
DART: Decentralized, Anonymous, and
Regulation-friendly Tokenization

Amirreza Sarencheh1, Hamidreza Khoshakhlagh2, Alireza Kavousi3, and
Aggelos Kiayias4

1 The University of Edinburgh, UK
amirreza.sarencheh@ed.ac.uk

2 Partisia and Aarhus University, Denmark
hamidreza@cs.au.dk

3 University College London, UK
a.kavousi@cs.ucl.ac.uk

4 The University of Edinburgh and IOG, UK
aggelos.kiayias@ed.ac.uk

Abstract. We introduce DART, a fully anonymous, account-based pay-
ment system designed to address a comprehensive set of real-world con-
siderations, including regulatory compliance, while achieving constant
transaction size. DART supports multiple asset types, enabling users to
issue on-chain assets such as tokenized real-world assets. It ensures confi-
dentiality and anonymity by concealing asset types, transaction amounts,
balances, and the identities of both senders and receivers, while guaran-
teeing unlinkability between transactions. Our design provides a mecha-
nism for asset-specific auditing. Issuers can designate asset-specific audi-
tors for the assets they issue, with the system preserving the privacy of
the auditor’s identity to achieve asset type privacy. Only the designated
auditor is authorized to decrypt transactions related to their associated
asset, and users efficiently prove the association between the (hidden) as-
set type and the (hidden) designated auditor in their transactions. DART
supports non-interactive payments, allowing an online sender to submit
a transaction even when the receiver is offline, while still incorporating a
receiver affirmation mechanism that captures the real-world compliance
consideration where the receiver must confirm (or deny) an incoming
transaction. To the best of our knowledge, this is the first scheme of this
kind in the permissionless setting. To accommodate all eventualities,
DART also incorporates a reversibility mechanism, enabling senders to
reclaim funds from pending transactions if the receiver’s affirmation is
not yet provided. Finally, it offers a privacy-preserving proof of balance
(per asset type) mechanism. Our system achieves full anonymity while
supporting concurrent incoming and outgoing transactions, resolving a
common issue that plagues many account-based anonymous systems. We
further demonstrate how our system supports multi-party transactions,
allowing payment to multiple receivers in one transaction efficiently. We
provide a full formal model in the Universal Composition (UC) setting,
as well as a UC protocol realization.

Keywords: Digital Asset Transfer, Privacy, Regulatory Compliance, Real-World
Assets, Tokenization, Anonymous Payments, Universal Composition.

Table of Contents

1 Introduction . 3
1.1 Our results . 6

2 Related works . 10
3 Formal modeling . 16
4 Our construction DART . 20

4.1 Algorithms . 21
4.1.1 Address generation. 21
4.1.2 Asset issuance. 21
4.1.3 Account registration. 23
4.1.4 Increase asset supply. 24
4.1.5 Sender transaction. 26
4.1.6 Receiver transaction. 28
4.1.7 Reversion. 30
4.1.8 Proof of balance. 32
4.1.9 Auditor operation. 34

5 Discussion . 34
5.1 Multi-party transactions . 34
5.2 Fee payments . 35
5.3 Maintenance of LIAA . 35

6 Implementation details . 36
7 DART security proof . 38

7.1 Simulation . 38
7.2 Security games . 48

A Proof of balance: a generic solution . 53
B Ideal functionalities . 58

B.1 Key generation functionality . 58
B.2 Non-interactive zero-knowledge functionality 59
B.3 Ledger functionality . 60
B.4 Communication channel functionality . 61

C Cryptographic schemes . 62
C.1 Public key encryption (PKE) schemes . 62
C.2 Commitment schemes . 64
C.3 Pseudorandom function (PRF) schemes . 66
C.4 Accumulator schemes . 67

DART: Decentralized, Anonymous, and Regulation-friendly Tokenization 3

1 Introduction

A fully anonymous payment system ensures that users remain hidden within
the entire set of system participants. Specifically, a payment transcript provides
the counterparties of any transaction with an anonymity set as large as the to-
tal number of users in the system. Several existing blockchain systems, such as
Zerocash [49] and Ouroboros Crypsinous [31], achieve this level of anonymity
under varying assumptions. A common characteristic of these systems, however,
is that they utilize coin-based bookkeeping, sometimes referred to as UTXO-
based bookkeeping5. Intuitively, this means that during a payment protocol,
users spend existing coins and create new coins (of specified amounts) to fa-
cilitate value transfer. An inherent consequence of this coin-based operation is
that the token holdings of any individual account holder are dispersed across the
various coins they control. It is important to note that this coin-based approach
is not exclusive to “privacy coins” —Bitcoin [41], for example, also employs
UTXO-based bookkeeping.

In contrast to the coin-based approach discussed above, the account-based
approach employed by systems like Ethereum [10] offers a different method of
managing transactions. In an account-based system, each account has a unique
identifier which is publicly known, and senders transfer funds directly from their
accounts by reducing their balances and crediting the recipient’s account. A key
advantage of this approach is that the system state has a straightforward rep-
resentation, such as a table displaying each account’s balance. Consequently,
various account-related operations can be significantly simpler to perform com-
pared to the UTXO model, where a user’s balance is distributed.

The high-level idea behind confidential and anonymous payment schemes,
whether UTXO-based or account-based, is for the sender to generate a Zero-
Knowledge Proof (ZKP) that demonstrates the well-formedness of the trans-
action. The transaction conceals the transferred value within a commitment or
encryption. In the ZKP, the sender proves the knowledge of secret values required
for payment authorization, and proves the transferred value is positive and lies
within the appropriate range as dictated by the input and output balances of the
coins or accounts involved. Finally, double-spending is prevented by recording
transaction-specific cryptographic objects, e.g., nullifiers, or by (homomorphi-
cally) reducing the sender’s balance as soon as the transaction is received.

From a privacy perspective, the account-based approach poses significant
challenges in achieving anonymity. Systems like QuisQuis [24]6, Zether [8], Anony-
mous Zether [19], and PriDe CT [28] restrict the sender’s anonymity set to k out
of n, where k ≪ n is a security parameter, and their transaction size is O(k).7
The primary challenge arises from the requirement that, for full anonymity, ev-
ery transaction must interact with the complete ledger state. If certain accounts

5 UTXO stands for “unspent transaction output”.
6 Note that QuisQuis is an account-based cryptocurrency that also uses UTXOs.
7 For instance, k is 64 for QuisQuis and 256 for anonymous Zether. For an anonymity
set of 16, the transaction size for QuisQuis is 26 KB, whereas for anonymous Zether,
it is 6 KB. Note that, the maximum block size is assumed to be 100 KB [34].

4 A. Sarencheh et al.

are excluded from being updated during a transaction, the anonymity of that
transaction is compromised, as a small k opens up the possibility of privacy at-
tacks (e.g., see [33,40]). The limitation on the anonymity set is inherent to these
systems, as the value of k is constrained by the maximum transaction size that
a block can hold. Another challenge is the need to carefully choose the accounts
that are part of the anonymity set as the level of anonymity can be greatly
diminished depending on the choice of these accounts.

Standard digital currency transactions (e.g., in Bitcoin [41]) allow the receiver
to obtain the funds immediately upon blockchain validators processing the trans-
action. Moving beyond simple payments, the concept of receiver affirmation is
a well-known regulatory requirement in broader financial transactions such as
securities transfers, emphasized by the US Securities and Exchange Commis-
sion (SEC) [55], and others [52], [44], [53], [45], [6], [54]. This mechanism grants
receivers the authority to accept or reject incoming payments before their ac-
counts are updated. Receiver affirmation empowers receivers to manage their
obligations proactively and is particularly important for transactions with legal
or tax implications, where receivers assume specific responsibilities upon receiv-
ing an asset.

Accommodating receiver affirmation introduces additional challenges, such as
facilitating proof of balance (PoB). PoB allows any verifier to request the balance
of a specific asset under a specific public key or address. A related concept is
proof of assets (PoA) [15], which enables a prover to convince a verifier that they
possess at least a certain amount of assets. Unlike PoB, which requires revealing
the exact balance in the user’s account, PoA focuses solely on proving sufficiency.
With receiver affirmation, PoB becomes non-trivial as the sender’s balance in
their account is split while waiting for the receiver to come online. Depending on
the receiver’s decision (affirming or rejecting), the funds can either be reversed
(added back to the sender’s balance) or transferred to the receiver’s account
balance. Also, receiver affirmation introduces another challenge that addresses
scenarios in which the receiver does not affirm the transaction. The system should
support reversibility, ensuring that if a receiver does not affirm, the sender can
reclaim the funds. By allowing the reclamation of unaffirmed funds, reversibility
prevents assets from being lost. Moreover, maintaining simultaneous transactions
allows senders to engage in multiple transactions simultaneously with different
parties, without waiting for pending transactions to be affirmed or reversed. This
ensures high throughput in the payment system.

In the anonymous payment literature, specifically account-based models, a
well-known issue referred to as concurrency issues may arise, given that the
ZKP of users depends on their current account state [1, 2, 8, 34]. To illustrate
the challenge consider that proving a sender’s sufficient balance for an outgoing
transfer requires referencing a valid account state. However, if the account state
changes (for instance, the account is a recipient of another user’s transaction
which modifies its cryptographic form, e.g., by rerandomizing it with zero—–a
step necessary to achieve anonymity in some schemes), the sender’s ZKP be-
comes inadmissible. Consequently, the sender’s transaction has to be rejected,

DART: Decentralized, Anonymous, and Regulation-friendly Tokenization 5

and the user may also lose the associated transaction fees. We call a system that
circumvents this problem as satisfying concurrency of incoming/outgoing trans-
actions (CIO). To address this problem, a periodic pending transfers mechanism
can be introduced, where incoming transfers are held in a pending state and
then rolled into accounts periodically at the end of fixed length epochs (time
periods consisting of a set number of blocks). By requiring users to publish
transactions at the beginning of an epoch and ensuring that pending transfers
are processed only at epoch boundaries, the design preserves ZKP validity and
prevents conflicts caused by account state changes during transaction processing.
At the beginning of each epoch, the sender must query the blockchain to obtain
their most updated account state before generating their ZKP. To mitigate dou-
ble spending, each user is restricted to generating at most one transaction per
epoch (note that the identity of the sender is hidden inside the anonymity set).
While longer epochs slow down transaction generation, shorter epochs increase
the likelihood of ZKP invalidation if another user’s transaction rerandomizes the
sender’s account state.

For a payment system, it is important to support non-interactivity, allowing
senders to initiate payments without requiring the receiver to be online at the
same time. This ensures that transactions are not hindered by the receiver’s
immediate presence. Additionally, the ability of a sender to send to multiple re-
ceivers and a receiver to receive (in our context affirm) from multiple senders in a
single transaction (referred to as a multi-party transaction (MPT), or batchabil-
ity [28]) becomes particularly important in privacy-preserving payments. Since
the cost of each transaction is generally higher than in a non-privacy-preserving
one, supporting MPT increases efficiency. Furthermore, multiple assets support
refers to the capability of a protocol to manage, process, and facilitate transac-
tions involving various types of digital assets within a system. Ensuring privacy
for the asset type being transferred is also an important consideration.

Regulatory compliance issues arise with full privacy, as auditors may lack
access to necessary information when all data is encrypted. While ZKPs can en-
force compliance on-chain without the need for encrypting information under an
auditor’s public key, decisions involving human discretion, such as judicial rul-
ings, are subjective and challenging (or may be even impossible in some cases)
to formalize mathematically. Thus, auditors may require direct access to the
underlying transaction data. Furthermore, verifying certain regulatory policies
that rely heavily on off-chain data can be costly and impractical to facilitate
entirely on-chain. In a system with multiple asset types (potentially spanning
different jurisdictions), auditing necessitates careful considerations, such as ad-
dressing asset-specific auditing mechanisms to ensure that only the designated
auditors associated with each asset are granted access to perform their audits.

Despite significant advances in anonymous payment systems [4], current
solutions face critical challenges in achieving a practical balance between full
anonymity, addressing real-world considerations, and regulatory compliance. Rec-
onciling the need for receiver affirmation, PoB, non-interactivity, MPT, support
for multiple asset types, circumventing concurrency issues, and asset-specific

6 A. Sarencheh et al.

auditing in a privacy-preserving manner, preferably in a permissionless setting
remains an open area of investigation. Addressing these limitations altogether
requires a novel approach that draws from the best features of existing systems
while overcoming their inherent drawbacks, leading to the design of a versatile,
anonymous, and permissionless payment system as we do in this paper.

1.1 Our results

We design a Decentralized, Anonymous, and Regulation-friendly Tokenization
system, called DART, which is suitable for a permissionless setting. Our system,
DART, not only achieves full anonymity but also addresses a number of critical
considerations, making it suitable for real-world applications. DART supports
the issuance of on-chain representations of real-world assets (i.e., tokenization)
as well as the creation of on-chain native assets. Users can act as issuers, minting
and distributing digital assets. DART exhibits strong privacy-preserving proper-
ties by concealing sensitive information such as transaction values, user balances,
public keys, and asset types, while ensuring unlinkability between transactions,
thus hiding the transaction graph. Despite these privacy guarantees, DART fa-
cilitates publicly verifiable state transitions by settling transactions on a public
ledger maintained permissionlessly.

Our system builds upon the account-based model of PEReDi [47] and Platy-
pus [56] as well as the unlinkability techniques of Zerocash [49] while overcoming
their inherent drawbacks in our setting. In PEReDi and Platypus each user holds
an account and for each transaction, they update their account and efficiently
prove in zero-knowledge that the update was performed correctly. However, these
account state transitions are authorized by (possibly distributed) validator using
a blind re-randomizable signature. Importantly, the public key of the validator
must be fixed and known to all network participants. In Zerocash, on the other
hand, the idea for achieving anonymity is to generate an anonymity set that
includes all coins ever introduced into the system and efficiently prove knowl-
edge of a (fresh) UTXO as a member of this anonymity set, without revealing it.
While this aligns well with permissionless operation it appears to be inherently
dependent on a coin/UTXO oriented mode of operation.

A natural crossover of the two approaches is to generate an anonymity set
comprising all account states with transactions of constant size. Whenever a
user wants to perform an account state transition, they prove knowledge of an
unused (old) account state in the ledger and submit their new account state. The
validators can verify that the old account is not being reused (e.g., preventing
double-spending) without seeing the old account itself, allowing the user’s new
account to be added to the ledger. Importantly, the old account remains hidden
from validators to ensure unlinkability. To prevent double-spending, a determin-
istic nullifier (also known as a tag) is derived and revealed from the account
state. This nullifier is recorded on the ledger, ensuring that each account state
can be used only once. The nullifier set on-chain grows linearly with respect to
the number of transactions. Note, however, that this account update process
requires both the sender and receiver to be online to update their respective

DART: Decentralized, Anonymous, and Regulation-friendly Tokenization 7

accounts at the same time, as only the users themselves have the necessary ZKP
witness to make the account updates.

In our construction DART, we adopt this crossover approach but obviate
the need for interactivity. This is achieved as follows: when the sender submits
a transaction, an ephemeral account-update-record (AUR) is generated for the
(possibly offline) receiver, who can claim it anytime later when they will update
their account. The AUR remains pending (as “funds in transit”) until the receiver
affirms it or the sender reclaims it using reversibility mechanism. Importantly,
the receiver affirmation step (which claims an AUR) does not reveal any details
about the receiver. It is worth highlighting that the notion of ephemeral AUR in
DART crucially differs from a coin or UTXO based approach. Particularly, an
AUR itself is not spendable by the receiver and may be reclaimed by the sender
at any time, prior to the receiver affirms and incorporates it into their account.

To prevent double-spending, the sender’s balance is debited so that the sender
can initiate other transactions while any previous ones are pending. Additionally,
the sender can initiate an efficient AUR reversion protocol anytime before the
receiver affirms AUR, thereby preventing indefinite resource locking. Note that
once the sender reclaims the funds the receiver becomes permanently unable to
claim them as their own. Additionally, a malicious sender cannot reclaim an AUR
more than once. Note that, by definition, to achieve receiver affirmation there is
a need for the receiver to submit a transaction/affirmation on-chain. Hence, for
a DART transaction to be considered finalized, two transactions are necessary:
one from the sender and one from the receiver. Importantly, in DART, these two
transactions do not need to be concurrent.

To address regulatory compliance, in our construction, asset issuers can des-
ignate asset-specific auditors for their assets. When transacting with a specific
asset type, users must include the designated auditor (if any) in the transac-
tion, ensuring that the auditor can decrypt the required data. Only the auditor
registered for that asset type can decrypt the transaction data, while other au-
ditors remain oblivious to the transaction details. Achieving asset-type privacy
in such a regulated framework presents challenges. Crucially, to maintain asset
type privacy, it is necessary to also conceal the public key of the auditor involved
in the transaction, as it could reveal the underlying asset type due to the ex-
istence of a publicly known mapping between asset types and their associated
auditors. Thus, the challenge is twofold: (i) to hide both the asset type and the
corresponding auditor’s public key8, (ii) to enable the sender to efficiently prove
that the hidden public key belongs to the correct auditor for the asset being
transferred.

We note that the sender and receiver could, in principle, agree off-chain by
privately communicating to update their account states and subsequently sub-
mitting a proof on-chain to prove that the state transition was executed correctly.
However, our system intentionally avoids this approach for several reasons: (i)

8 We need key-privacy [3], as CPA-security alone is insufficient for the problem at
hand. Without key-privacy, the encryptions under auditors’ public keys could reveal
the public keys, thereby compromising privacy.

8 A. Sarencheh et al.

We do not assume the existence of an off-chain communication channel between
the sender and receiver at the time of value transfer, although such an assump-
tion is common in the literature (see e.g., [29]). Note that, with this assumption,
the receiver in DART can operate more efficiently, as they no longer need to scan
the ledger to identify the receipt of AUR. (ii) This approach would necessitate
interactive payments to avoid concurrency issues (as discussed before) as there is
no way for on-chain validators to verify account state transitions anonymously.
Therefore, we adopt the approach of requiring two on-chain submissions for each
payment. This is crucial for maintaining asynchrony between sender and receiver
as well as avoiding concurrency issues.

Supporting multiple assets in users’ accounts requires careful consideration,
particularly in maintaining the hiding properties. The subtlety lies in minimiz-
ing the overhead on transaction generation for the sender’s ZKP. For instance,
if all asset types were to be included within a single account, the witness for the
sender’s proof in every account state transition would need to encompass all as-
set types associated with that account. This approach would result in witnesses
proportional to the total number of assets supported by the system. Although
SNARKs can provide succinct proof sizes, the proving time would remain consid-
erably high since the proof generation complexity scales linearly with the witness
size9. To address this, we adopt the use of asset-specific accounts. This approach
confines the witness for transaction generation to only the relevant asset type,
thereby reducing the computational overhead involved in proof generation10.

DART efficiently facilitates multi-party transactions (MPT), namely, trans-
fer of a specific asset to multiple receivers in a single transaction, and further
receipt/affirm from multiple senders within a single transaction, thereby en-
hancing efficiency (also known as batchability [28]). Moreover, DART supports
a proof of balance (PoB) mechanism, which allows any party to request the
balance from some user given an account identifier. Users register asset-specific
accounts, and the ledger maintains mappings between account identifiers and
their associated asset types. A user can prove their balance for a particular asset
without revealing any additional details. It is crucial to ensure that a malicious
user cannot bypass the PoB protocol. For instance, a malicious sender could ini-
tiate a transaction reducing their spendable finalized balance, then engage with
the PoB verifier and subsequently reverse the pending transaction without the
PoB verifier being aware of the pending transaction. To prevent such an exploit,
the system enforces the sender to update their (non-spendable) pending balance

9 Notably, while the witness size grows linearly with the number of supported as-
sets, most witness elements are likely zero for typical users who interact with only
a subset of assets. This raises an intriguing direction for future work: leveraging
witness sparsity. Employing recent techniques such as sparse polynomial commit-
ments [50, 51], it is worth exploring proof systems whose efficiency—particularly in
proof generation—depends mainly on the number of non-zero witness elements.

10 Having asset-specific accounts leads to linear on-chain storage growth proportional
to the number of assets linked to each key. In contrast, consolidating all assets within
a single account can reduce storage requirements. However, our system prioritizes
sender proof efficiency over on-chain storage minimization in this trade-off.

DART: Decentralized, Anonymous, and Regulation-friendly Tokenization 9

within their account (hidden) data. This ensures that information about the
pending balance is also available to the PoB verifier, allowing them to account
for the possibility of potential reversion in the future. Moreover, our reversibility
functionality provides an incentive for the receiver to claim their AUR promptly,
as the sender retains the ability to reverse the transaction at any time. Not only
the sender has financial incentives to do so but also it is preferable for the sender
to have no pending transactions for privacy reasons (we elaborate on this later).
This creates another incentive for the sender to reverse any pending transactions
which in turn results in the receiver losing access to the funds.

Summary of our contributions. With DART, we make the following contri-
butions:

• Full anonymity and confidentiality in an account-based model with constant
transaction size. We formalize the notion of a payment system that ensures
privacy of balances, transaction values, and the identities/public keys of
both senders and receivers, while also guaranteeing unlinkability between
transactions. Moreover, payments in DART obscure the underlying asset
types and the identities of auditors. Our system operates under an account-
based bookkeeping model that differs from other account-based systems with
respect to anonymity guarantees in that they are: (i) partially anonymous,
such as QuisQuis [24], Zether [8], Anonymous Zether [19], and PriDe CT [28].
(ii) permissioned, like PEReDi [47] and PARScoin [48]. (iii) centralized like
Platypus [56]. (iv) inherently inefficient where the validator has complexity
proportional to the account set for each transaction and have concurrency
issues like PriFHEte [34].

• Support for receiver affirmation, proof of balance, reversibility, and simul-
taneous transactions. We formalize the concept of receiver affirmation in
digital currencies, enabling receivers to affirm incoming payments before ac-
count updates, thus aligning blockchain-based payments with well-known
regulatory requirements in financial transactions and empowering receivers
to manage obligations, particularly in scenarios involving legal or tax im-
plications. We address the challenges introduced by incorporating receiver
affirmation, specifically by: (i) introducing proof of balance (PoB) protocol to
enable verifiers to check exact balances, while accommodating the complex-
ities of split balances during receiver affirmation. (ii) ensuring reversibility,
allowing senders to reclaim unaffirmed funds to prevent indefinite asset lock-
ing. (iii) supporting simultaneous transactions, enabling senders to engage in
multiple transactions concurrently, while waiting for previous transactions’
receiver affirmations.

• Support for non-interactivity, multi-party transaction, multiple asset-types,
and asset-specific auditing while avoiding concurrency issues. We support
non-interactivity for offline receivers, multi-party transactions (MPT) to en-
able batch transactions for improved efficiency in privacy-preserving set-
tings, and multiple asset-types to handle a diverse set of digital assets while
ensuring privacy. We address regulatory compliance challenges in privacy-
preserving systems by incorporating encrypted transaction data with au-

10 A. Sarencheh et al.

ditor access when necessary, enabling asset-specific auditing to ensure ju-
risdictional alignment and granting designated auditors access. Finally, our
design does not suffer by the concurrency issues common in account-based
anonymous payments as discussed above.

• Universal composition (UC) security and efficient instantiation. We formal-
ize decentralized and fully anonymous payments with all the properties de-
scribed above in a Universal Composition (UC) [13] framework via our ideal
functionality FDART and provide an efficient realization of FDART via our con-
struction ΠDART. This ensures that ΠDART can be securely integrated with
other decentralized finance (DeFi) systems or traditional finance (TradFi)
legacy systems. In our construction ΠDART, we employ well-established cryp-
tographic schemes and we utilize two non-interactive zero-knowledge proof
systems: Σ-protocols and Bulletproofs [9], to efficiently verify statements on
algebraically encoded data.

Overview of the related works. Early research highlighted that Bitcoin [41]
provides only pseudonymity rather than anonymity [35, 36]. This limitation
spurred significant academic and practical efforts to address the issue, leading to
the development of a rich body of privacy-preserving payment systems each op-
erating under distinct assumptions, settings, and properties. These systems can
be broadly categorized into two classes: UTXO-based systems and account-based
systems. In the UTXO-based category, notable examples include Zerocoin [39],
Zerocash [49], and Monero [43]. On the other hand, examples of account-based
systems include Zether [8], Anonymous Zether [19], Platypus [56], PEReDi [47],
PriDe CT [28], PARScoin [48], and PriFHEte [34]. We present an overview of
these systems as well as how they compare to DART in Table 1; more details are
provided in Section 2.

2 Related works

Among the first pioneering approaches to privacy enhanced payments was Zero-
cash [49], which builts upon the earlier protocol Zerocoin [39]. These works intro-
duced the concept of decentralized anonymous payments, proposing a payment
system that guarantees strong confidentiality, anonymity, and public verifiabil-
ity. Zerocash, a UTXO-based fully anonymous payment system, employs com-
mitments and zero-knowledge succinct non-interactive arguments of knowledge
(zk-SNARKs) to conceal transaction details, including the transaction value and
the identities or public keys of both the sender and the receiver. Each transaction
in Zerocash includes the value of a cryptographic accumulator that aggregates
all coins ever introduced into the system, thereby forming the anonymity set.
The sender proves ownership of a coin within this set by generating a zk-SNARK
proof, without explicitly revealing the specific coin being spent. Notably, the size
of each transaction remains constant independent of the size of the anonymity
set different from majority of (partially) anonymous account-based systems. To
prevent double-spending, each coin is associated with a unique nullifier, which

DART: Decentralized, Anonymous, and Regulation-friendly Tokenization 11

F
u
ll

a
n
o
n
y
m
it
y

P
ro

o
f
o
f

b
a
la
n
ce

C
o
n
cu

rr
en

cy

R
ec
ei
v
er

a
ffi
rm

a
ti
o
n

N
o
n
-

in
te
ra
ct
iv
it
y

M
u
lt
i
p
a
rt
y

tr
a
n
sa
ct
io
n

T
ra
n
sa
ct
io
n

si
ze

Zerocash [49] ✓ ✗ ✓ ✗ ✓ ✗ O(1)
Monero [43] ✗ ✗ ✓ ✗ ✓ ✓ O(k)
zkLedger [42] ✓∗ ✓ ✓ ✗ ✓ ✓ O(k)
QuisQuis [24] ✗ ✗ ✗ ✗ ✓ ✓ O(k)
Zether [8] ✗ △ ✗ ✗ ✓ ✗ O(k)
Ano. Zether [19] ✗ △ ✗ ✗ ✓ ✓ O(k)
Veksel [11] ✗ ✗ ✓ ✗ ✓ ✗ O(1)
Platypus [56] ✓ △ ✓ ✓∗ ✗ ✗ O(1)
PEReDi [47] ✓ △ ✓ ✓∗ ✗ ✗ O(1)
PriDe CT [28] ✗ △ ✗ ✗ ✓ ✓ O(k)
PARScoin [48] ✓ ✗ ✓ ✗ ✓ ✗ O(1)
Ocash [29] ✓ ✗ ✓ ✗ ✓ ✓ O(1)
PriFHEte [34] ✓ △ ✗ ✗ ✓ ✗ O(1)

DART ✓ ✓ ✓ ✓ ✓ ✓ O(1)

Table 1: Overview of privacy-preserving payment systems and their properties.
Full anonymity (✓∗: The system only supports a small number of users.)
Proof of balance (△: The scheme does not offer the property, but it can be
achieved with reasonable modifications to the construction.)
Concurrency: concurrency of incoming/outgoing transactions
Receiver affirmation and reversibility (✓∗: The system has interactive
transactions, hence receiver affirmation is trivially addressed.)
Note: additional properties such as permissionlessness, multiple assets sup-
port, and asset specific auditing are not included in this table to maintain
clarity and conciseness. For a more detailed comparison, refer to Section 2.

is publicly revealed upon spending as in Chaum’s original blind signature-based
e-cash [16].

One of the main distinctions between DART and Zerocash [49] is that PoB
is not supported by Zerocash, as the user’s balance in Zerocash is distributed
across (potentially many) UTXOs, which a malicious receiver may selectively
omit during a PoB procedure. Note that once a sender submits their transac-
tion, the ownership of the funds is transferred to the receiver. In contrast, in
DART, ownership is not transferred to the receiver until they claim AUR and
update their account balance accordingly (i.e., AURs are not spendable). Until
that moment, the sender retains the ability to reclaim AUR at any time via re-
versibility operation. Furthermore, the PoB prover has to disclose any pending
funds. The authors of Zerocash assume two inputs and two outputs for sim-

12 A. Sarencheh et al.

plicity, but their scheme can be extended to n inputs and m outputs. As such,
Zerocash can in principle support MPT. However, for n UTXOs consumed as in-
puts, the user must provide n accumulator membership proofs, which constitute
the computationally costly part of the user’s ZKP. In contrast, our approach
allows a receiver to claim multiple AURs within a single account state transi-
tion, requiring only one accumulator membership proof via a single transaction.
Similarly, a sender can provide a single accumulator membership proof while
simultaneously creating multiple AURs intended for different receivers within a
single transaction. Note that the number of AURs is upper-bounded by the block
size. For more details on our approach to MPT, see Section 5.1.

Monero [43] employs a UTXO-based model to ensure transaction anonymity.
It leverages ring signatures, where the anonymity set consists of a group of public
keys included in the signature’s ring and a transaction grows proportionally to
that. In QuisQuis [24], each user maintains an account, and transactions utilize
UTXO inputs rather than direct account debits. To preserve anonymity, Quisquis
incorporates anonymity sets with updatable keys that provide unlinkability.

To support auditing functionalities, zkLedger [42] introduced a ledger repre-
sentation using a table-based structure, where each row corresponds to a trans-
action with entries for all participants in the system. Each transfer is recorded
as a transaction containing commitments to values, depending on whether the
amount is being debited (commitment to a negative value) or credited (commit-
ment to a positive value). This design allows auditors to efficiently verify the
balance of each user. However, zkLedger has a significant limitation: it is de-
signed to support anonymity for only a small number of users as the transaction
size grows linearly in the number of users unlike DART where transaction size is
of constant size. Moreover, zkLedger performs over a permissioned system and
requires participants to have out-of-band communications.

Zether [8] and Anonymous Zether [19] are anonymous payment system de-
signs that hide the user balance, transaction value, and sender and receiver
identities. These systems are account-based, where each public key holder is as-
sociated with an ElGamal encryption of their balance under their own public
key. To generate a transaction, the sender encrypts the transaction value un-
der the receiver’s public key and the negative transaction value under their own
public key. Additionally, the sender encrypts zero under some randomly chosen
(dummy) public keys. These dummy public keys, along with the sender’s and
receiver’s public keys, form an anonymity set (a ring), concealing the identities of
both the sender and the receiver. The sender then proves in zero knowledge that
all encryptions are well-formed and that the transaction has been constructed
correctly. The system restricts each sender to at most one transaction per epoch,
where an epoch consists of k consecutive blocks. At the beginning of each epoch,
the sender must query the blockchain to obtain their most updated state be-
fore generating their ZKP. This update is necessary because, at the end of each
epoch, the blockchain rolls over all pending states to permanent ones. If other
users include the sender’s public key in their anonymity sets, the sender’s state
will be updated accordingly at the end of the epoch. Anonymous Zether makes

DART: Decentralized, Anonymous, and Regulation-friendly Tokenization 13

ZKPs of Zether more efficient. These works only support k-anonymity and have
concurrency issues, with a transaction size of O(k).

PriFHEte [34], while achieving full anonymity in an account-based model
with a constant transaction size of O(1), similarly suffers from concurrency is-
sues (further discussion on PriFHEte follows). In contrast, in DART, no one
updates another user’s account state except the user themselves, allowing the
sender to submit transactions at any time and avoiding such concurrency issues.
Moreover, receiver affirmation, multiple assets, and asset-type-specific auditing
are not supported in [8, 19, 34]. We note, however, that unlike DART, the nul-
lifier set in Zether, Anonymous Zether, and PriFHEte does not grow, as it is
reset to empty at the end of each epoch. PriDe CT [28] is a follow-up work
on Anonymous Zether, inheriting some of its properties such as being account-
based, achieving k-anonymity, and having a transaction size of O(k), while also
introducing support for MPT.

Veksel [11] is an anonymous account-based payment system that shares sim-
ilarities with Zerocash [49] in that it supports an arbitrarily large anonymity
set. Payments in Veksel are facilitated by having the sender generate a coin
commitment along with its encryption under the receiver’s public key. During
the collection process, a random spending tag (i.e., nullifier) is revealed. While
the system ensures unlinkability for each transaction to its sender and receiver
and obscures the transferred value, it does not hide the identities of the involved
parties (e.g. balance updates are known), thus lack the anonymity.

PEReDi [47] and Platypus [56] are fully anonymous, account-based Central
Bank Digital Currency (CBDC) payment systems. In Platypus, a central entity
(the central bank) maintains the state of the system. PEReDi employs a dis-
tributed architecture, where cryptographically thresholdized maintainers man-
age the state of the system in a distributed (also referred to as permissioned)
and asynchronous manner. In both schemes, the sender interacts with the re-
ceiver (hence, these are interactive systems11) to generate a transaction, proving
in zero-knowledge that their account state transitions are correct. Each account
state transition leaves a unique nullifier as a footprint, enabling the state main-
tainer(s) to detect double-spending. Additionally, for each state transition, users
receive a signature from the state maintainer(s), confirming the validity of the
operation. Payments in PEReDi’s distributed setting do not require Byzantine
Agreement or Byzantine Broadcast during the optimistic path of a transaction.
This leads to efficient state transitions whenever transaction counterparties be-
have honestly. Maintainers independently sign each user’s account state transi-
tion using a threshold blind and randomizable signature without communicating
with one another. Users then collect signature shares from maintainers to con-
solidate a full signature on their updated account state. PEReDi introduces an
approach for tracing potentially malicious users through the collaboration of
a threshold number of maintainers. The revealed double-spending prevention
unique tags also serve as a means to trace users. Multiple assets and asset-type-

11 A limitation of interactive systems is that a sender cannot send funds if the receiver
is not online and engaged in the transaction submission.

14 A. Sarencheh et al.

specific auditing are not supported in PEReDi and Platypus. In Platypus, the
entire system operates under a centralized auditor, while in PEReDi, it oper-
ates under a cryptographically thresholdized set of auditors (the auditors are
not asset-specific). These systems do not have concurrency issues and have a
transaction size of O(1). Due to their interactive nature, they trivially support
receiver affirmation by default.

PARScoin [48] is a fiat currency tokenization follow-up work on PEReDi that
similarly has a fully anonymous, asynchronous, account-based and distributed
model with no concurrency issues and transaction size of O(1). Note that fiat-
backed stablecoins are a specific use case of our general solution. In the case of
PARScoin, the real-world asset is specifically a fiat currency, and as a result of
tokenization, the on-chain asset is referred to as a stablecoin—representing the
tokenized form of the fiat currency12. PARScoin extends the interactive pay-
ment model of PEReDi to a non-interactive one. It supports privacy-preserving
auditability using homomorphic encryptions ensuring that the stablecoin in cir-
culation is backed by sufficient off-chain funds, which is important for price
stability. In PARScoin, if the receiver is unable to claim the funds for any reason
(e.g., unwillingness to affirm the transaction due to tax liabilities, loss of access
to their wallet, etc.), the sender’s funds are locked forever. In contrast, a DART
sender is able to reclaim funds if the receiver does not affirm the transaction.
Our reversibility solution incentivizes the receiver to affirm the transaction and
update their account balance as soon as possible to guarantee the ownership
transfer. This differs from PARScoin’s setting, in which ownership is immedi-
ately transferred to the receiver as soon as the sender submits their transaction.
In PARScoin, the receiver must update their account balance by claiming the
funds sent by the sender to be able to spend them. However, the receiver can
perform this action at any time. For example, consider a balance upper-bound
requirement, which is a common regulatory requirement [47,48,56]. A potentially
malicious receiver could delay claiming the incoming funds until after sending
funds to others (reducing their balance), ensuring that their balance remains
within the permissible range to accept new funds.

Recently, OCash [29] introduced a novel approach to anonymous payment
systems in the account-based model, specifically designed to accommodate light
clients. At a high level, the payer conducts payments by placing coins on the
ledger, which can later be collected by the payees in a privacy-preserving manner.
The system offers two levels of anonymity. In the weaker variant, the payer is
able to observe when a payee claims the coin. However, the proposed design
is limited by two assumptions that constrain its practical usability. First, it
assumes the existence of a private channel between the payer and the payee.
Second, the system requires an anonymizer service that maintains a private
state and regularly posts messages on the ledger. The anonymity guarantees of
OCash heavily depend on this second assumption, as the anonymizer functions

12 Since DART supports multiple asset types, one of these asset types can be a stable-
coin.

DART: Decentralized, Anonymous, and Regulation-friendly Tokenization 15

as the core of an Oblivious RAM-like structure [26], with the ledger acting as
the database containing the committed or encrypted coins.

PriFHEte [34] is a novel approach to ensuring anonymity and confidentiality
in account-based cryptocurrency transactions. The proposed protocol achieves
full anonymity while having O(1) transaction size. This work leverages a prop-
erty known as wrong-key decryption (WKE). The authors combine this property
with fully homomorphic encryption (FHE) to design a payment system capable
of facilitating “compact” transactions, which, with the assistance of chain val-
idators, simultaneously update all accounts in the system for each transaction.
The protocol employs a key-private public key encryption scheme with the WKE
property to encrypt transactions, and an FHE scheme to encrypt user balances
stored on-chain. When Alice sends an amount v to Bob, she creates a transaction
that encrypts v using both her and Bob’s WKE public keys. She also generates
a corresponding NIZK proof to verify the transaction’s validity. User balances
are stored on-chain as ciphertexts, encrypted under their respective FHE pub-
lic keys. Chain validators, equipped with the WKE public key, the FHE public
key, and an encryption of the WKE secret key under the user’s FHE public key,
facilitate account state transitions. Validators must maintain this information
for all users (accounts). After validating the sender’s proof, validators execute
the following steps for each account commitment recorded on-chain: Using the
ciphertext of the WKE secret key encrypted under the user’s FHE public key
and the sender’s transaction (which contains the encryption of v under both
the sender’s and receiver’s WKE public keys), they generate encryptions with
a plaintext value of zero for all non-counterparty users. For the actual sender
and receiver, the plaintext value is v. Next, the FHE scheme is used to homo-
morphically deduct the amount v from the sender’s balance and add it to the
receiver’s balance. The balances of all other users remain unchanged, as their
old balances are updated by zero. The approach leverages the WKE property to
avoid requiring the sender to generate zero-value encryptions for dummy pub-
lic keys. Instead, validators utilize the WKE property to blindly generate these
zero-value encryptions for all non-counterparty users. In addition to concur-
rency issues (discussed above), PriFHEte [34] needs homomorphic updates to
all account commitments recorded on-chain for each transaction by blockchain
validators (the validator complexity is O(n) for each transaction), raising con-
cerns about its practicality in terms of both transaction fees and computational
efficiency13. Biccer and Tschudin [5] demonstrated a double-spending attack on
PriFHEte. In response, the authors proposed a mitigation technique involving
two commitments to address this vulnerability.

13 As the number of accounts in the system grows, the fees associated with each trans-
action would increase, since validators must update more on-chain entries, including
the sender’s. This dynamic seems counterintuitive, as network effects typically reduce
user costs.

16 A. Sarencheh et al.

3 Formal modeling

We define FDART as an ideal functionality for anonymous and regulation-friendly
tokenization, capturing the desired properties. A party P can take the roles of
issuer, sender Ps, receiver Pr, and auditor A. The adversary is A, and the session
identifier as sid is selected by the environment Z. FDART is parameterized by an
upper bound on transaction value vmax. A can delay the delivery of messages or
prevent a message from being delivered to the intended recipient. This models
real-world scenarios where A has control over the communication channel. The
ideal functionality FDART is composed of the following interfaces:

Address generation. A party P invokes FDART, which in turn queries the
adversary A for an address addrpk. Upon receiving it from A, FDART verifies
whether it is fresh. If so, it records the party identifier P along with the address
and outputs addrpk to P.

Asset issuance. A party P invokes this interface to issue a new asset by
providing the asset type (identifier) a.t and the associated auditor A assigned to
a.t. FDART first verifies whether P and A have already generated their addresses
and checks whether a.t is fresh, as it must be unique. FDART does not enforce
uniqueness for the auditor A assigned to a.t, allowing a single auditor A to serve
as the auditor for more than one a.t. FDART registers the issuer along with a.t
in the list IA and registers the associated auditor A along with a.t in the list AA.
FDART leaks (P, a.t,A) to A, as there is no privacy preservation at the issuance.

Account registration. By invoking this interface, the party P registers an
asset-specific account. FDART verifies whether P has generated an address and
checks whether an account with the same a.t has already been registered for P
via checking R(P, a.t), which is initially set to ⊥. FDART also checks whether
a.t is a valid asset using IA. FDART then updates R(P, a.t) = (f.b, p.b) = (0, 0),
where the initial finalized (spendable) balance f.b and pending (non-spendable)
balance p.b are set to zero.

Increase asset supply. The issuer P of an asset a.t invokes this interface to
increase the supply of a.t by a value v. FDART checks whether P has initialized
their account and verifies that they are indeed the associated issuer of a.t. FDART

records (c,P, a.t, v) to prevent replay attacks by verifying c, which is initially set
to 0. FDART then waits for confirmation from A to finalize the supply increase
by increasing f.b of the issuer’s account by v and setting c to 1.

Functionality FDART part I

The functionality is parameterized by vmax, and the lists IA and AA are
initialized as empty.

Address generation.

• Upon receiving (Gen.Addr, sid) from P, send (Gen.Addr, sid,P) to A.

DART: Decentralized, Anonymous, and Regulation-friendly Tokenization 17

• Upon receiving (Gen.Addr.Ok, sid,P, addrpk) from A, ignore if (·, addrpk)
is already recorded. Else, record (P, addrpk). Output (Addr.Gened, sid,
addrpk) to P.

Asset issuance.

• Upon receiving (Issue, sid, a.t,A) from P, ignore if (P, ·) or (A, ·) is not
recorded or (·, a.t) ∈ IA. Else, send (Issue, sid,P, a.t,A) to A.

• Upon receiving (Issue.Ok, sid,P, a.t,A) from A, set IA← IA∪{(P, a.t)}
and AA ← AA ∪ {(A, a.t)}. Output (Issued, sid, a.t) to P via public-
delayed output.

Account registration.

• Upon receiving (Register, sid, a.t) from P, ignore if (P, ·) is not
recorded, or R(P, a.t) ̸= ⊥, or (·, a.t) /∈ IA. Else, send (Register, sid,P,
a.t) to A.

• Upon receiving (Register.Ok, sid,P, a.t) from A, if R(P, a.t) = ⊥, set
R(P, a.t) ← (0, 0) and send (Registered, sid, a.t) to P via public-
delayed output.

Increase asset supply.

• Upon receiving (Increase, sid, a.t, v) from P, ignore if R(P, a.t) = ⊥,
or (P, a.t) /∈ IA, or v ≤ 0. Else, record (c,P, a.t, v) for c = 0. Send
(Increase, sid,P, a.t, v) to A.

• Upon receiving (Increase.Ok, sid,P, a.t, v) from A, ignore if (0,P, a.t,
v) is not recorded. Else, retrieve R(P, a.t) = (f.b, p.b). Set f.b← f.b+ v
and c← 1. Output (Increased, sid, a.t, v) to user P via public-delayed
output.

Sender transaction. A sender Ps invokes this interface by providing the
receiver’s identifier Pr and specifying the value v as the transfer amount of asset
type a.t. FDART then verifies several conditions, such as whether the sender’s
finalized balance contains sufficient funds. In cases where the receiver Pr or
a.t’s auditor A is malicious, FDART leaks (Ps,Pr, v, a.t) to A. Otherwise, A only
observes a random identifier β, while FDART internally maintains a mapping list
L(·) to associate β with the transaction details. Upon receiving confirmation from
A, FDART decreases the sender’s finalized balance and increases their pending
balance. Note that a unique identifier TNX is submitted by A to FDART, which
uses it to uniquely identify each transaction (rejecting if TNX is not unique).
α is an associated flag to TNX representing the status of the transaction. It is
necessary to check the balance of the sender again, ensuring f.bs < v before the
balance update, as the sender may have already initiated other transactions.
L(β) is set to ⊥ after updating the balance to prevent replay attacks.

Receiver transaction. A receiver Pr invokes this interface by providing
the unique identifier of a transaction TNX. FDART verifies whether a payment
associated with TNX exists, belongs to Pr, and has not yet been affirmed (i.e., α =

18 A. Sarencheh et al.

0). No information is leaked to the adversary, except TNX. In case Ps is malicious
FDART leaks (Ps,Pr, v, a.t,TNX) to A. Upon receiving A’s confirmation, FDART

outputs (Ps, v, a.t,TNX) to Pr. If Pr affirms the transaction by sending back
(Affirm, sid,TNX), FDART increases Pr finalized balance f.br + v, and decreases
the associated pending balance for a.t of Ps. FDART ensures the funds in this
transaction cannot be claimed again or reversed by setting α← 1.

Reversion. Using this interface, a sender Ps provides as input a unique
identifier TNX of a transaction. FDART then verifies whether Ps is indeed the
sender of TNX and checks the status α associated with TNX to determine if
the transaction has already been affirmed by the receiver. Similar to receiving,
FDART leaks only TNX to A, and upon confirmation, reverses the transaction by
updating the sender’s finalized and pending balances. FDART ensures that the
receiver cannot affirm this transaction in the future by setting α to 2 (recall
that affirmation requires α = 0) and prevents the sender from reversing the
transaction again (reversion also requires α = 0).

Functionality FDART part II

Sender transaction.

• Upon receiving (Send, sid,Pr, v, a.t) from Ps, ignore if R(Ps, a.t) = ⊥, or
v ≤ 0, or v > vmax. Else, retrieve R(Ps, a.t) = (f.bs, p.bs) and ignore if
f.bs < v. Else, sample a new β and set L(β)← (Ps,Pr, v, a.t). Retrieve
(A, a.t) from AA. If A or Pr is malicious, overwrite β ← (Ps,Pr, v, a.t).
Send (Send, sid, β) to A.

• Upon receiving (Send.Ok, sid, β,TNX) from A, ignore if L(β) =
⊥, or (·, ·, ·, ·, ·,TNX) is already recorded. Else, retrieve L(β) =
(Ps,Pr, v, a.t) and then R(Ps, a.t) = (f.bs, p.bs). Ignore if f.bs < v.
Else, set R(Ps, a.t) ← (f.bs − v, p.bs + v), and L(β) ← ⊥. Record
(Ps,Pr, v, a.t, α,TNX), where α = 0. Output (Sent, sid, ,Pr, v, a.t,TNX)
to Ps via private-delayed output.

Receiver transaction.

• Upon receiving (Receive, sid,TNX) from Pr, ignore if (·,Pr, ·, a.t, 0,
TNX) for some a.t is not recorded. Retrieve R(Pr, a.t) using a.t, and
ignore if it equals ⊥. Else, retrieve (A, a.t) from AA and retrieve (Ps,Pr,
v, a.t, α,TNX). If Ps is malicious send (Receive, sid,Ps,Pr, v, a.t,TNX)
to A. Else, send (Receive, sid,TNX) to A.

• Upon receiving (Receive.Ok, sid,TNX) from A, retrieve (Ps,Pr, v,
a.t, α,TNX). Ignore if α ̸= 0. Output (Receiving, sid,Ps, v, a.t,TNX)
to Pr via private-delayed output.

• Upon receiving (Affirm, sid,TNX) from Pr, ignore if (Received, sid,
Ps, v, a.t,TNX) has not been output to Pr yet or (·, ·, ·, ·, 1,TNX) is
recorded. Otherwise, send (Affirmed, sid,TNX) to A. Upon receiving
(Affirmed.Ok, sid,TNX) from A, retrieve R(Pr, a.t) = (f.br, p.br), and

DART: Decentralized, Anonymous, and Regulation-friendly Tokenization 19

R(Ps, a.t) = (f.bs, p.bs). Update f.br ← f.br + v, p.bs ← p.bs − v, and
α← 1. Output (Received, sid,TNX) to Pr via public-delayed output.

Reversion.

• Upon receiving (Reverse, sid,TNX) from Ps, ignore if (Ps, ·, ·, a.t, 0,
TNX) for some a.t is not recorded. Retrieve R(Ps, a.t) using a.t, and
ignore if it equals ⊥. Else, send (Reverse, sid,TNX) to A.

• Upon receiving (Reverse.Ok, sid,TNX) from A, retrieve (Ps,Pr, v, a.t,
α,TNX). Ignore if α ̸= 0. Else, retrieve R(Ps, a.t) = (f.bs, p.bs). Set
f.bs ← f.bs + v, p.bs ← p.bs − v, and α ← 2. Output (Reversed, sid,
TNX) to Ps.

Proof of balance. The user provides a.t to FDART, which in turn outputs a
fresh random identifier γ to A. If a.t has the auditor A who is corrupted, then
FDART overwrites γ with (P, a.t). Upon receiving A’s message FDART outputs (P,
a.t, f.b, p.b) to the auditor.

Auditor operation. The auditor A invokes this interface by providing the
unique identifier of a transaction TNX. FDART checks whether a transaction exists
that is recorded with the specified TNX and verifies whether a.t associated with
TNX has the caller as its auditor. If the auditor is indeed the associated auditor,
FDART, upon A’s confirmation, outputs the transaction metadata to A.

Functionality FDART part III

Proof of balance.

• Upon receiving (Balance, sid, a.t) from P, ignore if R(P, a.t) = ⊥.
Else, given a.t, retrieve (A, a.t) from AA. Generate a new γ, and set
L(γ) ← (P, a.t,A). If A is malicious, overwrite γ ← (P, a.t). Send
(Balance, sid, γ) to A.

• Upon receiving (Balance.Ok, sid, γ) from A, ignore if L(γ) = ⊥. Else,
retrieve L(γ) = (P, a.t,A). Retrieve R(P, a.t) = (f.b, p.b). Output
(Balance, sid,P, a.t, f.b, p.b) to A via private-delayed output and set
L(γ)← ⊥.

Auditor operation.

• Upon receiving (Audit, sid,TNX) from an auditor A, ignore if (·, ·, ·, a.t,
·,TNX) for some a.t is not recorded. Else, ignore if (A, a.t) /∈ AA. Else,
sample a new η, and set L(η)← (A,TNX). Send (Audit, sid, η) to A.

• Upon receiving (Audit.Ok, sid, η) from A, ignore if L(η) = ⊥. Else,
retrieve L(η) = (A,TNX), and then retrieve (Ps,Pr, v, a.t, ·,TNX). Out-
put (Audited, sid,Ps,Pr, v, a.t) to A via private-delayed output, and set
L(η)← ⊥.

20 A. Sarencheh et al.

4 Our construction DART

As previously discussed, users maintain accounts where old account acctold tran-
sitions into a new account acctnew as a result of a transaction. To achieve un-
linkability, users do not reveal their acctold and only reveal their acctnew, and to
achieve confidentiality the commitment to the new account acctcmnew is revealed.
Users prove in zero-knowledge that acctcmold is a valid member of the blockchain’s
state acctcmold ∈ state and that it has not been used. This is done by revealing
the nullifier nul = PRFskacct(ρ), which is a pseudorandom function (PRF) (Def-
inition 11) output. It is proved that nul is well-formed with respect to acctcmold
for which the membership proof is provided. The ledger then checks if nul has
already appeared in the ledger’s state. Moreover, the user proves that acctcmnew,
which is revealed, is consistent with acctcmold, according to the type of the trans-
action. For instance, in the case transaction type is Send, tnxSend, the sender
proves that f.b in acctcmnew has been correctly reduced by the transaction value v,
i.e., f.bsnew = f.bsold − v holds. Once the transaction tnx is validated, the ledger
records acctcmold nullifier nulold, and adds acctcmnew to state.

In our construction ΠDART, we employ the following ideal functionalities:
the key generation FKeyReg (Appendix B.1), the non-interactive zero-knowledge
FNIZK (Appendix B.2), the ledger FLedger (Appendix B.3), and the communi-
cation channel Fch (Appendix B.4). Additionally, ΠDART incorporates several
cryptographic primitives, specifically a public-key encryption scheme (Defini-
tion 1), a commitment scheme (Definition 6), a pseudorandom function (PRF)
(Definition 11), and an accumulator scheme (Definition 14). See Appendix C for
formal definitions and security properties. See Section 6 for their instantiations.

User account acct is defined as a tuple acct := (skacct, f.b, p.b, a.t, ρ, s) contain-
ing an account secret key skacct, finalized balance f.b that is spendable, pending
balance p.b that is not spendable, an asset type a.t, and randomness values ρ
and s, respectively for deriving nullifier nul and generating account commitment
acctcm. We denote the NIZK statement, witness, relation, and proof by x, w,
R, and π, respectively. Similar to FDART, ΠDART is parameterized by vmax, en-
suring that both f.b and p.b will not overflow. FLedger maintains the state of
the ledger state = (state′,LIAA,LKA,LNUL, vACCU). state parses into all transac-
tions submitted to the chain state′, the most recent accumulator value vACCU,
and most recent state of three lists (LIAA,LKA,LNUL), where LNUL is an append-
only list of account nullifiers updated by consensus and LIAA and LKA will be
described in the following sections. FLedger is parameterized by two functions:
(i) (0 or 1) ← Validate(state, tnx), and (ii) statenew ← Update(stateold, tnx),
both taking as input blockchain state and a transaction tnx. Each of these func-
tions includes several sub-algorithms tailored to different types of transactions
as we will see later. Each consensus member—whether part of a permissioned or
permissionless blockchain—reads the blockchain state state and verify the trans-
action by executing Validate(state, tnx). If the transaction is verified, state is
updated accordingly by executing Update(state, tnx).

DART: Decentralized, Anonymous, and Regulation-friendly Tokenization 21

4.1 Algorithms

Figure 1 illustrates the sender’s transaction status tnxstSend ∈ {0, 1, 2}. Each tran-
sition between these values is triggered by a specific transaction. By submitting
tnxSend to the ledger, the sender’s finalized balance decreases by the transaction
value f.bsnew = f.bsold − v and pending balance p.bs increases by the same value
p.bsnew = p.bsold + v. Without handling p.bs, a malicious sender could circumvent
PoB as discussed in Section 1. As Figure 1 illustrates, from tnxstSend = 0 two

tnxstSend = 0 (pending)
set f.bs ← f.bs − v
set p.bs ← p.bs + v

tnxstSend = 1 (finalized)
set f.br ← f.br + v
set p.br ← p.br

tnxstSend = 2 (reversed)
set f.bs ← f.bs + v
set p.bs ← p.bs − v

tnxReceive
receiver

tnxReverse
sender

Fig. 1: Transaction status tnxstSend.

possible transitions can occur. A transition to tnxstSend = 1 when the receiver
affirms by submitting tnxReceive. Or, a transition to tnxstSend = 2 when the sender
reverses by submitting tnxReverse. A transition from tnxstSend = 1 to tnxstSend = 2 is
impossible; once the receiver affirms, the sender can no longer reverse. Similarly,
a transition from tnxstSend = 2 to tnxstSend = 1 is not possible; once the sender
reverses, the receiver cannot affirm. Whenever the receiver submits tnxReceive,
their finalized balance increases f.brnew = f.brold+ v. Once tnxstSend = 1 the transfer
of fund ownership from the sender’s account to the receiver’s account is com-
pleted. When the sender submits tnxReverse, they perform the exact opposite of
what they did in the initial transaction tnxSend. After key generation, each party
ignores environment Z’s instruction if (addrpk, addrsk) is not recorded but for
simplicity we avoid explicitly addressing it.

4.1.1 Address generation. Each user calls FKeyReg to receive two pairs of
cryptographic keys: one pair (pken, sken) for PKE and another pair (pkacct, skacct)
for their account. The algorithm is provided in Figure 2.

▷ Upon receiving (Gen.Addr, sid) from Z call FKeyReg with (Gen.Key, sid).
▷ Upon receiving (Gen.Key, sid, addrpk, addrsk) from FKeyReg, record (addrpk,
addrsk).

▷ Output (Addr.Gened, sid, addrpk) to Z.

Fig. 2: Address generation

4.1.2 Asset issuance. There is a public list called the Issuer-Asset-Auditor
list, denoted by LIAA, which is maintained by consensus (on-chain) and initially
set to empty. When a party P issues an asset a.t, LIAA is updated accordingly.

22 A. Sarencheh et al.

LIAA contains tuples of the form (pkacct, a.t, pk
A
en), where pkacct is issuer’s account

public key and pkAen is the auditor’s public key encryption14. In our NIZK rela-
tions, we may need a concise representation of LIAA, which only contains pairs of
(a.t, pkAen). We will therefore abuse the notation when describing proof relations
so that for an index i, we write (a.t, pkAen) = LIAA[i] to indicate that (a.t, pkAen) is
the i-th entry in LIAA, providing the association of a.t and pkAen. In Section 5.3,
we discuss how to address situations where it becomes necessary to revoke an
auditor. The algorithm is provided in Figure 3.
The NIZK witness, statement, and relation are defined as follows.

• wIssue = skacct
• xIssue = (pkacct, a.t, pk

A
en)

• The relation RIssue(xIssue, wIssue) is defined as:

RIssue =
{
(pkacct, skacct) ∈ Acc.KeyGen(1λ)

}
.

tnxIssue Generation

▷ Upon receiving (Issue, sid, a.t,A) from Z: ignore if (addrpk, addrsk) is not
recorded.

▷ Else, call FLedger with (Read, sid). Upon receiving (Read, sid, state) from
FLedger, parse state = (state′,LIAA,LKA,LNUL, vACCU).

▷ Ignore if (·, a.t, ·) ∈ LIAA.
▷ Else, parse addrpk = (pkacct, pken), and addrsk = (skacct, sken).
▷ Call FKeyReg with (Rtrv.Key, sid,A) and upon receiving (Rtrv.Key, sid,A,

addrApk) retrieve pkAen from addrApk.
▷ Call FNIZK with (Prove, sid, xIssue, wIssue) and receive (Proof, sid, πIssue).
▷ Set tnxIssue ← (xIssue, πIssue).
▷ Call FLedger with (Append, sid, tnxIssue).
▷ Call FLedger with (Read, sid); upon receiving back (Read, sid, state), if
tnxIssue ∈ state′ for state′ ∈ state output (Issued, sid, a.t) to Z.

tnxIssue Verification

▷ Execute ValidateIssue(state, tnxIssue):
• parse state = (state′,LIAA,LKA,LNUL, vACCU), tnxIssue = (xIssue,
πIssue), and xIssue = (pkacct, a.t, pk

A
en).

• ignore if any of the following conditions hold:
– (·, a.t, ·) ∈ LIAA

– upon calling FNIZK with (Verify, sid, xIssue, πIssue), (Vrfed, sid, 0)
is returned.

• else, call FKeyReg with (Rtrv.id, sid, pk) for pk = pkacct, and pk = pkAen.
• upon receiving (Rtrved.id, sid,P) from FKeyReg for P = P∗ and P = A
output 1.

14 We assume a single auditor A in our formal analysis. We believe our approach can
be straightforwardly extended to accommodate a group of auditors.

DART: Decentralized, Anonymous, and Regulation-friendly Tokenization 23

▷ Execute UpdateIssue(state, tnxIssue):
• parse state = (state′,LIAA,LKA,LNUL, vACCU), tnxIssue = (xIssue,
πIssue), and xIssue = (pkacct, a.t, pk

A
en).

• set LIAA ← LIAA ∪ {(pkacct, a.t, pk
A
en)}.

• set state← state ∪ {(·,LIAA, ·, ·, ·)}.
• output state.

Fig. 3: Asset issuance transaction tnxIssue

4.1.3 Account registration. There is a public list called the Key-Asset list,
denoted by LKA, which is maintained by consensus. The list is initially set to
empty and is updated when a party P registers an asset-specific account acct.
The LKA list stores tuples of the form (pkacct, a.t), where each pkacct can register
one account for a given a.t. P proves that account commitment acctcm is well-
formed, and that they possess knowledge of the associated secret key of pkacct.
The algorithm is provided in Figure 4.
The NIZK witness, statement, and relation are defined as follows.

• wRegister = (skacct, ρ, s)
• xRegister = (acctcm, pkacct, a.t)
• The relation RRegister(xRegister, wRegister) is defined as:

RRegister =
{
acctcm = Com(skacct, 0, 0, a.t, ρ; s)

∧ (pkacct, skacct) ∈ Acc.KeyGen(1λ)
}
.

tnxRegister Generation

▷ Upon receiving (Register, sid, a.t) from Z, ignore if (addrpk, addrsk) is not
recorded.

▷ Else, parse addrpk = (pkacct, pken).
▷ Call FLedger with (Read, sid), and upon receiving back (Read, sid, state),
parse state = (state′,LIAA,LKA,LNUL, vACCU).

▷ Ignore if any of the following conditions hold:
• (·, a.t, ·) /∈ LIAA

• (pkacct, a.t) ∈ LKA

▷ Else, sample ρ
$←− Zq, and s

$←− Zq.
▷ Parse addrsk = (skacct, sken).
▷ Set acct← (skacct, 0, 0, a.t, ρ, s).
▷ Compute acctcm ← Com(skacct, 0, 0, a.t, ρ; s).
▷ Call FNIZK with (Prove, sid, xRegister, wRegister) and receive (Proof, sid,
πRegister).

▷ Set tnxRegister ← (xRegister, πRegister).

24 A. Sarencheh et al.

▷ Call FLedger with (Append, sid, tnxRegister).
▷ Call FLedger with (Read, sid), and upon receiving back (Read, sid, state), if
tnxRegister ∈ state′ for state′ ∈ state, record (acctcm, acct).

▷ Output (Registered, sid, a.t) to Z.

tnxRegister Verification

▷ Execute ValidateRegister(state, tnxRegister):
• parse state = (state′,LIAA,LKA,LNUL, vACCU), tnxRegister = (xRegister,
πRegister), xRegister = (acctcm, pkacct, a.t).

• ignore if any of the following conditions hold:
– (·, a.t, ·) /∈ LIAA

– (pkacct, a.t) ∈ LKA

– upon calling FNIZK with (Verify, sid, xRegister, πRegister), (Vrfed,
sid, 0) is returned.

• else, call FKeyReg with (Rtrv.id, sid, pkacct) and upon receiving back
(Rtrved.id, sid,P) output 1.

▷ Execute UpdateRegister(state, tnxRegister):
• parse state = (state′,LIAA,LKA,LNUL, vACCU), tnxRegister = (xRegister,
πRegister), xRegister = (acctcm, pkacct, a.t).

• call vACCU ← ACCU.Add(ppACCU, vACCU, acct
cm).

• set LKA ← LKA ∪ {(pkacct, a.t)}.
• set state← state ∪ {(·, ·,LKA, ·, vACCU)}.
• output state.

Fig. 4: Account registration transaction tnxRegister

4.1.4 Increase asset supply. The asset issuer can increase the supply of
the asset they have previously issued. The ledger verifies whether the issuer is
the legitimate issuer of the specified asset based on LIAA. The issuer’s finalized
balance increases f.bnew = f.bold + v. Note that in this algorithm, there are no
privacy-preserving operations, and pkacct is part of the public values. However,
acctcmold is kept private, as revealing it would link the issuer’s previous, potentially
anonymous transaction (e.g., a send transaction) to this one, thereby compro-
mising the privacy of those transactions. The issuer reveals their new account
commitment acctcmnew along with the nullifier nulold of acctcmold for which accumula-
tor membership proof is computed. The issuer proves the knowledge of skacct and
discloses a.t and v. Furthermore, the well-formedness of acctcmnew is also proved.
The algorithm is provided in Figure 5.
The NIZK witness, statement, and relation are defined as follows.

• wIncrease = (skacct, f.bold, p.bold, ρold, sold, ρnew, snew, acct
cm
old, πACCU)

• xIncrease = (nulold, acct
cm
new, pkacct, a.t, v)

DART: Decentralized, Anonymous, and Regulation-friendly Tokenization 25

• The relation RIncrease(xIncrease, wIncrease) is defined as:

RIncrease =
{
ACCU.VfyMem(ppACCU, vACCU, acct

cm
old, πACCU) = 1

∧ acctcmnew = Com(skacct, f.bold + v, p.bold, a.t, ρnew; snew)

∧ acctcmold = Com(skacct, f.bold, p.bold, a.t, ρold; sold)

∧ nulold = PRFskacct(ρold)

∧ (pkacct, skacct) ∈ Acc.KeyGen(1λ)
}
.

tnxIncrease Generation

▷ Upon receiving (Increase, sid, a.t, v) from Z, ignore if any of the following
conditions hold:

• (addrpk, addrsk) is not recorded.
• v ≤ 0

▷ Else, parse addrpk = (pkacct, pken).
▷ Retrieve the recorded entry (acctcmold, acctold) where acctold = (skacct, f.bold,
p.bold, a.t, ρold, sold).

▷ Call FLedger with (Read, sid). Upon receiving (Read, sid, state) from FLedger,
parse state = (state′,LIAA,LKA,LNUL, vACCU).

▷ Ignore if (pkacct, a.t, ·) /∈ LIAA.
▷ Else, compute nulold ← PRFskacct(ρold).

▷ Sample ρnew
$←− Zq, and snew

$←− Zq.
▷ Set acctnew ← (skacct, f.bold + v, p.bold, a.t, ρnew, snew).
▷ Compute acctcmnew ← Com(skacct, f.bold + v, p.bold, a.t, ρnew; snew).
▷ Compute πACCU ← ACCU.PrvMem(ppACCU, state

′, acctcmold).
▷ Call FNIZK with (Prove, sid, xIncrease, wIncrease) and receive (Proof, sid,
πIncrease).

▷ Set tnxIncrease ← (xIncrease, πIncrease).
▷ Call FLedger with (Append, sid, tnxIncrease).
▷ Call FLedger with (Read, sid), upon receiving (Read, sid, state) from FLedger,
if tnxIncrease ∈ state′ for state′ ∈ state, set (acctcmold, acctold) ← (acctcmnew,
acctnew).

▷ Output (Increased, sid, a.t, v) to Z.

tnxIncrease Verification

▷ Execute ValidateIncrease(state, tnxIncrease):
• parse state = (state′,LIAA,LKA,LNUL, vACCU), tnxIncrease = (xIncrease,
πIncrease), and xIncrease = (nulold, acct

cm
new, pkacct, a.t, v).

• ignore if any of the following conditions hold:
– v ≤ 0
– nulold ∈ LNUL

– (pkacct, a.t, ·) /∈ LIAA

26 A. Sarencheh et al.

– calling FNIZK with (Verify, sid, xIncrease, πIncrease), (Vrfed, sid, 0)
is returned.

• else, output 1.
▷ Execute UpdateIncrease(state, tnxIncrease):

• parse state = (state′,LIAA,LKA,LNUL, vACCU), tnxIncrease = (xIncrease,
πIncrease), and xIncrease = (nulold, acct

cm
old, acct

cm
new, addrpk, a.t, v).

• call vACCU ← ACCU.Add(ppACCU, vACCU, acct
cm
new).

• set LNUL ← LNUL ∪ {nulold}.
• set state← state ∪ {(·, ·, ·,LNUL, vACCU)}.
• output state.

Fig. 5: Increase asset supply transaction tnxIncrease

4.1.5 Sender transaction. The transaction occurs between a sender Ps and
a receiver Pr, transferring an amount v of asset type a.t from the sender’s account
accts to the receiver’s account acctr via the help of ephemeral account-update-
record AUR. Ps deducts v from f.bs and adds it to p.bs, they also generate AUR for
Pr with a value of v. AUR includes (pksacct, v, a.t; pk

r
en). P

s encrypts (pksacct, v, a.t)
under pkren using a key-private encryption generating AURen. This enables P

r to
later scan the ledger using skren to identify whether AURen belongs to them and
to claim it by providing a proof of knowledge of skren. The sender proves the well-
formedness of AUR with respect to their account. Upon receiving a (valid) sender
transaction tnxSend, the ledger assigns transaction status tnxstSend to tnxSend with
initial value of 0. As long as Pr has not claimed AURen, tnx

st
Send = 0, indicating

that Ps can still reclaim the AURen using the reversion algorithm (as we will
discuss later). Once Pr claims AURen, tnx

st
Send is updated to 1, indicating that

AURen can no longer be reversed and also that Pr cannot claim it again.
Ps locally maintains a list LAUR (which is initially empty) that contains tuples
of the form (AUR,AURen, tnx

id
Send) where tnx

id
Send is a unique transaction identifier

assigned by the ledger. LAUR is used when Ps needs to reverse a transaction (as
described later). Ps proves ownership of fresh acctcm,sold by providing a ZK proof
of membership πACCU in the accumulator. Ps reveals nulsold of acctcm,sold and proves
the well-formedness of acctcm,snew . Ps also proves the well-formedness of AURen and
ψ, proving that the correct values are included in the plaintext, and that ψ is
created under the public key of the auditor pkAen associated with the relevant asset
type a.t. Note that pkAen and a.t are part of the witness; and the link between
the two is defined by (a.t, pkAen) = LIAA[i], where the index i is also part of the
witness. The algorithm is provided in Figure 6.
The NIZK witness, statement, and relation are defined as follows.

• wSend = (sksacct, f.b
s
old, p.b

s
old, ρ

s
old, s

s
old, acct

cm,s
old , ρsnew, s

s
new, pk

A
en, pk

r
en, v, a.t,

πACCU, i)

• xSend = (vACCU, nul
s
old, acct

cm,s
new ,AURen, ψ)

DART: Decentralized, Anonymous, and Regulation-friendly Tokenization 27

• The relation RSend(xSend, wSend) is defined as:

RSend =
{
ACCU.VfyMem(ppACCU, vACCU, acct

cm,s
old , πACCU) = 1

∧ acctcm,snew = Com(sksacct, f.b
s
old − v, p.b

s
old + v, a.t, ρsnew; s

s
new)

∧ acctcm,sold = Com(sksacct, f.b
s
old, p.b

s
old, a.t, ρ

s
old; s

s
old)

∧ 0 < v ≤ vmax

∧ f.bsold ≥ v
∧ nulsold = PRFsksacct(ρ

s
old)

∧ (a.t, pkAen) = LIAA[i]

∧ (pksacct, sk
s
acct) ∈ Acc.KeyGen(1λ)

∧ AURen = Encpkren(pk
s
acct, v, a.t)

∧ ψ = EncpkAen(pk
s
acct, pk

r
en, v, a.t)

}
.

tnxSend Generation

▷ Upon receiving (Send, sid,Pr, v, a.t) from Z proceed as follows.
▷ Ignore if v ≤ 0 or v > vmax. Else, parse addr

s
pk = (pksacct, pk

s
en), and addrssk =

(sksacct, sk
s
en).

▷ Call FKeyReg with (Rtrv.Key, sid,Pr); upon receiving back (Rtrv.Key, sid,
Pr, addrrpk) retrieve pkren.

▷ Retrieve the recorded entry (acctcm,sold , acctsold) where acct
s
old = (sksacct, f.b

s
old,

p.bsold, a.t, ρ
s
old, s

s
old).

▷ Compute nulsold ← PRFsksacct(ρ
s
old).

▷ Sample ρsnew
$←− Zq, and ssnew

$←− Zq.
▷ Set acctsnew ← (sksacct, f.b

s
old − v, p.b

s
old + v, a.t, ρsnew, s

s
new).

▷ Compute acctcm,snew ← Com(sksacct, f.b
s
old − v, p.b

s
old + v, a.t, ρsnew; s

s
new).

▷ Set AUR← (pksacct, v, a.t; pk
r
en).

▷ Compute AURen ← Encpkren(pk
s
acct, v, a.t).

▷ Call FLedger with (Read, sid), upon receiving back (Read, sid, state), parse
state = (state′,LIAA,LKA,LNUL, vACCU).

▷ Using a.t, retrieve (a.t, pkAen) = LIAA[i].
▷ Compute ψ ← EncpkAen(pk

s
acct, pk

r
en, v, a.t).

▷ Compute πACCU ← ACCU.PrvMem(ppACCU, state
′, acctcm,sold).

▷ Call FNIZK with (Prove, sid, xSend, wSend) and receive (Proof, sid, πSend).
▷ Set tnxSend ← (xSend, πSend).
▷ Call FLedger with (Append, sid, tnxSend).
▷ Call FLedger with (Read, sid); upon receiving back (Read, sid, state), if
TNX ∈ state′ for state′ ∈ state where tnxSend ∈ TNX, set (acctcm,sold ,
acctsold)← (acctcm,snew , acct

s
new). Else, ignore.

▷ Parse TNX = (tnxSend, tnx
id
Send, tnx

st
Send), and set LAUR ← LAUR ∪ {(AUR,

AURen, tnx
id
Send)}.

▷ Output (Sent, sid,Pr, v, a.t,TNX) to Z.

28 A. Sarencheh et al.

tnxSend Verification

▷ Execute ValidateSend(state, tnxSend):
• parse state = (state′,LIAA,LKA,LNUL, vACCU), tnxSend = (xSend, πSend),
and xSend = (vACCU, nul

s
old, acct

cm,s
new ,AURen, ψ).

• Ignore if any of the following conditions hold:
– nulsold ∈ LNUL

– upon calling FNIZK with (Verify, sid, xSend, πSend), (Vrfed, sid, 0) is
returned.

• else, output 1.
▷ Execute UpdateSend(state, tnxSend):

• parse state = (state′,LIAA,LKA,LNUL, vACCU), tnxSend = (xSend, πSend),
and xSend = (vACCU, nul

s
old, acct

cm,s
new ,AURen, ψ).

• sample a fresh tnxidSend, and set tnxstSend ← 0, TNX ← (tnxSend, tnx
id
Send,

tnxstSend), and state′ ← state′ ∪ {TNX}.
• call vACCU ← ACCU.Add(ppACCU, vACCU, acct

cm,s
new).

• set LNUL ← LNUL ∪ {nulsold}.
• set state← state ∪ {(state′, ·, ·,LNUL, vACCU)}.
• output state.

Fig. 6: Sender transaction tnxSend

4.1.6 Receiver transaction. Given TNX via Z, the receiver Pr identifies
whether AURen ∈ TNX is intended for them. Pr proves knowledge of the secret
key skren that can successfully decrypt AURen. Following this, Pr performs their
account transition, proving that their new account is correctly updated with
respect to the value v and asset type a.t contained within AURen. The algorithm
is provided in Figure 7.
The NIZK witness, statement, and relation are defined as follows.

• wReceive = (skracct, f.b
r
old, ρ

r
old, s

r
old, acct

cm,r
old , πACCU, p.b

r
old, ρ

r
new, s

r
new, v, a.t, sk

r
en)

• xReceive = (vACCU, nul
r
old, acct

cm,r
new ,AURen, tnx

id
Send)

• The relation RReceive(xReceive, wReceive) is defined as:

RReceive =
{
ACCU.VfyMem(ppACCU, vACCU, acct

cm,r
old , πACCU) = 1

∧ acctcm,rnew = Com(skracct, f.b
r
old + v, p.brold, a.t, ρ

r
new; s

r
new)

∧ acctcm,rold = Com(skracct, f.b
r
old, p.b

r
old, a.t, ρ

r
old; s

r
old)

∧ (pksacct, v, a.t) = Decskren(AURen)

∧ nulrold = PRFskracct(ρ
r
old)

}
.

DART: Decentralized, Anonymous, and Regulation-friendly Tokenization 29

tnxReceive Generation

▷ Upon receiving (Receive, sid,TNX) from Z, call FLedger with (Read, sid),
upon receiving back (Read, sid, state), ignore if TNX /∈ state′ for state′ ∈
state.

▷ Else, parse addrrsk = (skracct, sk
r
en), TNX = (tnxSend, tnx

id
Send, tnx

st
Send),

tnxSend = (xSend, πSend), and xSend = (v′ACCU, nul
s
old, acct

cm,s
new ,AURen, ψ). Ig-

nore if tnxstSend ̸= 0.
▷ Compute o← Decskren(AURen). Ignore if o = ⊥.
▷ Else, parse o = (pksacct, v, a.t), and retrieve the recorded entry (acctcm,rold ,
acctrold) where acctrold = (skracct, f.b

r
old, p.b

r
old, a.t, ρ

r
old, s

r
old).

▷ Call FKeyReg with (Rtrv.id, sid, pksacct), upon receiving back (Rtrved.id,
sid,Ps) proceed.

▷ Output (Receiving, sid,Ps, v, a.t,TNX) to Z.
▷ Parse state = (state′,LIAA,LKA,LNUL, vACCU).
▷ Compute nulrold ← PRFskracct(ρ

r
old).

▷ Sample ρrnew
$←− Zq, and srnew

$←− Zq.
▷ Set acctrnew = (skracct, f.b

r
old + v, p.brold, a.t, ρ

r
new, s

r
new).

▷ Compute acctcm,rnew ← Com(skracct, f.b
r
old + v, p.brold, a.t, ρ

r
new; s

r
new).

▷ Compute πACCU ← ACCU.PrvMem(ppACCU, state
′, acctcm,rold).

▷ Call FNIZK with (Prove, sid, xReceive, wReceive) and receive (Proof, sid,
πReceive).

▷ Set tnxReceive ← (xReceive, πReceive).
▷ If (Affirm, sid,TNX) has been received from Z, call FLedger with (Append,
sid, tnxReceive).

▷ Call FLedger with (Read, sid); upon receiving back (Read, sid, state), if
tnxReceive ∈ state′ for state′ ∈ state, set (acctcm,rold , acctrold) ← (acctcm,rnew ,
acctrnew)

▷ Output (Received, sid,TNX) to Z.

tnxReceive Verification

▷ Execute ValidateReceive(state, tnxReceive):
• parse state = (state′,LIAA,LKA,LNUL, vACCU), tnxReceive = (xReceive,
πReceive), and xReceive = (vACCU, nul

r
old, acct

cm,r
new ,AURen, tnx

id
Send).

• ignore if any of the following conditions hold:
– given tnxidSend ∈ xReceive, retrieve the associated AUR∗

en ∈ state′ and
AUR∗

en ̸= AURen.
– nulrold ∈ LNUL

– upon calling FNIZK with (Verify, sid, xReceive, πReceive), (Vrfed,
sid, 0) is returned.

– tnxstSend ̸= 0
• Else, output 1.

▷ Execute UpdateReceive(state, tnxReceive):

30 A. Sarencheh et al.

• parse state = (state′,LIAA,LKA,LNUL, vACCU), tnxReceive = (xReceive,
πReceive), and xReceive = (vACCU, nul

r
old, acct

cm,r
new ,AURen, tnx

id
Send).

• given tnxidSend, retrieve TNX = (tnxSend, tnx
id
Send, tnx

st
Send).

• set tnxstSend ← 1, TNX← (·, ·, tnxstSend), and state′ ← state′ ∪ {TNX}.
• call vACCU ← ACCU.Add(ppACCU, vACCU, acct

cm,r
new).

• set LNUL ← LNUL ∪ {nulrold}.
• set state← state ∪ {(state′, ·, ·,LNUL, vACCU)}.
• output state.

Fig. 7: Receiver transaction tnxReceive

4.1.7 Reversion. The AURen is reversible by the sender Ps as long as the
corresponding receiver Pr has not claimed it. Ps proves that they are the creator
of AURen by proving knowledge of the associated secret key sksacct, thereby proving
their role as its creator. If tnxstSend = 0 (see Figure 1), Ps can reverse/reclaim
AURen. Given the value v of AURen, P

s reverses the transaction by increasing
their finalized balance f.bsold + v and decreasing their pending balance p.bsold − v
(recall, p.bs is increased by v when Ps initially generated AURen). The algorithm
is provided in the Figure 8.
The NIZK witness, statement, and relation are defined as follows.

• wReverse = (sksacct, f.b
s
old, ρ

s
old, s

s
old, acct

cm,s
old , p.bsold, ρ

s
new, s

s
new, pk

r
en, v, a.t, πACCU)

• xReverse = (vACCU, nul
s
old, acct

cm,s
new ,AURen, tnx

id
Send)

• The relation RReverse(xReverse, wReverse) is defined as:

RReverse =
{
ACCU.VfyMem(ppACCU, vACCU, acct

cm,s
old , πACCU) = 1

∧ nulsold = PRFsksacct(ρ
s
old)

∧ acctcm,snew = Com(sksacct, f.b
s
old + v, p.bsold − v, a.t, ρsnew; ssnew)

∧ acctcm,sold = Com(sksacct, f.b
s
old, p.b

s
old, a.t, ρ

s
old; s

s
old)

∧ AURen = Encpkren(pk
s
acct, v, a.t)

∧ (pksacct, sk
s
acct) ∈ Acc.KeyGen(1λ)

}
.

tnxReverse Generation

▷ Upon receiving (Reverse, sid,TNX) from Z, call FLedger with (Read, sid),
upon receiving (Read, sid, state) from FLedger, ignore if TNX /∈ state.

▷ Else, parse addrssk = (sksacct, sk
s
en), TNX = (tnxSend, tnx

id
Send, tnx

st
Send),

tnxSend = (xSend, πSend), and xSend = (v′ACCU, nul
s
old, acct

cm,s
new ,AURen, ψ). Ig-

nore if tnxstSend ̸= 0.
▷ Else, retrieve the entry (·, ·, tnx∗idSend), from LAUR where tnx∗idSend = tnxidSend
and parse AUR = (pksacct, v, a.t; pk

r
en). Ignore if no such entry exists.

DART: Decentralized, Anonymous, and Regulation-friendly Tokenization 31

▷ Else, retrieve the recorded entry (acctcm,sold , acctsold) where acctsold = (sksacct,
f.bsold, p.b

s
old, a.t, ρ

s
old, s

s
old).

▷ Compute nulsold ← PRFsksacct(ρ
s
old).

▷ Sample ρsnew
$←− Zq, and ssnew

$←− Zq.
▷ Set acctsnew ← (sksacct, f.b

s
old + v, p.bsold − v, a.t, ρsnew, ssnew).

▷ Compute acctcm,snew ← Com(sksacct, f.b
s
old + v, p.bsold − v, a.t, ρsnew; ssnew).

▷ Parse state = (state′,LIAA,LKA,LNUL, vACCU).
▷ Compute πACCU ← ACCU.PrvMem(ppACCU, state

′, acctcm,sold).
▷ Call FNIZK with (Prove, sid, xReverse, wReverse) and receive (Proof, sid,
πReverse).

▷ Set tnxReverse ← (xReverse, πReverse).
▷ Call FLedger with (Append, sid, tnxReverse).
▷ Call FLedger with (Read, sid); upon receiving (Read, sid, state) from FLedger,
if tnxReverse ∈ state′ for state′ ∈ state, set (acctcm,sold , acctsold) ← (acctcm,snew ,
acctsnew), and set LAUR ← LAUR \ {(AUR,AURen, tnx

id
Send)}.

▷ Output (Reversed, sid,TNX) to Z.

tnxReverse Verification

▷ Execute ValidateReverse(state, tnxReverse):
• parse state = (state′,LIAA,LKA,LNUL, vACCU), tnxReverse = (xReverse,
πReverse), and xReverse = (vACCU, nul

s
old, acct

cm,s
new ,AURen, tnx

id
Send).

• ignore if any of the following conditions hold:
– given tnxidSend ∈ xReverse, retrieve the associated AUR∗

en ∈ state′ and
AUR∗

en ̸= AURen.
– nulsold ∈ LNUL

– upon calling FNIZK with (Verify, sid, xReverse, πReverse), (Vrfed,
sid, 0) is returned.

– tnxstSend ̸= 0
• else, output 1.

▷ Execute UpdateReverse(state, tnxReverse):

• parse state = (state′,LIAA,LKA,LNUL, vACCU), tnxReverse = (xReverse,
πReverse), and xReverse = (vACCU, nul

s
old, acct

cm,s
new ,AURen, tnx

id
Send).

• given tnxidSend, retrieve TNX = (tnxSend, tnx
id
Send, tnx

st
Send).

• set tnxstSend ← 2, TNX← (·, ·, tnxstSend), and state′ ← state′ ∪ {TNX}.
• call vACCU ← ACCU.Add(ppACCU, vACCU, acct

cm,s
new).

• set LNUL ← LNUL ∪ {nulsold}.
• set state← state ∪ {(state′, ·, ·,LNUL, vACCU)}.
• output state.

Fig. 8: Reversion transaction tnxReverse

32 A. Sarencheh et al.

4.1.8 Proof of balance. We present two approaches for proof of balance
(PoB). In the first approach, the party P interacts with the associated auditor
A (for the asset type a.t whose balance is requested). A outputs f.b and p.b
to the environment Z. In the second approach, outlined as a generic solution
in Appendix A, P proves both their f.b and p.b directly to any PoB verifier,
without relying on A. The first approach is provided in Figure 9, where P reveals
their f.b and p.b from their associated account and proves the correctness of
the revealed values. There is no account state transition in PoB; however, P
must reveal the nullifier nul to enable A to verify that P is disclosing f.b and
p.b corresponding to their most recent account. P also provides pointers to all
transactions with tnxstSend = 0 and tnxstSend = 1 to justify the value of p.b. The
values f.b and p.b− V (1) are revealed to Z, where V (1) is the sum of the values
of P’s transactions that have been finalized (with tnxstSend = 1) and in which P
has been the sender.
The NIZK witness, statement, and relation are defined as follows.

• wA
PoB = (skacct, ρ, s)

• xAPoB = (pkacct, nul, acct
cm, f.b, p.b, a.t)

• The relation RPoB(x
A
PoB, w

A
PoB) is defined as:

RPoB =
{
acctcm = Com(skacct, f.b, p.b, a.t, ρ; s)

∧ (pkacct, skacct) ∈ Acc.KeyGen(1λ)

∧ nul = PRFskacct(ρ)
}
.

tnxPoB Generation executed by P

▷ Upon receiving (Balance, sid, a.t) from Z, parse addrpk = (pkacct, pken),
and addrsk = (skacct, sken).

▷ Call FLedger with (Read, sid), upon receiving (Read, sid, state) from FLedger,
parse state = (state′,LIAA,LKA,LNUL, vACCU).

▷ Retrieve the recorded entry (acctcm, acct) where acct = (skacct, f.b, p.b,
a.t, ρ, s).

▷ Compute nul← PRFskacct(ρ).

▷ Call F†
NIZK with (Prove, sid, xAPoB, w

A
PoB) and receive (Proof, sid, πA

PoB).

▷ Retrieve all entries (AURi,AURien, tnx
idi
Send) in LAUR where, upon parsing

AURi = (pksiacct, v
(i), a.ti; pkrien) the conditions a.ti = a.t and pksiacct = pkacct

hold.
▷ Define two lists

−→
tnxid(1) and

−→
tnxid(0), both initially set to ∅.

▷ Retrieve all TNXj ∈ state′ where TNXj = (tnxjSend, tnx
idj
Send, tnx

stj
Send).

▷ For each tnxidiSend retrieved from LAUR:

• add tnxidiSend to
−→
tnxid(1) if tnx

idi
Send = tnx

idj
Send & tnx

stj
Send = 1 for some TNXj =

(tnxjSend, tnx
idj
Send, tnx

stj
Send).

DART: Decentralized, Anonymous, and Regulation-friendly Tokenization 33

• add tnxidiSend to
−→
tnxid(0) if tnx

idi
Send = tnx

idj
Send & tnx

stj
Send = 0 for some TNXj =

(tnxjSend, tnx
idj
Send, tnx

stj
Send).

▷ Using a.t, retrieve pkAen from LIAA.
▷ Call FKeyReg with (Rtrv.id, sid, pkAen), upon receiving (Rtrved.id, sid,A)
proceed.

▷ Set tnxAPoB ← (xAPoB, π
A
PoB,
−→
tnxid(1),

−→
tnxid(0)), and call Fch with (Send, sid,A,

tnxAPoB).

PoB output executed by A

▷ Upon receiving (Received, sid,P, tnxAPoB) from Fch, parse tnx
A
PoB = (xAPoB,

πA
PoB,
−→
tnxid(1),

−→
tnxid(0)), and x

A
PoB = (pkacct, nul, acct

cm, f.b, p.b, a.t).

▷ Call FKeyReg with (Rtrv.Key, sid,P). Ignore if (Rtrv.Key, sid,P, (pk′acct, ·))
is received from FKeyReg where pk′acct ̸= pkacct.

▷ Call FLedger with (Read, sid), upon receiving (Read, sid, state) from FLedger,
parse state = (state′,LIAA,LKA,LNUL, vACCU).

▷ Ignore if any of the following conditions hold:
• nul ∈ LNUL

• acctcm /∈ state′

• upon calling F†
NIZK with (Verify, sid, xAPoB, π

A
PoB), (Vrfed, sid, 0) is re-

turned.
▷ For all tnxidiSend ∈

−→
tnxid(1):

• ignore if there is no TNXi ∈ state′ where TNXi = (tnxiSend, tnx
idi
Send,

tnxstiSend) with tnxstiSend = 1.
• parse tnxiSend = (xiSend, π

i
Send), and x

i
Send = (viACCU, nul

i, acctcm,i,AURien,
ψi).

• compute decryption oi ← DecskAen(ψ
i). Ignore if oi = ⊥. Else, parse

oi = (pk
(i)
acct, ·, v(i), a.t(i)), and ignore if pk

(i)
acct ̸= pkacct, or a.t(i) ̸= a.t.

Else, set V (1) ← V (1) + v(i) where initially V (1) = 0.
▷ For all tnxidiSend ∈

−→
tnxid(0):

• ignore if there is no TNXi ∈ state′ where TNXi = (tnxiSend, tnx
idi
Send,

tnxstiSend) with tnxstiSend = 0.
• parse tnxiSend = (xiSend, π

i
Send), and x

i
Send = (viACCU, nul

i, acctcm,i,AURien,
ψi).

• compute decryption oi ← DecskAen(ψ
i). Ignore if oi = ⊥. Else, parse

oi = (pk
(i)
acct, ·, v(i), a.t(i)), and ignore if pk

(i)
acct ̸= pkacct, or a.t(i) ̸= a.t.

Else, set V (0) ← V (0) + v(i) where initially V (0) = 0.
▷ Ignore if V (1) + V (0) ̸= p.b.
▷ Else, output (Balance, sid,P, a.t, f.b, V (0)) to Z.

Fig. 9: Proof of balance transaction tnxPoB – 1st Approach

34 A. Sarencheh et al.

4.1.9 Auditor operation. The auditor can access the hidden information of
a particular transaction where its underlying asset type corresponds to them.
The algorithm is provided in Figure 10.

▷ Upon receiving (Audit, sid,TNX) from Z, call FLedger with (Read, sid),
upon receiving (Read, sid, state) from FLedger, ignore if TNX /∈ state.

▷ Else, parse addrAsk = (skAacct, sk
A
en), TNX = (tnxSend, tnx

id
Send, tnx

st
Send),

tnxSend = (xSend, πSend), and xSend = (vACCU, nul
s
old, acct

cm,s
new ,AURen, ψ).

▷ Compute o← DecskAen(ψ). Ignore if o = ⊥.
▷ Else, parse o = (pksacct, pk

r
en, v, a.t).

▷ Call FKeyReg with (Rtrv.id, sid, pksacct) and (Rtrv.id, sid, pkren).
▷ Upon receiving (Rtrved.id, sid,Ps) and (Rtrved.id, sid,Pr) from FKeyReg

respectively output (Audited, sid,Ps,Pr, v, a.t) to Z.

Fig. 10: Auditor algorithm (off-chain operation)

5 Discussion

5.1 Multi-party transactions

DART facilitates efficient multi-party transactions (MPTs). Specifically, a single
sender can, with one account state transition (i.e., one accumulator proof), send
funds to multiple receivers. Similarly, a single receiver can, with one account
state transition, affirm (receive) funds from multiple independent senders who
have sent funds in separate transactions. The process works as follows: a sender
generates multiple AURen and proves, in zero-knowledge, that the total value
deducted from their account equals the sum of all values encapsulated within
these AURen. The sender then submits a transaction such that each associated
receiver can subsequently claim their respective AURen. The ledger updates the
status of each AURen individually, determining whether the corresponding re-
ceiver has affirmed it so that the sender can reverse any AURen independently.
Similarly, when a receiver wishes to affirm (claim) multiple AURen, they prove
that they can successfully decrypt all associated AURen and that the total value
added to their account equals the sum of the affirmed AURen. In this way, DART
enables efficient MPTs through a single account state transition. Note that in
MPTs, ephemeral anonymous linkability occurs. An anonymous sender in one
transaction includes multiple AURen to anonymous receivers, or an anonymous
receiver references multiple AURen generated by anonymous senders. However,
each transaction is unlinkable to any previous or subsequent transactions. This
ensures that an adversary cannot link the transactions of an entity involved in
a MPT (whether as a sender or receiver) to their prior or future transactions,
thereby preserving unlinkability.

Aggregatable transactions for efficient account updates. With the same
mechanism described above for MPT, a user (sender) can batch a group of

DART: Decentralized, Anonymous, and Regulation-friendly Tokenization 35

transactions and reverse them all via a single account transition in one tnxReverse,
rather than submitting separate transactions individually. The user references
multiple transactions and proves that they are the creator of those transactions.
Additionally, the user proves that the value being added to their finalized balance
and deducted from their pending balance equals the sum of the values within all
the transactions they intend to reverse.

5.2 Fee payments

In our formal modeling, we do not explicitly address transaction fee payments
to maintain focus on our primary contribution. However, we outline here how
fee payments can be incorporated into the system. Each user account could in-
clude an additional element representing the balance in the system’s currency
dedicated to fee payment, from which transaction fees are deducted. This ex-
tension can be easily integrated into the zero-knowledge relations. The NIZK
proof would enable efficient verification, ensuring that the correct transaction
fee has been deducted from the balance of the fee payment asset. Each transac-
tion type could have a predefined fee (reflecting differences in their verification
costs). Users would then prove, in zero-knowledge, that the appropriate fee has
been deducted from their balance based on the transaction type.

5.3 Maintenance of LIAA

The list LIAA with entries of the form (pkacct, a.t, pk
A
en) is publicly maintained

on-chain and can be updated arbitrarily. For instance, in practice, an issuer may
choose to change the associated auditor A for their asset due to regulations. This
could occur, for example, if the originally assigned auditor becomes unavailable
or is revoked, prompting the issuer to update the auditor’s address pkAen to an-
other one. In such a case, the list will undergo an update. The issuer proves that
they are the legitimate associated issuer for the specific LIAA entry to authorize
this update. Consequently, the list can be updated arbitrarily, and this could
invalidate a user’s zero-knowledge proof if it was generated based on a previ-
ous state of the list that has since changed. To mitigate this issue, we propose
introducing structured update intervals; specifically, updates to lists can be re-
stricted to predefined times. Users can generate their zero-knowledge proofs with
the assurance that the list will remain stable within a defined period.
Moreover, we do not accumulate elements of LIAA, e.g., using a cryptographic
accumulator as we do for accumulating account commitments. We note that it
is straightforward to accumulate the list LIAA so that chain validators do not
need to read the whole list for each transaction. Instead, they read the updated
list at the beginning of an interval and compute the accumulator value for it.
Later, until the end of the interval, they only check a user’s proof against a single
accumulator value. Users also generate their proof based on the accumulator, not
the list itself, similar to how they do so for their account commitments.
In implementation, LIAA could bear other attributes such as an asset description
to provide more information about the asset, or the total value issued of a.t

36 A. Sarencheh et al.

for auditability purposes (e.g., checking the balance of the off-chain real-world
assets (RWAs) against their on-chain representations as in PARScoin [48]).

6 Implementation details

In Section 4, we described the components of our system ΠDART in terms of
cryptographic building blocks. In this section, we elaborate on the instantiation
of these elements by specifying the concrete schemes used.

Building blocks. Our system leverages cryptographic schemes such as ElGa-
mal encryption [23] (Definition 5) for AURen and ψ, Pedersen commitments [46]
(Definition 10) for acctcm, and the Dodis-Yampolskiy pseudorandom function
(PRF) [21] (Definition 13) for nul = PRFskacct(ρ). These schemes are algebraic
and hence integrate efficiently with the algebraic-friendly non-interactive zero-
knowledge proofs. A critical component of our design is the use of cryptographic
accumulators. Our accumulator scheme is instantiated using Curve Trees [12],
which are transparent and do not require a trusted setup. A key feature of Curve
Trees is that they support efficient updates to the accumulator value without
necessitating access to the entire set, analogous to the behavior of Merkle Trees.
Curve Trees relays on the commit-and-prove capabilities of Bulletproofs—to
prove accumulator membership in zero-knowledge.

NIZK proofs. In our implementation, we use two types of NIZK proofs: Σ- pro-
tocols and Bulletproofs [9], both made non-interactive through the Fiat-Shamir
transform [25]. Both have transparent setups and are computationally sound in
the random oracle model under the discrete logarithm assumption. While neither
of these protocols in their standard forms provides UC security, transformations
like the one in [32] show how they can be adapted to achieve UC security. We
refer the reader to [18] for further details about such transformations.
Some of the statements we have, such as proving the well-formedness of com-
mitments, encryptions, or decryption computations, can be handled straightfor-
wardly with Σ-protocols. Here, we focus on the more complex statements. Range
checks are handled using Bulletproof range proofs. To prove the correct mapping
between asset types and their corresponding auditors, we assume that the pub-

lic list LIAA = {(a.t, pkAen)} is represented as two vectors L(1)
IAA := {a.t1, . . . , a.tn}

and L(2)
IAA := {pkA1

en , . . . , pk
An
en }, respectively storing all registered asset types and

public keys of their associated auditors. At any point in time when n assets are
registered, the prover can demonstrate the correct mapping by committing to a
binary vector VI of size n with exactly one non-zero entry, and then showing that
the asset type and auditor’s public key involved in the statement correspond to

the inner products of ⟨VI ,L(1)
IAA⟩ and ⟨VI ,L

(2)
IAA⟩, respectively. This again can be

accomplished using Bulletproof’s inner-product argument [9].
To prove accumulator membership in zero-knowledge, we use Curve Trees [12],
which relies on the commit-and-prove capabilities of Bulletproofs. While other
candidates for instantiating our accumulator scheme exist (e.g., Merkle trees),
we choose an algebraic accumulator as it better integrates with our design and

DART: Decentralized, Anonymous, and Regulation-friendly Tokenization 37

makes the arithmetization of Bulletproofs required for converting accumulator
statements into R1CS more efficient.

Handling historical accumulators for proof verification. The blockchain
validators cannot just maintain the most recent accumulator value, because,
in that case, a proof generated using an old accumulator will no longer pass
verification. To overcome this issue, the chain stores a list of the last several
accumulator values. This means one can reference an older accumulator value
when generating their proof. As long as that accumulator value is still within
the list of stored historical values, the user’s NIZK proof is validated.

Avoiding exhaustive search. We use “ElGamal in the exponent” for encrypt-
ing field elements in AURen = Encpkren(pk

s
acct, v, a.t) and ψ = EncpkAen(pk

s
acct, pk

r
en,

v, a.t). This results in an inefficient decryption, where the decryptor needs to ex-
tract x from gx. To address this, we use a method that integrates an additional
encryption scheme, denoted by ENCcnst, into the construction while ensuring
constant-time decryption. In our formal model, ENCcnst is not explicitly incor-
porated and remains an implementation-level enhancement that can be added
alongside the existing ElGamal encryption. Also, the original encryption scheme
cannot be replaced by ENCcnst, as the ability to efficiently prove properties about
plaintexts in zero-knowledge proofs must be preserved. ENCcnst is employed to
recover field element plaintexts in constant time, and the result is verified against
their group encoding, which is computed from ElGamal decryption (recall that
the sender proves the well-formedness of the ElGamal ciphertext). If, for exam-
ple, the decryption of AURen (resulted in gv) and the ENCcnst ciphertext (resulted
in v′) are inconsistent gv ̸= gv

′
, the receiver may simply ignore the transaction15

and the sender can reverse the transaction, requiring them to pay additional fees
to do so. Hence, the potentially malicious sender has an incentive to generate the
ENCcnst ciphertext correctly. Moreover, any claims to the funds rely solely on the
ElGamal ciphertext (for which efficient zero-knowledge proof of well-formedness
has already been submitted) and not on ENCcnst.
For completeness, the construction of ENCcnst is specified below. The key gen-
eration process mirrors the procedure outlined in Definition 5 for ElGamal en-
cryption. The constant-time encryption and decryption algorithms Enccnst and
Deccnst are defined as follows:

• Enccnst(pk,m): Given a public key pk and a message m ∈ M , sample r, q
$←−

Zp uniformly at random. Compute:

ψ1 = gr, ψ2 = pkr · hq, ψ3 = H(hq)⊕m,

and output the ciphertext C = (ψ1, ψ2, ψ3).

• Deccnst(sk, C): Parse C = (ψ1, ψ2, ψ3). Compute: hq = ψ2

ψsk
1
, and recover the

plaintext message as m = H(hq)⊕ ψ3.

15 However, in principle, the receiver could still brute-force v in AURen and claim the
funds.

38 A. Sarencheh et al.

Account recovery. For account recovery, we adopt a similar approach to
PARScoin [48], which relies on standard recovery methods. Values such as nulli-
fier randomness ρ or commitment randomness s can be pseudorandomly derived
from a secret key by inputting a counter (e.g., starting at zero) and the secret key
into a pseudorandom function (PRF). To recover the account, the user regener-
ates nullifier nul values up to the latest one recorded on the blockchain, retrieving
the most recent randomness values. For account balance, once the randomness
is recovered, balances can be found either via brute-force or by decrypting pub-
lic ciphertexts—encrypted by the user per transaction. Similarly, randomness
for encryptions AURen and ψ can be regenerated via a pseudorandom genera-
tor, with associated values brute-forced or decrypted using the user’s long-term
secret key (requiring the user to generate separate encryptions per transaction).

7 DART security proof

In this section, we prove the security of our construction ΠDART. The following
is our main theorem:

Theorem 1. Assuming that the public key encryption scheme (Definition 1) is
(i) unconditionally correct (Definition 2), (ii) computationally CPA secure (Def-
inition 3), and (iii) computationally key private (Definition 4); the commitment
scheme (Definition 6) is (i) unconditionally correct (Definition 7), (ii) uncondi-
tionally hiding (Definition 8) and (iii) computationally binding (Definition 9);
the pseudorandom function (PRF) scheme (Definition 11) is (i) unconditionally
correct, and (ii) computationally pseudorandom (Definition 12); the accumula-
tor scheme (Definition 14) is (i) unconditionally correct (Definition 15), and
(ii) computationally sound (Definition 16); no PPT environment Z can dis-
tinguish the real-world execution EXECΠDART,A,Z from the ideal-world execution

EXECFDART,S,Z in the {FNIZK, F†
NIZK, FLedger, Fch, FKeyReg}-hybrid model with

static corruptions in the presence of arbitrary number of malicious parties (in-
cluding all entities within the system issuers, senders, receivers, and auditors)
with advantage better than:

AdvBindA + AdvIND-CPA
A + AdvKeyPrivA + AdvPRF.PseudoA + AdvSoundA

7.1 Simulation

In the following, we present our simulator S description, which ensures that the
real-world execution EXECΠDART,A,Z is indistinguishable from the ideal-world ex-
ecution EXECFDART,S,Z for any PPT environment Z. The environment Z selects
the session identifier sid. The simulator S operates by internally running an in-
stance of ΠDART and the real-world adversary A, while simulating the actions
of honest users. Its purpose is to ensure that the internally simulated view of A
in the ideal-world is indistinguishable from its real-world view. S extracts nec-
essary information (from adversary’s messages) and instructs the functionality
to produce outputs that are indistinguishable for honest users.

DART: Decentralized, Anonymous, and Regulation-friendly Tokenization 39

At the start of execution, the environment Z directs the adversary (simula-
tor in the ideal-world) to corrupt specific parties through a message of the form
(Corrupt, sid,P), where P represents a network entity. Upon receiving corruption
messages, the simulator S informs FDART of the corrupted parties by sending the
message (Corrupt, sid,P) and records these corrupted parties for future interac-
tions. The adversary A has control over the corrupted parties, and S interacts
with FDART on their behalf. During the ideal-world execution EXECFDART,S,Z ,
honest dummy parties directly transmit their inputs from Z to FDART. The
simulator S is designed to reproduce the adversary A’s view in the real-world
execution for the dummy internally run adversary in the ideal world, while sim-
ulating the behavior of honest parties. S emulates FNIZK, F†

NIZK, FLedger, Fch,
and FKeyReg, so whenever the adversary, on behalf of a malicious network en-
tity, calls a functionality, the simulator sees the identifier (e.g., P). Emulation of
these ideal functionalities involves maintaining specific lists associated with each
functionality. However, for simplicity and without loss of generality, we assume
that S manages the states of these functionalities without explicitly elaborating
on all such list maintenance.
Throughout the following, we assume that the simulator S adheres to the real-
world algorithms described in Section 4.1 whenever emulating an honest entity
or an ideal functionality, without explicitly detailing steps of the algorithms.
However, in instances where the simulator diverges from these real-world proce-
dures—such as simulating cryptographic elements based on information disclosed
by the ideal functionality FDART or extracting a zero-knowledge witness from the
adversary’s proof—we explicitly highlight such deviations.

Address generation.
(i) Honest user P:

• Upon receiving (Gen.Addr, sid,P) from FDART, initiate honest user P emula-
tion.

• Emulating FKeyReg, generate key pairs (addrpk, addrsk) and update the state
of FKeyReg.

• Send (Gen.Addr.Ok, sid,P, addrpk) to FDART.

(ii) Malicious user P:

• Emulating FKeyReg, upon receiving (Gen.Key, sid) from the adversary (mali-
cious party P), submit (Gen.Addr, sid) on behalf of P to FDART.

• Upon receiving (Gen.Addr, sid,P) from FDART, if emulating FKeyReg (P, addrpk,
·) has been recorded, output (Gen.Addr.Ok, sid,P, addrpk) to FDART.

Asset issuance.
(i) Honest user P:

• Upon receiving (Issue, sid,P, a.t,A) from FDART, start honest user P emula-
tion.

• Emulating FLedger, leak (Read, sid, γ) to the adversary A for a randomly
chosen γ. Proceed as follows if (Read.ok, sid, γ) is received from A.

40 A. Sarencheh et al.

• Emulating FKeyReg, using P and A leaked by FDART, retrieve

(P, addrpk, addrsk) and (A, addrApk, addr
A
sk), respectively. Ignore if such

entries do not exist.
• Retrieve pkacct from addrpk and pkAen from addrApk.

• Set xIssue ← (pkacct, a.t, pk
A
en).

• Emulating FNIZK, leak (Prove, sid, xIssue) to A.
• Upon receiving (Proof, sid, πIssue) from A, update the FNIZK state by storing
(xIssue, πIssue).

• Emulating FLedger, leak (Append.req, sid, tnxIssue) to A, where tnxIssue =
(xIssue, πIssue).

• Upon receiving (Append.req.Ok, sid, tnxIssue) from A, send (Issue.Ok, sid,P,
a.t,A) to FDART.

• Update the FLedger state by executing UpdateIssue following the real-world
algorithms provided in Figure 3.

(ii) Malicious user P:

• Emulating FLedger, receive (Append, sid, tnxIssue) upon calling FLedger by the
adversary (malicious party P).

• Parse tnxIssue = (xIssue, πIssue). Emulating FNIZK, send (Verify, sid, xIssue,
πIssue) to A.

• Upon receiving (Witness, sid, wIssue) from A, check if the relation
RIssue(xIssue, wIssue) holds. If so, store (xIssue, πIssue); otherwise, ignore.

• Parse xIssue = (pkacct, a.t, pk
A
en).

• Emulating FKeyReg, given pkAen, retrieve A.
• Send (Issue, sid, a.t,A) on behalf of corrupted party P to FDART.
• Upon receiving (Issue, sid,P, a.t,A) from FDART, submit (Issue.Ok, sid,P,
a.t,A) back to FDART if execution of ValidateIssue, following the real-world
algorithm provided in Figure 3, outputs 1.

• Execute UpdateIssue provided in Figure 3.

Account registration.
(i) Honest user P:

• Upon receiving (Register, sid,P, a.t) from FDART, start honest user P emu-
lation.

• Emulating FLedger, leak (Read, sid, γ) to the adversary A for a randomly
chosen γ. Proceed as follows if (Read.ok, sid, γ) is received from A.

• Emulating FKeyReg, retrieve (skacct, pkacct) using P leaked by FDART.
• Compute acctcm as in the algorithm described in Figure 4 using a.t leaked
by FDART.

• Set xRegister ← (acctcm, pkacct, a.t).
• Emulating FNIZK, leak (Prove, sid, xRegister) to A.
• Upon receiving (Proof, sid, πRegister) from A, update the FNIZK state by stor-
ing (xRegister, πRegister).

• Emulating FLedger, leak (Append.req, sid, tnxRegister) to A, where
tnxRegister = (xRegister, πRegister).

DART: Decentralized, Anonymous, and Regulation-friendly Tokenization 41

• Upon receiving (Append.req.Ok, sid, tnxRegister) from A, send (Register.Ok,
sid,P, a.t) to FDART.

• Update the state of FLedger by executing UpdateRegister following the real-
world algorithm provided in Figure 4.

(ii) Malicious user P:

• Emulating FLedger, receive (Append, sid, tnxRegister) upon calling FLedger by
the malicious user P.

• Parse tnxRegister = (xRegister, πRegister). Emulating FNIZK, send (Verify, sid,
xRegister, πRegister) to A.

• Upon receiving (Witness, sid, wRegister) from A, check if the relation
RRegister(xRegister, wRegister) holds. If so, store (xRegister, πRegister); other-
wise, ignore.

• Parse xRegister = (acctcm, pkacct, a.t).
• Send (Register, sid, a.t) to FDART on behalf of the malicious user P.
• Upon receiving (Register, sid,P, a.t) from FDART, send back (Register.Ok,
sid,P, a.t) to FDART if the execution of ValidateRegister, following the real-
world algorithm provided in Figure 4, outputs 1.

• Execute UpdateRegister provided in Figure 4.

Increase asset supply.
(i) Honest user P:

• Upon receiving (Increase, sid,P, a.t, v) from FDART, start honest user P em-
ulation.

• Emulating FLedger, leak (Read, sid, γ) to the adversary A for a randomly
chosen γ. Proceed as follows if (Read.ok, sid, γ) is received from A.

• Compute a commitment acctcmnew on dummy values.
• Sample a fresh random value from the PRF range as nulold, subject to the
condition described in proof of balance simulation (step *), using the user
identifier P leaked via FDART.

• Emulating FKeyReg, retrieve pkacct given P leaked via FDART.
• Set xIncrease ← (nulold, acct

cm
new, pkacct, a.t, v).

• Emulating FNIZK, leak (Prove, sid, xIncrease) to A.
• Upon receiving (Proof, sid, πIncrease) from A, update the FNIZK state by stor-
ing (xIncrease, πIncrease).

• Emulating FLedger, leak (Append.req, sid, tnxIncrease) to A, where
tnxIncrease = (xIncrease, πIncrease).

• Upon receiving (Append.req.Ok, sid, tnxIncrease) from A, send (Increase.Ok,
sid,P, a.t, v) to FDART.

• Update the FLedger state by executing UpdateIncrease following the real-
world algorithm provided in Figure 5.

• Record (·,P, v, a.t, ·, increased).

(ii) Malicious user P:

• Emulating FLedger, receive (Append, sid, tnxIncrease) upon calling FLedger by
the malicious user P.

42 A. Sarencheh et al.

• Parse tnxIncrease = (xIncrease, πIncrease).
• Emulating FNIZK, send (Verify, sid, xIncrease, πIncrease) to A.
• Upon receiving (Witness, sid, wIncrease) from A, check if the relation
RIncrease(xIncrease, wIncrease) holds. If so, store (xIncrease, πIncrease); other-
wise, ignore.

• Parse xIncrease = (nulold, acct
cm
new, pkacct, a.t, v).

• Send (Increase, sid, a.t, v) on behalf of the corrupted user P to FDART, where
(a.t, v) ∈ xIncrease.

• Upon receiving (Increase, sid,P, a.t, v) from FDART, send back
(Increase.Ok, sid,P, a.t, v) to FDART if the execution of ValidateIncrease,
following the real-world algorithm provided in Figure 5, outputs 1.

• Execute UpdateIncrease provided in Figure 5.

Sender transaction.
(i) Honest sender Ps:

• Upon receiving (Send, sid, β) from FDART, start emulation of an honest
sender.

• In case the auditor A or receiver Pr is malicious, parse β = (Ps,Pr, v, a.t).16

• In case the auditor A or receiver Pr is malicious, emulating FKeyReg, retrieve
key pairs addrrpk = (pkracct, pk

r
en) and addrspk = (pksacct, pk

s
en) using the identi-

fiers Ps and Pr leaked by FDART; ignore if such an entry does not exist.
• In case the auditor A or receiver Pr is malicious, retrieve (·, pkAen, a.t) from
LIAA using a.t leaked by FDART; ignore if such an entry does not exist.

• Emulating FLedger, leak (Read, sid, γ) to the adversary A for a randomly
chosen γ. Proceed as follows if (Read.ok, sid, γ) is received from A.

• Compute a commitment acctcm,snew on dummy values.
• Sample a fresh random value from the PRF range as nulsold, subject to the
condition described in proof of balance simulation (step *), using the sender
identifier Ps leaked via FDART in case the auditor A is malicious.

• Compute AURen and ψ:

– In case both the auditor A and receiver Pr are honest, compute encryp-
tions on dummy values as AURen and ψ.

– In the case of a malicious receiver Pr, compute AURen ← Encpkren(pk
s
acct,

v, a.t) (recall that in this case, the simulator receives β = (Ps,Pr, v, a.t)
from FDART).

– In the case of a malicious auditor A, compute ψ ← EncpkAen(pk
s
acct, pk

r
en,

v, a.t) (recall that in this case, the simulator receives β = (Ps,Pr, v, a.t)
from FDART).

• Emulating FLedger, retrieve the most recent vACCU.
• Emulating FLedger, leak (Read, sid, γ) to the adversary A for a randomly
chosen γ. Proceed as follows if (Read.ok, sid, γ) is received from A.

• Set xSend ← (vACCU, nul
s
old, acct

cm,s
new ,AURen, ψ).

• Emulating FNIZK, leak (Prove, sid, xSend) to A.
16 Otherwise, β is a random value.

DART: Decentralized, Anonymous, and Regulation-friendly Tokenization 43

• Upon receiving (Proof, sid, πSend) from A, update the FNIZK state by storing
(xSend, πSend).

• Emulating FLedger, leak (Append.req, sid, tnxSend) to A, where tnxSend =
(xSend, πSend).

• Upon receiving (Append.req.Ok, sid, tnxSend) from A, send (Send.Ok, sid, β,
TNX) to FDART, where TNX is generated by executing UpdateSend as de-
scribed in Figure 6.

• In case the auditor A is malicious, record (Ps,Pr, v, a.t,TNX, sent).

(ii) Malicious sender Ps:

• Emulating FLedger, receive (Append, sid, tnxSend) upon calling FLedger by the
malicious sender Ps.

• Parse tnxSend = (xSend, πSend). Emulating FNIZK, send (Verify, sid, xSend,
πSend) to A.

• Upon receiving (Witness, sid, wSend) from A, check if the relation
RSend(xSend, wSend) holds. If so, store (xSend, πSend); otherwise, ignore.

• Parse

wSend = (sksacct, f.b
s
old, p.b

s
old, ρ

s
old, s

s
old, acct

cm,s
old , ρsnew, s

s
new, pk

A
en, pk

r
en, v, a.t, πACCU, i).

• Emulating FKeyReg, retrieve Pr given pkren.
• Submit (Send, sid,Pr, v, a.t) on behalf of the malicious sender Ps to FDART.
• Upon receiving (Send, sid, β) from FDART, proceed as follows.
• Similar to the case above, if A or Pr is malicious, parse β = (Ps,Pr, v, a.t)
and ignore if there is an inconsistency with wSend extracted.

• Otherwise, ignore if executing the ValidateSend algorithm provided in Fig-
ure 6 does not output 1.

• Otherwise, execute the UpdateSend algorithm provided in Figure 6 to gen-
erate TNX = (tnxSend, tnx

id
Send, tnx

st
Send).

• Submit (Send.Ok, sid, β,TNX) to FDART.
• In case the auditor A is malicious, record (Ps,Pr, v, a.t,TNX, sent) where
(v, a.t) ∈ wSend.

Receiver transaction.
(i) Honest receiver Pr:

• Start emulation of an honest receiver:

– Upon receiving (Receive, sid,TNX) from FDART if Ps is honest.
– Upon receiving (Receive, sid,Ps,Pr, v, a.t,TNX) from FDART if Ps is ma-
licious.

• Emulating FLedger, leak (Read, sid, γ) to the adversary A for a randomly
chosen γ. Proceed as follows if (Read.ok, sid, γ) is received from A.

• In case Ps is malicious, ignore if any of the following conditions hold, following
the algorithm described in Figure 7:

– TNX /∈ state′ for state′ ∈ state, where state is retrieved by emulating
FLedger.

44 A. Sarencheh et al.

– o ̸= (pksacct, v, a.t), where sk
r
en (in Decskren(AURen)) and pksacct are retrieved

given Pr and Ps leaked via FDART.
17

– tnxstSend ̸= 0.

• Otherwise, send (Receive.Ok, sid,TNX) to FDART.
• Compute a commitment acctcm,rnew on dummy values.
• Sample a fresh random value from the PRF range as nulrold, subject to the
condition described in proof of balance simulation (step *), using the receiver
identifier Pr retrieved from the entry recorded (·,Pr, ·, ·,TNX, sent) using
TNX leaked via FDART in case the auditor A is malicious (see the sender
transaction emulation).

• Parse

TNX = (tnxSend, tnx
id
Send, tnx

st
Send), tnxSend = (xSend, πSend),

xSend = (v′ACCU, nul
s
old, acct

cm,s
new ,AURen, ψ).

• Emulating FLedger, retrieve the most recent vACCU.
• Set xReceive ← (vACCU, nul

r
old, acct

cm,r
new ,AURen, tnx

id
Send), where AURen ∈ xSend

and tnxidSend ∈ TNX.
• Emulating FNIZK, leak (Prove, sid, xReceive) to A.
• Upon receiving (Proof, sid, πReceive) from A, update the FNIZK state by stor-
ing (xReceive, πReceive).

• Emulating FLedger, leak (Append.req, sid, tnxReceive) to A, where tnxReceive =
(xReceive, πReceive).

• Upon receiving (Append.req.Ok, sid, tnxReceive) from A, proceed as follows.
• Upon receiving (Affirmed, sid,TNX) from FDART, execute UpdateReceive as
described in Figure 7.

• Submit (Affirmed.Ok, sid,TNX) to FDART.
• In case the auditor A is malicious, given TNX, retrieve the entry recorded
(Ps,Pr, v, a.t,TNX, sent), and record (Ps,Pr, v, a.t,TNX, received).

(ii) Malicious receiver Pr:

• Emulating FLedger, receive (Append, sid, tnxReceive) upon calling FLedger by the
malicious receiver Pr.

• Parse tnxReceive = (xReceive, πReceive). Emulating FNIZK, send (Verify, sid,
xReceive, πReceive) to A.

• Upon receiving (Witness, sid, wReceive) from A, check if the relation
RReceive(xReceive, wReceive) holds. If so, store (xReceive, πReceive); otherwise,
ignore.

• Parse
xReceive = (vACCU, nul

r
old, acct

cm,r
new ,AURen, tnx

id
Send).

• Emulating FLedger, given tnxidSend ∈ xReceive, retrieve the associated TNX and
submit (Receive, sid,TNX) to FDART on behalf of the malicious receiver Pr.
If no such TNX exists, ignore.

17 The simulator could also check this via witness extraction in the malicious sender’s
proof using tnxSend = (xSend, πSend).

DART: Decentralized, Anonymous, and Regulation-friendly Tokenization 45

• In case Ps is honest, receive (Receive, sid,TNX) from FDART and proceed
to the next step. If Ps is malicious, upon receiving (Receive, sid,Ps,Pr, v,
a.t,TNX) from FDART, check the consistency of leaked information with

wReceive = (skracct, f.b
r
old, ρ

r
old, s

r
old, acct

cm,r
old , πACCU, p.b

r
old, ρ

r
new, s

r
new, v, a.t, sk

r
en).

Given the keys, retrieve the associated identifiers by emulating FKeyReg. Ig-
nore if there is inconsistency.

• Submit (Receive.Ok, sid,TNX) to FDART.
• Ignore if executing the ValidateReceive algorithm provided in Figure 7 does
not output 1.

• Otherwise, execute the UpdateReceive algorithm provided in Figure 7.
• Submit (Affirm, sid,TNX) on behalf of Pr to FDART.
• Upon receiving (Affirmed, sid,TNX) from FDART, submit back
(Affirmed.Ok, sid,TNX).

• In case the auditor A is malicious, given TNX, retrieve the entry recorded
(Ps,Pr, v, a.t,TNX, sent), and record (Ps,Pr, v, a.t,TNX, received).

Reversion.
(i) Honest sender Ps:

• Upon receiving (Reverse, sid,TNX) from FDART, start emulation of an honest
sender.

• Emulating FLedger, leak (Read, sid, γ) to the adversary A for a randomly
chosen γ. Proceed as follows if (Read.ok, sid, γ) is received from A.

• Compute a commitment acctcm,snew on dummy values.
• Sample a fresh random value from the PRF range as nulsold, subject to
the condition described in proof of balance simulation (step *), using the
sender identifier Ps retrieved by looking for an entry recorded of the form
(Ps, ·, ·, ·,TNX, sent) where TNX is leaked via FDART in case the auditor A
is malicious.

• Parse

TNX = (tnxSend, tnx
id
Send, tnx

st
Send), tnxSend = (xSend, πSend),

xSend = (v′ACCU, nul
s
old, acct

cm,s
new ,AURen, ψ).

• Emulating FLedger, retrieve the most recent vACCU.
• Set

xReverse ← (vACCU, nul
s
old, acct

cm,s
new ,AURen, tnx

id
Send).

• Emulating FNIZK, leak (Prove, sid, xReverse) to A.
• Upon receiving (Proof, sid, πReverse) from A, update the FNIZK state by stor-
ing (xReverse, πReverse).

• Emulating FLedger, leak (Append.req, sid, tnxReverse) to A, where tnxReverse =
(xReverse, πReverse).

• Upon receiving (Append.req.Ok, sid, tnxReverse) from A, send (Reverse.Ok,
sid,TNX) to FDART.

• Execute UpdateReverse as described in Figure 8.

46 A. Sarencheh et al.

• In case the auditor A is malicious, given TNX, retrieve the entry recorded
(Ps,Pr, v, a.t,TNX, sent), and record (Ps,Pr, v, a.t,TNX, reversed).

(ii) Malicious sender Ps:
• Emulating FLedger, receive (Append, sid, tnxReverse) upon calling FLedger by the
malicious sender Ps.

• Parse tnxReverse = (xReverse, πReverse). Emulating FNIZK, send (Verify, sid,
xReverse, πReverse) to A.

• Upon receiving (Witness, sid, wReverse) from A, check if the relation
RReverse(xReverse, wReverse) holds. If so, store (xReverse, πReverse); otherwise,
ignore.

• Parse
xReverse = (vACCU, nul

s
old, acct

cm,s
new ,AURen, tnx

id
Send).

• Emulating FLedger, given tnxidSend ∈ xReverse, retrieve the associated TNX and
submit (Reverse, sid,TNX) to FDART on behalf of the malicious sender Ps.
If no such TNX exists, ignore.

• Upon receiving (Reverse, sid,TNX) from FDART, proceed as follows.
• Ignore if executing the ValidateReverse algorithm provided in Figure 8 does
not output 1.

• Otherwise, execute the UpdateReverse algorithm provided in Figure 8.
• Submit (Reverse.Ok, sid,TNX) to FDART.
• In case the auditor A is malicious, given TNX, retrieve the entry recorded
(Ps,Pr, v, a.t,TNX, sent), and record (Ps,Pr, v, a.t,TNX, reversed).

Proof of balance.
(i) Honest user P:

• Upon receiving (Balance, sid, γ) from FDART:
– If A is malicious, parse γ = (P, a.t).
– Otherwise, parse γ as a random value.

• Emulating FLedger, leak (Read, sid, γ) to the adversary A for a randomly
chosen γ. Proceed as follows if (Read.ok, sid, γ) is received from A.

• If A is malicious:
– Emulating FKeyReg, retrieve pkacct given P leaked by FDART.
– (*) Sample a fresh random value from the PRF range as nul and record

(P, nul, 0). Use the recorded entry (P, nul, 0) whenever it is necessary to
simulate a nullifier value for the honest user P in any protocol (with the
malicious auditor A) that requires revealing a nullifier.18 Retrieve nul
from (P, nul, 0), set the nullifier to be simulated as nul, and update the
entry to (P, nul, 1). The next time a nullifier needs to be simulated for
honest P, if the entry for P is (P, nul, 1), sample a fresh random value
from the PRF range as the nullifier.

– Retrieve the latest commitment (on dummy values) simulated for P as
acctcm.19

18 Namely, increasing asset supply, sender transactions, receiver transactions, and re-
version.

19 Recall, the simulator assigns TNX for each transaction, and in case A is malicious,
the simulator gets to know the sender Ps and receiver Pr of the transaction.

DART: Decentralized, Anonymous, and Regulation-friendly Tokenization 47

– Retrieve all the entries recorded of the form:
∗ (·,P∗, ·, ·, ·, increased)
∗ (P∗, ·, ·, ·, ·, sent)
∗ (·,P∗, ·, ·, ·, sent)
∗ (P∗, ·, ·, ·, ·, received)
∗ (·,P∗, ·, ·, ·, received)
∗ (P∗, ·, ·, ·, ·, reversed)
∗ (·,P∗, ·, ·, ·, reversed)

where P∗ = P.
– Compute f.b and p.b of P based on the entries retrieved.
– Given the retrieved TNX values from entries, retrieve

−→
tnxid(1) and

−→
tnxid(0).

– Compute πA
PoB ← SimProve(xAPoB), and check that Verify(xAPoB,

πA
PoB) = 1. If so, record the entry (xAPoB, π

A
PoB).

– Set
xAPoB ← (pkacct, nul, acct

cm, f.b, p.b, a.t).

– Set
tnxAPoB ← (xAPoB, π

A
PoB,
−→
tnxid(1),

−→
tnxid(0)).

• Emulating Fch, leak (Send, sid,mid, |tnxAPoB|) to the adversary A for a ran-
domly chosen mid. Proceed as follows if (Ok, sid,mid) is received from A.

• Emulating Fch, if A is malicious, submit (Received, sid,P, tnxAPoB) to the
adversary.

• Send (Balance.Ok, sid, γ) to FDART.

(ii) Malicious user P:

• Emulating Fch, receive (Send, sid,A, tnxAPoB) upon calling Fch by the mali-
cious user P.

• Emulating F†
NIZK, parse tnxAPoB = (xAPoB, π

A
PoB,
−→
tnxid(1),

−→
tnxid(0)).

• Extract the witness wA
PoB = (skacct, ρ, s) by running Extract(xAPoB, π

A
PoB).

Check if the relation RPoB(x
A
PoB, w

A
PoB) holds. If so, store (xAPoB, π

A
PoB); oth-

erwise, ignore.
• Emulating an honest auditor A, execute the algorithm described in Figure 9
and abort if the algorithm aborts.

• Otherwise, parse

xAPoB = (pkacct, nul, acct
cm, f.b, p.b, a.t).

• Submit (Balance, sid, a.t) to FDART on behalf of the malicious user P.
• Upon receiving (Balance, sid, γ) from FDART, send back (Balance.Ok, sid, γ)
to FDART if emulating Fch, (Ok, sid,mid) is received from the adversary A,

Auditor operation.

• Upon receiving (Audit, sid, η) from FDART, emulating FLedger, leak (Read, sid,
γ) to the adversary A for a randomly chosen γ.

• Send (Audit.Ok, sid, η) to FDART if (Read.ok, sid, γ) is received from A.

48 A. Sarencheh et al.

7.2 Security games

Indistinguishability games for Theorem 1 (sketch). Through a sequence of games,
we show that the random variables EXECΠDART,A,Z and EXECFDART,S,Z are statis-

tically close. We denote by Pr[Game(i)] the probability that the environment Z
outputs 1 in Game(i). Each game Game(i) has its own F (i)

DART and S(i). We start

from the most leaky functionality F (0)
DART and the associated simulator S(0) and

gradually move toward the main functionality FDART and the simulator S.

• Game(0) : Initially, the most leaky functionality F (0)
DART forwards whatever it

receives from the environment Z to the simulator S(0). The simulator S(0)
corresponds to the real-world protocol execution EXECΠDART,A,Z .

• Game(1) : Same as Game(0), except that F (1)
DART prevents the simulator S(1)

from submitting any message to F (1)
DART on behalf of the adversary A if A

provides two different messages with the same corresponding commitment.
This game is indistinguishable from Game(0) due to the binding property of
the underlying commitment scheme (Definition 9). Therefore,

|Pr[Game(1)]− Pr[Game(0)]| ≤ AdvBindA .

• Game(2) : Same as Game(1), except that all ciphertexts generated
by honest users, including AURen = Encpkren(pk

s
acct, v, a.t) and ψ =

EncpkAen(pk
s
acct, pk

r
en, v, a.t), are replaced with simulated ones. Particularly, the

simulator S(2) encrypts dummy values as plaintexts for AURen and ψ. This
game is indistinguishable from Game(1) due to the IND-CPA security of the
underlying encryption scheme (Definition 3). Therefore,

|Pr[Game(2)]− Pr[Game(1)]| ≤ AdvIND-CPA
A .

• Game(3) : Same as Game(2), except that for all ciphertexts generated by the
simulator, including AURen = Encpkren(·, ·, ·) and ψ = EncpkAen(·, ·, ·, ·), the re-

ceivers’ and auditors’ encryption public keys pkren and pkAen, respectively, are
replaced with dummy public keys selected by S(3). This game is indistin-
guishable from Game(2) due to the key privacy of the underlying encryption
scheme (Definition 4). Therefore,

|Pr[Game(3)]− Pr[Game(2)]| ≤ AdvKeyPrivA .

• Game(4) : Same as Game(3), except that all pseudorandom values gener-
ated by honest users, including nullifiers nul = PRFskacct(ρ), are replaced by
those simulated by S(4) through sampling random values from the pseudo-
random function (PRF) range. This game is indistinguishable from Game(3)

due to the pseudorandomness property of the underlying PRF scheme (Def-
inition 12). Therefore,

|Pr[Game(4)]− Pr[Game(3)]| ≤ AdvPRF.PseudoA .

DART: Decentralized, Anonymous, and Regulation-friendly Tokenization 49

• Game(5) : Same as Game(4), except that F (5)
DART = FDART prevents the simu-

lator S(5) = S from submitting any message on behalf of the adversary A if
A provides a valid membership proof πACCU for an element that is not part
of the accumulator. This game is indistinguishable from Game(4) due to the
soundness property of the underlying accumulator scheme (Definition 16).
Therefore,

|Pr[Game(5)]− Pr[Game(4)]| ≤ AdvSoundA .

This sequence of games starts from the real-world protocol execution
EXECΠDART,A,Z and ends with the ideal-world execution EXECFDART,S,Z .
Given that each pair of consecutive games is computationally indistin-
guishable, the probability for any PPT environment Z to distinguish
EXECΠDART,A,Z from EXECFDART,S,Z is upper-bounded by

AdvBindA + AdvIND-CPA
A + AdvKeyPrivA + AdvPRF.PseudoA + AdvSoundA .

This concludes the security proof.

□

Acknowledgements

Part of the work of the first author was supported by the Polymesh Associa-
tion. The authors thank Adam Dossa and Robert Gabriel Jakabosky from the
Polymesh Association for valuable discussions. This work was also supported
by Input Output (iohk.io) through its funding of the University of Edinburgh
Blockchain Technology Lab.

References

1. Almashaqbeh, G., Solomon, R.: Sok: Privacy-preserving computing in the
blockchain era. In: 2022 IEEE 7th European Symposium on Security and Privacy
(EuroS&P). pp. 124–139. IEEE (2022)

2. Baldimtsi, F., Chalkias, K.K., Madathil, V., Roy, A.: SoK: Privacy-preserving
transactions in blockchains. Cryptology ePrint Archive, Paper 2024/1959 (2024),
https://eprint.iacr.org/2024/1959

3. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption. In: International Conference on the Theory and Application of Cryp-
tology and Information Security. pp. 566–582. Springer (2001)

4. Benarroch, D., Gillespie, B., Lai, Y.T., Miller, A.: Sok: Programmable privacy in
distributed systems. Cryptology ePrint Archive (2024)

5. Biçer, O., Tschudin, C.: Oblivious homomorphic encryption. Cryptology ePrint
Archive (2023)

6. BNP Paribas: T+1 trade affirmation and settlement (2024), available at: Link
7. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Annual interna-

tional cryptology conference. pp. 41–55. Springer (2004)

https://eprint.iacr.org/2024/1959
https://securities.cib.bnpparibas/us-t1-trade-affirmation-settlement/

50 A. Sarencheh et al.

8. Bünz, B., Agrawal, S., Zamani, M., Boneh, D.: Zether: Towards privacy in a smart
contract world. In: International Conference on Financial Cryptography and Data
Security. pp. 423–443. Springer (2020)

9. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.:
Bulletproofs: Short proofs for confidential transactions and more. In: 2018
IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May
2018, San Francisco, California, USA. pp. 315–334. IEEE Computer Society
(2018). https://doi.org/10.1109/SP.2018.00020, https://doi.org/10.1109/
SP.2018.00020

10. Buterin, V.: Ethereum white paper (2013), https://github.com/ethereum/
wiki/wiki/White-Paper

11. Campanelli, M., Hall-Andersen, M.: Veksel: Simple, efficient, anonymous payments
with large anonymity sets from well-studied assumptions. In: Proceedings of the
2022 ACM on Asia Conference on Computer and Communications Security. pp.
652–666 (2022)

12. Campanelli, M., Hall-Andersen, M., Kamp, S.H.: Curve trees: Practical
and transparent zero-knowledge accumulators. In: Calandrino, J.A., Tron-
coso, C. (eds.) 32nd USENIX Security Symposium, USENIX Security 2023,
Anaheim, CA, USA, August 9-11, 2023. pp. 4391–4408. USENIX Associa-
tion (2023), https://www.usenix.org/conference/usenixsecurity23/
presentation/campanelli

13. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: Proceedings 42nd IEEE Symposium on Foundations of Computer
Science. pp. 136–145. IEEE (2001)

14. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Advances in
Cryptology-CRYPTO 2006: 26th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 20-24, 2006. Proceedings 26. pp. 78–96.
Springer (2006)

15. Chatzigiannis, P., Chalkias, K.: Proof of assets in the diem blockchain. In: Applied
Cryptography and Network Security Workshops: ACNS 2021 Satellite Workshops,
AIBlock, AIHWS, AIoTS, CIMSS, Cloud S&P, SCI, SecMT, and SiMLA, Ka-
makura, Japan, June 21–24, 2021, Proceedings. pp. 27–41. Springer (2021)

16. Chaum, D.: Blind signatures for untraceable payments. pp. 199–203 (1982)
17. Crites, E., Kiayias, A., Kohlweiss, M., Sarencheh, A.: SyRA: Sybil-resilient anony-

mous signatures with applications to decentralized identity. Cryptology ePrint
Archive, Paper 2024/379 (2024), https://eprint.iacr.org/2024/379

18. Damgaard, I., Ganesh, C., Khoshakhlagh, H., Orlandi, C., Siniscalchi, L.: Bal-
ancing privacy and accountability in blockchain identity management. In: Pa-
terson, K.G. (ed.) Topics in Cryptology - CT-RSA 2021 - Cryptographers’
Track at the RSA Conference 2021, Virtual Event, May 17-20, 2021, Proceed-
ings. Lecture Notes in Computer Science, vol. 12704, pp. 552–576. Springer
(2021). https://doi.org/10.1007/978-3-030-75539-3 23, https://doi.org/10.
1007/978-3-030-75539-3_23

19. Diamond, B.E.: Many-out-of-many proofs and applications to anonymous zether.
In: 2021 IEEE Symposium on Security and Privacy (SP). pp. 1800–1817. IEEE
(2021)

20. Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: The second-generation onion
router. pp. 303–320 (2004)

21. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and keys.
In: Vaudenay, S. (ed.) Public Key Cryptography - PKC 2005, 8th International

https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1109/SP.2018.00020
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://www.usenix.org/conference/usenixsecurity23/presentation/campanelli
https://www.usenix.org/conference/usenixsecurity23/presentation/campanelli
https://eprint.iacr.org/2024/379
https://doi.org/10.1007/978-3-030-75539-3_23
https://doi.org/10.1007/978-3-030-75539-3_23
https://doi.org/10.1007/978-3-030-75539-3_23

DART: Decentralized, Anonymous, and Regulation-friendly Tokenization 51

Workshop on Theory and Practice in Public Key Cryptography, Les Diablerets,
Switzerland, January 23-26, 2005, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 3386, pp. 416–431. Springer (2005). https://doi.org/10.1007/978-3-540-
30580-4 28, https://doi.org/10.1007/978-3-540-30580-4_28

22. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and keys.
In: International Workshop on Public Key Cryptography. pp. 416–431. Springer
(2005)

23. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE transactions on information theory 31(4), 469–472 (1985)

24. Fauzi, P., Meiklejohn, S., Mercer, R., Orlandi, C.: Quisquis: A new design for
anonymous cryptocurrencies. In: Advances in Cryptology–ASIACRYPT 2019: 25th
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Kobe, Japan, December 8–12, 2019, Proceedings, Part I 25. pp.
649–678. Springer (2019)

25. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) Advances in Cryptology - CRYPTO
’86, Santa Barbara, California, USA, 1986, Proceedings. Lecture Notes in Com-
puter Science, vol. 263, pp. 186–194. Springer (1986). https://doi.org/10.1007/3-
540-47721-7 12, https://doi.org/10.1007/3-540-47721-7_12

26. Goldreich, O.: Towards a theory of software protection and simulation by oblivious
rams. In: Proceedings of the nineteenth annual ACM symposium on Theory of
computing. pp. 182–194 (1987)

27. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for np.
In: Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques. pp. 339–358. Springer (2006)

28. Guo, Y., Karthikeyan, H., Polychroniadou, A., Huussin, C.: Pride ct: Towards pub-
lic consensus, private transactions, and forward secrecy in decentralized payments.
In: 2024 IEEE Symposium on Security and Privacy (SP). pp. 3904–3922. IEEE
(2024)

29. Hansen, A.B., Nielsen, J.B., Simkin, M.: Ocash: Fully anonymous payments be-
tween blockchain light clients. Cryptology ePrint Archive (2024)

30. JAP: Jap anonymity & privacy (2009), http://anon.inf.tu-dresden.de/
31. Kerber, T., Kiayias, A., Kohlweiss, M., Zikas, V.: Ouroboros crypsinous: Privacy-

preserving proof-of-stake. In: 2019 IEEE Symposium on Security and Privacy (SP).
pp. 157–174. IEEE (2019)

32. Kosba, A.E., Zhao, Z., Miller, A., Qian, Y., Chan, T.H., Papamanthou, C., Pass, R.,
Shelat, A., Shi, E.: How to use snarks in universally composable protocols. IACR
Cryptol. ePrint Arch. p. 1093 (2015), http://eprint.iacr.org/2015/1093

33. Kumar, A., Fischer, C., Tople, S., Saxena, P.: A traceability analysis of monero’s
blockchain. In: Computer Security–ESORICS 2017: 22nd European Symposium on
Research in Computer Security, Oslo, Norway, September 11-15, 2017, Proceedings,
Part II 22. pp. 153–173. Springer (2017)

34. Madathil, V., Scafuro, A.: Prifhete: Achieving full-privacy in account-based cryp-
tocurrencies is possible. Cryptology ePrint Archive (2023)

35. Meiklejohn, S., Orlandi, C.: Privacy-enhancing overlays in bitcoin. In: International
Conference on Financial Cryptography and Data Security. pp. 127–141. Springer
(2015)

36. Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker,
G.M., Savage, S.: A fistful of bitcoins: characterizing payments among men with no
names. In: Proceedings of the 2013 conference on Internet measurement conference.
pp. 127–140 (2013)

https://doi.org/10.1007/978-3-540-30580-4_28
https://doi.org/10.1007/978-3-540-30580-4_28
https://doi.org/10.1007/978-3-540-30580-4_28
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
http://anon.inf.tu-dresden.de/
http://eprint.iacr.org/2015/1093

52 A. Sarencheh et al.

37. Metere, R., Dong, C.: Automated cryptographic analysis of the pedersen commit-
ment scheme. In: Computer Network Security: 7th International Conference on
Mathematical Methods, Models, and Architectures for Computer Network Secu-
rity, MMM-ACNS 2017, Warsaw, Poland, August 28-30, 2017, Proceedings 7. pp.
275–287. Springer (2017)

38. Micali, S., Rabin, M., Kilian, J.: Zero-knowledge sets. In: 44th Annual IEEE Sym-
posium on Foundations of Computer Science, 2003. Proceedings. pp. 80–91. IEEE
(2003)

39. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: Anonymous distributed
e-cash from bitcoin. In: 2013 IEEE symposium on security and privacy. pp. 397–
411. IEEE (2013)

40. Möser, M., Soska, K., Heilman, E., Lee, K., Heffan, H., Srivastava, S., Hogan, K.,
Hennessey, J., Miller, A., Narayanan, A., et al.: An empirical analysis of traceability
in the monero blockchain. arXiv preprint arXiv:1704.04299 (2017)

41. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (October 31 2008),
https://bitcoin.org/bitcoin.pdf

42. Narula, N., Vasquez, W., Virza, M.: zkledger: Privacy-preserving auditing for dis-
tributed ledgers. In: 15th USENIX symposium on networked systems design and
implementation (NSDI 18). pp. 65–80 (2018)

43. Noether, S., Mackenzie, A., et al.: Ring confidential transactions. Ledger 1, 1–18
(2016)

44. Norton Rose Fulbright: SEC’s Division of Trading and Markets Issues No-Action
Letter. Published by Norton Rose Fulbright (October 2020), available at: Link

45. Payment Systems Regulator: Confirmation of payee - preventing app scams (2024),
available at: Link

46. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Annual international cryptology conference. pp. 129–140. Springer
(1991)

47. Sarencheh, A., Kiayias, A., Kohlweiss, M.: PEReDi: Privacy-enhanced, regulated
and distributed central bank digital currencies. Cryptology ePrint Archive, Paper
2022/974 (2022), https://eprint.iacr.org/2022/974

48. Sarencheh, A., Kiayias, A., Kohlweiss, M.: PARScoin: A privacy-preserving, au-
ditable, and regulation-friendly stablecoin. Cryptology ePrint Archive, Paper
2023/1908 (2023), https://eprint.iacr.org/2023/1908

49. Sasson, E.B., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: Decentralized anonymous payments from bitcoin. In: 2014 IEEE
symposium on security and privacy. pp. 459–474. IEEE (2014)

50. Setty, S.T.V.: Spartan: Efficient and general-purpose zksnarks without trusted
setup. In: Micciancio, D., Ristenpart, T. (eds.) Advances in Cryptology -
CRYPTO 2020 - 40th Annual International Cryptology Conference, CRYPTO
2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part
III. Lecture Notes in Computer Science, vol. 12172, pp. 704–737. Springer
(2020). https://doi.org/10.1007/978-3-030-56877-1 25, https://doi.org/10.
1007/978-3-030-56877-1_25

51. Setty, S.T.V., Thaler, J., Wahby, R.S.: Unlocking the lookup singularity with
lasso. In: Joye, M., Leander, G. (eds.) Advances in Cryptology - EURO-
CRYPT 2024 - 43rd Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Zurich, Switzerland, May 26-30, 2024,
Proceedings, Part VI. Lecture Notes in Computer Science, vol. 14656, pp.
180–209. Springer (2024). https://doi.org/10.1007/978-3-031-58751-1 7, https:
//doi.org/10.1007/978-3-031-58751-1_7

https://bitcoin.org/bitcoin.pdf
https://www.nortonrosefulbright.com/en-gb/knowledge/publications/c2e037e4/secs-division-of-trading-and-markets-issues-no-action-letter
https://www.psr.org.uk/our-work/app-scams/confirmation-of-payee/
https://eprint.iacr.org/2022/974
https://eprint.iacr.org/2023/1908
https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1007/978-3-031-58751-1_7
https://doi.org/10.1007/978-3-031-58751-1_7
https://doi.org/10.1007/978-3-031-58751-1_7

DART: Decentralized, Anonymous, and Regulation-friendly Tokenization 53

52. The National Law Review: Time to Do the Foxtrot: The Three-Step SEC Estab-
lishes for Improved Process in Settlement of Digital Asset Trades. Published in
The National Law Review (September 2020), available at: Link

53. The Securities Transfer Association (STA): Guidelines (2023), available at: Link

54. UK Finance: Confirmation of payee guidance (2024), available at: Link

55. U.S. Securities and Exchange Commission: FINRA ATS Role in Settlement of
Digital Asset Security Trades (September 2020), available at: Link

56. Wüst, K., Kostiainen, K., Delius, N., Capkun, S.: Platypus: A central bank digital
currency with unlinkable transactions and privacy-preserving regulation. In: Pro-
ceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security. pp. 2947–2960 (2022)

A Proof of balance: a generic solution

In Section 4.1.8 we proposed our first proof of balance (PoB) protocol that relies
on asset specific auditor. In this section, we describe our second approach for
PoB, which allows users to independently prove their finalized f.b and pending
balances p.b directly to any verifier, without reliance on auditors.
Recall that in addition to f.b, the user must also reveal their p.b to the PoB
verifier. If p.b > 0, this implies that there exists at least one transaction that is
either in tnxstSend = 0 or tnxstSend = 1. In this case, the user needs to take further
action by pointing to the transactions and justifying the value of p.b. This is
crucial from the balance verifying perspective because the transaction status
determines whether the funds can still be reversed and, therefore, whether they
could be potentially part of the user’s balance or not. (i) if tnxstSend = 0, reversion
is still possible, and (ii) if tnxstSend = 1, reversion is not possible. Therefore, in
this case, the sender should point to transactions with tnxstSend = 0 and tnxstSend =
1, and prove that p.b equals the sum of the values of all transactions with
tnxstSend = 0 plus the sum of the values of all transactions with tnxstSend = 1. This
allows the PoB verifier to understand how much of p.b is irreversible and how
much is reversible.
Therefore, in case p.b > 0, the user needs to point to all finalized (tnxstSend = 1)
and pending transactions (tnxstSend = 0). If the sender has many finalized transac-
tions, pointing to all transactions becomes inefficient and also introduces infor-
mation leakage. This is due to the ability of the PoB verifier to link every trans-
action in which the user has been the sender, which is undesirable as the PoB
verifier needs to (only) verify the balance. To address this, the sender can scan
the ledger for their transactions whose status has changed from the initial state
of tnxstSend = 0 to tnxstSend = 1, and submit a specific transaction called pending-
balance-update (pbu) transaction (tnxpbu), to reduce p.b, thereby moving the
transaction status to tnxstSend = 3. Figure 11 illustrates the sender’s transaction
status tnxstSend ∈ {0, 1, 2, 3} that is the extension of Figure 1. A transition occurs
from tnxstSend = 1 to tnxstSend = 3 when the sender submits tnxpbu.

20

20 Note that tnxpbu points to a transaction with tnxstSend = 1, and any two transac-
tions tnxpbu and tnx∗pbu are unlinkable, as they reference different transactions with

https://natlawreview.com/article/time-to-do-foxtrot-three-step-sec-establishes-improved-process-settlement-digital
https://cdn.ymaws.com/stai.org/resource/resmgr/guidelines/sta_guidelines_2023.6.08.pdf
https://www.ukfinance.org.uk/policy-and-guidance/guidance/confirmation-payee#:~:text=Confirmation%20of%20Payee%20is%20a,as%20well%20as%20providing%20another
https://www.sec.gov/divisions/marketreg/mr-noaction/2020/finra-ats-role-in-settlement-of-digital-asset-security-trades-09252020.pdf

54 A. Sarencheh et al.

tnxstSend = 0
set f.bs ← f.bs − v
set p.bs ← p.bs + v

tnxstSend = 1
set f.br ← f.br + v
set p.br ← p.br

tnxstSend = 2
set f.bs ← f.bs + v
set p.bs ← p.bs − v

tnxstSend = 3
set f.bs ← f.bs

set p.bs ← p.bs − v

tnxSend
sender

tnxReceive
receiver

tnxReverse
sender

tnxpbu
sender

Fig. 11: Transaction status tnxstSend (extended).

The transition to tnxstSend = 3 avoids referencing finalized transactions (with
tnxstSend = 1) for the PoB verifier and limits the pointer to only pending transac-
tions (with tnxstSend = 0).
The pending balance p.b and tnxpbu transaction (which reduces p.b) are only
relevant for PoB. In other words, if a user knows that a specific asset type they
hold will never be balance-verified, there is no need for the user to submit tnxpbu
to reduce p.b. The sole purpose of maintaining p.b in the user’s account is to
support PoB.
The user submits tnxpbu if applicable e.g., there exists a transaction with
tnxstSend = 1. This can be done, in a single transaction, pointing to all finalized
transactions and transitioning the account state by submitting a large tnxpbu (see
aggregatable transactions in Section 5.1). This reduces their pending balance by
the sum of the values of all finalized transactions in one step, offering better
efficiency. However, this approach introduces linkability, as all finalized transac-
tions are linked to each other through the single tnxpbu. Alternatively, for better
privacy, the user can submit separate tnxpbu transactions for each finalized trans-
action, reducing their pending balance sequentially. While this approach avoids
linking finalized transactions, it comes at the cost of efficiency.
Note that pointing to transactions with tnxstSend = 0 still introduces privacy leak-
age, as the PoB verifier will link all these pending transactions. To mitigate this,
the sender can reverse all pending transactions using the Reversion algorithm
(Figure 8), reducing p.b and thus avoiding the need to link pending transac-
tions. Reversing transactions, however, may be inefficient, as it would require
reinitiating the transactions after completing the PoB protocol (assuming that
the sender is still interested in completing these transactions).

tnxstSend = 1 and user’s account state transition occurs anonymously via the accu-
mulator membership proof. In other words, the account state transition in tnxpbu
provides unlinkability similar to all other transactions in DART.

DART: Decentralized, Anonymous, and Regulation-friendly Tokenization 55

As discussed earlier, the sender has two incentives for reversing the transaction,
making it in the receiver’s best interest to affirm the transaction and increase
their account balance as soon as possible. Furthermore, the incorporation of an
asset-specific auditor in DART allows auditors to construct a decrypted view
of the ledger for all transactions involving a specific asset type. This includes
identifying any pending AUR for a receiver who may either be potentially ma-
licious or simply unaware of the incoming AUR due to not scanning the ledger
prior to the PoB verification. Collaboration between the asset-specific auditor
and the PoB verifier provides the necessary information to the verifier21. In the
following, we present our second PoB approach, which operates independently
of the auditor.
Upon receiving (Balance, sid, a.t) from the environment to prove the balance of
the account associated with asset type a.t, the user calls FLedger to identify all
transactions whose status has changed from tnxstSend = 0 to tnxstSend = 1. Then,
the user submits tnxpbu to the ledger, where the user’s account transitions to a
new state, with the pending balance decreased by the value of the transaction
whose status is tnxstSend = 1. The user proves, in ZK, that they are indeed the
creator/sender of the transaction. The submission of tnxpbu is done sequentially
to avoid likability. The algorithm is provided in the Figure 12.
The NIZK witness, statement, and relation are defined as follows.

• wpbu = (skacct, f.bold, p.bold, ρold, sold, acct
cm
old, ρnew, snew, pk

r
en, v, a.t, πACCU)

• xpbu = (vACCU, nulold, acct
cm
new,AURen, tnx

id
Send)

• The relation Rpbu(xpbu, wpbu) is defined as:

Rpbu =
{
ACCU.VfyMem(ppACCU, vACCU, acct

cm
old, πACCU) = 1

∧ acctcmnew = Com(skacct, f.bold, p.bold − v, a.t, ρnew; snew)
∧ acctcmold = Com(skacct, f.bold, p.bold, a.t, ρold; sold)

∧ nulold = PRFskacct(ρold)

∧ (pkacct, skacct) ∈ Acc.KeyGen(1λ)

∧ AURen = Encpkren(pkacct, v, a.t)
}
.

tnxpbu Generation

▷ Upon receiving (Balance, sid, a.t) from Z, parse addrpk = (pkacct, pken),
and addrsk = (skacct, sken).

▷ Call FLedger with (Read, sid). Upon receiving (Read, sid, state) from FLedger,
parse state = (state′,LIAA,LKA,LNUL, vACCU).

▷ Retrieve the recorded entry (acctcmold, acctold) where acctold = (skacct, f.bold,
p.bold, a.t, ρold, sold).

21 Note that this differs from our first PoB approach (Section 4.1.8), in which the
auditor selectively decrypts transactions explicitly pointed to by the user.

56 A. Sarencheh et al.

▷ Retrieve all entries (AURi,AURien, tnx
idi
Send) in LAUR where, upon parsing

AURi = (pksiacct, v
(i), a.ti; pkrien), the conditions a.t

i = a.t and pksiacct = pkacct
hold.

▷ For each such entry (AURi,AURien, tnx
idi
Send), if there is any transaction

TNXj ∈ state′ where TNXj = (tnxjSend, tnx
idj
Send, tnx

stj
Send), tnx

stj
Send = 1, and

tnxidiSend = tnx
idj
Send, proceed as follows:

• parse AURj = (pkacct, v
(j), a.t; ·).

• compute nulold ← PRFskacct(ρold).

• sample ρnew
$←− Zq, and snew

$←− Zq.
• set acctnew ← (skacct, f.bold, p.bold − v(j), a.t, ρnew, snew).
• compute acctcmnew ← Com(skacct, f.bold, p.bold − v(j), a.t, ρnew; snew).
• compute πACCU ← ACCU.PrvMem(ppACCU, state

′, acctcmold).
• call FNIZK with (Prove, sid, xpbu, wpbu) and receive (Proof, sid, πpbu).
• set tnxpbu ← (xpbu, πpbu), and call FLedger with (Append, sid, tnxpbu).
• call FLedger with (Read, sid); upon receiving back (Read, sid, state), if
tnxpbu ∈ state′ for state′ ∈ state, set (acctcmold, acctold) ← (acctcmnew,

acctnew), and set: LAUR ← LAUR \ {(AURi,AURien, tnx
idi
Send)}.

• else, ignore.

Proceed by executing the tnxPoB generation algorithm, Figure 13 (note: there is
no output to Z yet).

tnxpbu Verification

▷ Execute Validatepbu(state, tnxpbu):
• parse state = (state′,LIAA,LKA,LNUL, vACCU), tnxpbu = (xpbu, πpbu), and xpbu =

(vACCU, nulold, acct
cm
new,AUR

j
en, tnx

idj
Send).

• given tnx
idj
Send ∈ xpbu, retrieve associated tnx

stj
Send ∈ state′ and AUR∗

en ∈ state′.
• ignore if any of the following conditions hold:

– AUR∗
en ̸= AURj

en

– nulold ∈ LNUL

– tnx
stj
Send ̸= 1

– upon calling FNIZK with (Verify, sid, xpbu, πpbu), (Vrfed, sid, 0) is re-
turned.

• else, output 1.
▷ Execute Updatepbu(state, tnxpbu):

• parse state = (state′,LIAA,LKA,LNUL, vACCU), tnxpbu = (xpbu, πpbu), and xpbu =

(vACCU, nulold, acct
cm
new,AUR

j
en, tnx

idj
Send).

• given tnx
idj
Send ∈ xpbu, retrieve associated TNXj = (tnxjSend, tnx

idj
Send, tnx

stj
Send).

• set tnx
stj
Send ← 3, TNXj ← (·, ·, tnxstjSend) and state′ ← state′ ∪ {TNXj}.

• call vACCU ← ACCU.Add(ppACCU, vACCU, acct
cm
new).

• set LNUL ← LNUL ∪ {nulold}.
• set state← state ∪ {(state′, ·, ·,LNUL, vACCU)} and output state.

Fig. 12: Pending balance update (pbu) transaction tnxpbu

DART: Decentralized, Anonymous, and Regulation-friendly Tokenization 57

Finally, the user executes PoB generation algorithm described in Figure 13.
The NIZK witness, statement, and relation are defined as follows.

• wPoB = (skacct, ρ, s,
−−→
AUR, {pkrken}k)

• xPoB = (nul, acctcm, pkacct, f.b, p.b, a.t,
−−→
AURen,

−→
tnxidSend)

• The relation RPoB(xPoB, wPoB) is defined as:

RPoB =
{
acctcm = Com(skacct, f.b, p.b, a.t, ρ; s)

∧ nul = PRFskacct(ρ)

∧ AURken = Encpkrken (AUR
k) ∀AURk ∈

−−→
AUR

∧
∑
k

AURk.v = p.b

∧ (pkacct, skacct) ∈ Acc.KeyGen(1λ)
}
.

tnxPoB Generation

▷ Execute steps 1 to 4 of the tnxpbu generation algorithm, Figure 12.

▷ For each tnxidiSend: retrieve all TNXj ∈ state′ values where TNXj = (tnxjSend,

tnx
idj
Send, tnx

stj
Send), tnx

stj
Send = 0, and tnxidiSend = tnx

idj
Send hold.

▷ Let the aggregation of AURj , AURjen, and tnx
idj
Send for all j be denoted as

−−→
AUR,

−−→
AURen, and

−→
tnxidSend respectively.

▷ Retrieve the recorded entry (acctcm, acct) where acct = (skacct, f.b, p.b, a.t,
ρ, s).

▷ Compute nullifier nul← PRFskacct(ρ).
▷ Call FNIZK with (Prove, sid, xPoB, wPoB) and receive (Proof, sid, πPoB).
▷ Set PoB transaction tnxPoB ← (xPoB, πPoB).
▷ Output (Balance, sid, tnxPoB) to Z.

tnxPoB Verification (off-chain executed by PoB verifier)

▷ Upon receiving (VerifyPoB, sid, tnxPoB) from Z proceed as follows.
▷ Parse tnxPoB = (xPoB, πPoB), and xPoB = (nul, acctcm, pkacct, f.b, p.b, a.t,−−→
AURen,

−→
tnxidSend).

▷ Call FLedger with (Read, sid). Upon receiving (Read, sid, state) from FLedger,
parse state = (state′,LIAA,LKA,LNUL, vACCU).

▷ For each j, tnx
idj
Send ∈

−→
tnxidSend: ignore if any of the following conditions hold:

• tnx
idj
Send /∈ state′

• tnx
idj
Send ̸= 0

• given tnx
idj
Send ∈

−→
tnxidSend, AUR

∗j
en ̸= AURjen where AUR∗j

en ∈ state′ and

AURjen ∈
−−→
AURen.

▷ Else, ignore if any of the following conditions hold:

58 A. Sarencheh et al.

• nul ∈ LNUL

• upon calling FNIZK with (Verify, sid, xPoB, πPoB), (Vrfed, sid, 0) is re-
turned.

▷ Else, output (pkacct, a.t, f.b, p.b).

Fig. 13: Proof of balance transaction tnxPoB – 2nd approach

B Ideal functionalities

B.1 Key generation functionality

The ideal functionality FKeyReg specifies a public key encryption (PKE)
and account key generations, parameterized by a PKE key generation algo-

rithm (pken, sken)
$←− PKE.KeyGen(1λ) (Definition 1) and an account key pair

(pkacct, skacct) derived from Acc.KeyGen(1λ), where skacct
$←− Z∗

q and pkacct ←
gskacct for a generator g of a cyclic group G of prime order q. The functionality
supports three operations: (i) key generation: upon receiving a key generation
request from a party P, it generates new PKE and account key pairs if none al-
ready exist for P, otherwise output already exist ones. Upon generation FKeyReg

stores them as addrpk = (pkacct, pken) and addrsk = (skacct, sken) under P, and
outputs them to P. (ii) key retrieval: upon receiving P∗ from any network enti-
ties, FKeyReg returns the public key pair addrpk corresponding to P∗ if it exists.
(iii) identifier retrieval: upon receiving pk from any network entity P, FKeyReg

identifies and returns the associated party P∗ if pk matches either the PKE or
account public key recorded for P∗.

Functionality FKeyReg

• Key generation. Upon input (Gen.Key, sid) from some party P, if there
already exists (P, addrpk, addrsk), output (Gen.Key, sid, addrpk, addrsk) to
P and abort. Else, call PKE.KeyGen, and Acc.KeyGen to generate
(pken, sken) and (pkacct, skacct) respectively (re-call if they are not fresh).
Set addrpk ← (pkacct, pken), and addrsk ← (skacct, sken). Record (P,
addrpk, addrsk). Output (Gen.Key, sid, addrpk, addrsk) to P via private-
delayed output.

• Key retrieval. Upon input (Rtrv.Key, sid,P∗) from some party P, ig-
nore if (P∗, addrpk, addrsk) is not recorded. Else, output (Rtrv.Key, sid,
P∗, addrpk) to P.

• Identifier retrieval. Upon input (Rtrv.id, sid, pk) from some party
P, ignore if (P∗, (pk, ·), ·) or (P∗, (·, pk), ·) is not recorded for some P∗.
Else, output (Rtrved.id, sid,P∗) to P.

DART: Decentralized, Anonymous, and Regulation-friendly Tokenization 59

B.2 Non-interactive zero-knowledge functionality

The functionality FNIZK defines a non-interactive zero-knowledge (NIZK) proof
system parameterized by a relation R(x,w), where x is a statement and w is
a corresponding witness introduced by Groth et al. [27]. FNIZK consists of two
main operations: proof generation and proof verification. In contrast to interac-
tive zero-knowledge proofs, NIZK does not require the prior specification of the
verifier. Consequently, the resulting proof can undergo verification by any party.
In the proof generation phase, when a party U requests to generate a proof by
sending (x,w), FNIZK first checks if w satisfies the relation R(x,w) = 1. If the
relation holds, it notifies the adversary A with x but not w. The adversary then
sends back a proof π, which FNIZK stores together with x and returns π to U.
In the proof verification phase, when a party U sends a request (x, π) to verify a
proof, FNIZK checks if the pair (x, π) has already been stored. If so, it outputs a
verification success. If not, it forwards the request to the adversary A and waits
for a response in the form of a witness w. If R(x,w) = 1, the proof is considered
valid, and FNIZK stores the pair (x, π) and outputs verification success. This
ensures that proofs can only be verified if valid witnesses exist, while maintaining
zero-knowledge by hiding the witness during proof generation.

Functionality FNIZK

FNIZK is parameterized by a relation R.

• Proof generation: On receiving (Prove, sid, x, w) from some party P,
ignore if R(x,w) = 0. Else, send (Prove, sid, x) to A. Upon receiving
(Proof, sid, π) from A, store (x, π) and send (Proof, sid, π) to P.

• Proof verification: Upon receiving (Verify, sid, x, π) from some party
P, check whether (x, π) is stored. If not send (Verify, sid, x, π) to A.
Upon receiving the answer (Witness, sid, w) from A, check R(x,w) = 1
and if so, store (x, π). If (x, π) has been stored, output (Vrfed, sid, 1)
to P, else output (Vrfed, sid, 0).

A concept closely related to NIZK is the notion of signatures of knowledge
(SoK). SoK combines digital signatures with zero-knowledge proofs and allows
a signer to authenticate a message not only by proving possession of a secret
key but also by demonstrating knowledge of a witness w for an NP statement
x ∈ L. Such a signature ensures that, upon verification, it is confirmed that the
signer possesses a valid witness for the truth of the statement. The concept of
SoK was formally defined by Chase et al. [14] via an ideal functionality FSoK.
Similar to FNIZK, FSoK is for (x,w) ∈ R. It consists of three primary phases:
setup, signature generation, and signature verification. Unlike FNIZK, FSoK re-
ceives (Verify, Sign,SimSign,Extract) from the adversary A. Upon receiving a
request (Sign, sid,m, x, w) from a party P, FSoK checks whether (x,w) ∈ R. If
the check passes, FSoK computes σ ← SimSign(m,x). Unlike FNIZK, FSoK does

60 A. Sarencheh et al.

not leak the statement x to the adversary. To avoid leaking the statement to
the adversary in the proof generation of proof of balance, we utilize FSoK, which
inherently prevents such leakage. Although FSoK introduces a message m as
part of the signature, this component is unnecessary in our setting. Therefore,
we simplify FSoK by fixing m to a predefined dummy message for all sessions.
This transforms FSoK into a form that functions as FNIZK without the undesired
statement leakage. Therefore, in the following we present the formal definition of
FSoK from [14] under a simplifying assumption: the message m in all interfaces
and algorithms is a predefined (dummy) message, hence, we avoid addressing it.

Without loss of generality, we denote the following functionality as F†
NIZK.

Functionality F†
NIZK

The functionality is parameterized by a relation R. Prove, SimProve, and
Extract are descriptions of PPT TMs, and Verify is a description of a
deterministic polytime TM.

• Setup: Upon receiving (Setup, sid) from some party P, if this is the
first time that (Setup, sid) is received, send (Setup, sid) to A. Upon
receiving (Algorithms, sid, Prove, Verify, SimProve, Extract) fromA,
store these algorithms. Output (Algorithms, sid, Prove, Verify) to P.

• Proof Generation: Upon receiving (Prove, sid, x, w) from P, if
(x,w) /∈ R, ignore. Else, compute π ← SimProve(x), and check that
Verify(x, π) = 1. If so, output (Proof, sid, π) to P and record the en-
try (x, π). Else, output an error message (Completeness error) to P and
halt.

• Proof Verification: Upon receiving (Verify, sid, x, π) from P, check
whether (x, π) is stored. If stored, output (Vrfed, sid, 1) to P. Else, let
w ← Extract(x, π). If (x,w) ∈ R, output (Vrfed, sid, 1) to P. Else,
if Verify(x, π) = 0, output (Vrfed, sid, 0) to P. Otherwise, output an
error message (Verification error) to P and halt.

B.3 Ledger functionality

The ledger functionality FLedger abstracts a public ledger and provides a global
access to the ledger to all parties, parameterized by a Validate predicate (to
check transaction validity), an Update function (to update the ledger state),
and an initial state state (which is empty at the start). The functionality supports
two main operations: read and append. In the read operation, a party U requests
the current state of the ledger. Upon receiving this request, FLedger informs the
adversary A that a request for read is submitted. If the adversary permits the
read, the current ledger state is returned to the requester. Otherwise, the request
is ignored, ensuring that reads occur only when permitted by A.

DART: Decentralized, Anonymous, and Regulation-friendly Tokenization 61

In the append operation, a party submits a transaction tnx to be added to
the ledger. The functionality forwards this tnx to the adversary. If the adver-
sary approves, the Validate function checks whether the transaction tnx is
valid according to the current state state. If valid, the Update function up-
dates the state by appending tnx to the ledger. Otherwise, the transaction is
discarded. This model captures both transparency and adversarial control typ-
ical in blockchain systems, where reads and appends are subject to validation
rules and external influence while ensuring consistent state updates. Depending
on the type of transaction tnx, the functionality FLedger invokes a sub-Validate
and sub-Update algorithms tailored to different transaction types described in
Figures 3 to 8 and 12.

Functionality FLedger

The functionality is globally available to all parties and is parameterized
by a predicate Validate, and Update function and a variable state where
initially state← ∅.

• Read: Upon receiving (Read, sid) from a party P, generate a fresh γ and
set L(γ)← P. Send (Read, sid, γ) to A. Upon receiving (Read.ok, sid, γ)
from A, ignore if L(γ) = ⊥. Else, return (Read, sid, state) to P where
L(γ) = P. Set L(γ)← ⊥.

• Append: Upon receiving (Append, sid, tnx) from a party P, send
(Append.req, sid, tnx) to A. Upon receiving (Append.req.Ok, sid, tnx)
from A, invoke Validate(state, tnx), and if it outputs 1, update state
via calling state← Update(state, tnx). Otherwise, ignore.

B.4 Communication channel functionality

As described in [17] despite robust cryptographic protections at the protocol
level, “network leakage” can still reveal information about the communicat-
ing parties. Therefore, in our UC framework, maintaining a degree of sender
anonymity is essential to preserve (UC) anonymity. This issue is not unique to
ΠDART but arises in any UC-based formalization of privacy-preserving mecha-
nisms. For example, Zerocash [49] would provide no anonymity without a sender-
anonymous channel. Practical deployments of ΠDART could use a VPN, the Tor
network [20], temporary network identities (e.g., public terminals), or JAP [30].
The functionality Fch defines a secure and anonymous communication channel
between a sender Ps and a receiver Pr. When the sender Ps inputs a message m
along with the receiver’s identifier Pr, Fch records the sender and receiver identi-
fiers, and message in an internal mapping associated with a randomly generated
message ID, mid. It notifies the adversary A of mid and the message length.
When the adversary approves, Fch retrieves the corresponding message and de-

62 A. Sarencheh et al.

livers it to the receiver, indicating the sender’s identifier and the full message
contents.

Functionality Fch

Let Ps be a sender and Pr be a receiver. The message is denoted by m.

• Upon input (Send, sid,Pr,m) from Ps, record a mapping P(mid) ←
(Ps,Pr,m) where mid is chosen at random. Output (Send, sid,mid, |m|)
to A.

• Upon receiving (Ok, sid,mid) from A, retrieve P(mid) = (Ps,Pr,m) and
send (Received, sid,Ps,m) to Pr via private-delayed output.

C Cryptographic schemes

C.1 Public key encryption (PKE) schemes

Definition 1 (Public key encryption (PKE) scheme). Let PKE =
(PKE.KeyGen,PKE.Enc,PKE.Dec) denote a public key encryption (PKE)
scheme. A PKE scheme is defined by the following components:

• PKE.KeyGen (Key generation): This algorithm takes a security parameter
λ as input and outputs a pair (pk, sk), where pk is the public key and sk is
the secret (private) key. The public key pk also (implicitly) defines a cor-
responding message space MessageSpace(pk) which specifies the set of valid
plaintexts for encryption.

• PKE.Enc (Encryption): This algorithm takes the public key pk and a plain-
text message m (where m ∈ MessageSpace(pk)) as input and produces a
ciphertext C.

• PKE.Dec (Decryption): The decryption algorithm takes the private key sk
and a ciphertext C as input and outputs either the original plaintext message
m or a special failure symbol ⊥ if decryption fails.

Definition 2 (PKE correctness). A public key encryption (PKE) scheme
PKE = (PKE.KeyGen,PKE.Enc,PKE.Dec) is said to be correct if, for all λ ∈
N, for all key pairs (pk, sk) ← PKE.KeyGen(1λ), and for all messages m ∈
MessageSpace(pk), PKE.Dec(sk,PKE.Enc(pk,m)) = m holds with overwhelming
probability.

Definition 3 (PKE CPA security). A public key encryption (PKE) scheme
PKE = (PKE.KeyGen,PKE.Enc,PKE.Dec) is IND-CPA-secure if, for all PPT ad-
versaries A, the advantage AdvIND-CPA

A (λ) in the following experiment is negligible
in λ: AdvIND-CPA

A (λ) ≤ negl(λ).
The experiment, denoted IND-CPAbPKE(A, λ), is defined between a probabilistic
polynomial-time (PPT) adversary A and a challenger, with a security parameter
λ and a bit b ∈ {0, 1}:

DART: Decentralized, Anonymous, and Regulation-friendly Tokenization 63

1. The challenger generates a key pair (pk, sk) by running PKE.KeyGen(1λ) and
sends the public key pk to the adversary A.

2. The adversary A submits two plaintext messages (m0,m1), ensuring that
|m0| = |m1| and m0,m1 ∈ MessageSpace(pk).

3. The challenger selects a random bit b
$←− {0, 1}, chooses one of the two

plaintexts based on b, and computes the ciphertext Cb = PKE.Enc(pk,mb).
4. The challenger sends the ciphertext Cb to the adversary A.
5. The adversary A outputs a bit b′ as its guess for b. If A does not output any

value, the guess b′ is set to 0 by default.

The adversary’s advantage AdvIND-CPA
A (λ) in this experiment is defined as:

AdvIND-CPA
A (λ) =

∣∣Pr[IND-CPA1
PKE(A, λ) = 1]− Pr[IND-CPA0

PKE(A, λ) = 1]
∣∣.

Definition 4 (PKE key privacy). Key privacy ensures that the public key
used to generate a ciphertext remains hidden [3]. The KeyPriv security experi-
ment is conducted between a probabilistic polynomial-time (PPT) adversary A
and a challenger. A public key encryption scheme PKE is KeyPriv-secure if, for
all PPT adversaries A, the advantage AdvKeyPrivA (λ) is negligible in the security

parameter λ: AdvKeyPrivA (λ) ≤ negl(λ).

This experiment, denoted KeyPrivbPKE(A, λ), is defined with a bit b ∈ {0, 1} and
a security parameter λ:

1. The adversary is given access to two encryption-decryption oracles associated
with different public keys.

2. For k ∈ {0, 1}: (pkk, skk)
$←− PKE.KeyGen(1λ), where pkk and skk are the

public and secret keys for the k-th oracle, respectively.
3. The adversary submits a message m, where: m← AOsk0,pk0

,Osk1,pk1 (pk0, pk1).

4. The challenger selects a random bit b
$←− {0, 1}.

5. A ciphertext C is generated by encrypting m under the public key pkb: C ←
PKE.Enc(pkb,m).

6. The adversary receives C and outputs a bit b′ as its guess for b: b′ ←
AOsk0,pk0

,Osk1,pk1 (pk0, pk1, C).
7. The adversary wins if b = b′. The oracles reject decryption queries for the

challenge ciphertext C.

The adversary’s advantage AdvKeyPrivA (λ) in this experiment is defined as:

AdvKeyPrivA (λ) =
∣∣Pr[KeyPriv1PKE(A, λ) = 1]− Pr[KeyPriv0PKE(A, λ) = 1]

∣∣.
Definition 5 (ElGamal encryption scheme). The ElGamal encryption
scheme [23], denoted EG, is a public-key encryption (PKE) scheme that op-
erates over a prime-order cyclic group Gq with generator g. The scheme consists
of three main algorithms EG = (EG.KeyGen,EG.Enc,EG.Dec) defined as follows:

• EG.KeyGen (Key generation): Let G be a prime-order group generator that
outputs (q, g), where q is a prime and g is a generator of the cyclic group
Gq. The key generation algorithm proceeds as follows:

64 A. Sarencheh et al.

– Take the security parameter 1λ as input.

– Sample the secret key sk = x
$←− Zq uniformly at random.

– Compute the public key component P = gx.
– The public key is pk = (q, g,P), and the secret key is sk = x.

• EG.Enc (Encryption): To encrypt a message M ∈ Gq, the encryption pro-
cess is as follows:

– Sample a random value r
$←− Zq.

– Compute: C1 = gr, B = Pr.
– Compute the ciphertext components: ψ = (C1,C2), where C2 = B ·M.

• EG.Dec (Decryption): Given a ciphertext ψ = (C1,C2), the decryption
process is as follows:

– Compute: B = Cx1
– Recover the original message M by computing: M = C2 · B−1.

The security of the ElGamal encryption scheme under chosen-plaintext attack
relies on the hardness of the decisional Diffie-Hellman (DDH) problem in the
group Gq.

C.2 Commitment schemes

Definition 6 (Commitment scheme). Let COM = (COM.KeyGen,
COM.Commit,COM.Verify) denote a commitment scheme. A commitment
scheme is defined by the following components:

• COM.KeyGen (Key generation): This probabilistic algorithm takes a secu-
rity parameter λ as input and outputs a pair of keys (ck, vk), where ck is the
commitment key used by the committer and vk is the verification key used by
the verifier. In the case of a publicly verifiable scheme, ck = vk.

• COM.Commit (Commitment phase): This probabilistic algorithm takes
the commitment key ck and a message m (where m ∈ MessageSpace(ck)) as
input. It outputs a commitment value c and an opening value d: (c, d) ←
COM.Commit(ck,m). The pair (c, d) allows the committer to convince the
verifier that the committed message is m during the verification phase.

• COM.Verify (Verification phase): This deterministic algorithm takes the
verification key vk, a message m, and an opening value d as input. It outputs
accept if (c, d) correctly reconstructs the message m and satisfies the com-
mitment’s consistency conditions; otherwise, it outputs reject. More formally:

COM.Verify(vk, c,m, d) =

{
accept if (c, d) is a valid opening for m,

reject otherwise.

Definition 7 (Commitment correctness). The correctness property ensures
that, assuming honest behavior by both the committer and the verifier, a valid
commitment for any (valid) message m is always accepted by the verifier with
the probability 1.

DART: Decentralized, Anonymous, and Regulation-friendly Tokenization 65

Definition 8 (Commitment hiding). Let COM = (COM.KeyGen,
COM.Commit,COM.Verify) denote a (publicly verifiable) commitment scheme.
Hiding security, for all probabilistic polynomial-time (PPT) adversaries A, is
defined as follows. The hiding experiment HidebCOM(A, λ) between a PPT adver-
sary A and a challenger proceeds as follows:

1. The challenger generates a key ck = vk by running COM.KeyGen(1λ) and
sends the key ck to the adversary A.

2. The adversary A submits two messages (m0,m1), ensuring that |m0| = |m1|
and m0,m1 ∈ MessageSpace(ck).

3. The challenger selects a random bit b
$←− {0, 1}, computes the commitment

(c, d)← COM.Commit(ck,mb), and sends the commitment c to the adversary
A.

4. The adversary A outputs a bit b′ as its guess for b.

The adversary’s advantage AdvHideA (λ) in this experiment is defined as:

AdvHideA (λ) =
∣∣Pr[Hide1COM(A, λ) = 1]− Pr[Hide0COM(A, λ) = 1]

∣∣.
A commitment scheme satisfies the hiding security property if:

• Perfect hiding: For all adversaries A, AdvHideA (λ) = 0
• Computational hiding: For all PPT adversaries A, AdvHideA (λ) ≤ negl(λ)

Intuitively, this guarantees that no adversary can distinguish the commitment of
m0 from m1 with probability significantly better than a random guess. Hence, the
commitment hides the underlying message.

Definition 9 (Commitment binding). Let COM = (COM.KeyGen,
COM.Commit,COM.Verify) denote a (publicly verifiable) commitment scheme.
The binding security for all probabilistic polynomial-time (PPT) adversaries
A is defined as follows. The binding experiment BindCOM(A, λ) between a PPT
adversary A and a challenger proceeds as follows:

1. The challenger generates a key ck = vk by running COM.KeyGen(1λ) and
sends the key ck to the adversary A.

2. The adversary A outputs a tuple (c,m, d,m′, d′), where m,m′ ∈
MessageSpace(ck).

3. The challenger checks:

COM.Verify(vk,m, c, d) = 1 and COM.Verify(vk,m′, c, d′) = 1.

4. If both verifications succeed and m ̸= m′, the adversary A wins the binding
game. Otherwise, the adversary fails.

The adversary’s advantage AdvBindA (λ) in this experiment is defined as:

AdvBindA (λ) = Pr[BindCOM(A, λ) = 1].

A commitment scheme satisfies the binding security property if:

66 A. Sarencheh et al.

• Perfect binding: For all adversaries A, AdvBindA (λ) = 0.
• Computational binding: For all PPT adversaries A, AdvBindA (λ) ≤

negl(λ).

Intuitively, this guarantees that no adversary can produce a valid commitment
that can be opened to two different messages with probability significantly better
than negligible. Hence, the commitment binds the committer to a single value.

Definition 10 (Pedersen commitment scheme). Let PCOM =
(PCOM.KeyGen,PCOM.Commit,PCOM.Verify) denote the Pedersen commitment
scheme [46]. The Pedersen commitment scheme is defined by the following com-
ponents:

• PCOM.KeyGen (Key generation): This probabilistic algorithm takes a se-
curity parameter λ as input and outputs the cyclic group parameters (G, q, g),
where G is a cyclic group of prime order q, and g is a generator of

G. Additionally, it selects a random group element h
$←− G and outputs

ck = vk = (G, q, g, h).
• PCOM.Commit (Commitment): This probabilistic algorithm takes the com-

mitment key ck = (G, q, g, h) and a message m ∈ Zq as input. It gener-

ates a random opening value d
$←− Zq and computes the commitment value

c = gd · hm. The output is the pair (c, d): (c, d)← PCOM.Commit(ck,m).
• PCOM.Verify (Verification): This deterministic algorithm takes the veri-

fication key vk = (G, q, g, h), a message m ∈ Zq, an opening value d ∈ Zq,
and a commitment value c ∈ G as input. The algorithm outputs accept if the
equality gd · hm = c holds, indicating a valid commitment to m, and reject

otherwise: PCOM.Verify(vk, c,m, d) =

{
accept if gdhm = c,

reject otherwise.

The Pedersen commitment scheme PCOM is perfectly hiding and computation-
ally binding [37,38].

C.3 Pseudorandom function (PRF) schemes

Definition 11 (Pseudorandom function (PRF) scheme). Let PRF =
(F.KeyGen,F.Eval) denote a pseudorandom function (PRF) scheme. A PRF
scheme is defined by the following components:

• F.KeyGen (Key generation): This algorithm takes a security parameter λ
as input and outputs a secret key k ∈ K, where K denotes the key space.

• F.Eval (Function evaluation): This algorithm takes the secret key k and
an input x ∈ X, where X is the domain, and outputs a value y ∈ Y , where
Y is the range. Formally, the function is defined as Fk : X → Y , where
Fk(x) = y.

Definition 12 (PRF pseudorandomness). A pseudorandom function
(PRF) scheme PRF = (F.KeyGen,F.Eval) is pseudorandom if, for all probabilis-
tic polynomial-time (PPT) adversaries A, the advantage AdvPRF.PseudoA (λ) in the
following experiment is negligible in λ: AdvPRF.PseudoA (λ) ≤ negl(λ).

DART: Decentralized, Anonymous, and Regulation-friendly Tokenization 67

The security experiment, denoted PseudobPRF(A, λ) for b ∈ {0, 1}, is defined be-
tween a probabilistic polynomial-time (PPT) adversary A and a challenger as
follows:

1. The challenger takes the security parameter λ and generates a secret key
k ∈ K by running F.KeyGen(1λ).

2. For b = 0: The challenger defines the function Fk : X → Y as Fk(x) =
F.Eval(k, x), where X is the domain and Y is the range.

3. For b = 1: The challenger chooses a truly random function f : X → Y
uniformly at random.

4. The challenger selects a random bit b
$←− {0, 1}.

5. The adversary A submits q queries x1, . . . , xq ∈ X. For each query xi, the
challenger responds with f(xi) (if b = 1) or Fk(xi) (if b = 0).

6. The adversary A outputs a bit b′ ∈ {0, 1}, indicating its guess of whether the
function is pseudorandom (b = 0) or truly random (b = 1).

The adversary’s advantage AdvPRF.PseudoA (λ) is defined as:

AdvPRF.PseudoA (λ) =
∣∣Pr[Pseudo1PRF(A, λ) = 1]− Pr[Pseudo0PRF(A, λ) = 1]

∣∣,
Definition 13 (Dodis-Yampolskiy PRF). Let DY = (DY.KeyGen,DY.Eval)
denote the Dodis-Yampolskiy pseudorandom function (DY PRF) scheme [22],
which is based on the Boneh-Boyen unpredictable function [7]. The DY PRF is
defined as follows:

• DY.KeyGen (Key generation): This algorithm takes a security parameter
λ as input and outputs a secret key k ∈ Zq, where q is the order of a cyclic
group G = ⟨g⟩.

• DY.Eval (Function evaluation): This algorithm takes the secret key k ∈ Zq
and an input x and outputs a value y ∈ G. The evaluation function is defined
as:

Fk(x) = g1/(k+x),

where g is a generator of the cyclic group G.

The security of the Dodis-Yampolskiy PRF relies on the hardness of the q-
Decisional Diffie-Hellman Inversion (q-DDHI) problem [22].

C.4 Accumulator schemes

An accumulator scheme enables the compact representation of an arbitrarily
large set S of elements. Given a membership witness for an accumulated el-
ement x and the current accumulator value vACCU, it is possible to efficiently
verify whether x is a valid member of the accumulated set. Importantly, the
accumulated set can be dynamically updated as elements are added.

Definition 14 (Accumulator scheme). Let ACCU = (ACCU.Setup,Accu,
ACCU.Add,ACCU.PrvMem,ACCU.VfyMem) denote an accumulator scheme over
the universe U . An accumulator scheme is defined by the following components:

68 A. Sarencheh et al.

• ACCU.Setup (Setup): This algorithm takes the security parameter λ as input
and outputs the public parameters ppACCU: ppACCU ← ACCU.Setup(1λ).

• Accu (Accumulate): This deterministic algorithm takes the public param-
eters ppACCU and a set S ⊆ U as input and computes an accumulator value
vACCU for the set S: vACCU ← Accu(ppACCU, S).

• ACCU.Add (Add element): This algorithm takes the public parame-
ters ppACCU, an accumulator value vACCU, and an element x ∈ U
as input and outputs an updated accumulator value v′ACCU: v′ACCU ←
ACCU.Add(ppACCU, vACCU, x).

• ACCU.PrvMem (Prove membership): This algorithm takes the public pa-
rameters ppACCU, a set S, and an element x as input and outputs a mem-
bership proof πACCU showing that x is in the accumulated set S: πACCU ←
ACCU.PrvMem(ppACCU, S, x).

• ACCU.VfyMem (Verify membership): This algorithm takes the pub-
lic parameters ppACCU, an accumulator value vACCU, an element x, and
a membership proof πACCU as input and outputs a bit {0, 1} indi-
cating whether x belongs to the set accumulated in vACCU: {0, 1} ←
ACCU.VfyMem(ppACCU, vACCU, x, πACCU).

Definition 15 (Accumulator correctness). Let ACCU = (ACCU.Setup,
Accu,ACCU.Add,ACCU.PrvMem,ACCU.VfyMem) denote an accumulator scheme
over the universe U . An accumulator scheme is said to be correct if the following
properties hold, for all security parameters λ ∈ N, all elements x ∈ U , and all
sets S ⊆ U :

• let ppACCU ← ACCU.Setup(1λ) and vACCU ← Accu(ppACCU, S). Then, for
the updated accumulator v′ACCU ← ACCU.Add(ppACCU, vACCU, x), we have:
v′ACCU = Accu(ppACCU, S ∪ {x}).

• for x ∈ S, let ppACCU ← ACCU.Setup(1λ), vACCU ← Accu(ppACCU, S), and
πACCU ← ACCU.PrvMem(ppACCU, S, x). Then the membership proof πACCU is
valid, i.e., ACCU.VfyMem(ppACCU, vACCU, x, πACCU) = 1.

Definition 16 (Accumulator soundness). Soundness guarantees that no
efficient adversary can choose a set S and generate a proof that verifies against
Accu(ppACCU, S) for an element x /∈ S. More formally, an accumulator ACCU is
said to be sound if the following property holds for all security parameters λ ∈ N,
and PPT adversaries A:

Pr

[
ppACCU ← ACCU.Setup(1λ)

(S, x, πACCU)← A(ppACCU)
:
x /∈ S ∧ vACCU ← Accu(ppACCU, S) ∧
ACCU.VfyMem(ppACCU, vACCU, x, πACCU) = 1

]
≤ negl(λ)

	Introduction
	Our results

	Related works
	Formal modeling
	Our construction DART
	Algorithms
	Address generation.
	Asset issuance.
	Account registration.
	Increase asset supply.
	Sender transaction.
	Receiver transaction.
	Reversion.
	Proof of balance.
	Auditor operation.

	Discussion
	Multi-party transactions
	Fee payments
	Maintenance of LIAA

	Implementation details
	DART security proof
	Simulation
	Security games

	Proof of balance: a generic solution
	Ideal functionalities
	Key generation functionality
	Non-interactive zero-knowledge functionality
	Ledger functionality
	Communication channel functionality

	Cryptographic schemes
	Public key encryption (PKE) schemes
	Commitment schemes
	Pseudorandom function (PRF) schemes
	Accumulator schemes

