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Abstract. The Linear Code Equivalence (LCE) problem asks, for two given
linear codes C, C′, to find a monomial Q mapping C into C′. Algorithms solv-
ing LCE crucially rely on a (heuristic) subroutine, which recovers the secret
monomial from Ω(logn) pairs of codewords (vi,wi) ∈ C × C′ satisfying
wi = viQ. We greatly improve on this known bound by giving a construc-
tive (heuristic) algorithm that recovers the secret monomial from any two
pairs of such codewords for any q ≥ 23. We then show that this reduction
in the number of required pairs enables the design of a more efficient al-
gorithm for solving the LCE problem. Our asymptotic analysis shows that
this algorithm outperforms previous approaches for a wide range of param-
eters, including all parameters proposed across the literature. Furthermore,
our concrete analysis reveals significant bit security reductions for suggested
parameters. Most notably, in the context of the LESS signature scheme, a
second-round contender in the ongoing NIST standardization effort for post-
quantum secure digital signatures, we obtain bit security reductions of up
to 24 bits.
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quantum Cryptography

1 Introduction

Code-based cryptography remains a strong contender for the next post-
quantum digital signature standard. Historically, most code-based signature
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schemes have based their security on the Syndrome Decoding Problem (SDP)
[Ste94,Vér97,CVE11,DST19,FJR22]. While the SDP is well studied and provides a
solid security foundation, its conservative nature often comes at the price of larger
signatures, larger public keys, or slower signing and verification. In recent years, a
promising alternative emerged with the LESS signatures scheme [BMPS20], which is
based on the Linear Code Equivalence (LCE) problem. The collective improvements
made to the scheme over the past years [BBPS21,PS23,CPS23] have positioned it as
a strong candidate [BBB+25a] in the ongoing second round of the NIST standard-
ization process for post-quantum digital signatures [Nat23]. Furthermore, due to
its compatibility with the cryptographic group action framework, the LCE problem
has served as the foundation of a variety of digital signature schemes with advanced
functionalities, including threshold [BBMP24,BBC+25], (linkable) ring [BBN+22],
and identity-based [BBN+22] signatures.

The Linear Code Equivalence problem is defined as follows: Given two Fq linear
[n, k] codes C, C′, find a monomial Q that maps C into C′, i.e., C′ = CQ. The best
algorithms for solving LCE rely on the computation of low-weight codewords v ∈ C,
w ∈ C′ in both codes [Leo82,Beu20,BBPS23]. Among the found codewords, the
algorithms then identify pairs of codewords equivalent under the secret monomial,
i.e., codewords satisfying wi = viQ. Once enough such pairs have been identified,
the secret monomial can be recovered in polynomial time. A central question that
evolves is

How many such pairs are required to recover Q in polynomial time?

The currently best known (heuristic) algorithm for recovering Q from such in-
formation in polynomial time requires Ω(log n) pairs of equivalent codewords
[Beu20,BBPS23].1 Note that this algorithm retrieves the secret monomial solely
from the information provided by those pairs of equivalent codewords (or 2-
dimensional subcodes). In such a scenario, a single pair of codewords cannot be
sufficient to recover Q in polynomial time, as for two codewords of same weight
w ≪ n, there usually exist exponentially many monomials Q′ satisfying the relation
w = vQ′. Moreover, we find that for constant field size q, the information provided
by any constant amount of equivalent pairs is insufficient to uniquely identify Q.

However, generally, the searched monomial is uniquely determined by the equiv-
alence relationship C′ = CQ. By combining the equivalence identity with the infor-
mation provided by equivalent codeword pairs, we are able to construct a (heuristic)
algorithm that recovers the secret monomial from only two pairs of such codewords
for any field of size q ≥ 23 in polynomial time. As a second main contribution, we
then show that this result allows us to overcome a central bottleneck of previous
algorithms relying on finding low-weight codewords, resulting in the fastest known
algorithm for solving LCE for most parameters. We provide a full asymptotic anal-
ysis showing superiority over previous approaches in theory as well as a concrete
treatment with respect to bit complexities, reducing security levels of the LESS
signatures scheme by up to 24 bits.

1More precisely, this algorithm require pairs of equivalent 2-dimensional subcodes, i.e.,
pairs of pairs of equivalent codewords.
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Related Work For solving the LCE problem, there exist two main approaches: al-
gorithms following the above concept of computing low-weight codewords in the un-
derlying codes [Leo82,Beu20,BBPS23] and a recently introduced meet-in-the-middle
technique relying on canonical forms [CPS23]. The latter has attracted increased
attention since its introduction, with recent results improving its success probabil-
ity [Now24] as well as the range of applicable parameters [BBB+25b]. Notably, the
algorithm’s complexity is (almost) independent of the field size, obtaining a time
complexity of roughly 2c1(R)n, where c1 is a constant depending on the code rate
R = k/n. For large choices of q, this algorithm becomes the preferred choice to solve
LCE. However, with respect to suggested parameters, algorithms relying on finding
low-weight codewords remain yet superior.

An early algorithm by Leon [Leo82] computes all low-weight codewords in both
codes and recovers the secret monomial from the resulting sets provided those sets
are sufficiently large. Beullens [Beu20] improved upon Leon’s approach by increas-
ing the weight of the codewords and computing only a subset of them for each code.
More precisely, Beullens concentrates on finding small support 2-dimensional sub-
codes, i.e., pairs of codewords with a small joint support. He then defines a criterion
to identify equivalent subcodes and, eventually, relies on a heuristic algorithm recov-
ering the secret monomial from Ω(log n) equivalent pairs. Most recently, Barenghi,
Biasse, Santini and Persichetti (BBPS) [BBPS23] improved on Beullens’ algorithm
by modifying the subroutine to find small support subcodes, while relying on the
same post-processing to recover the secret monomial.

Our Contribution Our contribution is twofold. First we show a fundamental
result on the required number of pairs of equivalent codewords to recover the se-
cret monomial Q of an LCE instance in polynomial time. Precisely, we construct a
(heuristic) polynomial-time algorithm that recovers the secret monomial from any
two pairs of equivalent codewords. Our second contribution is the design of the
fastest known algorithm for solving LCE for most relevant parameters. Below we
give more technical details on these contributions.

Recovering the secret monomial from two pairs of equivalent codewords. Our start-
ing point forms a modeling proposed in [Sae17], representing the equivalence rela-
tionship C′ = CQ as a linear system. More precisely, for H′ being the parity-check
matrix of C′ and G the generator matrix of C, the secret monomial Q satisfies the
equation GQH′⊤ = 0. This can be reformulated as a linear system of the form
Ax = 0 with A = G⊗H′ and a solution x corresponding to the vectorized version
of Q.

This linear system generally admits many solutions since it does not enforce the
non-linear constraint that Q is a monomial matrix. However, we then show how
to refine the system by incorporating information from pairs of equivalent code-
words, which simplifies the system by eliminating variables. In most cases, this still
results in an underdetermined system. In order to recover the solution, we then
make educated guesses about the remaining variables, by exploiting the monomial
structure of Q — an approach inspired by a technique used in [BCDD+25] and

3



further refined in [BN24] for solving specific variants of LCE. Due to the structured
nature of the constructed system, wrong guesses often lead to an immediate con-
tradiction, allowing to remove additional variables, until the system finally becomes
determined.

Note that the very same structure enabling this last step of the algorithm makes a
rigorous analysis challenging. However, we provide intuitive reasoning and a heuris-
tic analysis showing that the algorithm recovers the secret monomial from the given
information for sufficiently large fields Fq, with q ≥ 23, in polynomial time. We pro-
vide a full implementation of the algorithm and present extensive experimental
evidence that demonstrates the effectiveness of the approach across all parameters.
Specifically, using our implementation, we successfully recover the secret monomial
for any code rate and q ≥ 23 with an empirical success probability close to one.
Additionally, we validate the practicality on cryptographic-sized parameters by re-
covering the secret monomial from two pairs of equivalent fixed-weight codewords
following parameters suggested in the LESS signature scheme.

A faster algorithm solving LCE. As a second contribution, we show how to leverage
the above result to design a new algorithm for solving LCE outperforming previous
approaches. Conceptually, the algorithm follows the common framework of algo-
rithms relying on finding low-weight codewords: We construct two lists of fixed
weight codewords, with list sizes chosen to guarantee the existence of at least two
pairs of equivalent codewords between them. In a first simplified asymptotic version
of the algorithm, we compute all tuples of codeword pairs between those lists and
initiate the recovery of the secret monomial for each of them.

Note that the efficiency of the overall procedure greatly relies on the fact that
two codeword pairs are sufficient for monomial reconstruction. The final compu-
tation of all tuples of pairs between the lists comes at a cost of N4, where N is
the list size. More specifically, if c pairs of equivalent codewords are required, the
computation of all possibly equivalent c-tuples between the lists requires time N2c.
Due to the exponential size of N , any non-constant c results in an algorithm with
super-exponential complexity. On the other hand, an improvement of the constant c
from two down-to one would result in an immediate improvement in the complexity
of the algorithm. However, even for c = 2, the proposed algorithm already outper-
forms all previous algorithms based on low-weight codeword finding and remains
superior to the canonical forms meet-in-the-middle approach as long as the field
size does not become too large. More precisely, our asymptotic analysis shows that
the algorithm achieves a lower time complexity than the canonical forms meet-in-
the-middle approach for any field size q ≤ 202. Meanwhile, our concrete analysis
suggests a significantly higher break-even point, in the order of q > 212.

We then provide an improved version of the algorithm that incorporates multiple
concrete complexity improvements. Most notably, we avoid the computation of all
possibly equivalent pairs by defining a criterion for monomial compatibility that
can be checked efficiently. Based on that criterion, we obtain an algorithm where
the final step is dominated by the list of pairs, i.e., it can be performed in time N2

rather than N4, for large enough fields. We then show how to exploit the existence
of scalar multiples of the solution to obtain a further polynomial speedup. Overall,
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when applied to the parameters suggested in the LESS signature NIST second-
round submission, the improved algorithm leads to a bit security reduction of up
to 24 bits (compared to Table 1). With respect to other parameters throughout the
literature, we achieve a bit security reduction of up to 36 bits.

Previous This work

LESS-I 139 127
LESS-III 214 196
LESS-V 290 266

Table 1: Bit complexity estimates for suggested LESS parameters.

Artifacts. We provide all source code used to conduct the practical experiments and
to compute the asymptotic and concrete complexity estimations in an accompanying
git repository [BEFN].

Outline. In Section 2 we define necessary notation as well as fundamentals, and
give a formal definition of the LCE problem. In Section 3, we give the details on
the algorithm to reconstruct the secret monomial from any two pairs of equivalent
codes. Subsequently, in Section 4, we present the new algorithm for solving LCE
including both an asymptotic as well as a concrete analysis along with a comparison
to the state of the art.

2 Preliminaries

For any n ∈ N, we let [n] := {1, . . . , n}. We denote matrices with capital bold letters
and vectors with lower case bold letters. All vectors are row-vectors if not stated
otherwise. For a vector v we denote by sort(v) the vector obtained by sorting the
entries of v lexicographically. For a matrix A ∈ Fn×n

q , we refer to its entry in the
i-th row and j-th column by A(i, j). Given a set of indices I ⊆ [n] we denote with
vI the projection of the length-n vector v onto the indices in I. We extend this to
matrices by letting MI be the submatrix formed by the columns of M indexed by
I. We define GLn(Fq) as the linear group of invertible matrices, Permn(Fq) as the
set of permutation matrices, and Monon(Fq) as the set of monomial matrices, i.e.,
matrices Q = DP with D being a full-rank diagonal matrix and P ∈ Permn(Fq).
Given a matrix M ∈ Fm×n

q , we denote with ker(M) its right kernel. We denote with
vec(M) the vector of length mn formed by concatenating the rows of M. For two
matrices M ∈ Fm×n

q and N ∈ Fr×s
q , we denote by M⊗N their Kronecker product

in Fmr×ns
q .

Linear Code Equivalence An [n, k]-linear code C over Fq is a subspace of dimen-
sion k of Fn

q . C can be represented via a basis G ∈ Fk×n
q called generator matrix or

a parity-check matrix H ∈ Fn−k×n
q satisfying Hc = 0⇔ c ∈ C. We refer to n as the
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length of C and to the quantity R := k/n as the code rate. Given a codeword c ∈ C,
we refer to the non-zero entries Supp(c) := {i ∈ [n] : ci ̸= 0} of c as its support.
The Hamming weight wt(c) = |Supp(c)| of c is the size of its support.

We denote by Nw the number of codewords of fixed weight w in C, which for
random codes is known to be of expected size

Nw =

(
n

w

)
(q − 1)w

qn−k
.

The minimum distance minc∈C{wt(c)} of a linear code is defined as the minimum
weight over all its codewords. The minimum distance of a random [n, k]-linear code
over Fq is known to (asymptotically) meet the Gilbert-Varshamov bound, which
is the smallest w satisfying Nw ≥ 1. We denote this w by wGV. Furthermore, we
define the relative weight coefficient ωGV := wGV/n.

In the following we give a formal definition of the linear equivalence problem,
which we refer to as LCE problem in the remainder of this work.

Definition 1 (Linear Code Equivalence (LCE)). Given two [n, k] linear codes
C, C′ over Fq with generator matrices G and G′, respectively, the Linear Code Equiv-
alence problem asks to find a monomial Q ∈ Monon(Fq) such that there exists a
matrix S ∈ GLn(Fq) satisfying G′ = SGQ. We call (C, C′) an instance of the LCE
problem.

The special case where Q ∈ Permn(Fq) is known as the Permutation Code Equiva-
lence (PCE) problem, and all results reported in this work for LCE also apply to it.
In case for two given codes C, C′ there exists a solution to the above problem, we call
those codes equivalent, and shorthand write C′ = CQ. Motivated by cryptographic
constructions, we restrict to instances of the LCE problem with unique solution Q
(up to scalar multiples). Furthermore, we focus on code rates R ≤ 1

2 as the LCE
problem with rate R is equivalent to the LCE problem with rate 1−R by switching
to the dual codes. In particular for G,G′ being the generator matrices of C, C′ and
H,H′ the respective parity-check matrices, we have

G′ = SGQ⇒ 0 = G′H′⊤ = SGQH′⊤

From the last equality it follows that QH′⊤ is the transpose of a parity-check
matrix of C. We can conclude that H′ = RH(Q⊤)−1 for some invertible matrix
R ∈ Fn−k×n−k

q , implying that the dual codes are equivalent with the monomial

matrix (Q⊤)−1.
Our analysis makes use of the following result for the complexity of computing

fixed-weight codewords in a given linear code.

Lemma 1 (Prange’ ISD complexity [Pra62]). The cost of computing m of the
Nw codewords of weight w in a random [n, k]-linear code is

Õ

(
m

Nw

(
n
w

)(
n−k
w

)) .
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Furthermore we use the following standard approximation of binomial coefficients

2h(
k
n )n

n+ 1
≤
(
n

k

)
≤ 2h(

k
n )n, (1)

where h(x) := −x log x− (1− x) log(1− x) is the binary entropy function.

3 Solving Linear Code Equivalence with Hints

In this section, we provide a new heuristic algorithm for recovering the secret mono-
mial of an LCE instance from only two pairs of codewords equivalent under the secret
monomial. Let us start by defining the term of equivalent codewords.

Definition 2 (Equivalent Codewords). Let C, C′ be two [n, k] linear codes over
Fq, equivalent under some monomial transformation Q ∈ Monon(Fq) and let v ∈ C
and w ∈ C′ be two nonzero codewords. We say that (v,w) is a pair of equivalent
codewords with respect to C, C′ if w = vQ.

In the following, the codes C and C′ are usually clear from the context, hence, we drop
the term with respect to C, C′. In terms of this definition, we propose an algorithm
that recovers the secret monomial from two pairs of equivalent codewords. For
comparison, the previous best results require c = Ω(log n) equivalent 2-dimensional
subcodes [Beu20,BBPS22], corresponding to about 2c equivalent codewords.

High-level Idea of the Algorithm For two equivalent codes C and C′ = CQ
where Q ∈ Monon(Fq) it holds that

GQH′⊤ = 0, (2)

where G ∈ Fk×n−k
q is a generator matrix of C and H′ ∈ Fn−k×n

q is a parity-check
matrix of C′. From this equation, one can derive the following linear system (see
[Sae17, Corollary 3.2.20] or [BCDD+25, Proposition 2])

S :

A︷ ︸︸ ︷
[G⊗H′]x = 0, (3)

where x is the length-n2 column-vector vec(Q) formed by the concatenation of the
rows of Q. In particular, we have that rank(A) = rank(G) · rank(H′) = k(n −
k). Notice that this linear system itself is underdetermined, since the number of
variables is n2 > k(n − k) for any code of dimension k. However, the non-linear
restriction that Q ∈ Monon(Fq) uniquely characterizes the solution.

In the following, we first show how to extract information on the monomial Q
from any pair of equivalent codewords. Put simply, we exploit the fact that the
(overlap of the) support of the given codewords carries information on the mono-
mial matrix. In turn, this information allows us to reduce the number of variables
of the linear system S. We find that for some code rates the information we extract
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from two pairs of equivalent codewords is already sufficient to obtain a determined
system, i.e., to recover the secret monomialQ. In the case the system remains under-
determined, we make guesses on the remaining variables, exploiting the monomial
structure. Due to the structure of the system, incorrect guesses often lead to an im-
mediate contradiction, which reveals further information on the monomial matrix
and ultimately leads to a determined system.

3.1 Extracting Hints from Equivalent Codewords

Let us start by showing how to extract information on the monomial matrix from
a single pair of equivalent codewords. For this purpose we define the concept of a
hint, which essentially corresponds to a known variable in the linear system from
Eq. (3).

Definition 3 (Hint). Let Q ∈ Monon(Fq) be the monomial representing the so-
lution to the system in Eq. (3). We define a hint relative to Q to be a pair

((i, j), a) ∈ ([n]× [n])× Fq, where Q(i, j) = a.

Given two equivalent linear codes C, C′, consider a pair of equivalent codewords
(v,w) ∈ C×C′ of Hamming weight w. Let I := Supp(v) ⊂ [n] and J := Supp(w) ⊂
[n], where |I| = |J | = w. Denote by Ī and J̄ the complement of I and J in [n], since
the monomial matrix Q sends nonzero (resp. zero) entries to nonzero (resp. zero)
entries, it follows that Q(i, j) = 0 for all (i, j) ∈ (I× J̄)∪ (Ī×J). This is equivalent
to the set of hints

Determine-1(v,w) := {((i, j), 0) | (i, j) ∈ (I × J̄) ∪ (Ī × J)}, (4)

of size 2w(n−w) on the monomial Q. We define the procedure that on input a pair
of codewords outputs this set of hints by Determine-1.

The same reasoning extends naturally to multiple pairs of equivalent codewords.
Given two pairs (v1,w1), (v2,w2) ∈ C × C′ of equivalent codewors, we define

Iι := Supp(vι) and Jι := Supp(wι), for ι = 1, 2,

and let ℓ := |I1 ∩ I2| = |J1 ∩J2| be the number of shared support positions between
the two codewords. Then the application of Determine-1 to both pairs results in a
set of hints H = Determine-1(v1,w1) ∪ Determine-1(v2,w2), of size

|H| = n2 − 2(w − ℓ)2 − (n− 2w + ℓ)2 − ℓ2. (5)

Therefore note that the structure of how indices are mapped under Q behaves as
follows

– indices in I1 ∩ I2 must be mapped to J1 ∩ J2,
– indices in I1 \ I2 and I2 \ I1 are sent to J1 \ J2 and J2 \ J1 respectively, and
– indices outside both supports, i.e., in [n] \ I1 ∪ I2 are sent to [n] \ J1 ∪ J2.

Now the size of H follows by observing that the sizes of these sets are given by

|I1 ∩ I2| = ℓ, |I1 \ I2| = |I1 \ I2| = w − ℓ, |[n] \ I1 ∪ I2| = n− 2w + ℓ.

We give a graphical illustration of the information derived on the monomial in Fig. 1
for one (left) and two pairs (right).
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w n− w

w

n− w

(a) Hints obtained from equivalent pair
v = (v′, 0n−w), w = (w′, 0n−w), with
v′,w′ ∈ (F∗

q)
w

ℓw − ℓ w − ℓ n− 2w + ℓ

ℓ

n− 2w + ℓ

w − ℓ

w − ℓ

(b) Hints from two pairs (v1,w1) (as on the left) and v2 =
(0w−ℓ,v′′, 0n−2w+ℓ),w2 = (0w−ℓ,w′′, 0n−2w+ℓ), with v′′,w′′ ∈ (F∗

q)
w

Fig. 1: Graphical representation of hints obtained from one (left) and two (right)
pairs of equivalent codewords via Eq. (4). White regions correspond to zero entries,
while colored regions contain the non-zero entries.

3.2 Extracting additional hints

Next, we show how to leverage the information two pairs of equivalent codewords
carry on the monomial with respect to their support intersection to determine ad-
ditional variables. More precisely, we recover information on the striped ℓ× ℓ sub-
matrix in Figure 1b. The core characteristic we exploit is that codeword entries
that are mapped under the monomial must differ by the same multiplicative shift
in both given codeword pairs. As long as any of those entries is zero, this does not
yield strong restrictions on the monomial. However, concentrating on the support
intersection can reveal further information.

Restrictions on the monomial implied by the support intersection. For two pairs of
equivalent codewords (vι,wι) ∈ C × C′, ι = 1, 2 let I = Supp(v1) ∩ Supp(v2) and
J = Supp(w1) ∩ Supp(w2). From the argumentation in the previous section we
know that a monomial with vι = wιQ must map indices in J to indices in I. This
implies that for any i ∈ I there exist a j ∈ J such that

v1(i) = αi,j ·w1(j) and v2(i) = αi,j ·w2(j) for some αi,j ∈ F∗
q , (6)

where αi,j = Q(i, j). Note that this implies that v1(i)
v2(i)

= w1(j)
w2(j)

. Therefore whenever

we have that v1(i)
v2(i)

̸= w1(j)
w2(j)

it follows that j is not mapped to i under the monomial

and henceQ(i, j) = 0. Furthermore, if for any i there is a unique j satisfying Eq. (6),

we can conclude that Q(i, j) = αi,j =
v1(i)
w1(j)

.

In Algorithm 1 we formalize the procedure of obtaining the additional hints
related to the support intersection of both equivalent pairs.

Analysis of Algorithm 1 We start the analysis with the following lemma on the
correctness and time complexity of Algorithm 1.
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Algorithm 1 Determine-2((v1,w1), (v2,w2))

Input: Two pairs of equivalent codewords (vi,wi),∈ C × C′, i = 1, 2.
Output: A set of up to ℓ2 hints ((i, j), α) such that Q(i, j) = α ∈ Fq, where
ℓ := |Supp(v1) ∩ Supp(v2)|.
1: Let I = Supp(v1) ∩ Supp(v2) and J = Supp(w1) ∩ Supp(w2)
2: H ← ∅
3: for i in I do
4: count← 0
5: for j in J do
6: if v1(i)/v2(i) = w2(j)/w2(j) then
7: α← v1(i)/w1(j)
8: col← j
9: count← count+ 1

10: else
11: H ← H ∪ {((i, j), 0)}
12: if count = 1 then
13: H ← H ∪ {((i, col), α)}
14: Return H

Lemma 2 (Complexity of Algorithm 1). Algorithm 1 returns a set H contain-
ing |H| ≤ ℓ2 hints on the monomial Q in time O(ℓ2).

Proof. The correctness of the algorithm follows from the argumentation above.

Therefore, observe that whenever for (i, j) ∈ I × J it holds that v1(i)
v2(i)

̸= w1(j)
w2(j)

the corresponding entry Q(i, j) is set to zero in Line 11. Furthermore, if for any i
there is only a unique j satisfying Eq. (6), we set Q(i, j) = α in Line 13.

The time complexity of the algorithm is |I × J | = ℓ2 ≤ n2 times the time for a
single iteration of the inner loop. Note that the time for one iteration of the inner
loop is dominated by the field inversion in Line 6, leading to the stated running
time in terms of field operations. ⊓⊔

Note that Lemma 2 only specifies an upper bound on the number of hints obtained.
In following we analyze the expected amount of hints obtained over the random
choice of equivalent pairs (vi,wi), i = 1, 2.

Lemma 3 (Hints returned by Algorithm 1). The set H of hints returned by
Algorithm 1 is of expected size

E
[
|H|
]
= ℓ2 −

ℓ∑
t=2

t2(q − 1)

(
ℓ

t

)(
1

q − 1

)t(
q − 2

q − 1

)ℓ−t

, (7)

over the random choice of its inputs.

Proof. Consider the vectors v =
(

v1(i)
v2(i)

)
i∈I

and w =
(

w1(j)
w2(j)

)
j∈J

. First note that

Equation (6) implies that for any α ∈ v there must be a corresponding α ∈ w.
Moreover, the number of appearances of any α ∈ F∗

q is the same in v and w.
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Now, observe that if all entries of v and w are unique, each iteration of the loop
of Algorithm 1 contributes to the size of H and hence |H| = ℓ2. On the other hand
if any entry α is repeated t times, with, e.g., v(i) = w(j) for (i, j) ∈ Iα × Jα, then
all t2 iterations (i, j) ∈ Iα × Jα will not contribute to H. In fact if there are Nt

distinct entries in v that are all repeated t times, the searched expectation can be
written as

E
[
|H|
]
= ℓ2 −

ℓ∑
t=2

t2E[Nt].

To estimate the number of repeated entries within those vectors we model the
construction of v as a balls into bins problem. Precisely, there are q−1 bins (elements
in F∗

q) and ℓ balls (components of v). Since v1,v2 are drawn uniformly at random,
so is v, which implies that balls are thrown randomly into the bins. Let Xα be
the random variable counting the load of bin α ∈ F∗

q . Then we expect that for any
t = 1, . . . , ℓ, there are

E[Nt] =
∑
α∈F∗

q

Pr [Xα = t] = (q − 1)Pr [Xα = t] ,

bins which hold exactly t balls. Now, the probability that any bin in such a setting
contains exactly t balls is known to be

Pr [Xα = t] =

(
ℓ

t

)(
1

q − 1

)t(
q − 2

q − 1

)ℓ−t

,

which leads to the statement of the lemma. ⊓⊔

Moreover, we show in Appendix A that E
[
|H|
]
≈ ℓ2 for sufficiently large q > ℓ.

3.3 Solving Linear Code Equivalence with Hints

Let us analyze the impact of the hints provided by two pairs of equivalent codewords
on the linear system S in Equation (3). Let H2-pairs be the set of hints obtained from
two pairs (v1,w1), (v2,w2) ∈ C × C′ of equivalent codewords of Hamming weight
w, i.e.,

H2-pairs = Determine-1(v1,w1) ∪ Determine-1(v2,w2) ∪ Determine-2
(
(v1,w1), (v2,w2)

)
.

By combining Equation (5) and Lemma 3, we find that the expected size of H2-pairs

is E
[
|H2-pairs|

]
= n2 − v(n,w, ℓ, q), where

v(n,w, ℓ, q) := 2(w − ℓ)2 + (n− 2w + ℓ)2 +

ℓ∑
t=2

t2(q − 1)

(
ℓ

t

)(
1

q − 1

)t(
q − 2

q − 1

)ℓ−t

≈ 2(w − ℓ)2 + (n− 2w + ℓ)2, for large enough q.

(8)
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Obtaining a reduced linear system. From here we construct the following linear
system incorporating all hints from H2-pairs into S

Sred :

{
Ax = 0

x(i · n+ j) = a, ∀((i, j), a) ∈ H2-pairs.
(9)

Note that this results in a non-homogeneous system of the form

Sred : Aredx = b, (10)

with b ̸= 0, as long as there is a hint ((i, j), a) ∈ H2-pairs with a ̸= 0. If Sred behaves
as a random system, we would expect that as long as

k(n− k) ≥ v(n,w, ℓ, q), (11)

the system contains more equations than unknowns and is, hence, determined. If
we assume the two pairs of weight-w equivalent codewords overlap in a number

of coordinates ℓ = w2

n equal to its expectation, we find that v(n,w, ℓ, q) for large
enough q is strictly decreasing in w. We therefore assume in following w = wGV

is minimal, i.e., equal to the minimum distance of C, C′, leading to the maximum
amount of remaining variables, representing the worst case possible.

In Fig. 2 (on the left) we illustrate for n = 100 and multiple choices of q the
(exact) value of v(n,w, ℓ, q) from Eq. (8) (solid lines) and the number of variables
recorded when experimentally constructing the system Sred (marks) from two pairs
of equivalent codewords of weight-wGV as a function of the code rate. Note that the
amount of variables is decreasing with q since wGV grows with q and, additionally,
Determine-2 leads to a larger set of hints for growing q. We illustrate the number of
equations k(n−k) as a green dashed line. From this graphic, one would expect that
the system should be determined for q = 127 (blue marks) for almost all rates since
the number of variables lies below the number of equations. However, on the right,
for the case of q = 127 we illustrate additionally the experimentally observed rank
of the system. As can be observed, in some cases, the rank of the system is found
maximal, i.e., equal to the number of variables, which allows to recover the solution
to Sred and, hence, the solution to the LCE problem. In many cases, however, the
rank is lower than the number of variables, leaving the system underdetermined.

Recovering Q when Sred is underdetermined The core idea of the following
procedure is to make guesses on the positions of non-zero entries of Q. By exploit-
ing the monomial structure of Q, guessing a single non-zero entry simultaneously
eliminates multiple variables from Sred. If the resulting system no longer admits a
solution, the initial guess was wrong, revealing further information on Q. By re-
peating this procedure multiple times, we eventually obtain enough hints for Sred to
become determined.

The Rouché-Capelli test. To check if a linear system still admits a solution, we rely
on a fundamental result in linear algebra, the Rouché–Capelli theorem. This result
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Fig. 2: Number of equations, rank and amount of variables in the system Sred for
n = 100, w = wGV.

states that a linear system admits a solution if and only if the rank of its coefficients
matrix equals the rank of its augmented matrix. In the context of the linear system
Sred, this condition reads

rank(Ared) = rank(Ared|b),

which is satisfied, as Sred admits a solution by construction.

Exploiting the monomial structure. Let us assume that Q(i, j) ̸= 0 and that
((i, j), ∗) /∈ H2-pairs, meaning that the entry (i, j) has not been determined by
Determine-2. Then, considering the monomial structure of Q, we know that all other
entries along the i-th row and j-th column are equal to zero. Thus, we construct
the following set of hints

H(i,j) = {((i, j′), 0) for j′ ∈ [n] \ {j}} ∪ {((i′, j), 0) for i′ ∈ [n] \ {i}} . (12)

Now define the following linear system by additionally incorporating the hints from
H(i,j) into Sred

S(i,j) :

{
Ax = 0

x(n · i+ j) = a, ∀((i, j), a) ∈ H2-pairs ∪H(i,j).
(13)

Let us denote with Aguess the resulting matrix of coefficients in Equation (13)

S(i,j) : Aguessx = b. (14)

Notice that Aguess has k(n− k) rows and an expected number of columns of

v(n,w, ℓ, q)− |H(i,j)|+ c = v(n,w, ℓ, q)− 2(n− 1) + c,

where c = |H(i,j) ∩H2-pairs| counts the number of hints with respect to the i-th row
and j-th column already present in H2-pairs.
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Guessing entries of Q. We define a guess on an entry (i, j) of Q to be the act of
constructing the linear system S(i, j). A guess is correct if Q(i, j) ̸= 0, and incorrect
if Q(i, j) = 0. While correct guesses preserve the solution to the system, this is not
the case for incorrect ones. Indeed, any incorrect guess on an entry (i, j), would
lead to the wrong assignment of zero values to Q(i, j∗) and Q(i∗, j), where (i, j∗)
and (i∗, j) are the positions of the non-zero entries in the i-th row and j-th column
of Q respectively. Hence, the system S(i,j) is not guaranteed to admit a solution
anymore. Summarizing, we can draw the following conclusions

– If S(i,j) does not admit a solution, which is equivalent to rank(Aguess) <
rank(Aguess|b), then the guess is incorrect, which implies Q(i, j) = 0.

– If S(i,j) admits a solution, or equivalently rank(Aguess) = rank(Aguess|b), no
conclusion can be reached on the correctness of the guess.

Based on those two cases we define in Algorithm 2 a procedure that identifies
incorrect guesses and in that case returns a corresponding hint on the original
system.

Algorithm 2 RoucheCapelli-test(S, H, (i, j))

Input: linear system S, set of hints H, pair of indices (i, j).
Output: a hint ((i, j), 0) or ⊥.
1: Construct the linear system S(i,j) from Eq. (14)
2: if rank(Aguess) < rank(Aguess|b) then
3: Return ((i, j), 0) ▷ The guess is incorrect, implying Q(i, j) = 0.

4: Return ⊥ ▷ Result inconclusive, Q(i, j) might be nonzero.

Guesses leading to hints in Algorithm 2. We have already argued that incorrect
guesses on an entry (i, j) lead to a system S(i,j), which is not guaranteed to admit
a solution, i.e., it does not contain the solution x related to the original mono-
mial. However, there might exist other solutions x′ (without monomial structure)
satisfying Aguessx

′ = b. In such a case b is still in the span of Aguess, implying
rank(Aguess) = rank(Aguess|b), and, hence, no hint is returned. On the other hand,
if no such x′ exist, it follows rank(Aguess) < rank(Aguess|b) and Algorithm 2 returns
the respective hint. Since correct guesses always preserve b in the span of Aguess,
hints can only be returned for incorrect guesses.

Now the probability that any random element b′ in the span of Ared also lies in
the span of Aguess is approximately qrank(Aguess)−rank(Ared). Note that this probability
is non-trivial only if the guess (and the related hints from Eq. (12)) result in a
decrease of the rank of the coefficient matrix, i.e., if

rank(Aguess) < rank(Ared) (15)

Recall that both matrices describe underdetermined linear systems, with the same
amount of equations. Therefore, random systems would share the same rank with

14



high probability. However, in our experiments we find that the tensor structure of
the system (compare to Eq. (2)) causes guesses to frequently reduce the rank of
Aguess compared to Ared and in turn leads to the detection of incorrect guesses in
Line 3 of Algorithm 2.

We note that, due to the tensor product structure, the matrix Aguess can be
constructed by removing 2(n−1)−c columns from Ared, where c = |H(i,j)∩H2-pairs|.
A rank decrease from Ared to Aguess therefore implies the existence of a codeword
of weight w < 2(n− 1)− c in the code with generator matrix Ared, whose support
lies entirely in the positions corresponding to the removed columns. Since this code
is of length v(n, ℓ, w, q) ∼ n2 such a codeword represents an unusually small weight
relative to the code length. We give further theoretical evidence for the existence
of an exponential amount of these codewords in form of an explicit construction in
Appendix B.

The full procedure. We are now ready to give in Algorithm 3 the full procedure to
recover the secret monomial from two pairs of equivalent codewords. The algorithm
first constructs the hints via the Determine-1 and Determine-2 procedures to con-
struct the reduced system Sred. In case Sred remains underdetermined, the algorithm
iterates through all guesses for uknown entries (i, j) of Q, i.e., entries for which no
corresponding hint is present in H2-pairs. For each such guess we attempt to generate
a new hint via RoucheCapelli-test and, if successful, incorporate the hint into Sred. If
after all possible guesses, Sred is finally determined, the secret monomial is returned.

Lemma 4 (Complexity of Algorithm 3). Algorithm 3 runs in expected time
O(v(n, ℓ, w, q)4) and memory O(n4), for v(n, ℓ, w, q) as in Eq. (8).

Proof. The time complexity of Algorithm 3 is dominated by the for-loop in Line
5. The number of guesses to test via RoucheCapelli-test is equal to the number of
unknowns of Sred, whose expected value is v := v(n,w, ℓ, q). The time complexity
of RoucheCapelli-test is equal to two rank computations which can be performed
in time O(vδ), where δ is the linear algebra constant. Therefore, the overall time
complexity of the algorithm is O(vδ+1) = O(v4). ⊓⊔

Note that since v(n,w, ℓ, q) ≤ n2 the algorithm runs in time polynomial in n. The
following lemma shows the correctness of the algorithm in the sense that if Sred at
the end of the algorithm is a determined system, it leads to the retrieval of the
secret monomial.

Lemma 5 (Correctness of Algorithm 3). Algorithm 3 either returns a matrix
Q ∈ Monon(Fq) defining an equivalence between C, C′ or ⊥.

Proof. First, observe that the hints computed in line 2 are, by construction, con-
sistent with the secret monomial Q given the pairs (vi,wi), i = 1, 2 are equivalent.
This follows from the correctness of the Determine-1 and Determine-2 procedures
(compare to Section 3.1 and Lemma 2). In the for-loop in line 5 guesses on entries
(i, j) of Q are preformed and it is verified whether those guesses lead to a contra-
diction using Algorithm 2. Recall that a guesses on entry (i, j) assumes Q(i, j) ̸= 0.
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Algorithm 3 Compute-Monomial(G,H′, (v1,w1), (v2,w2))

Input: Generator G ∈ Fk×n
q of linear code C, parity-check H′ ∈ F(n−k)×n

q of linear code

C′, equivalent codewords (v1,w1), (v2,w2) ∈ C × C′ of Hamming weight w.

Output: A matrix Q ∈ Monon(Fq) such that GQH′⊤ = 0 or ⊥.
1: Construct the linear system S from Equation (3)

2: Compute hints H2-pairs = Determine-1(v1,w1) ∪ Determine-1(v2,w2) ∪
Determine-2((v1,w1), (v2,w2))

3: Reduce S to Sred using the hints in H2-pairs (see Equation (9))

4: if Sred is underdetermined then

5: for (i, j) ∈ [n]× [n] : (i, j, ∗) ̸∈ H2-pairs do

6: hint← RoucheCapelli-test(S, H2-pairs, (i, j))

7: if hint ̸= ⊥ then

8: Update Sred according hint and add hint to H2-pairs

9: if Sred is determined then

10: Compute solution s to Sred

11: Construct matrix Q ∈ Monon(Fq) with GQH′⊤ = 0 using H2-pairs and s

12: Return Q

13: Return ⊥

Since RoucheCapelli-test only returns hints of the form ((i, j), 0) and only if the
guesses was incorrect, it follows that such hints are consistent with the solution.
Therefore, if Sred becomes fully determined in line 10, by construction, the solution
must correspond to the monomial Q, defining the equivalence. On the other hand,
if Sred is still underdetermined after all guesses, the algorithm returns a failure. ⊓⊔

In order to rigorously prove the effectiveness of Algorithm 3 we would need to
argue about its success probability. That is the probability that the system Sred
is determined at the end of the procedure, leading to the recovery of the secret
monomial. However, the induced structure of the system and existing dependencies
make a formal analysis challenging. While we offer additional theoretical insights
and arguments supporting the algorithm’s effectiveness in Appendix B, for now we
resort to the following heuristic. We then provide extensive experimental evidence
demonstrating its validity in the following section.

Heuristic 1 (Success Probability of Algorithm 3) Let n, k, q, w ∈ N with
wGV ≤ w ≤ n − k and q ≥ 23. Then Algorithm 3 returns a monomial matrix
Q ∈ Monon(Fq) with high probability.

3.4 Implementation and Experiments

We provide a full proof of concept implementation of Algorithm 3 in SageMath

[The22] available at [BEFN]. Based on this implementation, we provide extensive
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experiments confirming a high success probability of Algorithm 3 across all param-
eters for sufficiently large q ≥ 23. All experiments were carried out on a server
equipped with two AMD EPYC 7763 64-Core Processors and 1TB of RAM.

Sampling instances. In each experiment, we sample a random LCE instance, where
the involved codes are guaranteed to include two codewords of minimum weight.
Therefore we construct a basis of C consisting of k − 2 random elements in Fn

q and
two random weight-wGV vectors vi ∈ Fn

q .
2 We then sample a random monomial

Q ∈ Monon(Fq) and set C′ = CQ and wi = viQ.

Practical optimizations. We implemented various practical improvements to speed
up Algorithm 3 as well as to boost its success probability for smaller values of q.
The time improvements include, an early abort of the loop whenever the system
becomes determined after the inclusion of a new hint as well as further exploiting the
monomial structure. For the latter we observe that, whenever all guesses along a row
i∗ of Q are found to be incorrect, except one in column j∗, it implies Q(i∗, j∗) ̸= 0.
From the monomial structure of Q it then follows that all other entries along the
same column Q(i, j∗), for i ̸= i∗, are equal to zero. Furthermore we observe that if
hints could be generated during the for-loop via RoucheCapelli-test but the system
remains underdetermined at the end of the algorithm, a re-iteration of the for-loop
may increase the success probability. In such cases the loop is re-applied with the
updated set of hints H2-pairs, leading to a simpler system Sred and in turn to more
incorrect guesses being detected by RoucheCapelli-test. However, we find that such
a reapplication is only necessary for rather small choices of q < 31.

Testing the success probability. We report in Table 2 the empirical success probabil-
ity for fixed n = 100 for different values of the rate R = k/n and increasing values
of q over a sample size of 100 for each set of parameters. We treated an experiment
on a random LCE instance as successful if at the end of the algorithm the secret
monomial Q could be recovered. We observe that already for q ≥ 23 the success
probability is found to be empirically equal to one in all cases analyzed.

n = 100

q rate 0.1 0.2 0.3 0.4 0.5

7 0.02 0.37 0.34 0.48 0.07
11 0.38 0.74 0.96 0.76 0.76
13 0.56 0.84 0.98 0.90 0.86
17 0.90 1.00 1.00 1.00 0.95
19 0.99 1.00 1.00 1.00 1.00
23 1.00 1.00 1.00 1.00 1.00
127 1.00 1.00 1.00 1.00 1.00

Table 2: Empirical success probability of Algorithm 3 over 100 random trials for
n = 100, different rates and q.

2Recall, that a weight of wGV represents the worst case, as it leads to the largest number
of remaining variables (compare to Eq. (8)).
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Area of effectiveness for increasing q. To further demonstrate the effectiveness of
Algorithm 3 across various parameters, we present experimental results in Fig. 3.
Each dot represents a single run of Algorithm 3 on random LCE instance. Green
dots indicate cases where Sred was already determined based on the hints computed
in Line 3. Blue dots represent instances where the for-loop in Line 4 successfully
recovered the monomial. Unsuccessful runs, in which the monomial could not be
recovered are marked as red dots. The gray dots denote codes of dimension 1 and
2. For dimension one codes, the experiment can not be conducted as two linearly
independent codewords are required as input to the algorithm. For dimension two
codes, on the other hand, there exist exponentially many solutions. Note that mul-
tiple solutions reduce the success probability of Algorithm 3 as incorrect guesses do
not necessarily eliminate all solutions anymore. Note that, the red dots in case of
q = 23 are related to instances which admit multiple solutions, which happens only
for very small dimensions k ≤ 4. Recall, that we generally restrict our attention to
instances with unique solutions, for which the algorithm is found to be successful
for any set of parameters with q ≥ 23.
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Fig. 3: Success and failure areas of Algorithm 3 for different n, q and code rates.

Tests on cryptographic parameters. To further enhance the confidence in the suc-
cess probability for large parameters, we successfully retrieved the secret monomial
from a random LCE instance and two pairs of equivalent codewords with parameters
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(n, k, q, w) = (252, 126, 127, 94), corresponding to a choice made in the LESS signa-
ture scheme in about 11.8 hours. A repeated experiment with w = 107 motivated by
the application in the following section, let to the recovery of the secret monomial
in about 8.5 hours.

4 A New Algorithm Solving Code Equivalence

In the following, we propose a new algorithm for solving Linear Code Equivalence,
leading to significant concrete as well as asymptotic improvements over the state of
the art. At the core of the proposed algorithm lies the observation from the previous
section that two pairs of equivalent codewords are sufficient to recover the secret
monomial (see Algorithm 3).

High level description. The algorithm first computes two sufficiently large lists of
weight w codewords in both codes, where w is an optimization parameter. After the
construction of those lists, pairs of codewords are formed. We then define a crite-
rion to check the compatibility of pairs with respect to monomial transformations,
where pairs are deemed compatible if there exists any monomial transformation (not
necessarily Q) between them. Eventually, for each pair of codewords found to be
compatible, we initiate the reconstruction of the secret monomial via Algorithm 3.
As shown in the previous section, this reconstruction is successful whenever the
two codeword pairs were indeed equivalent under the searched monomial Q. We
summarize this procedure in Algorithm 4.

Algorithm 4 Solving LCE

Input: G,G′ ∈ Fk×n−k
q

Output: Q ∈ Monon(Fq) with G = SG′Q for some invertible S ∈ Fk×k
q or ⊥

1: choose w and N optimally
2: Compute a list L1 of codewords of weight w in G, with |L1| = N
3: Compute a list L2 of codewords of weight w in G′, with |L2| = N
4: Construct V = L1 × L1 and W = L2 × L2 containing pairs of codewords
5: Z ← Compatible-Pairs(V,W )
6: for

(
(v1,w1), (v2,w2)

)
∈ Z do

7: Q← Compute-Monomial(v1,v2,w1,w2,G,G′)
8: if Q ̸=⊥ then
9: Return Q

10: Return ⊥
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4.1 An Asymptotic Version of the Algorithm

We start the analysis of the algorithm from an asymptotic perspective. Therefore,
for now we define

Compatible-Pairs(V,W ) := {
(
(v1,w1), (v2,w2)

)
| (v1,v2) ∈ V ∧ (w1,w2) ∈W},

(16)
i.e., as all possible pairs constructed from the lists V,W . In Section 4.2, we intro-
duce a more efficient procedure for finding compatible pairs, leading to significant
concrete improvements. However, we then also prove that from an asymptotic per-
spective the procedure defined in Eq. (16) is optimal (up to polynomial factors)
for any constant field size q. For clarity we, hence, stick with the simple procedure
during the asymptotic analysis. The following theorem summarizes the asymptotic
time and memory complexity of Algorithm 4.

Theorem 1 (Complexity of Algorithm 4). Let n, q ∈ N, k = Rn for constant
rate R, w ≤ n− k. Then Algorithm 4 solves the LCE problem under Heuristic 1 in
expected

time T = Õ

(
max

( (
n
w

)(
n−k
w

)√
Nw

, N2
w

))
, and memory M = Õ

(√
Nw

)
,

with high probability.

Proof. We fix N = c ·
√
Nw for some large enough constant c. The time complex-

ity of the algorithm splits in the time complexity to compute two lists of weight-w
codewords of size |Li| = N and the time complexity to apply the Compute-Monomial
function to each element v ∈ Z, where |Z| = |V ×W | = N4. Note that, since the re-
computation of the solution via the Compute-Monomial function runs in polynomial-
time (see Lemma 4), the complexity for the latter is

TRec = Õ (|V ×W |) = Õ
(
N4
)
= Õ

(
N2

w

)
The time to find N weight-w codewords in an [n, k] linear code over Fq is given by
Lemma 1 as

TISD = Õ

( (
n
w

)(
n−k
w

)√
Nw

)
,

In summary, we obtain the claimed time complexity as T = max(TISD, TRec). For
the memory complexity, observe that we can check elements from Z on-the-fly and
do not have to store those lists. Therefore the memory complexity is dominated by
the size of L1, L2, giving M = Õ (N) = Õ

(√
Nw

)
.

For the correctness it remains to show that for |Li| = c
√
Nw there are at least

two codewords v1,v2 ∈ L1 and two codewords w1,w2 ∈ L2 with wi = viQ. Under
Heuristic 1, those pairs then lead to the reconstruction of the secret monomial via
the Compute-Monomial function with high probability. Note that for any c ∈ C there
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is exactly one w ∈ C′ such that c = wQ for the searched monomial. Therefore we
expect that there are

|L1 × L2|
Nw

= c

equivalent codewords between the two lists. For large enough c a birthday paradox
argument gives that there are at least two pairs of this form with high probability.

⊓⊔
In the following we use Eq. (1) to express the complexity of Algorithm 4 as a
function 2ϑ(R,q,ω)n, with ϑ(R, q, ω) being a constant that depends on the code rate
R, the chosen relative weight ω, where w = ωn as well as the field size q.

Corollary 1. Let n ∈ N, k = Rn, w = ωn for constants ω,R ∈ [0, 1] and q be a
constant integer. Then Algorithm 4 runs in expected time T = Õ

(
2ϑn
)
and memory

M = Õ (2µn), with

ϑ = max

(
h(w)− (1−R)h

(
ω

1−R

)
− γ

2
, 2γ

)
and µ =

γ

2
,

where γ = h (ω) + ω log(q − 1)− (1−R) log q.

Proof. By Theorem 1 the time complexity of Algorithm 4 is Õ (max(TRec, TISD)),
where

TRec = (Nw)
2 and TISD =

(
n
w

)(
n−k
w

)√
Nw

,

with Nw = Θ̃

(
(nw)(q−1)w

qn−k

)
. Approximating the involved binomial coefficients via

Eq. (1), and dropping Landau notation for convenience, we obtain

log TRec = 2 logNw and log TISD =

(
h(w)− (1−R)h

(
ω

1−R

))
n− logNw

2
,

where logNw = (h (ω) + ω log(q − 1)− (1−R) log q)n. Now by observing that γ =
logNw and recalling that the memory complexity of the algorithm is given as M =
Õ
(√

Nw

)
the statement follows. ⊓⊔

For a given rate R and field size q we choose ω to minimize the expression ϑ
from Corollary 1. Numerical optimization reveals that, apart from some edge cases
when R is very close to 0 or 1, the optimal ω usually balances both factors in the
maximum, i.e., it satisfies

h(ω)− (1−R)h

(
ω

1−R

)
− γ

2
= 2γ.

Comparison to Existing Techniques In the following we provide an asymp-
totic comparison of Algorithm 4 to existing techniques, including Leon’s algorithm
[Leo82] as well as the canonical forms meet-in-the-middle approach [CPS23]. Note
that for Beullens’ [Beu20] as well as for the BBPS algorithm[BBPS22] no asymp-
totic analysis has been provided. We therefore postpone the comparison against
those algorithms to the concrete analysis in Section 4.2.
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Canonical forms. The CF-MITM algorithm produces two lists of size
√(

n
k

)
where

each list element requires the computation of a systematic form for an [n, k] linear
code over Fq. Its running time therefore summarizes as

TCF = O

(
k2 · n

√(
n

k

))
= Õ

(
2h(k/n)n/2

)
. (17)

Leon’s algorithm. Leon requires to compute all codewords of minimum weight in
the two codes, which has complexity (compare to Lemma 1)

TLeon = Õ
((

n

w

)/(n− k

w

))
= Õ

(
2n·h(

w
n )−(n−k)h( w

n−k )
)
.

First observe that for a choice of ω = ωGV = h−1
q (1 − R) equal to the GV-

bound, implying Nw = O(1), Theorem 1 yields a time complexity equal to the time
complexity of Leon’s algorithm. This implies that Algorithm 4 is always at least as
efficient as Leon’s algorithm and strictly outperforms it for any optimal ω > ωGV.

Comparison for fixed q. In Fig. 4 we compare the runtime exponent of Algorithm 4
against those of canonical forms as well as Leon’s algorithm for fixed values of
q ∈ {63, 127}. Recall that solving LCE with code rate R is equivalent to solving
LCE with code rate 1 − R, by switching to the dual. We therefore report only the
minimum exponent to solve either of those instances in the regime R ∈ (0, 0.5].
Additionally, we also include a known lower bound for low-weight codeword based
approaches assuming (1) the secret monomial can be reconstructed from a single
pair of equivalent codewords in negligible time and (2) this pair of codewords could
be found in time linear in |L1| = O

(√
Nw

)
, leading to time complexity

TLower = Õ

(
max

( (
n
w

)(
n−k
w

)√
Nw

,
√

Nw

))
.

The runtime exponent of this lowerbound is illustrated in Fig. 4 as a dotted line.
We observe that across all code rates, Algorithm 4 achieves the smallest runtime

exponent among any constructive algorithm. Moreover, for smaller values of q, the
runtime exponent approaches the lower bound, whereas for larger q, it begins to
diverge. This divergence is related to the fast growth of Nw as q increases, since
the difference between the lower bound and the complexity given in Theorem 1 is
a factor of (Nw)

3/2 in the second term of the maximum.

Comparison in the (q,R) space. In general, the time complexity of Algorithm 4 in-
creases with q, while the runtime of the canonical forms approach remains indepen-
dent of the field size. This suggests that, for sufficiently large q, the canonical forms
method eventually outperforms Algorithm 4. However, we find that the break-even
point with respect to Algorithm 4 requires q > 200 for all rates, while, in the case of
Leon’s algorithm, the break-even point is already reached at q = 81. Furthermore,
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Fig. 4: Runtime exponent of different algorithms as a function of the rate R for
different choices of q.

the farther the rate lies from 1/2, the higher the break-even point with respect to
q. In Fig. 5, we provide an illustration of the (q,R) space where the colored regions
correspond to the respective algorithm performing best for those parameters, i.e.,
the algorithm having the lowest runtime exponent. Note that Algorithm 4 obtains
the lowest runtime exponent in the entire green area. The striped area corresponds
to the regime, where Leon’s algorithm is favorable to CF-MITM. Therefore, the
regime in which low-weight codeword finding algorithms are favorable is significantly
enlarged with the introduction of Algorithm 4.
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Fig. 5: Partition of the (q,R) space by optimal algorithms.

A further comparison of the lower bound for algorithms following a codeword-
based approach against the time complexity TCF-MITM of CF-MITM shows that
TLower < TCF-MITM for any (q,R). Moreover, we observe that TLower converges
to TCF-MITM from below for q → ∞. This is because for large q, we have that
wGV → n−k, which fixes the optimal w ∈ [wGV, n−k] to n−k. In turn this implies
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Nw →
(

n
n−k

)
and in summary leading to

TLower → Õ

(√(
n

n− k

))
= TCF-MITM,

demonstrating the potential of codeword finding based approaches for arbitrary
choices of q.

Comparison for the worst case rate. As can be observed from Fig. 4, the maximum
runtime exponent for all algorithms is obtained at rate R = 0.5. For this reason
cryptographic constructions, including the LESS signature scheme, usually resort
to this choice for the code rate. To quantify the improvement for this specific choice,
we compare in Fig. 6 the runtime exponent of the different approaches for fixed
rate R = 0.5 as a function of q. As observed earlier, the runtime exponent of CF-
MITM is constant in q. The intersection of the runtime exponents of Leon and
Algorithm 4 with this constant lies at q = 81 and q = 202, respectively. Therefore at
rate 1

2 Algorithm 4 improves on the asymptotic complexity of previous algorithms
for any q ≤ 202.
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Fig. 6: Runtime exponents for fixed rate R = 1
2 as a function of the field size q.

In Fig. 6 we again illustrate the lower bound for codeword finding based algo-
rithms. Additionally, we provide a semi-lower bound (pink solid line), which refers
to the running time under the assumption that the Compatible-Pairs function in
Algorithm 4 runs in time linear in |V | = |W | = Nw, rather than quadratic time. In
the following section, we show how to obtain a concrete algorithm whose complexity
for growing choices of q converges to this optimistic bound.

4.2 An Improved Concrete Version of the Algorithm

We now introduce a series of improvements to Algorithm 4 that significantly reduce
its concrete time complexity. In the corresponding analysis, we use the number of
field operations as a measure for time complexity and the number of field elements
that need to be stored as a memory unit.
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Identifying Compatible Codewords In the following we derive a criterion to
determine efficiently if two pairs of codewords can be mapped via a monomial
transformation. Eventually, this criterion leads to a more efficient instantiation of
the Compute-Monomial function in Algorithm 4. More precisely, given two pairs of
codewords v1,v2 ∈ C and w1,w2 ∈ C′, we say the pairs (v1,w1) and (v2,w2) are
compatible if there exist a monomial transformation Q′ such that v1 = w1Q

′ and
v2 = w2Q

′, for some Q′ ∈ Monon(Fq). Note that the difference to equivalent pairs
(see Definition 2) is the fact that such a monomial Q′ not necessarily defines a linear
equivalence between C and C′, i.e., it is not guaranteed to solve the code equivalence
problem. However, any pair of equivalent codewords must necessarily be compatible
according to this definition. We summarize this property in the following.

Definition 4 (Compatible Pairs). Let C, C′ be two [n, k] codes over Fq. We call
two pairs of codewords (v1,w1), (v2,w2) with vi ∈ C and wi ∈ C′ compatible if
and only if there exists a monomial Q ∈ Monon(Fq) such that

w1 = v1Q and w2 = v2Q.

We now derive a simple criterion to check the compatibility of pairs based on the
argumentation about the restriction on the monomial imposed by the support in-
tersection of the pairs discussed in Section 3.2. In that section, we already ob-
served that a suitable monomial has to map indices in I to indices in J , where
I = Supp(v1)∩Supp(v2) and J = Supp(w1)∩Supp(w2) are the respective support
intersections. Therefore compatibility implies that for every i ∈ I there exists a
j ∈ J satisfying (compare to Eq. (6))

v1(i)

v2(i)
=

w1(j)

w2(j)
.

This translates into a simple criterion to check compatibility of pairs, which we
summarize in the following lemma.

Lemma 6 (Compatibility Criterion). Two pairs of codewords (v1,w1) and
(v2,w2) of same Hamming weight wt(vi) = wt(wi) = w are compatible if and
only if the entries of vcomp and wcomp generate the same multiset, where

vcomp :=

(
v1(i)

v2(i)

)
i∈I

and wcomp :=

(
w1(j)

w2(j)

)
j∈J

with I = Supp(v1) ∩ Supp(v2) and J = Supp(w1) ∩ Supp(w2).

Proof. Both vectors vcomp and wcomp sharing the same multiset of entries implies
Eq. (6). This yields for Q(i, j) = αi,j = v(i)/w(j) a valid monomial transformation
with respect to the intersection of the supports of those pairs. Note that for indices
i ∈ Supp(v1) \ I a valid monomial can be obtained by mapping i to an arbitrary
index j ∈ Supp(w1) \ J and setting the scaling factor to v1(i)/w1(j) (analogously
for v2 and w2). Lastly, indices where neither of the codewords have support can be
mapped arbitrarily among each other.

On the other hand the existence of a monomial map Q such that w1 = v1Q
and w2 = v2Q implies Eq. (6) which yields that vcomp and wcomp share the same
multiset of entries. ⊓⊔
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An algorithm finding compatible pairs. Lemma 6 now easily turns into a more
efficient algorithm for the Compatible-Pairs function in Algorithm 4, which returns
only those elements whose labels vcomp,wcomp share the same multiset of their
entries. More precisely, for each element (v1,v2) ∈ V (resp. (w1,w2) ∈ W ) we
compute the corresponding labels vcomp (resp.wcomp). Finally we compute elements
between the lists satisfying equality with respect to the multiset of the labels via a
sort-and-match procedure. We summarize this procedure in Algorithm 5.

Algorithm 5 Compatible-Pairs(V,W )

Input: lists V,W ⊂ Fn
q × Fn

q with V = {(v1,v2) | wt(v1) = wt(v2) = w} and
W = {(w1,w2) | wt(w1) = wt(w2) = w}
Output: list Z = {

(
(v1,w1), (v2,w2)

)
| vi ∈ V,wi ∈ W ∧

(v1,w1) and (v2,w2) are compatible }
1: V ′ ← {(sort(vcomp), (v1 ,v2 )) ∈ (F∗

q)
ℓ × V | ℓ ≥ w2/n}

2: W ′ ← {(sort(wcomp), (w1,w2)) ∈ (F∗
q)

ℓ ×W | ℓ ≥ w2/n}
3: Z ← {

(
(v1,w1), (v2,w2)

)
| (x,v1,v2) ∈ V ′ ∧ (x,w1,w2) ∈W ′}

4: Return Z

Lemma 7 (Finding Compatible Pairs). Algorithm 5 runs in expected time and
memory

(ℓ+ 2n)
(
|V |+ |W |

)
+ 4n · |V ×W | · (w2/n)!

(q − 1)w2/n
,

and returns any compatible pair between V and W with probability at least 1/2.

Proof. A sort-and-match procedure between two lists can be performed in time
linear in the involved list sizes. It remains to determine the expected size of Z.
Note that two random vectors vcomp ∈ (F∗

q)
ℓ,wcomp ∈ (F∗

q)
ℓ are equal with prob-

ability (q − 1)−ℓ. The algorithm, however matches equality on the sorted vectors
sort(vcomp), sort(wcomp). Therefore labels match as long as wcomp forms any per-
mutation of vcomp, which gives

p : = Pr
[
sort(vcomp) = sort(wcomp) | vcomp,wcomp ∈ (F∗

q)
ℓ
]

=
|{π(vcomp) | π ∈ Permℓ}|

(q − 1)ℓ
≤
|{π(vcomp) | π ∈ Permw2/n}|

(q − 1)w2/n

≤ (w2/n)!

(q − 1)w2/n
, (18)

where the first inequality follows from the fact that p is generally decreasing in
ℓ ≥ w2/n, while the second inequality follows from bounding the amount of per-
mutations of vcomp ∈ (F∗

q)
ℓ as ℓ!. Eventually, this yields the expected size of Z as

E
[
|Z|
]
= p|V ×W |. Note that the construction of list elements requires an amount

of field operations bounded by the length of the included vectors, which is ℓ + 2n
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for V ′,W ′ and 4n for Z. Analogously the same amount of field elements need to be
stored.

For the correctness note that sort(vcomp) = sort(wcomp) implies that the entries
of vcomp and wcomp form the same multiset. Therefore Lemma 6 yields that those
elements are compatible. It remains to analyze the probability that vcomp (resp.
wcomp) is of length ℓ ≥ w2n. Note that ℓ corresponds to the size of the intersection
of support between (v1,v2) ∈ V , i.e., ℓ = Supp(v1)∩ Supp(v2). For random v1,v2,
ℓ is distributed according to a hypergeometric distribution with population size n
and parameters (w,w). For large n this distribution is closely approximated by a
binomial distribution Binw,w/n, with mean w2/n. For X ∼ Binw,w/n we have

Pr
[
X ≥ E[X] = w2/n

]
≥ 1/2,

since the binomial distribution is symmetric around its mean. Since for compatible
pairs the length of vcomp and wcomp is the same by definition, the probability for
any compatible pair being returned by the algorithm is at least 1/2. ⊓⊔

In the following we replace the routine Compatible-Pairs in Algorithm 4 with Algo-
rithm 5, which leads to significant improvements with respect to concrete parameter
choices. However, we first show that under the assumptions made in the asymptotic
analysis, the procedure Compatible-Pairs from Eq. (16) is (up to polynomial factors)
optimal with respect to the definition of compatibility from Definition 4. Precisely,
the following lemma shows that for constant q computing all compatible pairs takes
time at least |V ×W |/poly(ℓ).

Lemma 8 (Asymptotic Size of Z). Let n ∈ N. For any constant q the expected

size of Z in Algorithm 4 is E
[
|Z|
]
= |V×W |

poly(ℓ) .

Proof. In Eq. (18) we observed that the probability of two pairs of random weight
w vectors with same overlapping support size ℓ being compatible is

p =
|{π(vcomp) | π ∈ Permℓ}|

(q − 1)ℓ
=

(
ℓ

m1,m2,...,mq−1

)
(q − 1)ℓ

,

where mi denotes the amount of appearances of i ∈ F∗
q in the vector vcomp. The

probability that each element appears an amount equal to its expectation ℓ/(q−1) >
1 in vcomp is

p2 := Pr

[
mi =

ℓ

(q − 1)

]
=

(
ℓ

ℓ
(q−1)

, ℓ
(q−1)

,..., ℓ
(q−1)

)
(q − 1)ℓ

=
ℓ!(

ℓ
q−1 !

)q−1

(q − 1)ℓ

= Θ(ℓ(1−q)/2) =
1

poly(ℓ)
,

which follows from approximating the factorials via Stirling’s formula and the fact
that q is a constant. Here we ignore rounding issues stemming from ℓ/(q − 1) not
being an integer for clarity.
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Note that now the probability of the event E that two random pairs of vectors
are compatible can be written as

p ≥ Pr

[
E | mi =

ℓ

q − 1

]
· Pr

[
mi =

ℓ

q − 1

]
= (p2)

2 =
1

poly(ℓ)
.

Since the expected size of Z is E [Z] = p · |V ×W | the statement follows. ⊓⊔

Exploiting Scalar Multiples Note that there exist q − 1 solutions to the LCE
problem, as any scaled version β · Q of the secret monomial Q for any β ∈ F∗

q

defines a linear equivalence between the two codes. Implicitly, for any equivalent
pair (v1,w1), equivalent under secret monomial Q, the pair (v1, β ·w1) is equivalent
under secret monomial Q′ = βQ.

In Section 4.1 we chose a list size N = |L1| = c
√
Nw in Algorithm 4 that

ensures that between the lists V and W there are at least two pairs of codewords
equivalent under the same secret monomial βQ. In following we adapt this choice
to still guarantee that there are two pairs of equivalent codewords between those
lists, but not necessarily equivalent under the same scaled version of the secret
monomial. In turn this allows us to start with smaller list sizes, while we have to
adapt Algorithm 5 to identify pairs of codewords that are compatible under scaled
versions of the same monomial transformation.

New starting list size. Let us start determining the necessary list size such that
on expectation there are two pairs of codewords (v1,w1) and (v2,w2), vi ∈ L1,
wi ∈ L2, that are equivalent under (potentially) different scaled versions of the
secret monomial, i.e.,

w1 = v1(γQ) and w2 = v2(βQ), γ, β ∈ F∗
q . (19)

In the following, we assume, without loss of generality, that γ = 1.3 As observed, for
every codeword v ∈ C, there are q−1 codewords equivalent under scaled versions of
the secret monomial in C′. Thus, the probability that a random pair (v,w) ∈ C×C′
is equivalent under any of those scaled versions is q−1

Nw
. Therefore, choosing

N =

√
2Nw

q − 1
(20)

yields an expected amount of q−1
Nw
· |L1 × L2| = (q−1)N2

Nw
= 2 pairs equivalent under

(potentially) different scaled versions of the secret monomial. This corresponds to
a saving of a factor of about

√
q − 1 compared to the choice made in Theorem 1.

3Note that this is equivalent to redefining γQ to be the secret monomial and updating the
scaling factor β to β/γ.
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Compatibility up to scalar factors. Note that given a pair of codewords (v1,w1) and
(v2,w2) satisfying Eq. (19) (with γ = 1) for an arbitrary monomial Q, we can still
follow the same logic used to derive Eq. (6). Therefore, let I = Supp(v1)∩Supp(v2)
and J = Supp(w1) ∩ Supp(w2). The two monomials still map elements from I to
J , and moreover for any i ∈ I there must be a j ∈ J satisfying

v1(i) = αi,j ·w1(j) and v2(i) = αi,j · β ·w2(j) for some αi,j , β ∈ F∗
q ,

where αi,j = Q(i, j), which implies v1(i)
v2(i)

= β−1 ·w1(j)
w2(j)

. From here, following the logic

of Lemma 6, we can deduce that, whenever the entries of the two labels vcomp,wcomp

generate the same multiset up to a multiplicative shift δ, there exists a monomial
Q such that Eq. (19) is satisfied for β = δ−1. For finding those pairs for which the
multiset of vcomp and wcomp differs by a shift δ we perform a standard meet-in-the-
middle procedure.

Meeting the scalar in the middle. Assume we have two labels vcomp,wcomp with
sort(vcomp) = δ · sort(wcomp), δ ∈ Fq, i.e., the multiset of their entries differs by a
factor of δ. Now we write δ = δ1 · δ2, δi ∈ Si ⊂ Fq and obtain

(δ1)
−1 · sort(vcomp) = δ2 · sort(wcomp).

We then modify Algorithm 5 to include for every element V ′ a total of |S1| different
labels (δ1)

−1 · sort(vcomp) and analogously |S2| different labels δ2 · sort(wcomp) for
each element in W ′. This procedure is described in Algorithm 6.

Algorithm 6 Meet-Compatible-Pairs(V,W )

Input: lists V,W ⊂ Fn
q × Fn

q with V = {(v1,v2) | wt(v1) = wt(v2) = w} and

W = {(w1,w2) | wt(w1) = wt(w2) = w}
Output: list Z = {

(
(v1,w1), (v2, βw2)

)
| vi ∈ V,wi ∈ W ∧ β ∈ F∗

q ∧
(v1,w1) and (v2, βw2) are compatible }
1: Let m =

⌈√
q − 1

⌉
and F∗

q = ⟨g⟩
2: Let S1 = {gi | 0 ≤ i ≤ m} and S2 = {gi·m | 0 ≤ i ≤ m}

3: V ′ ← {((δ1)−1 · sort(vcomp ), (v1,v2 ), δ1) ∈ (F∗
q)

ℓ × V × S1 | ℓ ≥ w2/n}
4: W ′ ← {( δ2 · sort(wcomp), (w1,w2), δ2) ∈ (F∗

q)
ℓ ×W × S2 | ℓ ≥ w2/n}

5: Z ← {
(
(v1,w1), (v2,w

′
2)
)
| (x, (v1,v2), δ1) ∈ V ′, (x, (w1,w2), δ2) ∈ W ′}, with

w′
2 := (δ1δ2)

−1 ·w2

6: Return Z

Lemma 9 (Complexity of Algorithm 6). Algorithm 6 runs in expected time
and memory√

q − 1 · (ℓ+ 2n)
(
|V |+ |W |

)
+ 4n · |V ×W | · (w2/n)!

(q − 1)w2/n−1
,
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and returns any pair between V and W satisfying Eq. (19) for an arbitrary monomial
Q ∈ Monon(Fq) with probability at least 1/2.

Proof. The statement about the time and memory complexity follows along the
lines of the proof of Lemma 7 by observing that the lists V ′ and W ′ are now of size⌈√

q − 1
⌉
· |V | and

⌈√
q − 1

⌉
· |W | respectively.

The correctness follows from the argumentation above observing that any δ ∈ F∗
q

can be factored into δ = δ1δ2 with δi ∈ Si. ⊓⊔

The Concrete Algorithm Eventually, we are ready to specify the improved con-
crete version of Algorithm 4. Precisely for this version, we use a starting list sizeN as
specified in Eq. (20) and instantiate the Compute-Monomial function in Algorithm 4
via Algorithm 6.

We specify the concrete complexity of this algorithm in the following theorem.

Theorem 2 (Concrete Complexity of Algorithm 4). Let n, q, k, w ∈ N, w <
n − k, q ≥ 23. Then the LCE problem under Heuristic 1 can be solved in expected
time

4Tn,k,q,w
ISD ·

√
2Nw

q − 1
+

4Nw(ℓ+ 2n)√
q − 1

+ v(n,w,w2/n, q)4 · 8(Nw)
2(w2/n)!

(q − 1)w2/n+1

and expected memory Mn,k,q,w
ISD + 2Nw(ℓ+2n)√

q−1
+ 4(Nw)2(w2/n)!

(q−1)w2/n+1
, with constant probability,

where Tn,k,q,w
ISD (resp. Mn,k,q,w

ISD ) is the expected time (resp. memory) complexity for
finding a weight-w codeword in an [n, k] linear code over Fq and v(n,w, ℓ, q) as
defined in Eq. (8).

Proof. For the correctness we have shown that the chosen list size leads on ex-
pectation to two pairs of codewords satisfying Eq. (19) for the secret monomial
Q ∈ Monon(Fq). These pairs are returned in the list Z with constant probability
1
2 according to Lemma 9. Now, Heuristic 1 ensures that from this pair the secret
monomial is reconstructed via the Compute-Monomial function with high probabil-
ity.

The time complexity of Algorithm 4 splits in the time to construct two lists of

N =
√

2Nw

q−1 weight-w codewords, the call to the Compute-Monomial function and

the final reconstruction of the monomial for each element in Z.
Note that the time to find 2N weight-w codewords is defined as Tn,k,q,w

ISD · 2N =

Tn,k,q,w
ISD ·

√
8Nw

q−1 . Now, Lemma 9 for |V | = |W | = N2 yields a running time of

4Nw(ℓ+ 2n)√
q − 1

+
16n(Nw)

2(w2/n)!

(q − 1)w2/n+1
,

where the size of the returned list is |Z| = 4(Nw)2(w2/n)!

(q−1)w2/n+1
. Eventually, attempt-

ing to reconstruct the monomial for each element in this list has time complexity
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Fig. 7: Bitcomplexity of LCE for n = 252 (left) and n = 400 (right) with rate 0.5.

v(n,w,w2/n, q)4 · |Z| (compare to Lemma 4), as Algorithm 6 enforces ℓ ≥ w2/n.
Now the expected running time follows by observing that on expectation two appli-
cations of the procedure lead to the equivalent pair being returned by Algorithm 6.
The memory complexity is derived equally by observing that the executions of the
ISD algorithm are sequential and memory can be reused. ⊓⊔

Concrete Comparison We now compare the concrete performance of Algorithm 4
against previous approaches with respect to parameters suggested in the literature.
For the estimation of the bitcomplexity of Leon,Beullens as well as BBPS we
rely on the CryptographicEstimators library [EVZB24]4. For the CF-MITM we use
the formula provided in Eq. (17).

Application to LESS parameters. We first focus on the parameters used in the LESS
signature scheme. The scheme provides three parameter sets for different security
categories, which all use q = 127 and rate 1

2 . We refer to those as LESS-I (n = 252),
LESS-III (n = 400) and LESS-V (n = 548).

In Fig. 7, we compare the concrete time complexity of Algorithm 4 given in
Theorem 2 against other known algorithms for varying q. In this comparison we fix
n = 252 (left) and n = 400 (right), and the code rate to 1

2 , i.e., to the choices made
for LESS-I and LESS-III. It can observed that for all choices of q Algorithm 4 obtains
the best time complexity. Furthermore we again observe the mild dependence of CF-
MITM on the value q. As known, Beullens starts improving upon Leon only for
large enough q. We also provide in those graphics the lower bound for low-weight
codeword based approaches as well as the semi-lowerbound assuming the list Z
returned by the Compute-Monomial function is smaller than the input list V , i.e.
|Z| ≤ |V |. We find that for growing q the running time of Algorithm 4 converges
to this semi-lowerbound. This is related to the used compatibility criterion, for
which the probability of two non-equivalent codewords being compatible decreases
in q, implying decreasing size of Z. Additionally, we provide in Table 3 the bit
complexity estimates of all different algorithms for LESS parameters. We observe

4available at https://github.com/Crypto-TII/CryptographicEstimators
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CF-MITM Leon Beullens BBPS Algorithm 4

LESS-I 151 153 142 139 127
LESS-III 227 230 232 214 196
LESS-V 302 307 324 290 266

Table 3: Bitcomplexity estimates to solve LCE for suggested LESS parameters.

( n , k , q ) CF-MITM Leon Beullens BBPS Algorithm 4

P
C
E

[CPS23]
(252, 126, 127) 151 153 131 - 127
(400, 200, 127) 227 230 - - 196
(548, 274, 127) 302 307 - - 266

[BBN+22]
(235, 108, 251) 142 154 151 - 123
(230, 115, 127) 140 142 119 - 117

L
C
E

[BBN+22] (198, 94, 251) 123 134 113 114 105

Table 4: Bitcomplexity estimates for suggested LCE and PCE instances.

a bit complexity reduction by 12 (LESS-I), 18 (LESS-III) and 24 (LESS-V) bits
compared to the best previous approach, which is for all parameters the BBPS
algorithm.

Application to other parameters. Next, we compare the performance of Algorithm 4
to previous approaches on other suggested parameters (see Table 4). The parameters
split into those for the LCE problem and those considering the special case PCE, in
which the monomial is known to be a permutation. Note that Algorithm 4 applies
equally to both cases. However, for the comparison, note that the BBPS algorithm
only applies in case of LCE. Note that, in case of the PCE instances, the necessary
requirements of Beullens are not met in 2 out of 5 instances. Overall, we observe
that across all parameters Algorithm 4 obtains the lowest bit complexity estimates,
with reductions ranging from 2 to 36 bits.
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A Expected Hints from Algorithm 1

In this section, we show that the expected number of hints from Lemma 3 can be
roughly approximated as ℓ2 for sufficiently large q > ℓ. Define

s(ℓ, q) :=

ℓ∑
t=2

t2(q − 1)

(
ℓ

t

)(
1

q − 1

)t(
q − 2

q − 1

)ℓ−t

, (21)

to be the sum in Eq. (7). Let c := ℓ
q−1 , we then substitute q − 1 = ℓ

c into Equa-

tion (21) obtaining

s(ℓ, q) =
ℓ

c

ℓ∑
t=2

t2
(
ℓ

t

)(c
ℓ

)t (
1− c

ℓ

)ℓ−t

.
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Note that the value of s(ℓ, q) is closely approximated by restricting to the first few
entries of the sum. This is because, for larger values of t, we have

t2
(
ℓ

t

)(c
ℓ

)t (
1− c

ℓ

)ℓ−t

= t2
(
ℓ

t

)(
1

q − 1

)t(
1− 1

q − 1

)ℓ−t

≤ t2
(
2t

t

)(
1

q − 1

)t

≈ t3/2√
π

(
4

q − 1

)t

,

which tends to zero for q > 5. We therefore truncate the sum to the first few values

t ∈ {1, . . . , t̄}. For large ℓ, the term
(
1− c

ℓ

)ℓ−t̄
can then be approximated to(

1− c

ℓ

)ℓ
≈ e−c

and moved out of the sum. We are left with

s(ℓ, q) =

(
ℓ

c
e−c

) t̄∑
t=2

t2
(
ℓ

t

)(c
ℓ

)t
.

For large ℓ and since t ≤ t̄≪ ℓ we can approximate the term(
ℓ
t

)
ℓt

=
ℓ(ℓ− 1) · · · (ℓ− t+ 1)

t!ℓt

as 1
t! , then the sum can be rewritten as

t̄∑
t=2

t2ct

t!
=

t̄∑
t=2

tct

(t− 1)!
=

t̄∑
t=2

ct

(t− 2)!
+

t̄∑
t=2

ct

(t− 1)!
.

Recall that ex =
∑∞

i=0
xi

i! and, moreover, the sum converges to ex quite fast, hence,

also already for
∑t̄

i=0
xi

i! . We therefore approximate the first sum as c2ec while the

second can be written as c
∑t̄

t=1
c
t! ≈ c(ec − 1). Putting all together we get the

following approximation

s(ℓ, q) ≈
(
ℓ

c
e−c

)
(c2ec + cec − c) = ℓ(c+ 1− e−c). (22)

While this approximation has been done assuming large ℓ and q, Fig. 8 shows that
it is accurate also for relatively small values of these parameters.

Using the approximation in (22) we have s(ℓ, q) = λℓ,qℓ where λℓ,q = (c+1−e−c)
and c = ℓ

q−1 . While it is clear that λℓ,q is close to 0 for q ≫ ℓ it is still a relatively

small coefficient for q ≈ ℓ. As an example for ℓ = q − 1 we obtain λℓ,q = 2− e−1 ≈
1.63, while for ℓ = (q − 1)/2 we already get λℓ,q ≈ 0.89. For large values of ℓ with

respect to q the coefficient λℓ,q can be approximated to ℓ+q−1
q−1 .

In conclusion the number of expected hints in Eq. (7) is asymptotically close to
ℓ2 for q ≥ ℓ while it can be estimated as ℓ2 q

q−1 for ℓ > q.
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Fig. 8: The continuous lines represent the quantity s(ℓ, q) in (21) for various values
of q while the dashed line is the approximation of the same quantity in (22). We

consider ℓ =
ω2

GV

n , where ωGV is the weight given by the Gilbert-Varshamov bound
at that rate.

B On the Structure of Ared

In Section 3, we show how a linear code equivalence problem instance (C, C′ = CQ)
can be reduced to finding a particular solution of an underdetermined linear system
when two pairs of equivalent codewords between those codes are known. In the
following we provide further insights with respect to the structure of the constructed
linear system, giving further evidence for the validity of Heuristic 1.

Let G be a generator matrix of C and H′ be a parity-check matrix of C′. Recall,
that we consider the following linear system

S : Ax = 0, (3)

where A = G ⊗ H′ and x is the length-n2 column-vector vec(Q) formed by
the concatenation of the rows of Q. We then assume knowledge of two pairs
(v1,w1), (v2,w2) of equivalent codewords of weight w, that is w1 = v1Q and
w2 = v2Q, with Ii = Supp(vi) and Ji = Supp(wi), Ii, Ji ⊂ [n], i = 1, 2 being the
supports of vi and wi, respectively.

Let us divide the matrices G and H′ in four parts according to the supports of
v1,v2,w1, and w2, where Ī = [n] \ I indicates the complement of the set I in [n].

G11 := GI1∩I2 , G10 := GI1∩Ī2 , G01 := GĪ1∩I2 , G00 := GĪ1∩Ī2

H11 := HJ1∩J2
, H10 := HJ1∩J̄2

, H01 := HJ̄1∩J2
, H00 := HJ̄1∩J̄2

(23)

Recall that the method described in Section 3.1 (see Eq. (4)) sets to zero the vari-
ables x(i · n+ j) in Equation (3) if

– i ∈ I1 ∩ I2 but j /∈ J1 ∩ J2, or
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– i ∈ I1 ∩ Ī2 but j /∈ J1 ∩ J̄2, or
– i ∈ Ī1 ∩ I2 but j /∈ J̄1 ∩ J2, or
– i ∈ Ī1 ∩ Ī2 but j /∈ J̄1 ∩ J̄2.

Note that, due to the tensor structure, the matrix describing the resulting linear
system can be obtained fromA by removing the columns corresponding to the above
indices. In fact the matrix describing the reduced system then forms a column-
rearrangement of the following matrix

Â =
[
G00 ⊗H00︸ ︷︷ ︸
(n−2w+ℓ)2

G01 ⊗H01︸ ︷︷ ︸
(w−ℓ)2

G10 ⊗H10︸ ︷︷ ︸
(w−ℓ)2

G11 ⊗H11︸ ︷︷ ︸
ℓ2

]
.

The remaining unknown entries ofQ, after applying a similar rearrangement as in Â,
then form four monomial submatrices (see Figure 1b). Let us call these submatrices
Q01,Q10 ∈ Monow−ℓ(Fq), Q11 ∈ Monoℓ(Fq) and Q00 ∈ Monon−2w+ℓ(Fq). Note that

by construction Qij maps indices from I
(i)
1 ∩ I

(j)
2 to J

(i)
1 ∩ J

(j)
2 , where I(i) = I for

i = 1 and I(i) = Ī for i = 0. We then define the column vectors x00 = vec(Q00),
x01 = vec(Q01), x10 = vec(Q10), and x11 = vec(Q11). Then we have that

Âx = (G00 ⊗H00)x00 + (G01 ⊗H01)x01 + (G10 ⊗H10)x10 + (G11 ⊗H11)x11.

In Section 3.2, we explain how to determine some additional entries of Q corre-
sponding to the submatrix Q11. We show in Appendix A that, for c = ℓ

q−1 , the
expected number of variables in x11 that can be determined is approximated by
ℓ2− ℓ(c+1− e−c), which leaves us with an expected number of unknowns equal to

v(n,w, ℓ, q) ≈ 2(w − ℓ)2 + (n− 2w + ℓ)2 + ℓ(c+ 1− e−c).

This shows that, for sufficiently large q, most of the ℓ2 variables in x11 can be
determined. We indicate by x̄11 the vector of remaining variables in x11. The further
reduced system is then defined via the matrixAred with solution x̄⊤ where x̄ = (x00 |
x01 | x10 | x̄11), and

Ared = (G00 ⊗H00 | G01 ⊗H01 | G10 ⊗H10 | G11 ⊗H11.) (24)

Here,G11 ⊗H11 describes the matrix obtained by removing the columns from block
G11 ⊗H11 corresponding to the variables that got determined via Algorithm 1.

We now show the existence of an exponential amount codewords attaining an
unusually low weight in the code generated by the matrix Ared. We then argue that
this ultimately leads to the observed dimension reduction of the code if columns are
removed from Ared, corresponding to the guesses made in Algorithm 3 to recover
the secret monomial.

Proposition 1. Suppose either H01 ∈ F(n−k)×(w−ℓ)
q or H10 ∈ F(n−k)×(w−ℓ)

q have
maximal rank w− ℓ. Then, the code CAred

generated by the rows of Ared in Eq. (24)
contains an exponential amount of codewords of a weight smaller than or equal to
w− ℓ+ t, where t ≈ ℓ(c+1−e−c) is the number of columns in the block G11 ⊗H11.
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Proof. Let H01 ∈ F(n−k)×(w−ℓ)
q be of full rank w − ℓ. The argumentation for H10

works analogously. Let ej be the j-th unit vector of length w − ℓ in Fq. Then we
define

Uj = {u ∈ Fn−k
q | uH01 = λej , λ ∈ F∗

q}.

Let u be such that uH01 = ej , the set Uj can be explicitly constructed as the
union of the cosets λu + ker(H01) for λ ∈ F∗

q and has therefore cardinality (q −
1)qdim(ker(H01)) ≈ qℓ+n−k−w+1.

Let m2G = v2, for v2 being the first codeword of the second pair of equivalent
codewords. Then, by the structure of G defined in Eq. (23), we have that m2G00 =
0, m2G10 = 0 and m2G01 = a for some a ∈ Fw−ℓ

q . Now, for any uj ∈ Uj consider
the codeword

c = (m2 ⊗ uj)Ared = (c00 | c01 | c10 | c̄11),

where

c00 = m2G00 ⊗ ujH00 = 0⊗ ujH00 = 0

c01 = m2G01 ⊗ ujH01 = a⊗ λej

c10 = m2G10 ⊗ ujH10 = 0⊗ ujH10 = 0

c̄11 = (m2 ⊗ uj)G11 ⊗H11.

The sub-vector c01 = a⊗ λej ∈ F(w−ℓ)2

q has weight at most w − ℓ while the vector
c̄11 ∈ Ft

q has weight at most t. Since we can choose uj to be any element of Uj there
are (q− 1)qn−k−w+ℓ ways to construct codewords with a support similar to c. Note
that a similar argumentation can be made in case H10 is of full rank by considering
v1 in the consruction of c instead. ⊓⊔

We now argue that certain guesses on the remaining entries of the monomial matrix
are likely to lead to a decreased dimension of the code CAguess in comparison to CAred

,
where Aguess is the matrix describing the system S(i,j) from Eq. (13). Note that this
dimension reduction is equivalent to the observed rank decrease from Ared to Aguess

in Eq. (15).
We define the set S01 := Ī1∩I2×J̄1∩J2 indexing all coordinates of the submatrix

Q01. Recall that in Algorithm 2, a guess on entry (i, j) ∈ S01 corresponds to the
deletion of the j-th column and the i-th row of Q01. This results in a particular
puncturing of the code CAred

over the set

I01(i, j) := ((i, ∗) ∩ S01) ∪ ((∗, j) ∩ S01),

where ∗ stands for any index in [n], resulting in the code CAguess . Note that the

support of the vector c01 = a ⊗ λej ∈ F(w−ℓ)2

q in the proof of Proposition 1
is contained in the set I01(i, j). This can be seen by noticing that the matrix

vec−1(c01) = C01 ∈ F(w−ℓ)×(w−ℓ)
q is a matrix whose columns are all zero with

the exception of the j-th which is equal to a⊤. Then, if we remove the j-th column
and the i-th row from C01, we are left with a zero matrix, or analogously the zero
vector when transitioning back via vec(·)
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However, the support of the whole vector c also includes the non-null coordinates
Ī11 := Supp(c̄11) of c̄11, which are not contained in I01(i, j). In Proposition 1 we
prove that for any u ∈ Uj we obtain codewords of the form

c = (v ⊗ u)Ared = (0 | c01 | 0 | c̄11)

whose support is contained in I01(i, j) ∪ Ī11. Note that a substitution of u into
u+ z where z ∈ ker(H01) leads to a new codeword with same c01, but (potentially)
different c̄11. Now recall that we can construct a total of (q − 1)qn−k−w+ℓ ≫ qt

such codewords. Therefore we expect that, at least for one of them, it holds c̄11 =
0 ∈ Ft

q, which leads to the entire support of c being contained in I01(i, j) and
correspondingly leading to the mentioned dimension reduction. Note that a similar
argument can be made for guesses on the entries of Q10 by instead considering the
matrix H10 in the proof of Proposition 1.

This gives an intuitive explanation for why Algorithm 2 succeeds in identifying
wrong guesses (i, j) for sufficiently large q with (i, j) ∈ S01 or (i, j) ∈ S10. However,
experimentally, we observe that guesses with respect to the remaining variables in
Q11 and Q00 also lead to a similar reduction in the resulting codes dimension. This
implies the existence of codewords, of similarly low-weight to those constructed
in Proposition 1, whose support lies entirely in the blocks corresponding to those
indices. So far, we were unable to prove the existence of these codewords or to give
an explicit construction. We therefore pose it as an open question to give intuitive
reasoning or a rigorous proof for the success of the algorithm in those cases.
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