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Abstract. We show a generic compiler from KEM to (Universally Com-
posable) PAKE in the Random Oracle Model (ROM) and without requir-
ing an Ideal Cipher. The compiler is akin to Encrypted Key Exchange
(EKE) by Bellovin-Merritt [13], but following the work of McQuoid et
al. [40] it uses only a 2-round Feistel to password-encrypt a KEM public
key. The resulting PAKE incurs only insignificant cost overhead over the
underlying KEM, and it is a secure UC PAKE if KEM is secure and
key-anonymous under the Plaintext-Checking Attack (PCA).
Several KEM-to-PAKE compilers were shown recently, [44,11,43,6,7], se-
cure under the OW-PCA and ANO-PCA assumptions on KEM, but all
used an Ideal Cipher in addition to ROM. While there are techniques
for emulating ROM against quantum attackers, e.g. [18,48,46], it is cur-
rently unknown how to extend many of such techniques to the Ideal
Cipher Model. Consequently, doing without the Ideal Cipher in proto-
col design makes the resulting construction a more plausible candidate
for post-quantum secure PAKE if instantiated with post-quantum PCA-
secure and anonymous KEM, such as the ML-KEM standard itself.
Our construction and proofs build on many of the ideas underlying the
KEM-to-PAKE compiler using 2-round Feistel given by McQuoid et
al [40], but our protocol is more efficient and our proofs address limi-
tations in the analysis therein.

1 Introduction

Password-Authenticated Key Exchange [13,12,21] (PAKE) is a cryptographic
protocol that allows two parties, Alice and Bob, to establish a secure channel, in
the presence of malicious Man-in-the-Middle attackers, without relying on prior
cryptographic keys. Instead, Alice and Bob rely on low-entropy long-term secrets
such as human-memorable passwords or Personal Identification Numbers (PIN)
to authenticate each other. A PAKE protocol is secure if the only way to break
security of the established channel is to guess the low-entropy secret and use it
in an active attack on a PAKE protocol instance. Furthermore, using generic
compilers [29,36] any secure PAKE implies an augmented PAKE (aPAKE) [14],
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where one party, the server, uses a (deterministic) one-way hash of the password
instead of the password itself.

Several appealing applications of (a)PAKE caused a renewed interest in this
primitive and led to recent standardization efforts.4 Two prominent examples
of this are data escrow protocols such as the WhatsApp backup recovery pro-
tocol [26], and protocols for establishing secure connections to cryptographic
tokens such as electronic passports [15,24] and FIDO2 authenticators [8]. In all
these cases, (a)PAKE is a subprotocol that implements access control, for which
mutual authentication guarantees based on low-entropy secrets are crucial.

Post-Quantum Security. Many constructions of PAKEs exist in the litera-
ture. However, so far none of them simultaneously satisfy three properties which
are important for practical applications in the ongoing process of migration to
post-quantum security: 1) offering adequate performance in constrained devices
such as embedded platforms, 2) basing security on assumptions which can be
plausibly achieved in the presence of quantum adversaries, and 3) relying only
on standardized cryptographic algorithms and thoroughly scrutinized proper-
ties of these algorithms, thereby providing a streamlined path for standardiza-
tion and certification. Indeed, all existing constructions in the literature, with
an exception discussed below, are either non-efficient (e.g. group-action-based
construction in [2]), or not built modularly from standardized cryptographic al-
gorithms (e.g., lattice-based constructions in [38,27]), or they rely on the Ideal
Cipher (IC) model which is currently an obstacle to provable security against
quantum adversaries, e.g., the Encrypted-Key-Exchange (EKE) constructions
in [44,11,43,6,7].5 Another issue is that of patent coverage, which affects for
example the construction in [27].6

2-Feistel instead of Ideal Cipher. An exception is the PAKE construction
of McQuoid, Rosulek and Roy [40] (MRR), a variant of the Encrypted Key Ex-
change (EKE) of Bellovin and Merritt [13], which comes closer to realizing all
of the above goals: 1) it is a generic construction from any Key Exchange (KE),
and hence any Key Encapsulation Mechanism (KEM), with a small overhead
over an underlying passively secure key exchange, 2) it can be instantiated with
a standard post-quantum secure KEM, and 3) it claims security in the Random
Oracle Model (ROM). Technically, the MRR protocol follows the EKE pattern,
encrypting the key exchange flows with a symmetric cipher keyed with the pass-
word. The main difference from the classic EKE [13,12] is that the cipher is not
a keyed permutation but a keyed randomized function, with co-domain larger
than the domain, and it is not required to be an IC. MRR construct this ran-
domized cipher using a 2-round Feistel network (2F) defined below, where the
left wire carries random coins r and the right wire carries the plaintext M . For

4 https://github.com/cfrg/pake-selection
5 A quantum IC model must allow both forward and backward queries in superposition
to the ideal object, subject to the permutation restriction, which invalidates many
of the proof techniques adopted in the quantum RO model (QROM) [46].

6 https://patents.google.com/patent/WO2017041669A1/en
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2Fk(r,M)

R← H1(k, r)

T ←M ⊙R

t← H2(k, T )

s← r ⊕ t

return (s, T )

2F−1
k (s, T )

t← H2(k, T )

r ← s⊕ t

R← H1(k, r)

M ← T ⊙R−1

return (r,M)
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Fig. 1. The 2-Feistel [40], where ⊕ is the XOR operation over bit-strings, ⊙ is the
group operation in G , and (·)−1 computes the inverse of a group element.

compatibility with the EKE application, the plaintext is seen as an element of
some algebraic group G, the domain of either KEM public keys or ciphertexts.

Definition 1. (2-Feistel construction: 2F) The 2-round Feistel network, as
introduced in [40], is constructed from: (1) hash function H1 whose output space
is an algebraic group G; and (2) hash function H2 whose output space is the set
N of fixed-length bitstrings (N is the space from which the random string r is
sampled). The 2F construction comprises two efficiently computable functions,
2Fk : N ×G→ N ×G and its inverse 2F−1

k , both shown in Figure 1.

Adopting the 2F construction in EKE yields a significant performance im-
provement and makes the construction easier to instantiate than its IC-based
counterparts. Indeed, there is a mismatch between the domain of standard block
ciphers, which can be used as off-the-shelf instantiations of IC, and the domain
corresponding to the flows of key exchange protocols. In the context of PAKEs,
a poor instantiation of the IC can lead to offline dictionary attacks. Alterna-
tively, a Feistel network could also instantiate an IC, but it is well known that
2F does not offer the level of security of an Ideal Cipher and, to the best of our
knowledge, eight rounds seem to be needed to achieve indifferentiability from an
IC [25]. The ability to replace the IC with only 2 rounds of Feistel represents a
significant improvement. Moreover, the resulting construction can be analysed
in the ROM, rather than the IC model, opening the prospect of a QROM proof.

Weakness of prior 2F-based PAKE proposal. However, the security proof
provided by MRR has some limitations, as pointed out by Dos Santos, Gu and
Jarecki [44] (SGJ). To address these limitations, SGJ proposed the Randomized
Half-Ideal-Cipher (HIC) construction using a modified 2F construction, where
the XOR operation over bitstrings is replaced by an IC on (short) bitstrings. The
construction proposed by SGJ also optimizes the MRR design by using the HIC
in only one of the key exchange flows, similarly to OEKE [22]. Subsequently, Ar-
riaga, Barbosa, Jarecki and Skrobot proposed the CHIC construction [7], which
further optimizes the SGJ construction by instantiating it with a post-quantum-
secure KEM such as Kyber or FrodoKEM, where public-keys can be split and
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used to de-randomize the HIC construction. However, both of these optimized
constructions derived from MRR rely on the IC, which leaves an open question
whether using the original 2F, as in the MRR protocol, suffices for a UC PAKE.

In this paper we propose a PAKE construction NoIC, a variant of EKE shown
in Figure 4, which resolves this question as follows:7

– Our construction has the same structure as the SGJ, OEKE, and CHIC
protocols [22,44,7], in particular we password-encrypt only the first protocol
flow with the 2F construction, but it replaces the (H)IC component with the
2F component as in the initial MRR proposal.

– We show that the CHIC optimizations cannot be applied to further opti-
mize this variant of the MRR protocol, which establishes a clear separation
between IC-based and RO-based constructions.

– We prove our construction secure in the Universal Composability framework,
modeling hash functions as Random Oracles, and relying on the same KEM
properties required by previous constructions [7], namely One-Wayness and
Anonymity under the Plaintext-Checking Attack (OW-PCA and ANO-PCA)
and pseudo-uniformity of the public keys (UNI-PK).

Comparison to Januzelli, Roy, and Xu [33] (JRX). In a recent indepen-
dent work, JRX look at the same question of whether the MRR proposal of using
just 2F instead of IC in EKE can lead to a secure UC PAKE, and also settle it in
an affirmative. However, there are significant differences between our work and
that of JRX, regarding (1) the proposed EKE variants, (2) the requirements on
the underlying KEM implied by the analysis, and (3) the proof methodology.

JRX analyzes the security of two EKE variants, called EKE-PRF and OEKE.
EKE-PRF is similar to the EKE of MRR, with 2F applied to both KEM messages,
i.e. the public key and the ciphertext, except that the output session key is
derived via a PRF on the EKE transcript. Protocol OEKE is similar to NoIC,
with 2F applied only to the first KEM message, i.e. the public key, but OEKE
equates the session key and a key confirmation message with the KEM key,
whereas NoIC derives these values via RO hash involving the KEM key, the
password, session identifiers, and the transcript.8

JRX show EKE-PRF and OEKE security under stronger assumptions on KEM
than the ones we require for NoIC. Namely, the analysis of EKE-PRF asks for
a secure, strongly pseudorandom, and pseudorandom non-malleable Key Agree-
ment (KA) [33, Lemma 5.1 + Theorem 5.4], and the OEKE construction asks
for a secure, pseudorandom, pseudorandom non-malleable and collision resistant
KA [33, Lemma 5.1 + Theorem 5.7]. Some of these notions don’t have a direct
counterpart in the KEM literature, so using an off-the-shelf KEM in the construc-
tion requires additional analysis. In what follows we discuss our understanding
of the required KEM properties in both works.

7 See below for a discussion of a closely related, but independent, recent work [33].
8 Specifically, OEKE is identical to NoIC of Fig 4, except instead of using functions
Htag,Hkey, values tag, key are parsed directly from the KEM key K, i.e. key||tag := K.
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The closest KEM notion to pseudorandom non-malleability for a KEM is
SPR-CCA [33, Remark 3.7], which implies simultaneously IND-CCA and ANO-CCA
[47, Theorem 2.5]. NoIC on the other hand has only mild requirements on the un-
derlying KEM: one-wayness and anonymity must hold under plaintext-checking
attacks (i.e., OW-PCA and ANO-PCA with a single query to the plaintext-
checking oracle9), and the KEM must have pseudo-uniform public keys (i.e.
UNI-PK). Note that OW-PCA is weaker than IND-CCA (see [1,7]), whereas the
UNI-PK property is the same as in JRX10 and all previous compilers from KEM
to PAKE [44,11,43,6,7].

OEKE additionally requires collision-resistance of KEM, a strong binding
property requiring that given two public KEM keys pk1, pk2, it is infeasible
to create a ciphertext which decrypts the same way using both corresponding
private keys, sk1, sk2. Our proof avoids such a requirement on the underlying
KEM because we follow the more standard PAKE design approach, ensuring the
required bindings via a key derivation function applied in the last protocol flow.

The final difference is in the proof methodology. We give a single monolithic
proof that NoIC realizes UC PAKE functionality in ROM under the above KEM
assumptions, specifying the exact bound on the environment’s real-vs-ideal dis-
tinguishing advantage. By contrast, JRX’s proof is modular. First they define
a UC POPF functionality FPOPF and show that 2F almost UC-realizes FPOPF,
which means that 2F can replace FPOPF within any higher-level protocol, e.g.
OEKE, only if the hybrid-world simulator which exhibits that π realizes its tar-
get functionality, e.g. FPAKE, emulates FPOPF in a constrained way, in particular
without programming outputs of a random function that abstracts evaluating
2F−1 on adversarial ciphertexts. Secondly, they define functionality FEKE-1r which
abstracts the first round shared by all EKE variants, i.e. password-encryption
of the KEM public key, and show that it is realized under some subset of KEM
properties if the password-encryption “almost-UC realizes” FPOPF. Finally, they
prove OEKE (and EKE-PRF) secure if the first round realizes FEKE-1r, under
further KEM properties.

This modular proof has intellectual benefits, but it also has some negative
consequences: The almost-UC conditional composability notion complicates the
proofs, and it is harder to unpack the exact bounds on the environment’s dis-
tinguishing advantage. Moreover, the FEKE-1r abstraction used in JRX relies on
KEM which has pseudorandom ciphertexts. Since our monolithic proof shows
that NoIC security holds if KEM has ciphertext anonymity, not necessarily ci-
phertext pseudorandomness, it seems unlikely that the security of NoIC can be
argued from our (weaker) KEM assumptions following the modular proof frame-
work of JRX.11 Finally, and perhaps more importantly, although it is plausible

9 See remark on minimum requirements for the KEM at the end of the paper.
10 UNI-PK corresponds to first pseudorandomness, which is a necessary property for

pseudorandomness.
11 Apart from posing stronger requirements on the underlying KEM, the fact that

protocol OEKE of JRX parses the PAKE output directly from the KEM key, omitting
a key-derivation PRF or authentication tag present in NoIC, allows two parties to
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that we could make our arguments go through using the UC POPF abstraction
and the “almost UC” framework introduced by JRX, our proof methodology
has the advantage of exposing directly the required properties from the Ran-
dom Oracle in each step of the proof. For this reason, it opens the way for a
direct analysis in the QROM without dealing with the additional complexity
introduced by composition of several abstractions/protocol layers.

Security Model. Password-Authenticated Key Exchange (PAKE) is a cryp-
tographic primitive that accomplishes what seems to be impossible: securely
establishing a high-entropy secret starting only from a low-entropy password.
This apparent contradiction has a simple explanation: the security notions for
PAKE do not exclude that an attacker gains access to the established secret, but
rather impose that the only way to do so is if by learning or guessesing the pass-
word used to establish it. Formalizing this intuition is nontrivial, and there have
been several works that proposed different PAKE definitions, e.g. [12,21], but
we adopt the most widely accepted definition of PAKE security and correctness,
the Universally Composable (UC) PAKE model proposed by Cannetti, Halevi,
Katz, Lindell and MacKenzie [23]. (See Section 2 for further motivation.)

Technical Challenge. At the high-level our proof follows the same strategy
as those in [22,44,7]. However, dealing with the malleability allowed by the 2F
component poses a significant challenge. Intuitively, in all of the previous IC
based constructions—this is immediate when using an IC and requires some
additional work when using HIC—an adversarial query to the IC in the forward
direction commits the adversary to a triple (pw, pk, apk), where the adversary
controls (pw, pk). This allows the simulator to extract (pw, pk) whenever apk is
delivered to an honest party, check if the password is correct and, if so, simulate
the output of the party using pk. Conversely, a query in the reverse direction
commits the adversary to a triple (pw, apk, pk), where the adversary controls
(pw, apk). This allows the simulator to program pk, in a way that it knows the
corresponding secret key sk, and later use it to simulate the behaviour of an
honest party.

MRR observed that the above proof technique fails for 2F, because the notion
of forward and backward query is much looser. As expected, one needs to define a
forward query to 2F as a query to H1 followed by a query to H2, while a reversed
order corresponds to a backward query. However, contrary to the (HIC) case,
one cannot take the output t of a query to H2 and identify a unique triple (t, r, s)
that fully commits the adversary to an input/output pair for the 2F construction.
This creates two, somewhat related, problems that require two different solutions
in the proof.

The first problem is that, for every t, the adversary can make polynomially
many queries to H1 that result in related triples of the form (t, r, s = t⊕ r). This

output the same session key even if they ran on different passwords, but were both
subject to a successful online guessing attack. Such outcome is allowed by the UC
PAKE model, but it is better to avoid it in practice.
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was already identified by McQuoid, Rosulek and Roy [40], who proposed using a
guessing strategy to carry out the necessary programming in the output of H1.

The second problem, which was missed in [40], is that for any given 2F
output apk = (s, T ) that encrypts pk under pw, the adversary may come up
with apk′ := (s⊕ δ, T ⊙∆) that encrypts pk′ = pk ⊙∆ for adversarially chosen
∆.12 Since the adversary can do this for apk produced by an honest party (i.e.,
by the simulator), this suggests that the adversary may perform a related key
attack on the underlying KEM.

The main novelty in our proof is to show a careful simulation that keeps
track of the related key attack attempts of the adversary, and extracts a password
guess when the adversary finally commits to the key apk′ delivered to the honest
party. If the password guess is correct then no security guarantee needs to be
given about the derived shared key: the simulator can recover pk′ = pk ⊙ ∆,
follow the protocol on pk′, and program the resulting shared key in the FPAKE

output to match the real world.
If the password guess is incorrect, then we show that the honest party is

actually using a public key over which the adversary has no control and we can
revert back to the guessing strategy of McQuoid, Rosulek and Roy [40]. As a re-
sult, we can conclude the proof without relying on related-key type assumptions
for the underlying KEM. Indeed, we prove the protocol secure down to the same
KEM security properties required for IC-based protocols such as CHIC.

Structure of the paper. In Section 2 we expand on related work. In Section 3
we provide the security definitions for KEM. In Section 4 we motivate our pro-
tocol design by answering some natural technical questions raised by prior work,
namely showing why various alternative designs based on 2F fail to produce a se-
cure PAKE. In Section 5 we describe our protocol in detail and give the security
proof.

2 Further Related Work

PAKE variants. PAKE was first introduced by Bellovin and Meritt [13]. Their
elegant modular Encrypted Key Exchange (EKE) design influenced many, per-
haps the majority, of PAKE constructions proposed in the last 30 years. This
plain version of PAKE, which we consider in this work, is known as a symmet-
ric PAKE because parties authenticate each other if they have the same inputs.
However, PAKE can also lead to a more secure replacement of the current “pass-
word over TLS” method for authenticating users on the Internet. This scenario
calls for an augmented PAKE (aPAKE) [14], where one party, the server, uses a
one-way hash of the password instead of the password itself. Any PAKE can be
compiled into aPAKE via the compiler constructions of [29,32,31,37]. However,
an aPAKE that could truly replace “password-over-TLS” authentication has to
be a strong aPAKE (saPAKE), where the server’s password hash is privately

12 Adversary can query t← H2(pw, T ) and t′ ← H2(pw, T ⊙∆) and set δ = t⊕ t′.
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salted (e.g. the saPAKE of [34] used in WhatsApp backup [26]). Any aPAKE
can be used to build saPAKE via the compiler of [34], but this compiler also
uses an Oblivious PRF (OPRF) [28], and so far post-quantum OPRFs [19,5,17]
are much less efficient than KEMs which imply our PAKE, and consequently
aPAKE via the recent KEM-based PAKE-to-aPAKE compilers [31,37].

PAKE security models. PAKE security was first formalized in a game-based
model by Bellare, Pointcheval and Rogaway (BPR) [12]. The BPR model has
been adopted in the analysis of many PAKE proposals, but it provides only
limited assurance of real-world security, namely due to assumptions on the pass-
word distributions and composability. Canetti et al. [23] proposed a Universally
Composable (UC) PAKE model which addresses password correlations, pass-
word mistyping, password information leakage, and arbitrary interactions be-
tween protocol instances. The UC model also ensures security under arbitrary
protocol composition, enabling security arguments for protocols that use generic
PAKE as a subroutine, e.g., the generic compilers mentioned above, from PAKE
to aPAKE [29,32,31,37], or from aPAKE to saPAKE [34]. For all these reasons
the UC PAKE model has become a gold standard of PAKE security.

PAKE standardization. The most efficient PAKE constructions to date, e.g.
SPAKE2 [4] and CPACE [3], the latter chosen for standardization by the IETF, are
variants of the Diffie-Hellman KE protocol, and they achieve security with essen-
tially no bandwidth overhead and minimal computational overhead—in CPACE
this overhead is reduced to hash operations. Indeed, one of the takeaways of
the CPACE selection process was that performance is critical for adoption.13

This is because target applications include resource-constrained devices (e.g.,
IoT networks) and ad-hoc contexts (e.g., ePassports and file transfers). Another
important takeaway from the CPACE selection process was the relevance of a
(thoroughly scrutinized) proof of security in the UC framework.14

Post-Quantum PAKEs. As discussed in the introduction, there are currently
no good candidates for a PAKE protocol that can enable a transition to post-
quantum security. Several recent works [40,44,11,43,6,7] proposed black-box con-
structions of PAKE from a Key Encapsulation Mechanism (KEM) and an Ideal
Cipher (IC) or its variants, shedding new light on the thirty-year-old Encrypted
Key Exchange (EKE) paradigm [13]. From a practical point of view, this focus
on the generic conversion of KEM into PAKE is largely driven by the very recent
standardization of the first post-quantum KEM [42]. Based on Kyber [45,20], the
ML-KEM standard [42] has undergone extensive scrutiny regarding its security
and anonymity properties, as well as secure and efficient implementation, and
this body of research can be leveraged when constructing PAKE protocols that
use KEM in a black-box way.

Several recent works have proposed PAKE constructions that lack a modu-
lar design, which would allow for instantiation from standardized KEMs or key

13 https://mailarchive.ietf.org/arch/msg/cfrg/usR4me-MKbW4QO0LprDKXu3TOHY
14 https://mailarchive.ietf.org/arch/msg/cfrg/47pnOSsrVS8uozXbAuM-alEk0-s
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exchange primitives. Ding, Alsayigh, Lancrenon, Saraswathy, and Snook [27]
propose a direct construction from RLWE. The construction is very efficient,
but is proven secure only with respect to classic adversaries in the ROM. More-
over, note that any 2-round PAKE implies a secure KEM, hence fundamentally
PAKE cannot be more efficient than KEM. Consequently, a compiler which
generically builds PAKE from KEM with negligible overhead will produce an
optimal PAKE. Jiang, Gong, He, Nguyen and Wang [35], Zhang and Yu [49]
and later Benhamouda, Blazy, Ducas and Quach [16] gave constructions of hash
proof systems that are post-quantum secure and give rise to post-quantum se-
cure PAKEs. Lyu, Liu and Han [38] give a generic construction from lossy and
IND-CCA public-key encryption and propose instantiations from both isogenies
and lattices. Although the constructions in these works are less efficient than
the ones discussed in this paper, they come with a proof that considers quantum
adversaries: the former in the standard model and the latter in the QROM.

3 Preliminaries

For a brief overview of PAKE in the UC framework, see Appendix A. In partic-
ular, Fig.7 recalls the definition of FPAKE proposed by [23].

3.1 Key Encapsulation Mechanisms

We present the definition of a Key Encapsulation Mechanism (KEM) and intro-
duce the associated notions of security that are relevant for this work.

Definition 2. A Key Encapsulation Mechanism (KEM) scheme is a tuple of ppt
algorithms KEM = (Keygen,Encap,Decap) that behaves as follows:

– Keygen(λ) → (pk, sk): a key-generation algorithm that on input a security
parameter λ, outputs a public/private key pair (pk, sk).

– Encap(pk) → (c,K): an encapsulation algorithm that on input a public key
pk, generates a ciphertext c and a secret key K.

– Decap(sk, c)→ K: a decapsulation algorithm that on input a private key sk
and a ciphertext c, output a secret key K.

For correctness, we require that for any key pair (pk, sk) ← Keygen(λ), and
ciphertext and secret key (c,K) ← Encap(pk), we have that K = Decap(sk, c).
When this holds up to a negligible quantity, we represent this by AdvKEMcorrectness(1

λ).

KEM security properties. The standard security notion for key encapsulation
mechanisms is indistinguishability under chosen-ciphertext attacks (IND-CCA).
Many applications also demand the property of anonymity: an anonymous KEM
ensures that a ciphertext conceals the identity of the recipient by revealing
no information about the public key employed in the encapsulation process.
The standard definition of this property is a natural adaptation of IND-CCA
known as ‘anonymity under chosen-ciphertext attacks’ (ANO-CCA), in which
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the adversary must to determine which of two public keys was used to gener-
ate a given challenge ciphertext. It has been established that Kyber is IND-CCA
[20,45] and ANO-CCA [30,39,47]. However, following [7], we rely on weaker prop-
erties, namely ‘one-wayness under plaintext-checkable attacks’ (OW-PCA) and
anonymity under plaintext-checkable attacks (ANO-PCA). In addition, we re-
quire a KEM with pseudo-uniform public-keys (UNI-PK). The experiments re-
quired to define all these notions are defined in Fig. 2. We note that it was shown
in [7] that ML-KEM satisfies all these notions of security.

Exp ANO-PCAA
KEM(λ)

(pk0, sk0)← Keygen(λ)

(pk1, sk1)← Keygen(λ)

b←$ {0, 1}
(c∗, )← Encap(pkb)

b′ ← APCOc∗ (sk0,·,·)(pk0, pk1, c
∗)

return b == b′

Oracle PCOc∗(sk, c,K)

if c == c∗return ⊥
return K == Decap(sk, c)

Exp OW-PCAA
KEM(λ)

(pk, sk)← Keygen(λ)

(c∗, )← Encap(pk)

K ← APCO⊥(sk,·,·)(pk, c∗)

return K == Decap(sk, c∗)

Exp UNI-PKA
KEM(λ)

(pk0, )← Keygen(λ)

pk1 ← PKλ

b←$ {0, 1}
b′ ← A(pkb)
return b == b′

Fig. 2. Security experiments defining properties of KEM: (1) One-Wayness under
Plaintext-Checkable Attacks (OW-PCA); (2) Anonymity under Plaintext-Checkable At-
tacks (ANO-PCA); (3) Pseudo-Uniform Public-Keys (UNI-PK). In ANO-PCA security
experiment, A is not allowed to query the plaintext-checking oracle PCO on the chal-
lenge ciphertext c∗. This restriction is not imposed in OW-PCA experiment.

Definition 3. (KEM one-wayness under plaintext-checkable attacks)
A Key Encapsulation Mechanism (KEM) scheme is said to be OW-PCA secure
if for any ppt adversary A engaged in the OW-PCA security game, the advantage
of A defined as:

AdvOW-PCA
KEM,A (λ)

def
= Pr[OW-PCAA

KEM(λ) = 1] (1)

is negligible as a function of λ. Experiment OW-PCA is defined in Fig. 2.

Definition 4. (KEM anonymity under plaintext-checkable attacks) A
Key Encapsulation Mechanism (KEM) scheme is said to be ANO-PCA secure
if for any ppt adversary A engaged in the ANO-PCA security game, where A is
prohibited from calling the oracle PCO on the challenge ciphertext, the advantage
of A defined as:

AdvANO-PCA
KEM,A (λ)

def
= 2 · Pr[ANO-PCAA

KEM(λ) = 1]− 1 (2)
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is negligible as a function of λ. Experiment ANO-PCA is defined in Fig. 2.

Definition 5. (Pseudo-uniformity of KEM public keys) A Key Encapsu-
lation Mechanism (KEM) scheme is said to have pseudo-uniform public keys if
for any ppt adversary A engaged in the UNI-PK security game, the advantage of
A defined as:

AdvUNI-PKKEM,A(λ)
def
= 2 · Pr[UNI-PKA

KEM(λ) = 1]− 1 (3)

is negligible as a function of λ. Experiment UNI-PK is defined in Fig. 2.

4 Questions raised by prior work

In this section we clarify several natural questions raised by prior work that
stemmed from the construction of McQuoid, Rosulek and Roy [40]. In particu-
lar, we justify our choice for giving a direct proof that deals directly with the
internals of the 2F construction in the Random Oracle Model, rather than reusing
an intermediate abstraction such as Program-Once Public Function (POPF) or
Half-Ideal Cipher (HIC). We also explain why we don’t further optimize the
construction by using the split-KEM idea of [7].

4.1 Is POPF of [40] a good abstraction to build PAKE?

Background on POPF. 15 McQuoid, Rosulek and Roy [40] showed that the
2F construction can be seen as a realization of a cryptographic primitive called
Programmable-Once Public Function (POPF) in the Random Oracle Model.
For a keyed function family Fϕ : X → Y , POPF is defined as a pair of efficient
algorithms Program and Eval s.t.:

– Program is a randomized algorithm s.t. ϕ ←$ Program(x, y) fixes a POPF
instance Fϕ, a random function subject to the constraint that Fϕ(x) = y.

– Eval is a deterministic algorithm that evaluates the POPF instance on arbi-
trary inputs, i.e. Eval(ϕ, x) = Fϕ(x).

Correctness requires that Eval(ϕ, x) = y for any ϕ output by Program(x, y).
The motivation for proposing POPF as a stepping stone for constructing

PAKE was to replace IC in EKE constructions with a weaker primitive. In
EKE [13] formalized using Ideal Cipher by Bellare et al [12], Alice sends out
ϕ = ICpw(M), where M is a key-exchange message, and if Bob holds the same
password he can recover M as M = IC−1

pw (ϕ). McQuoid et al [40] replaced IC with
a POPF, where pair (pw,M) is the single point programmed by Alice into the
random function Fϕ. On receiving ϕ, Bob then evaluates Fϕ on its own password
pw′ and recovers M if pw′ = pw or an unrelated value otherwise.

15 In subsection 4.1 we equate POPF with the game-based security notion of McQuoid,
Rosulek and Roy [40]. The POPF notion was recently given a reformulation in the
UC setting in [33], which we discuss next, in subsection 4.2.
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To see that POPF may be easier to realize than an IC, observe that POPF
programming can be a randomized operation, and the POPF encoding ϕ doesn’t
have to be an element of the same domain as message M . Indeed, in the POPF
construction of [40] the programming algorithm Program(pw,M) picks a random
nonce r ←$ N and outputs ϕ← 2Fpw(r,M), see Figure 1, while Fϕ(pw

′) is defined
as M ′ s.t. (r′,M ′) = 2F−1

pw′(ϕ).
McQuoid et al [40] define POPF security via the following three games:

– Honest Simulation: For any (x, y), if ϕ is honestly computed by Program(x, y)
then Fϕ is indifferentiable from a random function on all x ̸= x∗.

– Straight-line Extraction: There exists an extractor that can extract a pro-
grammed argument x∗ from any adversarially chosen POPF instance ϕ.

– Uncontrollable Outputs: If ϕ is adversarially chosen then the outputs of Fϕ

on all inputs except x∗ can be securely used as inputs to any weak PRF,
where x∗ is straight-line extracted from ϕ by the property above.

McQuoid, Rosulek and Roy [40, Theorems 8-9] show that the 2F-based POPF
construction shown above satisfies these properties in the Random Oracle Model.

Does POPF ⇒ PAKE? McQuoid, Rosulek and Roy [40, Theorems 8-9] pro-
pose that the construction in Figure 3 is a UC PAKE, which can be instantiated
with plain Diffie-Hellman and the POPF construction based on 2F. However,
Dos Santos, Gu and Jarecki [44] (SGJ) point out that the POPF abstraction
does not exclude constructions that are problematic for EKE, and pose that it
is unlikely that the PAKE construction above can be proved UC secure. The
problem, according to SGJ, is that the POPF game-based definitions for hon-
est simulation and uncontrollable outputs are independent: they do not account
for the fact that, when proving PAKE secure, the uncontrollable outputs prop-
erty will need to hold for malicious ϕ∗ that may depend on a ϕ that results
from honest simulation. Indeed, this case does not seem to be considered in the
proof of security given by McQuoid, Rosulek and Roy [40, Theorem 10] for the
construction above: this proof considers only the cases where one of Alice or
Bob is honest and the other is corrupt, but it does not explicitly consider the
case in which both Alice and Bob are honest, but the adversary may play the
Man-in-the-Middle and deliver to Bob a message that is modified from the one
transmitted by Alice and vice versa.

The doubts raised by SGJ hint at a potential impossibility of constructing
PAKE from POPF in a black-box way. We do not give such a general separation,
but we do show that the concrete construction of a symmetric PAKE as given
in [40] is, in fact, vulnerable to a Man-in-the-Middle attack.

The attack. 16 Consider a POPF constructed from an Ideal Cipher IC, i.e.
Program(x, y) := IC(x, y) and Eval(ϕ, x) := IC−1(x, ϕ). This construction is a
secure POPF as argued in [40]. Furthermore, let KA be plain Diffie-Hellman,
which again is argued in [40] to satisfy the pseudorandomess requirements for

16 The same attack on [40] is identified by JRX [33], but we include it for completeness.
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Party 1(input pw1) Party 1(input pw2)

a←$ KA.R
M1 ← KA.msg1(a)

ϕ1 ←$ POPFA.Program(pw1,M1)
ϕ1−−−−−−→ b←$ KA.R

M̃1 ← POPFA.Eval(ϕ1, pw2)

M2 ← KA.msg2(M̃1, b)

M̃2 ← POPFB .Eval(ϕ2, pw1)
ϕ2←−−−−−− ϕ2 ←$ POPFB .Program(pw2,M2)

output KA.key1(a, M̃2) output KA.key2(b, M̃1)

Fig. 3. The POPF-based PAKE of [40]. KA is a two-message key exchange protocol
with special pseudorandomness properties, and POPFA, POPFB are two independent
POPF instances.

the PAKE construction in Figure 3. We show that there is no simulator that can
establish the security of the resulting PAKE. The attack is simple, and it is a
case of a malleability attack launched by a Man-In-The-Middle attacker:

1. The environment Z starts sessions between Alice and Bob with a password
that the simulator can predict with probability visibly less than one.

2. At this point, in the real-world, Alice transmits a message ϕ1, so the simu-
lator also must commit to such a message in the ideal world.

3. The environment Z then instructs the adversary A to deliver ϕ1 to Bob.
4. In the real world, Bob outputs a group element K as the session key and

transmits a message ϕ2. The simulator must therefore call NewKey to force
Fpake to produce key K on Bob’s behalf, which by the rules of Fpake
is information-theoretically hidden from the simulator. The simulator must
therefore produce message ϕ2 without knowledge of K.

5. The environment Z then instructs the adversary A to decrypt ϕ2 on the
correct password to obtain some group element Y , re-encrypt Y 2 under the
same password to get ϕ′

2, and deliver ϕ′
2 to Alice.

6. In the real world, Alice outputs K2. Three cases can happen in the ideal
world when the simulator calls NewKey, and we show than in none of them
will Alice output K2, except with negligible probability:
(a) If the simulator treats this as a passive session, and doesn’t call TestPw

then ideal-word Alice will output K.
(b) If the simulator previously called TestPw with a wrong password, the

functionality will output an independent key on Alice’s behalf.
(c) If the simulator previously called TestPw with the correct password, then

the functionality will output a key K ′ fixed by the simulator. However,
the probability that K ′ = K2 is negligible, as K is hidden from the
simulator’s view.

We note that the above attack can be stopped, e.g., deriving the final session
key via a key derivation function. However, it remains unlikely that the fixed
protocol can be proven secure by reduction to the game-based POPF properties,
due to the reasons pointed out by SGJ, as discussed above.
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4.2 Can 2F be captured by an abstraction that suffices for EKE?

Dos Santos, Gu and Jarecki [44] considered the question of whether the HIC
abstraction could be an alternative to POPF and admit to an instantiation based
on 2F (i.e., eliminating the IC component altogether), but they demonstrate that
this cannot be the case: The 2F construction allows an adversary to fix O(q2)
correlated input-output values for 2F with only O(q) random oracle queries,
whereas observing such correlations at the input-output interfaces of the HIC
functionality can happen with only neligligible probability. Consequently, no
simulator can justify that 2F realizes the HIC functionality.

UC POPF abstraction of [33]. Note that, up to this point, we have ruled out
a number of routes to give a construction of EKE PAKE using 2F in place of an
IC. However, none of the results in the literature excludes this possibility. One
option to achieve it would be to introduce a new abstraction which is stronger
than POPF but weaker than HIC and show that 1) the 2F construction meets
this new level of security and 2) that the new abstraction can be used to replace
the IC in EKE protocol(s). This is exactly the route taken by the recent, and
independent from ours, work of Januzelli, Roy, and Xu (JRX) [33] which we
discussed in the Introduction. Indeed, JRX define a UC POPF functionality
FPOPF which satisfies both points above, with the caveat that JRX show 2F to
realize this FPOPF model in a constrained sense which JRX designate almost UC,
and which on a high-level means that 2F can replace FPOPF within a higher-level
protocol, like EKE, as long as the simulator for this protocol emulates the FPOPF

interface in a constrained way, in particular disallowing programming values into
POPF evaluation outputs.

Advantages of our approach. Here we take an alternative and pragmatic
approach, which we believe offers some advantages, as discussed in the Introduc-
tion. We simplify the EKE PAKE construction as much as possible, and carry
out a direct proof. The protocol we propose is a natural sequence to the propos-
als in [44,11,43,6,7], where we rely only on a standard KEM and a small number
of hash computations. However, we did not include the bandwidth saving tech-
nique introduced in [7], for the reason we explain next. We compare the exact
results of [33] and ours in the Introduction, but to summarize: (1) we isolate
a version of EKE which we show secure under weaker and more standard as-
sumptions on KEM, (2) the direct proof allows us to state the exact bounds on
an adversarial distinguishing advantage, (3) we avoid the complexity of work-
ing with a non-standard notion of constrained composition. Looking ahead, our
direct approach might also be easier to upgrade to argue security in the quan-
tum adversary model, and to upgrade the construction to realize the UC Bare
PAKE model [9] which avoids the requirement that the PAKE parties must hold
matching unique session and party identifiers before the protocol starts.
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4.3 Can NoIC be optimized for compactness?

Background on CHIC. Regardless of the algebraic structure variant of the
LWE problem—whether plain LWE or Module-LWE—a common optimization
in lattice-based KEMs is the pseudorandom generation of the public matrix A
from a short seed. In these schemes, the public key consists of a tuple t = As+e,
where s is kept secret and the noise e is discarded, along with a short seed ρ
that expands into the public matrix A with the help of an eXtendable Output
Function (XOF) such as SHAKE-128. In Kyber [45], the seed ρ is in {0, 1}256,
while the matrix A ∈ Rk×k

q , where Rq is the ring Zq[X]/(Xn + 1), q = 3329 is
a small prime, n = 256 and k ∈ {2, 3, 4} depending on the choice of the security
parameter λ. In the case of FrodoKEM [41], the seed ρ ∈ {0, 1}128 while the
matrix A ∈ Zn×n

q , where q ∈ {215, 216} and n ∈ {640, 976, 1344} depending on
the choice of λ. In both cases, the benefit of transmitting ρ instead of every
element of the matrix A is obvious as this simple optimization significantly
reduces the size of public keys.

The authors of CHIC [7] observed that the random seed ρ in the above KEMs
can actually be directly used as the internal randomness required in the Half-
Ideal Cipher (HIC) construction, thereby leading to a more efficient variant of the
EKE-KEM protocol from [44]. Recall that the HIC-based protocol encrypts Al-
ice’s public key using a modified 2-round Feistel construction (m2F)—replacing
the XOR operation on the left-side of a 2-round Feistel with an IC—and that the
input wires carry 2λ-bits on the left wire and a group element on the right wire.
Typically, one would see the entire KEM public key as this group element. How-
ever, in the CHIC protocol, only the t component of the KEM public key goes
in the right-hand wire. This optimization reduces bandwidth and de-randomizes
the HIC component: the m2F construction can be seen as a keyed pseudoran-
dom permutation over the space of public keys. This brings CHIC, closer to the
original OEKE [22], as the ciphertext no longer expands in size, similar to IC
encryption. At the same time, it retains the benefits of the m2F, which avoids
the difficulty of instantiating IC over groups.17 CHIC was proved secure in the
standard UC framework, under the well-established FPAKE functionality [23], and
it is the most compact PAKE protocol from KEM to date, adding only a 2λ-bit
MAC compared to the underlying KEM. This prompts the question:

Can the CHIC optimization still be applied if the PAKE protocol uses a stan-
dard 2-round Feistel network, rather than the modified 2-round Feistel construc-
tion proposed by [44]?

17 Additionally, [7] observed that the split function itself could be randomized, allowing
the construction m2F(Split(pk)) to be viewed as a generalization of the original
m2F(r, pk) from [44], where r is a bitstring of random coins. This is an important
observation because the underlying KEM may have a seed smaller than what the
construction requires. For instance, FrodoKEM defines a seed with only 128 bits,
while the m2F in CHIC requires 2λ-bits on the left wire. Thus, the Split function
could append additional random bits to meet the m2F requirements.
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We answer this question negatively by presenting a concrete example of a
KEM that satisfies all standard security properties expected from a KEM (i.e.
ciphertext-indistinguishability, anonymity and pseudorandom public keys), yet
would render CHIC insecure if we replaced the m2F with a 2F, a regular 2-round
Feistel network.

The backdoored KEM. Let KEM be a Key Encapsulation Mechanism that
satisfies all the necessary properties for a secure instantiation of CHIC. More
precisely, the authors in [7] establish that KEM must provide ciphertext indis-
tinguishability (OW-PCA), anonymity (ANO-PCA), and splittable and pseudo-
random public keys.18

We construct a backdoored KEM∗ from KEM which retains all the relevant
security properties, but for a large class of public keys, the encapsulation al-
gorithm behaves insecurely by encrypting to a public key that is hardwired in
the algorithm description. To define KEM∗ we fix an arbitrary public key pair
(sk∗, pk∗) ←$ KEM.Keygen(λ). The public key pk∗ will be the backdoor public
key of KEM∗. Next, we redefine KEM∗.Encap(pk) as the algorithm that proceeds
as follows:

1. Split the public key pk using the Split function that fulfils the necessary
requirements for KEM to have splittable and pseudorandom keys: (r,M)←$

KEM.Split(pk). (Refer to UNI-PK definition in [7].)
2. Further divide the random bitstring component r of the public key into

halves: (r0, r1) ← SplitMiddle(r). In CHIC, |r| = 2λ-bits, so |r0| = |r1| = λ-
bits.

3. Finally, if r0 = 0 or r1 = 0, output KEM.Encap(pk∗); otherwise output
KEM.Encap(pk).

KEM∗ defines Keygen and Decap in the same manner as KEM, without any
modifications. Note that KEM∗ preserves all previously-mentioned properties
of KEM because with overwhelming probability honestly generated keys don’t
trigger the special case inside KEM∗.Encap: indeed, in all security experiments,
the adversary is challenged on fresh keys produced by KEM∗.Keygen, which will
match the λ-size 0-bit pattern with negligible probability.

The basic requirement for a secure PAKE, as captured by both game-based
and UC FPAKE definitions, is that an adversary can test at most one password
per interaction with a protocol participant. We now demonstrate, through an
attack on the protocol, that downgrading the m2F in CHIC to a regular 2F,
while retaining the public key splitting optimization to save on bandwidth, can
result in an insecure protocol. We refer to this insecure protocol as CHIC-2F
for simplicity (although the protocol is in fact free from any IC assumption).
To illustrate this, we instantiate CHIC-2F with KEM∗. Here is the attack that
allows an adversary (who we assume knows sk∗ since it is fixed by the algorithm
specification) to test two passwords pw0 and pw1 in only one interaction with
Bob (the protocol is not symmetric, so this would be a responder participant):

18 C.f. the definition in [7], which differs from UNI-PK presented here, as NoIC does not
require the public key to be splittable.
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1. Sample T ←$ Gλ.
2. Compute t0 ← H2(pw0, T ) and t1 ← H2(pw1, T ).
3. (t∗0, ·)← SplitMiddle(t0) and (·, t∗1)← SplitMiddle(t1).
4. Compute s← (t∗0 || t∗1)⊕ 0.
5. Send apk = (s, T ) to Bob and receive (c, tag).
6. Decrypt the ciphertext with the trapdoor secret key K ← KEM.Decap(sk∗, c)
7. Compute the candidate public keys used by Bob to produce the tag: pk0 ←

m2F−1(fsid, pw0, apk) and pk1 ← m2F−1(fsid, pw1, apk).

8. Check if tag is valid is valid with respect to pk0 or pk1 by verifying if tag
?
=

Htag(fsid, pk0, apk,K) or tag
?
= Htag(fsid, pk1, apk,K). A successful validation

reveals Bob’s password.

This attack effectively forces apk to decrypt to a public key whose r compo-
nent has either the λ most significant bits or the λ least significant bits set to 0
if Bob’s password is pw0 or pw1. Note that the IC in the original protocol would
prevent this attack from succeeding because the key to the IC t∗ = (t∗0 || t∗1)
induces an independent permutation from keys t0 and t1. Therefore, we con-
clude that one must choose between optimizing for compactness (as in CHIC), or
optimizing for computational efficiency and a plain Random Oracle Model (as
done here with NoIC).

5 The Protocol and Security Proof

The protocol, called NoIC, is shown in Figure 4. It is very similar to the CHIC
protocol but for two changes: 1) Instead of relying on an IC-based construction,
we revert to the simple (unmodified) 2-round Feistel configuration as in sPAKE
protocol; 2) We include pw as an additional input in the Htag computation, as
this reduces the complexity of the proof by allowing immediate extractability
of password guess attempts against Alice without relying on the extractability
properties of the 2F construction. This has some practical disadvantages, because
Alice must now keep the password in memory until the protocol completes, so we
leave it for future work to consider this protocol variant. We note that, although
it is tempting to remove pk from the Htag input by arguing that (pw, apk) fix a
single pk following the IC intuition. However, this gives rise to cases in the proof
where the adversary may try to break the protocol by delivering ciphertexts
that are valid for all public keys. It is likely that these cases can be excluded
by assuming additional properties on the KEM, but we choose not to do so.
We also leave as interesting directions for future work to consider a bare version
of this PAKE protocol, in the sense proposed in [10]. In particular, considering
a NIKE protocol instead of the KEM and using two independent instances of
the 2F construction in each direction as in [40], one may be able to construct
a simultaneous-flow protocol that is also reusable. We now state and prove the
theorem that establishes the security of NoIC.

Theorem 1. NoIC UC-realizes FPAKE in the Random Oracle Model, under the
assumption that the underlying KEM has pseudouniform public keys, and is both

17



A on (NewSession, sid,A,B, pw, init) B on (NewSession, sid,B,A, pw, resp)

fsid← (sid,A,B) fsid← (sid,A,B)

(sk, pk)←$ KEM.Keygen(1λ)

r ←$ {0, 1}3λ

R← H1(fsid, pw, r)

T ← pk⊙R

t← H2(fsid, pw, T )

s← t⊕ r

apk← (s, T ) Send (apk) (s, T )← apk

t← H2(fsid, pw, T )

r ← t⊕ s

R← H1(fsid, pw, r)

pk← T ⊙R−1

(c,K)←$ KEM.Encap(pk)

K ← KEM.Decap(sk, c) Send (c, tag) tag← Htag(fsid, pw, pk, apk, c,K)

if tag ̸= Htag(fsid, pw, pk, apk, c,K) then

key←$ {0, 1}λ

else

key← Hkey(fsid, pw, pk, apk, c,K) key← Hkey(fsid, pw, pk, apk, c,K)

return key return key

2Ffsid,pw(r, pk)

2F−1
fsid,pw(apk)

Fig. 4. The NoIC protocol makes use of a randomized cipher defined by hash functions
H1 and H2 in a 2-round Feistel configuration, with domains that align with KEM public
key space and security parameter λ. Group operations within PKλ are represented
by ⊙, and the inverse operation by (·)−1. H1,H2,Htag,Hkey are hash functions with
respective ranges PKλ, {0, 1}3λ, {0, 1}2λ, and {0, 1}λ.

OW-PCA and ANO-PCA secure. More precisely, there exists a simulator SIM such
that, for all environments Z controlling a dummy adversary, the distinguishing
advantage between the real and the ideal worlds is:

qses · (AdvKEMcorrectness(1
λ) + H∞{pk | (sk, pk)←$ KEM.Keygen(λ)}) +

qses · (qH,1 + qses + 1) · (qH,2 + qses)·
(AdvKEMow-pca(1

λ) + AdvKEMano-pca(1
λ) + 3 · AdvKEMpk-uni(1

λ)) +

(qses + 1) · (qH,1/2
3λ + qH,2/|PK|+ 1/22λ) +

(qHtag + 2qses)
2/22λ + (qH,1 + 2qses + 1)(qH,2 + 2qses + 1)2/23λ

Here, qses represents and upper bound on the number of sessions created by Z,
whereas qH,1, qH,2, qH,tag, qH,key are upper bounds on the number of queries placed
to the various random oracles.

Proof. Figures 5 and 6 show the simulator SIM.
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Simulation strategy. We start with the simulation of honest Alice, which is
the simpler case. Outgoing messages apkfsid = (s̄, T̄ ) are sampled uniformly at
random by OA1. Then, the simulation of H2 (step 2c) keeps track of potential
2F decryption attempts on apkfsid using different passwords by keeping a log
backSfsid: each new attempt results either in an abort, if the high-entropy r
happens to have occurred before (abort [A2b1]), or in the programming of a
candidate key pair for Alice at the input of the 2F construction. Then, when
the adversary delivers a pair (c, tag) to Alice (OA2), the simulator first checks
whether the attacker is just relaying messages, in which case it simply asks the
functionality to output a new key on Alice’s behalf (step 9). On active attacks,
the simulator checks the input to Htag that gave rise to tag, and checks that
this is consistent with the pair (apk, c) that it already knows (step 10). If so,
then it validates the consistency of the (pw, pk,K) inputs to Htag: pk must be
associated to pw in backSfsid, and the corresponding sk permits recovering K on
input c. If any of the checks fail, then the simulator forces the functionality to
output a random key on Alice’s behalf (step 11). Otherwise, the simulator queries
TestPwd on the extracted pw and calls NewKey with the value of key∗ that Alice
would have computed if its password guess is correct. If the password is correct,
then FPAKE will output the value key∗ expected by the adversary. Otherwise, it
outputs an independent key. To make sure that there are no ambiguities in the
simulation of Alice, the simulator aborts on corner cases such as collisions on
the output of Htag that would prevent password extraction (abort [A1).

The simulation of honest Bob first checks for active attacks where the ad-
versary may control the public key (step 5). This is detected by instrumenting
the simulation of H2 (step 2b) to keep track (set forwSfsid) of all potential values
of apk computed by the adversary by evaluating 2F in the forward direction,
and associating them with a unique password. Two abort steps guarantee that
there is no ambiguity in the association between such passwords and elements in
forwSfsid (abort [A2b2) and also ambiguity between the messages transmitted by
honest Alice and those constructed by the attacker (abort [A2b1). If the apk de-
livered to OB can be explained by forwSfsid, then the simulator queries TestPwd
(step 8). If the password guess is incorrect, the simulator outputs a ciphertext
computed from a freshly generated key pair (this is why we require anonymity of
the KEM) and a random tag (step 7). If the guess is correct, then the simulator
has all the information it needs to honestly conclude the protocol and provide
the correct session key to NewKey.

The simulator then checks whether the adversary is carrying out a related
key attack by forcing Bob to use a public key that is simply a shift to the one
used by Alice (step 6a). One important point to observe here is that achieving
this effect is only possible if 1) Alice and Bob use the same password and 2) if the
adversary mauls the public key using the same password. The simulator cannot
know if Alice and Bob use the same password a priori, but it can detect under
which password the adversary is launching the related key attack. This is done
by reusing the backSfsid computed by H2 and checking whether the delivered apk,
under some password, gives rise to a public key that is related to that computed
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by Alice.
∃ pw∗ s.t. TH2[fsid, pw

∗, T ]⊕ TH2[fsid, pw
∗, T ] = s⊕ s

Crucially, we show that it is impossible for the adversary to relate the same apk
to apkfsid under two different passwords (abort [A2a]). So, once apk is delivered,
the simulator can extract a password that, if correct, would allow the adversary
to observe the effect of the related key attack. The simulator deals with this
case by testing the password and, if the password guess is correct, computing
the correct related public key pk∗, and concluding the simulation by emulating
the behavior of honest Bob and programming the output of NewKey accordingly
(steps 6a and 8). In all other cases, the simulator outputs a ciphertext computed
from a freshly generated key pair (this is why we require anonymity of the KEM)
and a random tag (step 7).

Game hopping proof. Below we show a sequence of games that bridges be-
tween the environment’s view of an interaction with the real-world protocol NoIC
and the environment’s view of an interaction with the UC PAKE functionality
FPAKE which internally interacts with the simulator shown in Figures 5 and 6.

To make the argument more concrete, in Figure 8 we summarize the inter-
action of the environment Z with the real-world protocol NoIC, and in Figures
9-10 we summarize the interaction with Functionality FPAKE and simulator SIM
defined in Figures 5-6. In both figures we treat the real-world adversary A as
a “dummy” sub-procedure of the environment Z, so for simplicity of notation
we omit it from the notation and assume that all oracles interact with Z di-
rectly. Z’s interaction with a two-flow PAKE protocol like NoIC involves three
oracles: (1) in response to NewSession message to an honest initiator party Al-
ice, Z (via its A interface) receives Alice’s protocol message; (2) in response
to NewSession to an honest responder Bob accompanied by a protocol message
from Bob’s purported counterparty, Z receives Bob’s output session key and (via
the A interface) Bob’s protocol message; and (3) in response to delivering of the
purported protocol message from Bob to Alice, Z receives Alice’s output session
key. Since the security proof is in a hybrid world where hash functions H1, H2,
Htag, Hkey are modeled as Random Oracles, the environment (via the A interface)
can also (4) query these four oracles. In total, four oracle interfaces are depicted
in Figures 8 and 9-10: OA1, OB, OA2 are the oracles that model Z’s interaction
with the protocol participants, and OH the general oracle interface allowing Z
to query the random oracles. In Z’s queries to OA1,OB the environment has to
specify tuple (sid,A,B), which we denote as fsid, and we use same fsid in Z’s call
to OA2 as a reference to an Alice instance.

Finally, we will denote the probability that environment Z outputs 1 in
interaction with security game Gi as ExpZ [Gi] = Pr[1 ← ZGi(1λ)]. For a fixed
environment Z we use ∆(Gi,Gj) as a shortcut for |Pr[ExpZ [Gi]]−Pr[ExpZ [Gj ]]|.
Also we write PK instead of PKλ, treating λ as implicit.

Game G1 (real world): G1 perfectly mimics the real world game except that:

– It stores all hash queries in tables TH1, TH2 and THtag.
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Initialization: Initialize empty tables TH1,TH2,THtag,THkey, and initialize
apkfsid, transBfsid as ⊥ and forwSfsid, backSfsid as empty sets for all fsid.

On A’s query x to Hind for ind ∈ {1, 2, tag, key}:
If THind[x] ̸= ⊥ return THind[x] (and terminate), else sample THind[x] ←$

Space[Hind] and return this value after first performing the following steps:

1. If A queries Htag and ∃x′ ̸= x s.t. THtag[x] = THtag[x
′] then abort [A1].

2. If A queries H2 then parse x=(fsid, pw, T ) and do the following:

(a) For all T ′, pw′ s.t. the following TH2 entries are all non-⊥, verify that
TH2[fsid, pw, T ]⊕ TH2[fsid, pw, T

′] ̸= TH2[fsid, pw
′, T ]⊕ TH2[fsid, pw

′, T ′],
else abort [A2a].
// abort if query results in two passwords explaining same apk
// in the related key attack (see step 6a)

(b) For all r s.t. R=TH1[fsid, pw, r] ̸=⊥, set s = TH2[fsid, pw, T ]⊕ r,
– verify that (s, T ) ̸= apkfsid, else abort [A2b1],
– verify that (·, ·, (s, T )) ̸∈ forwSfsid, else abort [A2b2],

add (pw, pk, (s, T )) to set forwSfsid for pk = T ⊙R−1.
// record pk encrypted in apk = (s, T ) under pw for any s implied
// by current TH1 records; abort if apk = apkfsid or apk is already
// associated in set forwSfsid with some other pw, pk pair

(c) If ∃s s.t. apkfsid = (s, T ) set r = s ⊕ TH2[fsid, pw, T ] (note that
TH1[fsid, pw, r] = ⊥ by abort condition [A2b1]), pick (sk, pk) ←$

KEM.Keygen(1λ), set TH1[fsid, pw, r] ← pk−1 ⊙ T , and add (pw, (sk, pk))
to set backSfsid.
// program KEM key in backward H2 query matching apkfsid;

On (NewSession, sid,A,B, init) from FPAKE:

3. Set fsid ← (sid,A,B), sample (s, T ) ←$ {0, 1}3λ × PKλ, verify that ∀pw
TH2[fsid, pw, T ] = ⊥ (else abort [A3]), record (fsid, init), set apk ← (s, T ),
apkfsid ← apk, and send apk to A.

On (NewSession, sid,B,A, resp) from FPAKE:

4. Set fsid← (sid,A,B) and record (fsid, resp).

Fig. 5. Algorithm SIM (part 1) for the proof that protocol NoIC realizes UC PAKE
functionality FPAKE.

– It implements tracking of apkfsid and forwSfsid on H2 queries (except for
forwSfsid when the query to H2 originates from OA1).

We clarify that when the oracles OA1,OB,OA2 perform local hash queries, these
queries are treated as if they were made by Z, meaning that G1 generates and
processes the OH queries during these oracle calls. The only exception is that
forwSfsid is not tracked when the query originates from OA1; all other bookkeep-
ing remains the same. These adjustments only involve bookkeeping and don’t
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On A’s message apk = (s, T ) to party B’s session sid:

If ∃ record (fsid, resp) for fsid = (sid,A,B) then delete it and do the following:

5. If ∃ pw∗, pk∗ s.t. (pw∗, pk∗, apk) ∈ forwSfsid, go to step 8. // chosen key attack
6. If apk ̸= apkfsid set ((s, T ), (s, T ))← (apk, apkfsid) and:

(a) if ∃ pw∗ s.t. TH2[fsid, pw
∗, T ]⊕TH2[fsid, pw

∗, T ] = s⊕ s find (pw∗, (sk, pk))
in backSfsid, set pk

∗← pk⊙ T ⊙ (T )−1, go to step 8. // related key attack
(b) else send (TestPwd, sid,B,⊥) to FPAKE. // unmindful attack

7. Pick (sk, pk) ←$ KEM.Keygen(1λ), (c,K) ←$ KEM.Encap(pk), and
tag ←$ {0, 1}2λ, set transBfsid ← (apk, (c, tag)), send (c, tag) to A and
(NewKey, sid,B,⊥) to FPAKE, return control to Z.

// no attack, failed attack (step 8a), or unmindful attack (step 6b)
8. Send (TestPwd, sid,B, pw∗) to FPAKE, receive (TestPwd, sid, resp) and:

(a) if resp = wrong go to step 7. // failed attack
(b) if resp = correct set (c,K) ←$ KEM.Encap(pk∗), tag ←

Htag(fsid, pw
∗, pk∗, apk, c,K), key∗ ← Hkey(fsid, pw

∗, pk∗, apk, c,K) (query
Htag,Hkey as A), send (c, tag) to A and (NewKey, sid,B, key∗) to FPAKE,
and set transBfsid ← (apk, (c, tag)). // successful attack

On A’s message (c, tag) to party A’s session sid:

If ∃ record (fsid, init) for fsid = (sid,A,B) then delete it, set apk← apkfsid, and do:

9. If (apk, (c, tag)) = transBfsid then send (NewKey, sid,A,⊥) to FPAKE. // passive
adversary

10. If (apk, (c, tag)) ̸= transBfsid and ∃ pw∗, pk,K s.t. tag =
THtag[fsid, pw

∗, pk, apk, c,K] and K = KEM.Decap(sk, c) for sk s.t.
(pw∗, (sk, pk)) ∈ backSfsid, then set key∗ ← Hkey(fsid, pw

∗, pk, apk, c,K)
(query Hkey as A), and send (TestPwd, sid,A, pw∗) and (NewKey, sid,A, key∗)
to FPAKE.

// active attack
11. Else send (TestPwd, sid,A,⊥) and (NewKey, sid,A,⊥) to FPAKE. // failed

attack

Fig. 6. Algorithm SIM (part 2) for the proof that protocol NoIC realizes UC PAKE
functionality FPAKE.
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influence the external view of the game. Therefore:

ExpZ [G1] = RealZ,A,NoIC (4)

Game G2 (OH: hash aborts): The game adds abort conditions [A1], [A2a],
[A2b1], [A2b2] to OH. Note that these changes will affect not only direct queries
to OH by Z but also the hash queries made by oracles OA1,OB,OA2, because
by G1 both types of hash calls are processes by a single oracle OH. It follows,
by upperbounding the sizes of various hash lists using the number of queries to
that hash and |forwSfsid|max = (qH,1 + 2qses) · (qH,2 + 2qses) that:

∆(G2,G1) ≤ Pr[A1] + Pr[A2a] + Pr[A2b1] + Pr[A2b2] ≤
(qH,tag+2qses)·|THtag|max

22λ
+ (qH,2 + 2qses) ·

(
|TH2|max

23λ
+ |TH1|max

23λ
+ |forwSfsid|max

23λ

)
≤

(qHtag+2qses)
2

22λ
+

(qH,2+2qses)
23λ

· ((qH,2 + 2qses) + (qH,1 + 2qses) + (qH,1 + 2qses) · (qH,2 + 2qses))

≤ (qHtag+2qses)
2

22λ
+

(qH,1+2qses+1)·(qH,2+2qses+1)2

23λ

(5)

Game G3 (OA2: kem correctness): If Alice and Bob end up with different
KEM shared keys computed over matching ciphertext and public-key/secret-
key pair, abort. This accounts for the rare case of KEM correctness failure, and
from this point onward, we treat the KEM as perfectly correct.

∆(G3,G2) ≤ qses · AdvKEMcorrectness(1
λ) (6)

Game G4 (OA2: key copy if pw, apk, c, tag all match): If the adversary
is passive and pwA = pwB then shortcut OA2 so that keyA ← keyB, i.e. OA2

copies the key output by OB. KEM correctness has been accounted for with the
introduction of abort event in ExpZ [G3] and hash functions are deterministic,
which guarantees protocol correctness. This is a bridge hop.

∆(G4,G3) = 0 (7)

Game G5 (OA2: random keyA if pw, apk, c match but tag ̸= tagB): If
(pwA, apkfsid) = (pwB, apk) then A and B are using the same KEM key pk. If
in addition c = cB then they also use the same KEM ciphertext, hence they
compute the same KEM key KA = KB and they enter the same inputs to
hash function Htag computing tag. Consequently, if Z sends tag ̸= tagB to OA2,
but (pwA, apkfsid, c) = (pwB, apk, cB), then tag is invalid because Htag is deter-
ministic and tagB is the valid tag for those inputs. In this case, OA2 samples
keyA ←$ {0, 1}λ. Hence the change G5 introduces makes no difference in Z’s
view of the interaction.

∆(G5,G4) = 0 (8)

Game G6 (OA2: random keyA if tag not output by Htag): If ∃/ pwA, pk,K
such that THtag[fsid, pwA, pk, apkfsid, c,K] = tag, then G6 sets keyA randomly.
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The absence of a record in THtag explaining tag based on fsid, apkfsid, and c
means that any call to Htag with these inputs will either produce a different tag,
or result in a tag being sampled during verification, which will only match tag
selected by Z with negligible statistical probability.

∆(G6,G5) ≤ qses/2
2λ (9)

Game G7 (OA2: random keyA if tag was computed on matching apkfsid, c,
but wrong pw or pk): If ∃/ K such that THtag[fsid, pwA, pkA, apkfsid, c,K] = tag,
then G7 sets keyA randomly. Since G2, abort condition [A1] prevents collision on
Htag. This is a bridge hop.

∆(G7,G6) = 0 (10)

Note: At this point oracle OA2 avoids using skA in the following cases:

– (pwA, apkfsid, c) = (pwB, apk, cB), by the rules of G4 and G5;
– (pw, pk) is not extractable from tag based on visible inputs apkfsid, c, by the

rules of G6;
– (pw, pk) extracted from tag does not match (pwA, pkA), by the rules of G7.

In other words, OA2 only uses skA if tag was computed on inputs apkfsid, c, and
correct public key pkA and password pwA. The attacker can still freely choose c
on OA2 calls to observe an output that depends on skA, but all other inputs to
Htag are fixed.

Game G8 (OB: random keyB, tagB if pw, apk match): Game G8 samples keyB
and tagB at random without querying Hkey or Htag if (pwB, apk) = (pwA, apkfsid).
Since apkfsid = apk, note that G7 uses the private key skA corresponding to pkA
embedded in apkfsid only if c ̸= cB, meaning only if Z replaces B’s ciphertext
cB in the OA2 call. Also, by G2, there are no collisions in Htag, and by G6, if
cB ̸= c, OA2 uses skA only if Z computes tag via an explicit Htag query where
tag = Htag(fsid, pwA, pkA, apkfsid, c,K) for some K.

It follows that distinguishing between G8 and G7 implies winning an OW-PCA
game against KEM because it requires making a query to Htag/Hkey with K
encrypted under cB. The reduction to OW-PCA security follows a hybrid over all
queries sent to OA1: (1) For the chosen (fsid, pwA) query to OA1, the reduction
uses the challenge pk from the OW-PCA game as pkA instead of generating it.
(2) If Z queries OB on (fsid, pwB, apk) for (pwB, apk) = (pwA, apkfsid) (if Z never
makes this query the reduction aborts, and note that Z can make only one query
to OB for any given fsid), the reduction injects the OW-PCA ciphertext into cB
and sets tagB, keyB random. (3) It emulates OA2 as in G8/G7 if c = cB, but
if c ̸= cB and tag matches Z’s query Htag(fsid, pwA, pkA, apkfsid, c,KA) for some
KA (otherwise the reduction follows G8/G7 and makes keyA random) then the
reduction sends (c,KA) to the PCA oracle (which uses key sk corresponding to
the KEM challenge key pk), and if the oracle says that this pair is correct then the
reduction sets keyA ← Hkey(fsid, pwA, pkA, apkfsid, c,KA) and otherwise it samples
keyA at random. (4) If Z queries Htag/Hkey on (fsid, pwA, pkA, apkfsid, cB,K), the
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reduction checks with the PCA oracle if (cB,K) is correct and outputs K to win
the OW-PCA game.

The reduction perfectly emulates G8 and G7 unless Z makes a query involving
K encrypted in cB, at which point the reduction wins the OW-PCA game. Thus,
we conclude:

∆(G8,G7) ≤ qses · AdvKEMow-pca(1
λ) (11)

Game G9 (OB: independent pkB if pw, apk match): If (pwA, apkfsid) =
(pwB, apk), game G9 samples a new key pair (sk, pk) ←$ KEM.Keygen(λ), and
uses pk to generate ciphertext cB.

It follows that distinguishing between G9 and G8 implies winning an ANO-PCA
game against KEM: The adversary gets (1) the first challenge public key pk0 em-
bedded as pk0 = 2F−1

pwA
(apkfsid) for apkfsid output by OA1, and (2) a challenge

ciphertext cB output by OB if it delivers apkfsid.
The reduction to ANO-PCA security follows a hybrid over all queries sent to

OA1: (1) For the chosen (fsid, pwA) query to OA1, the reduction uses the challenge
pk0 from the ANO-PCA game as pkA, instead of generating it. (2) If Z queries
OB on (fsid, pwB, apk) for (pwB, apk) = (pwA, apkfsid) (if Z never makes this query
the reduction aborts, and note that Z can make only one query to OB for any
given fsid), the reduction injects the ANO-PCA ciphertext c∗ into cB and sets
tagB, keyB random. (3) If the challenge ciphertext c∗ was successfully embedded
into cB and then the adversary calls OA2 with it, the secret key sk0 is not needed
by the rules introduced in G4 and G5. On the other hand, if the adversary calls
OA2(fsid, pwB, c, tag) on any ciphertext c ̸= cB, then the reduction checks with
the PCA oracle if (c,K)—where K is extracted from tag—is a valid pair under
challenge pk0 and proceeds accordingly. (4) The reduction outputs the final value
b′ provided by Z.

Challenge ciphertext c∗ is only embedded into cB when (pwA, apkfsid) =
(pwB, apk). In such cases, keyB and tagB are set to random values according to
G8, eliminating the need to plaintext-check any queries sent by Z to Htag/Hkey.
If b = 0 in ANO-PCA, cB is encrypted under pk0, which perfectly emulates G8. If
b = 1, cB is encrypted under an independent pk1, perfectly emulating G9. Thus,
we conclude:

∆(G9,G8) ≤ qses · AdvKEMano-pca(1
λ) (12)

Note: At this point, if (pwA, apkfsid) = (pwB, apk) then OB does not use pwB

and does not query any hashing.

Game G10 (OH: embed random pk into 2F−1
pw (apkfsid) for any pw): We

add maintenance of set backSfsid on H2 queries, i.e. add the processing as in
SIM’s step (2c) to OH code, by picking random KEM keys and embedding
the public keys into 2F−1

pw (apkfsid) on any fresh query to H2(fsid, pw, T ), where

apkfsid = (s, T ). Specifically, on any such query, G10 generates random (sk, pk)←$

KEM.Keygen(λ) and embeds T⊙pk−1 in TH1[fsid, pw, r] for r = s⊕H2(fsid, pw, T ).
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Note that by abort condition [A2b1] introduced in game G2, oracle OH aborts
if TH1[fsid, pw, r] ̸= ⊥. If this abort condition is not triggered, we are certain that
embedding is possible.

In G9, R = H1[fsid, pw, r] is random, while in G10 we set R = T ⊙ pk−1. But
it follows that distinguishing between G10 and G9 implies winning an UNI-PK
game against KEM. The reduction to UNI-PK security follows a hybrid over all
queries sent to H2: By embedding one challenge public key at the time, we are
in fact interpolating between the rules of G9 and those of G10.

∆(G10,G9) ≤ qH,2 · AdvKEMpk-uni(1
λ) (13)

Game G11 (OB: random keyB, tagB if apk matches): Game G11 changes OB so
it picks keyB, tagB as random values if apk = apkfsid, regardless of pwA, pwB values.
The only difference between G11 and G10 is in the case pwB ̸= pwA, but note
that in this case OB performs KEM encryption on pkB = 2F−1

pwB
(apkfsid), and by

G10, pkB is a random KEM key, regardless of pwB. It follows that distinguishing
between G11 and G10 implies winning an OW-PCA game against KEM.

The reduction follows a hybrid over all queries sent to H2 that generate a new
entry in backSfsid: (1) For the chosen (fsid, pw, T ) query to H2, where there exists
an s such that apkfsid = (s, T ), the reduction embeds the challenge pk from the
OW-PCA instead of generating it. This is done by setting r = s⊕H2(fsid, pw, T )
and H1[fsid, pw, r] = T ⊙ pk−1 as per rules introduced in G10. (2) If Z queries
OB on (fsid, pwB, apk) for apk = apkfsid but pwB ̸= pwA, then pk is already
embedded in pkB (or it will be embedded at this time). If Z never makes this
query, the reduction aborts, as only one query to OB is allowed for any given
fsid. If the query is made, the reduction injects the OW-PCA ciphertext into cB
and sets keyB and tagB randomly. (3) The reduction emulates OA2 as in G11/G10

and PCA oracle is not required because: (3.a) if Z calls OA2 on (fsid, pw, cB)
and pw = pwA, then the challenge secret key sk is not needed as per the rules
introduced in G4 and G5; (3.b) if pw ̸= pwA then the secret key used by OA2 is
not sk. The reduction emulates G11/G10 unless Z queries Htag/Hkey on a tuple
consisting of (fsid, pwB, pkB, apk, cB,K), where K is the key encrypted under
ciphertext cB. In this case, the reduction can consult the PCA oracle to verify
whether (cB,K) is correct.If confirmed, the reduction outputs K and wins the
OW-PCA game. Therefore:

∆(G11,G10) ≤ qH,2 · AdvKEMow-pca(1
λ) (14)

Game G12 (OB: independent pkB if apk match): If apkfsid = apk, game
G12 samples a new key pair (sk, pk)←$ KEM.Keygen(λ), and uses pk to generate
ciphertext cB. The only difference between G12 and G11 is in the case pwB ̸= pwA.
As above, OB in this case performs KEM encryption on pk[pwB] = 2F−1

pwB
(apkfsid)

which is random. It follows that distinguishing between G12 and G11 implies
winning an ANO-CPA game against KEM.

The reduction to ANO-CPA security follows a hybrid over all queries sent
to H2 that generate a new entry in backSfsid: (1) For the chosen (fsid, pw, T )
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query to H2, where there exists an s such that apkfsid = (s, T ), the reduction
embeds the challenge pk0 from the ANO-CPA intead of generating it. This is
done by setting r = s ⊕ H2(fsid, pw, T ) and H1[fsid, pw, r] = T ⊙ pk0

−1 as per
rules introduced in G10. (2) If Z queries OB on (fsid, pwB, apk) for apk = apkfsid
but pwB ̸= pwA, then pk0 is already embedded in pkB (or it will be embedded at
this time). If Z never makes this query, the simulation aborts. Should the query
be made, the reduction injects the ANO-CPA ciphertext into cB and sets keyB
and tagB randomly, as per rules introduced in G12. (3) The reduction emulates
OA2 as in G12/G11 and PCA oracle is not required because: (3.a) if Z calls OA2

on (fsid, pw, cB) and pw = pwA, then the challenge secret key sk is not needed
as per the rules introduced in G4 and G5; (3.b) if pw ̸= pwA then the secret key
used by OA2 is not sk. (4) The reduction outputs the final value b′ provided by
Z.

In this game hop, we don’t need the PCA oracle because the key in cB is
already unrelated to K used as input to Htag/Hkey if apk match, since G11.

∆(G12,G11) ≤ qH,2 · AdvKEMano-cpa(1
λ) (15)

Note: At this point, if apkfsid = apk then OB does not use pwB and does not
query any hashing.

Game G13 (OA1: sample apkfsid at random): We modify OA1 s.t. (1) it
picks random (s, T ), (2) aborts if TH2[fsid, pwA, T ] ̸= ⊥, (3) otherwise sets r =
s ⊕ H2(fsid, pwA, T ), (4) aborts if TH1[fsid, pwA, r] ̸= ⊥, and (5) otherwise picks
(sk, pk)←$ KEM.Keygen and sets H1[fsid, pwA, r]← T ⊙ pk−1. Let’s break down
the analysis into small steps:

1. In G12, upon querying (fsid, pwA) to OA1, the procedures executes:
1.1 r ←$ {0, 1}3λ
2.2 (sk, pk)←$ KEM.Keygen(λ)
3.3 T ← H1(fsid, pwA, r)⊙ pk
4.4 s← r ⊕ H2(fsid, pwA, T )
5.5 apkfsid ← (s, T )

2. Adding an abort event if upon selecting r, TH1[fsid, pwA, r] ̸= ⊥. The cost
of this abort is upper bound by qH,1/2

3λ.
3. Adding an abort event if, when computing T ← H1(fsid, pwA, r)⊙pk, we find

that TH2[fsid, pwA, T ] ̸= ⊥. H1(fsid, pwA, r) is a one-time pad over pk, so T
is uniformly distributed over PK. The cost of this abort is upper bound by
qH,2/|PK|.

4. Now, let’s reorder the operations and program a value into H1(fsid, pwA, r)
as follows:

1.1 r ←$ {0, 1}3λ; if TH1[fsid, pwA, r] ̸= ⊥ abort
2.2 (sk, pk)←$ KEM.Keygen(λ)
3.3 T ←$ PK; if TH2[fsid, pwA, T ] ̸= ⊥ abort
4.4 s← r ⊕ H2(fsid, pwA, T )
5.5 apkfsid ← (s, T )
6.6 R← T ⊙ pk−1 and program R into TH1[fsid, pwA, r]
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Note that this reordering yields the same distribution of values, and program-
ming is always feasible; otherwise, the abort would have been triggered.

5. We further reorder the operations as following:
1.1 (s, T )←$ {0, 1}3λ × PK; if TH2[fsid, pwA, T ] ̸= ⊥ abort
2.2 apkfsid ← (s, T )
3.3 (sk, pk)←$ KEM.Keygen(λ)
4.4 r ← s⊕ H2(fsid, pwA, T ); if TH1[fsid, pwA, r] ̸= ⊥ abort
5.5 R← T ⊙ pk−1 and program R into TH1[fsid, pwA, r]

For a fixed H2(fsid, pwA, T ), sampling either r or s results in both values
being equally distributed.

Therefore:
∆(G13,G12) ≤ qses · (qH,1/23λ + qH,2/|PK|) (16)

Game G14 (OA1: postpone pk embedding in 2F−1
pwA

(apkfsid)): We introduce
two changes in G14. First change: OA1 terminates its procedure immediately af-
ter sampling and outputting apkfsid, without generating the associated key pair
(skA, pkA), but after checking whether TH2[fsid, pwA, T ] ̸= ⊥. By the modifica-
tions introduced in G10, any fresh query to H2(fsid, pw, T ), where apkfsid = (s, T ),
will result in the embedding of a public key for apkfsid with respect to pw.

Thus, there are two ways in which (skA, pkA) can be automatically embedded
into 2F−1

pwA
(apkfsid) and recorded in the set backSfsid: (1) through a direct query by

Z to H2 with (fsid, pwA, T ); (2) indirectly, via a query to OB with apk = (s, T ),
where T = T , s ̸= s and only if pwA = pwB. (With the introduction of changes
in G12, if Z calls OB on apkfsid it does not trigger any call to the hash oracles.)

Second change: OA2 checks for the decryption key skA under pwA in the set
backSfsid. If not found, it invokes 2F

−1
pwA

(apkfsid) to force the entry.
The sole difference between games G14 and G13 is that the abort condition

TH1[fsid, pwA, r] ̸= ⊥ is never triggered upon a call to OA1 due to the new early
termination. Therefore, as a result:

∆(G14,G13) ≤ qses · qH,1/2
3λ (17)

Note: At this point oracle OA1 operates as in the ideal world.

Game G15 (OA2: random keyA if (pwA, (sk, ·)) /∈ backSfsid): If no tuple
(pwA, (sk, pk)) exists in backSfsid, where pwA is the correct password, set keyA
randomly without invoking 2F−1

pwA
(apkfsid) to force its generation. Note that pkA

is an input to create tag. We argue that the authentication tag is invalid if pkA
has not been generated yet, as the probability of guessing it before its genera-
tion is tied to the min-entropy of KEM public keys. After this call to OA2, pkA
remains information-theoretically hidden from Z. Therefore:

∆(G15,G14) ≤ qses ·H∞{pk | (sk, pk)←$ KEM.Keygen(λ)} (18)

Note: At this point oracle OA2 only uses skA if tag was computed on correct
inputs (fsid, pwA, pkA, apkfsid, c) and skA is available in set backSfsid to check if
KEM.Decap(skA, c) = K. This exactly matches the ideal world.
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Game G16 (OB: chosen key attack clause): We modify the operation of
OB as follows (step 5 of simulation): upon delivery of apk ̸= apkfsid, check if
apk ∈ forwSfsid and, if so, recover the unique record (pw∗, pk∗) associated with
it (this is guaranteed to be unique by abort condition [A2b2]). Furthermore, if
pw∗ = pwB execute the protocol honestly using pk∗. This change is only syntactic:
by the correctness of the 2F construction, OB would have been using the same
public key if computing 2F−1

pwB
(apk). We conclude

∆(G16,G15) = 0 (19)

Game G17 (OB: related key attack clause): We modify the operation of OB
as follows (step 6a of simulation): upon delivery of apk ̸= apkfsid, check if apk
defines a public key related to the one used by Alice according to the entries
stored in H2 for apk = (s, T ) and apkfsid = (s, T ):

∃ pw∗ s.t. TH2[fsid, pw
∗, T ]⊕ TH2[fsid, pw

∗, T ] = s⊕ s

If so, then this can only occur for exactly one password guess pw∗, due to abort
step [A2a]. Furthermore, a unique entry for pw∗ must exist in backSfsid that
contains the decryption of apkfsid under pw∗: this is called pkA in the simulator
code. Then, if pw∗ = pwB execute the protocol honestly using the correct related

public key pk∗ := pkA ⊙ T ⊙ T
−1

. This change is only syntactic, since by the
correctness of the 2F construction, OB would have been using the same public
key if computing 2F−1

pwB
(apk). We conclude

∆(G17,G16) = 0 (20)

Note: At this point oracle OB works exactly as in the ideal world, except for the
handling of all the cases that fall into step 7 in the simulation. In all such cases
we have that the delivered apk ̸= apkfsid. Then it was either the case that the
attacker launched a chosen key or related key attack under a wrong password, or
the delivered apk did not fall into any of these two tipified attack patterns.

An important observation at this point is that, for all such cases, the public
key recovered by Bob in G17 must have been computed in the backward direction:
if this were not the case, then the delivered apk would have been in forwSfsid with
Bob’s password and case 5 would have been triggered. This implies that there
exists a fresh query to H1 that defines the public key recovered by OB and can
therefore be programmed. However, it is only possible to identify this query when
Bob delivers apk to OB. The following game hops deal with this problem.

Game G18 (OB: Stop calling Htag and Hkey on failed attacks): We modify
OB to return random tag and K on all remaining cases where 2F−1 is being
computed explicitly. To bridge these two games we perform a hybrid argument
over all sessions created by the adversary, i.e., we count the i-th fsid fixed by the
adversary. We define games Gi

18, for 0 ≤ i ≤ qses, where from game Gi
18 to Gi+1

18
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we introduce the random tag and K modifications in OB for the i-th session.
Clearly, we have G0

18 = G17 and Gqses
18 = G18.

Two consecutive hybrids are identical up to bad, where the bad event occurs
if the adversary queries Htag or Hkey on the inputs that OB no longer uses.
We upper bound the probability of this bad event in Lemma 1 and give here
the intuition. To bound the bad event, one constructs a reduction to OW-PCA.
This reduction first guesses the two entries in TH1 and TH2 that will define
the apk that will trigger the bad event. This represents a loss in tightness of
(qH,1 + qses) · (qH,2 + qses). Then the reduction programs the challenge public
key from the OW-PCA game into the session that triggers the bad event. This
programming incurs in a small loss due to the pseudorandomness of KEM public
keys (pk-uni). Then, the reduction proceeds similarly to the one in G11. This
results in the following upper bound for the entire game hop:

∆(G18,G17) ≤ qses ·(qH,1+qses) ·(qH,2+qses) ·(AdvKEMow-pca(1
λ)+AdvKEMpk-uni(1

λ)) (21)

Game G19 (OB: Use fresh key pair to encrypt on failed attacks): We
modify OB to stop computing 2F−1 and, when this was still happening, simply
generate a fresh keypair and generate the outgoing ciphertext by encrypting
under the freshly generated public key.

Again, to bridge these two games we perform a hybrid argument over all
sessions created by the adversary. We define games Gi

19, for 0 ≤ i ≤ qses, where
from game Gi

19 to Gi+1
19 we introduce the new ciphertext generation procedure in

OB for the i-th session. Clearly, we have G0
19 = G18 and Gqses

19 = G19.
To bound the distance between two consecutive hybrids, we construct a direct

reduction to ANO-CPA. We give the detailed proof in Lemma 2 and give here
the intuition. As in the previous hop, this reduction first guesses the two entries
in TH1 and TH2 that will define the apk that will trigger the bad event. This
represents a loss in tightness of (qH,1 + qses) · (qH,2 + qses). Then the reduction
programs the challenge public key from the ANO-CPA game into the session
that triggers the bad event. This programming incurs in a small loss due to the
pseudorandomness of KEM public keys (UNI-PK). Then, the reduction proceeds
similarly to the one in G12. This results in the following upper bound for the
entire game hop:

∆(G19,G18) ≤ qses·(qH,1+qses)·(qH,2+qses)·(AdvKEMano-cpa(1
λ)+2·AdvKEMpk-uni(1

λ)) (22)

G19 behaves exactly like the ideal world, as described in Figures 9 and 10,
which concludes the proof. ⊓⊔

Minimum requirements for the KEM. Access to the PCO oracle allows the
adversary to do two things: 1) in both reductions to OW and ANO, this allows
correctly simulating Alice’s behaviour on reception of a malicious ciphertext,
which requires one query; 2) in the OW reductions it allows checking whether
the adversary provided the correct solution to the OW challenge. Checking for
consistency of random oracle entries wrt the ANO-PCA challenge is not needed
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because, by the time we reduce to ANO-PCA, keyB and tagB have already been
set to random values. For this reason ANO-PCA with one PCO query suffices. The
reductions to OW-PCA can be modified to require only one query by guessing
which of the entries in Hkey and Htag contains the OW solution, which has an
impact of a qHkey

+ qHtag multiplicative factor on the bound. Since OW-PCA with
one PCO query is equivalent to OW-CPA [7] (with no plaintext-checking oracle
available), a direct reduction to OW-CPA is also possible.
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18. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry,
M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Berlin, Heidelberg (Dec
2011). https://doi.org/10.1007/978-3-642-25385-0_3

19. Boneh, D., Kogan, D., Woo, K.: Oblivious pseudorandom functions from isoge-
nies. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part II. LNCS, vol.
12492, pp. 520–550. Springer, Cham (Dec 2020). https://doi.org/10.1007/

978-3-030-64834-3_18

20. Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Seiler, G., Stehle, D.: CRYSTALS - Kyber: A CCA-secure module-
lattice-based KEM. In: 2018 IEEE European Symposium on Security and Privacy
– EuroS&P 2018. pp. 353–367. IEEE Computer Society, Los Alamitos, CA, USA
(2018). https://doi.org/10.1109/EuroSP.2018.00032

32

https://doi.org/10.1007/978-3-031-68379-4_6
https://doi.org/10.1007/978-3-031-68379-4_6
https://doi.org/10.1007/978-3-031-68379-4_6
https://doi.org/10.1007/978-3-031-68379-4_6
https://doi.org/10.1007/978-3-031-33491-7_19
https://doi.org/10.1007/978-3-031-33491-7_19
https://doi.org/10.1007/978-3-031-33491-7_19
https://doi.org/10.1007/978-3-031-33491-7_19
https://doi.org/10.1109/RISP.1992.213269
https://doi.org/10.1109/RISP.1992.213269
https://doi.org/10.1145/168588.168618
https://doi.org/10.1145/168588.168618
https://doi.org/10.1145/168588.168618
https://doi.org/10.1145/168588.168618
https://doi.org/10.1007/978-3-642-04474-8_3
https://doi.org/10.1007/978-3-642-04474-8_3
https://doi.org/10.1007/978-3-642-04474-8_3
https://doi.org/10.1007/978-3-642-04474-8_3
https://doi.org/10.1007/978-3-319-76581-5_22
https://doi.org/10.1007/978-3-319-76581-5_22
https://doi.org/10.1007/978-3-319-76581-5_22
https://doi.org/10.1007/978-3-319-76581-5_22
https://eprint.iacr.org/2024/450
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-030-64834-3_18
https://doi.org/10.1007/978-3-030-64834-3_18
https://doi.org/10.1007/978-3-030-64834-3_18
https://doi.org/10.1007/978-3-030-64834-3_18
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.1109/EuroSP.2018.00032


21. Boyko, V., MacKenzie, P., Patel, S.: Provably secure password-authenticated key
exchange using Diffie-Hellman. In: Preneel, B. (ed.) Advances in Cryptology –
EUROCRYPT 2000. pp. 156–171. Springer, Berlin, Heidelberg (2000)

22. Bresson, E., Chevassut, O., Pointcheval, D.: Security proofs for an efficient
password-based key exchange. In: Proceedings of the 10th ACM Conference on
Computer and Communications Security. p. 241–250. CCS ’03, Association for
Computing Machinery, New York, NY, USA (2003). https://doi.org/10.1145/
948109.948142, https://doi.org/10.1145/948109.948142

23. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.D.: Universally com-
posable password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 404–421. Springer, Berlin, Heidelberg (May 2005). https:
//doi.org/10.1007/11426639_24

24. Coron, J.S., Gouget, A., Icart, T., Paillier, P.: Supplemental Access Con-
trol (PACE v2): Security Analysis of PACE Integrated Mapping, pp. 207–232.
Springer Berlin Heidelberg, Berlin, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-28368-0_15, https://doi.org/10.1007/978-3-642-28368-0_15

25. Dai, Y., Steinberger, J.: Indifferentiability of 8-round feistel networks. In: Robshaw,
M., Katz, J. (eds.) Advances in Cryptology – CRYPTO 2016. pp. 95–120. Springer
Berlin Heidelberg, Berlin, Heidelberg (2016)

26. Davies, G.T., Faller, S., Gellert, K., Handirk, T., Hesse, J., Horváth, M., Jager,
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A Universally Composable PAKE

Short background on UC. Let P be a protocol of interest whose security
properties are modelled within the UC framework. In this framework, the envi-
ronment Z embodies some higher-level protocol that uses P as a sub-protocol,
while also acting as an adversary attacking that higher-level protocol. Here, the
adversary A represents the adversary attacking protocol P. Between the en-
vironment Z and the adversary there is a continuously open communication
channel. Such setup allows Z to launch an attack on the higher-level protocol
with the help of A (who is attacking protocol P). Note that Z can only indirectly
(through adversary A) make calls to idealized primitives such as an Ideal Cipher
and/or a Random Oracle.

PAKE in the UC framework. When modelling PAKE security, parties are
initialized by the environment Z with arbitrary passwords of the environment’s
choice. In the real world, protocols are executed according to protocol specifi-
cations, in the presence of an adversary A capable of dropping, injecting, and
modifying protocol messages at will, thus modelling an insecure network. In the
ideal world, parties do not execute the protocol. Instead, they interact via an
ideal functionality FPAKE described in Figure 7, in the presence of a simulator
SIM that acts as an adversary operating in the ideal world. The simulator SIM
is also allowed to interact with FPAKE, but only using the FPAKE adversarial
interfaces as defined in Fig. 7.

Finally, the goal of the environment Z that interacts with the parties and the
adversary (either real world A or ideal world SIM) is to guess if it is in the real or
in a simulation of the ideal world. Consequently, if for every efficient adversary
A no such efficient environment Z exists that distinguishes the real world from
the ideal world, we say that the protocol of interest P securely emulates ideal
functionality FPAKE. The UC PAKE definition results in a stronger notion than
game-based PAKE notions and successfully captures the scenario where clients
register related passwords with different servers, as this is captured by the ability
of Z initializing parties with passwords of its choosing. Furthermore, the UC
framework also ensures security under arbitrary protocol composition. Note that
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New Session. On (NewSession, sid,Pi,Pj , pw, role) from party Pi:

– Ignore this query if two or more records of the form (sid, ...) already exist.
– Else record (sid,Pi,Pj , fresh, pw,⊥), send (NewSession, sid,Pi,Pj , role) to A.

Test Password Guess. On (TestPwd, sid,Pi, pw
∗) from adversary A:

– Retrieve record recvar = (sid,Pi,Pj , fresh, pw,⊥), abort if no such record
exists.

– If pw∗ = pw, then update the status flag in record recvar to compromised and
send (TestPwd, sid, correct) to A.

– Else update the status flag in record recvar to interrupted and send
(TestPwd, sid,wrong) to A.

Session Key. On (NewKey, sid,Pi, key
∗) from adversary A where |key∗| = λ:

– Retrieve record recvar = (sid,Pi,Pj , status, pw,⊥), abort if no such record
exist or if status = completed.

– If status = compromised, set key← key∗.
– If status = fresh and ∃ record (sid,Pj ,Pi, completed, pw, key′) whose status

flag switched from fresh to completed when Pj received (NewKey, sid, key′),
set key← key′.

– Else set key←$ {0, 1}λ.
– Update flag status in recvar to completed and output (NewKey, sid, key) to

Pi.

Fig. 7. The ideal UC PAKE functionality FPAKE of Canetti et al. [23].

the environment Z may reveal various information to the adversary A, thus
allowing UC PAKE definitions to capture password leaks (static adversaries)
and internal state leaks (adaptive adversaries) that may occur anytime during
the protocol execution.

B Hybrids for G18 and G19

Lemma 1 (Hybrid step for G18). The distance between two consecutive hy-
brids G18

i and G18
i+1) can be upper bounded by

(qH,1 + qses) · (qH,2 + qses) · (AdvKEMow-pca(1
λ) + AdvKEMpk-uni(1

λ))

Proof. Define bad1 to be the event that, in game G18
i+1, the adversary queries

to Htag or Hkey the secret key K that OB would have queried as an input to these
hash queries when dealing with the i-th session. It is clear that the two hybrids
are identical until bad1 and that the distance between them can therefore be
upper bounded by Pr[Gi+1

18 ⇒ bad1].
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We expand the randomness space of G18
i+1 with a pair of integers (k, l)

sampled uniformly at random from [qH,1 + 2qses]× [qH,2 + 2qses] and define bad2
to be the event that bad1 occurs and that OB (for the i-th session) uses hash
values (Rk, tl) when computing 2F−1: here Rk denotes the k-th entry to be
sampled in H1 and tl the l-th entry to be sampled in H2. We have that

Pr[G18
i+1 ⇒ bad1] = (qH,1 + 2qses) · (qH,2 + 2qses) · Pr[G18

i+1 ⇒ bad2]

We now change G18
i+1 to define the value of Rk := pk ⊙ T−1

l , where pk is a
freshly and honestly generated KEM public key, and Tl is the previously fixed
input that gave rise to tl. Note that, since we are only interested in cases where
bad1 occurs, it is guaranteed that Tl is already defined. Also, the programmed
entry is guaranteed not to have been subject to programming before according to
the rules of Gi+1

18 , since the programming done to maintain backSfsid only kicks in
when apk = apkfsid, and this is a case not covered by bad1. This change modifies
the probability of bad2 occurring by at most AdvKEMpk-uni(1

λ).
At this point we can upper bound the probability of bad2 by a direct reduction

to OW-PCA. The reduction is identical to the one constructed for the transition
to G11, with the challenge public key programmed into Rk, and the challenge
ciphertext embedded in the OB session modified by the hybrid. Whenever bad2
occurs, the simulation of Gi+1

18 is perfect and the reduction wins the OW-PCA
game. ⊓⊔

Lemma 2 (Hybrid step for G19). The distance between two consecutive hy-
brids Gi

19 and Gi+1
19 can be upper bounded by

(qH,1 + qses) · (qH,2 + qses) · (AdvKEMano-cpa(1
λ) + 2 · AdvKEMpk-uni(1

λ))

Proof. We first describe a reduction B to ANO-CPA that bridges the two hybrids,
and then analyse the bound that it yields. The reduction samples a pair of
integers (k, l) uniformly at random from [qH,1 + 2qses] × [qH,2 + 2qses]. These
values are the reduction’s bet that OB will use (for the i-th session) hash values
(Rk, tl) when computing 2F−1: here Rk denotes the k-th entry to be sampled
in H1 and tl the l-th entry to be sampled in H2. If this guess turns out to be
incorrect, then the reduction simply returns a random bit.

Otherwise, the reduction programs the challenge key pk as Rk := pk⊙ T−1
l ,

where Tl is the previously fixed input that gave rise to tl. Note that, as discussed
in the main proof, Tl must already be defined because otherwise we would not
be in the case affected by the hybrid hop. Note also that the programmed entry
is guaranteed not to have been subject to programming before according to the
rules of the hybrid games, since the programming done to maintain backSfsid
only kicks in when apk = apkfsid. The reduction then programs the challenge
ciphertext into OB when it processes the i-th session: this is possible whenever
the reduction’s bet is correct. Finally, the reduction returns whatever Z returns.
Note that, apart from guessing, this reduction is identical to that constructed to
justify the hop to G12.
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We now analyse the behavior of the reduction, denoting by C the event that
the reduction’s guess is correct.

AdvKEMB,ano-cpa(1
λ)

= 2 · Pr[ANO-PCA ⇒ b = b′ ] − 1

= 2 · (Pr[ANO-PCA ⇒ C ] · Pr[ANO-PCA ⇒ b = b′|C ] +

Pr[ANO-PCA ⇒ ¬C ] · Pr[ANO-PCA ⇒ b = b′ | ¬C ]) − 1

= 2 · (Pr[ANO-PCA ⇒ C ] · Pr[ANO-PCA ⇒ b = b′ |C ] +

1/2 · (1− Pr[ANO-PCA ⇒ C ])) − 1

= Pr[ANO-PCA ⇒ C ] · (2 · Pr[ANO-PCA ⇒ b = b′ |C ] − 1)

= Pr[ANO-PCA ⇒ C ]·
(Pr[ANO-PCA ⇒ b′ = 1 |C ∧ b = 1 ]− Pr[ANO-PCA ⇒ b′ = 1 |C ∧ b = 0 ])

Now, given that C occurs, the simulation perfectly interpolates between the
two hybrids, modulo the pseudorandomness of the programmed challenge key,
we have that

| Pr[ANO-PCA ⇒ b′ = 1 |C ∧ b = 0 ]− Pr[Gi
18 ⇒ 1] | = AdvKEMpk-uni(1

λ)

| Pr[ANO-PCA ⇒ b′ = 1 |C ∧ b = 1 ]− Pr[Gi+1
18 ⇒ 1] | = AdvKEMpk-uni(1

λ)

The lemma follows from this observation and the fact that the probability of
guessing correctly is exactly 1/((qH,1 + qses) · (qH,2 + qses)). ⊓⊔

C Z real-world interaction with NoIC

38



Initialization: Initialize THind as empty tables for each ind and stAfsid, stBfsid as ⊥
for all fsid. By convention, the first time THind[x] is referenced for any ind and x
s.t. THind[x] = ⊥, the game samples THind[x]←$ Space[Hind].

On query (ind, x) to OH: return THind[x]

On query (fsid, pwA) to OA1, for stAfsid = ⊥:

r ←$ {0, 1}3λ
(skA, pkA)←$ KEM.Keygen(1λ)
T ← pkA ⊙ TH1[fsid, pwA, r]
s← r ⊕ TH2[fsid, pwA, T ]
apkfsid ← (s, T ),
set stAfsid ← (init, pwA, skA, pkA, apkfsid) and return apkfsid

On query (fsid, pwB, apk) to OB, for stBfsid = ⊥:
(s, T )← apk
r ← s⊕ TH2[fsid, pwB, T ]
pkB ← T ⊙ (TH1[fsid, pwB, r])

−1

(cB,KB)←$ KEM.Encap(pkB)
tagB ← THtag[fsid, pwB, pkB, apk, cB,KB]
keyB ← THkey[fsid, pwB, pkB, apk, cB,KB]
set stBfsid ← used and return (cB, tagB, keyB)

On query (fsid, c, tag) to OA2, for stAfsid = (init, pwA, skA, pkA, apkfsid):

KA ← KEM.Decap(skA, c)
if tag ̸= THtag[fsid, pwA, pkA, apkfsid, c,KA] set keyA ←$ {0, 1}λ

else set keyA ← THkey[fsid, pwA, pkA, apk, cB,KA]
set stAfsid ← used and return keyA

Fig. 8. The real-world security game defined by protocol NoIC
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D Z ideal-world interaction with NoIC

Initialization:
Initialize THind as empty tables for each ind, and initialize stAfsid, stBfsid as ⊥,
apkfsid, transBfsid as ⊥, and forwSfsid, backSfsid as empty sets for all fsid.

On query (ind, x) to OH: If THind[x] ̸=⊥ then return THind[x].

Sample THind[x]←$ Space[Hind] and return it after the following steps:

If A queried Htag and ∃x′ ̸= x s.t. THtag[x] = THtag[x
′] then abort [A1].

If A queried H2 then parse x=(fsid, pw, T ) and do the following:

(a) For all T ′, pw′ s.t. the following TH2 entries are all non-⊥, verify that
TH2[fsid, pw, T ]⊕ TH2[fsid, pw, T

′] ̸= TH2[fsid, pw
′, T ]⊕ TH2[fsid, pw

′, T ′], else
abort [A2a].

(b) For all r s.t. R=TH1[fsid, pw, r] ̸=⊥, set s = TH2[fsid, pw, T ]⊕ r,
– verify that (s, T ) ̸= apkfsid, else abort [A2b1],
– verify that (·, ·, (s, T )) ̸∈ forwSfsid, else abort [A2b2],

add (pw, pk, (s, T )) to set forwSfsid for pk = T ⊙R−1.

(c) If ∃s s.t. apkfsid = (s, T ) set r = s ⊕ TH2[fsid, pw, T ], pick (sk, pk) ←$

KEM.Keygen(1λ), set TH1[fsid, pw, r] ← pk−1 ⊙ T , and add (pw, (sk, pk)) to
set backSfsid.

On query (fsid, pwA) to OA1, for stAfsid = ⊥:

Sample (s, T )←$ {0, 1}3λ × PKλ and abort [A3] if ∃pw,TH2[fsid, pw, T ] ̸= ⊥.

Set stAfsid ← (init, pwA), apkfsid ← (s, T ), and return apkfsid.

Fig. 9. The ideal-world after merging FPAKE and simulator SIM (part 1)
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On query (fsid, pwB, apk) to OB, for stBfsid = ⊥:

Password check:

1. If ∃ pk∗ s.t. (pwB, pk
∗, apk) ∈ forwSfsid, set pwCheck← true.

2. Else If apk ̸= apkfsid and TH2[fsid, pwB, T ] ⊕ TH2[fsid, pwB, T ] = s ⊕ s for
((s, T ), (s, T )) = (apk, apkfsid), find (pwB, (sk, pk)) in backSfsid, set pk∗← pk ⊙
T ⊙ (T )−1 and pwCheck← true.

3. Else Set pwCheck← false.

If pwCheck = false:
(sk, pk)←$ KEM.Keygen(1λ)
(cB,KB)←$ KEM.Encap(pk)
tagB ←$ {0, 1}2λ
keyB ←$ {0, 1}λ

If pwCheck = true:
(cB,KB)←$ KEM.Encap(pk∗)
tagB ← Htag(fsid, pwB, pk

∗, apk, cB,KB)
keyB← Hkey(fsid, pwB, pk

∗, apk, cB,KB)
(query Htag,Hkey as A)

Set transBfsid ← (apk, (cB, tagB)), stBfsid ← used, and return (cB, tagB, keyB).

On query (fsid, c, tag) to OA2, for stAfsid = (init, pwA):

1. If (apkfsid, (c, tag)) = transBfsid and pwA = pwB, set keyA ← keyB.
2. Else If ∃ pkA,KA s.t. tag = THtag[fsid, pwA, pk, apkfsid, c,KA] and KA =

KEM.Decap(skA, c) for skA s.t. (pwA, (skA, pkA)) ∈ backSfsid, then set keyA ←
Hkey(fsid, pwA, pk, apkfsid, c,KA).

3. Else set keyA ←$ {0, 1}λ.
Set stAfsid ← used and return keyA

Fig. 10. The ideal-world after merging FPAKE and simulator SIM (part 2)
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