reconstruct
w successfully.

Therefore, in order for ET to fail, it suffices for one of the sub-extraction procedures to fail.
Let i∗ be an index for which E1

i∗ fails to extract from (x′
i∗ , πi∗). Any adversary that outputs an

accepting proof (x, π) for the combiner that contains (x′
i∗ , πi∗) in position i∗ immediately causes

ET to fail. As for the proof of Lemma 10, this yields a reduction to PoK of scheme Πi∗ .

55

	Introduction
	Robust NIZK combiners
	Our contributions
	Technical overview
	Impossibility results
	Combiner for homomorphic languages
	Recursive proof combiner
	MPC-in-the-head combiner

	Related works

	Notation
	Defining combiners
	Formalizing correctness
	Combiners for soundness, ZK, and AoK
	Combiners for soundness
	Combiners for zero-knowledge
	Combiners for argument-of-knowledge

	Impossibility Result for tn2
	Combiner for Homomorphic Languages
	Combiner description
	Proof sketch
	Formal analysis

	Recursive proof combiner
	Nesting proof systems
	Combiner description
	Formal analysis

	MPC-in-the-head approach
	Notation and building blocks
	Secure Multiparty Computation (MPC) Definitions
	Notation for MPC
	Building blocks

	From NIZK candidates to non-interactive commitments
	Combiner description

	Deferred definitions
	Concrete instantiations of homomorphic languages and reconstructH
	Security proofs
	Combiner for homomorphic languages: correctness
	Combiner for homomorphic languages: soundness
	Combiner for homomorphic languages: zero-knowledge
	Combiner for homomorphic languages: argument-of-knowledge
	Recursive proof combiner: correctness
	Recursive proof combiner: zero-knowledge lemmas
	Recursive proof combiner: argument-of-knowledge lemmas
	MPC-in-the-head approach: correctness
	MPC-in-the-head approach: statistical soundness
	MPC-in-the-head approach: zero-knowledge
	MPC-in-the-head approach: proof-of-knowledge

