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Abstract. We study append-only set commitments with efficient updates and inclusion proofs, or
cryptographic accumulators. In particular, we examine how often the inclusion proofs (or witnesses)
for individual items must change as new items are added to the accumulated set. Using a compression
argument, we show unconditionally that to accumulate a set of n items, any construction with a succinct
commitment (O(λ polylog n) storage) must induce at least ω(n) total witness updates as n items are
sequentially added. In a certain regime, we strengthen this bound to Ω(n logn/ log log n) total witness
updates. These lower bounds hold not just in the worst case, but with overwhelming probability over
a random choice of the accumulated set. Our results show that a close variant of the Merkle Mountain
range, an elegant construction that has become popular in practice, is essentially optimal.

1 Introduction

Consider the problem of a maintaining a cryptographic commitment to an ever-growing set of elements,
for example the set of all users with a registered public key, all issued x.509 certificates on the Internet,
or all transactions in a blockchain. In all of these applications, elements can only be added to the set
and never deleted. The commitment itself should be succinct (at most logarithmic in the size of the set),
and the scheme should support short (again at most logarithmic in the size of the set) inclusion proofs
(or witnesses5) that any individual element is included in the set. These requirements are met by classic
cryptographic accumulators [5]. However, in many practical applications there is an additional goal, that
witnesses of already-included elements do not change too often as new elements are added. Unfortunately, for
most known accumulators (e.g., Merkle trees [31], RSA accumulators [11], and bilinear accumulators [35]),
adding a single new element to the set requires (except with negligible probability) changing every existing
element’s witness.

As a result, several works (e.g., [44,39,45,21]) whose applications benefit from low witness update frequency
have proposed tailored accumulator constructions. Curiously, these constructions all appear to reinvent the
same data structure: the Merkle Mountain Range (MMR).6 An MMR is a list of Merkle trees. New elements
are added to the smallest tree, and whenever there are two complete trees of the same size, we merge them.
An element’s witness is only updated when its tree is merged. This results in a Θ(λ log n)-sized commitment
and a total of Θ(n log n) witness changes when accumulating a set of size n.

Despite a large body of work on cryptographic accumulators, no construction has surpassed the witness
update efficiency of MMRs, suggesting a fundamental barrier. This leads us to the natural question:

What is the optimal witness update frequency of an append-only accumulator?

5 We will use the terms “witness” and “inclusion proof” interchangeably.
6 We use the name Merkle Mountain Range as coined by Todd in the first proposal we are aware of [44] and most
widely known in practical implementations, though it was not used in later academic work [39,21].



Witness update frequency has rarely been studied, despite its importance in practice. Existing lower bounds
on witness updates [10,13] apply only to data structures that support deletion and, critically, use the power
of deletion in their proofs. To now, it was not known whether analogous lower bounds held for append-only
data structures, let alone lower bounds approaching the Θ(n log n) efficiency of the MMR construction.

Furthermore, known lower bounds are quite weak in showing only that at least Ω(n/ log n) elements must
have their witness changed at least once. Our results are stronger in showing that most elements’ witnesses
change ω(1) times. This is relevant in practical settings when, for example, every user holding an element
whose witness changes must retrieve the new witness with each update. If every element’s witness changed
at most some constant number of times, users could go offline after this number of changes occurred, as
after that point their witness would remain valid indefinitely. In contrast, our lower bound shows that most
elements’ witnesses will never stop changing as the committed set grows.

Our results We show that any accumulator of size O(λ polylog n) requires ω(n) total witness updates during
the course of accumulating a set of n elements in sequence, implying at least ω(1) updates on average per

element. For stronger accumulators accommodating sets of size 2λ
β

for constant β > 0, we show a stronger
bound of Θ(βn log n/ log log n) total updates. Our proof leverages a compression argument, which is from
first principles but is quite involved. We observe that our lower bound is asymptotically tight, as the optimal
parameter setting for k-ary MMRs results in O(n log n/ log log n) total updates.

2 Related Work

Authenticated data structures An authenticated data structure is a succinct commitment to a data struc-
ture which facilitates efficient correctness proofs of read and sometimes write operations for verifiers not
storing the entire data structure. Different constructions exist for different underlying data structures, in-
cluding set commitments (commonly known as accumulators) [11,29,35,16,2], i.e. elements stored without
a position; vector commitments [12,27,46,22,37], i.e. elements stored in specified total order; and key-value
(also sometimes called dictionary or map) commitments [36,47,48,1,49,20], i.e. element values placed in flex-
ible slots addressed by a key. More constructions are possible; indeed, Miller et al. show that any classical
acyclic pointer-based data structure can be generically transformed into an authenticated data structure
assuming only collision-resistant hash functions [32]. While different constructions are often developed for
each setting, they are interrelated, with generic transformations between them [7,12,20]. Our work focuses
exclusively on accumulators, the simplest authenticated data structure, but our lower bounds apply to most
other constructions (e.g. vector or map commitments) as these can be used to instantiate a set commitment.

Memory checkers A memory checker, defined and first constructed by Blum et al. [6], is a natural type of
authenticated data structure that has received attention from both theoretical and applied communities.
A memory checker allows a client with a small amount of trusted storage to outsource storage of a large
database to untrusted memory. The memory checker sits between the client and the large untrusted memory,
and allows the client to make write and read operations, whose correctness it can verify using its trusted
local storage. Two standard efficiency measures of memory checkers are space complexity, or the amount of
local storage used by the client, and query complexity, the maximum number of entries in untrusted storage
the memory checker must access to make and validate an operation.

Follow-up works have studied the efficiency of memory checking. Dwork et al. [18] showed that the query
complexity of deterministic memory checkers using a sublinear amount of local storage is at least logn

log logn

for databases of size n. Boyle et al. [8] further generalized this result to also describe non-deterministic,
adaptive memory checkers. Recently, Wang et al. [50] investigated the locality of memory checkers, i.e. the
maximum number of non-contiguous public memory regions queried across all index queries. They showed
that the locality of memory checkers is also lower bounded by logn

log logn . The space complexity of online

memory checkers requires computation assumptions and specifically one-way functions [6,34] in order to get
meaningful space-query complexity guarantees, with local space proportional to the security parameter.
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Memory checker lower bounds are similar in spirit to our accumulator lower bounds, though they are formally
different. We discuss these differences in depth after recalling accumulators and their existing lower bounds.

Accumulators Accumulators are authenticated data structures that store a set, and enable verifying inclusion
of any element in that set. We give a precise definition lf accumulators in Section 4 (Definition 1). The
best-known and still most widely used accumulator is the classic Merkle tree [31], although it is often not
considered an accumulator (and indeed provides the stronger abstraction of a vector commitment). Benaloh
and de Mare [5] first proposed the first algebraic construction, based on groups of unknown order (RSA
groups), which offers constant-sized inclusion proofs and constant-size update costs to add an element. Later
advances extended the functionality to include dynamic accumulators [11] (supporting efficient deletion as
well as addition) and universal accumulators [29] (supporting exclusion as well as inclusion proofs). Note
that in our work we only consider basic accumulators (e.g. not necessarily dynamic or universal). Again, our
lower bounds apply as well to dynamic or universal accumulators, as these offer strictly more functionality
and hence can simulate basic accumulators.

Among all constructions, Merkle trees [31] provide optimal query and locality efficiency [18,50] while most
non-tree based, algebraic constructions [5,11,29,35] offer optimal proof size (constant).

Existing accumulator lower bounds The efficiency of witness updates in dynamic accumulators was studied
by Camacho and Hevia [10], who proved information-theoretically that information at least linear in the
number of deleted elements needs to be communicated to update all witnesses. Christ and Bonneau [13]
proved that when deleting n elements from a dynamic accumulator with a succinct commitment, Ω(n/ log n)
proofs must change in total. They further show this result applies to any universal accumulator (supporting
both inclusion and exclusion proofs) even without explicitly supporting deletion of elements, as adding a
new element effectively requires “deleting” that element’s previous exclusion proof. Notably, we consider
accumulators that are not necessarily dynamic or universal, to which these prior lower bounds do not apply.

The trade-off between the size of the global state and the frequency with which proofs must be updated
is the basic idea behind buffering which we discuss further in Section 3.2. Among prior work, for example,
Aardvark [28] uses a buffer of uncommitted new items to efficiently support concurrent data updates.

Accumulators versus memory checkers. Dwork et al. and Boyle et al. [18,8] use compression arguments to
prove lower bounds on the complexity of memory checkers. These bounds are incomparable to our accu-
mulator lower bounds for several reasons. An append-only accumulator can be thought of as a restricted-
functionality memory checker with a rigid structure, where each entry i in the memory checker’s untrusted
storage stores either ⊥ or a membership proof of element i. Trusted storage contains only the commitment.

First, the functionality that an append-only accumulator provides is far narrower than that of memory
checkers, and therefore is a priori easier to realize. Specifically, append-only accumulators store only binary
strings, and write operations may change 0s to 1s but never 1s to 0s. The accumulator enables attestation to
the 1 entries, but does not allow one to verify that an entry is 0. In contrast, memory checkers store arbitrary
data, authenticate all entries, and allow arbitrary write operations. As memory checkers must implement
stronger functionalities, their lower bounds do not imply accumulator lower bounds.

Second, we consider a slightly different notion of complexity. While the size of our accumulator corresponds to
the amount of trusted storage (i.e., local space) in a memory checker, our notion of witness update complexity
is incomparable to the memory checker notion of write complexity. In our setting, each client (which one
can think of as an entry in unreliable storage) maintains its own membership proof of a stored element. We
measure the total number of times the clients’ membership proofs must change as n elements are added to the
stored set. On the other hand, memory checker lower bounds measure the maximum number of untrusted
database locations that must be accessed during a query. Thus, our witness change complexity reflects only
a number of changes, whereas memory checker query complexity reflects the pattern of changes.

Finally, accumulators essentially require that it is possible to distribute the entries in untrusted storage, such
that each entry authenticates a 1 in the stored string.
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Optimizations outside our setting When the accumulator is managed by a trusted party that maintains a
secret state, efficient constructions enabling low witness update frequency exist. Baldimtsi et al. [4] and later
Karantaidou and Baldimtsi [26] propose accumulators that remain static in additions, requiring no proof
updates. Tas and Boneh propose vector commitments with efficient updates that rely on a tree structure [43].
However, this secret state allows the manager to violate soundness of the commitment, whereas we consider
the more traditional trustless setting.

Another optimization that does not address our problem is batching, which broadly describes efficient op-
erations for groups of elements, for example adding a subset of elements all at once to an accumulator.
Boneh et al. [7] modify RSA accumulators to enable a single membership witness that holds for a large set
of elements. Srinivasan et al. [41] develop an algorithm that updates all elements’ witnesses more compu-
tationally efficiently than updating each witness individually. No batching techniques allow witnesses to be
updated less frequently. In [43] the data is organized in a tree, a trusted manager is taking advantage of the
duplicate nodes across different paths (witnesses) and according to the position of the newly added elements,
the manager precomputes node updates that are shared by many old elements.

Merkle Mountain Ranges and similar constructions Todd [44] proposed and named7 Merkle Mountain Ranges
in 2013, looking for an efficient data structure for committing to all blocks in the Bitcoin blockchain. Reyzin
and Yakoubov [39] appear to have re-discovered essentially the same construction in 2016, motivated by
the application of distributed PKI. Garg et al. again rediscovered the construction 2018 [21], motivated
by the application of registration-based encryption. Prior to Todd, Crosby and Wallach proposed Merkle
History Trees in 2009 [15] (in the context of tamper-evident logging), a similar notion but with all sub-trees
included as nodes of a larger tree. Google’s Transparency team proposed a similar concept, compact ranges
in 2022 [14].

Applications MMRs have seen many proposed applications within the space of blockchains and cryptocur-
rencies. Todd’s motivation in the original MMR proposal was the OpenTimestamps project, seeking to
implement an efficient timestamping service on top of Bitcoin by building an MMR of all past Bitcoin
blocks. Todd later proposed using MMRs to commit to all UTXOs (unspent transaction outputs) in each
Bitcoin block, enabling more efficient proofs of transaction validity [45]. Bünz et al. [9] proposed including
an MMR of past blocks within each block header to enable FlyClient, an ultra-light client implementation
for proof-of-work cryptocurrencies. Liang et al. [30] proposed extending to k-ary MMRs with applications to
IoT-focused blockchains.

Several of these applications have seen practical deployment: FlyClient’s use of MMRs for compact history
proofs has been adopted by the Grin [24], Minima [33], Nervos [52], Neptune [42] and Zcash [19] blockchains.
Other projects build an MMR on top of existing chains for compact proofs of data inclusion, including Ax-
iom [3], Herodotus [25] and Picasso [38]. Finally, in line with Todd’s original motivation applications, several
projects use MMRs as part of a data timestamping service, including DataTrails [17], OpenTimestamps [44],
and Witness [51].

3 Technical overview

An append-only accumulator provides the following functionality: Given a set X, it outputs a commitment A
and a membership witness πi for each element xi ∈ X. For example, A may be a Merkle tree root, in which
case each πi would be a Merkle inclusion proof for the xi stored at each leaf. The accumulator provides
a verification function that should output true when given any tuple (A, xi, πi) of an honestly generated
commitment, included element, and a properly-generated witness for that element. It should output false
given any element not included in the set corresponding to the given commitment. We provide a formal
definition in Section 4.

7 We note that later academic rediscoveries [39,21] did not use the name “mountain range.”
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To add an element x′ to the accumulated set X, the naive approach is to compute from scratch a succinct
commitment A′ to X ∪ {x′}, along with membership witnesses for all elements in X ∪ {x′}. Most practical
accumulator constructions offer more efficient algorithms for update, which in some cases don’t require
changing the membership witnesses for all elements.

3.1 Witness update frequency in append-only accumulators

We consider the following problem: Elements in the set X = {x1, . . . , xn} are added to an accumulator in

sequence. After x1 is added, its initial membership witness (which we denote π
(1)
1 ) is only guaranteed to be

valid for the current commitment, which we denote A1. After adding x2, the commitment changes to A2 and

it is possible (and indeed overwhelmingly likely for most schemes) that verification fails for π
(1)
1 with respect

to A2, even though x1 is still in the accumulated set. Therefore, π
(1)
1 must be updated to a new, valid witness

π
(2)
1 . As additional elements are added, the witness for x1 may continue to evolve through multiple values;

we use π
(i)
1 to denote the witness of x1 with respect to the commitment Ai.

The number of witness changes for xj is the number of changes its witness undergoes throughout this sequence

of additions, or more precisely the number of indices j ≤ i ≤ n − 1 such that π
(i)
j ̸= ⊥ and π

(i)
j ̸= π

(i+1)
j .

Note that element j can have its witness change at most n− j times, its witness is undefined (⊥) before it
is added to the accumulator and we don’t count the initial assignment of a witness as a change.8

We are mostly concerned with the total number of witness changes across all elements, though these results
easily translate into an average number of witness updates per element. The total number of witness updates

can be at most n(n−1)
2 = O(n2) (if all added elements’ witnesses change at every step), or O(n) per element,

as is achieved by most classical accumulators.

We could also consider the worst-case number of witness updates (the maximum number of changes per
element, over all elements added to the accumulator). However, in all natural cases that we know of, the
worst case is asymptotically equivalent to the average case.9

Finally we note that our results do not say anything about the best-case, or minimum number of witness
updates across all elements. This question is not particularly interesting in our setting, as by definition
element xn (the last accumulated) always has no witness updates. It is also trivial to design an accumulator
that avoids witness updates for any particular element, for example the first element, by storing it directly
and giving it a null witness.

3.2 Comparison of known constructions

We can now compare the efficiency of several constructions for accumulating a set on both commitment size
and witness update frequency. The simplest approach is a crude database, in which the the commitment is
simply the complete list of elements. This approach requires Θ(nλ) storage10, but each element’s witness is
constant (the element itself). By contrast, the classical cryptographic accumulator constructions require just
Θ(λ) storage, but at the cost of O(n2) witness updates in total. Between these two extreme points, there are
several interesting intermediate trade-offs, as shown in Table 1.

One natural idea, dating to the early days of computing [23], is buffering. The commitment now consists of
a classical accumulator commitment plus a temporary buffer with space to store up to k elements directly.
New elements are written directly to the buffer and not immediately added to the accumulator. After k

8 Alternately one could count the initial assignment of a witness as a “change.” This would have no impact on our
lower bounds; it would simply add one to the witness change count for all elements.

9 One could easily construct a contrived accumulator that achieved better average results but poor performance for
an arbitrarily chosen element, but we don’t know of a natural construction that would exhibit this behavior.

10 While writing elements in the buffer naively requires logarithmically many bits in the size of the data universe U ,
one can instead write a Θ(λ)-length collision-resistant hash of each element.
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Table 1. Comparison of approaches for constructing an append-only set commitment with n elements. We list the
total number of witness updates across all elements, in terms of n and k. For simplicity, we omit the security parameter
λ as all commitment sizes are additionally linear in λ and it does not affect the number of witness updates.

Construction Commitment size Total # witness updates

Simple database Θ(n) 0
Classical accumulator [31,5,35] Θ(1) O(n2)

k-buffering + accumulator Θ(k) O(n
2

k
)

k-bucketed accumulators Θ(n
k
) O(kn)

k-buffering + k-bucketed accumulators Θ
(
n
k
+ k

)
O(n)

k-ary Mountain Range (§6) O(k logk n) O (n logk n)
(logn)-ary Mountain Range (§6) O(log2 n) O(n logn/ log logn)

members are written this buffer must be flushed, with every new member added to the committed data
structure (and every existing member’s witness changing as a result). This approach offers a linear trade-off,

requiring Θ(kλ) global storage in exchange for O(n
2

k ) witness updates in total.

Another natural trade-off can be achieved by bucketing the items into a growing list of accumulator commit-
ments each storing up to k elements. New items are added to an accumulator with fewer than k elements, if
one exists; otherwise, they are inserted into a new accumulator which is added to the list. With this approach,
n elements require Θ(nk ) set commitments, but there are only O(kn) witness updates in total.

Bucketing and buffering can also be combined: New elements are appended to the buffer and given null
witnesses. After the buffer is full, the items in the buffer are accumulated into a constant-sized commitment,
which is appended to the commitment list. After accumulating n elements, there are at most n/k constant-
sized commitments and a buffer of size at most k. Therefore, this approach uses Θ(λ · (nk + k)) storage, and
requires at most one update per witness, or O(n) witness updates in total. Setting k =

√
n, one can achieve

Θ(λ
√
n) storage.

Can we do better? An elegant solution which achieves both sublinear storage and witness updates is the
Mountain Range, shown in Figure 1. We provide a complete definition in Section 6, but in brief the approach
can be seen as a natural evolution of the bucketing + buffering approach. Instead of using a single buffer
and a set of of fixed accumulators of size k, a mountain range consists of a series of buckets (each committed
as an accumulator) of size exactly km for some m.11 Any time there are k equal-sized buckets of size km,
they are merged into a new commitment to a bucket of size km+1 (which may trigger additional merges if
there are now k buckets of size km+1 and so on). This approach breaks through the linear trade-offs above,
requiring O(logk n) updates per witness with only Θ(k logk n) global storage.

Merkle Mountain Ranges This idea has typically been proposed specifically as a Merkle Mountain Range
(MMR), using (binary) Merkle trees as the underlying accumulator and k = 2, leading to O(n log2 n) total
witness updates with Θ(log2 n) storage. In an MMR, the commitment consists of a list of roots of Merkle
trees decreasing size. We add new elements as leaves in the smallest tree, and every time we obtain two trees
of equal size, we merge them. This leads to the visual image of a series of increasingly smaller “mountains”
and the name “mountain range.” The MMR construction affords a very simple implementation as well as
concretely efficient merging: Merges in an MMR always involve two trees of equal size, which are easily merged
by adding a new element as the root with the two existing trees as children. Witness updates are similarly
concretely efficient, consisting of appending just one new neighbor-node value to the existing witness.

3.3 Our lower bound

We consider the Mountain Range design and ask the natural question: is this the optimal accumulator
construction for balancing global storage costs with witness update frequency?

11 The singleton items (conceptually buckets of size k0) can also be stored directly rather than in an accumulator.
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r0

l0 l1 l2 l3

r1

l4 l5 r2 = l6

Mountain 1 Mountain 2 Mountain 3

Fig. 1. A binary Merkle Mountain Range with three mountains, storing seven elements (l0, l1, . . . , l6). The commit-
ment consists of (r0, r1, r2).

Compression arguments Like many existing data structure lower bounds (e.g., [18,10,13,8]), ours leverages
a compression argument : Alice chooses a random subset of the data universe, commits to this set using
the authenticated data structure and communicates this commitment to Bob. Bob attempts to reconstruct
the set by computing initial witnesses for each element and testing if they hold with respect to the received
commitment from Alice. If the data structure is too efficient in some sense (e.g., has no witness changes), Bob
can decode Alice’s random set despite having received fewer bits from Alice than is information theoretically
required.

Even if there are some witness changes, Alice can send Bob some extra information to encode which witnesses
have changed. If there are few witness changes, this only requires Alice to send a little additional information,
and she can still communicate her set with impossible efficiency.

Our main result We show that any set commitment of size O(polylog n) requires at least ω(n) total wit-
ness updates to accumulate a set of n elements. Furthermore, for set commitments that accommodate
superpolynomial-sized sets, as do Merkle Mountain Ranges, we show a stronger bound of Ω(n log n/ log log n)
witness changes.

Our proof is from first principles, and involves two steps. The first is a compression argument that shows that
within any given subsequence added to the accumulator, many witnesses change at least once. This yields
a bound of ϵn total witness changes for ϵ ∈ (0, 1); recall we need to show ω(n) total changes. The second
step is therefore to use our compression argument to show that many witnesses change a super-constant
number of times. We do so by applying our compression argument many times to different subsequences of
the accumulated sequence.

We obtain our stronger lower bound by applying our compression argument roughly log n times; this neces-
sitates considering superpolynomial-sized sets. MMRs provide an asymptotically tight upper bound.

Warm-up: many witnesses change at least once To build intuition for our compression argument
and familiarity with witness changes, we begin with a warm-up application of our techniques to show a far
weaker statement, that at least Θ(n/ log n) witnesses change when a sequence of n elements is accumulated
(Section 3.3). Strengthening this lower bound to show that a constant fraction of witnesses change at least
once is fairly immediate (Lemma 1), but showing that some elements’ witnesses change multiple times is
more involved (Lemma 2). We’ll show a simpler version of this extension to multiple witness changes in
Section 3.3.

We apply our compression argument to show that Ω(n log n) witnesses change at least once when accu-
mulating n elements. We follow a similar template to existing information theoretic lower bounds for data
structures [10,18,13,8]. Alice chooses a random set, which she wishes to communicate to Bob. Alice uses the
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data structure to encode her set, and if the data structure is too efficient, her encoding is shorter than is
information theoretically possible.

For our argument, Alice and Bob have agreed on an ordered subset X = {x1, . . . , x2n} of the data universe,
a uniform random string r ∈ {0, 1}∗, and public parameters pp← Setup(1λ). Alice chooses a random n-sized
subset S ⊆ X and accumulates S in some canonical ordering (using randomness r, if necessary) to obtain
a final commitment A. As Alice does this accumulation, she maintains a list L of included elements whose
witnesses changed. Alice sends A and L to Bob.

Bob will attempt to accumulate x1, x2, . . . in sequence using the randomness r, maintaining his own set S′

and commitment A′ to the elements he has added thus far. We say attempt because as Bob goes, he will test
whether Alice included each xi in her set S; if not, he will omit xi from his accumulator and move on. This
test is nontrivial, as we describe below.

In each step, Bob will add xi to A′ to obtain a membership witness πi and the updated commitment A′i. He
will then test if πi verifies with respect to Alice’s commitment A. If so, he updates A′ to equal A′i and adds
xi to S′, as soundness ensures that Alice must have included xi in her set. If πi does not verify, there are
two possibilities:

1. Alice did not include xi, or

2. Alice included xi, but its witness changed.

The list L allows Bob to distinguish between these two cases when πi does not verify. If xi is in L, Bob
updates A′ to equal A′i and adds xi to S′. If xi is not in L, Bob does not update A′ or S′ and moves on.

Note that because Alice and Bob use the same random tape, Bob exactly reconstructs the intermediate
witnesses and commitment values Alice obtained in computing A. At the end of this process, Bob will have
successfully reconstructed S′ = S with all but negligible probability.12

The number of bits Alice sends is |A| + |L|. If at most n/(2 log(2n)) witnesses change, |L| ≤ n/2, since we
write down n/(2 log(2n)) indices of length log 2n. Since the accumulator is succinct (i.e., its size is sublinear
in n), |A| + |L| < n. Therefore, Alice sends far fewer than n bits, yet communicates an element from a
uniform distribution over a set of size nearly 2n.

We have thus shown that if the accumulator is succinct, at least Ω(n/ log n) elements’ witnesses change at
least once. We call these one-shot witness updates.

Increasing the fraction of changed witnesses One can immediately strengthen this warm-up result to show
that for any constant ϵ ∈ (0, 1), at least ϵn witnesses change. One does so by encoding L more cleverly, rather
than writing the index of each element whose witness changed (which required |L| = Ω(f log n), where f
is the number of elements whose witnesses change). Instead, Alice simulates exactly when Bob will consult
L and writes a single bit for each of these consultations, indicating whether the element in question was
included in S. For appropriate choices of X and Alice’s distribution of chosen set S, this encoding of L is
short enough to obtain the desired bound.

We prove this result and describe this encoding in Lemma 1, which also shows that the same result applies to
any subsequence of added elements. That is, for any sufficiently large d, many witnesses of S = {si, . . . , si+d}
change between when they are initially added and the final commitment after si+d is added.

This ϵn bound is already stronger than the lower bound of [13], which shows that Ω(n/ log n) witnesses
change at least once.

12 With negligible probability, soundness of the commitment may be violated—that is, a witness may verify for an
element that Alice did not add, resulting in Bob erroneously including this element.
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Showing that witnesses change multiple times Thus far, we’ve only shown that a large fraction of
elements’ witnesses change at least once. While encoding L more efficiently allows us to show that a larger
fraction of witnesses change, there is no clear way to alter the warm-up proof to show that any element’s
witness changes more than once. Doing so will require new techniques, as we’ll see here.

Our key idea is to apply the warm-up result iteratively, to subsequences. This is helpful because now we
can show that some xi’s witness changes in multiple subsequences, and therefore changes multiple times.
In this compression game, Alice will choose a random bit vector v ∈ {0, 1}n to communicate to Bob. She’ll
encode it by accumulating a much larger set. Now we suppose Alice and Bob agree on 2n disjoint n-sized
sets X1, . . . , Xn, Y1, . . . , Yn, and an ordering of their elements. At each step 1 ≤ i ≤ n, Alice chooses either
Xi or Yi based on the next bit vi in her vector v and accumulates all of the elements in either Xi or Yi.

Let s = [s1, . . . , sn2 ] denote the sequence of elements Alice accumulated. Like in the communication game
from the warm-up proof, Alice computes a commitment A to s, which she sends to Bob. Bob will attempt
to reconstruct Alice’s vector v. He computes his own vector v′, determining each bit by trying to see if Alice
chose Xi or Yi at each step by checking whether any witness of any element in Xi holds with respect to A.

That is, Bob maintains a current accumulator A′ and adds all of Xi to obtain Ai and witnesses for all of its
elements. If any proof holds with respect to A, Bob knows that Xi was included. He therefore updates A′

to equal Ai and sets v′i = 0. If no witness of Xi holds, either all of Xi’s witnesses changed or Alice chose Yi.
Similarly to in the warm-up, in order to help Bob distinguish between these two cases, Alice sends a list L of
indices i for which all witnesses changed between their initial accumulation into Ai and the end accumulator
value A. Therefore, if Bob sees that i is not in this list, Alice must have accumulated Yi; he adds Yi and
updates A′ accordingly.

By encoding L carefully and counting the amount of information sent, we show that for at least a constant
fraction of i ∈ [n], Xi (or Yi, if it was chosen) must have all of its elements’ witnesses change between Ai

and A.

What have we accomplished that differs from the warm-up? The warm-up and Lemma 1 show that if one
accumulates a sequence x1, . . . , xn, many elements’ witnesses change between when they are added and the
end of this sequence. But those statements say nothing about what happens to the witnesses of x1, . . . , xn

as one continues adding more elements xn+1, . . .. In contrast, consider the proof we just sketched, taking a
random Xi (or Yi) to be x1, . . . , xn. We’ve now shown that after adding Xi to obtain Ai, as more sequences
are added (Xi+1 or Yi+1, etc.), with constant probability all witnesses of elements in Xi change. Lemma
2 formalizes this “multi-shot” argument, stating that for any constant ϵ ∈ (0, 1), for sufficiently large n, at
least ϵn sets i have all of their witnesses change after Xi (or Yi) is added.

Recall that our key idea is to apply (an extension of) the warm-up argument iteratively. So far, we’ve applied
it once, to show that for most i ∈ [n], the set Alice chose (without loss of generality, Xi) has all of their
witnesses change between Xi’s last element being added, and the final accumulator. We now apply the warm-
up argument to show that many elements xj of Xi have their witnesses change between when xj is added,
and the last element of Xi is added. Observe that this time period over which we count witness changes in
this second application is disjoint from the time period we consider in the first application. Recall that the
strengthened warm-up argument says that if Xi is chosen to be a random set of size n, at least ϵn of its
witnesses change while Xi is added.

Putting this all together, we’ve shown that:

– For each i, at least ϵn witnesses of Xi change within Xi being added, and

– For at least ϵn values of i, all of Xi’s witnesses change after Xi has been added.

Therefore, in total there are at least n(ϵn)+ (ϵn)n = 2ϵn2 witness changes that occur throughout the course
of adding n2 elements. Recalling that ϵ can be any constant in (0, 1), we’ve succeeded in showing that some
witnesses change multiple times.
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Iterating this argument We’ve essentially shown two (simplified) iterations of our argument, which involved
adding n2 elements and showing there must be 2ϵn witness changes. One can continue iterating our argument
any constant c number of times, requiring adding nc elements and showing cϵn witness changes. This is how
we obtain our main result:

(Theorem 1). For any constant α > 0, for sufficiently large n, if one accumulates a random set of size n
there are at least αn witness updates with overwhelming probability.

The proof of Theorem 1 simply applies Lemma 2 many times for appropriately chosen parameters, taking
care to ensure we do not double count witness changes.

A stronger bound for stronger accumulators We can increase the number of witness changes by iterating our
argument more times, but this increases the size of the committed set. Some accumulators, such as MMRs,
accommodate superpolynomially sized sets, and for such accumulators we show a stronger lower bound. In

particular, if our accumulator accommodates sets of size 2λ
β

for a constant β > 0, we have:

(Corollary 2). For sufficiently large n ≥ 2λ
β

, if one accumulates a random set of size n there are at least

Θ
(

βn logn
log logn

)
witness updates with overwhelming probability.

Merkle Mountain Ranges are nearly optimal Our stronger lower bound is asymptotically tight for (log n)-ary

Merkle Mountain Ranges when accumulating large sets of size 2λ
β

for constant β > 0. We remark that
MMRs indeed securely accumulate such large sets.

4 Preliminaries

Notation. Let λ denote the security parameter. We write poly(λ) to mean a polynomial function in λ. We say
a function f of λ is negligible if f(λ) = O( 1

poly(λ) ) for every polynomial poly(·), and we write f(λ) ≤ negl(λ)

to mean that f is negligible. We say that a probability is overwhelming if it is at least 1 − f(λ) for some
negligible function f . We write “p.p.t.” to mean probabilistic polynomial time.

We use log to mean binary logarithm. We write polylog(n) to mean any function that is O(logc n) for some
positive constant c. When writing the asymptotic complexity of a data structure storing n elements, we
often omit any dependence on the security parameter λ; e.g., we write O(log n) instead of O(λ log n). We
use boldface to denote a vector x. We use wt(x) to denote the Hamming weight of a vector x ∈ {0, 1}∗. We
use [n] to denote the set {1, . . . , n}.

Unless otherwise specified, we refer to append-only accumulators when we mention accumulator in this
paper. There also exist accumulators that support deletions (dynamic accumulators) and non-membership
witnesses (universal accumulators), but we do not consider them here.

Fact 1 (Chernoff bound) Let X1, . . . , Xn be independent Bernoulli random variables, and let µ = E[
∑n

i=1 Xi].
For any δ ≥ 0,

Pr

[
n∑

i=1

Xi ≤ (1− δ)µ

]
≤ exp

(
−µδ2

2

)
.

Definition 1 (Append-only accumulator [5]). An append-only accumulator is a tuple of p.p.t. algo-
rithms Π = (Setup,Acc,Verify) together with a data universe U , such that for any ordering function ord that
takes as input a set and outputs a sequence of all elements in the set, and any subset S ⊆ U :

Setup(1λ, ord)→ pp: Setup is a randomized algorithm that takes as input the security parameter and an
ordering function, and outputs public parameters pp.
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Acc(pp, S)→ A, (π1, . . . , π|S|): Acc is a (possibly randomized) polynomial-time algorithm that takes as input
the public parameters pp and a subset S ⊆ U . It returns an accumulator value A and a membership
proof πi for each si ∈ S.

Verify(pp, A, u, π)→ {true, false}: Verify is a (possibly randomized) polynomial-time algorithm that takes as
input the public parameters pp, an accumulator value A, an element u ∈ U , and a membership proof π.
Verify should output true if and only if π is a valid proof of membership of u in the set that A accumulates.

We let Acc and Verify implicitly take 1λ as input, though we omit this for ease of notation.

Remark 1. Note that this syntax implicitly defines an Add(pp, S,A, s) function that takes as input public
parameters, a set S of elements added thus far, an accumulator A of these elements, and an element s′ to
be added. It calls Acc(pp, S ∪ {s}) to output a new accumulator value A′, a (possibly updated) membership
witness πi for each si ∈ S, and a membership witness for s′.

Remark 2. Traditionally, accumulators are not defined with respect to an ordering. We include this ordering
to strengthen our lower bound: the accumulator value and membership proofs output by Add can be computed
based not only on the set accumulated thus far, but also on the order in which they were accumulated and
on the order in which future elements will be added.

An accumulator must satisfy soundness and correctness.

Definition 2 (Soundness). An accumulator Π = (Setup,Acc,Verify) is sound if it is computationally
infeasible to find a verifying membership proof for an element not included in a set. More precisely, there
exists a negligible function negl such that for all p.p.t. adversaries A:

Pr


S, ord, u, π ← A(1λ)
pp← Setup(1λ, ord)

Verify(pp, A, u, π) = true : u /∈ S
A, (π1, . . . , πk)← Acc(pp, S)

 ≤ negl(λ).

Definition 3 (Correctness). An accumulator Π = (Setup,Acc,Verify) is correct if an up-to-date mem-
bership proof π corresponding to an element u in accumulator A can always be used to verify the membership
of u in A. More precisely, for all security parameter λ, any polynomially sized subset S ⊆ U , all elements
u ∈ U and any ordering function ord:

Pr
pp←Setup(1λ,ord)

[
Verify(pp, A, u, π) = true :

A, (π1, . . . , π|S|+1)← Acc(pp, S ∪ {u})

]
= 1.

where π is the membership proof corresponding to u with regard to the accumulator A.

One typically desires that an accumulator satisfies some notion of succinctness; that is, the commitment A
grows sublinearly in n, the size of the committed set. We introduce some notation to capture the commitment
size and define the succinctness requirement considered in this work, specifically that |A| is polylogarithmic
in n.

Definition 4 (Accumulator size). Let Π = (Setup,Acc,Verify) be an accumulator with data universe U .
We write Size(Π,λ, n) to denote the maximum bit size of the accumulator output by Acc given a set of size
n. That is,

Size(Π,λ, n) := max
pp←Setup(1λ,∗)

S⊆U
|S|=n

|A|, where A, (π1, . . . , πn)← Acc(pp, S).
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Definition 5 (Succinct Accumulator). An accumulator Π = (Setup,Acc,Verify) is considered succinct if
the maximum size of any accumulator output by Acc is polylogarithmic in the size of the accumulated set n. In
other words, Π is succinct if there exist polynomials p and q such that for all n, Size(Π,λ, n) ≤ p(λ)q(log n).

We also consider a slightly nonstandard notion of an accumulator for sets of superpolynomial size.

Definition 6 (Accumulator for superpolynomial-sized sets). An accumulator Π = (Setup,Acc,Verify)
accommodates sets of size f(λ) if it follows the syntax of a standard accumulator, and satisfies all of the
following:

– Its algorithms Setup,Verify run in time poly(λ). Its algorithm Acc runs in time poly(λ, f(λ)).

– Correctness (Definition 3) holds for all sets S of size at most f(λ).

– Soundness (Definition 2) holds, even for all adversaries running in time poly(λ, f(λ)), producing sets S
of size at most f(λ); we formally define this property below.

Definition 7 (Soundness for accumulator of superpolynomial-sized sets). An accumulator is sound
for sets of size f(λ) if there exists a negligible function negl(λ) such that for all p.p.t. adversaries A:

Pr


S, ord, u, π ← A(1λ, 1f(λ))

|S| ≤ f(λ)
Verify(pp, A, u, π) = true : pp← Setup(1λ, ord)

u /∈ S
A, (π1, . . . , πk)← Acc(pp, S)

 ≤ negl(λ+ f(λ)).

We emphasize that in the above soundness definition, the adversary can run in time polynomial in the
maximum set size f(λ), and the adversary’s probability of success must be negligible in f(λ).

When we write “accumulator,” we mean a standard accumulator (Definition 1) unless we specify that it
accommodates larger sets. Observe that an accumulator that accommodates sets of size f(·) ∈ poly(·) under
Definition 6, is simply a standard accumulator.

5 Our lower bound

5.1 Bounding the number of one-shot witness updates

Our ultimate goal is to lower bound the total number of witness changes across all elements. However, in our
proof it will be useful to reason about a slightly different quantity: the number of elements whose witnesses
change at least once. To do so, we define a number of one-shot witness updates; that is, the number of elements
in a sequence whose witnesses generated upon initial addition no longer verify against the accumulator at
the end of the sequence.

Definition 8 (One-shot witness updates). Let Π = (Setup,Acc,Verify) be an accumulator for a data
universe U . Let ord be an arbitrary ordering function and public parameters pp← Setup(1λ, ord). Let S ∈ U
be a set of size n and ord(S) = [s1, . . . , sn]. We say that S has k one-shot witness updates under pp if for at
least k values of i ∈ [n]:

Aj , (π
(j)
1 , . . . , π

(j)
j )← Acc(pp, {s1, . . . , sj}) ∀j ∈ [n]

Verify(pp, An, si, π
(i)
i ) = false

12



Lemma 1 (One-shot witness changes). Let Π = (Setup,Acc,Verify) be a succinct accumulator for a data
universe U , and let ord be an arbitrary ordering function. Let U ⊆ U be any subset of size n = Ω(poly(λ)).
Let S ⊆ U be a random subset. For any constant c ∈ (0, 1),

Pr
pp←Setup(1λ,ord)

S⊆U

[S has fewer than c|S| one-shot witness updates given pp] ≤ negl(λ).

Proof. We’ll show this via a compression argument. Alice will choose a random set S ⊆ U ; we’ll let k denote
the size of S. If S has fewer than ck one-shot witness updates, Alice will be able to communicate S to Bob
using fewer bits than possible.

Preprocessing. If Π is randomized, Alice and Bob agree on the random coins $ they are going to use. Alice
chooses an arbitrary ordering function ord and set U ⊆ U . Let [u1, . . . , un] denote the elements of U ordered
according to ord. Alice generates public parameters pp← Setup$(1

λ, ord) and sends pp to Bob.

Then Alice chooses a secret random subset S ⊆ U ; we denote its elements [s1, . . . , sk] := ord(S). Let s be
the length-n bit-encoding of S, whose 1’s encode exactly which elements in [u1, . . . , un] are included in S.

Encoding (Figure 2). Let ϵ ∈ (0, 1/2) be a small constant. If k < n/2 − ϵn, Alice simply sends (0, s) to
Bob and halts.

Otherwise, Alice computes the accumulator:

AS
k , (π̃1, . . . , π̃k)← Acc$(pp, S)

She also needs to compute some additional information to send, which encodes the elements whose final
witnesses are different from their witnesses when they were first added. To do so, she does the following:

She initializes an empty bit vector v. For each i ∈ [n], she computes

Ai, (π
(i)
1 , . . . , π

(i)
i )← Acc$(pp, ({u1, . . . , ui−1} ∩ S) ∪ {ui})

and tests whether π
(i)
i verifies against the final accumulator, i.e. Verify$(pp, A

S
k , ui, π

(i)
i ) = true. If ui /∈ S but

it verifies, Alice has observed a soundness violation; she simply sends Bob (0, s) and halts. If ui /∈ S and it
does not verify, Alice appends a 0 to v. Otherwise, if ui ∈ S but it does not verify, Alice appends a 1 to v.
Observe that the number of 1’s in v is the number of elements in S whose witnesses change.

If there were at most ck witness changes, Alice sends (1, sz, AS
k ,v) to Bob, where sz :=

∣∣AS
k

∣∣ helps Bob parse
this string. Otherwise, Alice sends (0, s).

Decoding (Figure 3). Let the information Bob receives from Alice be msg. Note that msg is either (0, s)
or (1, sz, AS

k ,v).

Bob first checks if msg begins with 0. If so, he interprets the rest as s and outputs the subset S′ ⊆ U that
is represented by s.

Otherwise if msg begins with 1, Bob interprets the following sz bits as AS
k and the rest as v. Bob initializes

an empty sequence S′ and repeats Alice’s process to reconstruct S′.

That is, he iterates through each i ∈ [n] while maintaining a pointer to v. Given the current portion of S′

computed up to index i, he computes π
(i)
i as Alice did and checks if it holds against AS

k . If it verifies, he
adds ui to S′, and moves onto i+1 maintaining his pointer to v. If it does not verify, he adds ui to S′ only if
the current bit of v is 1. Regardless of the value of the current bit of v, he increments his pointer to v before
moving onto i+ 1.

Correctness of decoding. If Alice chose a small subset, observed that soundness was violated, or observed
too many witness changes, she sent (0, s). In this case, Bob interprets the encoding correctly.
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Encoding algorithm. Given Π, $, pp, U, S, k := |S|, ϵ, s ∈ [0, 1]n:

1 : if k < n/2− ϵn : // the chosen subset S is too small

2 : return (0, s)

3 : AS
k , (π̃1, . . . , π̃k)← Acc$(pp, S)

4 : v ← [ ]

5 : for i in [1, . . . , n] :

6 : Ai, (π
(i)
1 , . . . , π

(i)
i )← Acc$(pp, ({u1, . . . , ui−1} ∩ S) ∪ {ui})

7 : veri ← Verify$(pp, A
S
k , ui, π

(i)
i ))

8 : if ui /∈ S :

9 : if veri == true : return (0, s) // soundness error

10 : else : v.append(0)

11 : else if ui ∈ S :

12 : if veri == true : continue // ui ∈ S
′

13 : else : v.append(1) // the witness of ui changed during accumulation

14 : if wt(v) > ck : // weight of v is equal to number of one-shot witness updates

15 : return (0, s)

16 : sz←
∣∣∣AS

k

∣∣∣
17 : return (1, sz, AS

k ,v)

Fig. 2. Encoding algorithm for Lemma 1.

Decoding algorithm. Given Π, $, pp, U,msg:

1 : if msg[0] == 0 :

2 : return bitparse(msg[1 :]) // interprets the rest as s

3 : parse msg to obtain AS
k ,v

4 : S′ ← [ ]

5 : vptr← 1

6 : for i in [1, . . . , n] :

7 : Ai, (π
(i)
1 , . . . , π

(i)
i )← Acc$(pp, S

′ ∪ ui)

8 : if Verify$(pp, A
S
k , ui, π

(i)
i )) :

9 : S′.append(ui)

10 : else :

11 : if v[vptr] == 1 :

12 : S′.append(ui)

13 : vptr← vptr + 1

14 : return S′

Fig. 3. Decoding algorithm for Lemma 1.
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Otherwise, if Alice chose a subset of size at least n/2 − ϵn and there were at most ck witness changes, she
sent (1, sz, AS

k ,v).

Observe that Bob reconstructs S′ correctly, since he exactly repeats Alice’s process.

Amount of information. Let p be the probability that S has at most ck one-shot witness updates given
pp. We’ll bound Alice’s communication in terms of p.

First, we remark that by a Chernoff bound, only with negligible probability do we have k < n/2 − ϵn. Let
B1, . . . , Bn be independent Bernoulli random variables that are 1 with probability 1

2 . Each Bi represents
whether Alice chose ui to be in S; since S is uniformly random each ui is in S with independently with
probability 1

2 . Therefore, E[
∑n

i=1 Bi] =
n
2 := µ. Letting δ = 2ϵ, we have by Fact 1:

Pr [k < n/2− ϵn] = Pr

[
n∑

i=1

Bi ≤ (1− δ)µ

]
≤ exp

(
−µδ2

2

)
= exp(−nϵ2) ≤ negl(λ).

Second, we remark that because Alice is efficient, she observes that soundness is violated with only negligible
probability over pp and S. Otherwise, her encoding strategy would constitute an attack on soundness of
the accumulator. Therefore, with probability at least p − negl(λ), S has at most ck witness updates and
soundness holds. In this case, at least (1 − c)k ≥ (1 − c)(n/2 − ϵn) witnesses never changed. Observe that
v does not contain a corresponding bit for any element in S whose witnesses never changed. Therefore,
|v| ≤ n− (1− c)(n/2− ϵn), which is at most n− c′n for some constant c′ ∈ (0, 1).

Finally, observe that in any case the length of v is at most n. Slightly abusing notation, we let sz denote the
size of the commitment sent by Alice. In expectation, Alice sends a message of length at most:

(p− negl(λ))(1 + sz+ n− c′n) + (1− p+ negl(λ))(1 + n) ≤ n+ 1− (p− negl(λ))(c′n− sz)

Since p is non-negligible and Π is succinct, this is strictly less than n.

Impossible compression. We’ve thus shown that Bob always reconstructs Alice’s sequence successfully,
and if p is non-negligible, Alice sends strictly fewer than n bits in expectation. However, Alice communicated
a uniformly random subset of n elements. Therefore, she must send Bob at least n bits in expectation by
Shannon’s Coding Theorem [40]; we’ve thus arrived at a contradiction.

5.2 Boosting from one-shot to many changes

Lemma 2 (Multi-shot witness changes). Let Π = (Setup,Acc,Verify) be a succinct accumulator for a
data universe U and ord be an arbitrary ordering function. Let the public parameters be pp← Setup(1λ, ord).

Let X ⊆ U be a random polynomial-sized subset, and let [x1, x2, . . .] ← ord(X) denote the elements of X

according to the ordering function. Let Aj , (π
(j)
1 , . . . , π

(j)
j ) ← Acc(pp, {x1, . . . , xj}) denote the accumulator

and proofs after adding j elements from X according to the given ordering.

Consider any starting index m0 +1, subsequence size m, and degree d, and consider the following witnesses:

– The witnesses of xm0+1, . . . , xi+m with respect to Am0+m. Call these witnesses π∗m0+1, . . . , π
∗
m0+m.

– The witnesses of xm0+m+1, . . . , xm0+2m with respect to Am0+2m. Call these witnesses
π∗m0+m+1, . . . , π

∗
m0+2m.

– . . .

– The witnesses of xm0+(d−2)m+1, . . . , xm0+(d−1)m with respect to Am0+(d−1)m.
Call these witnesses π∗m0+(d−2)m+1, . . . , π

∗
m0+(d−1)m.

– The witnesses of xm0+(d−1)m+1, . . . , xm0+dm with respect to Am0+dm. Call these witnesses π∗m0+(d−1)m+1, . . . , π
∗
m0+dm.
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If d = ω(Size(Π,λ,m0 + dm)), then for any positive constant c < 1, at least a fraction c of these witnesses
no longer hold with respect to Am0+dm with overwhelming probability13. That is, there is an overwhelming
probability (over choice of pp and any randomness in the algorithms of the accumulator) that for at least
cdm values of j ∈ [dm],

Verify(pp, Am0+dm, xm0+j , π
∗
m0+j) = false.

Proof. This proof largely follows that of Lemma 1.

Preprocessing. Similar to the preprocessing phase in the proof of Lemma 1, if Π is randomized, Alice
and Bob agree on the random coins $ beforehand. Alice chooses an arbitrary ordering function ord. Alice
generates public parameters pp← Setup$(1

λ, ord) and sends pp to Bob. Alice and Bob agree on some positive
value m.

Alice randomly chooses a starting subset X0 ⊆ U of size m0, and sends X0 to Bob. Let [x1, . . . , xm0
] ←

ord(X0). Alice then randomly chooses a secret uniform vector s ←$ {0, 1}d. She then selects two ran-
dom subsets P,Q ⊆ U , each containing dm elements disjoint from X0 and each other; let [p1, . . . , pdm] ←
ord(P ), [q1, . . . , qdm]← ord(Q). She sends P and Q to Bob.

To summarize, Bob has received pp (containing the ordering information), the random coins $ if Π is
randomized, and subsets X0, P,Q.

Encoding (Figure 4). Alice computes:

Xj = xm0+(j−1)m+1, . . . , xm0+jm =

{
p(j−1)m+1, . . . , pjm if sj = 0

q(j−1)m+1, . . . , qjm if sj = 1
∀j ∈ [d]

As
m0+dm, (π̃1, . . . , π̃m0+dm)← Acc

pp,
d⋃

j=0

Xj


She also needs to compute some additional information to send, which encodes the elements whose witnesses
changed. To do so, Alice does the following:

She initializes an empty bit vector v. For each j ∈ [d], she computes

As0
m0+jm, (π

(m0+jm,0)
1 , . . . , π

(m0+jm,0)
m0+jm ) = Acc

(
pp,

j−1⋃
i=0

Xi ∪ {p(j−1)m+1, . . . , pjm}

)

and tests whether any of the membership proofs verifies against the final accumulator, i.e.

Verify(pp, As
m0+dm, pℓ, π

(m0+jm,0)
ℓ ) = true for some ℓ ∈ [m0 + (j − 1)m+ 1,m0 + jm]. If sj ̸= 0, which means

the current segment Xj should be from Q and not P , but some proofs verify, Alice has observed a soundness
violation; she simply sends Bob (0, s) and halts. If sj ̸= 0 and none of the proofs verify, Alice appends a 0
to v. Otherwise, if sj = 0, which means the current segment Xj is indeed from P , but none of the proofs
verify, Alice appends a 1 to v.

Observe that the number of 1’s in v is the number of segments that had all of their witnesses change.
If at most cd segments had all of their witnesses change (i.e. there were at most cdm witness changes,
d − |S′| ≤ cd), Alice sends (1, sz, As

m0+dm, v) to Bob (where sz =
∣∣As

m0+dm

∣∣ helps Bob parse this message).
Otherwise, Alice just sends (0, s) to Bob.

Decoding (Figure 5). Let the information Bob receives from Alice be msg. Note that msg is either (0, s)
or (1, As

m0+dm,v).

Bob first checks if msg begins with 0. If so, he interprets the rest as s ∈ {0, 1}d and simply outputs that.

13 This requirement on d is met if, for example, m0 + dm is polynomial in λ, Π is succinct, and d = ω(λ).
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Encoding algorithm. Given: Π, pp, U, d,m, s, P,Q, (X0, . . . , Xd)

1 : v ← [ ]

2 : m0 := |X0|

3 : As
m0+dm, (π̃1, . . . , π̃m0+dm)← Acc(pp,

d⋃
j=0

Xj)

4 : for j in [1, . . . , d] :

5 : As0
m0+jm, (π

(m0+jm,0)
1 , . . . , π

(m0+jm,0)
m0+jm ) = Acc(pp,

j−1⋃
i=0

Xi ∪ {p(j−1)m+1, . . . , pjm})

6 : verj ←
m0+jm∨

ℓ=m0+(j−1)m+1

Verify(pp, As
m0+dm, pℓ, π

(m0+jm,0)
ℓ )

7 : if sj ̸= 0 : // the current segment should not be from P

8 : if verj == true : return (0, s) // soundness error

9 : else : v.append(0)

10 : else if sj == 0 : // the current segment should be from P

11 : if verj == true : continue // j ∈ S
′

12 : else : v.append(1) // all witnesses of this segment changed during accumulation

13 : if wt(v) > cd :

14 : return (0, s)

15 : sz← |As
m0+dm|

16 : return (1, sz, As
m0+dm,v)

Fig. 4. Encoding algorithm for Lemma 2.
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Otherwise if msg begins with 1, Bob extracts sz and interprets the following sz bits as As
m0+dm and the rest

as v. Bob initializes an empty bit vector s′ and repeats Alice’s process to reconstruct s′.

That is, Bob iterates through each j ∈ [d] while maintaining a pointer to v. For each j ∈ [d], Bob computes

As0
m0+jm, (π

(m0+jm,0)
1 , . . . , π

(m0+jm,0)
m0+jm ) = Acc(pp,

j−1⋃
i=0

Xi ∪ {p(j−1)m+1, . . . , pjm})

and tests whether Verify(pp, As
m0+dm, pℓ, π

(m0+jm,0)
ℓ ) holds true for any ℓ ∈ [m0 + (j − 1)m + 1,m0 + jm].

If any of them verifies, Bob appends 0 to s′, stores Xj ← {p(j−1)m+1, . . . , pjm}, maintains his pointer to
v, and moves onto j + 1. If none of them verify, Bob checks if the current bit of v is 1 and increments the
pointer to v: if so, he appends 0 to s′ and stores Xj ← {p(j−1)m+1, . . . , pjm}; otherwise, he appends 1 to s′

and stores Xj ← {q(j−1)m+1, . . . , qjm}.

Decoding algorithm. Given Π, pp, d,m, P,Q,X0,msg

1 : m0 ← |X0|
2 : if msg[0] = 0 :

3 : return msg[1 :] // interprets info received as s

4 : parse msg to obtain As
m0+dm,v

5 : s′ ← [ ]

6 : vptr← 0

7 : for j ∈ [1, . . . , d] :

8 : As0
m0+jm, (π

(m0+jm,0)
1 , . . . , π

(m0+jm,0)
m0+jm ) = Acc(pp,

j−1⋃
i=0

Xi ∪ {p(j−1)m+1, . . . , pjm})

9 : if

m0+jm∨
ℓ=m0+(j−1)m+1

Verify(pp, As
m0+dm, pℓ, π

(m0+jm,0)
ℓ ) :

10 : s′.append(0) // Some witness verifies, indicating this segment is from P

11 : Xj ← {p(j−1)m+1, . . . , pjm}
12 : else :

13 : if vvptr == 1 : // This segment is from P but all its witnesses changed during accumulation

14 : s′.append(0)

15 : Xj ← {p(j−1)m+1, . . . , pjm}
16 : elseif vvptr == 0 : // This segment is from Q

17 : s′.append(1)

18 : Xj ← {q(j−1)m+1, . . . , qjm}
19 : vptr← vptr + 1

20 : return s′

Fig. 5. Decoding algorithm for Lemma 2.

Correctness of decoding. If Alice observed that soundness was violated, or observed too many witness
changes, she sent exactly the d-bit vector (0, s). In this case, Bob interprets the vector correctly.

Otherwise, if no soundness violation was observed and at most cd segments had all of their witnesses changed,
Alice sends (1, As

m0+dm,v). Bob can correctly parse this information given the Size he received in the pre-
processing phase.
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Observe that Bob reconstructs s′ correctly, since he exactly repeats Alice’s process.

Amount of information. Let p be the probability that at most cd segments among X1, . . . , Xd had all of
their witnesses updated given pp. We will bound Alice’s communication in terms of p.

First, we remark that because Alice is efficient, she observes that soundness is violated with only negligible
probability over pp and s. Otherwise, her encoding strategy would constitute an attack on soundness of the
accumulator. Therefore, with probability at least p − negl(λ), at most cd segments among X1, . . . , Xd had
all of their witnesses updated and soundness holds. In this case, at least (1− c)wt(s) segments have at least
one witness that verifies against As

i+dm. Therefore, v has length at most d− (1− c)d = cd.

Finally, observe that in any case the length of v is at most d. Slightly abusing notation, we let sz denote the
size of As

m0+dm, the commitment sent by Alice. In expectation, Alice sends a message of length at most:

(p− negl(λ))(sz+ cd) + (1− p+ negl(λ))(d) ≤ d− (p− negl(λ))(d− cd− sz)

Observe that if p is non-negligible, this is strictly less than d if d− cd− sz > 0. This is satisfied, due to the
requirement that d = ω(Size(Π,λ,m0 + dm)).

Impossible compression. We’ve thus shown that Bob always reconstructs Alice’s sequence successfully,
and if p is non-negligible, Alice sends strictly fewer than d bits in expectation. However, Alice communicated
a uniformly random string of size d. Therefore, she must send Bob at least d bits in expectation by Shannon’s
Coding Theorem [40]; we’ve thus arrived at a contradiction.

Corollary 1. If Π is an accumulator for superpolynomial f(λ)-sized sets (Definition 6), Lemma 2 holds for
sets X ⊆ U of size at most f(λ), where the “overwhelming probability” with which fewer than cdm witnesses
change is 1− negl(λ+ f(λ)).

Proof. This follows from observing that the probability of a soundness violation is at most negl(λ+ f(λ)),
by definition of an accumulator for superpolynomial-sized sets (Definition 7).

Theorem 1. Let Π = (Setup,Acc,Verify) be a succinct accumulator for a data universe U . Let ord be an
arbitrary ordering function. For any constant α ≥ 0, for sufficiently large n,

Pr
X⊆U :|X|=n

pp←Setup(1λ,ord)

[there are at least αn witness updates given pp] ≥ 1− negl(λ).

Proof. We set parameters d ≥ λ2, h = α/0.99, and n = dh. Observe that n is polynomial in λ.

Let ord be an arbitrary ordering function. Select a random n-sized subset X ⊆ U and let ord(X) =
[x1, . . . , xn].

14 Consider breaking X into segments according to the given order, which are contiguous sub-

sets of size di for i ∈ {0, . . . , h}. We will use X
(ℓ)
di to denote the ℓth segment of size di. That is, for all

ℓ ∈
[
n
di

]
, X

(ℓ)
di = {x(ℓ−1)di+1, . . . , xℓdi}. It will be helpful to think of these segments as belonging to levels,

with Level i containing the segments of length di. We define |Li| to mean the number of segments in Level
i; by construction we have that |Li| = n

di .

Let Am denote the accumulator after adding m elements from X according to the given ordering. Let Level
i contain the accumulators that accumulate d more segments from the Level i − 1; in other words, Level

i contains Adi , A2di , A3di , . . ., where Ajdi accumulates ∪jℓ=1X
(ℓ)
di−1 . The number of accumulators per level is

trivially equal to the number of segments.

Let L0 be the bottom-most level and Lh the top-most. At the topmost level Lh, there is only one accumulator
An which accumulates all elements in X. See Figure 6 for a visual illustration of this hierarchical structure.

14 We now use sets and sequences interchangeably; assume that a given set is ordered according to ord.

19



Level h

...

Level 1

Level 0

Fig. 6. Illustration of the levels in the proof for Theorem 1

For any i ∈ {0, . . . , h− 1} and any j ∈ |Li|, consider Ajdi+1 , the jth accumulator in Level i+ 1. Notice that
Ajdi+1 accumulates d more lower-level segments, namely the segments of size di, compared to A(j−1)di+1 . We
consider how many of the witnesses from the corresponding d segments and accumulators in the lower level
Li no longer hold with respect to Ajdi+1 . Let m0 := (j − 1)di+1. These segments are disjoint, and we take
care not to double count their witness changes. Precisely, the witnesses we consider are the following:

– The witnesses of segment xm0+1, . . . , xm0+di with respect toAm0+di . Call these witnesses π∗m0+1, . . . , π
∗
m0+di .

– The witnesses of segment xm0+di+1, . . . , xm0+(j−1)di with respect to Am0+2di .
Call these witnesses π∗m0+di+1, . . . , π

∗
m0+(j−1)di .

– . . .

– The witnesses of segment xm0+(d−1)di+1, . . . , xjdi+1 with respect to Am0+(d)di = Ajdi+1 . Call these wit-
nesses π∗m0+(d−1)di+1, . . . , π

∗
jdi+1 .

Succinctness implies that the size of each of these accumulators is O(polylog(n)). Since n = O(poly(d)), these
accumulators have size at most O(polylog(d)) and are therefore succinct in terms of the current subsequence
length. Therefore, we can apply Lemma 2 with c = 0.99, recalling that c is the fraction of elements whose
witnesses change. We obtain that with only negligible probability do fewer than cdi+1 witnesses of the lower-
level di-sized segments change with regard to Ajdi+1 . By a union bound, we know the probability that fewer
than cdi+1 witnesses in the corresponding di-sized segments changed for any j ∈ |Li+1| is at most negligible.
Therefore, by another union bound, there is overwhelming probability that the total number of witness

changes observed on Li is cd
i+1|Li+1| = cdi+1

(
n

di+1

)
= cn for every i ∈ [h].

We now compute the number of witness changes that we’ve shown across all levels. As there are h levels, we
have that at least 0.99hn total witness changes throughout the entire process of accumulation. Recalling that
h = α/0.99, we have completed the proof that at least αn witnesses change with overwhelming probability.

Corollary 2. Let Π = (Setup,Acc,Verify) be a succinct accumulator for sets of superpolynomial size n (as
in Definition 6), for a data universe U . Let ord be an arbitrary ordering function. There exists some constant
α such that for any constant c ∈ (0, 1), for sufficiently large n,

Pr
X⊆U :|X|=n

pp←Setup(1λ,ord)

[
there are at least

cβn log n

α log log n
witness updates given pp

]
≥ 1− negl(λ).

Proof. Since Π is succinct, there must exist some polynomials p, q such that the size of the commitment to
a set of size n is at most p(λ)q(log n) (Definition 5). Let d = (p(λ)q(log n))

2
, h = log n/ log d, and therefore

n = dh. Note that here n = f(λ) for some superpolynomial function f . Repeat the proof of Theorem 1,
invoking Corollary 1 rather than Lemma 2. (Corollary 1 is simply the analogue of Lemma 2, for accumulators
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accommodating large sets). The fact that the probability of error in Corollary 1 is negligible in n = f(λ)
rather than just negligible in λ allows us to take a union bound over a polynomial in n number of events
and obtain a probability that is still negligible. Observe that

log d = 2 log(p(λ)q(log n))

= 2(αp log λ+ αq log log n)

= (2αp/β) log log n+ 2αq log logn

≤ (α/β) log log n

where αp, αq, and α are constants that depend only on p and q. We conclude that the total number of witness

updates is at least chn = cn logn
log d ≥ cβn logn

α log logn .

6 Merkle Mountain Ranges are essentially optimal

In this section we present generalized Merkle Mountain Ranges with any degree k, and show that they are
essentially optimal given our lower bound. k-ary Merkle Mountain Ranges have been considered in previous
work [30], which we recall here for completeness.

6.1 k-ary Merkle Mountain Range

To accumulate a sequence of elements X = x1, . . . , xn, one computes a list of complete k-ary Merkle trees
storing disjoint subsequences of S at their leaves. The number of Merkle trees of each size is equal to the
corresponding digit of the k-ary representation of n. The accumulator is defined to be the list of these Merkle
roots, in decreasing order of sizes of their trees. The membership witness of an element consists of the sibling
nodes along the path to its Merkle root. To verify a membership witness, one checks whether it is a valid
Merkle inclusion proof for any root in the commitment.

To add a new element, one first computes a (trivial) tree containing only that element. One then iteratively
checks if there are any k Merkle roots of the same size; if there are, they are merged into a single tree and
these new sibling nodes are added to their membership witnesses. One continues this merging process until
there are no more tuples of k trees to merge.

6.2 Upper bounding the number of witness updates

We show in Theorem 2 that a k-ary Mountain Range is succinct and has a relatively small asymptotic upper
bound to the number of total witness updates. Reyzin and Yakoubov proved a similar result for the special
case of k = 2 [39, Theorem 2].

Theorem 2. A k-ary Merkle Mountain Range is succinct and requires O(n logk n) witness updates when
accumulating n elements.

Proof. To show that the construction is succinct, we can see that accumulating n elements requires creating
trees of at most ⌈logk n⌉ unique sizes (1, k, k2, . . . k⌊logk n⌋). There are at most k − 1 trees of any one unique
size, leading to a maximum of (k−1)⌈logk n⌉ trees. This bound is hit exactly when accumulating n = km−1
elements for any integer m. Thus, the commitment size is O(k logk n), meeting the definition of succinctness.

Any individual element’s proof changes only when the tree it is a member of is merged. Each merger takes
k trees of size km and combines them into a new sub-accumulator of size km+1, updating all of the included
elements’ proofs in the process with overwhelming probability. Hence, the items currently in the largest trees
have been involved in the most merges (and have had the most witness updates). Since the largest tree is of
size k⌊logk n⌋, each of the elements in this tree were previously in accumulators of size 1, k, k2, . . . k⌊logk n⌋−1,
and thus have had their witness updated ⌊logk n⌋ times. Since this is the maximal number of merges for any
element and there are n elements, the total number of witness changes is O(n logk n).

21



Corollary 3. A k-ary Merkle Mountain Range with k = logc n will require O(logc+1 n) storage and O( n logn
c log logn )

witness updates to accumulate n elements.

Proof. As shown in the proof for Theorem 2, the accumulator size for a k-ary Merkle Mountain Range is
O(k logk n) = O(k log n) = O(logc+1 n). The total number of witness updates is

O(n loglogc n n) = O(
n log n

log logc n
) = O(

n log n

c log log n
)

6.3 Optimality of Merkle Mountain Ranges

Consider k-ary Merkle Mountain Ranges that accumulate superpolynomial-sized sets of size at most 2λ
β

for
any constant β < 1 (Definition 6).

Remark 3. Such Merkle Mountain Ranges are secure in the Random Oracle Model; that is, the underlying
hash function is represented as a random function with range {0, 1}λ. Soundness holds because breaking

soundness of the MMR requires finding a hash collision, which happens with probability at most poly
(
2λ

β
)
·

2−λ by an adversary running in time polynomial in 2λ
β

, satisfying the definition of soundness for accumulator
for large sets as in Definition 7.

Recall from Corollary 2, we know the lower bound of the number of witness updates in MMRs accumulating
large sets is cβn logn

α log logn for some constant α and constant c ∈ (0, 1) with overwhelming probability. This lower

bound is asymptotically tight for log n-ary Merkle Mountain Ranges, since they require at most O( n logn
log logn )

witness updates (Corollary 3). We conclude that MMRs are essentially optimal regarding the number of
witness updates when accumulating large sets.
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