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Abstract

The Messaging Layer Security protocol MLS is standardized in IETF’s RFC 9420 and allows a
group of parties to securely establish and evolve group keys even if the servers are malicious. Its
core mechanism is based on the TreeKEM protocol, but has gained many additional features and
modifications during the development of the MLS standard. Over the last years, several partial
security analyses have appeared of incomplete drafts of the protocol. One of the major additions to
the TreeKEM design in MLS RFC 9420 (the final version of the standard) are the external operations,
i.e., external commits and proposals, which interact deeply with the core TreeKEM protocol. These
operations have not been considered in any previous security analysis, leaving their impact on the
protocol’s overall security unclear.

In this work, we formalize ETK: External-Operations TreeKEM that includes external commits
and proposals. We propose a corresponding ideal functionality FECGKA and prove that ETK realizes
FECGKA.

Our work is the first cryptographic analysis that considers both the final changes to the standard’s
version of TreeKEM as well as external proposals and external commits. Compared to previous works
that considered MLS draft versions, our ETK protocol is by far the closest to the final MLS RFC 9420
standard. Our analysis implies that the core of MLS’s TreeKEM variant as defined in RFC 9420 is
an ETK protocol that realizes FECGKA, when used with an SUF-CMA secure signature scheme, such
as the IETF variant of Ed25519. We show that contrary to previous claims, MLS does not realize
FCGKA [4] when used with signature schemes that only guarantee EUF-CMA, such as ECDSA.

Moreover, we show that the security of the protocol could be further strengthened by adding a
functionality to insert PSKs, allowing another form of healing, and give a corresponding construction
ETKPSK and ideal functionality FECGKAPSK .

1 Introduction

Messaging Layer Security (MLS) is a messaging protocol standardized by the Internet Engineering Task
Force (IETF) in [14]. MLS was designed as a highly-secure asynchronous group messaging protocol that
scales efficiently for large groups. MLS allows for dynamic membership and provides strong security
guarantees such as Forward Secrecy (FS) and Post-Compromise Security (PCS). Informally, FS states
that an attacker cannot decrypt messages exchanged before a compromise, while PCS ensures that after a
compromise, messages are secure after a healing period, in which clients exchange a few secure messages [26].
MLS is already deployed, or in the process of becoming so, in real-world messaging applications such
as Cisco WebEx [6], Wickr [33] and Matrix [31]. It also provides the base of an IETF protocol for
interoperable messaging services called More Instant Messaging Interoperability (MIMI) [34].

The early development of the MLS standard has been accompanied by rigorous security analyses by
the scientific community, e.g., [1, 2, 3, 4, 22, 28, 36]. Most of this work has focused on two sub-protocols
of MLS: TreeKEM, which encompasses the operations needed for computing a shared group secret via
a tree structure, and the subsequent key schedule for message encryption. These two components are
considered the core of MLS, providing PCS through regular updates to clients’ key material, and FS
through ratcheting the message encryption keys.

More importantly, the full MLS protocol specifies operations far beyond the basic TreeKEM operations
analyzed in previous works. One of the main categories of additional operations are the external operations,
such as external commit and external proposal. For example, applications can allow group members
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who lost access to the group secrets to resync with the group by rejoining it. Further use cases of
external proposals are automated services to remove inactive members, or propose adding new staff
members. Moreover, some groups may be open, and allow external members join directly by themselves.
Although not considered in previous academic work, these, and further operations are used in real-world
implementations of MLS [25, 33].

In this work, we set out to analyze and prove formal security guarantees for the core TreeKEM
protocol in the final MLS RFC 9420 including external operations. To this end, we build on a previous
state-of-the-art analysis of MLS draft 12 [4] that considered malicious insiders.

Contributions. This work presents the first computational security analysis of the TreeKEM variant
used in MLS RFC 9420, and includes extended operations that were not addressed in previous studies.
Our main contributions are:

1. We introduce ETK: Extended-Operations TreeKEM, which models the core TreeKEM protocol of the
final version of the MLS standard in RFC 9420. Whereas previous cryptographic analyses analyzed
Draft 12 (October 2021) or earlier, we consider the final version [14] (July 2023), which is based on
Draft 20 [30]. Our ETK protocol captures the latest changes to the standard, such as encrypting
groupInfo, separate keys for leaf nodes, and allowing multiple welcome messages. Notably, ETK is the
first TreeKEM variant to include external operations, including proposals, commits, and resync.

2. We formalize the security guarantees of the ETK protocol in the ideal functionality FECGKA, and prove
that ETK realizes FECGKA with respect to active adversaries and potentially malicious insiders, yielding
fine-grained security guarantees.

On the positive side, our results imply that the TreeKEM version in RFC 9420, when instantiated with
an SUF-CMA-secure signature scheme, provides strong security guarantees, even with complex operations
such as external proposals, commits, and resync.

On the negative side, and contrary to previous claims, we show that MLS can only realize FCGKA [4]
if the signature scheme is SUF-CMA-secure. RFC 9420 requires implementation of the IETF version
of Ed25519, which satisfies SUF-CMA [21], but also allows for the use of ECDSA, which only satisfies
EUF-CMA [35]. While we do not know a practical attack on the protocol, we show that when using
a signature scheme that is not SUF-CMA secure, the core consistency property of TreeKEM can be
violated: the adversary can make two parties that would expect to agree on the state unable to
communicate. The underlying reason is that the key schedule includes transcripts, which include the
signature data, which could be mangled by the adversary when using, e.g., ECDSA. This also implies
that the main theorem in [4] is technically incorrect, and the stated EUF-CMA assumption should
be replaced by SUF-CMA. A further corollary is that in FIPS-compliant MLS implementations, the
standard’s AuthenticatedContent objects can be mangled to cause divergence of keys.

3. We formally show that the use of PSKs during a resync improves security guarantees against attacks
based on bad or compromised randomness. Concretely, we include the use of PSKs in ETKPSK, and
show that the resulting protocol meets a stronger security notion FECGKAPSK .

Outline. We recall background on MLS and its latest formal security analysis in Section 2. We define
our protocol syntax in Section 3 and our security functionality in Section 4. We introduce MLS RFC 9420
and its core operations in Section 5 and prove that it realizes our functionality in Section 5.2, where we
also comment on the signature scheme requirements. We formally show the security improvements of
PSK injections in Section 6. We recall preliminaries and provide proofs for all theorems in the appendix.

2 Background

We first recall some major changes in the evolution of the Messaging Layer Security (MLS) protocol
in Section 2.1. In Section 2.2, we recall the latest existing formal security analysis for MLS. In Section 2.3,
we introduce our notations.

2.1 The Evolution of the MLS Protocol

MLS is an asynchronous group key exchange protocol that aims to provide both high efficiency and
strong security guarantees. MLS was initiated by the Internet Engineering Task Force (IETF) in February
2018 [16], based on the Asynchronous Ratchet Tree (ART) protocol [27]. ART allows a static group of n
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parties, each corresponding to a leaf node in a tree, to generate a shared group key, corresponding to the
root in a tree, by recursively computing Diffie-Hellman Exchanges (DHE) from leaf nodes to the tree root.
Compared to conventional group communication via pairwise channels, ART reduces the computational
and communication efforts for every group member from O(n) to O(log(n)). Moreover, every group
member can refresh their DHE keys along the path to the root, which allows ART to achieve several
strong security guarantees, e.g., forward secrecy (FS) and post-compromise security (PCS).

Since Draft 2 [17], MLS has replaced ART with TreeKEM. TreeKEM has a similar tree structure
to ART, but relies on a generic Key Encapsulation Mechanism (KEM) instead of DHE. This enables
TreeKEM to achieve post-quantum security by selecting a suitable KEM instantiation. Every group
member may rekey the secrets on the path from their leaf node to the root. The secret at the tree root is
then used for message encryption. However, TreeKEM cannot deal with conflicts caused by concurrent
message sending or group operations (e.g., add/remove members, key update), and impractically assumes
that no two group members execute group operations at the same time.

To better handle concurrency, MLS added two mechanisms. First, with Draft 7 [7] MLS decreased the
frequency of the key update from every message encryption to every “epoch”, and passes the root key to
a key schedule to initialize a secret tree1 for continuous message encryption within every epoch. Second,
with Draft 8 [8] MLS decomposed group operations into Proposals and Commits (also known as “P&C”
mechanism). Whenever a group member wants to execute a group operation (e.g., add/remove members
or key update), they first send a corresponding proposal. Any group member can then collect and process
the received proposals in a commit. The committer is responsible for ordering the proposals and dealing
with potential conflicts. Since Draft 8 until the final RFC 9420 standard, the ratchet tree (i.e., TreeKEM),
key schedule, and secret tree comprise the core of MLS. The security of these two mechanisms has been
formally analyzed in several works, e.g., [1, 4, 19, 22, 27, 28, 29, 36].

After in total twenty drafts, MLS was standardized as RFC 9420 in July 2023 [14]. Compared to basic
TreeKEM, RFC 9420 incorporates several new operations and advanced features. These include PSK
injection, group re-initialization, sub-group branching, and joining via external commit since Draft 10 [9];
separate keys for leaf nodes in TreeKEM from identity key package since Draft 13 [11]; external self-add
proposal since Draft 15 [12]; and allowing multiple welcomes per commit since Draft 17 [13]. To the best
of our knowledge, no existing work covers the formal security analysis for any of the above novel operations.
We give an overview over previous formal analysis in Table 1. Beyond studies analyzing TreeKEM, some
designs aim to enhance its features. Tainted-TreeKEM [32] improves efficiency and security by using a
proxy to update encryption keys without blanking direct paths. Quarantined-TreeKEM [24] introduces a
‘quarantine’ for inactive users, who randomly blank paths and update keys via a distributed secret. QTK
strengthens PCS but offers no FS advantage and is compatible with RFC 9420.

Version Framework Scope Adversary Operations
[27] Draft 01 symbolic/game-based static groups active -
[2] Draft 06 game-based integrity mechanisms passive O1

[20] Draft 07 symbolic Messaging insider O1

[22] Draft 11 state separating proofs key derivation schedule passive -

[1] Draft 11 game-based
rTreeKEM
+group splitting attack

passive+ O1

[28] Draft 11 -
cross-group PCS analysis
+ concurrent group attacks

active- update-only

[4] Draft 12 UC
integrity mechanisms
+ 3 insider attacks

active- O1

[36] Draft 16 symbolic
integrity mechanisms
+ signature confusion attack

active O1

this
work

RFC 9420 UC
integrity mechanisms
+ randomness
leakage attack

active O1 ∪O2

Table 1: Overview of previous formal analyses of the MLS protocol. O1 represents the add, update, and
remove proposals with regular commits and O2 represents the external proposals and commits. passive+
refers to an adversary capable of injecting messages, provided these messages are ultimately rejected by a
client. active- denotes an active adversary that allows a recovery on healing phase.

1MLS introduced the “Tree-based Application Key Schedule” in Draft 7 [7] and renamed it to “secret tree” in Draft 8 [8].
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2.2 Formal Security Analysis of MLS Draft 12

The latest formal computational analysis for MLS was provided by Alwen, Jost, and Mularczyk [4] for
Draft 12. The paper [4] isolated a core component in MLS Draft 12 called “Insider Secure TreeKEM ”
(ITK), and proved that it realizes a functionality FCGKA in the Universal Composability (UC) framework.
ITK assumes MLS Draft 12 to be equipped with two abstract services: an authentication service (AS),
which manages long-term identity keys, and a key service (KS), which allows parties to upload single-use
key packages, used by group members to non-interactively add them to the group. Below, we recall ITK
and FCGKA.

Identity and Credentials. Each leaf node contains a public signature key and a credential that links
the member’s identity to the signature key. When using an X.509 credential for example, the public
signature key of the leaf node is contained in the subjectPublicKeyInfo field. The AS validates that the
public signature key matches an accepted identity (called a reference ID). An AS might be implemented as
a service that signs the members’ credentials, allowing other members to verify the credential by verifying
the AS’s signature. Members must be able to recognize that two credentials belong to the same member
according to the application’s policy. This might be trivial, e.g., because they use identical signature keys.
An update can replace the credentials used by a client. What constitutes a valid successor to a credential
is defined by the application.

Insider Secure TreeKEM ITK. ITK augments TreeKEM with message authentication, tree-signing,
computation of tags, and parts of the key schedule.

TreeKEM. Each member in TreeKEM is represented as a leaf node in the tree that contains the member’s
encryption and signature key. Members suggest changes to the group by sending a proposal to all group
members. The change is applied upon a member committing one or more proposals. A commit moves the
group to a new epoch by updating the node secrets along the path of the committer, including the root
secret. ITK covers TreeKEM with selected operations that can be invoked by group members, including
group members’ regular proposals and commits for adding new members, updating leaf node secrets, and
removing existing members.

• Add Proposal: To add a new member to the group, the proposer fetches a key package containing
a fresh leaf node for the client from the KS and adds it to the proposal. With the commit, the new
member’s leaf node is added to the tree. The committer sends the new member a welcome message that
contains all information necessary for the new group member to join the group: the current group secret,
encrypted with the new member’s public encryption key, as well as the secret key of the lowest node
in the ratchet tree that the committer and the new member share. The information in the welcome
message is encrypted by the init key included in the key package. The add proposal always adds the
members to the leftmost free node in the tree.

• Update Proposal: An update proposal allows a member to rotate its encryption and optionally its
signature keys. The committer of the proposal replaces the updating member’s node with the new leaf
node contained in the update proposal. It then “blanks” (i.e., deletes the content of) all intermediate
nodes on the path from that leaf to the root (the blue path in Figure 1a). Afterwards, the committer
updates its own path and encrypts the path secrets to other group members, in particular to the updated
party using the updated leaf node’s key. This replaces all knowledge of the updated party about the tree.

• Remove Proposal: A remove proposal specifies a member that should be removed from the group. Upon
committing, the committer removes the leaf node of the member and blanks all nodes on the path of
the removed member to the root. This guarantees that the removed member does not have access to
any secrets in the public ratchet tree anymore. The committer update its path secrets (including the
new secret for the root) and encrypts the path secrets only to the existing group members. Figure 1b
visualizes an example of the process.

• Regular Commit: A regular commit initializes a new epoch, validates and applies the collected proposals,
and optionally rekeys the committer’s path if the proposals are neither empty nor add-only. The
committer rekeys the path from their leaf node to the tree root: refreshes their key pairs of their leaf
node by simply generating a new key pair, and of the nodes on their path to root in the following four
steps: (1) generate an initial path secret for the first parent node of the leaf, (2) recursively expand it
to the next path secret for the next parent node, along the path to the root, (3) derive key pairs for
all intermediate nodes on the path to the root from their path secrets, and (4) encapsulate the path
secrets at every node on the path under the KEM public keys of the resolution of their sibling nodes.
The resolution of a node is an ordered list of non-blank nodes that collectively cover all non-blank
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(a) rekey path of a
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(b) rekey path of a after removing d

Figure 1: MLS group with four members: a, b, c, and d. The blue nodes are the secrets known to
member a that are replaced upon performing a rekey path. The new node secrets are encrypted to the
public key of green nodes , i.e., the resolution of their sibling nodes. The right figure shows the removal
of node d, where the right child node of root is blanked and its resolution is c.

init secret
(epoch n− 1)

joiner
secret

epoch
secret

init secret (epoch n)
encryption secret
confirmation key
membership key
resumption PSK*
external secret*

commit
secret

PSK*

Figure 2: Key derivation schedule for epoch n. *: The PSK injection and the derivation of resumption
PSK and external secret are excluded from ITK but included in MLS since Draft 10 [9].

descendants of the node. After the optional rekey path execution, the committer runs “tree-signing”,
signs the content of the commit, executes the key schedule to derive the secrets for the new epoch, and
compute tags. A regular commit message includes the information about the current epoch, identifier of
the committer, content of the commit, and above signatures and tags, is output together with a new
welcome message for new parties to join the group if available.

Tree-Signing. The tree-signing guarantees newly joining parties that each internal node has been sampled
by one of the parties contained in its sub-tree. Upon committing, the committer computes a “parent hash”
value, which stores a hash of its parent node and the resolution of its sibling node, for every node on the
committer’s path from top (i.e., the tree root) to bottom (i.e., the leaf node) in order. By including the
parent node in the hash, the freshly sampled key pairs at leaf nodes get recursively bound with all freshly
sampled nodes on the path to the root together. By including the siblings node in the hash, the freshly
sampled key pairs at every node on the committer’s path gets bound with the nodes, to whom every
freshly sampled public key should be distributed.

Key Schedule. TreeKEM’s ratchet tree provides an efficient way to share a new secret with all group
members. The root secret of the ratchet tree is called the commit secret, as it is derived newly in each
commit. The commit secret of the new epoch is then combined with a secret from the last epoch, called
the init secret. In MLS Draft 12, another secret called a “pre-shared key” (PSK) can also be injected
into the key derivation process, but these are not modeled in ITK. The derivation of the above secrets
is called the epoch secret. As the name indicates, ITK derives from the epoch secret a number of group
secrets for the computation within this epoch. We depict the key derivation schedule in Figure 2. The
most important group secrets are:

• init secret: used for key schedule in the next epoch.

• encryption secret: used to derive the secret tree within this epoch.

• confirmation key: used for computing confirmation tags.

• membership key: used for computing membership tags.

• resumption PSK: used to ensure the membership consistency when the group is branched or reinitialized.

• external secret: used to derive a key pair whose private key is held by the entire group and whose public
key can be shared with outsiders to enable them to join the group via external commit.

Computation of Tags. Every commit includes at most two tags: a confirmation tag and a optional
membership tag if the commit includes any remove proposal. The confirmation tags guarantee the
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succession of the ratchet tree in every new epoch from the one in the past epoch, and further authenticate
the group’s history. The ratchet tree is equipped with two hashes on the communication transcript:
confirmed transcript hash and interim transcript hash. The confirmed transcript hash is computed by
hashing the previous epoch’s interim transcript hash, the content of the commit message, and its signature.
The interim transcript hash is computed by hashing the confirmed transcript hash with the confirmation
tag. Upon committing, the committer uses the confirmation key, which is derived from key schedule,
to MAC the confirmed transcript hash, for a confirmation tag, which allows the receiving members to
immediately verify whether they agree on the new epoch’s key-schedule.

Note that the committer will not encrypt new path secrets to any party that is included in any remove
proposal in the commit. Thus, the removed members cannot verify the confirmation tag, because they are
unable to execute key schedule to derive the new epoch’s confirmation key. In this case, the committer
additionally MAC the content of the commit under the current epoch’s membership key. Every group
member can verify the commit under the same membership key, to determine whether they will be removed
in the next epoch.

UC Security and Functionality FCGKA. We briefly recall the UC framework [23] and the functionality
FCGKA in [4].

Universal Composability (UC). In the UC framework there exists an environment Z which can generate
the inputs to, read all outputs from, and interact with two worlds: the real world and the ideal world.
In the real world, an instance of a protocol P interacts with an adversary A. In the ideal world, an
ideal functionality F , which perfectly simulates the behaviors of P without involving any cryptography,
interacts with a simulator S (also called ideal adversary), which mimics every attack of A. We say that
the protocol P securely realizes the functionality F if for any adversary A, there exists a simulator S such
that no environment Z can distinguish whether it is interacting with the real world (i.e., the instance of
P and the adversary A) or with the ideal world (i.e., the ideal functionality F and the simulator S).

Functionality FCGKA in [4]. The functionality FCGKA in [4] captures a very strong adversary, which can
(1) fully control the network of message and key packages distribution (except for the long-time identity
keys on the authentication service AS), (2) adaptively corrupt parties’ states, (3) adaptively corrupt and
manipulate parties’ randomness, and (4) potentially collude with malicious group members. In order to
avoid the so-called commitment problem caused by adaptive corruptions in simulation-based frameworks,
FCGKA restricts the environment not to corrupt parties at certain times to prevent “trivial attacks”, e.g.,
no corruption that yields the change of the safety of a prior “secure” epoch is allowed.
FCGKA captures three core security properties of ITK: consistency, confidentiality, and authenticity.

Informally, consistency means that all parties in the same epoch agree on the same group state, including
the history of the group’s evolution. Confidentiality means that the adversary learns nothing about the
important secrets in any epoch that is marked “safe”, evaluated by a predicate safe. The secrets in the
“safe” epochs will be derived from a random and independent secret, while the others will be chosen by the
simulator S. Finally, authenticity means that the environment cannot forge any message on behalf of a
group member as long as the evaluation on a predicate inj-allowed is false.

The core theorem of [4] is that ITK, when used with an EUF-CMA signature scheme, realizes FCGKA in
the random oracle model under the assumption of a modified version of Generalized Selective Decryption
(GSD) security of the underlying PKE, which can be further reduced to the standard IND-CCA security.
We will show in Remark 1 that EUF-CMA is not sufficient for their main theorem.

2.3 Notation

Our notation follows [4]. Let v ← x denote assigning the value x to v while v $←− S denote sampling a
random element from a set S. For a set V , V +← x and V -← x denotes adding and removing an element
x. Let A[i]← x and y ← A[i] respectively denote the assignment and retrieval of i-th element from an
array A, while A[∗]← v denote setting all array positions to the value v. For brevity, we sometimes omit
set or list brackets when there is only one element and the type is clear from the context. Concatenation is
denoted by x ++ y. We denote invoking an algorithm A with explicitly supplied randomness r by A(.; r).

We use three keywords to encode the expectation of expressions:

• req ⟨condition⟩: if the condition following the req keyword fails, the function returns ⊥ and reverts
all changes that were applied so far. The keyword req is used to control the allowed function inputs.

• try y ← f(x) is equivalent to y ← f(x) followed by req y ̸= ⊥.
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Color Meaning

Identical to [4] for syntax, protocols, and functionalities
Updates from Draft 12 (modeled in [4]) to the final RFC 9420
External commit / resync
External self-add proposal
(Resumption) PSK proposals

Table 2: We use color coding to highlight and differentiate our new elements in the syntax, functionalities,
and protocols.

• assert ⟨condition⟩: if the condition following the assert keyword fails, the functionality permanently
halts, making the ideal and real-world trivially indistinguishable. The keyword assert encodes security
properties of the protocol.

We use pattern matching to simply the definitions of algorithms in our protocol and security model. For
example, in p ← (Propose, rem-idt), rem is a keyword, while idt is the actual identity signifier of the
removed party.

Throughout this work, we indicate the differences and commonalities between our syntax, functionalities,
and protocols and the corresponding ones in [4] using the color coding in Table 2.

3 Extended Continuous Group Key Agreement: Syntax

In this section, we define our syntax for Extended Continuous Group Key Agreement (ECGKA) protocols.
Our definition extends the definition in [4, Section 3.3] to include the additional operations: external
commits/resync, external self-add proposals, and PSK proposals, each of which we will introduce in detail
in Sections 4 and 5. We assume each party in ECGKA has a unique identifier id. For simplicity, we
assume that every algorithm includes the id of the invoker (i.e., the party who runs this algorithm) as an
implicit input.

Definition 1. An ECGKA protocol includes the following algorithms:

Group Creation: (Create, spk) creates a new group with signature key spk and id as the only member.

Add Proposals: p← (Propose, add-idt) proposes to add the party idt. The output is a proposal message
p if idt is not yet a group member or ⊥ if it is.

Remove Proposals: p← (Propose, rem-idt) proposes to remove the party idt. The output is a proposal
message p if idt is a group member or ⊥ if it is not.

Update Proposals: p← (Propose, up-spk) proposes to update the member’s leaf key and (if different
from the current) signature key spk. The output is a proposal p or ⊥ if id is not a member.

Commit: (c, vec w, g) ← (Commit, p⃗, spk, force-rekey) commits the vector of proposals p⃗ (that were
previously generated) and outputs the commit message c. If p⃗ contains an add proposal, it outputs a
vector of welcome messages vec w. It additionally outputs the group information (a.k.a. groupInfo) g for
external joiners. force-rekey determines if the committer’s keying material is enforced to be replaced.
Optionally, the committer’s signature key is updated to spk.

Process: (idc, propSem)← (Process, c, p⃗) processes the commit c that includes proposals p⃗ and advances
the epoch to the next one. The output is the committer idc and propSem, a vector of the proposers and
actions of p⃗. If p⃗ = ⊥, it assumes that c is an external commit and the proposals are directly included in
the commit message.

Join: (roster, idc)← (Join, vec w) allows a new member id to use a vector of welcome messages vec w

to join the group. The output is roster, the set of all group members’ identities and signature key, and
idc, the identity of the committer of the add proposal.

Key: K ← Key outputs the current application secret, i.e., the secrets that id derives for the current
epoch.

External Self-Add Proposal: p← (Propose, extAdd-spk, epoch) proposes to add the proposing mem-
ber id with the signature key spk to the group. It outputs an external proposal p, or ⊥ if the member is
already in the group.
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root0 c1

c2

c3
Add idtAdd idu

root1 c4

Alice Bob

adds idt

adds idu

Figure 3: An example history graph similar to [4]. The green and blue boxes respectively denote commit
and proposal nodes. In the epoch created by the commit c1, two proposals that respectively add parties
idu and idt are generated and respectively committed by c2 and c3. Now the group splits and Alice
chooses to process the commit c2. Additionally, Bob is invited to join the group via a welcome injected by
the adversary, which does not correspond to any existing commit. The history graph hence creates a new
detached node root1, and appends a new node c4 to this root, to which Bob then joins.

PSK Proposals: p← (Propose, psk-epoch-use) proposes to inject the (internal) resumption PSK from
an epoch into the key derivation schedule. It outputs a PSK proposal message p, or ⊥ if the PSK is
invalid.

External Commit: (c, g′)← (Commit, g, spk, ⃗epsk, resync) creates an external commit using groupInfo
g and injecting PSKs from a vector of epochs ⃗epsk that adds the committer to the group and (optionally)
removes an old representation of the member (if resync = true). The operations return the commit c
and the group info g′ of the next epoch for external joiners.

4 Security Model and Functionality

We first define our extended notion of history graph in Section 4.1, and use this to present our extended
generic functionality FECGKA in Section 4.2. Afterwards, we highlight core differences with the functionality
FCGKA [4] in Section 4.3.

4.1 History Graph

A history graph is a labeled directed graph that can symbolically represent a group’s evolution. The
concept was introduced in [1] and adapted in [4]. A history graph consists of two types of nodes: commit
and proposal nodes, which respectively represent all executed commit and proposal operations. We show
an example history graph in Figure 3. For our work, we define an extended notion of history graphs, in
which every node stores the following variables:

• orig: the creator id (i.e., the proposal or commit sender) of this node.

• stat ∈ {good, bad, adv}: a status flag indicating whether the secrets in this node is secure (i.e.,
stat = good), leaked to the adversary (i.e., stat = bad), or injected by the adversary (i.e., stat = adv).

• pars: the list of parent commit nodes, representing the node’s evolution history.

Every proposal node further stores the following variables:

• act ∈ {up-spk, add-idt-spkt, rem-idt, extAdd-spk, psk-epoch-use}: the proposed action with related
information. We further explain these actions in Section 4.2.

• cpsk: specifies the commit, whose PSK secret this PSK proposal refers to.2 This variable is only defined
for PSK proposal psk.

2If the adversary injects a PSK proposal on behalf of any party, then this PSK proposal might point to a node in a
detached tree, where the commit itself and the resumption PSK value have not been fixed. In this case, we use the variable
cpsk to denote the commit message that the PSK proposal refers to.
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• psk: a status flag indicating whether the resumption PSK secrets in this node is secure (i.e., stat = good),
leaked to the adversary (i.e., stat = bad), or injected by the adversary (i.e., stat = adv). This variable
is only defined for PSK proposal psk.

Every commit node further stores the following values:

• pro: the ordered list of committed proposals. This variable is only defined for regular commits.

• mem: the list of group members and their signature public keys.

• sender type ∈ {′member′, ′new member′}: the role of sender that distinguishes regular (i.e., ′member′)
and external (i.e., ′new member′) commit nodes.

• ExtCommitProps: the ordered list of committed proposals. This variable is only defined for external
commits.

• epoch: the sender’s current epoch.

• has psk: the list of group members who have derived the resumption PSK from the key schedule, see
Figure 2.

• key: the group key.

• chall ∈ {true, false}: a flag indicating whether the group key has been challenged (i.e., random, if
chall = true) or not (i.e., chosen by the adversary or not generated yet, if chall = false).

• exp: a set that includes the corrupted parties in this node.

Comparison with the History Graph in [4]: Our history graph definition differs in three main ways
from [4]. First, our graph incorporates external proposals that can be applied to all commit nodes with
the same epoch. To this end, the pars variable stores a list of parent commit nodes rather than unique
one, and every commit node additionally stores a new epoch variable.

Second, our history graph incorporates the external commit operation. To distinguish these node
from the regular commits, our history graph includes a sender type variable. While regular proposals
can be generated and sent independently before they are committed, external commits and the included
proposals are closely connected and sent together. To capture this, our external commit nodes have an
additional ExtProps variable for all included proposals.

Third, our history graph can also be used to incorporate the resumption PSK proposal operation,
which we will introduce in Section 5. To this end, our history graph includes a new PSK proposal node
that has two additional variables: cpsk and psk, which respectively specify the commit whose PSK this
proposal refers to, and the security of this PSK. Moreover, every commit node has an additional has psk

variable that stores the list of group members who have processed this commit and derived its resumption
PSK.

4.2 Functionality FECGKA

We give our new functionality FECGKA in Figures 4 and 5. Note that we define two functionalities in these
figures: FECGKA is defined in these figures by omitting the orange ( ) code. Similar to [4], our FECGKA

is also equipped with two additional (ideal) functionalities FIWAS and FIWKS that capture the behaviors
of authentication and key services (See Section 2.2). We formally describe FIWAS , FIWKS , and all helper
functions in Appendix C.

Threat Model. Following [4], our model considers an adversary with the following strong capabilities:

(1) Fully control the network of message and key packages distribution, except for the long-time identity
keys on the authentication service AS. This is captured by allowing the adversary (which is controlled
by the environment Z) to invoke each algorithm and to provide their inputs in FECGKA, FIWAS , FIWKS ,
except for having the algorithm verify-cert directly return to the invoking party id.

(2) Adaptively corrupt the authentication and key service, i.e., obtain the secrets of any party id’s identity
or single-use key packages. This is captured by the expose algorithm with any id as input in FIWAS and
FIWKS .

(3) Adaptively corrupt any party’s state through the Expose algorithm in FECGKA.

(4) Adaptively control any party’s randomness. This is captured by CorRand in FECGKA and corRand in
FIWAS and FIWKS with b = bad as input.
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(5) Potentially collude with malicious group members and malicious servers. This is captured in all the
above points.

FECGKA restricts the corruption in the following scenarios: once an epoch is “created” securely, and
hence the group secret is generated randomly by FECGKA, a corruption of this epoch is no longer possible,
similar to [4].

Security Guarantees. FECGKA captures three core security guarantees: consistency (and correctness),
confidentiality, and authenticity.

Consistency. Consistency ensures that all parties in the same epoch agree on the group state, including
the group membership and the history of group evolution (i.e., proposals and commits). We capture this
by checking assert cons-invariant at the end of every algorithm that causes an incremented epoch, i.e.,
Commit, Process, Join, and ExtCommit. We depict our cons-invariant in Figure 6. Consistency holds
(i.e., cons-invariant = true) if and only if all the following conditions hold:

a) every (non-detached) commit c and all included proposals must be generated at the same parent commit
node. This ensures that all committed proposals must be applied to the same group state.

b) every party id that can enter a new epoch created by any commit c only if id belongs to the membership
specified by c. This ensures that all group members at the same epoch must agree on the same group
membership.

c) the history graph contains no cycles. This ensures that the epoch always moves forward and never
reverts.

d) every external self-add proposal must have the same epoch as all its parent commit nodes. This ensures
that external self-add proposals will be only applied to a group with the epoch that this proposal aims
at.

Confidentiality. Confidentiality means that the environment must have no information about the
important secrets (which we call application secrets) in any “safe” epoch, evaluated by a predicate safe.
We capture this by deriving the application secrets in the “safe” epochs randomly, while having the
simulator S choose them in other “unsafe” epochs. We depict the safe predicate in Figure 7. We
consider that an epoch of a commit c is safe if and only if the epoch secret can be neither directly be
exposed, indicated by (∗, true) ∈ Node[c].exp, nor indirectly leaked through other secrets, indicated by
*can-traverse(c). Our *can-traverse(c) considers five cases.

Case a) the regular commit node c is an orphan root with a corrupted signature key. Identical to [4],
an orphan root indicates a commit node that is injected by the adversary either directly via a commit
message, or indirectly via a welcome message. In this case, a regular commit c is secure unless the
adversary can inject any commit or welcome message with any group member’s corrupted signature key.

Case b) a regular commit c adds a corrupted member. The only difference is that our definition also
considers a corrupted member that is added by an external self-add proposal. In this case, a regular
commit c is secure unless no added signer in this epoch is corrupted.

Case c) the secrets encrypted in the welcome message are exposed by corrupting an added member in the
future. The only difference is that our definition additionally considers the welcome message for adding
new group members via external self-add proposal. In this case, a regular commit c is secure unless a
member id is added in this epoch and corrupted in the future, without doing any update in-between.

Case d) the adversary has corrupted sufficient state secrets from members’ states to recover the epoch
secret.

Case e) the external commit is injected by the adversary or involves bad randomness. In this case, an
external commit c is secure, unless the committer’s randomness or the commit itself is chosen by the
adversary.

Authenticity. Authenticity means that the environment cannot forge any message on behalf of any group
member if the predicate inj-allowed is false. We consider the following four cases, corresponding to
different message types:

a) Every regular commit c can be injected by the adversary on behalf of any group member id with its
valid leaf key spk only if both spk and the epoch secret at the parent node cp = Node[c].pars has been
exposed.
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Functionality FECGKA and FECGKAPSK - Part 1

The functionality expects as part of the instance’s session identifier sid the group creator’s identity idcreator. It is
parameterized in the predicates safe(c), specifying which keys are confidential.

Initialization

Ptr[∗], Node[∗], Prop[∗], Wel[∗]← ⊥
RndCor[∗]← good; HasKey[∗]← false

rootCtr← 0
GroupInfo[∗]← ⊥ // groupInfo object for external commits, indexed by
groupInfo g
ExtProps[∗]← ⊥ // external self-add, indexed by p

Inputs from idcreator

Input (Create, spk)

req Node[root0] = ⊥ ∧ *valid-spk(idcreator, spk)
mem← {(idcreator, spk)}
Node[root0]← *create-root(idcreator,mem,

RndCor[idcreator], epoch = 0)
HasKey[idcreator]← true; Ptr[idcreator]← root0

Inputs from a party id

Input (Propose, act), act ∈ {up-spk, add-idt, rem-idt, psk-epoch-use}
req Ptr[id] ̸= ⊥
Send (Propose, id, act) to the adversary and

receive (p, spkt, ack).
if ¬*req-correctness(′prop′, id, act) then req ack
if act = up-spk then assert *valid-spk(id, spk)
if act = add-idt then act← add-idt-spkt
if Prop[p] = ⊥ then

Prop[p]← *create-prop(Ptr[id], id, act,RndCor[id])
else

*consistent-prop(p, id, act)
if RndCor[id] = bad then

Send (exposed, id, spk) to Fas.
return p

Input (Propose, extAdd-id-spk, epoch)

req Ptr[id] = ⊥
Send (Propose, id, extAdd-spk, epoch) to the adversary and receive
(p, ack).
if ¬*req-correctness(′ext-prop′, id, extAdd-spk) then req ack
assert *valid-spk(id, spk)
act← extAdd-id-spk
if Prop[p] = ⊥ then

Prop[p]← *create-ext-prop(id, act, epoch,
RndCor[id])

ExtProps[p]← new node with epoch← epoch
else

*consistent-ext-prop(p, id, act, epoch)
if RndCor[id] = bad then

Send (exposed, id, spk) to Fas.
return p

Input (Commit, p⃗, spk, force-rekey, wel type)

req Ptr[id] ̸= ⊥
Send (Commit, id, p⃗, spk, force-rekey, wel type) to the adversary

and receive (ack , c, vec w, g , rt, ⃗cpsk).
if ¬*req-correctness(′comm′, id, p⃗, spk, force-rekey) then req ack
*fill-props(id, p⃗)
res = *fixate-psk-refs((Prop[p] : p ∈ p⃗), ⃗cpsk)
assert res ̸= ⊥
if *keep-spk(p⃗, force-rekey) then

spk← Node[Ptr[id]].mem[id]
assert *valid-spk(id, spk)
mem← *members(Ptr[id], id, [Prop[p] : p ∈ p⃗], spk)
assert mem ̸= ⊥ ∧ (id, spk) ∈ mem
for p ∈ p⃗ s.t. Prop[p].act = psk-∗ do

req id ∈ Node[Prop[p].cpsk].has psk

if Node[c] = ⊥ ∧ rt = ⊥ then
if *keep-spk(p⃗, force-rekey) then

stat← bad

else stat← RndCor[id]
Node[c]← *create-child(Ptr[id], id, p⃗,mem, stat)

else
if rt ̸= ⊥ then

c′ ← rootrt
assert RndCor[id] ̸= good

else
c′ ← c
if ¬*keep-spk(p⃗, force-rekey) then

assert RndCor[id] ̸= good
assert Node[c′].*origRChild = id

assert *valid-successor(c′, id, p⃗,mem)
if c ̸= c′ then *attach(c, c′, id, p⃗)

assert vec w ̸= ⊥ iff ∃p ∈ p⃗ : Node[p].act ∈ {add-∗, extAdd-∗}
if vec w ̸= ⊥ then

⃗cpsk = Prop[p].cpsk for all p ∈ p⃗ s.t. Prop[p].act = psk-∗
assert Wel[vec w] ∈ {⊥, (c, ⃗cpsk)}
Wel[vec w]← (c, ⃗cpsk)

assert g ̸= ⊥
assert groupInfo[g] ∈ {⊥, c}
groupInfo[g]← c
assert cons-invariant ∧ auth-invariant
if RndCor[id] = bad then

Send (exposed, id, Node[Ptr[id]].mem[id]) to Fas.
return (c, vec w, g)

Input Key

req Ptr[id] ̸= ⊥ ∧ HasKey[id]
if Node[Ptr[id]].key = ⊥ then *set-key(Ptr[id])
HasKey[id]← false

return Node[Ptr[id]].key

Figure 4: Part 1 of our FECGKA and FECGKAPSK definition, using the color coding from Table 2. The
orange code ( ) is included in FECGKAPSK , but not in FECGKA.
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Functionality FECGKA and FECGKAPSK - Part 2

Input (ExtCommit, g, spk, ⃗epsk, resync)

if resync = true then req Ptr[id] ̸= ⊥
else req Ptr[id] = ⊥
Send (ExtCommit, id, g, spk, ⃗epsk, resync) to the adversary

and receive (ack , c, g′, pexi, prem, ⃗ppsk,
cgm, origg,memg, epoch, ⃗cpsk).

if ¬*req-correctness(′ext-comm′, id, g, spk
resync = true) then req ack

assert *valid-spk(id, spk)
cg ← groupInfo[g]
if cg = ⊥ then

if Node[cgm] ̸= ⊥ then
cg ← cgm

else
rootCtr ++; c← rootrootCtr
Node[cg]← *create-root(origg,memg,

′adv′, epoch)
groupInfo[g]← cg

ExtCommitProps[pexi] += *create-ext-commit-props(
groupInfo[g], ′exi-id′, id)

if prem ̸= ⊥ then
ExtCommitProps[prem] +=

*create-ext-commit-props(groupInfo[g],
′rem-id′, id)

for e, p in zip( ⃗epsk, ⃗ppsk) do
ExtCommitProps[ppsk] +=

*create-ext-commit-props(groupInfo[g],
′psk-e-application′, id)

try ExtCommitProps =
*fixate-psk-refs(ExtCommitProps, ⃗cpsk)

for prop ∈ ExtCommitProps s.t. prop.act = psk-∗ do
req id ∈ Node[prop.cpsk].has psk

p⃗ = [pexi, prem, ppsk]
mem← *members(groupInfo[g], id, ExtCommitProps, spk)
assert mem ̸= ⊥ ∧ (id, spk) ∈ mem
if Node[c] = ⊥ then

stat← RndCor[id]
Node[c]← *create-child(groupInfo[g], id, p⃗,mem, stat, ′new member′,
ExtCommitProps)

else
*consistent-ext-comm(c, g, id, p,mem, ExtCommitProps)

assert g′ ̸= ⊥
assert groupInfo[g′] ∈ {⊥, c}
groupInfo[g′]← c
assert cons-invariant ∧ auth-invariant
if RndCor[id] = bad then

Send (exposed, id, Node[Ptr[id]].mem[id]) to Fas.
return (c, g)

Corruptions

Input (Expose, id)

if Ptr[id] ̸= ⊥ then
Node[Ptr[id]].exp +← (id,HasKey[id])
*update-stat-after-exp(id)
Send (exposed, id, Node[Ptr[id]].mem[id]) to Fas.

Send (get-sk) to Fks and receive SK and SPK.
for each kp s.t. SK[id, kp] ̸= ⊥ ∧ SPK[id, kp] = spk do

for each c s.t. ∃p ∈ Node[c].pro :
Prop[p].act = add-id-spk do

Node[c].exp +← (id, true)
This input is disallowed if ∃c : Node[c].chall ∧ ¬safe(c)

Input (CorrRand, id, b), b ∈ {good, bad}
RndCor[id]← b

Input (Process, c, p⃗)

if p⃗ = ⊥ then return *process-ec(c)
Send (Process, id, c, p⃗) to the adversary and

receive (ack , rt, orig′, spk′, ⃗cpsk).
if ¬*req-correctness(′proc′, id, c, p⃗) then

req ack
*fill-props(id, p⃗)
try res = *fixate-psk-refs(Prop[p] : p ∈ p⃗, ⃗cpsk)
if Node[c] = ⊥ ∧ rt = ⊥ then

mem← *members(Ptr[id], orig′, p⃗, spk′)
assert mem ̸= ⊥
for p ∈ p⃗ s.t. Prop[p].act = psk-∗ do

req id ∈ Node[Prop[p].cpsk].has psk ∨ ∄(id, ∗) ∈ mem
Node[c]← *create-child(Ptr[id], orig′, p⃗,mem, adv)

else
if Node[c] = ⊥ then c′ ← rootrt
else c′ ← c
idc ← Node[c′].orig; spkc ← Node[c′].mem[idc]
mem← *members(Ptr[id], idc, p⃗, spkc)
assert mem ̸= ⊥
for p ∈ p⃗ s.t. Prop[p].act = psk-∗ do

req id ∈ Node[Prop[p].cpsk].has psk ∨ ∄(id, ∗) ∈ mem
*valid-successor(c′, id, p⃗,mem)
if c ̸= c′ then *attach(c, c′, id, p⃗)

if ∃p ∈ p⃗ : Prop[p].act = rem-id then
Ptr[id]← ⊥

else
assert id ∈ Node[c].mem
Ptr[id]← c; HasKey[id]← true

Node[c].has psk +← id

assert cons-invariant ∧ auth-invariant
return *output-proc(c)

Input (Join, vec w)

Send (Join, id, vec w) to the adversary and
receive (ack , c′, g, orig′,mem′, epoch, ⃗cpsk

′).
req ack
(c, ⃗cpsk)← Wel[vec w]
if c = ⊥ then

if Node[c′] ̸= ⊥ then
c← c′; ⃗cpsk ← ⃗cpsk

′

else
rootCtr++; c← rootrootCtr; ⃗cpsk ← ⃗cpsk

′

Node[c]← *create-root(orig′,mem′, adv, epoch)
Wel[vec w]← (c, ⃗cpsk)

for p ∈ Node[c].pro s.t. Prop[p].act = psk-∗ do
req id ∈ Node[Prop[p].cpsk].has psk

Ptr[id]← c
HasKey[id]← true

Node[c].has psk +← id

assert g ̸= ⊥
assert groupInfo[g] ∈ {⊥, c}
groupInfo[g]← c
assert id ∈ Node[c].mem ∧ cons-invariant

∧ auth-invariant
return *output-join(c)

Figure 5: Part 2 of our FECGKA and FECGKAPSK definition, using the color coding from Table 2. The
orange code ( ) is included in FECGKAPSK , but not in FECGKA.
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Functionality FECGKA and FECGKAPSK : Invariants

// The history graph is consistent.

helper cons-invariant

return true iff
a) ∀c s.t. Node[c].pars ̸= ⊥: Node[c].pro ̸= ⊥ and

∀p ∈ Node[c].pro : Prop[p].pars = Node[c].pars, and

b) ∀id s.t. Ptr[id] ̸= ⊥ : id ∈ Node[Ptr[id]].mem, and

c) the graph contains no cycles, and

d) ∀ep s.t. ExtProps[ep] ̸= ⊥ : (∀c ∈ Prop[ep].par : Node[c].epoch =
ExtProps[ep].epoch)

// No injections when authenticity guaranteed.

helper auth-invariant

return true iff
a) ∀c with Node[c].sender type = ′member′ and cp = Node[c].pars ̸= ⊥

and id = Node[c].orig and (id, spk) ∈ Node[cp].mem, if Node[c].stat =
adv then inj-allowed(cp, spk), and

b) ∀p with p ∈ Prop \ ExtProps and cp = Prop[p].pars ̸= ⊥ and id =
Prop[p].orig and (id, spk) ∈ Node[cp].mem, if Prop[p].stat = adv then
inj-allowed(cp, spk), and

c) ∀c with Node[c].sender type = ′new member′ and id = Node[c].orig
and (id, spk) ∈ Node[c].mem, if Node[c].stat = adv then
inj-allowed(⊥, spk), and

d) ∀p with p ∈ ExtProps and id = Prop[p].orig and ExtProps[p].act =
extAdd-id-spk, if Prop[p].stat = adv then inj-allowed(⊥, spk).

Figure 6: The cons- and auth-invariant predicates for the FECGKA and FECGKAPSK functionalities, adapted
from [4] using the color coding from Table 2. The codes highlighted with color are only included in
FECGKAPSK .

b) Every regular proposal p can be injected by the adversary on behalf of any group member id with its
valid leaf key spk only if both spk and the epoch secret at the parent node cp = Prop[p].pars has been
exposed.

c) Every external commit c can be injected by the adversary on behalf of any group member id with its
valid leaf key spk only if spk has been exposed.

d) Every external proposal p can be injected by the adversary on behalf of any group member id with its
valid leaf key spk only if spk has been exposed.

Interfaces in FECGKA. The functionality FECGKA is initialized with an empty history graph, i.e., all
proposal and commit nodes Prop[p] and Node[c] are set to ⊥ and the root is identified by the label root0.
For each party id, each vector of welcome messages vec w, and each groupInfo g, FECGKA respectively
stores a pointer Ptr[id], Wel[vec w], GroupInfo[g], to its corresponding commit node in the history graph,
initialized with ⊥. Moreover, for each external self-add proposal p, FECGKA also uses a helper node
ExtProps[p] to store the epoch that p will apply to. Furthermore, FECGKA uses RndCor[id] to record
whether a party id’s randomness source is indeed random (i.e., good) or chosen by the adversary (i.e.,
bad), and HasKey[id] to specify whether the current application secret of id can be challenged (i.e., true)
or not (i.e., false).

Below, we explain the interface of external self-add proposal and external commit in FECGKA in
detail, and briefly introduce other interfaces that have been studied in [4]. We detail the interfaces of the
remaining interfaces in Appendix C.

Interface Create: This interface (Create, spk) models group creation and is invoked only if the node
of initial root is not initialized and the public key spk of the invoker idcreator is valid. Then, the initial
root of the history graph is initialized with the only member idcreator with its public key spk. Finally,
Ptr[idcreator] is set to the initial root and idcreator’s application key can be challenged.

Interface Propose (External): This interface of the form (Propose, extAdd-spk, epoch) considers the new
operation external self-add proposal. The input epoch specifies the epoch of a group that this proposal
is intended for. The invoker id must not be yet a member of the group. Because the proposal comes
from outside the group, it is only signed and does not employ any group internal secret, and there is no
indication of the commit node of the history graph p is intended for.
FECGKA forwards this query to the adversary A and receives a proposal p and an acknowledgment

ack . FECGKA checks whether the proposal is correct. Otherwise, it must be maliciously injected by the
adversary (i.e., ack = true). Then, FECGKA checks whether the input spk is valid. If the node Prop[p] of
the proposal p does not exist, then FECGKA creates it using input of this query. More concretely, the list
of parent node Prop[p].pars is set to all existing commit nodes at same epoch as the input epoch. Recall
that an external self-add proposal is sent to all commit nodes at the epoch epoch, including both existing
and future ones. If a commit node at epoch epoch is created in the future, it will also be added into
Prop[p].pars. The origin Prop[p].orig is set to the invoker id, the action Prop[p].act is set to the input
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Functionality FECGKA and FECGKAPSK : Predicate safe

Knowledge of state secrets.
know(c, id) ⇐⇒

a) // id’s state leaks directly e.g. via corruption (see below):

*state-directly-leaks(c, id) ∨
b) // know state in the parent:(

Node[c].pars ̸= ⊥ ∧ ¬*secrets-replaced(c, id) ∧ know(Node[c].pars, id)
)
∨

c) // know state in a child:(
∃c′ : Node[c′].pars = c ∧ ¬*secrets-replaced(c′, id) ∧ know(c′, id)

)
*state-directly-leaks(c, id) ⇐⇒

a) // id has been exposed in c:

(id, ∗) ∈ Node[c].exp ∨
b) // c is in a detached tree and id’s spk is exposed((

∃rt : *ancestor(rootrt, c)
)
∧

(
∃spk : (id, spk) ∈ Node[c].mem ∧ spk ∈ Exposed

))
∨

c) // id’s secrets in c are injected by the adversary:(
(id, spk) ∈ Node[c].mem ∧ *secrets-injected(c, id)

)
*secrets-injected(c, id) ⇐⇒

a) // id is the sender of c and c was injected or generated with bad randomness

(Node[c].orig = id ∧ Node[c].stat ̸= good) ∨
b) // c commits an update of id that is injected or generated with bad randomness

(∃p ∈ Node[c].pro : Prop[p].act = up- ∗ ∧ Prop[p].orig = id ∧ Prop[p].stat ̸= good)∨
c) // c adds id with corrupted spk

(∃p ∈ Node[c].pro : Prop[p].act ∈ {add-id-spk, extAdd-id-spk} ∧ spk ∈ Exposed)

*secrets-replaced(c, id) ⇐⇒
a) // id is the sender of c and c includes an empty or add-(and-psk)-only proposal list(

Node[c].orig = id∧
(
(∃p ∈ Node[c].pro : Prop[p].act /∈ {add-∗, extAdd-∗, psk-∗}) ∨ Node[c].pro = ∅

))
∨

b) // c adds id, removes id, or commits and update of id(
∃p ∈ Node[c].pro : Prop[p].act ∈ {add-id-∗, rem-id} ∨ (Prop[p].act = up- ∗ ∧ Prop[p].orig = id)

)
Knowledge of epoch secrets.
know(c, ‘epoch’) ⇐⇒ Node[c].exp ̸= ∅ ∨ *can-traverse(c)

// Can the adversary process c using exposed individual secrets and parent’s init secret?
*can-traverse(c) ⇐⇒

a) // orphan root with a corrupted signature public key:(
Node[c].pars = ⊥ ∧ (∗, spk) ∈ Node[c].mem ∧ spk ∈ Exposed

)
∨

b) // commit to an add proposal that uses an exposed signature public key:

(∃p ∈ Node[c].pro : Prop[p].act ∈ {add-id-spk, extAdd-id-spk} ∧ spk ∈ Exposed) ∨
c) // secrets encrypted in the welcome message under an exposed secret, i.e., exposed init secret and psk(

∃id, p ∈ Node[c].pro : Prop[p].act ∈ {add-id-∗, extAdd-id-∗} ∧
(
∃cd : *ancestor(c, cd) ∧ (id, ∗) ∈

Node[cd].exp ∧ no node ch with *secrets-replaced(ch, id) on c-cd path
))
∨

d) // know necessary info to traverse the edge:(
know(c, ∗) ∧

(
c = root∗ ∨ know(Node[c].pars, ‘epoch’)

)
∧Node[c].psk ̸= good

)
∨

e) // external commits injected by adversary or with bad randomness.

(Node[c].sender type = new member ∧ Node[c].stat ̸= good ∧ Node[c].psk ̸= good)

safe(c) ⇐⇒ ¬
(
(∗, true) ∈ Node[c].exp ∨ *can-traverse(c)

)
inj-allowed(c, spk) ⇐⇒ spk ∈ Exposed ∧

(
c = ⊥ ∨ know(c,′ epoch′)

)

Figure 7: The safe predicate for the FECGKA and FECGKAPSK functionalities, adapted from [4] using the
color coding from Table 2. The codes highlighted with color are only included in FECGKAPSK .
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action, the status Prop[p].stat is set to the randomness flag RndCor[id]. Moreover, FECGKA also stores
the input epoch in the helper node ExtProps[p].

Otherwise, the existing node Prop[p] must record id as the origin and the same action act. All
parent commit nodes of Prop[p] must have the same epoch as the one included in the query input. If
the randomness in this query is chosen by the adversary, then FECGKA exposes secret of the invoker
id’s public key. This captures the fact that the ECDSA signature underlying MLS is vulnerable against
randomness leakage attack [5]. In the end, the proposal p is returned.

Interface ExtCommit: This interface of the form (ExtCommit, g, spk, resync) considers the external
commit operation. If the aim of this external is to resync, i.e., leave and rejoin the group, indicated by
resync = true, then the party id must be in the group (i.e., Ptr[id] ̸= ⊥). Otherwise, the party id must
be outside the group (i.e., Ptr[id] = ⊥). Next, FECGKA forwards this query to the adversary and receives
an acknowledgment ack , an external commit c, a new groupInfo g′, a self-add proposal pexi

3, a self-remove
proposal prem, a group-match commit cgm, the groupInfo g’s origin origg, and a group member list memg.
Then, FECGKA checks whether this query is related to a correct rejoin operation, or acknowledged by the
adversary. The input spk must be valid. Afterwards, FECGKA checks whether the groupInfo g maps to
an existing commit. If not, then the groupInfo g must be injected by the environment and this external
commit query is also considered to be injected. In this case, FECGKA maps the groupInfo g to cgm if its
commit node has been created or a new detached root. Within this interface, FECGKA does not create
independent proposal nodes for every included proposal. Instead, FECGKA creates ”sub-nodes” for the
self-add proposal pexi and the self-remove proposal prem (if available, i.e., prem ̸= ⊥). This external
commit must have a correct member list, i.e, including the invoker id and its spk. In the case that the node
of the external commit c has not been created, FECGKA creates it, which wraps all above ”sub-nodes”.
Otherwise, FECGKA checks whether the existing node Node[c] is consistent with this external commit and
the included proposals. Finally, similar to the regular commit, FECGKA requires that the new groupInfo
g′ must be non-⊥ and point to c. If the consistency and authenticity are not violated, then the commit c
and the new groupInfo g′ are returned. Note that the external commit only adds the invoker id to the
group. This query will not yield any welcome message.

Interface Process (regular commit): When invoked with a vector of proposals p⃗ ≠ ⊥, this interface
(Process, c, p⃗) processes a regular commit c and a vector of proposals p⃗. FECGKA forwards the query
to the adversary and processes the regular and external commits differently. If the commit is regular
(p⃗ ̸= ⊥), then FECGKA should receive an acknowledgment ack , a detached root index rootCtr, the commit
c’s origin orig′, and its public key spk′. FECGKA first checks whether the commit and proposals are correct,
or acknowledged by the adversary. Next, FECGKA creates proposal nodes for all injected proposals. If
neither the node of the commit c nor the detached root rootrt exists, then c must be injected by the
adversary. In this case, FECGKA creates the node of c if c will yield a valid member list. Otherwise, either
the node of the commit c or the detached root rootrt exists. In this case, FECGKA attaches the commit
node c to them if the yielding member list and this attachment are valid. If any of the input proposal
indicates to remove the invoker id from the group, then the point of id will be set to ⊥. Otherwise,
FECGKA checks whether id is still included in the member list of the node of the commit c, followed by
moving the pointer of id to c and mark id’s key to true so that it can be challenged. If the consistency
and authenticity checks are not violated, then information about the processed commit and its included
proposals are returned, i.e., the origins of commit c, the new member list after processing c, and the
origins and actions of each proposal in p⃗.

Interface Process (external commit): When invoked with p⃗ = ⊥, this interface of the form (Process, c, p⃗)
processes an external commit c through *process-ec(c), defined in Appendix C. FECGKA should receive
an acknowledgment ack , the external commit c’s origin orig′ and its public key spk′, and a vector of
proposals p⃗ that are applied in c. FECGKA first checks whether the commit and proposals are correct,
or acknowledged by the adversary. If it holds that Ptr[id] ̸= ⊥, then the invoker id must be a member
inside the group. In this case, FECGKA checks whether the node of commit c has been created. If it is
not created, then this commit must be injected by the adversary. In this case, FECGKA forwards every
proposal p ∈ p⃗ to the adversary and receives its action act. Next, FECGKA creates the “sub-node” of these
proposals and checks whether their actions are valid, i.e., only add and remove proposals are allowed and
the added or removed party must be the origin of the commit. Then, FECGKA checks whether the member
list for this external commit is valid. If the check passes, FECGKA created the node of the external commit
c that wraps above “sub-nodes”. If the node of commit c has already been created, FECGKA simply checks

3exi is named after the “ExternalInit” operation in [14, Section 12.1.6], which “is used by new members that want to
join a group by using an external commit”.
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whether the member list for this external commit c is valid and whether the existing commit node is
consistent with this external commit c and its included proposals p⃗. If Ptr[id] = ⊥, then the invoker id
must be outside the group. Note that a non-member party can only process external commits that were
created by itself. FECGKA simply checks whether the node of commit c has been honestly generated by
the invoker id, i.e., not injected by the adversary. Finally, in all cases, FECGKA checks whether id is still
included in the member list of the node of the commit c, followed by moving the pointer of id to c and
marking id’s key to true so that it can be challenged. If the consistency and authenticity checks are
not violated, then information about the processed commit c and its included proposals p⃗ are returned,
i.e., the origins of commit c, the new member list after processing c, and the origins and actions of each
proposal in p⃗.

4.3 Comparison between FCGKA [4] and our FECGKA

Compared to FCGKA in [4], the main difference is that our FECGKA captures “External Joins” by including
the external operations described in [14, Section 3.3]. External proposals allow a party outside the group
to apply for joining the group. Recall that the external proposal node will be appended to all commit
nodes of the same epoch. To capture this, FECGKA includes the epoch information into the commit and
external proposal nodes. The external commit allows non-members to directly join an “open” groups
but also allows group members to resync with the group. To capture this, every commit (regular and
external) must be generated together with groupInfo g that can be used by outsiders to generate external
commits. Moreover, FECGKA offers different security guarantees in three aspects.

Consistency. The consistency predicate cons-invariant in our FECGKA additionally capture the
consistency of external proposal nodes, i.e., whether every external proposal has the same epoch as all its
parent commit nodes.

Confidentiality. The confidentiality predicate safe in our FECGKA has the following three core differences:
First, FECGKA encodes the confidentiality requirement for external self-add proposals, similarly to regular
add proposals. Second, FECGKA encodes that no rekey path if the proposals included in a commit is either
empty or add-only, see condition a) in heals. This captures the modifications in MLS since Draft 10 [9].
Third, FECGKA encodes the confidentiality requirement for external commits, identical to normal commits.

Authenticity. The authentication predicate auth-invariant in our FECGKA has two core differences:
First, we redefine the inj-allowed helper function. While inj-allowed in FCGKA in [4] checks whether
the adversary can inject a message on behalf of an id in the group, our inj-allowed checks whether an
injection can be verified on id’s public key spk, as the sender of an external proposal or commit might
not be included in any group. Second, our FECGKA encodes the authenticity requirement for the novel
external proposals and commit operations, respectively in condition c) and d).

5 RFC 9420 and ETK: Extended Operations TreeKEM

In this section, we introduce our ETK protocol, which is a simplified version of MLS RFC 9420 [14], as an
instance of the ECGKA protocol. Our ETK protocol extends ITK [4], which simplifies MLS Draft 12 [15],
with the novel external proposal and commit operations as well as some selected updates from Draft 12 to
RFC 9420 that have not been formally studied in the literature to the best of our knowledge. In Section 5.1,
we present the differences of our ETK with ITK [4], which we recalled in Section 2.2. In Section 5.2,
we prove that our ETK protocol securely realizes FECGKA. Due to the page limit, we summarize our
simplification in Appendix B and provide details on our ETK protocol in Appendix D.

5.1 The ETK Protocol

Similar to [4], we abstract the associated authentication and key services of our ETK as functionalities
FAS and FKS , which we depict in Figures 12 and 13 in Appendix C. Compared with ITK [4] that abstracts
MLS Draft 12 [15], our ETK incorporates the following updates.

Updated GroupInfo. While ITK outputs groupInfo only included in the welcome messages for
parties that have already been invited via regular add proposal, our ETK outputs groupInfo whenever
regular or external commits are generated, in order to allows non-member party to join the group by
itself. This modification has been included in MLS since Draft 10 [9]. Moreover, while ITK includes
both confTransHash and interimTransHash in the groupInfo, our ETK only includes confTransHash and
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excludes interimTransHash, since confTransHash itself is sufficient for the verification on the history of
group evolution. This modification has also been included in MLS since Draft 10 [9].

Leaf Nodes and Key Packages. While in ITK the leaf nodes and key packages had the same data
structure, in our ETK they have different data structures. More concretely, leaf nodes are now a data
structure that can be either contained within a tree, or within a key package. In our ETK, we use a
variable leafNode source within leaf node to denote where it is included: key package, commit, or update.
This modification has been included in MLS since Draft 13 [11]. Moreover, while ITK encrypts the group
secrets in the welcome messages with the public key of the leaf node, our ETK includes a new “init key”
in the key packages that is different from the key in the leaf node and uses this “init key” to encrypt the
group secrets in the welcome messages. This modification has been included in MLS since Draft 13 [11].
Finally, while ITK refers to every leaf node via an allotLeaf function inputting the hash of their owner’s key
package, our ETK refers to leaf nodes simply via their leaf index in the tree. Consequently, our allotLeaf
function now takes no reference anymore, but assigns the leftmost leaf, and returns the index of this leaf
node. This modification is in MLS since Draft 15 [12].

Updated Welcome Messages. While in ITK the groupInfo was unencrypted in welcome messages,
our ETK encrypts it with the key enclosed in the encrypted group secrets. This modification has been
included in MLS since MLS Draft 9 [10]. Moreover, while in ITK outputs every commit along with a
single welcome messages for all added parties, our ETK allows the committer to freely decide how many
welcome messages to construct, indicated by wel type, and outputs a vector vec w that includes one or
more welcome messages, each of which adds either all, or single, or batch parties. This is in MLS since
Draft 17 [13].

New Operation: External Self-Add Proposal. Since Draft 15 [12], MLS includes the external
self-add proposal, which allows a party to propose to add itself to a group. The proposer id must not be
in the group. To generate the external self-add proposal, id first generates a key package that warps two
data structures: a “leaf node” and an “init key”, followed by singing the key package using identity ssk.
Next, id generates the proposal message that includes the intended groupId, the intended epoch, proposal
type “new member proposal”, and the signed key package, followed by signing them together. In the end,
the signed proposal message is output.

New Operation: External Commit. Since Draft 10 [9], MLS includes the external commit operation
that enables an external user to join an “open” group asynchronously without asking any group member
to add them. In this case, we have resync = false. The external commit operation can also be used by
an existing group member to replace its prior appearance in the group with a new one. In this case, we
have resync = true.

In both cases, the committer id first parses the latest group information and a signature from the
input groupInfo object g. The latest group information includes (1) the identifier of the group groupId,
(2) the current epoch number epoch, (3) the hash of (the public part) of the binary ratchet tree τ , (4) the
transcript hashes confTransHash and interimTransHash, (5) a labeled left-balanced binary ratchet tree τ ,
(6) a confirmation tag confTag, (7) the groupInfo g’s sender index senderIdx, and (8) a HPKE public
key external-pub, the secret key of which is shared by all existing group members. The committer id
verifies whether the signature can be verified using the sender senderIdx’s public key spk encoded in the
tree τ . Additionally, id checks whether the public ratchet tree is valid.Then, the committer id derives
the initial secret initSecret for the key schedule using the HPKE export method with external-pub and
initializes a new group state for the next epoch. The committer id generates an extInit proposal that is
tailored for external commit to add itself. If resync = true, then the committer additionally generates
a self-removal proposal. Afterwards, similar to the regular commit, the committer id adds itself to the
ratchet tree at the leftmost available leaf, optionally removes itself from the current group, rekeys path,
signs the commit content C using its signature key γ.ssk, computes new transcript hash, and runs key
schedule. The key schedule derives a confirmation key confKey and a joiner secret joinerSec. In the
end, the committer id generates a confirmation tag confTag for the new group state, an external commit
message ec, and an associated external groupInfo g. A mapping associating the new group state with
each pending commit issued by id is added to the mapping γ.pendCom. The external commit message ec
and the new groupInfo g are returned.

5.2 Security Results for ETK and FECGKA

Theorem 1. Assume that PKE is IND-CCA secure and that Sig is SUF-CMA secure. The ETK protocol
securely realizes (FIWAS ,FIWKS ,FECGKA) in the (FAS ,FKS ,GRO)-hybrid model, where FECGKA uses the
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predicates safe and inj-allowed from Figure 7 and calls to HKDF.Expand, HKDF.Extract, and MAC
functions are replaced by calls to the global random oracle GRO.

We provide the full proof of Theorem 1 in Appendix E.

Sketch. Our proof follows [4] and defines four consecutive hybrids games from H1 to H4 . We prove that
the real world (i.e., H1 ) and the ideal world (i.e., H4 ) are indistinguishable for all environments Z via
intermediate steps.

In hybrid H1 , a dummy functionality Fdummy forwards all in- and outputs through the simulator S,
which executes ETK. Hence, Fdummy encodes no security guarantees and H1 is identical to the real world.

In hybrid H2 , Fdummy is replaced by a functionality consisting of FIWAS , FIWKS and a modified version
of FECGKA, where safe(c) = false and inj-allowed(c, id) = true for all commits c and parties id.
The functionality interacts with a trivial simulator that chooses all application secrets according to the
protocol. For every input operation, we show that the outputs in ETK (i.e., Fdummy) and FECGKA of H2
is the same. This particularly includes that if H2 halts due to an assert statement, so would ETK. The
indistinguishability between H1 and H2 proves consistency and correctness of ETK.

The hybrid H3 is identical to H2 except that the application secrets in safe epochs are random, i.e.,
the original safe is restored. Moreover, we also create a sequence of sub-hybrid games Hsi, where the
simulator S sets the secrets for the first i epochs even if they are safe, and all epoch secrets after that are
set according to the modified version of FECGKA of H2 . It is easy to observe that Hs0 is identical to H3
and the final sub-hybrid Hsn for some polynomial n is identical to H2 . We prove that every two adjacent
sub-hybrid games Hsi−1 and Hsi are indistinguishable, and further H2 and H3 . The indistinguishability
between H2 and H3 proves the confidentiality of ETK.

The hybrid H4 is identical to H3 except that the messages (proposals and commits) forgery on behalf
of uncorrupted parties are excluded, i.e. the original inj-allowed is restored. Now, H4 is identical to
the ideal world. We prove that the environment Z cannot forge any Sig signature or MAC on behalf of
any uncorrupted party in H3 whenever the evaluation of corresponding inj-allowed is true except for
negligible probability. The indistinguishability between H3 and H4 will prove the authenticity of ETK.

Remark 1. Our Theorem 1 requires the underlying signature scheme to be SUF-CMA-secure. In particular,
SUF-CMA is necessary for MLS RFC 9420 to provide commit message integrity against malicious parties,
which propagates through the transcripts into the key schedule.

We give a concrete example for a malicious insider. Suppose the signature scheme is not SUF-CMA
secure, e.g., ECDSA. Consider that Alice sends a commit message c to group members Bob and Charlie. A
malicious Bob can create a new commit message c′ by mangling the signature within the commit message c
without knowing Alice’s secret signing key, computing a MAC if present, and send it to Charlie. Although
Charlie can successfully process c′ and agree on the same content included in the commit with Alice and
Bob, their group states diverge, as the signature is included in the transcript hash and the key schedule.
Consequently, neither the messages from Charlie nor from Alice can be read by the other. A similar
behavior is possible for external committers.

While this possible behavior with EUF-CMA schemes seems to runs counter to the design of MLS, we
currently do not know of any real-world attack based on this, since an adversary with such capabilities can
cause groups to split in other ways, e.g., by dropping messages for some recipients. However this enables
a subtle behavior in which participants process the exact same payloads, yet their views and epoch keys
diverge. Notably, for non-SUF-CMA secure schemes, the so-called AuthenticatedContent objects in [14]
can be mangled, because they include the signature data.

In practice, RFC 9420 requires implementation of the IETF version of the Ed25519 signature scheme,
which is SUF-CMA-secure [21]. Additionally, RFC 9420 allows for the use of Ed448 and ECDSA variants.
ECDSA only satisfies EUF-CMA, and it is possible to mangle a signature such that it still verifies as
expected [35], thus enabling the behaviors we describe above. In practice, we expect that many implementers
will also provide FIPS-compliant secure messengers, which would need to use ECDSA signatures, and
hence in these implementations divergence is possible. It seems prudent to either require signature schemes
that in fact guarantee SUF-CMA (possibly by a wrapper), or reconsider the use in transcripts.

From a provable security perspective, this shows up as a failure of an assert in FECGKA. However,
this behavior should also be captured by FCGKA in [4], which reduces to EUF-CMA. This raises the
question of whether this is a bug in the model or proof of [4]. We determined that contrary to the theorem
statement, the reduction argument [4, Lemma 3] relies on SUF-CMA: the reduction Asig checks whether a
signature-message pair (sig′, tbs′) matches any pair appearing in the past signing queries. We confirmed
with an author of [4] that the theorem statement is incorrect and should be changed to require SUF-CMA.
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6 Stronger Security for Group Re-Synchronization via External
Commit

In this section, we formally show that the resumption PSK mechanism of MLS RFC 9420 [14] can be used
to improve the security of group re-synchronization. In Section 6.1, we explain the mechanism and the
improved security guarantees. In Section 6.2, we introduce our stronger FECGKAPSK functionality that
captures this additional security guarantee. In Section 6.3, we propose our ETKPSK protocol. In Section 6.4,
we prove that our ETKPSK protocol securely realizes FECGKAPSK .

6.1 Resyncs and Resumption Pre-Shared Keys

A member that cannot process group commits, e.g. because it lost part of its group state, has to
re-synchronize with the group. This can be done through a regular remove-then-add P&C mechanism.
Alternatively, it can be implemented by the member sending an external commit that removes their old
instance while re-adding itself with a new leaf, simply referred to as resync. The resync is the simpler
mechanism, but provides less security: as explained in Section 4.2, the adversary can learn the epoch
secret by choosing the external committers randomness. To learn the epoch secret of a regular commit,
in addition to choosing the members randomness, the adversary needs to obtain the group secret. Note
that a malicious DS - cooperating with an adversary that compromised a members randomness - can
manipulate message transmission such that this member falls behind others, and is required to resync its
state with the group. Improving the security of this resync becomes a natural and significant question.

We show that the use of resumption pre-shared key (PSK) in MLS improves the security of a resync.
The resumption PSK mechanism involves the following three steps:

• PSK derivation and storage: As depicted in Figure 2, the key schedule phase derives a resumption PSK
along with the other secrets from the epoch secret. The derived PSKs is stored in the local state by
every group member for a certain period, determined by the application.

• PSK proposal: A party (insider or outsider) can generate a PSK proposal that specifies a past epoch, the
resumption PSK of which will be injected to the next epoch’s key schedule phase. The PSK proposals
can be committed in both regular and external commits.

• PSK injection: When receiving a commit that includes PSK proposals, every group member retrieves
the PSKs of all epochs specified in these proposals from their local state. They then derive the epoch
secret by hashing the PSKs with the joiner secret. Note that only members that possess all PSKs are
hence able to process such a commit.

When a member performs a resync (potentially after being maliciously forced to), this member - in
possession of a past PSK of that group - can inject that PSK into the external commit to prove previous
group membership. An adversary that controls the member’s randomness, but does not know its state
and hence PSK, cannot process this commit and is hence locked out.

6.2 The Stronger Functionality FECGKAPSK

We propose our functionality FECGKAPSK that extends our FECGKA with the PSK injection, highlighted
with orange color ( ) in Figures 4, 5 and 7. Below, we explain the additional execution and security
guarantees captured by FECGKAPSK .

Additional Executions. Our FECGKAPSK includes additional executions in the Propose, Commit,
ExtCommit, Process, and Join interfaces.

Interface Propose: This interface now allows an additional act = psk-epoch-use, with epoch specifying
which PSK will be injected, and use describing the usage of this PSK. In our work, we only consider
the usage “application”, which can be used to improve the security of regular or external commits as
described above. We leave the analysis of the other usages, “reinit” for group re-initialization and “branch”
for creating group branches, for future work. The execution of the PSK proposal (Propose, act) for
act = psk-epoch-use is identical to the one of other proposals.

Interface Commit: FECGKAPSK forwards this interface’s query to the adversary and retrieves a vector ⃗cpsk
that contains all past commits whose PSKs will be injected by this commit’s psk proposals. FECGKAPSK

runs *fixate-psk-refs to ensure that every PSK proposal refers to a valid commit cpsk in ⃗cpsk. The
condition assert res ≠ ⊥ fails when no suitable cpsk is found or the epoch does not match. FECGKAPSK
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does not require re-key path for commits containing only add and psk proposals, hence *keep-spk checks
if *only-adds-and-psk, and the committer’s keying material is not forced to be replaced if so.

For every psk proposal in the proposals vector, it is required that the committer id is in the list of
group members who have derived the resumption PSK from the key schedule for the corresponding cpsk.
Regardless of whether the commit node c or the detached root exists, FECGKAPSK first checks *keep-spk
to determine if re-key path is necessary. The secret of this commit node is marked as bad if no rekey path
is executed or if randomness is leaked. If the commit c includes any proposal that adds new members, the
welcome messages must be non-⊥. FECGKAPSK ensures that the messages reference (c, ⃗cpsk) and that the
vector of welcome messages differs for each c for every ⃗cpsk.

Interface ExtCommit: This interface takes as additional input a vector of epochs ⃗epsk. The functionality
FECGKAPSK forwards this input ⃗epsk to the adversary and receives two additional vectors ⃗ppsk and ⃗cpsk.
Similar to the extAdd and rem proposals, FECGKAPSK does not create independent proposal nodes for
each included psk proposal. Instead, it zips the psk proposals with the corresponding epoch vector
( ⃗epsk, ⃗ppsk) and uses *create-ext-commit-props to create sub-nodes for every PSK proposal ppsk. Later,
FECGKAPSK sets ExtCommitProps via *fixate-psk-refs and ⃗cpsk, ensuring that every psk proposal refers
to a valid cpsk. The functionality guarantees that for psk proposals in ExtCommitProps, the committer
id must be in the list of group members who have derived the resumption PSK from the key schedule.

Interface Process: For a regular commit (p⃗ ≠ ⊥), FECGKAPSK forwards the process query to the
adversary and additionally receives ⃗cpsk. After verifying correctness and creating proposal nodes for
all injected proposals, FECGKAPSK checks *fixate-psk-refs to ensure that every PSK proposal refers to
a valid cpsk in ⃗cpsk. No matter whether the input commit message c is honestly generated or injected
by adversary, FECGKAPSK additionally verifies that at least one PSK for each psk proposal is in id’s
possession. id is added to the list of group members who have derived the resumption psk of the new
epoch.

For an external commit (p⃗ = ⊥), after forwarding the process query, FECGKAPSK receives an additional
⃗cpsk that specifies the commit messages that the included psk proposals refer to. If the invoker id is a

group member and the node of commit c has not been created, after creating the “sub-node” of these
proposals, the functionality FECGKAPSK verifies whether their actions are valid, i.e., either add, rem, or
psk. Moreover, the functionality FECGKAPSK verifies whether every psk proposals in ExtCommitProps

refers to a valid cpsk. If the node of commit c has already been created, the FECGKAPSK additionally
verifies whether psk proposals in ExtCommitProps correctly refer to their valid cpsk. id is added to the
list of group members who have derived the resumption PSK of the new epoch.

Interface Join: When sending (Join, id, vec w) to the adversary, FECGKAPSK additionally receives ⃗cpsk
′.

After verifying adversarial inputs, FECGKAPSK looks for a commit c and its ⃗cpsk that vec w maps to. If
no such commit exists, FECGKAPSK utilizes the adversary-provided ⃗cpsk

′ to create the node and maps
vec w to the newly generated pair (c, ⃗cpsk). In all cases, FECGKAPSK verifies that every psk proposal in
Node[c].pro correctly refers to a valid cpsk. In the end, id is added to the list of group members who have
derived the resumption PSK of the new epoch.

Additional Security Guarantees. FECGKAPSK captures the stronger confidentiality provided by the
PSK mechanism in the safe predicate in Figure 7 for both regular and external commits.

Regular Commit: Compared to FECGKA, there are two differences. First, in the predicate *secrets-replaced,
in addition to the regular commit with an add-only proposal list, FECGKAPSK captures the rekey path
except for a regular commit that is empty or includes only (regular) add, external self-add, or PSK
proposals. This reflects the suggestion in MLS RFC 9420 [14, Section 12.4] that the rekey path can be
omitted for a regular commit with add-or-PSK only proposal list.

Second, in condition d) of the helper predicate *can-traverse, where FECGKA only takes the leakage of
the commit secret (covered by know(c, ∗)) and the initSecret (indicated by c = root∗∨know(Node[c].pars, ‘epoch’))
into account, FECGKAPSK additionally considers leakage of the psk-secret (indicated by Node[c].psk ̸=
good). In this case, a regular commit c is secure if at least one of the commit-, the init-, and the optional
psk-secret is not leaked.

External Commit: In condition e) of the predicate *can-traverse, where FECGKA considers an external
commit insecure if it involves bad randomness, FECGKAPSK relaxes the requirement on randomness as
long as the included psk-secret is not leaked. This provides the external commit with stronger resilience
against randomness leakage attacks by using PSKs from the local states.
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6.3 The ETKPSK Protocol

Our ETKPSK protocol uses the resumption PSK mechanism from RFC 9420 as described in Section 6.1 to
extend ETK in Section 5 with the following differences.

New State Variable. Member’s group state include an additional psk store that contains the
resumption psks and their associated groupId and epoch.

New Operation: PSK Proposal. To perform a PSK proposal with usage = “application”, the
proposer id must be in the group. To generate the psk proposal, id first generates the pskId by using
groupId, the intended epoch and random nonce variables, then signs the proposal and outputs the proposal
message p.

Extended Operation: Regular Commit. If the proposal list only includes add-or-PSK proposals,
then no re-key path is executed. Once the commit is signed and confTransHash is set, the committer
retrieves all PSK values, identified by pskIds in the applied psk proposals, from its psk store, and
derives the psk-secret, then hashes both joinerSec and psk-secret to derive the epoch secrets. If the
commit adds any new members, the vector of welcome messages additionally includes pskIds to let joiners
know which resumption PSKs to use. Then, the welcome secret is derived from both joinerSec and
psk-secret to encrypt groupInfo. The commit message, the welcome vector, and the encrypted groupInfo
object are output.

Extended Operation: External Commit. ETKPSK inputs an additional vector ⃗epsk that identifies
the epochs, the PSKs of which are injected in this external commit. For each epoch in the vector ⃗epsk, a
pskId with usage “application” and a psk proposal are generated. As in a regular commit execution, the
external committer derives a psk-secret and injects it into the key schedule phase to derive epoch secrets.

Extended Operation: Process. The extended execution is the same for processing both regular and
external commits. As above, if id is not removed by the commit, id derives the psk-secret from all
included PSK proposals to inject it into the key schedule phase. In the end, id outputs PSK proposals
along with the id of the committer and all other proposals.

Extended Operation: Join. The joiner additionally extracts a vector pskIds from the decryption of
encGroupSec from the vector of welcome messages. As above, the joiner derives the psk-secret from all
local PSK values to compute the welcome secret for recovering the encrypted groupInfo, and to inject in
the key schedule for deriving epoch secrets.

6.4 Security Results for ETKPSK and FECGKAPSK

Theorem 2. Assume that PKE is IND-CCA secure and that Sig is SUF-CMA secure. The ETKPSK protocol
securely realizes (FIWAS ,FIWKS ,FECGKAPSK) in the (FAS ,FKS ,GRO)-hybrid model, where FECGKAPSK uses
the predicates safe and inj-allowed from Figure 7 and calls to HKDF.Expand, HKDF.Extract, and MAC
functions are replaced by calls to the global random oracle GRO.

Sketch. This proof is similar to the proof of Theorem 1, except for the analysis of the execution related to
the resumption psk. The ETKPSK protocol additionally allows to inject a resumption psk from a past
epoch to the key derivation schedule at the current epoch by a PSK proposal p← (Propose, psk-epoch-use).
The psks are stored locally and can be exposed later. Their status stat tracks the adversary’s application
key knowledge. If a member id is exposed, the psk in its possession are determined by has psk and
stat of all its psk is set to bad. FECGKA uses Prop[p].c-psk to track the psk’s origin commit. Future
processors use this to ensure that all members process commits with consistent psks. We additionally
show that this approach maintains consistency in FECGKA.

Its possible that the processing client does not know the injected psk. FECGKA performs the necessary
checks for possession for confidentiality to be maintained. Even if the latest epoch state and the secrets
included in a commit are corrupted, the environment still cannot distinguish the epoch secret from random
as long as the injected PSKs are not leaked. This is because to derive new epoch secret, the PSK values
are injected into hashes, which are modeled as random oracles.
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ExptIND-CCA
PKE (A):

1 b $←− {0, 1}

2 (pk, sk) $←− PKE.Kg()

3 (m0,m1) $←− ADec(pk)

4 c $←− PKE.Encpk,mb

5 b′ $←− A(c)

6 return Jb = b′K

Dec(c):

7 m← PKE.Dec(sk, c)

8 return m

Figure 8: The IND-CCA security game for a PKE scheme.

A Preliminaries

A.1 Public Key Encryption

Definition 2 (Public Key Encryption). A public key encryption scheme over message space M is a
triple of algorithms, where PKE = {PKE.Kg,PKE.Enc,PKE.Dec} as defined below.

Key Generation (pk, sk) $←− PKE.Kg() inputs the public parameters pp and outputs a public encryption
key and a private decryption key pair (pk, sk).

Encryption c $←− PKE.Enc(pk,m) inputs an encryption key pk and a message m ∈ M and outputs a
ciphertext c.

Decryption m← PKE.Dec(sk, c) inputs a private decryption key sk and a ciphertext c. It deterministi-
cally outputs a message m.

We call a public key encryption scheme PKE = (PKE.Kg,PKE.Enc,PKE.Dec) correct if for all (pk, sk) $←−
PKE.Kg() and all messages m ∈M it holds that

m = PKE.Dec(sk,PKE.Enc(pk,m)).

Definition 3. We say a public key encryption scheme PKE = (PKE.Kg,PKE.Enc,PKE.Dec) is ϵ-IND-CCA
secure, if the advantage of all adversaries A that win ExptIND-CCA

PKE experiment in Figure 8 is bounded by

|Pr[ExptIND-CCA
PKE (A) = 1]− 1

2
| ≤ ϵ

The Generalized Selective Decryption (GSD) Security. The GSD game constructs a hypergraph of
vertices, where, in the context of ETK, each vertex is referred to as a node u, each storing a seed su. For
each node, a public-private key pair can be derived using the seed as randomness, or the seed can be used
as a symmetric key. Edges connect the nodes to represent dependencies between seeds. Briefly, the GSD
game includes the following oracles and functions:

• Enc(u, v): An encryption edge is created upon calling the Enc(u, v) oracle, encrypting the seed of v
under the public key of u.

• Hash(u, v, lbl): A key derivation edge is created when calling Hash(u, v, lbl), hashing the seed su with
the label lbl to derive the seed sv

• Join-Hash(u, u′, v, lbl): Calling Join-Hash(u, u′, v, lbl) hashes both su and su′ together to derive the
seed sv.

• Dec: Analogous to the IND-CCA game, this oracle decrypts the ciphertext using the private key of u,
provided that the seed of u is not valid or u is not a sink node.

• Corr: Outputs the seed of a node and records it in the Corr set.

• ∗get-pk(u): In the GSD experiment, the ∗get-pk(u) function allows A to obtain the corresponding public
key of vertex u by calling the oracle Enc(u, 0).

The gsd-exp(u) function indicates whether the seed su of the node u of commit c is exposed. The core
component of the proof shows that gsd-exp(u) is analogous to predicate safe(c). For further details, we
refer to [4]. The full GSD game is provided in Figure 9. Figure 25 provides a visualization of the GSD
graph for a regular commit where Figure 27 visualizes the GSD graph of an external commit.
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Game GSDPKE,A

The game is parameterized by the number of vertices N , the security parameter κ and a hash function Hash.

(V,E)← ([N ],∅) // GSD graph
Corr,Ctxt← ∅ // corrupted vertices, ciphertexts
su, pku, sku ← ⊥ for each u ∈ [N ] // keys for vertex u
u← ⊥ // challenge vertex
b←$ {0, 1}
s′ ←$ {0, 1}κ
b′ ← AEnc,Dec,Corr,Chal,Hash,Join-Hash

PKE

if (V,E) acyclic ∧ u is a sink ∧ ¬gsd-exposed(u) then
return b = b′

else return false

Oracle Chal(u)

req u = ⊥
u← u
if b = 0 then return su
else return s′

Oracle Hash(u, v, lbl)

req sv = ⊥ ∧ (u, ∗, h-lbl) /∈ E // hash is deterministic
gen-key-if-nec(u)
sv ← Hash(su, lbl)
gen-key-if-nec(v)
E +← (u, v, h-lbl)
return pku

Oracle Corr(u)

req su ̸= ⊥
Corr +← u
return su

Oracle Join-Hash(u, u′, v, lbl)

req sv = ⊥ ∧ ((u, u′, lbl), ∗, h-lbl) /∈ E
gen-key-if-nec(u); gen-key-if-nec(u′)
sv ← Hash(su, su′ , lbl)
gen-key-if-nec(v)
E +← ((u, u′), v, h-lbl)
return (pku, pku′)

Oracle Enc(u, v)

gen-key-if-nec(u); gen-key-if-nec(v)
E +← (u, v, e)
c← PKE.Enc(pku, sv)
Ctxt +← (u, c)
return (pku, c)

Oracle Dec(u, c)

req su ̸= ⊥ ∧ u not a sink
req (u, c) /∈ Ctxt
return PKE.Dec(sku, c)

gen-key-if-nec(u)

if su = ⊥ then su ←$ {0, 1}κ
(pku, sku)← PKE.Kg(Hash(su, node))
// in ETK and ETKPSK, the label “node” is used for key generation

gsd-exposed(u)

return u ∈ Corr
∨ ∃(v, u, ∗) ∈ E : gsd-exposed(v)
∨ ∃((v, v′), u, ∗) ∈ E : gsd-exposed(v) ∧ gsd-exposed(v′)

Figure 9: The GSD game, modified to explain ETK and ETKPSK executions. Taken from [4].

Definition 4. We say a public key encryption scheme PKE = (PKE.Kg,PKE.Enc,PKE.Dec) is ϵ-GSD
secure, if the advantage of all adversaries A that win GSDPKE,A game in Figure 9 is bounded by

|Pr[GSDPKE,A = 1]− 1

2
| ≤ ϵ

Theorem 3 ([4]). Let PKE denotes a public key encryption scheme. If PKE is IND-CCA secure, then
PKE is GSD secure.

A.2 Digital Signature

Definition 5 (Digital Signature). A digital signature scheme over message space M is a triple of
algorithms, where DS = (DS.KGen,DS.Sign,DS.Vrfy) as defined below.

Key Generation (pk , sk) $←− DS.KGen() outputs a public verification and private signing key pair
(pk , sk).

Signing σ $←− DS.Sign(sk ,m) inputs a secret key sk as well as the message m ∈ M to be signed and
outputs a signature σ.

Verification true/false ← DS.Vrfy(pk , σ,m) inputs a public verification key pk, a signature σ and
message m ∈ M. It deterministically outputs true if σ is a valid signature over m wrt. pk, else it
outputs false.

We call a signature scheme DS = (DS.KGen,DS.Sign,DS.Vrfy) correct if for all (pk , sk) $←− DS.KGen()
and all messages m ∈M, it always holds that

true = DS.Vrfy(pk ,DS.Sign(sk ,m),m).

Definition 6 (EUF-CMA and SUF-CMA security). Let DS = (DS.KGen,DS.Sign,DS.Vrfy) be a digital
signature scheme with message space M We say that DS is ϵ-EUF-CMA-secure if the adversary of all
adversaries that win in the ExptEUF-CMA

DS experiment is bounded by
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ExptEUF-CMA
DS (A):

1 LSign ← ∅

2 (pk, sk) $←− DS.KGen(pp)

3 (m∗, σ∗) $←− ASign(pk)

4 return JDS.Vrfy(pk, σ∗,m∗) ∧m∗ ̸∈ LSignK

Sign(m):

5 σ $←− DS.Sign(sk,m)

6 LSign ← LSign ∪ {m}

7 return σ

ExptSUF-CMA
DS (A):

1 LSign ← ∅

2 (pk, sk) $←− DS.KGen(pp)

3 (m∗, σ∗) $←− ASign(pk)

4 return JDS.Vrfy(pk, σ∗,m∗) ∧ (m∗, σ∗) ̸∈ LSignK

Sign(m):

5 σ $←− DS.Sign(sk,m)

6 LSign ← LSign ∪ {(m,σ)}

7 return σ

Figure 10: The EUF-CMA and SUF-CMA security games for a DS scheme.

ExptEUF-CMA
MAC (A):

1 LMAC ← ∅

2 (k $←− KGen(1λ)

3 (m∗, t∗) $←− AMAC(.)

4 return JVrfy(k,m∗, t∗) ∧m∗ ̸∈ LMACK

MAC(m):

5 (m, t) $←− MAC(k,m)

6 LMAC ← LMAC ∪ {m, t}

7 return t

Figure 11: The EUF-CMA security game for a MAC scheme.

Pr[ExptEUF-CMA
DS (A) = 1] ≤ ϵ.

Analogously, we say that DS is ϵ-SUF-CMA-secure if the adversary of all adversaries that win in the
ExptSUF-CMA

DS experiment is bounded by

Pr[ExptSUF-CMA
DS (A) = 1] ≤ ϵ

, where the ExptEUF-CMA
DS and ExptSUF-CMA

DS experiments are defined in Figure 10.

A.3 Message Authentication Code

Definition 7 (Message Authentication Code). A message authentication code scheme over message space
M and key space K is a tuple of algorithms, where MAC = (MAC.Sign,MAC.Vrfy) as defined below.

Signing t← MAC.Sign(k,m) inputs a key k ∈ K, a message m ∈M and outputs a tag t.

Verification true/false← MAC.Vrfy(k,m, t) inputs a key k ∈ K, a message m ∈ M and a tag t. It
deterministically outputs true if t is a valid tag of m w.r.t the key k, else it outputs false.

We say a MAC = (MAC.Sign,MAC.Vrfy) is correct if for every key k $←− K and every m ∈M, it holds
that

true = MAC.Vrfy(k,m,MAC.Sign(k,m)).

Definition 8 (EUF-CMA security of MAC). We say a message authentication code MAC = (MAC.Sign,
MAC.Vrfy) is ϵ-EUF-CMA secure, if the advantage of all adversaries that break ExptEUF-CMA

MAC experiment
in Figure 11 is bounded by

Pr[ExptEUF-CMA
MAC (A) = 1] ≤ ϵ.

A.4 Random Oracle

The Random Oracle Model (ROM), introduced by Bellare and Rogaway [18], conceptualizes an idealized
random function. Our work models hash function as an idealized random function, i.e., the random
oracle. More concretely, for an adversary aiming to compute the hash function H on input x, it must
query the random oracle with x. This process shapes adversarial behavior by granting the ability to
choose adversarial inputs to the hash function, which is referred to as extractability. For each query, the
random oracle returns uniformly random answers drawn from the predefined range of the hash function.
Regardless of how many times the random oracle is queried, the function H always produces the same
output.
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B Simplifications

Although our ETK and ETKPSK protocols are by far, to the best of our knowledge, the closest to the MLS
RFC 9420 standard, our study still has the following simplifications:

• External Proposals: Our ETK includes the external self-add proposal extAdd, while omitting other
external proposals, e.g., external removal and external group context extension.

• PSK Usages: Our ETKPSK reuses the resumption PSK mechanisms underlying MLS RFC 9420 standard
to improve the security of regular and external commits. However, our ETKPSK omits the original
applications of the resumption PSK mechanism, e.g., group re-initialization and branch operations.

• Exporter Secrets: In the key schedule of MLS RFC 9420, an exporter secret, which can be used by
an application to derive new secrets for use outside of MLS, is derived together with other epoch secrets.
Since our work focuses only on the evolution of the continuous group key agreement, rather than its
external application outside MLS, we omit the exporter secret and leave it as future work.

• External PSK: MLS RFC 9420 employs two flavors of pre-shared keys: The resumption PSK and
external PSK. The resumption key is derived together with epoch secrets in the key schedule and covered
by our ETKPSK. The external PSK is distributed among group members over some out-of-band channels.
For simplicity, our work omits the external PSK mechanism.

• Private Handshake Messages: In MLS RFC 9420, the handshake messages, i.e., a message carrying
an MLS Proposal or Commit object, can be either public or private. In our work, we consider public
handshake message, which means that the handshake messages are signed by its sender and authenticated
as coming from a member of the group in a particular epoch, but not encrypted. Note that the private
handshake messages are signed by its sender, authenticated as coming from a member of the group
in a particular epoch, and encrypted so that it is confidential to the members of the group in that
epoch. Intuitively, the security achieved by using public handshake messages can also be achieved by
using private handshake messages. For simplicity, we omit the private handshake messages and leave its
detailed security analysis as future work.

• Ciphersuites and Protocol Version: MLS RFC 9420 introduces several available ciphersuits and
their extensions in [14, Section 5.1, 13.1, and 17.1]. Moreover, every group member should specify the
MLS protocol version and ciphersuit this member supports in its key packages. For simplicity, we omit
this in the key package and simply assume that the MLS protocol version and ciphersuit every party
supports are publicly known.

• Cryptographic Primitive Contexts: MLS RFC 9420 uses cryptographic primitives often with some
labels, which are constant and indicates the computation context. For simplicity, our work continues to
use primitives such as Hash, Enc, Sig, and KDF without explicity introducing additional context and
labels.

• Key Expiration: Our work follows [4] and omits the consideration of expiration of key packages or
certificates.

• Order of Proposal Applications: Our work follows [4] and omits the formalization of the order that
a list of proposal should apply, see [14, Section 12.3]. For simplicity, our ETK and ETKPSK protocols
enforce a list of proposals to be applied in the order as each proposal appears in the list.

• Membership Tag: Our work follows [4] and omits the computation of membership tag on commits
that do not include removal proposal.

• Proposal Reference by Value: [4] only contains proposals by reference, meaning that a proposal
needs to be sent separately from a commit, and is included only via a ProposalRef. External commits
require proposals by value in the commit, as the sender is not yet part of the group. For simplicity, we
restrict the use of proposals by value to external commits.

• PSK Life Time: MLS RFC 9420 standard suggests that “the application SHOULD specify an upper
limit on the number of past epochs for which the resumption PSK may be stored” [14, Section 8.6]. In
our work, we do not model the life time of resumption PSKs, and simply assume that PSKs are never
removed once generated. Consequently, all PSKs in possession of the member are exposed upon state
corruption.

Additionally, upon a compromise, FECGKA marks all past key packages as exposed and all commits
that add such a key package. FECGKA introduces the new init key to key packages, which enhances
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forward secrecy in practice: While the leaf node key can be compromised in one of the early epochs after
adding, the init key can be deleted immediately after a join. However, We keep the simplification of [4]
and also expose all past key packages upon compromise. FECGKA can hence not capture this increased
forward secrecy.
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C Details on FECGKA and FECGKAPSK Functionalities

Here we describe the interfaces not described in the body of the paper. Furthermore, we give the formal
description of the Authentication Service and Keypackage Service functionalities in Figures 12 and 13.
We define the helper functions in Figures 14 to 16. As before, we mark changes and additions from the
model of [4] using colors according to Table 2. For details on the security model of FCGKA, we refer the
reader to [4].

Interface Commit: This interface of the form (Commit, p⃗, spk, force-rekey, wel type) considers the regular
commit operation and is invoked only if the invoker id is in the group. FECGKA forward this query to the
adversary and receives an acknowledgment ack , a commit message c, welcome messages vec w, groupInfo
g, and an index rt of a detached root. Similar to the interface Propose, FECGKA first checks whether the
commit is correct, or injected by the adversary. Next, FECGKA creates proposal nodes for all injected
proposals. Then, FECGKA checks whether the public key spk of the invoker id is valid. If neither the node
of the commit c nor the detached root rootrt exists, then FECGKA creates the node of c. The secret of this
commit node if marked to Bad if no rekey-path is executed or the randomness is leaked. Otherwise, either
the node of the commit c or the detached root rootrt exists. In this case, FECGKA attaches the commit
node c to them if the attachment is valid. If this commit c includes any proposal that adds new members,
the welcome messages must not be ⊥ and point to c. The groupInfo g must not be ⊥ and point to c. If
the consistency and authenticity checks are not violated, then the commit c, the welcome messages vec w,
and groupInfo g are returned.

Interface Propose (Regular): This interface of the form (Propose, act), act ∈ {up-spk, add-idt, rem-idt}
considers three conventional proposal operations: (1) update public key spk, (2) add a party idt, and
(3) remove a party idt. The invoker id must be within the group and FECGKA forwards this query to
the adversary A. Upon receiving the proposal p, public key spkt, and an acknowledgment ack , FECGKA

checks whether the proposal is correct. Otherwise, it must be maliciously injected by the adversary (i.e.,
ack = true). If the node of proposal p has not been created, then FECGKA creates it using the information
in this query (i.e., the query input and the reply from the adversary). Otherwise, FECGKA checks whether
the information in this query is consistent with the existing node of p. If the randomness in this query is
chosen by the adversary, then FECGKA exposes the secret key corresponding to the invoker id’s public key.
This models the case in which ETK is used with a signature scheme (such as ECDSA) that is vulnerable
to a randomness leakage attack [5]. In the end, the proposal p is returned.

Interface Join: The interface of the form (Join, vec w) joins a group via a vector of welcome messages
vec w. FECGKA forwards this query to the adversary and receives an acknowledgment ack , a commit
c′, a groupInfo g, an origin orig′, and a member list mem′. FECGKA checks whether the adversary has
acknowledged this query and looks for a commit c = Wel[vec w] that this vector of welcome messages
maps to. In the case that such a commit c does not exist, FECGKA creates and maps vec w to it by using
the input provided by the adversary: either simply use c′ as c if the node of c′ exists, or a new detached
node for c with the origin orig′, the member list mem′, and status adv. In all cases, FECGKA moves the
pointer of id to this commit c that either previously existed or was newly created and marks id’s key to
true so that it can be challenged. The groupInfo g must be non-⊥ and point to c. If id is included in
the member list of this commit c and the consistency and authenticity checks are not violated, then the
member list and origin of this commit c are returned.

Interface Key: This interface sets or challenges the application secret of the current node of the invoker
id. FECGKA checks whether id is a group member and whether the current application secret can be
challenged (i.e., HasKey[id] = true). If either check fails, then FECGKA exits. Otherwise, if the current
application secret of the node c that id points to has not been set, FECGKA further checks whether the
corresponding safe predicate safe(c) holds. If safe(c) = true, then the application secret is sampled
uniformly at random and marked as challenged. Otherwise, the application secret is chosen by the
adversary and marked as not challenged. In both cases, HasKey[id] is set to false, indicating that the
application secret of every epoch can be challenged only once, and the new application secret is returned.

Interface Expose: The interface of the form (Expose, id) enables the adversary to corrupt id’s states and
all included secrets. If the party id is outside the group, i.e., the pointer of id equals ⊥, then FECGKA

exits. Otherwise, id is a member in the group. In this case, FECGKA marks id as a corrupted member
in the current commit node that id points to. Next, FECGKA updates all status flags in all existing
proposal and commit nodes. Then, FECGKA notifies the authentication and key services FIWAS and FIWKS
that the current identity and ephemeral keys are exposed. FECGKA marks id as a corrupted member in
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Functionality Fas and F iw
as

The functionality is parameterized by a key generation algorithm gen-sk().

Initialization

Registered← ∅ // registered identity-public key
pairs

Exposed← ∅ // exposed public keys

SSK[∗, ∗]← ⊥ // honestly generated secret keys
RndCor[∗]← good

Inputs from a party id

Input (register-spk)

if RndCor[id] = good then
(spk, ssk)←$ gen-sk()

else
Send (rnd, id) to the adversary and receive r.
(spk, ssk)←$ gen-sk(r)

Send (sample-ssk, id) to the adversary and receive
(spk, ssk).
if RndCor[id] ̸= good then

Exposed +← spk

SSK[id, spk]← ssk
Registered +← (id, spk)
Send (register-spk, id, spk) to the adversary.
Send spk to the party id.

Input (verify-cert, id′, spk)

Send (id′, spk) ∈ Registered to id.

Input (get-ssk, spk)

Send SSK[id, spk] to the party id.

Input (del-ssk, spk)

SSK[id, spk]← ⊥

Inputs from the adversary

Input (register-spk, id, spk)

if (∗, spk) /∈ Registered then
Exposed +← spk

Registered +← (id, spk)

Input (expose, id)

Exposed +← {spk |
SSK[id, spk] ̸= ⊥}

Send SSK[id, ∗] to the adversary.

Input (corRand, id, b),
b ∈ {good, bad}

RndCor[id]← b

Inputs from Fks.

Input (exposed, id, spk)

Exposed +← spk

Send SSK[id, spk] to the adversary.

Inputs from FECGKA.

Input (has-ssk, spk, id)

Send SSK[id, spk] ̸= ⊥ to FECGKA.

Figure 12: The Authentication functionalities Fas, and their ideal-world counterparts F iw
as . Code marked

by solid or dashed boxes are executed only by the respective version, whereas code outside those boxes is
shared by both variants. Taken from [4].

all commit nodes that id joins using the corrupted ephemeral keys. Note that this corruption must not
infect any commit node that has been challenged. If there exists any commit c that has been challenged4,
i.e., Node[c].chall = true, and its safe predicate safe(c) is changed to false, then all executions in this
query will be undone.

Interface CorrRand: The interface of the form (CorrRand, id, b) enables the adversary to manipulate or
recover the randomness of the party id. If b = true, then FECGKA sets RndCor[id] to true, indicating
that the adversary now manipulates the randomness of id. If b = false, then FECGKA sets RndCor[id]
to false, indicating that the adversary loses control of the random number generator of the party id, i.e.,
all further values sampled by id are again uniformly at random.

4Recall that a commit c can be challenged only if its safe predicate safe(c) = true.
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Functionality Fks and F iw
ks

The functionality is parameterized by a key-package generation algorithm gen-kp(id, spk, ssk).

Initialization

SK[∗, ∗], SPK[∗, ∗], ISK[∗, ∗]← ⊥ // secret keys and spk’s corresponding
to honestly generated keys
RndCor[∗]← good

Inputs from a party id

Input (register-kp, spk, ssk)

if RndCor[id] = good then
(kp, sk, isk)←$ gen-kp(id, spk, ssk)
if kp = ⊥ then return

else
Send (rnd, id) to the adversary and receive r.
(kp, sk)← gen-kp(id, spk, ssk; r)
if kp = ⊥ then return
Send (exposed, id, spk) to Fas.
Send ssk to the adversary.

Send (sample-sk, id, spk, ssk) to the adversary and receive
(kp, sk, isk, ack).
if ¬ack then return
if RndCor[id] ̸= good then

Send (exposed, id, spk) to Fas.

SK[id, kp]← sk
SPK[id, kp]← spk
ISK[id, kp]← isk
Send (register-pk, id, spk, kp) to the adversary.
Send kp to the party id.

Input get-sks

Send {(kp, SK[id, kp], ISK[id, kp]) | SK[id, kp] ̸= ⊥} to id.

Input (get-kp, id′)

Send (get-kp, id, id′) to the adversary and receive kp.
Send kp to id.

Input (del-sk, spk)

SK[id, kp]← ⊥

Inputs from the adversary

Input (expose, id)

Send SK[id, ∗] to the adversary.

Input (corRand, id, b), b ∈ {good, bad}
RndCor[id]← b

Figure 13: The Key Service functionalities Fks, and their ideal-world counterparts F iw
ks . Code marked by

solid or dashed boxes are executed only by the respective version, whereas code outside those boxes is
shared by both variants. Reproduced from [4].
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Functionality FECGKA and FECGKAPSK : Bookkeeping Helpers

// Creating nodes

helper *create-child(c, id, p⃗,mem, stat,

sender type = ′member′, ExtCommitProps = ⊥)

if sender type = ′new member′ then
req ExtCommitProps ̸= ⊥

c′ = new node with pars← c, orig← id, pro← p⃗,
mem← mem, stat← stat, psk← stat,
epoch← Ptr[id] + 1,
sender type← sender type,
ExtCommitProps← ExtCommitProps, epoch← Node[c].epoch

for eP ∈ ExtProps do
if ExtProps[eP ].epoch = epoch then Prop[eP ].pars +← c

return c

helper *create-root(id,mem, stat, epoch,

sender type = ′member′)

return new node with pars← ⊥, orig← id,
pro← ⊥, mem← mem, stat← stat,
epoch← epoch, mem← mem,
sender type← sender type, psk← stat,

helper *create-prop(c, id, act, stat, cpsk = ⊥)

return new proposal with pars← c, orig← id,
act← act, stat← stat,
psk← stat, cpsk ← cpsk

helper *create-ext-prop(id, act, epoch, stat)

cpar ← {∀c s.t. Node[c].epoch = epoch c}
return new proposal with pars← cpar, orig← id,

act← act, stat← stat, psk← stat,

helper *fill-props(id, p⃗)

for p ∈ p⃗ s.t. Prop[p] = ⊥ do
Send (Proposal, p) to the adversary and receive (orig, act, epoch).

if epoch ̸= ⊥ then

Prop[p]← *create-ext-prop(orig, act, epoch, adv)
else

Prop[p]← *create-prop(Ptr[id], orig, act, adv)

// Does the vector of proposals create an add-only commit?

helper *only-adds-and-psk(p⃗)

return p⃗ ̸= () ∧ ∀p ∈ p⃗ : Prop[p] ̸= ⊥ ∧ Prop[p].act = (add- ∗ ∨psk-∗)

// Does the commit require an update path?

helper *keep-spk(p⃗, force-rekey)

return *only-adds-and-psk(p⃗) ∧ ¬force-rekey∗

// Output of process and join

helper *output-proc(c)

(∗, propSem)← *apply-props(c, Node[c].pro)
return (Node[c].orig, propSem)

helper *output-join(c)

return (Node[c].mem, Node[c].orig)

// Is the (new) spk′ valid for update or commit?

helper *valid-spk(id, spk′)

spk← Node[Ptr[id]].mem[id]
if spk ̸= ⊥ ∧ spk′ = spk then return true

Send (has-ssk, spk′, id) to Fas and receive ack
return ack

// Generating the group key (secure or insecure)

helper *set-key(c)

if ¬safe(c) then
Send (Key, id) to the adversary and receive I.
Node[c].key← I
Node[c].chall← false

else
Node[c].key←$ I
Node[c].chall← true

// Corruptions

helper *update-stat-after-exp(id)

for each p s.t. Prop[p] ̸= ⊥ and
(a) Ptr[id] ∈ Prop[p].pars and
(b) Prop[p].orig = id and
(c) Prop[p].act = up

do Prop[p].stat← bad

for each c s.t. Node[c] ̸= ⊥ and
(a) Node[c].pars = Ptr[id] and
(b) Node[c].orig = id

do Node[c].stat← bad, Node[c].psk← bad

helper *create-ext-commit-props(parent, act, orig)

return new proposal with pars← parent, orig← orig, act← act

helper *fixate-psk-refs(props, ⃗cpsk)

pskProps = [prop ∈ props s.t. prop ̸= ⊥ and prop.act = psk-epoch-∗]
for prop, cpsk ∈ zip(pskProps, ⃗cpsk) do

if prop.cpsk = ⊥ then
req Node[cpsk] ̸= ⊥
req Node[cpsk].epoch = epoch
prop.cpsk = cpsk

return props

Figure 14: Bookkeeping helper functions for FECGKA and FECGKAPSK .
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Functionality FECGKA and FECGKAPSK : Consistency Helpers

helper *consistent-prop(p, id, act)

// Preexisting p valid for id proposing act?
assert Prop[p].orig = id ∧ Prop[p].act = act

∧ Ptr[id] ∈ Prop[p].pars

helper *consistent-ext-prop(p, id, act, epoch)

// Preexisting p valid for id proposing act?
assert Prop[p].orig = id ∧ Prop[p].act = act

∧ ∀c ∈ Prop[p].pars : Node[c].epoch = epoch

helper *valid-successor(c, id, p⃗,mem)

// Preexisting node valid for id processing (c, p⃗)?
assert Node[c] ̸= ⊥ ∧ Node[c].mem = mem
∧ Node[c].pro ∈ {⊥, p⃗} ∧ Node[c].pars ∈ {⊥,Ptr[id]} ∧

Node[c].epoch = Node[Ptr[id]].epoch

helper *consistent-comm(c, id, p⃗,mem)

// Preexisting c valid for id committing p⃗?
assert *valid-successor(c, id, p⃗,mem)
assert RndCor[id] ̸= good ∧ Node[c].orig = id

helper *attach(c, c′, id, p⃗)

// Attach detached root c′ under new name c as successor of id’s node.
assert c′ ̸= root0
Node[c′].pars← Ptr[id]; Node[c′].pro← p⃗; Node[c]← Node[c′]; Node[c′]← ⊥
for vec w : Wel[vec w] = c′ do Wel[vec w]← c
for g : groupInfo[g] = c′ do groupInfo[g]← c

helper *consistent-ext-comm(c, g, id, p⃗,mem, props)

// Preexisting c valid for id committing p⃗?
assert Node[c] ̸= ⊥ ∧ Node[c].mem = mem ∧ Node[c].pro ∈ {⊥, p⃗}
assert Node[c].par ∈ {⊥, groupInfo[g]}
assert RndCor[id] ̸= good ∧ Node[c].orig = id

assert Node[c].ExtCommitProps = props

Functionality FECGKA and FECGKAPSK : Correctness Helpers

helper *req-correctness(′comm′, id, p⃗, spk, force-rekey)

return Node[Ptr[id] ̸= ⊥∧*members(id, [Prop[p] : p ∈ p⃗], spk)newId⊥ // p is valid
∧

(
*valid-spk(id, spk) ∨ (*keep-spk(p⃗, force-rekey) ∧ ¬force-rekey)

)
// spk is usable, unless it’s an add-only commit

helper *req-correctness(′proc′, id, c, p⃗)

return Node[c] ̸= ⊥ ∧ Node[c].pars = Ptr[id]
∧ Node[c].pro = p⃗ ∧ Node[c].stat ̸= adv

∧ ∀p ∈ p⃗ : Prop[p].stat ̸= adv

Node[c].s type = ′member′ ∧ ∀p ∈ p⃗ with Prop[p].act
= psk-∗ : Prop[p].cpsk ̸= ⊥ ∧ id ∈ Node[Prop[p].cpsk].has psk

∨ ∃prem ∈ p⃗ with Prop[prem].act = rem− id

helper *req-correctness(′ext− proc′, id, c, p⃗)

return Node[c] ̸= ⊥ ∧ Node[c].pro = p⃗ ∧ Node[c].stat ̸= adv ∧ Node[c].s type =
′new member′ ∧ Node[c].ExtCommitProps ̸= ⊥

helper *req-correctness(′prop′, id, act)

if act = rem-idt then
return idt ∈ Node[Ptr[id]].mem

else if act = up-spk then
return *valid-spk(id, spk)

else if act = psk-epoch-use then
return use ∈ {′reinit′, ′application′}

else // Adv can always deliver bad key package
return false

helper *req-correctness(′ext− prop′, id, act)

return *valid-spk(id, spk)

helper *req-correctness(′ext− comm′, id, g,

spk, resync)

if resync ∧ (id, ∗) ̸∈ Node[groupInfo[g]].mem then
return false

else if (id, ∗) ∈ Node[groupInfo[g]].mem then
return false

return *valid-spk(id, spk)

Figure 15: Consistency and correctness helper functions for FECGKA and FECGKAPSK .
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Functionality FECGKA and FECGKAPSK : Group State Helpers

helper *members(c, idc, props, spkc)

(G, ∗)← *apply-props(idc, props, spkc)
if (G, ∗) = ⊥ then return ⊥
else return G

helper *apply-props(c, idc, p⃗, spkc)

// Returns group members G and proposal semantics P resulting from
applying p⃗ to state Node[c], or ⊥ if p⃗ is invalid.
req Node[c] ̸= ⊥
req ∀prop ∈ props : prop ̸= ⊥ ∧ c ∈ prop.pars
req p⃗ = p⃗up ++ p⃗rem ++ p⃗add++ ppsk for some p⃗up, p⃗rem, p⃗add,++ ⃗ppsk

∨p⃗ = pexi ++ prem ++ ⃗ppsk for some pexi with len(pexi)=1
and prem with len(prem)=1

with ∀act ∀p ∈ p⃗act : Node[p].act = act-∗
G← Node[c].mem;
if pexi ∈ p ∧ ¬prem ∈ p then

req (idc, ∗) ̸∈ G
else

req (idc, ∗) ∈ G
G -← (idc, ∗);

G +← (idc, spkc)
L← {idc} // set of updated parties
for p ∈ p⃗up do

(ids, up-spk)← (prop.orig, prop.act)
req ids ∈ G \ L
G -← (ids, ∗); G +← (ids, spk)
L +← ids

for p ∈ p⃗rem do
(ids, rem-idt)← (prop.orig, prop.act)
if pexi ̸∈ p then

req ids ∈ G ∧ idt ∈ G \ L
G -← (idt, ∗)

else
req ids = idt = idc ∧ ids ∈ G

for p ∈ p⃗add do
(ids, add-idt-spkt)← (prop.orig, prop.act)
req ids ∈ G ∧ idt /∈ G ∨(ids = idt ∧ idt /∈ G)
G +← (idt, spkt)

for p ∈ p⃗psk do
ids, psk-epoch-use, cpsk ← (prop.orig, prop.act, prop.cpsk)
req (∃Node[c] s.t. Node[c].epoch = epoch) ∧ (id ∈ Node[c].has psk ∨
¬∃(id, ∗) ∈ G)

P ← ((prop.orig, prop.act) : p ∈ p⃗)
return (G,P )

helper *process-ec(c)

Send (Process, id, c) to the adversary and
receive (ack , orig′, spk′, p⃗, ⃗cpsk).

if ¬*req-correctness(′ext− proc′, id, c, p⃗) then
req ack

if Ptr[id] ̸= ⊥ then
if Node[c] = ⊥ then

for p ∈ p⃗ do
Send (Proposal, p) to the adversary and receive (act).
ExtCommitProps[p]← *create-ext-commit-props(Ptr[id],
act, orig′)
req act ∈ {add-∗, rem-∗, psk-∗}
if act ∈ {add-idtorrem-idt} then

req idt = orig′

try ExtCommitProps = *fixate-psk-refs(ExtCommitProps, ⃗cpsk)
for prop ∈ ExtCommitProps s.t. prop.act = psk-∗ do

req id ∈ Node[prop.cpsk].has psk

mem← *members(Ptr[id], orig′, ExtCommitProps, spk′)
assert mem ̸= ⊥
Node[c]← *create-child(Ptr[id], orig′, p⃗,mem, adv,
′new member′, ExtCommitProps)

else
idc ← Node[c].orig
spkc ← Node[c].mem[idc]
ExtCommitProps← Node[c].ExtCommitProps
for prop ∈ ExtCommitProps s.t. prop.act = psk-∗ do

req id ∈ Node[prop.cpsk].has psk

mem← *members(Ptr[id], idc, ExtCommitProps, spkc)
assert mem ̸= ⊥
*valid-successor(c, id, ExtCommitProps,mem)

else
req Node[c] ̸= ⊥
req Node[c].stat ̸= adv ∧ Node[c].orig = id

assert id ∈ Node[c].mem
Ptr[id]← c
HasKey[id]← true

Node[c].has psk +← id

assert cons-invariant ∧ auth-invariant
return *output-proc(c)

Figure 16: Group state helper functions for FECGKA and FECGKAPSK .
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D Details on ETK and ETKPSK Protocols

In the following sections, we provide a detailed description of our ETK and ETKPSK protocols, highlighting
modifications for adapting to external commits, external self-add proposals, and PSK proposals. These
changes are color-coded as indicated in Table 2. In this section, we outline the necessary modifications to
transition from Draft 12 (partially analyzed in [4]) to the final RFC draft. Additionally, we describe the
simplifications and operations that were excluded from ETK and ETKPSK.

We provide the notation for the public ratchet tree and the protocol state in Tables 3 to 7. We depict
the ETK protocol in Figures 17 and 18. We define helper functions in Figures 19 to 24. Changes and
additions from the model of [4] are color-coded as indicated in Table 2.

τ.root Returns the root.
τ.nodes Returns the set of all nodes in the tree.
v.isroot Returns true iff v = τ.root.
v.isleaf Returns true iff v has no children.
v.par Returns the parent node of v (or ⊥ if v.isroot).
v.lchild Returns the left child of v (or ⊥ if v.isleaf).
v.rchild Returns the right child of v (or ⊥ if v.isleaf).
v.sibling Returns the unique node u ̸= v s.t. of u.par = v.par.
v.nodeIdx Returns the node index of v.

Table 3: Notation for the public ratchet tree. This object-oriented notation is adapted from [4].

v.pk The public key of a public-key encryption scheme.
v.sk The corresponding secret key.

v.parentHash A hash value binding the node to all of its ancestors.
v.unmergedLvs The set of leaf indices rooted below v, for which the corresponding party does not

know v.sk.
v.id If v.isleaf: the identity associated with that leaf.

v.leafIdx If v.isleaf: a unique identifier of the leaf, counted from the leftmost to the rightmost
leaf.

v.spk If v.isleaf: an associated verification key of a signature scheme.
v.sig If v.isleaf: A signature of the leaf’s labels under the signing key corresponding to

v.spk.

Table 4: The node labels of the ratchet tree.
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Protocol ETK and ETKPSK - Part 1

Input (Create, spk)

req γ = ⊥ ∧ id = idcreator
γ.groupId, γ.initSecret←$ {0, 1}κ
γ.epoch← 0; γ.interimTransHash← ϵ
γ.certSpks[∗], γ.pendUp[∗], γ.pendCom[∗]← ⊥
γ.psk store← ()
γ.τ ← new LBBT1

try γ.ssk← *fetch-ssk-if-nec(γ, spk)
(ln, sk)←$ gen-leaf-node(id, spk, ssk, ϵ, ′commit′,

(γ.groupId, γ.τ.leafIdx))
γ.τ.leaves[0].leafIdx← 0
γ.τ.leaves[0].assignKp(ln)
γ.τ.leaves[0].sk← sk

Input (Propose, up-spk)

req γ ̸= ⊥
try ssk← *fetch-ssk-if-nec(γ, spk)
(ln, sk)←$ gen-leaf-node(id, spk, ssk, ϵ, ′update′,

(γ.groupId, γ.τ.leafIdx))
P ← (′upd′, ln); p← *frameProp(γ, P )
γ.pendUp[p]← (ssk, sk)
return p

Input (Propose, add-idt)

req γ ̸= ⊥ ∧ idt /∈ γ.τ.roster()
kpt ← query (get-kp, idt) to FKS
try γ ← *validate-kp(γ, kpt, idt,

′key package′, ϵ)
P ← (′add′, kpt); p← *frameProp(γ, P )
return p

Input (Commit, p⃗, spk, force-rekey, wel type)

req γ ̸= ⊥
γ′ ← *init-epoch(γ)
try (γ′, upd, rem, add, psk)← *apply-props(γ, γ′, p⃗)
req (∗, ′rem′-id) /∈ rem ∧ (id, ∗) /∈ upd
if force-rekey ∨ p⃗ = () ∨ upd ̸= () ∨ rem ̸= () then

try (γ′, commitSec, updatePath, pathSecs)
← *rekey-path(γ′, id, spk)

else
commitSec← 0; updatePath← ϵ
pathSecs[∗]← ϵ

propIDs← ()
for p ∈ p⃗ do

propIDs ++← Hash(p)
C ← (propIDs, updatePath)
sig← *signCommit(γ,C)
γ′ ← *set-conf-trans-hash(γ, γ′, γ.leafIdx(), C, sig)
pskIds = *get-pskIds(p⃗)
try psk secret← *derive-psk-secret(pskIds)
(γ′, confKey, joinerSec)

← *derive-keys(γ, γ′, commitSec, psk-secret)
confTag← *conf-tag(γ′, confKey)
if rem ̸= () then

membTag← MAC.tag(γ.membKey, C)
else membTag← ⊥
c← *frameCommit(γ,C, confTag, sig, membTag)
if add ̸= () then

(γ′, vec w)← *welcome-msg(γ′, add, joinerSec,
pathSecs, confTag, pskIds)

else vec w← ⊥
g ← *external-GroupInfo(γ′, confTag)
γ′ ← *set-interim-trans-hash(γ′, confTag)
γ.pendCom[c]← (γ′, p⃗, upd, rem, add, psk)
return (c, vec w, g)

Input (Propose, rem-idt)

req γ ̸= ⊥ ∧ idt ∈ γ.τ.roster()
leafIdxt ← γ.τ.leafof(itt)
P ← (′rem′, leafIdxt); p← *frameProp(γ, P )
return p

Input (Propose, extAdd-id-spk, epoch)

req γ = ⊥
try ssk← query (get-ssk, spk) to FAS
(kp, sk, isk)←$ gen-kp(id, spk, ssk)
P ← (′add′, kp)
p← *frameExtProp(groupId, epoch, ssk, P )
γ.pendAdd[epoch]← (kp, sk, isk)
return p

Input (Propose, psk-epoch-use)

req γ ̸= ⊥
preSharedKeyId← *gen-pskId(epoch, use)
P ← (′psk′, preSharedKeyId)
p← *frameProp(γ, P )
return p

Input (Process, c, p⃗)

req γ ̸= ⊥
if p⃗ = ⊥ then

(idc, (exi, rem))← *process-ec(c, p)
ordered proposals = exi ++ rem
return (idc, ordered proposals)

(senderIdx, C, confTag, sig, membTag)
← *unframeCommit(γ, c, sig)

idc ← γ.τ.leaves[senderIdx].ID
if senderIdx = γ.leafIdx() then

parse (γ′, p⃗′, upd, rem, add, psk)← γ.pendCom[c]
req p⃗ = p⃗′

γ = γ′

return (idc, upd ++ rem ++ add ++ psk)
parse (propIDs, updatePath)← C
req ∀i ∈ [

∣∣p⃗∣∣] : Hash(p⃗[i]) = propIDs[i]
γ′ ← *init-epoch(γ)
try (γ′, upd, rem, add, psk)← *apply-props(γ, γ′, p⃗)
req (∗, idc) /∈ rem ∧ (idc, ∗) /∈ upd
if (∗, ′rem′-id) ∈ rem then

req MAC.vrf(γ.membKey, c)
γ ← ⊥

else
if updatePath ̸= ϵ then

(γ′, commitSec)
← *apply-rekey(γ′, senderIdx, updatePath)

else
req p⃗ ̸= () ∧ upd = () ∧ rem = ()
commitSec← 0

γ′ ← *set-conf-trans-hash(γ, γ′, senderIdx, C, sig)
pskIds = *get-pskIds(p⃗)
req psk-secret← *derive-psk-secret(pskIds)
(γ′, ∗)← *derive-keys(γ, γ′,

commitSec, psk-secret)
req *vrf-conf-tag(γ′, confKey, confTag)
γ ← *set-interim-trans-hash(γ′, confTag)

return (idc, upd ++ rem ++ add ++ psk)

Figure 17: The UC model ETK and ETKPSK as run by party id. The group creator’s identity idcreator is
encoded a part of the instance’s session identifier. As elsewhere we use the color coding from Table 2.
Note that code highlighted in orange ( ) is only included in ETKPSK, and not in ETK.
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Protocol ETK and ETKPSK - Part 2

Input (Join, vec w)

req γ = ⊥∨γ.pendAdd[epoch] ̸= ⊥
parse (encGroupSecs, encGroupInfo, wel type)← vec w

γ.certSpks[∗], γ.pendUp[∗], γ.pendCom[∗]← ⊥
kbs← query get-sks to Fks

kbs ++ γ.pendAdd
joinerSec, pathSec← ⊥
for e ∈ encGroupSecs do

parse (hash, cipher)← e
for (kp, sk, isk) ∈ kbs do

if hash = Hash(kp) then
v.sk← sk
req v.kp() = kp
parse (joinerSec, pathSec, pskIds)← PKE.Dec(isk, cipher)

req joinerSec ̸= ⊥
try psk-secret← *derive-psk-secret(pskIds)
s← HKDF.Extract(joinerSec, psk-secret)
welcome secret = HKDF.Expand(s, ′welcome′)
welcome nonce = HKDF.Expand(welcome secret, ′nonce′)
welcome key = HKDF.Expand(welcome secret, ′key′)
groupInfo← PKE.Dec(welcome key, welcome nonce,

encGroupInfo)
parse (groupInfoTBS, sig)← groupInfo

parse (groupCtxt, γ.τ, confTag, senderIdx)← groupInfoTBS

parse (γ.groupId, γ.epoch, γ.treeHash, γ.confTransHash,
γ.interimTransHash)← groupCtxt

req Sig.Vrf(γ.τ.leaves[senderIdx].spk, sig, groupInfoTBS)
if ∃epoch s.t. v.kp() = γ.pendAdd[epoch] then

req γ.epoch = epoch
γ.pendAdd[epoch]epoch⊥

try γ ← *vrf-tree-state(γ)
v ← γ.τ.leaves[γ.leafIdx()]
try γ.ssk← *fetch-ssk-if-nec(γ, v.spk)
kbs← query get-sks to Fks

if pathSec ̸= ϵ then
v ← γ.τ.lca(γ.leafIdx(), senderIdx)
while v ̸= ⊥ do

nodeSec← HKDF.Expand(pathSec, ′node′)
(sk, v.sk)← PKE.Kg(nodeSec)
req v.sk = sk
pathSec← HKDF.Expand(pathSec, ′path′)
v ← v.par

try psk-secret← *derive-psk-secret(pskIds)
joiner psk← HKDF.Extract(joinerSec, psk-secret)
(γ, confKey)← *derive-epoch-keys(γ, joinerSec,

psk-secret)
req *vrf-conf-tag(γ, confKey, confTag)
return (γ.τ.roster(), γ.τ.leaves[senderIdx].id)

Input Key

req γ ̸= ⊥
(k, γ.appSecret)← (γ.appSecret,⊥)
return k

Input (ExtCommit, g, spk, ⃗epsk, resync)

if resync then
req γ ̸= ⊥

else
req γ = ⊥
γ.certSpks[∗], γ.pendUp[∗], γ.pendCom[∗]← ⊥

parse (extGroupInfoTBS, sig)← g
parse (γ.groupId, γ.epoch, γ.treeHash, γ.confTransHash,

γ.interimTransHash, γ.τ, γ.τ.confTag, senderIdx,
external-pub)← extGroupInfoTBS

req Sig.Vrf(y.τ.leaves[senderIdx].spk, sig,
extGroupInfoTBS)

try γ ← *vrf-tree-state(γ)
(kem output, context)← setupBaseS(external-pub, ””)
γ.initSecret =context.export(”MLS 1.0 external

init secret”, KDF.Nh)
γ′ ← *init-epoch(γ)
p⃗ = ()
p⃗ ++← (′extInit′, kem output)
if resync then

req id ∈ γ.τ.roster()
p⃗ ++← (′rem′, γ.leafInd)

for epoch ∈ epsk do
preSharedKeyId← *gen-pskId(epoch, ′application′)
p⃗ ++← (′psk′, preSharedKeyId)

try (γ′, exi, rem, psk)← *apply-ec-props(γ, γ′, p⃗, id)
try (γ′, commitSec, updatePath, pathSecs)←
*rekey-path-upon-join(γ′, id, spk)
C ← (propIDs, updatePath)
sig← *signExtCommit(γ,C, ssk)
γ′ ← *set-conf-trans-hash(γ, γ′, γ.leafIdx(), C, sig)
pskIds = *get-pskIds(p⃗)
try psk-secret← *derive-psk-secret(pskIds)
(γ′, confKey, joinerSec)

← *derive-keys(γ, γ′, commitSec, psk-secret,
kem output)

confTag← *conf-tag(γ′, confKey)
ec← *frameExtCommit(γ,C, γ′.ssk, sig, confTag)
g ← *external-GroupInfo(γ′, confTag)
γ′ ← *set-interim-trans-hash(γ′, confTag)
γ.pendCom[ec]← (γ′, p⃗, upd, rem, add, psk)
return (ec, g)

Figure 18: The UC model ETK and ETKPSK as run by party id. The group creator’s identity idcreator is
encoded as part of the instance’s session identifier.

Protocol ETK and ETKPSK : Setup Algorithms

Algorithm gen-sk

(spk, ssk)← Sig.Kg()
return(spk, ssk)

Algorithm gen-kp(id, spk, ssk, parentHash = ϵ, source = ϵ; r)

(leafNode, sk)← gen-leaf-node(id, spk, ssk, parentHash,
′key package′, source; r)

(init-key, isk)← PKE.Kg()
kpTBS← (leafNode, initKey)
sig← Sig.Sign(ssk, kpTBS)
kp← (kpTBS, sig)
return (kp, sk, isk)

Algorithm gen-leaf-node(id, spk, ssk,
parentHash = ϵ, ln source, source = ϵ; r)

(pk, sk)← PKE.Kg(r)
req ln sourcein{′key package′, ′update′, ′commit′}
if ln source ̸= ′key package′ then req source ̸= ϵ
leafNodeTBS← (id, pk, spk, parentHash, ln source, source)
sig← Sig.Sign(ssk, leafNodeTBS)
leafNode← (id, pk, spk, parentHash, ln source, sig)
return (leafNode, sk)

Figure 19: The algorithms gen-sk and gen-kp, used by Fas and Fks, respectively.
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τ.clone() Returns and (independent) copy of τ .
τ.public() Returns a copy of τ for which all private labels (v.sk) are set to ⊥.
τ.roster() Returns the identities of all parties in the tree.

τ.leaves[leafIdx] Returns the leaf with identifier leafIdx.
τ.leafof(id) Returns the leaf identifier of the v for which v.id = id.
τ.allotLeaf() Finds the leaf v with the lowest nodeIdx for which ¬v.inuse(), or adds a new

leaf v using addLeaf. Returns leafIdx.
τ.directPath(leafIdx) Returns the direct path, excluding the leaf, as an ordered list from the leaf to

root.
τ.coPath(leafIdx) Returns the co-path to τ.directPath(leafIdx) as an ordered list.

τ.lca(leafIdx1, leafIdx2) Returns the least common ancestor of the two leafs.
τ.blankPath(leafIdx) Calls v.blank() on all v ∈ τ.directPath(leafIdx).

τ.mergeLeaves(leafIdx) Sets v.unmergedLvs← ∅ for all v ∈ τ.directPath(leafIdx)
τ.unmergeLeaf(leafIdx) Sets v.unmergedLvs +← leafIdx for all v returned by τ.directPath(leafIdx)

v.kp() Returns (v.id, v.pk, v.spk, v.parentHash, v.sig) (undefined if ¬v.isleaf).
v.assignKp(kp) Sets (v.id, v.pk, v.spk, v.parentHash, v.sig) from kp (only allowed if v.isleaf).

v.inuse() Returns false iff all labels except parentHash are ⊥.
v.blank() Sets all labels except parentHash to ⊥.

v.resolution() Return


(v) ++ v.unmergedLvs if v.inuse()

v.lchild.resolution()

++ v.lchild.resolution()
else if ¬v.isleaf

() else.

v.resolvent(u) For a descendant u of v, returns the (unique) node in v.resolution() which is
an ancestor of u.

Table 5: Helper methods defined on the ratchet tree.

γ.groupId An identifier of the group.
γ.epoch The current epoch number.
γ.τ The labeled left-balanced binary tree.

γ.treeHash A hash of (the public part) of τ .
γ.confTransHash The confirmed transcript hash.

γ.interimTransHash The interim transcript hash for the next epoch.
γ.ssk The current signing key.

γ.certSpks[∗] A mapping associating the set of validated signature verification keys to each
party id′.

γ.pendUp[∗] A mapping associating the secret keys for each pending update proposal issued
by id.

γ.pendCom[∗] A mapping associating the new group state for each pending commit issued by
id.

γ.appSecret The current epoch’s ECGKA key.
γ.membKey The key used to MAC packages.
γ.initSecret The next epoch’s init secret.

Table 6: The protocol state.

γ.leafIdx() Returns γ.τ.leafof(id).leafIdx.
γ.groupCtxt() Returns (γ.groupId, γ.epoch, γ.treeHash, γ.confTransHash).

Table 7: Helper methods on the protocol state.
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Protocol ETK and ETKPSK : Commit. Process, and Join Helpers - Part 1

helper *init-epoch(γ)

γ′ ← γ.clone()
γ′.epoch← γ′.epoch+ 1
γ′.pendUp[∗], γ′.pendCom[∗]← ⊥
return γ′

helper *rekey-path(γ′, id, spk)

leafIdx = γ′.leafIdx()
(updatePathNodes, pathSecs, commitSec,

leafNodeSec)← *derive-rekey-values(γ′, id, spk, leafIdx)
try ssk← *fetch-ssk-if-nec(γ′, spk)
v ← γ′.τ.leaves[γ′.leafIdx()]
r ← leafNodeSec

(ln, sk)← gen-leaf-node(id, spk, ssk, v.parentHash,
(′commit′, γ′.groupId, γ′.τ.leafIdx()); r)

v.assignKp(ln)
v.sk← sk
γ′ ← *set-tree-hash(γ′)
updatePath← (ln, updatePathNodes)
return (γ′, commitSec, updatePath, pathSecs)

helper *derive-rekey-values(γ′, id, spk, leafIdx)

directPath← γ′.τ.directPath(γ′.leafIdx())
coPath← γ′.τ.coPath(γ′.leafIdx())
updatePathNodes← ()
pathSecs[∗]← ⊥
leafSec←$ {0, 1}κ
leafNodeSec← HKDF.Expand(leafSec, ′node′)
pathSec← HKDF.Expand(leafSec, ′path′)
for (v, c) ∈ zip(directPath, coPath) do

pathSecs[v]← pathSec

nodeSec← HKDF.Expand(pathSec, ′node′)
(v.pk, v.sk)← PKE.Kg(nodeSec)
encPathSecs← ()
for t← c.resolution() do

encPathSecs ++← PKE.Enc(t.pk, pathSec)
updatePathNodes ++← (v.pk, encPathSecs)
pathSec← HKDF.Expand(pathSec, ′path′)

commitSec← pathSec

γ′.τ.mergeLeaves(γ′.leafIdx())
γ′ ← *set-parent-hash(γ′, γ′.leafIdx())
return (updatePathNodes, pathSecs, commitSec,

leafNodeSec)

helper *rekey-path-upon-join(γ′, id, spk)

try ssk← *fetch-ssk-if-nec(γ′, spk)
v ← γ′.τ.leaves[γ′.leafIdx()]
r ← leafNodeSec

(ln, sk)← gen-kp(id, spk, ssk, ϵ, ′commit′, (γ′.groupId,
γ′.τ.leafIdx()); r)

γ′.τ.leaves[γ′.leafIdx()].assignKp(ln)
γ′.τ.leaves[γ′.leafIdx()].sk← sk
(updatePathNodes, pathSecs, commitSec, leafNodeSec)←

*derive-rekey-values(γ′, id, spk, leafIdx)
γ′ ← *set-tree-hash(γ′)
updatePath← (ln, updatePathNodes)
return (γ′, commitSec, updatePath, pathSecs)

helper *apply-rekey(γ′, senderIdx, updatePath)

parse (ln, updatePathNodes)← updatePath

(γ′, commitSec)← *derive-apply-rekey-values(γ′,
updatePathNodes, senderIdx)

commitSec← pathSec

v ← γ′.τ.leaves[senderIdx]
try γ′ ← *validate-ln(γ′, ln, v.id, ′commit′, v.parentHash)
v.assignKp(kp)
γ′ ← *set-tree-hash(γ′)
return (γ′, commitSec)

helper *derive-apply-rekey-values(γ′, updatePathNodes,
senderIdx)

directPath← γ′.τ.directPath(senderIdx)
coPath← γ′.τ.coPath(senderIdx)
lca← γ′.τ.lca(γ′.leafIdx(), senderIdx)
for (v, c, updatePathNode) ∈ zip(directPath,

coPath, updatePathNodes) do
parse (v.pk, encPathSecs)← updatePathNode

if v = lca then
r ← c.resolvent(γ′.τ.leaves[γ′.leafIdx()])
i← c.resolution().indexofr
pathSec← PKE.Dec(r.sk, encPathSecs[i])

if pathSec ̸= ⊥ then
nodeSec← HKDF.Expand(pathSec, ′node′)
(pk, v.sk)← PKE.Kg(nodeSec)
req v.pk = pk
pathSec← HKDF.Expand(pathSec, )

commitSec← pathSec

γ′.τ.mergeLeaves(senderIdx)
γ′ ← *set-parent-hash(γ′, senderIdx)
return (γ′, commitSec)

helper *apply-ec-rekey(γ′, idc, updatePath)

parse (ln, updatePathNodes)← updatePath

try leafIdx← γ.τ.allotLeaf()
try γ′ ← *validate-ln(γ′, ln, idc,

′commit′, ϵ)
γ′.τ.leaves[senderIdx].assignKp(ln)
(γ′, commitSec)← *derive-apply-rekey-values(γ′,

updatePathNodes, senderIdx)
γ′ ← *set-tree-hash(γ′)
return (γ′, commitSec)

helper *external-GroupInfo(γ′, confTag)

externalGroupInfoTBS← (γ′.groupId, γ′.epoch, γ′.treeHash,
γ′.confTransHash, γ′.interimTransHash, γ′.τ.public(),
confTag, γ′.leafIdx(), γ′.external pub)

sig← Sig.Sign(γ′.ssk, externalGroupInfoTBS)
g ← (externalGroupInfoTBS, sig)
return (γ′, g)

Figure 20: Helper methods related to the commit and welcome messages.
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Protocol ETK and ETKPSK : Commit. Process, and Join Helpers - Part 2

helper *truncate-tree(γ′)

v ← γ′.τ.leaves[
∣∣γ′.τ.leaves

∣∣− 1]
if ¬v.inuse()

∧ (¬v.par.inuse() ∨ v.par = γ′.τ.root) then
γ′.τ ← τ.pruneRightmost()
γ′ ← *truncate-tree(γ′)

return γ′

helper *apply-ec-props(γ, γ′, p⃗, ids)

exi, rem, psk ← ()
pskIds← ∅
for (type, val) ∈ p⃗ do

if type = ′rem′ then
idt ← γ.τ.leaves[val].id
req γ′.τ.leaves[val] ̸= ⊥
req γ′.τ.leaves[val].inuse() ∧ ids = idt
γ′.τ.leaves[val].blank()
γ′.τ.leaves[val].blankPath(val)
γ′ ← *truncate-tree(γ′)
rem ++← (ids,

′rem′-idt)
else if type = ′psk′ then

parse (∗, psk data, ∗)← val
req γ.psk store.last((psk data.groupId,

psk data.epoch)) ̸= ⊥
usage = psk data.usage
req usage = ′application′

psk ++← (ids,
′psk′-epoch-usage)

else if type = ′exi′ then
exi ++← (ids, val)

else return ⊥
return (γ′, exi, rem, psk)

helper *gen-pskId(epoch, usage)

psk data← (usage, γ.groupId, epoch)
nonce←$ {0, 1}κ
return (′resumption′, psk data, nonce)

helper *get-pskIds(p⃗)

pskIds← ()
for p ∈ p⃗ do

(sender, P )← *unframeProp(γ, p)
parse (∗, id)← P
pskIds← id

return pskIds

helper *derive-psk-secret(pskIds)

pskSec[0] = 0
for (i, pskId) ∈ pskIds do

(∗, pskData, ∗)← pskId
psk [i] = γ.psk store.last((pskData.groupId,

pskData.epoch))
req psk [i] ̸= ⊥
psk extracted[i] = HKDF.Extract(0, psk [i])
PSKLabel = (pskId, i, len(pskIds))
psk input[i] = HKDF.Expand(psk extracted[i], ′derivedpsk′)
pskSec[i+ 1] = HKDF.Extract(psk input[i], pskSec[i])

return pskSec[−1]

helper *apply-props(γ, γ′, p⃗)

upd, rem, add, psk ← ()
pskIds← ∅
for p ∈ p⃗ do

if p.sender = ′member′ then
try (senderIdx, P )← *unframeProp(γ, p)
ids ← γ.τ.leaves[senderIdx].id

else if p.sender = ′new member proposal′ then
try (ids, P )← *unframeExtProp(γ, p)

parse (type, val)← P
if type = ′upd′ then

req (ids, ∗) /∈ upd ∧ rem = () ∧ add = ()
try γ′ ← *validate-ln(γ′, val, ids, ϵ)
γ′.τ.leaves[senderIdx].assignKp(val)
γ′.τ.blankPath(senderIdx)
if senderIdx = γ.leafIdx() then

parse (ssk, sk)← γ.pendUp[p]
γ′.τ.leaves[senderIdx].sk← sk
γ′.ssk← ssk

spk← γ′.τ.leaves[senderIdx].spk
upd ++← (ids,

′upd′-spk)
else if type = ′rem′ then

idt ← γ.τ.leaves[val].id
req γ′.τ.leaves[val] ̸= ⊥
req γ′.τ.leaves[val].inuse() ∧ (idt, ∗) /∈ upd ∧ add = ()
γ′.τ.leaves[val].blank()
γ′.τ.leaves[val].blankPath(val)
γ′ ← *truncate-tree(γ′)
rem ++← (ids,

′rem′-idt)
else if type = ′add′ then

parse (idt, ∗, spk, ∗, ∗)← val
req idt /∈ γ′.τ.roster()
try γ′ ← *validate-kp(γ′, val, idt,

′key package′ϵ)
try γ′.τ.allotLeaf()
γ′.τ.leaves[leafIdx()].assignKp(val)
γ′.τ.unmergeLeaf(leafIdx())
add ++← (ids,

′add′-idt-spk)
else if type = ′psk′ then

req val /∈ PSKIds
parse(∗, psk data, ∗)← val
req γ.psk store.last((psk data.groupID,

psk data.epoch)) ̸= ⊥
usage = psk data.usage
psk ++← (ids,

′psk′-epoch-usage)
PSKIds ++= val

else return ⊥
return (γ′, upd, rem, add, psk)

Figure 21: The helper methods related to creating and processing the commit and welcome messages.
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Protocol ETK and ETKPSK : Commit. Process, and Join Helpers - Part 3

helper *welcome-msg(γ, γ′, add, joinerSec,
pathSecs, confTag, pskIds, wel type)

groupCtxt← (γ′.groupId, γ′.epoch, γ′.treeHash,
γ′.confTransHash)

groupInfoTBS← (groupCtxt, γ′.τ.public(), confTag, γ′.leafIdx())
sig← Sig.Sign(γ′.ssk, groupInfoTBS)
groupInfo← (groupInfoTBS, sig)
try psk-secret← *derive-psk-secret(pskIds)
s← HKDF.Extract(joinerSec, psk-secret)
welcome secret = HKDF.Expand(s, ′welcome′)
welcome nonce = HKDF.Expand(welcome secret, ′nonce′)
welcome key = HKDF.Expand(welcome secret, ′key′)
encGroupInfo← PKE.Enc(welcome key, welcome nonce,
groupInfo)
encGroupSecs← ()
for (∗, ′add′-idt-spkt, ipk-idt) ∈ add do

leafIdxt ← γ′.τ.leafof(idt)
vt ← γ′.τ.leaves[leafIdxt]
lca← γ′.τ.lca(γ′.leafIdx(), leafIdxt)
encGroupSec← PKE.Enc(ipk-idt, (joinerSec,
pathSecs[lca], pskIds))
encGroupSecs ++← (Hash(vt.kp), encGroupSec)

vec w← *parse-wel(encGroupSecs, encGroupInfo, wel type)
return (γ′, vec w)

helper *vrf-tree-state(γ′)

req γ′.treeHash = *tree-hash(γ′.τ.root)
for v ∈ γ′.τ.nodes : v.inuse() ∧ ¬v.isleaf do

lchild← v.lchild
rchild← *origRChild(v.rchild)
phr← *parent-hash-cochild(v, v.rchild)
phl← *parent-hash-cochild(v, v.lchild)
req (lchild.inuse ∧ lchild.parentHash = phr)

∨ (rchild.inuse ∧ rchild.parentHash = phl)
mem← ∅
for v ∈ γ′.τ.nodes : v.inuse() ∧ v.isleaf do

req v.id /∈ mem
mem +← v.id
try γ′ ← *validate-kp(γ′, v.kp(), v.id, v.parentHash)

return γ′

helper *origRChild(v)

if v.inuse ∨ v.isleaf then return v
else return *origRChild(v.lchild)

helper *parse-wel(encGroupSecs, encGroupInfo, wel type)

if wel type = all then
vec w +← (encGroupSecs, encGroupInfo)

else if wel type = one then
for all encGroupSec ∈ encGroupSecs do

vec w +← (encGroupSec, encGroupInfo)
else if wel type = batch then

for all encGroupSec stated as batched encGroupSecs do
vec w +← (encGroupSec, encGroupInfo)

return vec w

helper *process-ec(p⃗)

(idc, C, confTag, sig, membTag)←
*unframeExtCommit(γ, ec, sig)

(p⃗, updatePath)← C
if idc = id then

parse (γ′, p⃗, ext− init, rem, psk)← γ.pendCom[c]
req p⃗ = p⃗
return(idc, ext− init ++ rem ++ psk)

γ′ ← *init-epoch(γ)
try (γ′, ext− init, rem)← *apply-ec-props(γ, γ′, p⃗)
req len(rem) = 1 ∧ len(ext− init) = 1
(∗, kem output)← parse ext− init
context = SetupBaseR(kem output, γ.external priv, ””)
initSecret = context.export(”MLS 1.0 external init secret”, KDF.Nh)
req updatePath ̸= ⊥
(γ′, senderIdx, commitSec)← *apply-ec-rekey(γ′, idc, updatePath)
γ′ ← *set-conf-trans-hash(γ, γ′, senderIdx, C, sig)
pskIds = *get-pskIds(p⃗)
req psk-secret← *derive-psk-secret(pskIds)
(γ′, ∗)← *derive-keys(γ, confKey, γ′, commitSec,

psk-secret)
req *vrf-conf-tag(γ′, confKey, confTag)
γ ← *set-interim-trans-hash(γ′, confTag)
return (idc, upd ++ rem ++ add ++ psk)

Figure 22: Helper methods related to commit and welcome messages.

41



Protocol ETK and ETKPSK : Confirmation-Tag

helper *conf-tag(γ′, confKey)

return MAC.tag(confKey, γ′.confTransHash)

helper *vrf-conf-tag(γ′, confKey, confTag)

return MAC.vrf(confKey, confTag, γ′.confTransHash)

Protocol ETK and ETKPSK : Tree-Hash

helper *set-parent-hash(γ′, leafIdx)

path← γ′.τ.directPath(leafIdx)
path← path.reverse()
path ++← γ′.τ.leaves[leafIdx]
for v ∈ path do

if v.isroot then
v.parentHash← ϵ

else
v.parentHash← *parent-hash-cochild(v.par, v.sibling)

return γ′

helper *parent-hash-cochild(v, u)

origChildResolution← u.resolution() \ u.par.unmergedLvs
return Hash(v.pk, v.parentHash, origChildResolution)

helper *set-tree-hash(γ′)

γ′.treeHash← *tree-hash(γ′.τ.root)
return γ′

helper *tree-hash(v)

if v.isleaf then
return Hash(v.nodeIdx, v.kp())

else
leftHash← *tree-hash(v.lchild)
rightHash← *tree-hash(v.rchild)
return Hash(v.nodeIdx, v.pk, v.unmergedLvs,

v.parentHash, leftHash, rightHash)

Protocol ETK and ETKPSK : Key-Schedule

helper *derive-keys(γ, γ′, commitSec, psk-secret,
kem output)

if kem output ̸= ⊥ then
context = SetupBaseR(kem output,

γ.external priv, ””)
initSecret = context.export(”MLS

1.0externalinitsecret”,KDF.Nh)
else

initSecret = γ.initSecret
s← HKDF.Extract(γ.initSecret, commitSec)
joinerSec← HKDF.Expand(s, γ′.groupCtxt())
joiner psk← HKDF.Extract(joinerSec, psk-secret)
(γ′, confKey)← *derive-epoch-keys(γ′, joiner psk)
return (γ′, confKey, joinerSec)

helper *derive-epoch-keys(γ′, joinerSec)

s← HKDF.Expand(γ.joinerSec, ′member′)
memberSec← HKDF.Extract(s, 0)
e← HKDF.Expand(memberSec, ′epoch′)
epochSec← HKDF.Extract(e, γ′.groupCtxt())
confKey← HKDF.Expand(epochSec, ′confirm′)
γ′.appSecret← HKDF.Expand(epochSec, ′app′)
γ′.membKey← HKDF.Expand(epochSec, ′membership′)
γ′.initSecret← HKDF.Expand(epochSec, ′init′)
extSecret← HKDF.Expand(epochSec, ′external′)
γ′.external priv, γ′.external pub← PKE.Kg(extSecret)
resumptionPsk←

HKDF.Expand(epochSec, ′resumption′)
γ′.resumptionPsk← resumptionPsk
γ′.psk store((γ′.groupId, γ′.epoch)) ++ resumptionPsk
return (γ′, confKey)

Protocol ETK and ETKPSK : Setup Interac-
tion

helper *fetch-ssk-if-nec(γ, spk)

if γ.τ.leaves[γ.leafIdx()].spk ̸= spk then
ssk← query (get-ssk, spk) to Fas

else
ssk← γ.ssk

return ssk

helper *validate-kp(γ, kp, id, kp source, parentHash)

parse (sig, ln, init-key)← kp
req Sig.Vrf(spk, sig, (ln, init-key))
γ ← *validate-ln(γ, ln, id, kp source, parentHash)
return γ

helper *validate-ln(γ, ln, id, ln source, parentHash)

parse (id, pk, spk, parentHash′, ln source′, source,
sig)← ln

req ln source = ln source′

if spk /∈ γ.certSpks[id] then
succ← query (verify-cert, id′, spk) to Fas

req succ
γ.certSpks[id] +← spk

req Sig.Vrf(spk, sig, (id, pk, spk, parentHash))
return γ

Figure 23: Various helper methods for the protocol ETK and ETKPSK.
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Protocol ETK and ETKPSK : Message-Framing

helper *signCommit(γ,C)

tbs← (γ.groupCtxt(), γ.groupId, γ.epoch, γ.leafIdx(),
′commit′, C)

sig← Sig.Sign(γ.ssk, tbs)
return sig

helper *frameCommit(γ,C, confTag, sig, membTag)

return (γ.groupId, γ.epoch, γ.leafIdx(), ′commit′,
C, confTag, sig, membTag)

helper *unframeCommit(γ, c)

parse (groupId, epoch, senderIdx, contentType,
C, confTag, sig, membTag)← c

req contentType = ′commit′ ∧ groupId = γ.groupId
reqepoch = γ.epoch
tbs← (γ.groupCtxt(), groupId, epoch, senderIdx,

′commit′, C)
req γ.τ.leaves[senderIdx] ̸= ⊥

∧ γ.τ.leaves[senderIdx].inuse()
∧ Sig.Vrf(γ.τ.leaves[senderIdx].spk, sig, tbs)

return (senderIdx, C, confTag, sig, membTag)

helper *signExtCommit(γ,C, ssk)

framedContent← (γ.groupId, γ.epoch,
′new member commit′, ′commit′, C)

sig← Sig.Sign(γ.ssk, framedContent, γ.groupCtxt())
return sig

helper *frameExtCommit(γ,C, confTag, sig, ssk)

framedContent← (γ.groupId, γ.epoch,
′new member commit′, ′commit′, C)

framedContentAuth← (sig, confTag)
return (framedContent, framedContentAuth)

helper *unframeExtCommit(γ, ec, sig)

parse(framedContent, framedContentAuth)← ec
parse (γ.groupId, γ.epoch, type, contentType, C)← framedContent
req contentType = ′commit′ ∧ type = ′new member commit′

reqepoch = γ.epoch ∧ groupId = γ.groupId
parse (sig, confTag)← framedContentAuth
req Sig.Vrf(kp.spk, sig, framedContent)
return (kp.id,Hash(kp), confTag, sig)

helper *frameProp(γ, P )

tbs← (γ.groupCtxt(), γ.groupId, γ.epoch, γ.leafIdx(),
′proposal′, P )

sig← Sig.Sign(γ.ssk, tbs)
tbm← (tbs, sig)
membTag← MAC.tag(γ.membKey, tbm)
return (γ.groupId, , γ.epoch, γ.leafIdx(), ′proposal′, P,

sig, membTag)

helper *unframeProp(γ, p)

parse (groupId, epoch, senderIdx, contentType, P,
sig, membTag)← p

req contentType = ′proposal′ ∧ groupId = γ.groupId
∧ epoch = γ.epoch

tbs← (γ.groupCtxt(), groupId, epoch, senderIdx,
′proposal′, P )

tbm← (tbs, sig)
req γ.τ.leaves[senderIdx] ̸= ⊥

∧ γ.τ.leaves[senderIdx].inuse()
∧ Sig.Vrf(γ.τ.leaves[senderIdx].spk, sig, tbs)
∧ MAC.vrf(γ.membKey, membTag, tbm)

return (senderIdx, P )

helper *frameExtProp(groupId, epoch, ssk, P )

framedContent← (groupId, epoch, ′new member proposal′,
′proposal′, P )

sig← Sig.Sign(ssk, framedContent)
return (framedContent, sig)

helper *unframeExtProp(γ, ep)

parse (framedContent, sig)← ep
parse (groupId, epoch, sender, contentType, P )← framedContent
req contentType = ′proposal′ ∧ sender =

′new member proposal′ ∧ γ.groupId = groupId
∧ epoch = γ.epoch

parse(proposal, kp)← P
req proposal = ′add′

req Sig.Vrf(kp.spk, sig, framedContent)
∧ kp.id /∈ roster

return (kp.id, P )

Protocol ETK and ETKPSK : Transcript-Hash

helper *set-conf-trans-hash(γ, γ′, senderIdx, C, sig)

commitContent← (γ.groupId, γ.epoch, senderIdx,
′commit′, C, sig)

γ′.confTransHash← Hash(γ.interimTransHash,
commitContent)

return γ′

helper *set-interim-trans-hash(γ′, confTag)

γ′.interimTransHash← Hash(γ′.confTransHash, confTag)
return γ′

Figure 24: The helper methods related to message framing and transcript hashes.
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E Proof of Theorem 1

Theorem 1. Assume that PKE is IND-CCA secure and that Sig is SUF-CMA secure. The ETK protocol
securely realizes (FIWAS ,FIWKS ,FECGKA) in the (FAS ,FKS ,GRO)-hybrid model, where FECGKA uses the
predicates safe and inj-allowed from Figure 7 and calls to HKDF.Expand, HKDF.Extract, and MAC
functions are replaced by calls to the global random oracle GRO.

Proof. At a high level, our proof has a similar structure to that of [4]. First, we define four consecutive
hybrids as follows:

1. Hybrid 1 (H1): In this first hybrid, a dummy functionality Fdummy forwards all in- and outputs
through the simulator S1. S1 executes ETK. Fdummy hence encodes no security guarantees.

2. Hybrid 2 (H2 ): In the second hybrid, the dummy functionality Fdummy is replaced by a functionality
consisting of FIWAS , FIWKS and a modified version of FECGKA, where the underlying safe(c) = false and
inj-allowed(c, id) = true for all commits c and party id. The functionality interacts with a trivial
simulator that chooses all application secrets according to the protocol. The indistinguishability between
H1 and H2 will prove the consistency of ETK.

3. Hybrid 3 (H3 ): The third hybrid is identical to H2 except that the application secrets in safe epochs
are random, i.e. the original safe is restored. The indistinguishability between H2 and H3 will prove
the confidentiality of ETK.

4. Hybrid 4 (H4): The fourth hybrid is identical to H3 except that forgery of messages (for proposals
and commits) on behalf of uncorrupted members is excluded, i.e., the original inj-allowed predicate is
restored, such that functionality exactly matches FECGKA. The indistinguishability between H3 and
H4 will prove the authenticity of ETK.

We respectively prove the indistinguishability between every two adjacent hybrids by Lemma 1
(in Appendix E.1), Lemma 2 (in Appendix E.2), and Lemma 3 (in Appendix E.3). Note that the first
hybrid H1 and the last hybrid H4 are respectively equivalent to the real world and the ideal world. The
proof is concluded.

E.1 Consistency and Correctness

Intuition. We prove that H1 (ETK) and H2 are indistinguishable by proving for every input operation
that the outputs in ETK and FECGKA of H2 are the same. We especially show that if H2 halts due to an
assert statement, so would ETK. The assert statements in FECGKA of H2 capture that if one party has
processed a proposal, (external) commit, or welcome, all parties that process it in the future end up in
the same shared group state. Thus, the indistinguishability between H1 and H2 indicates that FECGKA

guarantees consistency.

Lemma 1. Hybrids H1 and H2 are indistinguishable, that is, ETK guarantees consistency.

Proof. We first define the simulator S2 and examine that (1) S2 will not trigger any assert statement
in the FECGKA in hybrid H2 , and (2) the outputs of Fdummy (i.e., ETK) and the FECGKA in hybrid H2
are same. Recall that the simulator can monitor the whole history graph. We examine every possible
commit node in the history graph. Recall also that every commit node in the history graph includes the
application secrets and a confTransHash value, which hashes the history of commits until c. Since we
model the hash function as random oracle, the same confTransHash values in different commit nodes must
indicate that they have the same history of commits leading to them. Thus, every commit node in the
history graph must be unique.

A repeating argument in the proof is that a value in ETK matches the attribute that FECGKA stores
for consistency. The proof will use the phrasing the attributes in ETK and FECGKA correspond directly for
this relationship. The argument is the same in all cases: The attribute value is either set by FECGKA and
then passed to the simulator, which returns the identifier encoding exactly these attributes, or the value is
read directly out of an (adversarially injected) identifier by the simulator and passed back to FECGKA.

We now define S2 in more detail. Concretely, we define S2 in several steps: regular internal proposals,
external proposals, commits, process, join, and external commit.

Regular (internal) Proposals.
When FECGKA sends (Propose, act), where act ∈ {up-spk, add-idt, rem-idt}, then the simulator S2

executes the ETK protocol to obtain the packet p. We then distinguish two cases:

44



1. If act = add-idt, then ETK fetches the key package kpt for idt from FKS , which obtains kpt by asking
the environment Z. Note that the simulator S2 executes the code of both ETK and FKS . Thus, S2
simply uses kpt provided by the environment Z. If p = ⊥, the simulator S2 sends ack = false to
FECGKA. Otherwise, S2 sends (p, spkt, true) to FECGKA, where spkt is taken from kpt.

2. Otherwise, act ∈ {up-spk, rem-idt}. If p = ⊥, the simulator S2 sends ack = false to FECGKA.
Otherwise, S2 simply sends (p, spkt, true) to FECGKA, where spkt = ⊥.

Indistinguishability of Output: Both FECGKA and ETK return the same p or ⊥. ⊥ is returned if
Ptr[id] = ⊥, meaning that id has not yet successfully parsed a welcome or processed its own external
commit. In this case, γ in ETK must also be ⊥.

Assert Statements: There are two assert statements.

1. The assert in update proposals holds: *valid-spk queries has-ssk to FIWAS , which means it fails only if
the ssk that belongs to spk is not in the secret key store. ETK on the other hand queries get-ssk within
a try in *fetch-ssk-if-nec, which means the protocol returns ⊥. In this case, the simulator S2 has
passed ack = false to FECGKA, which also has returned ⊥. The assert statement hence never fails.

2. The assert in *consistent-prop holds: Note that the proposals in ETK include a membTag, which is
computed by using MAC over confTransHash. Recall that we model MAC as a random oracle. Recall
also that confTransHash that identifies the history of commits is unique, as we have introduced. Thus,
the proposals computed by every party id in node c must be different from those computed in any other
node c′. Thus, the assert statement in the *consistent-prop algorithm holds.

External Proposals. When FECGKA sends (Propose, extAdd-id-spk, epoch) to the simulator S2, S2
executes the ETK protocol to obtain the packet p. ETK necessarily fetches the secret key from FAS . If
p = ⊥, then S2 sends ack = false to FECGKA. Otherwise, it sends (p, true).

Indistinguishability of Output: Both FECGKA and ETK return the same p or ⊥. ⊥ is returned if
Ptr[id] ̸= ⊥, meaning that id has successfully parsed a welcome or process its own external commit. In
this case, γ in ETK must also not be ⊥ and ETK must also return ⊥. Otherwise, ⊥ is returned if the
proposal was performed with an invalid spk for id, in which case S2 has also returned ack = false.

Assert Statements: There are two assert statements.

1. The assert *valid-spk never gets triggered for the same reason as in update proposals: if there was no
valid entry in SSK, then ETK will have returned ⊥. Thus, the simulator S2 will send ack = false to
FECGKA.

2. The second assert statement is contained in *consistent-ext-prop, which enforces that proposals
adding id to an epoch (and hence all nodes of that epoch) with a certain key package are different from
those adding id to another epoch or using another key package. This is given by including the epoch in
p. It also ensures consistency upon a re-calculation, which holds because attributes in ETK and FECGKA

correspond directly.

Commits. The simulator S2 computes the packets c and the vector of welcome messages vec w

according to ETK. If c = ⊥, then S2 sets ack = false. Otherwise, S2 first checks whether c corresponds
to a detached root, indicated by Node[c] = ⊥, there exists a vector of welcome messages vec w such
that Wel[vec w] = rootrt and confTransHash in vec w matches the information in c, sends rt to FECGKA

(alongside c and w and c’s epoch). Then, FECGKA runs *fill-props. For every proposal p in the input
p⃗ without a node, S2 sets orig and act according to p. This is always doable, as the basic check in
*apply-props by ETK guarantees that p is well-formed.

Indistinguishability of Output: FECGKA returns c, w, and g, which were generated according to ETK.
There are three cases where the Commit algorithm returns ⊥:

• req Ptr[id] ̸= ⊥ holds as above.

• req ack is false iff ETK failed and returned ⊥

Assert Statements: The commit algorithm includes the following assert statements:
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1. assert *valid-spk succeeds because it is either the committers current spk, in which case true is
returned, or the spk is updated, in which case *rekey-path will be failed upon an invalid spk, the
simulator S2 will return ack = false, and FECGKA will return ⊥ in *req-correctness.

2. assert mem ̸= ⊥ will succeed because *apply-props executed in *req-correctness guarantees that at
least the committer is part of the group. It is left to show that if *apply-props in FECGKA returns
⊥ due to the proposals not being well-formed, then so would *apply-props in ETK and hence the
simulator S2 will return ack = false.

• Node[c] ̸= ⊥ with c = Ptr[id]: Since Ptr[id] is only set after successfully running Process, it always
points to the commit that produced the secrets available to id in ETK. S2 will return ack = false if
Ptr[id] was not a valid c. As Ptr[id] in FECGKA is only ever set to c with Node[c] ̸= ⊥, Node[Ptr[id]]
is hence not ⊥.

• (idc, ∗) ∈ Node[c].mem: Assuming that Node[c].mem correctly reflects the roster of τ after c the
committer’s membership is checked by ETK when confirming the commit signature. This holds
due to the indistinguishability of the output of Process, which shows that the changes applied by
*apply-props are equivalent between FECGKA and ETK.

• Prop[p] ̸= ⊥ is guaranteed by running *fill-props.

• c ∈ Prop[p].par with c = Ptr[id], is either given by *fill-props, or the confirmation of the
membership MAC ETK guarantees that id is member of the epoch p is sent to. For external
self-add proposals, FECGKA matches them purely based on epoch, and ETK checks that the epoch
is correct and parsable for id.

• p = pup+ prem+ padd: Because of the direct correspondence of Prop[p].act and the action of p, ETK
performs the same check and S2 will return ack = false. Prop[p] accurately reflects the action
because either p is created by S2 according to act, or act is set by S2 extracting act from p.

• ids ∈ G \ L (update) is checked by ETK.

• ids ∈ G ∧ idt ∈ G \ L (remove) is checked by ETK.

• ids ∈ G∧idt ̸∈ G (internal add) or ids = idt∧idt ̸∈ G (external add) is checked during unframing
of the proposal and in *apply-props.

3. assert *valid-successor:

• Node[c] ̸= ⊥ is given by the else branch.

• Node[c].mem = mem follows from the other requirements: either Node[c].par = Ptr[id] and
Node[c].pro = p⃗, in which case Node[c].mem has been set to the same results as the passed parameter
mem. Else, Node[c].par = ⊥ and Node[c].pro = ⊥, in which case, c is a detached root but has been
returned by S2 due to matching confTransHash, which includes the tree and hence membership.

• Node[c].pro ∈ {⊥, p⃗} holds because p and Node[c].pro correspond directly between ETK and FECGKA.

• Node[c].par ∈ {⊥,Ptr[id]}: if Node[c].par were neither ⊥ nor Ptr[id], it would be another c′. As
shown before FECGKA and ETK place id in the same commit. S2 would have returned ack = false,
since id cannot process c without the epoch’s secrets.

4. assert Node[c].orig = id: c as returned by S2 is unique and includes the committers identity as part of
the confTransHash. id is encoded in c and Node[c].orig correspond directly between ETK and FECGKA.

5. assert RndCor[id] ̸= good: If Node[c] ̸= ⊥, then S2 previously returned the same c. S2 constructs c
according to ETK, which uses randomness to generate the new leaf node on an update path. In order
to return the same c twice, the member’s randomness must have been corrupted by the adversary in
the real world. If the adversary in the real world corrupts a member id’s randomness, RndCor(id, Bad)
is called in FECGKA and RndCor[id] would have been set to bad. If Node[c] = ⊥ and rt ̸= ⊥: then
there exists a vector of welcome message vec w whose confTransHash matches that of c. As the hash
also includes the new random leaf node, the same argument as above holds.

6. assert vec w ̸= ⊥: ETK and also S2 return vec w if there is an add proposal in p⃗. If such is the case,
the proposal would have received the act = add-∗ by either Propose, or by S2 during *fill-props.

7. assert Wel[vec w] ∈ {⊥, c} guarantees that the vector of welcome message is different for each c. This
is achieved by including the confTag over the transcript hash in the Welcome’s GroupInfo In Commit,
Wel[vec w] can previously only have been set to c. The only other option for setting Wel[vec w] is in
Join. There, c is set to the value provided by S2, which retrieves c as the only fitting commit by
comparing the confTransHash, or it is set to a detached node. In the latter case, c is providing the link
to the detached node, hence *attach would have set Wel[vec w] to c.
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8. assert g ̸= ⊥ succeeds because ETK and S2 both return g.

9. assert groupInfo[g] ∈ {⊥, c}: as for Welcomes, the confTag in the groupInfo guarantees the uniqueness
of g for each c. In Commit and ExtCommit, groupInfo[g] is only ever set to c as retrieved by S2 by
confirming the matching confTag.

Process. Process splits the processing of external commits and regular commits based on id handing in
the full proposal vector. If id hands over the proposal vector, c is treated as a regular commit and the
following proceeds:

The simulator S2 runs ETK protocol and checks whether the receiver would accept the inputs. If the
inputs are rejected, then the simulator S2 sends ack = false. Otherwise, the simulator S2 checks whether
c corresponds to a detached root exactly as dealing with Commit algorithm above. If c creates a new node,
which means that there was no detached root and Node[c] = ⊥, the simulator S2 retrieves c’s epoch, orig′,
spk′ from c (by checking the committer’s key package that was generated in updatePath).

In the case of p⃗ = ⊥, Process treats the commit as an external commit. The simulator S2 executes
ETK (which also treats the commit based as an external commit due to p⃗ = ⊥) and sets ack = false if
the processing party does not accept the input. Otherwise, S2 checks if c creates a new node (an existing
detached root is impossible in this case, as an external commit does not produce any welcome messages).
In this case, S2 retrieves c’s epoch, orig′ and spk′ from c. In both cases, S2 also extracts the proposal
vector p⃗ from c. If creating a new node, S2 retrieves act from the proposal p and returns it.

Indistinguishability of Output: We first explain why the outputs of ETK and FECGKA are the same for
regular commits. Recall that a regular commit includes the hash of all proposals and we model Hash
function as random oracle. Thus, for every commit c there is only one correct p⃗ that can be passed by
(Process, c, p⃗). Recall also that the output of Process is determined by p⃗ and the member set mem in c’s
parent node, both in ETK and *output-proc in FECGKA. Thus, the outputs of ETK and FECGKA are
the same for a regular commit. Note that Node[c].orig is either determined here by S2 directly according
to ETK or it was set honestly following ETK that was run accordingly. The Process returns ⊥ only in
the following cases:

• req ack holds as above.

In the case of external commits, the relation between c and p is even more immediate, as S2 extracts
the latter from the former. In this case, *output-proc is meanwhile determined by the same parameters
as the regular commit, and the argumentation is analogous.The Process returns ⊥ only in the following
case:

• req ack holds as above.

Assert statements : The Process algorithm includes the following assert statements for regular commits:

• assert mem ̸= ⊥ means *apply-props failed. In case c already existed and *apply-props must have
been run on the exact same parameters before, especially on Ptr[id] (or *req-correctness would have
failed while checking Node[c].par = Ptr[id]) and passed. Else, *req-correctness would have failed. If
Node[c] = ⊥ or c were malformed according to ETK (i.e. a proposal removing the committer), S2 would
return ack = false and Process would unwind. This means that c either corresponds to a correct
detached root or a correct new node. It is left to show that every single req in *apply-props is either
fulfilled or S2 would have returned ack = false, unwinding the function. This holds for the same reason
as for Commit.

• assert *valid-successor: is equivalent to the Commit.

• assert id ∈ Node[c].mem: As shown before, Ptr[id] points to the same c that id has most recently
processed in ETK. S2 guarantees that id is a member of the previous epoch by either verifying the
membership tag or the confirmation tag, else returns ack = false, and *req-correctness would fail as
Node[c].par is unequal to Ptr[id]. In both cases, *members is executed on Ptr[id] and the same p⃗, and
if no proposal removing id is executed, id will be part of Node[c].mem.

In the case of an external commit, *process-ec(c) contains the following assert statement:

• assert mem ̸= ⊥ for both Node[c] = ⊥ and Node[c] ̸= ⊥: holds if *apply-props runs fully. As
*req-correctness returned false, any malformed c would have lead to an unwinding of *process-ec:

– Node[c] ̸= ⊥ with c = Ptr[id]: given by placement in if statement.
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– (idc, ∗) ∈ Node[c].mem with c = Ptr[id] (resync): Assuming that Node[c].mem correctly reflects the
roster of τ after c,the committer’s membership is checked by ETK when confirming the commit
signature. (idc, ∗) /∈ Node[c].mem with c = Ptr[id] (external commit): same as above.

– prop ̸= ⊥ is guaranteed by the fact that an external commit is never created as a detached node,
and prop is hence always set.

– c ∈ prop.par with c = Ptr[id] is given by prop being directly included, and ExtCommitProps parents
being set according to the including commit. In case that Node[c] pre-exists, it hence depends on
Ptr[id] = Node[c].par. This is the case as o.w. *req-correctness would have failed and assuming
that Ptr[id] points to the commit parsed in ETK, S2 would have returned ack = false.

– p = pexi + prem: (Note: given the only setting in which an external commit node is created is after
checking that all included commits are either exi or rem.) Prop[p].act directly corresponds to p’s
action. Since ETK hence performs the same checks S2 would have returned ack = false.

– ids = idt = idc (remove) is given as ExtCommitProps creates all proposals in such a way that orig′

(= ids) is equal to the committer (idc) without allowing the adversary to set it separately. idt
being equal is given by the req in Process and the way that the proposals are created.

• assert *valid-successor: holds for the same reason as in Commit.

• assert id ∈ Node[c].mem is given by mem ̸= ⊥ and the fact that an external commit does not remove
anyone, and adds the committer.

Join. When a party id joins using a vector of welcome message vec w, the simulator S2 runs ETK
and sets ack = true if no error occurs. If ack = false or Wel[vec w] ̸= ⊥, then S2 simply sends
(ack ,⊥, ...) to FECGKA. Note that if Wel[vec w] ̸= ⊥, FECGKA already knows the information in vec w

and can ignore nay values received from the simulator other than ack . Otherwise, i.e., ack = true

and Wel[vec w] = ⊥, the simulator S2 needs to interpret the injected vec w. Recall that vec w =
(encGroupSecs, encGroupInfo, wel type) and that S2 knows all secrets and therefore is able to recover
groupInfo from encGroupInfo. In this case, S2 sends a value c′, which either equals an existing node
that owns identical confTransHash as the one in groupInfo or ⊥ if such node does not exist, a value orig′

according to groupInfo, a value mem′ according groupInfo, and a value vec w’s epoch to FECGKA.

Indistinguishability of Output: FECGKA outputs Node[c].mem, Node[c].orig. These are either retrieved
from vec w by S2 as described above, in which case they are directly equal to the values output by ETK.
In the other case, vec w determines the c from which this info is taken. Note that if a party id can
successfully process vec w, then the corresponding commit c must be uniquely determined for id. This is
because that the groupInfo decrypted from vec w includes a confirmation tag that MAC the hash the
history of commits and we model MAC as random oracle. For the commit c, either FECGKA sets orig
directly and S2 supplies the corresponding c, or S2 derives orig′ from c and returns it to FECGKA.

The Join returns ⊥ only in the following case:

• req ack : holds as above.

Assert Statements: The Join algorithm includes the following assert statements:

• assert id ∈ Node[c].mem never triggers, as ETK implicitly performs a check on the tree member-
ship of id by calling γ.τ.leaves[γ.leafId()] and S2 would hence send ack = false. As shown for the
indistinguishability, Node[c].mem contains the members of the tree, and hence also id.

• assert g ̸= ⊥ succeeds because ETK and hence S2 returns g.

• assert groupInfo[g] ∈ {⊥, c}: like for Welcomes, the confTransHash in the groupInfo guarantees the
uniqueness of g created by S2 for a c. In Commit and ExtCommit, groupInfo[g] is only ever set to c as
retrieved by S2 by confirming the matching confTag.

Consistency: We still need to argue that every joiner id that executes Join with a vector of welcome
message vec w and every group member id′ that executes Process with a commit c′ must end up in the
same state, where c′ is uniquely determined by vec w for id as we have explained above. Recall that both
id and id′ verify the confirmation tag, for which they derive the key from the joiner secret combined with
the group context. This guarantees (assuming that MAC is modeled as random oracle) that they agree on
the context, which in particular includes the tree hash and the confirmed transcript hash. The tree hash
binds the whole ratchet tree, including its structure, spk of all members, and all public keys. In particular,
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this implies agreement on the member set mem′. Agreement on the transcript hash implies agreement on
the history, including the last committer orig′. The agreement is maintained in descendants of c′, since
parties agree on the ratchet tree in c′.

External Commit. When an external party sends ExtCommit, S2 constructs the external commit using
g according to ETK and sets ack = false if c = ⊥. Else, it generates all required parameters for FECGKA.
It generates g, p⃗exi , and p⃗rem according to ETK. These are direct or inlined proposal messages for the
commit. It then checks if g is known to FECGKA (g ≠ ⊥). If it is not, but there is a matching commit
cgmatch that has the same
confirmedTH as g, S2 returns this. If there is no such cgmatch, S2 extracts the sender origg and the
members memg from g.

Indistinguishability of Output: FECGKA returns c and g′ generated according to the protocol. The
ExtCommit returns ⊥ only in the following cases:

• req Ptr[id] ̸= ⊥: hold as above.

• req ack : holds as above.

Assert Statements: The ExtCommit algorithm includes the following assert statements:

• assert *valid-spk(id, spk): holds because otherwise, *rekey-path-upon-join would have failed in
ETK and *req-correctness in FECGKA, and upon S2 returning ack = false, the method unwinds.

• assert mem ̸= ⊥ ∧ (id, spk) ∈ mem: is given as *apply-props executed on any p⃗ contains at least the
committer (in this case id) when run successfully. It runs successfully because

– the requirements on props of *apply-props are fulfilled through the construction in ExtCommit.

– req (idc, ∗) ∈ G (resync) or (idc, ∗) /∈ G (external commit): is equally covered by *req-correctness
in combination with ETK execution.

– req ids = idt = idc and ids ∈ G fulfilled through construction in ExtCommit and the previous
req.

• *consistent-ext-comm() holds for a similar reason as for proposals and commits. An external commit
does not include a membership tag, but it does include the confirmation tag, which is a MAC over the
GroupContext’s confirmed transcript hash that provides the same uniqueness guarantee of a commit c.
Node[c].pro and Node[c].par will hence only be set to the proposals included in c and the parent of c included
in the confTransHash, or else to ⊥ in case of a detached root. As a consequence of these two properties,
Node[c].mem will always be set to the same membership set handed to *consistent-ext-comm.

As ExtCommitProps is directly constructed from p⃗, as a consequence, all its parameters are also equivalent.

• assert g ̸= ⊥ succeeds because ETK and hence S2 returns g.

• assert groupInfo[g] ∈ {⊥, c}: like for Welcomes, the confTag in the groupInfo guarantees the
uniqueness of g created by S2 for a c. In Commit and ExtCommit, groupInfo[g] is only ever set to c as
retrieved by S2 by confirming the matching confTag.

Consistency Invariant. In the end, we explain that the consistent invariant cons-invariant always
holds.

1. Node[c].pro ̸= ⊥: holds for all regular child nodes. When attaching a detached node with Node[c].pro = ⊥
to a parent node, the proposals are set to p⃗. *apply-props in FECGKA checks whether the commit
c ∈ Prop[p].par. In every case a new commit node is created or attached to a proposal list (in Join and
Process), the assert mem would have hence failed if that is not the case.

2. ∀id s.t. Ptr[id] ̸= ⊥: id ∈ Node[Ptr[id]].mem: holds because in both locations where Ptr[id] is set to c
(Process and Join) an explicit check is performed that id ∈ Node[Ptr[id]].mem.

3. The graph contains no cycles: FECGKA will only attach a detached node c′ to an existing graph node c
if S2 provides the corresponding root. S2 will only do so if the confTransHash match. Since this hash
contains all previous commits, a circular graph cannot exist.

4. ∀ep s.t. ExtProps[ep] ̸= ⊥ : (∀c ∈ Prop[ep].par : Node[c].epoch = ExtProps[ep].epoch): holds because
the parents of an external proposal ep are only set if the epochs match.
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E.2 Confidentiality

Intuition. We prove that H2 and H3 are indistinguishable by demonstrating that for all commits c for
which the predicate safe(c) in Figure 7 holds, the group keys are indistinguishable from random. The
indistinguishability between H2 and H3 indicates the confidentiality of ETK.

To this end, we define a sequence of sub-hybrid Hsi, where i indicates the index of epochs. In the i-th
sub-hybrid Hsi, the simulator sets the first i epoch secrets, and all epoch secrets after that are set according
to FECGKA, i.e., randomly if safe = true and otherwise by the simulator. Note that the environment
Z is executed in polynomial time and therefore can trigger only polynomial epochs of FECGKA. Thus,
the number of the sequence of sub-hybrid games Hsi must be polynomial. It is easy to observe that in
the final sub-hybrid all epoch secrets are set according to H2 (and therefore is equivalent to H2 ), and
that in the first sub-hybrid Hs0 all are set according to H3 (and therefore is equivalent to H3 ). Thus, the
indistinguishability between H2 and H3 can be reduced to the indistinguishability between every two
adjacent sub-hybrids Hsi−1 and Hsi for the sequence of i.

We prove the indistinguishability between every two adjacent sub-hybrids Hsi−1 and Hsi following
the strategy in [4], i.e., by introducing the GSD game. Recall in Theorem 3 that the GSD security of
any PKE can be reduced to its IND-CCA security. Thus, our proof methodology in this section is to
reduce the confidentiality of ETK to the GSD security of the underlying PKE. Since they only behave
differently in epoch i, and only if safe(ci) = true, we show that if the environment Z can distinguish
between a random key and a simulator chosen key for ci, then there exists a reduction B that can win
the GSD game (and hence break the IND-CCA security) of the underlying PKE by invoking Z. We
need to argue that whenever the environment Z wins, which can happen only under the condition that
safe(c) = true (implying a valid challenge for Z), the reduction B can also win, which happens only
under the condition that ¬gsd-exp(c, ua) (implying a valid challenge for B breaking GSD). To this end,
we prove that gsd-exp(c) =⇒ ¬safe(c) by reasoning through all possible cases of gsd-exp(c).

Important to note that the reduction B stores one of three values for each key: (1) if the key is
unknown to Z and B (and hence only known to GSD game), B stores (gsd , u), with u indicating the
GSD node that contains the key value, (2) if the key is known to both B and Z, B stores the actual key
value, and (3) if the key is known to Z, but not to B (or GSD game), B sets it to ⊥. For bookkeeping, B
maintains a counter uctr to index new GSD nodes at every point in the game.

Lemma 2. If PKE is GSD secure, then Hybrids H2 and H3 are indistinguishable, that is, ETK guarantees
confidentiality.

Proof. We show the indistinguishability by hybrid games. More concretely, for any i > 1, we define two
adjacent sub-hybrids Hsi−1 and Hsi that behave differently only in epoch i: Hsi−1 sets the epoch secret
in epoch i according to FECGKA (depending on whether safe(c) holds), while Hsi sets is according to the
simulator S. Further, we reduce the indistinguishability between every two adjacent hybrid games to the
GSD security of the underlying PKE. More concretely, we show that if the environment Z can distinguish
between a random key and a simulator chosen application key for c with safe(c) = true, the reduction B
(i.e., the adversary that aims to break GSD game) can use the environment Z to win the GSD game with
gsd-exp((c, u)) = false for some associated secret u.

The individual steps of the confidentiality part are organized as follows:

Proof part 2.b): Confidentiality

Show indistinguishability:

I) when not allowing any injections or corruption of randomness by reasoning through all possible
cases of gsd-exp((c, uapp)) (Appendix E.2):

(a) the corruption of (c, uapp)

(b) the corruption of (c, ujoi)

(c) if all three gsd-exp ((c, ucom)) and gsd-exp ((Node[c].par, uini)) are true.

II) when allowing injections for cases (a) - (c) (Appendix E.2).

III) when allowing the corruption of a client’s randomness for cases (a) - (c) (Appendix E.2).

We update the proof to include the changes from draft 12 to the final standard. Additionally, We
introduce external commits. We mostly note down changes to the content of [4].
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Part 2.b.I) No Injection or Corrupted Randomness Allowed
In this part, we consider the simplest case, where neither malicious injection nor randomness corruption

is allowed.
In order to prove by reduction that gsd-exp((c, u)) =⇒ ¬safe(c), we first outline how reduction

B modifies the code of the functionalities and the simulator in the context where no injection and no
corrupted randomness are permitted. Following this, we systematically examine each possible cases of
gsd-exp((c, u)), corresponding to the three conditions specified above, and illustrate how our proof captures
the requirements of the safe predicate.

As described in the gsd experiment explanation; in our model, for {add, extAdd}-only commits, no Up-
datePath is executed, and all of id ’s secrets remain the same. This is addressed in *secrets-replaced(c, id).
Throughout the confidentiality proof, we will examine commits in which an updatePath is required as part
of *secrets-replaced(c, id), as well as those in which no updatePath is necessary. To this end, we also
consider the commits including add, extAdd proposals only as well as those that involve any combination
of these proposal types.

From draft 12 to RFC: Different from draft 12, the RFC separates leaf nodes and key packages. While
add and extAdd proposals contain key packages, update proposals and updatePath only contain fresh leaf
nodes. Both share a similar structure. Therefore, it is necessary for us to change the welcome messages,
which now use the additional init key of the key package to encrypt the group secrets. Additionally, the
committer has the option to create an encrypted welcome message, which can be designed for all members
collectively, or for each member individually, or grouped for specific batches of members. Moreover, we
need to define how reduction B processes the extAdd proposals. Hence:

• Key Package Registration: When Z instructs a party id to register a key package in the emulated FIWKS ,
the reduction B creates a new GSD vertex by executing pk← ∗get-pk(uctr) and init-pk← ∗get-pk(uctr),
respectively followed by uctr++.5 The reduction B uses pk and init-pk to generate the public part of the
key package kp, and sets the secret keys SK[id, kp] and ISK[id, kp] to (gsd , uctr).

• Proposal extAdd: Whenever the protocol requests a key package for id creating the proposal from FIWAS ,
Z gets to choose it. Accordingly, the reduction B stores in the new proposal node the ssk taken from
the key package chosen by Z.

• Applying Proposals: Additionally, for each extAdd proposal, secret key of id is set using the value stored
in proposal node.

• Commits by reference: Compared with [4], there are two differences. On one hand, following RFC
version, the *rekey-path operation is not executed if the proposal list in a regular commit satisfies
both of the following conditions: (1) it is non-empty, and (2) it contains only add, extAdd proposals.

The reduction B emulates the *derive-keys as follows:

1. Add vertices to the GSD graph: The reduction B generates vertices uapp, umem, uconf, uini, uext by
querying Hash oracle with inputs (ulbl, lbl) for lbl ∈ {app,mem, conf, ini, ext}.

2. Create the welcome message: The welcome message is a component of the welcome vector, consisting
of three parts. The final part, wel type, indicates whether the message contains a single welcome
message or multiple welcome messages. In the first part, for each new member idt, the encryptions
of joinerSec and idt’s pathSec under the init-key in idt’s key package (obtained from KS by the
party adding idt). Let ui be the GSD vertex corresponding to the pathSec sent to idt. If idt’s
init-key is of the form (gsd , u)6, A obtains the encryptions by creating encryption edges from u to
ujoi and from u to ui. Otherwise, it corrupts ui, ujoi encrypts the values itself. The second part
of the welcome message contains the encryption of groupInfo, under the welcome secret which
is simply the combination of joinerSec and the vector of welcome messages. To compute the
second part of the vector of welcome messages, the reduction B creates vertex uwel by querying
Hash oracle with input (uwel,wel). The reduction B gets the respective secrets by corrupting
corresponding vertices.

3. Create groupInfo: Additionally, the reduction B creates the groupInfo: It runs ∗get-pk(uext) to
retrieve the external public key and includes it in the groupInfo. Note that at this point, B does
not need to know the external private key.

5Recall that we use pk ← ∗get-pk(u) to denote that A obtains the public key pk for a vertex u by calling the oracle
Enc(u, 0) (the special vertex 0 is only used here), following [4].

6Following [4], a secret key of the form (gsd , u) means that it is unknown to the environment Z.
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• Expose: The private init keys are generated along with the key package secrets, which A is also required
to corrupt.

As the basis for the proof, note that, considering the key derivation illustrated in Figure 2, gsd-exp((c, uapp))
can only hold true in one of the following cases:

2.b.I.a) The reduction B corrupts the vertex (c, uapp). This happens if and only if it corrupts the state
of a party involved in commit c. This case is identical to the case in [4] and will immediately implies
¬safe(c).

2.b.I.b) The reduction B corrupts the vertice (c, ujoi) to ultimately gain access to the application secret.
This happens if and only if the reduction B computes a vector of welcome messages for idt using an
exposed key bundle. The mechanism remains as previously described.

2.b.I.c) This case considers the following two elements to be true: gsd-exp((c, ucom)) and gsd-exp((Node[c].par,
uini)). We need to show that gsd-exp((c, ucom)) implies know(c, ∗). This implication follows by condition
d) of *can-traverse. Here, gsd-exp((c, ucom)) is only possible in one of the following cases:

1) the reduction B corrupts path secrets ui, and use them to compute gsd-exp((c, ucom))

2) the reduction B calls Enc oracle to encrypt path secrets under relevant keys

3) after the commit processed, the reduction B exposes a party id that holds ui’s secret

Firstly, consider case 3) any action requiring updatePath removes ui’s secret from its state. For the
actions of id requiring updatePath, the proof remains the same. For {add, extAdd}-only commits, since no
updatePath is executed, all of id’s secrets remain the same. Thus, if id is corrupted, we have know(c, id)
until an updatePath issued.

We complete the proof by showing that for cases 1) and 2) gsd-exp((Node[c].par, uini)) implies know(c,
‘epoch’). For these cases the proof follows the same pattern as the encapsulating proof for uapp as uini has
the exact same lifetime as its epoch’s uapp is generated from each epoch secret. The proof’s condition
c) hence recursively proceeds until at some point, Node[c].pars = rootx. At that point, condition d) of
*can-traverse(c) in safe(c) becomes true.

External Commit. The external commits include the following operations:

• Derivation of the init key init-key: MLS uses an asymmetric interaction to derive the init key of the new
epoch from the external secret. The reduction B creates a new GSD node (gsd , uctr) representing the
seed sexini chosen by the committer. Then B creates an edge encrypting the seed with the external
public key by querying Enc oracle. This encrypted output is shared with the other group members via
the external init proposal extInit included in the external commit. The init key init-key is derived from
this seed by calling Hash on the seed node. Then B proceeds using the resulting node as the uexini node
in a commit.

• Generation of leaf node: same as *rekey-path in a regular commit but occurs during the *rekey-path-upon-join.

• Other than that, the reduction B proceeds as during a regular commit, corrupting the GSD vertices
umem and uconf in order to create the new commit and groupInfo. Note that there is no welcome
following an external commit. The reduction B also corrupts any ui (path secret) that is not (gsd , .)
meaning it is known to Z and computes all secrets following from that.

Figure 25 visualizes the GSD game accordingly.
We first show that if safe(c) holds on an epoch then gsd-exp((c, uapp)) is false and the epoch is still a

valid challenge. We then show how the reduction B can win the GSD game by utilizing the Z that can
distinguish this epoch between simulated by functionality and by simulator.

The argument for Case 2.b.I.a) and Case 2.b.I.b) remain the same as in regular commit. For Case
2.b.I.c) if there is an edge between (c, uexini) and (c, ujoi), means that c is an external commit. As the
*rekey-path-upon-join proceeds in the same way as *rekey-path in a regular commit, the reasoning
for gsd-exp((c, ucom)) implying know(c, ∗) also remains the same. The only change occurs when the
combination of gsd-exp((Node[c].par, uexini)) implies know(c,′ epoch′). Similar to the analysis for regular
commits, we consider two cases: i) uexini is compromised when a client id is exposed while processing the
commit, in which case safe(c) does not hold, or ii) the reduction B calculates uexini itself if the seed sexini
and is exposed. The case i) happens if an id’s key bundle is exposed during the commit processing, which
again implies safe(c) is false, while the case ii) happens if it is encrypted under a node whose private key
is compromised. The seed sexini is encrypted under the key from the uext node of epoch Node[c].par. A
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Figure 25: GSD game graph of an external commit, following an image from [4]. Each circle represents a
node in the GSD graph. Dashed arrows mark an encryption of the sink using the key of the source, while
bold arrows mark a Hash call on the source. The additionally added nodes of the graph are marked in .
The external secret encrypts the committer-generated seed sexini that is used as the init secret of epoch c.

uext node is exposed in the exact same cases as a uapp, and as in a commit, proof continues recursively
until c is a root and hence safe(c) is false.

The subgraph G continues to correctly describe all cases in which a node secret stays in the tree: all
commits that remove a node (c, u) are either (i) commits by an idi or (ii) removes of an idi, on the
subtree of τ.v. This also includes external commits and resyncs.

Part 2.b.II) Allowing Injections In this part of the proof, we begin by outlining the adversarial
modifications to the functionalities and the simulator, incorporating the capability to inject malicious
messages.

From draft 12 to RFC

• Injected proposals: Additionally, in case of extAdd proposal, similar to add proposal, reduction B creates
a new node using the private signing key used from the message.

• Commits injected to process: In the case that Z makes id process an injected commit c′ from a party
idc ̸= id, reduction B attempts to build new commit node’s state. For {add, extAdd }-only commits,
the reduction B only applies the proposals, as these commits do not require rekey operation. For
other commits along with the ciphertexts ctxt that id would decrypt with keys in the ratchet tree, the
reduction B proceeds as follows:

i-ii) first two items remain the same.

iii) if the ctxt is copied from an honest commit that generated earlier by B, for which the GSD node
associated to both appSecret is still a valid challenge, we must show that id accepting such a
commit c would enable B to succeed in the GSD game. The trick in this step is to reduce the
forgery of the confirmation tag confTag in the commit c to the GSD security of the underlying
PKE. Let B challenge the GSD node u and extract the correct seed from Z’s random oracle calls
as follows:

1. Note that appSecret = Hash(joinerSec, .) and joinerSec = Hash(initSecret, commitSec, .),
where HKDF is modeled as RO. Moreover, note also that commitSec must be the same in c
and c′ for the shared ctxt to be accepted.

2. The reduction B needs to extract the joinerSec of c′. To this end, the reduction B proceeds as
follows: First, recall that the confTag is a MAC of confKey and confTransHash. The only way
for Z to compute a valid tag is to query RO on (confKey, confTransHash). The reduction B
can search the RO query history and extract confKey. Second, recall that confKey is derived
by applying HKDF to joinerSec. The environment Z needs to query RO on (joinerSec) for
deriving confKey. The reduction B can then extract joinerSec of c′ in a similar way.

3. This case also remains the same.

• Injected vector of welcome messages vec w: with the recent update of RFC, the use of init-key to encrypt
group secrets results in a significant change to reduction B’s processing order in [4]; however, this does not
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have a big impact on the proof. When Z injects a welcome message w = (encGroupSec, encGroupInfo)
in the welcome vector vec w, B does as follows:

1. Note that wel type of the corresponding vec w does not affect the behavior of the reduction. Reduction
B searches for a key package kp such that SK[id, kp] ̸= ⊥ and ISK[id, kp] ̸= ⊥ and H(kp) matches an
entry e ∈ encGroupSecs and aborts if no such kp exists.

2. If e is copied from a vector of welcome messages vec w generated by B while creating a commit node
c and ISK[id, kp] is a GSD node, to win the game, reduction B proceeds as follows: B needs to
differentiate between the cases, whether the injected welcome message is associated with the commit
c that the e stems from. To this end, B compare encGroupSec. Since e is copied, the joinerSec

underlying different welcome messages that include the same e must be the same. Furthermore, an equal
encGroupInfo implies an equal confTransHash. In this case, B moves id to c.

If the encGroupInfo in the vector of welcome message vec w is different from the one derived by the
reduction B for c, that means that e was copied but used to create the welcome for a non-existent
commit c′. This is not possible as it would allow B to win the GSD game: In order to construct a
encGroupInfo that is decryptable using the secrets stored in the encGroupSecs, the environment Z
must be in possession of the welcome secret (as Z cannot copy encGroupInfo from c). In order to
derive the welcome secret, Z must derive it from the joinerSec using the RO calls. The reduction
B can extract joinerSec by checking queries that have been sent to RO one by one as follows: First,
the reduction B attempts to parse the input of RO into joinerSec candidates. If the parse fails,
B directly omit the following steps and attempts for the next RO input. Second, the reduction B
respective derives welcome secret and confKey from the joinerSec candidates. Third, the reduction
B derives welcome key and welcome nonce from welcome secret. Fourth, the reduction B decrypts
encGroupInfo to recover groupInfo. Fifth, the reduction B parses groupInfoTBS from groupInfo

and further confTag from groupInfoTBS. Finally, the reduction B verifies the confTag by using the
confKey. If no error occurs, then reduction B found the correct joinerSec. If any error occurs, then
the reduction B continue to check the next RO query. Note that the environment Z can send only
polynomial queries to RO. The checks that B needs to execute must also be in polynomial time.

From joinerSec, the reduction B can calculate the appSecret for the valid GSD challenge node c and
hence win the game. Copying e is hence not possible.

3. Else, if e has not been copied from any vector of welcome messages generated by B, the reduction B
can simply obtain the encrypted joinerSec and pathSec either by using the secret in ISK[id, kp], if
it has been compromised and therefore known by B, or otherwise by querying B’s GSD decryption
oracle Dec. By using the joinerSec, the reduction B can decrypt and verify the encGroupInfo in the
vector of welcome messages. If the verification passes, then B further checks whether the decrypted
groupInfo indicates an existing node c (by comparing the confTransHash ∈ groupInfo) or a new node
c′. If groupInfo indicates an existing node c, then B moves id to c. Otherwise, groupInfo indicates a
new node c′. In this case, B creates c′ with labels taken from groupInfo and the ratchet tree set to the
public part of τ from groupInfo. Then, for any node of τ with a public key for which it has a secret
key stored (in another ratchet tree or in ISK and SK), B copies the secrets into τ . Moreover, B updates
ratchet tree secrets to those derived from pathSec (if any secret key was set to a GSD node, B uses
pathSec to win the game), and computes the epoch secrets from joinerSec. For all other unknown
secrets in τ , B keeps them to be ⊥.

Injected groupInfo. In case the environment Z makes id process an injected groupInfo g to create an
external commit, the reduction B proceeds as follows:

First, the reduction B checks for a commit c that includes the matching confTag, i.e., confTransHash ∈ g.
If such commit c exists, then B further checks whether all other values included in g are equal to another
groupInfo g′ that was previously generated by B. If so, g indicates an existing node, i.e., environment Z
is re-sending the groupInfo g for c from another client. B proceeds as for an honest g and appends the
external commit to c.

If the confTag corresponds to a commit c and a previously sent g′, but any values other than signer
and signature are different from that previous g′, the reduction B treats it like any other injected g: if id
accepts the message, B creates the new node with labels taken from groupInfo and the ratchet tree set
to the public part of τ from groupInfo. Then, for any node of τ with a public key for which it has a
secret key stored (in another ratchet tree or in ISK and SK), B copies the secrets into τ . Other unknown
secrets remain ⊥.
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The reduction B then proceeds to create the external commit. If the external key is (gsd , u), which
qualifies as a valid secret for GSD, B utilizes the oracle Enc to derive the external seed s. Otherwise, B
performs the encryption itself.

This behavior only affects detached trees, as any injected groupInfo that does not correspond to
an honest commit immediately creates a new detached root. Consequently, the proof for the main tree
remains unaffected, and ¬safe(c) is addressed by condition b) of *state-directly-leaks(c, id). For the
adaptation of the proof concerning detached trees from Section D.5, refer to the explanation below.

External Commit Injected to Process. The reduction B constructs the new node including the initSecret as
follows: On one hand, if the external-key, which encrypts the shared secret sexini in the extInit proposal
of the external commit, is a GSD node, i.e., neither B nor Z has knowledge of it, B uses the Dec oracle
of GSD to retrieve the shared secret sexini. On the other hand, if the external-key is a value, meaning that
both B and Z know it, B directly decrypts sexini. The external-key cannot be ⊥, as it is not a key that
the adversary can inject. From sexini, B can then derive the new initSecret.

The only case where B will not be able to decrypt sexini is if the kem output stems from an honest
external commit c′ previously generated by B and copied by Z and whose appSecret is still a valid challenge.
If an id accepts such a copied kem output, B can use it to win the GSD-game similarly to a copied path
secrets in commits:

1. Since the kem output is copied, the ext-initSec is identical in both the injected external commit c and
the honest external commit c′. At the same time, confTransHash must differ; otherwise, c and c′ would
be identical.

2. For Z to compute a valid confTag for the injected commit c, it must query the RO on H(confTransHash, confKey).
From this query, B can extract the confKey. Since confKey is derived from (joinerSec), Z must also
query RO on (joinerSec) to compute a valid tag.

3. For Z to compute the joinerSec for the injected commit c, it needs to query RO on Hash(ext-initSec,
commitSec). From this query, B can extract the ext-initSec, which is shared with c′, by searching the
RO query history.

4. B can then corrupt the commitSec of c′, which does not impact the challenge, and compute the joinerSec
of c′. Using this joinerSec, the reduction B calculates the appSecret.

Thus, this case cannot occur.
The reduction B handles the updatePath of the commit the same way as a regular one, as the

argumentation of an injected commit relies on calculating the initSecret of c from the RO calls and
corrupting the initSecret of c′ directly - regardless of its origin. Note that in the case of an injected external
commit, the initSecret always retrieved by B directly via decryption. This does not affect the argument
showing it is impossible to copy updatePath secrets from an honest commit.

The final case to consider is when both sexini and ctxt are copied. If they are copied from different
commits, the confTag can be used to break the challenge for both commits in the same way as before.
Figure 26 illustrates how B utilizes Z to win the GSD game in case of a copied ctxt.

If they are copied from the same commit but the confTransHash differs from the original commit (e.g.,
when the external commit is injected for a different party), the joinerSec, retrievable via the confKey

RO call, are the same between the two commits. The reason behind is that the same ciphertext indicates
same path secret and proposals, which further indicate the same commitSec . Combing the fact that
sexini is copied from the same commit, which yields the same initSecret, the joinerSec must also be same.
Thus, this allows the reduction B to compute the appSecret to be computed from it.

Proof of Indistinguishability. It remains to show that gsd-exp() =⇒ ¬safe(c). As a reminder, this is
part 2.b.II of the main proof. The subproof is structured as follows:
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Figure 26: Visualization of B using the confTag to win the GSD game for a commit c′ if the environment
Z successfully copies a ciphertext from a commit c′ into an injected commit c. The commit secret is
shared between both commits. In the first step (in ), Z needs to call the random oracle RO to derive
the confTag from the confKey and the confTransHash, which B now learns from the query. Z also needs
to query the RO to derive confKey from joinerSec. B now knows joinerSec of c. In order to derive
joinerSec for commitc, Z also needs to query Hash(commitSec, initSecret), which B now learns (in ).
B now knows the commitSec of commit c′, and corrupts the initSecret of commit c′ (in ). B can now
calculate appSecret of c′.

Part 2.b.II): Confidentiality when allowing injections

The reduction B succeeds in winning the GSD game for commit c′ if the environment Z successfully
copies a ciphertext from commit c′ into an injected commit c. This can be formulated as follows:

a) Show that if the reduction B corrupts (c, uapp) then ¬safe(c)
b) Show that if the reduction B corrupts (c, ujoi) then ¬safe(c)
c) Show that if both gsd-exp((c, ucom)) and gsd-exp((Node[c].par, uexini)) are true then ¬safe(c).

For this, consider all cases where gsd-exp((c, ui)) is true:

c.1) During an exposure of an id that stores ui

c.2) When a node τ.v used in *rekey-path is exposed

c.3) If the secret in τ.v is ⊥, which is the case if:

i) Z injects a new commit c′ on behalf of id
ii) the injected commit c′ commits τ.v as an updated injected leaf
iii) the injected c′ commits τ.v as an injected key package

The proof is almost the same as in Step 1 (no injections). In the case that c is a regular commit, the
proof is extended the same way as in step 2 of the original proof in [4], except for differences are c).

In case c), we still need to prove that gsd-exp((c, ucom)) =⇒ know(c, .), by considering the following
three sub-cases, i.e., gsd-exp((c, ucom)) = true is triggered c.1) during an exposure of an id that stores
ui’s secret, and c.2) when a node τ.v used in *rekey-path is exposed, and c.3) if the secret in τ.v is ⊥.

• c.1) is covered if id processed c and has not performed any action that includes an UpdatePath, which
encompasses any form of external commit but excludes {add, extAdd}-only commits. Secondly, injecting
a node from a previous, honest commit or external commit would allow the reduction B to use the
confTag to win the GSD game.
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• c.2) encompasses the subgraph G that is determined by actions adding and removing the node, including
external commits and excluding {add, extAdd}-only commits that do not perform an updatePath.

• c.3) remains the same, as subcase i) Z injects a new commit c′ on behalf of a party id into the subtree,
encompasses both scenarios, where the injected c′ is a regular or an external commit.

In the case that c is an external commit - if there is an edge between (c, uexini) and (c, ujoi) - the proof
proceeds as follows: gsd-exp(c, uapp) is only true in three cases

a) B corrupts (c, uapp) - same as in step 1

b) B corrupts (c, ujoi) - same as in step 1

c) if both gsd-exp((c, ucom)) and gsd-exp((Node[c].par, uexini)) are true:

• For gsd-exp((c, ucom)) the argumentation remains the same as for regular commit. Note that an
injected external commit c′ (case i)) hence implies know(c).

• In addition, gsd-exp(((Node[c].par, uexini))) can also be true if injected: When the environment Z
injecting the seed sexini in the extInit proposal, the reduction B decrypts it and calculates uexini

itself. In the case of an injected external commit, condition e) of *can-traverse immediately holds,
and hence safe(c) is false.

In detached trees: Extension D.5 in main reference [4] concerning compromise in detached trees needs
to be adapted with only minor changes. The proof shows that if an epoch in a detached tree does not
include any exposed signing keys, it also does not include any exposed node keys. The first part shows
that if τ.v has an exposed leaf key, then the signature key must also be leaked. This holds because a leaf
key is only compromised if either the owning member is compromised, in which case the signature key spk
is also marked as exposed, or the leaf is injected as part of a commit or update, in which case FECGKA

also marks spk as exposed. A third, not explicitly named case is the use of an adversarially generated
ratchet tree in a welcome or groupInfo. As each leaf node contains a signature using the nodes spk, the
adversary must know the spk by corruption to produce the ratchet tree and spk must have been marked
as exposed, otherwise Z could be used to break SUF-CMA.

The second part shows that for any inner node, assuming no node in its subtree is exposed, the leaf
key pk is not exposed. The argument stays the same: 1) all signatures verify because at least one party
has accepted the commit or welcome or external commit or the groupInfo g to create an external commit.
2) As the committer of an inner node τ.v, spk cannot have been compromised (by assumption). τ.v cannot
be maliciously generated, as the parentHash of τ.v is included and signed in the leaf of the committer.
The only possible leakage is hence an encryption to an exposed key. However, this is impossible due to
the induction hypothesis that states no lower nodes are compromised. The signed parent hash in τ.v
guarantees here that the subtree of τ.v is the same as when τ.v was introduced into the tree.

Part 2.b.III) Allowing Bad Randomness Proposals by Reference and by Value For the extAdd

proposal, B generates the key package using id’s spk. Similarly, by using the randomness provided by Z
creates the proposal message p.

Commit by Reference and by Value. Given randomness provided by Z, B computes the commit and
required secrets as:

1. The reduction B executes *rekey-path to obtain the path secrets, commitSec, and commitContent. It
then generates a valid confTransHash.

2. B creates a new joinerSec, which is a hash of the current initSecret and the newly computed commitSec,
i.e., joinerSec = H (initSecret, commitSec, . . . ). If initSecret stores a GSD node u, A queries the
H(u, uctr, commitSec), increments uctr, and uses the fresh, uncorrupted node as the joinerSec. Other-
wise, if initSecret stores a value, A computes the joinerSec itself.

3. Using the secrets obtained, B executes the key schedule to compute the confTag. It then computes the
commit message c and the vector of welcome messages *welcome-msg accordingly.

Validity of the Challenge. Throughout this study commits are not necessarily calculated using randomness.
The reduction B’s actions and the proof remain the same for commits that involve fresh randomness.
Recall that the helper predicate *secrets-replaced captures the update of the path secret, except for the
proposal-list in regular commit c is non-empty or only includes regular add or external self-add. Any
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commit c′′ (except only regular add or external self-add proposals) with *secrets-replaced(c′′, id) would
hence replace secrets injected by randomness.

Now we will show with above changes, randomness corruption does not affect existing challenges,
where safe(c) holds. With corrupted randomness the environment Z cannot derive the correct epochSec
because the environment Z needs to query RO on joinerSec to compute epochSec = HKDF(joinerSec).

We adapt the proof that randomness corruption does not affect the validity of a challenge, and
gsd-exp(c) =⇒ ¬safe(c) still holds. Due to above mentioned changes, no additional corruption is
performed by B on the joinerSec, case b) of gsd-exp holds as before.

Only case that is affected is case c). Here, the proof remains in agreement with [4], showing that
gsd-exp((c, ucom)) =⇒ ¬know(c, ∗) also when allowing corruptions. We informed the authors of this bug,
and they are in the process of updating the paper accordingly.

Randomness in Detached Trees. In addition to corruption and injection, a leaf or intermediate node τ.v
may also be exposed if it is generated with bad randomness. The proof for detached trees relies on the fact
that if any τ.v is exposed, a member’s spk would likewise be revealed, thereby implying ¬safe(c). However,
when committing with corrupted randomness alongside a fresh spk, as described in [4] (corresponding to
an updatePath in ETK), only the old spk used to sign the commit is leaked, while the fresh spk remains
secure. The spk, however, is exposed if it is registered with the AS while the randomness is compromised.
The following hence does not contradict safe(c) through the condition b) of *state-directly-leaks(c, id):

• The environment Z creates a detached root by inviting B to a false group, impersonating A

• B adds C and removes A

• Member B registers spk with FIWAS
• The environment Z corrupts B’s randomness

• Member B performs a commit which updates its signature key to spk.

It does, however, contradict safe(c) through the condition c) of *state-directly-leaks(c, id), as condition
a) of *secrets-injected(c, id) holds for commits with corrupted randomness. Since the above scenario
requires the node in the detached tree to have healed completely, safe is applicable in the same way as it
is in the main tree. After such a heal has occurred, condition b) of *state-directly-leaks(c, id) is always
”overlayed” by other conditions that hold after a compromise.

The proof from [4, Section D.5] that shows that from safe(c) follows that no node τ.v has an exposed
public key pk needs to be adapted in the following way: For any leaf node with an exposed pk, either
spk must have been exposed, or the commit c introducing it to the tree was committed with compromised
randomness, both of which contradict safe(c). For any intermediate node, since spk is not exposed, so
τ.v.pk is honestly committed (see [4] for details). Additionally committing with bad randomness would
have triggered condition a) of *secrets-injected(c, id), contradicting the assumption that safe(c) = true,
and in combination with *secrets-replaced(c, id) would have remained so until removed. This means the
secret key of a node is not chosen by Z.

External Commit from id. Behaves similarly to a regular commit: Using the randomness provided by Z,
reduction B computes the external commit and the secrets in new commit node, as follows:

1. B uses the randomness provided by Z to execute *rekey-path-upon-join, obtaining all path secrets,
the commitSec, and the intermediate commit packet. Then, it signs the commit packet using the id ’s
spk, along with Z ’s randomness, and sets the confTransHash accordingly.

2. A key distinction from a regular commit is that the initSecret for an external commit is determined by
the client. As a result, corrupted randomness can expose this initSecret. Reduction B computes the
ext-initSec as follows:

• If the external secret from the previous epoch stores a GSD node u, B queries Enc(u, uctr), corrupts
uctr, and sets the external seed sexini, increments uctr. B then uses this seed as the initSecret for
the external commit.

• If the external secret from the previous epoch stores a value (and is therefore known to B), B
computes the joinerSec directly.

3. Using the joinerSec and the confTransHash from previous steps, B runs the key schedule, computes
the confTag, and finalizes the commit message c.
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Proof for External Commit.
Case a) and case b) of the proof remains the same.
Case c): To show gsd-exp((c, ucom)) =⇒ ¬know(c, ∗) for external commits, we proceed similar as

for regular commits. gsd-exp((c, ui)) can also be true if the secret in a ratchet tree node τ.v used in
*rekey-path-upon-join stores a seed s generated during an action executed with bad randomness.
Consider an external commit c′ that inserts s into τ.v. Unlike a regular commit, an external commit
injects only the secrets it generates during the commit process. It does not, for instance, include an
update proposal from another id or a corrupted key package. This injection is covered by condition a) of
*secrets-injected(c, id). Now consider the case where c itself is the external commit. Since the external
committer utilizes the same public ratchet tree as a member performing a regular commit, the proof
remains the same to regular commit.

E.3 Authenticity

Intuition. We prove that H3 and H4 are indistinguishable by demonstrating that the environment Z
in H4 cannot inject any message unless the statement inj-allowed is true. Note that the evaluation
of inj-allowed only appears in auth-invariant. Thus, we need to prove that auth-invariant never
triggers. We determine all cases where it would trigger as follows and prove that these events do not
occur.

1. We show that if a forged signature event occurs, H4 could be used to win the SUF-CMA game of the
underlying digital signature.

2. We show that if a forged MAC event would occur, H4 could be used to win the EUF-CMA game of the
underlying MAC (and that the advantage is upper bounded by the GSD game).

Note that in ETK, messages are authenticated in two ways: First, public handshake messages include a
MAC generated with the membership key derived from the epoch secret, confirming the message is from
within the group. Private handshake and application messages on the other hand are encrypted with a
group-only key and signed with the sender’s leaf signature key, ensuring the sender’s identity and message
authenticity. Thus, the indistinguishability of H3 and H4 indicates that ETK guarantees authenticity.

Lemma 3. If Sig is SUF-CMA secure, MAC is EUF-CMA secure, and PKE is GSD secure, then Hybrids
H3 and H4 are indistinguishable, that is, ETK guarantees authenticity.

Proof. Note that the hybrids H3 and H4 are identical unless in H4 there exists an injected history graph
node in FECGKA for which inj-allowed requires authenticity. More concretely, the hybrids H3 and H4
are identical unless the following happens:

• Event Bad: There exists a commit or proposal node with stat = adv and inj-allowed(c, id) = false

for its parent c and creator id.

Note that inj-allowed(c, id) = false if id’s spk in commit c is not exposed or the epoch key in c is
not leaked to the reduction. We then can decompose the event Bad into the following two sub-events.

• Event Badsig: There exists a commit or proposal node with stat = adv and Node[c].mem /∈ Exposed for
its parent c and creator id.

• Event BadMAC: There exists a commit or proposal node with stat = adv and ¬know(c,′ epoch′) for its
parent c.

The proof is concluded by combining Lemma 4 and Lemma 5, where we respectively prove that the
events Badsig and BadMAC will never happen except for negligible probability.

Lemma 4. For any environment Z, there exists a reduction Bsig that succeeds in the SUF-CMA game
with a probability that is only polynomially smaller than the probability of Z triggering Badsig.

Proof. For any environment Z, Bsig emulates the functionalities and simulator by embedding its challenge
spk as one of the public keys honestly created during the experiment. To emulate commits signed under
ssk, Bsig calls Sign oracle. When Badsig occurs, reduction Bsig stops the experiment and sends to its
challenger to forgery consisting of the sig′, tbs′ from the injected node c′.

First assume c′ is a commit node. We show that if Badsig occurs and spk = Node[c].mem[id], then
Bsig wins.
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1. We know sig′ is a valid signature over tbs′. The injected node was created when some party accepted c′

which means that it verified sig′ under spk = Node[c].mem.

2. Simulation differs from the experiment when spk = Node[c].mem is corrupted, however this does not
happen as the event guarantees spk = Node[c].mem /∈ Exposed.

3. The reduction Bsig has never queried Sign on tbs′ for sig′ to its signing oracle. Assuming (sig′, tbs′) is
the same as (sig∗, tbs∗) queried by Bsig to the sign oracle for c∗, where c′ is injected and c∗ is honestly
generated by Bsig. By showing our assumption implies c′ = c∗, we will achieve a contradiction. Now we
will divide the proof for two, according to the type of the commit c′.

• We first consider that c′ is a regular commit. c′ contains (groupId′, epoch′, leafIdx′, ′Commit′, C ′,
confTag′, sig′, membTag′) and tbs′ = (groupCtxt′, groupId′, epoch′, senderIdx′, ′Commit′, C ′) and
c∗ contains the analogous values. Then c′ and c∗ can only differ on confTag′ ≠ confTag∗ or
membTag′ ̸= membTag∗. Note that membTag′ = MAC.tag(membKey′, C ′) and that membTag∗ =
MAC.tag(membKey∗, C∗). According to our assumption tbs′ = tbs∗ implies C ′ = C∗ and
groupCtxt′ = groupCtxt∗. Group context determines the epoch and key schedule. We have
membKey′ = membKey∗ and further confKey′ = confKey∗. Accordingly membTag′ = membTag∗

and confTag′ = confTag∗, which gives a contradiction.

• Then we consider that c′ is an external commit. c′ contains two components: framedContent =
(groupId′, epoch′, ′new member commit′, ′commit′, C ′, sig′) and framedContentAuth′ = (sig′, confTag′)
and c∗ contains the analogous values. Moreover, tbs′ = (groupCtxt′, groupId′, epoch′, senderIdx′,
′Commit′, C ′) and tbs∗ contains the analogous values. Similar to regular commit, c′ and c∗ can only
differ on confTag′ ̸= confTag∗. By definition it holds that confTag′ = Hash(confTransHash′, confKey′)
and confTag∗ = Hash(confTransHash∗, confKey∗). Since confTag is derived on the framed content,
we have confTag′ = confTag∗. However this gives us contradiction as c′ is injected and c∗ is
honestly generated.

Lemma 5. For any environment Z, there exists a reduction BMAC and BPKE such that the probability that
Z triggering BadMAC is upper bounded by p(ϵMAC + ϵPKE), where p is a polynomial, ϵMAC is the advantage
of BMAC against the security of MAC and ϵPKE is the advantage of BPKE against the security of PKE.

Proof. For an injected packet, Z can trigger BadMAC in the following cases. First, we consider the case
where all receivers verify a MAC tag confTag but not membTag. The reduction BMAC runs Z which emulates
the UC experiment exactly, except that it uses its oracles in the EUF-CMA game of MAC, instead of using
the MAC key membKey in epoch c. If BadMAC occurs for parent node c and injected child c′, reduction BMAC
outputs forgery (confTag′, tbm′) where tbm′ denotes the content to be MACed.

1. The difference between the probability of BadMAC occurring for c in the experiment emulated by the
reduction BMAC’s and in Hybrid H3 (or H4 ) is upper bounded by the advantage of the reduction BPKE in
the GSD game.

2. If BadMAC occurs for c, then the reduction BMAC wins with (confTag′, tbm′).

For the first item, BadMAC for c implies that safe∗(c) is true until the event and no party in c is exposed.
We can construct BPKE implicit authentication, i.e, confidentiality proof. The reduction BPKE embeds the
challenge in membKey in c and proceeds the experiment as until BadMAC for c occurs. Thus it has no effect
on the probability of the event.

For the second item, we show that for valid tag (confTag′) that is verified by a party accepting
the injected c′, (confTag′, tbm′) was not queried by the reduction BMAC to the MAC oracle. Assume
(confTag′, tbm′) = (confTag∗, tbm∗), where (confTag∗, tbm∗) was queried by the reduction BMAC to the
oracle when it honestly generated packet c∗. We need to prove that the reduction BMAC has never queried
tbm′ to its MAC oracle. Note that BMAC has only queried other tbm∗ for other node c∗ to its MAC oracle.
Thus, for any c′ ̸= c∗, it always holds that tbm′ ̸= tbm∗. The proof for commits requiring a membTag can
be demonstrated in a similar manner. External commits, on the other hand, do not include a membTag;
thus, the proof remains consistent with the proof provided for confTag above.

Now, consider commits that include only extAdd proposals. Note that such commits do not contain a
framed MAC tags, e.g., confTag or membTag. Consequently, the authenticity of these commits relies on
the first part of inj-allowed, specifically the security of the Sig.
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F Proof of Theorem 2

Theorem 2. Assume that PKE is IND-CCA secure and that Sig is SUF-CMA secure. The ETKPSK protocol
securely realizes (FIWAS ,FIWKS ,FECGKAPSK) in the (FAS ,FKS ,GRO)-hybrid model, where FECGKAPSK uses
the predicates safe and inj-allowed from Figure 7 and calls to HKDF.Expand, HKDF.Extract, and MAC
functions are replaced by calls to the global random oracle GRO.

Proof. For the proof of ETKPSK, we retain the description of H1 − H4 . Since ETKPSK differs from
ETK only regarding PSK injection, most of the proof is identical to the one of ETK in Appendix E.
Hence, we will focus on stating additional requirements and checks in this section. We again prove the
indistinguishability between every two adjacent hybrids by Lemma 6 (in Appendix F.1), Lemma 7
(in Appendix F.2), and Lemma 8 (in Appendix F.3).

F.1 Consistency and Correctness of ETKPSK

Intuition. We prove the indistinguishability between H1 (ETKPSK) and H2 by proving for every input
operation that the outputs in ETKPSK and FECGKAPSK of H2 are the same. The assert statements in
FECGKAPSK of H2 capture that if one party has processed a proposal, (external) commit, or welcome, all
parties that process it in the future end up in the same shared group state. Thus, the indistinguishability
between H1 and H2 indicates that FECGKAPSK guarantees consistency.

Lemma 6. Hybrids H1 and H2 are indistinguishable, that is, ETKPSK guarantees consistency.

Regular (internal) Proposals. We consider two cases when FECGKAPSK sends (Propose, act), firstly
act ∈ {up-spk, add-idt, rem-idt, psk-epoch-use}, or secondly act ∈ {up-spk, rem-idt, psk-epoch-use}. In
both cases, assert statements and consecutively the indistinguishability of the statements remain the same.

External Proposals. All the assert statements and the proof remain the same.

Commits. Additionally, for each PSK proposal contained in p⃗, S2 determines the commit of the history
graph the injected PSK pertains to. This cannot be derived from the protocol directly, hence S2 needs
to maintain a separate mapping from commit to PSK. This is possible since S2 has access to the whole
history graph. S2 returns these c in the order of the PSK proposals as ⃗cpsk. If any pskId appears twice
in a commit, S2 returns ⊥ instead. Then, FECGKAPSK runs *fill-props. For every proposal p in the
input p⃗ without a node, S2 sets orig and act according to p. This is always possible, as the basic check in
*apply-props by ETKPSK guarantees that p is well-formed.

Indistinguishability of Output: An additional req statement may have the Commit algorithm return ⊥:

• req id ∈ Node[Prop[p].cpsk].has psk: *fixate-psk-refs guarantees that every PSK proposal refers to
a valid cpsk. This req statement will fail if id did not perform a Process of cpsk correctly (yet) or the
same pskId appears twice. Due to the indistinguishability of Process between ETK and FECGKA, the
same holds for ETKPSK, and the PSKs of cpsk would have not been added to id’s psk store. Hence

ETKPSK would have failed in *derive-psk-secret.

Assert Statements: The commit algorithm includes the following additional assert statements:

1. assert res ̸= ⊥: holds if *fixate-psk-refs((Prop[p] : p ∈ p⃗), ⃗cpsk) runs through. It would fail either
because S2 could not find a suitable cpsk or because the epoch does not match. The latter must hold
because of the direct correspondence of Node[c].epoch in FECGKA and the epoch of c and the way that
S2 choses cpsk. The former fails only if there is no preSharedKeyId for the epoch in the psk store in
which case, due to the direct correspondence of Node[c].has psk in FECGKA and the commit’s existence
in the psk store in ETKPSK, both *req-correctness will fail and ack will be false.

2. assert *valid-spk remains the same.

3. assert mem ̸= ⊥ will succeed in the following cases.

• p = pup + prem + padd + ppsk includes the additional ppsk. Because of the direct correspondence of

Prop[p].act and the action of p, ETKPSK performs the same check and S2 will return ack = false.
Prop[p] accurately reflects the action because either p is created by S2 according to act, or act is
set by S2 extracting act from p.
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• Node[c].epoch = epoch ∧ id ∈ Node[c].has psk ∨ ∄(id, ∗) ∈ G states that at least one PSK for each
PSK proposal must be in id’s possession. This is checked by ETK.

4. assert *valid-successor has the additional case:

• Node[c].epoch = Node[Ptr[id]].epoch: if Node[c] is a detached root, the epoch was read out of c′ and
must match, as it is included in the confTransHash, based on which S2 chooses the root. If it was a
pre-existing node, the confTransHash also matches (else c would not be equal to a previous node),
and hence the same holds.

5. assert Wel[vec w] ∈ {⊥, (c, cpsk)} guarantees that the vector of welcome message is different for each
c. This is achieved by including the confTag over the transcript hash in the Welcome’s groupInfo. In
Commit, Wel[vec w] can previously only have been set to c and following the argumentation for Process,
the probability for another p⃗ matching c is low, and hence ⃗psk is also the same according to the standard
hybrid argument. The only other option for setting Wel[vec w] is in Join. There, c and ⃗psk are set to
the value provided by S2, which retrieves c as the only fitting commit by comparing the confTransHash,
or it is set to a detached node. In the latter case, c is providing the link to the detached node, hence
*attach would have set Wel[vec w] to (c, ⃗cpsk).

Process. ETKPSK distinguishes the processing of external commits and regular commits by id handing
in either an empty vector or the full proposal vector. Both for regular and (for both cases of) external
commits, the simulator S2 retrieves c’s epoch, orig′, spk′ from c. S2 also extracts the proposal vector p⃗
from c and the vector ⃗cpsk consisting of the commits of all injected PSKs or ⊥ if any of the pskId appear
twice.

Indistinguishability of Output:
For the regular commits, in addition to cases mentioned in ETK, the Process returns ⊥ in the following

cases:

• req res ̸= ⊥: holds if req *fixate-psk-refs(Prop[p] : p ∈ p⃗) runs through. This is the case for a valid
commit, where cpsk has been set before. Otherwise, req *req-correctness would have failed, and ETK
would either also have failed or provided the necessary correct commits in ⃗cpsk.

• req (id ∈ Node[cpsk].has psk ∨ ∄(id, ∗) ∈ G) holds as for Commit.

For the external commit we consider the following additional cases where Process returns ⊥:

• req ExtCommitProps ̸= ⊥ holds as for Commit: if *fixate-psk-refs fails because of an unseen commit,
*req-correctness would have failed, and ETK would have failed if it did not have the appropriate ⃗cpsk.

• req id ∈ Node[cpsk].has psk: due to the direct correspondence between has psk and the PSK being in
id’s psk store in ETK, this fails exactly if ETK fails.

Assert statements : The Process algorithm of ETKPSK includes the following assert statements for
regular commits:

• assert mem ̸= ⊥ means *apply-props failed. If c already existed, then *apply-props must have
been run on the exact same parameters before, especially on Ptr[id] (or *req-correctness would have
failed while checking Node[c].par = Ptr[id]) and passed. Else, *req-correctness would have failed. If
Node[c] = ⊥ or c were malformed according to ETK (i.e. a proposal removing the committer), S2 would
return ack = false and Process would unwind. This means that c either corresponds to a correct
detached root or a correct new node. It is left to show that every single req in *apply-props is either
fulfilled or S2 would have returned ack = false, unwinding the function. This holds for the same
reason as for Commit, the only exception being PSK proposals, since Node[c].epoch = epoch ∧ id ∈
Node[c].has psk∨ ̸ ∃(id, ∗) ∈ G might hold for the committer but not the processing party. In such a
case of a valid commit with unprocessable PSK proposals, *req-correctness would have failed and S2
would have returned ack = false. The same holds for an injected commit.

In the case of an external commit, *process-ec(c) contains the following assert statements:

• assert mem ≠ ⊥ for both Node[c] = ⊥ and Node[c] ̸= ⊥: holds if *apply-props runs fully. The only
additional case that results in the unwinding of *process-ec is as follows:
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– ∃Node[c].epoch = epoch∧ id ∈ Node[c].has psk∨∄(id, ∗) ∈ G states that at least one PSK for each
PSK proposal must be in id’s possession. This is guaranteed by the req in the line before.

Join. The Join returns ⊥ only in the following case:

• req id ∈ Node[cpsk].has psk: if ⊥ were invalid, S2 would have returned ack = false. Due to the direct
correspondence of has psk and the PSK being in id’s PSK store, this req fails exactly if ETK does.

Assert Statements: The proof for the assert statements of the Join algorithm remains the same.

Consistency: The proof showing that every joiner id that executes Join with a vector of welcome message
vec w and every group member id′ that executes Process with a commit c′ must end up in the same
state remains the same.

External Commit. After S2 constructs the external commit and generates all required parameters and
variables and makes the necessary checks as described in ETK proof, it additionally sends the vector ⃗cpsk
consisting of the commits of all injected PSKs or ⊥ if any of the pskId’s appear twice.

Indistinguishability of Output:
FECGKAPSK returns c and g′ generated according to the protocol. The ExtCommit returns ⊥ additionally

in the following cases:

• If req ExtCommitProps ̸= ⊥ fails then because S2 could not supply suitable cpsk or there was the same

pskId twice. In this case, ETKPSK would also fail.

• req id ∈ Node[cpsk].has psk: Due to the direct correspondence of has psk and the PSK being in id’s

psk store, this req fails exactly if ETKPSK does.

Assert Statements: The ExtCommit algorithm includes changes only for the following assert statements:

• assert mem ̸= ⊥ ∧ (id, spk) ∈ mem: is given as *apply-props executed on any p⃗ contains at least the
committer (in this case id) when run successfully. It runs successfully because:

– the requirements on props of *apply-props are fulfilled through the construction in ExtCommit.

– req (idc, ∗) ∈ G (resync) or (idc, ∗) /∈ G (external commit): is equally covered by *req-correctness
in combination with the ETKPSK execution.

– req ids = idt = idc and ids ∈ G is fulfilled through the construction in ExtCommit and the
previous req.

– ∃Node[c].epoch = epoch∧ id ∈ Node[c].has psk∨∄(id, ∗) ∈ G states that at least one PSK for each
PSK proposal must be in id’s possession. This is guaranteed by the req in the line before.

• *consistent-ext-comm() holds for a similar reason as for proposals and commits. An external
commit does not include a membership tag, but it does include the confirmation tag, a MAC over the
GroupContext’s confirmed transcript hash, which provides the same uniqueness guarantee of a commit c.
Node[c].pro and Node[c].par will hence only be set to the proposals included in c and the parent of c included
in the confTransHash, or else to ⊥ in case of a detached root. As a consequence of these two properties,
Node[c].mem will always be set to the same membership set handed to *consistent-ext-comm.

As ExtCommitProps is directly constructed from p⃗, as a consequence, all its parameters are also equivalent,
the only exception being cpsk, whose injection, however, is encoded in the confTransHash.

F.2 Confidentiality of ETKPSK

Lemma 7. If PKE is GSD secure, then Hybrids H2 and H3 are indistinguishable, that is, ETKPSK

guarantees confidentiality.

Proof. We show the indistinguishability by hybrid games. More concretely, for any i > 1, we define two
adjacent sub-hybrids Hsi−1 and Hsi that behave differently only in epoch i: Hsi−1 sets the epoch secret
in epoch i according to FECGKA (depending on whether safe(c) holds), while Hsi sets is according to the
simulator S. Further, we reduce the indistinguishability between every two adjacent hybrid games to the
GSD security of the underlying PKE. More concretely, we show that if the environment Z can distinguish
between a random key and a simulator chosen application key for c with safe(c) = true, the reduction B
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(i.e., the adversary that aims to break GSD game) can use the environment Z to win the GSD game with
gsd-exp((c, u)) = false for some associated secret u.

The individual confidentiality proof steps of the ETKPSK are organized as follows:

Proof part 2.b): Confidentiality

Show indistinguishability:

I) when not allowing any injections or corruption of randomness by reasoning through all possible
cases of gsd-exp((c, uapp)) (Appendix F.2):

(a) the corruption of (c, uapp)

(b) the corruption of both (c, ujoi) and (c, upsk) .

(c) if all three gsd-exp ((c, ucom)) and gsd-exp ((Node[c].par, uini)) and gsd-exp ((c, upsk)) are
true.

II) when allowing injections for cases (a) - (c) (Appendix F.2).

III) when allowing the corruption of a client’s randomness for cases (a) - (c) (Appendix F.2).

Here we mostly note down the psk injection effect on the proof as many proof steps identical
to Appendix E.2

Part 2.b.I) No Injection or Corrupted Randomness Allowed
Here in case of neither malicious injection nor randomness corruption is allowed, we prove by reduction

that gsd-exp((c, u)) =⇒ ¬safe(c). Reduction B has the following modifications on the code of the
functionalities and the simulator in the context where no injection and no corrupted randomness are
permitted.

Following this, we systematically examine each possible case of gsd-exp((c, u)), corresponding to the
three conditions specified above, and illustrate how our proof captures the requirements of the safe
predicate.

As described in the gsd experiment explanation; psk injection affects our model, for {add, extAdd,
psk}-only commits, no updatePath is executed, and all of id ’s secrets remain the same. This is addressed
in *secrets-replaced(c, id) with color coding. Different than ETK in Appendix E.2, for no updatePath is
executed case, we will also consider psk proposals. To this end, we also consider the commits including
add, extAdd, psk proposals only, as well as those that involve any combination of these proposal types.

From draft 12 to RFC: All the changes related to leaf key separation, welcome messages and init key
usage are also valid for ETKPSK. Additionally:

• Proposal psk: Whenever Z chooses an pskIds, the reduction B stores pskIds in the new proposal node.

• Applying Proposals: Additionally, for each psk proposal with list pskIds = {pskId1, pskId2, ...} (recall
that the reduction has already stored pskIds in the corresponding node), the reduction B recursively
queries the Join-Hash oracle with input (tempi, pskIdi, tempi+1, lbl = derive-psk) for i ≥ 1, where
tempi = 0. Note that the secret included in the node, which is derived from the last Join-Hash query,
is indeed the psk-secret of the psk proposal. We denote this node by upsk.

• Commits by reference: Compared with the ETK case in Appendix E.2, the *rekey-path operation is
not executed if the proposal list in a regular commit satisfies the condition that it contains only add,
extAdd, or psk proposals.

On the other hand, if the commit includes any psk proposal, the reduction B emulates the *derive-keys
as follows:

1. Add vertices to the GSD graph: Additionally the reduction B creates a ujoi-psk vertex by querying
the Join-Hash oracle with input (ujoi, upsk, ujoi-psk, lbl = joi-psk). Afterwards, the reduction B
generates vertices uapp, umem, uconf, uini, uext, upsk by querying the Hash oracle as in [4], but with
inputs (ujoi-psk, ulbl, lbl) for lbl ∈ {app,mem, conf, ini, ext, psk}.

2. Create the packet: To complete the set of values needed to compute the commit packet, the reduction
B additionally has to corrupt upsk.

3. Create the welcome message: The welcome message is a component of the welcome vector, consisting
of three parts. The final part, wel type, indicates whether the message contains a single welcome
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message or multiple welcome messages. In the first part, for each new member idt, the encryptions
of joinerSec and idt’s pathSec together with pskIds under the init-key in idt’s key package
(obtained from KS by the party adding idt). Let ui be the GSD vertex corresponding to the
pathSec sent to idt. If idt’s init-key is of the form (gsd , u)7, A obtains the encryptions by creating
encryption edges from u to ujoi and from u to ui. Otherwise, it corrupts ui and ujoi encrypts
the values itself. The second part of the welcome message contains the encryption of groupInfo,
under the welcome secret which is simply the combination of joinerSec, psk-secret (derived
from pskIds) and the vector of welcome messages. To compute the second part of the vector of
welcome messages, the reduction B creates the vertex uwel by querying Hash oracle with input
(ujoi-psk, uwel,wel). The reduction B gets the respective secrets by corrupting corresponding vertices.

• Expose: Additionally, the state of id includes psk-secret, as specified by *update-stat-after-exp.

As the basis for the proof, considering the key derivation that also considers the psk key material
illustrated in Figure 2, gsd-exp((c, uapp)) can only hold true in one of the following cases:

2.b.I.a) The reduction B corrupts the vertex (c, uapp). This case identical to ETK.

2.b.I.b) The reduction B corrupts the vertices (c, ujoi) and (c, upsk) to ultimately gain access to the
application secret. This happens if and only if the reduction B computes a vector of welcome messages
for idt using an exposed key bundle. Upon exposure of the key bundle, the initial key also becomes
corrupted along with upsk (since we are considering only the resumption psk’s). So the mechanism
remains as previously described.

2.b.I.c) This case considers the following three elements to be true: gsd-exp((c, ucom)), gsd-exp((Node[c].par,
uini)), and gsd-exp((c, upsk)). We need to show that gsd-exp((c, ucom)) implies know(c, ∗). This impli-
cation follows by condition d) of *can-traverse. Here, gsd-exp((c, ucom)) is only possible in one of the
following cases that are identical to ETK.

1) the reduction B corrupts path secrets ui, and uses them to compute gsd-exp((c, ucom))

2) the reduction B calls the Enc oracle to encrypt path secrets under relevant keys

3) after the commit is processed, the reduction B exposes a party id that holds ui’s secret

Additionally the reduction B needs to assure Node[c].psk ̸= good. This only possible if the reduction B
corrupts some id who owns the psk (not necessarily idt that commits c) or exposes pskId that generates
the psk-secret during the commit.

Considering case 3) any actions of id requiring updatePath removes ui’s secret from its state, thus, the
proof remains the same. For {add, extAdd, psk}-only commits, since no updatePath is executed, all of
id’s secrets remain the same. Thus, if id is corrupted, know(c, id) is true until an updatePath issued.
We complete the proof by showing that for cases 1) and 2) the combination of gsd-exp((Node[c].par, uini))
and gsd-exp((c, upsk)) implies know(c, ‘epoch’). For these cases the proof follows the same pattern as the
encapsulating proof for uapp, as both uini and upsk have the exact same lifetime as its epoch’s uapp. This
is because the resumption psk’s with application usage are generated from each epoch secret. The proof’s
condition c) hence recursively proceeds until at some point, Node[c].pars = rootx. At that point, condition
d) of *can-traverse(c) in safe(c) becomes true.

External Commit. The proof is identical to that of ETK presented in Appendix E.2, with the exception
of a minor modification in Case 2.b.I.c). Figure 27 visualizes the GSD game with the effect of a psk

injection. There is an edge between (c, uexini) and (c, ujoi), meaning that c is an external commit. As the
*rekey-path-upon-join proceeds in the same way as *rekey-path in a regular commit, the reasoning
for gsd-exp((c, ucom)) implying know(c, ∗) also remains the same. The only change occurs when the
combination of gsd-exp((Node[c].par, uexini)) and gsd-exp((c, upsk)) implies know(c,′ epoch′).

Similar to the analysis for regular commits, we consider two cases: i) uexini is compromised together
with upsk when a client id is exposed while processing the commit, in which case safe(c) does not hold, or
ii) the reduction B calculates uexini and upsk itself if the seed sexini and spsk are exposed. Case i) happens
if an id’s key bundle is exposed during the commit processing, which again implies safe(c) is false, while
case ii) happens if it is encrypted under a node whose private key is compromised. The seed sexini is
encrypted under the key from the uext node of epoch Node[c].par. A uext node is exposed in the exact
same cases as a uapp, and as in a commit, and the the upsk has the same life time as uapp, proof continues
recursively until c is a root and hence safe(c) is false.

7Following [4], a secret key of the form (gsd , u) means that it is unknown to the environment Z.
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Figure 27: GSD game graph of an external commit, following an image from [4]. Each circle represents a
node in the GSD graph. Dashed arrows mark an encryption of the sink using the key of the source, while
bold arrows mark a Hash call on the source. The additionally added nodes of the graph are marked in .
The external secret encrypts the committer-generated seed sexini that is used as the init secret of epoch c.

Part 2.b.II) Allowing Injections In the case of allowing the injection of malicious injections, additional
to the capabilities we mentioned in Appendix E.2, including psk injection, the functionalities and the
simulator incorporate the following adversarial modifications:

From draft 12 to RFC

• Injected proposals: Additionally, in the case of psk proposal, the reduction B stores pskIds included in
the psk proposal in a new proposal node.

• Commits injected to process: In the case that Z makes id process an injected commit c′ from a party
idc ̸= id, reduction B attempts to build new commit node’s state. For {add, extAdd, psk }-only
commits, the reduction B only applies the proposals, as these commits do not require rekey operation.
For other commits along with the ciphertexts ctxt that id would decrypt with keys in the ratchet tree,
the reduction B proceeds as follows:

i-ii) remain the same.

iii) if the ctxt is copied from an honest commit that was generated earlier by B, for which the GSD
node associated to both appSecret is still a valid challenge, we must show that id accepting such
a commit c would enable B to succeed in the GSD game. The trick in this step is to reduce the
forgery of the confirmation tag confTag in the commit c to the GSD security of the underlying
PKE. Let B challenge the GSD node u and extract the correct seed from Z’s random oracle calls
as follows:

1. Note that appSecret = Hash(joinerSec, psk-secret, .) and joinerSec = Hash(initSecret,
commitSec, .), where HKDF is modeled as RO. Moreover, note also that commitSec must be
the same in c and c′ for the shared ctxt to be accepted.

2. The reduction B needs to extract the joinerSec and psk-secret of c′. To this end, the
reduction B proceeds as follows: First, recall that the confTag is a MAC of confKey and
confTransHash. The only way for Z to compute a valid tag is to query RO on (confKey,
confTransHash). The reduction B can search the RO query history and extract confKey.
Second, recall that confKey is derived by applying HKDF to joinerSec and psk-secret. The
environment Z needs to query RO on (joinerSec, psk-secret) for deriving confKey. The
reduction B can then extract joinerSec and psk-secret of c′ in a similar way.

3. This case also remains the same.

• Injected vector of welcome messages vec w: When Z injects a welcome message w = (encGroupSec, encGroupInfo)
in the welcome vector vec w, B does as follows:

1. Similar to proof of ETK, the reduction B searches for a key package kp such that SK[id, kp] ̸= ⊥ and
ISK[id, kp] ̸= ⊥ and H(kp) matches an entry e ∈ encGroupSecs and aborts if no such kp exists.
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2. If e is copied from a vector of welcome messages vec w generated by B while creating a commit node c and
ISK[id, kp] is a GSD node, to win the game, reduction B proceeds as follows: B needs to distinguish
whether the injected welcome message is associated with the commit c that the e stems from. To this
end, B compares the encGroupSec. Since e is copied, the joinerSec and pskIds underlying different
welcome messages that include the same e must be the same. Moreover, psk-secret must be the same
as is it derived from pskIds. Furthermore, an equal encGroupInfo implies an equal confTransHash. In
this case, B moves id to c.

If the encGroupInfo in the vector of welcome message vec w is different from the one derived by the
reduction B for c, that means that e was copied but used to create the welcome for a non-existent
commit c′. This is not possible as it would allow B to win the GSD game: In order to construct
a encGroupInfo that is decryptable using the secrets stored in the encGroupSecs, the environment
Z must be in possession of the welcome secret (as Z cannot copy encGroupInfo from c). In order
to derive the welcome secret, Z must derive it from the joinerSec and psk-secret using the RO
calls. The reduction B can extract joinerSec and psk-secret by checking queries that have been
sent to RO one by one as follows: First, B attempts to parse the input of RO into joinerSec and
psk-secret candidates. If the parse fails, B directly omits the following steps and attempts for the
next RO input. Second, the reduction B derives welcome secret and confKey from the joinerSec and
psk-secret candidates, respectively. Third, the reduction B derives welcome key and welcome nonce

from welcome secret. Fourth, the reduction B decrypts encGroupInfo to recover groupInfo. Fifth, the
reduction B parses groupInfoTBS from groupInfo and further confTag from groupInfoTBS. Finally,
the reduction B verifies the confTag by using the confKey. If no error occurs, then reduction B found
the correct joinerSec and psk-secret. If any error occurs, then the reduction B continues to check
the next RO query. Note that the environment Z can send only polynomial queries to RO. The checks
that B needs to execute must also be in polynomial time.

From joinerSec and psk-secret, the reduction B can calculate the appSecret for the valid GSD
challenge node c and hence win the game. Copying e is hence not possible.

3. Else, if e has not been copied from any vector of welcome messages generated by B, the reduction B can
simply obtain the encrypted joinerSec, pskIds and pathSec either by using the secret in ISK[id, kp],
if it has been compromised and therefore known by B, or otherwise by querying B’s GSD decryption
oracle Dec. Related to pskIds, we consider two cases. First, all psk in the list pskIds have been
exposed. In this case, the reduction B also knows them and therefore can derive psk-secret by itself.
By using the joinerSec and psk-secret, the reduction B can decrypt and verify the encGroupInfo in
the vector of welcome messages. If the verification passes, then B further checks whether the decrypted
groupInfo indicates an existing node c (by comparing the confTransHash ∈ groupInfo) or a new node
c′. If groupInfo indicates an existing node c, then B moves id to c. Otherwise, groupInfo indicates a
new node c′. In this case, B creates c′ with labels taken from groupInfo and the ratchet tree set to the
public part of τ from groupInfo. Then, for any node of τ with a public key for which it has a secret
key stored (in another ratchet tree or in ISK and SK), B copies the secrets into τ . Moreover, B updates
the ratchet tree secrets to those derived from pathSec (if any secret key was set to a GSD node, B uses
pathSec to win the game), and computes the epoch secrets from joinerSec. For all other unknown
secrets in τ , B keeps them as ⊥.
Second, there exists some PSK with identifier pskId ∈ pskIds that is unexposed. In this case, the
environment Z must create welcome secret by querying RO. Similar to above case for “H(kp) ∈
encGroupSecs but encGroupInfo is forged”, we can prove that this case is impossible otherwise B can
easily win the GSD game.

Injected groupInfo. The proof is identical to ETK for injected groupInfo.

External Commit Injected to Process.
The reduction B constructs the new node including the initSecret as follows: On one hand, if the

external-key, which encrypts the shared secret sexini in the extInit proposal of the external commit, is a
GSD node, i.e., neither B nor Z has knowledge of it, B uses the Dec oracle of GSD to retrieve the shared
secret sexini. On the other hand, if the external-key is a value, meaning that both B and Z know it, B
directly decrypts sexini. The external-key cannot be ⊥, as it is not a key that the adversary can inject.
From sexini, B can then derive the new initSecret. The only case where B will not be able to decrypt sexini
is if the kem output stems from an honest external commit c′ previously generated by B and copied by Z
and whose appSecret is still a valid challenge. If an id accepts such a copied kem output, B can use it to
win the GSD-game similarly to a copied path secrets in commits:
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1. Since the kem output is copied, the ext-initSec is identical in both the injected external commit c and
the honest external commit c′. At the same time, confTransHash must differ; otherwise, c and c′ would
be identical.

2. For Z to compute a valid confTag for the injected commit c, it must query the RO on H(confTransHash, confKey).
From this query, B can extract the confKey. Since confKey is derived from (joinerSec, psk-secret),
Z must also query RO on (joinerSec, psk-secret) to compute a valid tag. This allows the reduction
B to extract psk-secret.

3. For Z to compute the joinerSec for the injected commit c, it needs to query RO on Hash(ext-initSec,
commitSec). From this query, B can extract the ext-initSec, which is shared with c′, by searching the
RO query history.

4. B can then corrupt the commitSec of c′, which does not impact the challenge, and compute the joinerSec
of c′. Using this joinerSec and psk-secret, the reduction B calculates the appSecret.

Thus, this case cannot occur.
The reduction B handles the updatePath of the commit the same way as a regular one, as the

argumentation of an injected commit relies on calculating the initSecret and psk-secret of c from the RO
calls and corrupting the initSecret and psk-secret of c′ directly - regardless of its origin. Note that in
the case of an injected external commit, both the initSecret and psk-secret are always retrieved by B
directly via decryption. This does not affect the argument showing it is impossible to copy updatePath

secrets from an honest commit.
The final case to consider is when both sexini and ctxt are copied. If they are copied from different

commits, the confTag can be used to break the challenge for both commits in the same way as before.
Figure 28 illustrates how B utilizes Z to win the GSD game in case of a copied ctxt.

If they are copied from the same commit but the confTransHash differs from the original commit (e.g.,
when the external commit is injected for a different party), the joinerSec and psk-secret, retrievable
via the confKey RO call, are the same between the two commits. The reason behind is that the same
ciphertext indicates same path secret and proposals, which further indicate the same commitSec and
psk-secret. Combing the fact that sexini is copied from the same commit, which yields the same initSecret,
the joinerSec must also be same. Thus, this allows the reduction B to compute the appSecret to be
computed from it.

Proof of Indistinguishability. We show that gsd-exp() =⇒ ¬safe(c). As a reminder, this is part 2.b.II
of the main proof of ETKPSK. The subproof is structured as follows:

Part 2.b.II): Confidentiality when allowing injections

The reduction B succeeds in winning the GSD game for commit c′ if the environment Z successfully
copies a ciphertext from commit c′ into an injected commit c. This can be formulated as follows:

a) Show that if the reduction B corrupts (c, uapp) then ¬safe(c)
b) Show that if the reduction B corrupts (c, ujoi) and (c, upsk) then ¬safe(c)
c) Show that if both gsd-exp((c, ucom)) and gsd-exp((Node[c].par, uexini)) and gsd-exp((c, upsk))

are true then ¬safe(c). For this, consider all cases where gsd-exp((c, ui)) is true:

c.1) During an exposure of an id that stores ui

c.2) When a node τ.v used in *rekey-path is exposed

c.3) If the secret in τ.v is ⊥, which is the case if:

i) Z injects a new commit c′ on behalf of id
ii) the injected commit c′ commits τ.v as an updated injected leaf
iii) the injected c′ commits τ.v as an injected key package

In the case that c is a regular commit, the proof is extended the same way as in step 2 of the original
proof in [4], except for two differences at b) and c).

In case b), we still need to prove that the corruption of (c, ujoi) and (c, upsk) implies ¬safe(c), where
now the node (c, upsk) might be created by the psk-proposal with pskIds injected by the environment Z.

Below, we prove that allowing the environment Z to inject PSK proposals with pskIds does not affect
Z’s advantages by considering the following two additional sub-cases: whether the environment Z has
exposed all of the PSK values of pskId ∈ pskIds or not, i.e., Node[c].psk = good or bad.
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Figure 28: Visualization of B using the confTag to win the GSD game for a commit c′ if the environment
Z successfully copies a ciphertext from a commit c′ into an injected commit c. The commit secret is
shared between both commits. In the first step (in ), Z needs to call the random oracle RO to derive
the confTag from the confKey and the confTransHash, which B now learns from the query. Z also needs
to query the RO to derive confKey from joinerSec and psk-secret. B now knows joinerSec and
psk-secret of c. In order to derive joinerSec for commitc, Z also needs to query Hash(commitSec,
initSecret), which B now learns (in ). B now knows the commitSec of commit c′, and corrupts the
initSecret and psk-secret of commit c′ (in ). B can now calculate appSecret of c′.

Recall that PSK injection allows the environment Z to inject the pskId, but not the PSK val-
ues themselves. The environment cannot manipulate the exact PSK values and further the yielding
psk-secret. In the first sub-case, if the environment Z has exposed all PSK values with identifiers
pskId ∈ pskIds, i.e., Node[c].psk = bad, then the environment Z can compute psk-secret. At the
same time, we have gsd-exp((u, upsk)) = true. However, in order to derive the correct epoch-secret
epochSec = HKDF(joinerSec, psk-secret), the environment Z still needs to query RO with correct
joinerSec. Except for correctly guessing joinerSec with negligible probability, the only way that Z
can obtain joinerSec is to corrupt (c, ujoi). Otherwise, in the second sub-case, the environment Z
does not expose all PSK values of the corresponding pskId ∈ pskIds, i.e., Node[c].psk = good. In
this case, we have gsd-exp((c, upsk)) = false. In order to derive the correct epoch-secret epochSec =
HKDF(joinerSec, psk-secret), the environment Z has to query RO with the correct psk-secret, which
is generated by the recursive invocation of HKDF(., pskpskId) for all pskIds ∈ pskIds, where pskpskId is
the PSK value of corresponding pskIds. Thus, the environment Z has to query RO with correct pskpskId
for all pskId ∈ pskIds, in particular, for the pskId that Z has not exposed. Thus, this case also happens
with negligible probability.

Changes in case c), on the other hand, are identical to the proof for ETK, except for minor modifications
in c.1) and c.2). Commits that include an updatePath, which encompass any form of regular commit but
exclude add, extAdd-only commits, are considered as add, extAdd, psk.

In the case that c is an external commit - if there is an edge between (c, uexini) and (c, ujoi) - the
proof proceeds as follows: gsd-exp(c, uapp) is only true in three cases:

a) B corrupts (c, uapp) - same as in step 1

b) B corrupts (c, ujoi) and (c, upsk) - same as in step 1

c) if all three gsd-exp((c, ucom)), gsd-exp((Node[c].par, uexini)) and gsd-exp((c, upsk)) are true:
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• For gsd-exp((c, ucom)) the argumentation remains the same as for regular commit. Note that an
injected external commit c′ (case i)) hence implies know(c).

• In addition, gsd-exp(((Node[c].par, uexini))) can also be true if injected: When the environment Z
injecting the seed sexini in the extInit proposal, the reduction B decrypts it and calculates uexini

itself. In the case of an injected external commit, condition e) of *can-traverse immediately holds,
and hence safe(c) is false.

In detached trees, the proof remains the same as ETK.

Part 2.b.III) Allowing Bad Randomness

Proposals by Value. In case of a psk proposal, the reduction B computes the proposal message p by
using randomness provided by Z (as ’nonce’ value), the current memberSec, and id’s spk (all of which are
known by B), and stores the pskId in pskIds.

Commit by Reference and by Value. Given randomness provided by Z, B computes the commit and
required secrets as:

1. The reduction B executes *rekey-path to obtain the path secrets, commitSec, and commitContent.
If a psk is required, it computes pskId using the provided randomness. It then generates a valid
confTransHash.

2. B creates a new joinerSec, which is a hash of the current initSecret and the newly computed commitSec,
i.e., joinerSec = H (initSecret, commitSec, . . . ). If initSecret stores a GSD node u, A queries the
H(u, uctr, commitSec), increments uctr, and uses the fresh, uncorrupted node as the joinerSec. Other-
wise, if initSecret stores a value, A computes the joinerSec itself.

3. Additionally, B is required to compute psk-secret. Since B knows the full pskIds list, B can compute
psk-secret same as in Step 1. Using the secrets obtained, B executes the key schedule to compute the
confTag. It then computes the commit message c and the vector of welcome messages *welcome-msg
accordingly.

Validity of the Challenge and Randomness in psk. The reduction B’s actions and the proof remain
the same for commits that involve fresh randomness. Recall that the helper predicate *secrets-replaced
captures the update of the path secret, except for the proposal-list in regular commit c is non-empty or
only includes regular add, external self-add, or PSK proposals. Any commit c′′ (except only regular add,
external self-add, or PSK proposals) with *secrets-replaced(c′′, id) would hence replace secrets injected
by randomness.

Now we will show with above changes, randomness corruption does not affect existing challenges,
where safe(c) holds. With corrupted randomness the environment Z cannot manipulate the exact values
of any psk, and therefore psk-secret. Instead, Z can inject pskId by using corrupted “nonce” value, i.e,
Node[c].psk = bad.

This case is same with part 2 of the proof: although Z can compute psk-secret, Z cannot derive
the correct epochSec unless gsd-exp((u, upsk)) = true, because the environment Z needs to query RO on
joinerSec and psk-secret to compute epochSec = HKDF(joinerSec, psk-secret). Hence, reduction
B cannot get additional advantage by psk-secret.

We adapt the proof that randomness corruption does not affect the validity of a challenge, and
gsd-exp(c) =⇒ ¬safe(c) still holds. Due to above mentioned changes, no additional corruption is
performed by B on the joinerSec, case b) of gsd-exp holds as before.

Only case that is affected is case c). Here, the proof remains in agreement with [4], showing that
gsd-exp((c, ucom)) =⇒ ¬know(c, ∗) also when allowing corruptions. This is the same bug we mentioned
in ETK proof.

Randomness in Detached Trees. The proof remains identical to the ETK proof, allowing randomness in
detached trees.

External Commit from id. Similar to regular commit, using the randomness provided by Z, reduction B
computes the external commit and the secrets in new commit node, as follows:

1. B uses the randomness provided by Z to execute *rekey-path-upon-join, obtaining all path secrets, the
commitSec, and the intermediate commit packet. It computes pskId using the same randomness. Then,
it signs the commit packet using the id ’s spk, along with Z ’s randomness, and sets the confTransHash
accordingly.
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2. A key distinction from a regular commit is that the initSecret for an external commit is determined by
the client. As a result, corrupted randomness can expose this initSecret. Reduction B computes the
ext-initSec as follows:

• If the external secret from the previous epoch stores a GSD node u, B queries Enc(u, uctr), corrupts
uctr, and sets the external seed sexini, increments uctr. B then uses this seed as the initSecret for
the external commit.

• If the external secret from the previous epoch stores a value (and is therefore known to B), B
computes the joinerSec directly.

3. Using the joinerSec, psk-secret, and the confTransHash from previous steps, B runs the key schedule,
computes the confTag, and finalizes the commit message c.

Proof for External Commit. Case a) of the proof remains the same. Case b): The reduction B now also
corrupts (c, ujoi) and (c, upsk) when executing an external commit with compromised randomness. Any
node that is injected with bad randomness has Node[c].st = bad and Node[c].psk = bad. Additionally,
external commit nodes are marked via the sender type new member. An external commit with bad
randomness hence fulfills condition e) of *can-traverse(c), and hence safe(c) = false.

Case c): To show gsd-exp((c, ucom)) =⇒ ¬know(c, ∗) for external commits, we proceed similar as
for regular commits. gsd-exp((c, ui)) can also be true if the secret in a ratchet tree node τ.v used in
*rekey-path-upon-join stores a seed s generated during an action executed with bad randomness.
Consider an external commit c′ that inserts s into τ.v. Unlike a regular commit, an external commit
injects only the secrets it generates during the commit process. It does not, for instance, include an
update proposal from another id or a corrupted key package. This injection is covered by condition a) of
*secrets-injected(c, id). Now consider the case where c itself is the external commit. Since the external
committer utilizes the same public ratchet tree as a member performing a regular commit, the proof
remains the same to regular commit.

F.3 Authenticity

We follow the same intuition with ETK to prove authenticity; specifically, we aim to demonstrate that H3
and H4 are indistinguishable by showing that auth-invariant is never triggered.

Lemma 8. If Sig is SUF-CMA secure, MAC is EUF-CMA secure, and PKE is GSD secure, then Hybrids
H3 and H4 are indistinguishable, that is, ETKPSK guarantees authenticity.

Proof. Similarly, the hybrids H3 and H4 are identical unless the event Bad occurs. We further decompose
the event Bad into two sub-events: Badsig and BadMAC. The proof is concluded by combining Lemma 9
and Lemma 5, where we respectively prove that the events Badsig and BadMAC will never happen except

for negligible probability. For ETKPSK, the case where BadMAC is triggered remains identical to that in
ETK. Therefore, we focus here on examining the scenario where the event Badsig occurs.

Lemma 9. For any environment Z, there exists a reduction Bsig that succeeds in the SUF-CMA game
with a probability that is only polynomially smaller than the probability of Z triggering Badsig.

Proof. For any environment Z, Bsig emulates the functionalities and simulator by embedding its challenge
spk as one of the public keys honestly created during the experiment. To emulate commits signed under
ssk, Bsig calls Sign oracle. When Badsig occurs, reduction Bsig stops the experiment and sends to its
challenger to forgery consisting of the sig′, tbs′ from the injected node c′.

First assume c′ is a commit node. We show that if Badsig occurs and spk = Node[c].mem[id], then
Bsig wins.

1. We know sig′ is a valid signature over tbs′. The injected node was created when some party accepted c′

which means that it verified sig′ under spk = Node[c].mem.

2. Simulation differs from the experiment when spk = Node[c].mem is corrupted, however this does not
happen as the event guarantees spk = Node[c].mem /∈ Exposed.

71



3. The reduction Bsig has never queried Sign on tbs′ for sig′ to its signing oracle. Assuming (sig′, tbs′) is
the same as (sig∗, tbs∗) queried by Bsig to the sign oracle for c∗, where c′ is injected and c∗ is honestly
generated by Bsig. By showing our assumption implies c′ = c∗, we will achieve a contradiction. Now we
will divide the proof for two, according to the type of the commit c′.

• We first consider that c′ is a regular commit. c′ contains (groupId′, epoch′, leafIdx′, ′Commit′, C ′,
confTag′, sig′, membTag′) and tbs′ = (groupCtxt′, groupId′, epoch′, senderIdx′, ′Commit′, C ′) and
c∗ contains the analogous values. Then c′ and c∗ can only differ on confTag′ ≠ confTag∗ or
membTag′ ̸= membTag∗. Note that membTag′ = MAC.tag(membKey′, C ′) and that membTag∗ =
MAC.tag(membKey∗, C∗). According to our assumption tbs′ = tbs∗ implies C ′ = C∗ and
groupCtxt′ = groupCtxt∗. As group context and psk (if there exists) determines the epoch and
key schedule. We have membKey′ = membKey∗ and psk-secret′ = psk-secret∗, and further
confKey′ = confKey∗. Accordingly membTag′ = membTag∗ and confTag′ = confTag∗, which gives
a contradiction.

• Then we consider that c′ is an external commit. c′ contains two components: framedContent =
(groupId′, epoch′, ′new member commit′, ′commit′, C ′, sig′) and framedContentAuth′ = (sig′, confTag′)
and c∗ contains the analogous values. Moreover, tbs′ = (groupCtxt′, groupId′, epoch′, senderIdx′,
′Commit′, C ′) and tbs∗ contains the analogous values. Similar to regular commit, c′ and c∗ can only
differ on confTag′ ̸= confTag∗. By definition it holds that confTag′ = Hash(confTransHash′, confKey′)
and confTag∗ = Hash(confTransHash∗, confKey∗). Since confTag is derived on the framed content,
we have confTag′ = confTag∗. However this gives us contradiction as c′ is injected and c∗ is
honestly generated.

4. Now consider all proposals nodes except extAdd-only commits, p′ contains (groupId′, epoch′, leafIdx′,
′Propose′, P ′, sig′, membTag′) and tbs′ = (groupCtxt′, groupId′, epoch′, leafIdx()′, ′Propose′, P ′) and c∗

contains the analogous values. Note that proposal have membTag but not confTag. The proof for this
case is analogous to the proof for commits.

5. For the extAdd proposal on the other hand, p′ contains (tbs′, sig′), where tbs′ = (groupId′, epoch′,
new member′, ′Propose′, P ′) and c∗ contains the analogous values. Note that here as there is no membTag

or confTag, commits c′ and c∗ that includes only extAdd proposals can only differ on psk-secret′ ̸=
psk-secret∗. According to our assumption tbs′ = tbs∗ implies C ′ = C∗ and groupCtxt′ = groupCtxt∗.
As group context and psk determines the epoch and key schedule. So psk-secret′ = psk-secret∗ must
hold. This results in a contradiction.
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