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Abstract. Isogeny-based cryptography relies its security on the hardness
of the supersingular isogeny problem: finding an isogeny between two
supersingular curves defined over a quadratic field.
The Delfs-Galbraith algorithm is the most efficient procedure for solving
the supersingular isogeny problem with a time complexity of Õ(p1/2) op-
erations. The bottleneck of the Delfs-Galbraith algorithm is the so-called
subfield curve search (i.e., finding an isogenous supersingular elliptic curve
defined over the base field), which determines the time complexity.
Given that, for efficiency, most recent isogeny-based constructions pro-
pose using finite fields with field characteristics equal to p = 2a · f − 1
for some positive integers a and f . This work focuses on primes of that
particular form, and it presents two new algorithms for finding subfield
curves with a time complexity of O(p1/2) operations and a memory com-
plexity polynomial in log2 p. Such algorithms exploit the existence of large
torsion-2a points and extend the subfield root detection algorithm of San-
tos, Costello, and Shi (Crypto 2022) to our case study. In addition, it is
worth highlighting that these algorithms easily extend to primes of the
form p = 2a · f + 1 and p = ℓa · f − 1 with ℓ being a small integer.
This study also examines the usage of radical 3-isogenies with the pro-
posed extended subfield root detection algorithm. In this context, the
results indicate that the radical 3-isogeny approach is competitive com-
pared with the state-of-the-art algorithms.
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1 Introduction

The security of most of the isogeny-based cryptographic schemes relies on the
hardness of the supersingular isogeny problem, which refers to finding an isogeny
ϕ : E → F between two given supersingular elliptic curves defined over Fp2 .

The best classical algorithm for solving the supersingular isogeny problem is
the Delfs-Galbraith algorithm [13], which splits into two main steps:

1. Subfield curve search: Fix an integer ℓ, and find two ℓ•-isogenies, ϕ0 : E → E ′

and ϕ1 : F → F ′, so the codomain curves E ′ and F ′ are defined over the
subfield Fp.

1 This step runs in Õ(p1/2) field operations.

1 The notation “ℓ•-isogeny” refers to a ℓe-isogeny for some integer number e.



2. Subfield isogeny search: Find an isogeny ψ : E ′ → F ′ between E and F ′ defined
over Fp. This step runs in Õ(p1/4) field operations.

In addition, the Delfs-Galbraith algorithm has a running time of Õ(p1/2)
field operations, and its bottleneck step is the subfield curve search. Hence, any
improvement in the subfield curve search of the Delfs-Galbraith algorithm would
impact the security of most isogeny-based constructions.

Motivation. Given that the shape of the field characteristic p impacts the field
arithmetic and isogeny calculations performance, and it does not affect security,
recent works push for primes of the form p = 2a · f − 1. For example,

– [7] requires primes p = (4 · 3)a · f − 1 with f ∈ N and a ≈ 1
2 log12 p.

– [12] suggests primes p = 2a · 3b · f − 1 with small f ∈ N, a ≈ 1
2 log2 p, and

b ≈ 1
2 log3 p.

– [24] works over primes of the form p = 2a · f − 1 with f ∈ N and a ≈ 1
2 log2 p.

– [2,20,14,19] asks for p = 2a · f − 1 with small f ∈ N and a ≈ log2 p.

In addition, all the above prime numbers determine an interesting structure in
the torsion-(p+1) subgroup of the curves. To our knowledge, the Delfs-Galbraith
algorithm does not exploit the structure of the torsion subgroup of the curve; it
performs isogeny walks through modular polynomials at the cost of field expo-
nentiations.

Our Contribution. We show that the existence of a large torsion-2a subgroup
reduces the complexity of the Delfs-Galbraith algorithm from Õ(p1/2) to O(p1/2)
field operations.

Firstly, we propose a dedicated and optimized subfield search through a DFS
traversal of the 2-isogeny tree over specific primes, p = 2a · f − 1. Our algorithm
performs the subfield search by calculating 2-isogenies from kernel generators, and
therefore, it operates on the curves instead of the j-invariants. Such an approach
does not require the calculation of the expensive square roots as in the original
Delfs-Galbraith algorithm.

Secondly, we extend the subfield root detection algorithm from [23] to our case
study. Given that our proposed algorithm does not operate on the j-invariants
of the curves but on the curves themselves, it implies we cannot directly use
the subfield root detection algorithm of [23] without calculating a field inversion.
However, we show how to extend that subfield root detection algorithm when we
only have the denominator and numerator of the j-invariants of the curves (that
is, without requiring any field inversion).

In a nutshell, we propose two new algorithms, Searcherd and SuperSearcherd,
with a time complexity equal to

c ·
#Sp2

#Sp
= O

(
p1/2

)
and a memory complexity polynomial in log2 p. Additionally, we provide a tighter
complexity analysis of the algorithm in [23], which includes the hidden logarithm
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factor in the complexity analysis from [23]. Furthermore, we present another
algorithm, namely RadicalSearcher3, that combines our proposed subfield root
detection with radical 3-isogenies for finding subfield curves over more general
primes. We present explicit time complexities regarding field operations through
x-only points on the Kummer lines and validate our claims through extensive
experiments (see Table 1). We provide a proof-of-concept implementation using
SageMath [26] available at [21].

Algorithm
Running Time

Average Maximum

SuperSolver c1 · log2 p · 2h c2 · log2 p · 2h

Searcher 33 · 2h 66 · 2h
Searcher4 33 · 2h 88 · 2h
Searcher12 58.21 · 2h 127 · 2h

SuperSearcher 20 · 2h 65 · 2h
SuperSearcher4 17.45 · 2h 32 · 2h
SuperSearcher12 27.68 · 2h 226.49 · 2h

RadicalSearcher3 c3 · log2 p · 2h c4 · log2 p · 2h

Table 1. The constants 0.2 ≲ c1 ≲ 1.64 and 0.07 ≲ c2 ≲ 0.51 are as detailed in Sec-
tion 3, while constants 0.14 ≲ c3 ≲ 1.44 and 0.08 ≲ c4 ≲ 0.62 are as determined
in Section 5. The row concerning SuperSearcher corresponds with our analysis on the

algorithm SuperSolver from [23]. The exponent value of h is
#S

p2

#Sp .

We emphasize that our results should be taken as cautionary advice for
proposing conservative parameter sets in isogeny-based constructions with 2λ-
bits prime numbers of the form p = 2a ·f −1 with a ≥ λ and λ ∈ {128, 192, 256}.
In addition, our work easily extends to primes of the form p = 2a · f + 1 and
p = ℓa · f − 1.

Organization. Section 2 provides the preliminaries. Section 3 details and refines
an analysis of the running time of SuperSolver. Section 4 describes the two algo-
rithms, Searcherd and SuperSearcherd with special focus on d = 2, 4, 12; in par-
ticular, we present the second algorithm in Section 4.2. We combine our results
from Section 4.2 with the usage of radical isogenies in Section 5: we show that
using radical 3-isogenies becomes competitive against SuperSolver. We present
all our experiments in Section 6 and discuss concluding remarks of our work
in Section 7.
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2 Preliminaries

Through this paper, we denote the multiplications, squares, and additions in
Fp2 by M, S, and A, respectively. On the other hand, mul, sqr, and add denote
multiplications, squares, and additions in Fp.

2

Let p = 2af − 1 be a prime integer number of r-bits such that p ≡ 3 mod 4
and a ≥ 1

2r. Let Fp2 = Fp[i]/(i
2 + 1) be a quadratic field extension of Fp and

E be supersingular elliptic curves with #E(Fp2) = (p± 1)
2
points. In particular,

we assume E is given in Montgomery form (i.e, E : y2 = x3 + Ax2 + x for some

A ∈ Fp2). The j-invariant of E is j(E) = 256(A2 − 3)
3
/(A2 − 4), and two elliptic

curves E and F are isomorphic iff j(E) = j(F). In addition, we use the term
“subfield curve” to mean j(E) belongs to Fp.

An isogeny ϕ : E → F is a non-constant morphism between two elliptic curves
such that #kerϕ < ∞ and ϕ(0E) = 0F , where 0E (resp. 0F ) denotes the point
at infinity on E (resp. F). All the isogenies in this work are assumed to have
cyclic kernels. We say that ϕ is an ℓ-isogeny if kerϕ has size ℓ. The dual of ϕ is
another ℓ-isogeny ϕ̂ : F → E such that ϕ ◦ ϕ̂ = [ℓ] = ϕ̂ ◦ ϕ, where [ℓ] : P 7→ [ℓ]P
denotes the multiplication-by-ℓ map. There are exactly (ℓ+1) ℓ-isogenies (up to

isomorphism) with domain F , one of them corresponding with ϕ̂ : F → E .
We consider the supersingular isogeny graph X (Fp, ℓ) as the directed graph

where the vertices are the j-invariants of supersingular elliptic curves defined over
Fp, and the edges are ℓ-isogenies. However, we only consider curves defined over
Fp2 since the j-invariants of supersingular elliptic curves always belong to Fp2 .

The graph X (Fp, ℓ) is fully connected for every prime ℓ [16], and it is an expander
graph [6]. In particular, the set of all j-invariants of supersingular elliptic curves
has cardinality #Sp2 ≈ 1

12p, and only #Sp = O(p1/2) of them belong to Fp [13].

Modular polynomials. The ℓth modular polynomial Φℓ(x, y) ∈ Z[x, y] is an irre-
ducible symmetric polynomial such that Φℓ(j(E), j(F)) = 0 for any pair of two
ℓ-isogenous curves E and F . If ℓ is a prime number, and j = j(E) is the j-invariant
of an elliptic curve E then Φℓ(x, j) ∈ Fp2 [x] is a polynomial of degree dℓ = (ℓ+1).

Kummer line. The Kummer line of E is E/⟨⊖⟩ ∼= P1, where ⊖ : P 7→ −P denotes
the negation map. A point x(P ) on E/⟨⊖⟩ is of the form (X : Z) for some X,Z ∈
Fp2 . In particular,

x(P ) =

{
(1 : 0) if P = 0E

(X : Z) otherwise.

If x(P ) = (X : Z) ̸= (1: 0) then xP = X/Z determines the x-coordinate of the
point P .

Given the three points x(P ), x(Q), and x(P −Q) on E/⟨⊖⟩, one can efficiently
calculate x(P + Q) and x([2]P ) at the cost of 4M + 2S + 6A and 4M + 2S + 4A

2 If p ≡ 3 mod 4 then we have M = 3mul+ 5add and S = 2mul+ 3add.
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operations, respectively [17]. In addition, computing x([3]P ) requires 7M+ 5S+
10A.

Similarly, ℓ-isogenies on E nicely restrict to E/⟨⊖⟩ [11,22,3]; that is, given a
point P on E and an ℓ-isogeny ϕ : E → F with kerϕ = ⟨K⟩, then x(ϕ(P )) only
depends on x(P ), x([j]K) for some integers j ∈ [1, ℓ]∩Z, and on the Montgomery
A-coefficient of E . Table 2 lists the costs for computing codomain curves and
pushing points through ℓ-isogenies with ℓ = 2, 3, 4.

2-isogeny 4-isogeny 3-isogeny
Codomain Evaluate Codomain Evaluate Codomain Evaluate

Cost: 2S 4M 4S 6M+ 2S 2M+ 3S 4M+ 2S

Table 2. The 2-isogeny and 4-isogeny formulas from [22] assume isogeny kernels differ-
ent from (0, 0). The 3-isogeny cost comes from [11].

3 On the complexity of Delfs-Galbraith Subfield
Searching Algorithm

Santos, Costello, and Shi provide an efficient procedure for determining whether
an ℓ-isogeny connects a given elliptic curve to a subfield curve [23]. Or, put
differently, they describe an efficient algorithm for inspecting all the ℓ-isogenous
curves to a given arbitrary supersingular curve. More precisely, they propose a
subfield root detection algorithm NeighbourInFp(ℓ, j), which determines whether
the polynomial Φℓ(x, j) has roots in the field Fp; we give a high-level description
of NeighbourInFp in Figure 1. The main ingredients of NeighbourInFp include i)
a free-inverse GCD procedure and ii) an efficient and explicit description of the
polynomials g1 and g2, respectively.

3 In addition, they show that the cost of
EvaluateModularPolynomial(ℓ, j) is bounded by 9dℓ(dℓ − 1)mul operations, while
InverseFreeGCD by

1

2
(deg g1 + deg g2 + 2)(deg g1 + deg g2 + 3)− 6

field multiplications in Fp. Consequently, NeighbourInFp takes (11d2ℓ−6dℓ−5)mul
operations.

3.1 Overall description of SuperSolver algorithm

As the main application of NeighbourInFp, Santos, Costello, and Shi propose using
it in the Delfs-Galbraith Subfield Searching Algorithm. Following [23] notation,
below we give a high-level description of such an optimized subfield-searching
algorithm, SuperSolver.

3 For instance, we have deg g1 = dℓ and deg g2 = dℓ − 1, and the leading coefficient of
g1 is equal to one.
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InverseFreeGCD(g, h)

1 : Initialize r as LC(h) · g
2 : Initialize s as LC(g) · h
3 : while deg r ≥ 1 and r ̸= s do

4 : r ← r − xdeg r−deg s · s
5 : r, s← LC(s) · r,LC(r) · s
6 : if deg r ≥ deg s

7 : r, s← s, r

8 : endif

9 : endwhile

10 : return (deg r = 1 and r = s)

NeighbourInFp(ℓ, j)

1 : f ← EvaluateModularPolynomial(ℓ, j)

2 : Compute g1 =
1

2
(f + π(f))

3 : Compute g2 = − i

2
(f − π(f))

4 : return InverseFreeGCD(g1, g2)

Fig. 1. Description of the subfield root detection algorithm from [23]. The input must
satisfies that j(E) = j for some supersingular elliptic curve E defined over Fp2 . The sub-
routine EvaluateModularPolynomial(ℓ, j) is as described in [23]: it evaluates Φℓ(x, y) at
y = j by calculating j2, . . . , ydℓ and multiplying them by the corresponding coefficients
of Φℓ(x, y).

Criteria for successfully reaching subfield curves. Given that the supersingu-
lar isogeny graph X (Fp, 2) is an expander graph (in particular, there is a short
isogeny path between any two supersingular curves), and that the number of
supersingular elliptic curves defined over Fp2 is about 1

12p, with only Õ(p1/2)
subfield curves. Then, a short 2-isogeny path of length

h = log2

(
#Sp2

#Sp

)
≈ 1

2
log2 p (1)

from E to a subfield curve F should exist [13]. Consequently, the time complexity
of finding a subfield curve through algorithm SuperSolver is Õ(p1/2) field opera-
tions with a memory complexity polynomial in log2 p.

3.2 On the upper bound and expected average cost of SuperSolver

To our knowledge, [23] only provides an experimental average cost for SuperSolver
of

58 ·
(
#Sp2

#Sp

)
field operations. However, as already highlighted, there is a hidden logarithm
factor in the complexity of the Delfs-Galbraith Subfield Searching Algorithm
determined by Line 13 in SuperSolver, which requires a square root calculation.
Given that, we next describe an explicit upper bound on the cost of SuperSolver,
including the logarithmic factor (this explicit runtime will be the baseline for
comparing our proposed algorithms in Section 4).
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SuperSolver(j(E), j(F), h, L)

1 : Initialize an empty stack for storage of nodes, S

2 : Push the root z∅ = {j(E), j(F),∅} onto S

3 : Pop the first element in S, zb = {j(Eb), j(Fb), b} where b ∈ {0, 1}n

4 : if j(Eb) ∈ Fp

5 : return (b, 2)

6 : endif

7 : for for each ℓ ∈ L

8 : if NeighbourInFp(ℓ, j(Eb))
9 : return (b, ℓ)

10 : endif

11 : endfor

12 : if n ≤ (h− 1)

13 : Compute the two roots j(Eb0) and j(Eb1) of the polynomial
Φ2(j(Eb), x)
x− j(Fb)

14 : Push zb1 = {j(Eb1), j(Eb), b1} onto S

15 : Push zb0 = {j(Eb0), j(Eb), b0} onto S

16 : Go to Line 3

17 : endif

18 : if S is empty

19 : return ⊥
20 : else

21 : Go to Line 3

22 : endif

Fig. 2. Description of the optimized subfield curve search algorithm from [23]. The
input must satisfy E and F are connected by a 2-isogeny. In practice, L is a list of small
(odd prime) numbers. The integer n determines the length of the bitstring b. For the
empty bitstring b = ∅, we set n = 0. For each i = 0, 1, the node zbi = {j(Ebi), j(Fbi), bi}
satisfies Ebi and Fbi are connected by a 2-isogeny.

Cost metric for NeighbourInFp: We use the subfield cost for Line 8 in the SuperSolver
algorithm as in [23]; that is, we take that cost (per ℓ) as

costℓ =
1

dℓ
(cost of NeighbourInFp) ≤ 1

dℓ
(11d2ℓ − 6dℓ − 5)mul.

Cost metric for solving Φ2(j(Eb),x)
x−j(Fb)

: Line 13 in the SuperSolver algorithm requires

solving a quadratic equation, which summarizes as calculating

j(Ebi) =
1

2

(
j(Eb)2 − 1488j(Eb)− j(Fb) + 162000±√

ρi
)

(2)
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where

ρi = j(Eb)4 − 2976j(Eb)3 + 2j(Eb)2j(Fb) + 2532192j(Eb)2 − 2976j(Eb)j(Fb)

− 645205500j(Eb)− 3j(Fb)
2 + 324000j(Fb)− 8748000000.

Using Scott’s fast square root method [25], we observe that calculating
√
ρi

takes two multiplications and two exponentiations over Fp; in particular, it re-
quires raising to the powers of

N =
1

4
(p+ 1) and M =

1

4
(p− 3).

In practice, for concrete cryptographic parameters, both N and M have approx-
imately 1

2 (r − 2) as Hamming weight, respectively. For simplicity, we conserva-
tively opt to use the Left-to-right binary algorithm for the field exponentiation.
We highlight that we could further optimize such exponentiation by employing
the wNAF method or a shorter addition chain. However, this improvement would
have only a tiny impact on our purposes and comparisons. Hence,

– Calculating z(p+1)/4 takes 1
2 (r − 2)mul+ (r − 2)sqr operations, and

– Computing z(p−1)/3 requires 1
2 (r − 2)mul+ (r − 2)sqr operations.

Therefore, the cost of calculating Equation (2) becomes

costeqn = (2mul+ 3sqr) + (r − 2)mul+ 2(r − 2)sqr + (3M+ 3S)

= (r + 15)mul+ (2r − 1)sqr ≈ (3r + 14)mul.
(3)

On the explicit running time of SuperSolver: We describe below a different
analysis approach from [23], enabling us to isolate the constant factor in the
complexity of the algorithm SuperSolver, thus allowing us to describe the running
time of SuperSolver explicitly.

Recall, NeighbourInFp allows us to detect if there is one ℓ-isogenous subfield
curve among the (ℓ + 1) possibilities. That optimization implies an increased
number of inspected curves by a factor of (1+

∑
ℓ∈L dℓ) times bigger. Therefore,

we can decrease the value of h to (at most)

h = log2

(
#Sp2

#Sp

)
−

⌊
log2

(
1 +

∑
ℓ∈L

dℓ
)⌉

and still inspect around
#Sp2
#Sp curves. We thus consider the running time of algo-

rithm SuperSolver to be bounded by

runtime1 =
1

2

⌊
log2

(
1+

∑
ℓ∈L dℓ

)⌉ (costeqn + 2 ·
∑
ℓ∈L

NeighbourInFp︷ ︸︸ ︷
dℓ · costℓ

)
︸ ︷︷ ︸

γp(L)

·2h mul. (4)

We take advantage of the following three main observations related to function
γp(L):
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1.
∑

ℓ∈L dℓ is linear in the variables ℓ1, . . . , ℓt.
2.
∑

ℓ∈L dℓ · costℓ is quadratic in the variables ℓ1, . . . , ℓt.
3. Function γp(L) is polynomial in ℓ1, . . . , ℓt, and log2 p.

Given that the exponential factor

2h ≈
#Sp2

#Sp

in the running time does not change from the choice of L, we focus on minimizing
the value of 1

log2 p ·γp(L) ≤
costeqn
log2 p ∈ O(1). In particular, we use the concrete costs

of costℓ from [23] to select the best candidate of L with at most thirteen elements
(any other larger prime number ℓ implies a higher number of field operations
when inspecting X (Fp, ℓ)). More precisely, we perform a brute-force search on
b ∈ {0, 1}13 to determine

argmin
b

1

log2 p
· γp(Lb),

where Lb denotes the list having the ith odd prime ℓi if the i
th bit of b is equal to

one. Our experiments illustrate that the running time of SuperSolver is bounded
by

runtime1 = c · log2 p · 2h mul = c · log2 p ·
(
#Sp2

#Sp

)
mul (5)

where 0 < c ≲ 1.64.

On the expected average running time of SuperSolver: Observe that the
algorithm SuperSolver inspects

2h+1 · (1 +
∑
ℓ∈L

dℓ)

curves, where h = log2

(
#Sp2
#Sp

)
− ⌊log2 (1 +

∑
ℓ∈L dℓ)⌉.

Remark 1. Notice that, in the best-case scenario, the input curve is a subfield
curve, while in the worst-case scenario, we inspect all the curves. Therefore, on
average, one would expect to inspect half of the curves to reach a subfield curve.

Hence, given that we only need to inspect at most
#Sp2
#Sp curves to find a

subfield curve, the expected running time of the algorithm SuperSolver turns out
to be

1

2
·

(
2⌊log2 (1+

∑
ℓ∈L dℓ)⌉

2 · (1 +
∑

ℓ∈L dℓ)
· runtime1

)
=

(
2⌊log2 (1+

∑
ℓ∈L dℓ)⌉

4 · (1 +
∑

ℓ∈L dℓ)
· runtime1

)
.

For example, for L5 we have 0.31·runtime1, while for L11 we obtain 0.35·runtime1.
In particular, when p increases, the constant c decreases slightly (see Table 3).
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logp 32 64 96 128 192 256 384 512

c (max.) 1.64 0.91 0.67 0.53 0.38 0.31 0.24 0.20

c (avg.) 0.51 0.28 0.21 0.16 0.13 0.11 0.08 0.07

L L5 L5 L5 L5 L11 L11 L11 L11

Table 3. The row corresponding to L presents the best choice of L. In particular, we
have L5 = [3, 7] and L11 = [3, 5, 11]. The row corresponding with c (max.) determines
the constant factor in the running time of SuperSolver (i.e., Equation (5)), while c (avg.)
with the average running time of SuperSolver.

4 Searcher and SuperSearcher: Efficient Subfield Curve
Searching Over Specific Field Characteristics

This section describes an optimized Depth-First-Search (DFS) traversal of the
2-isogeny trees for finding subfield curves. The algorithm takes inspiration from
the DFS technique of [1].

Fix a height parameter h ≤ a, and let {P,Q} be a basis of the 2h-torsion
subgroup of a given supersingular elliptic curve E : y2 = x3 +Ax2 + x. Next, we
inspect the 2-isogeny subtree with root E and 2h leaves, excluding the 2-isogeny
with kernel generated by [2h−1]Q = (0, 0), as described in Figure 3.

Time complexity: Let us focus on the worst-case scenario (i.e., we inspect all the
nodes in the 2-isogeny subtree). Notice that computing the kernel point genera-
tors of ϕb0 and ϕb1 can be achieved at the cost of 2 · (h− n− 1) point doublings,
while the required points in Line 9 and 11 only need one extra point addition
and doubling. Additionally, we need to push four points through 2-isogenies and
two 2-isogeny codomain calculations. Thus, the cost of inspecting the 2-isogeny
subtree is approximately 2 · 2h subfield checks, 5

2 · 2h point doublings, 2h point
additions, 2 · 2h isogeny evaluations, and 2 · 2h isogeny codomain calculations. In
particular, we get an asymptotical running time of O(2h) field operations since
each point and isogeny operation takes O(1) field operations.

Memory complexity: The memory storage is limited to (2h + 1) stack elements,
which gives a memory complexity polynomial in log2 p and h.

Explicit cost on the Kummer line. Given the lesser cost of adding x-only
points on the Kummer line than on the elliptic curve, we detailed the running of
the proposed method in terms of field operation through x-only points. Thus,

1. The points in zb represent projective x-only points of the form (X : Z).
2. The node zb has an extra point, zb = {E , b, x(Pb), x(Qb), x(Rb)} where Rb =
Pb −Qb.

3. The elliptic curve in zb is represented by its projective representation, (A′ +
2C : 4C) where A = A′/C.
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Searcher(E , P,Q, h)

1 : Initialize an empty stack for storage of nodes, S

2 : Push the root z∅ = {E ,∅, P,Q} onto S

3 : Pop the first element in S, zb = {Eb, b, Pb, Qb} where b ∈ {0, 1}n

4 : if j(Eb) ∈ Fp

5 : return b

6 : endif

7 : if n < (h− 1)

8 : Calculate the 2-isogeny ϕb0 : Eb → Eb0 with kerϕb0 = ⟨[2h−n−1]Pb⟩
9 : Compute Pb0 = ϕb0(Pb) and Qb0 = ϕb0([2]Qb)

10 : Calculate the 2-isogeny ϕb1 : Eb → Eb1 with kerϕb0 = ⟨[2h−n−1](Pb +Qb)⟩
11 : Compute Pb1 = ϕb1(Pb +Qb) and Qb1 = ϕb1([2]Qb)

12 : Push zb1 = {Eb1, b1, Pb1, Qb1} onto S

13 : Push zb0 = {Eb0, b0, Pb0, Qb0} onto S

14 : Go to Line 3

15 : endif

16 : if n = (h− 1)

17 : Calculate the 2-isogeny ϕb0 : Eb → Eb0 with kernel kerϕb0 = ⟨Pb⟩
18 : Calculate the 2-isogeny ϕb1 : Eb → Eb1 with kernel kerϕb1 = ⟨Pb +Qb⟩
19 : Push zb1 = {Eb1, b1,0Eb1,0Eb1} onto S

20 : Push zb0 = {Eb0, b0,0Eb0,0Eb0} onto S

21 : Go to Line 3

22 : endif return

23 : if S is empty

24 : return ⊥
25 : else

26 : Go to Line 3

27 : endif

Fig. 3. Description of our subfield curve seacrh algorithm. The input must satisfy
E [2h] = ⟨P,Q⟩. The integer n determines the length of the bitstring b. For the empty
bitstring b = ∅, we set n = 0. For each i = 0, 1, the node zbi = {Ebi, bi, Pbi, Qbi}
satisfies Ebi[2h−n−1] = ⟨Pbi, Qbi⟩ and ker ϕ̂bi = ⟨[2h−n−2]Qbi⟩.

4. The additional point x(Rb) implies an extra 2-isogeny evaluation per isogeny,
x(Rb0) = x(ϕb0(Pb − [2]Qb)) and x(Rb1) = x(ϕb1(Pb −Qb)).

Hence, the cost of inspecting the 2-isogeny subtree slightly changes as approx-
imately 2 · 2h subfield checks, 5

2 · 2h point doublings, 2h point additions, 3 · 2h
isogeny evaluations, and 2 · 2h isogeny codomain calculations. Since one can per-
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form a subfield check with 2M+ 4S+ 16A+ 2mul operations, 4 we get a running
time bounded by

runtime2 = (30M+ 19S+ 4mul)2h = 132 · 2h mul.

Now, observe that the algorithm Searcher inspects 2h+1 − 1 curves, doubling
the required curves. Therefore, we can restrict the search to the condition

h = log2

(
#Sp2

#Sp

)
− 1.

Consequently, the runtime of the algorithm Searcher is bounded by

runtime2 = 132 · 2h mul =
132

2
·
(
#Sp2

#Sp

)
mul = 66 ·

(
#Sp2

#Sp

)
mul. (6)

In particular, following Remark 1,the expected average running time of Searcher
becomes

1

2
· runtime2 = 33 ·

(
#Sp2

#Sp

)
mul.

The Impact of Using 4-isogenies in Searcher. Computing 4-isogenies is
much cheaper than composing two consecutive 2-isogenies (this is already one
optimization trick used in many isogeny cryptographic implementations). How-
ever, a few differences exist when employing 4-isogenies instead of 2-isogenies
in the subfield curve search algorithm. To highlight the usage of 4-isogenies in
Searcher, we denote the 4-variant algorithm by Searcher4.

Setup when employing 4-isogenies. Following the notation from Figure 3, the
input must satisfy E [4h] = ⟨P,Q⟩. In addition, the integer n determines the length
of the string b ∈ {0, 1, 2, 3}n, and we denote zb = {E , b, x(Pb), x(Qb), x(Rb)}
where Rb = Pb −Qb.

Calculating Codomain 4-isogenies when n < (h − 1). We need to calculate four
different 4-isogenies:

ϕb0 : Eb → Eb0 with kerϕb0 = ⟨[4h−n−1](Pb)⟩,
ϕb1 : Eb → Eb1 with kerϕb1 = ⟨[4h−n−1](Pb +Qb)⟩,
ϕb2 : Eb → Eb2 with kerϕb2 = ⟨[4h−n−1](Pb + [2]Qb)⟩, and
ϕb3 : Eb → Eb3 with kerϕb3 = ⟨[4h−n−1](Pb + [3]Qb)⟩.

Regarding operations in the Kummer line, the cost of computing the above
four isogenies includes 3(h − n − 1) x-only point quadrupling and three x-only
point additions.

4 Computing the numerator and denominator of j(E) = (a + ib)/(c + id) from (A′ +
2C : 4C) requires 2M+4S+16A, and checking j(E) ∈ Fp reduce to verifying ad = bc.
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Calculating Codomain 4-isogenies when n = (h − 1). We need to calculate four
different 4-isogenies:

ϕb0 : Eb → Eb0 with kerϕb0 = ⟨Pb⟩,
ϕb1 : Eb → Eb1 with kerϕb1 = ⟨Pb +Qb⟩,
ϕb2 : Eb → Eb2 with kerϕb2 = ⟨Pb + [2]Qb⟩, and
ϕb3 : Eb → Eb3 with kerϕb3 = ⟨Pb + [3]Qb⟩ = ⟨Pb −Qb⟩.

Observe that the above kernel calculations add two extra x-only point addi-
tions.

Pushing Points Through 4-isogenies. We need to push a total of twelve x-only
points through the isogenies:

x(Pb0) = x(ϕb0(Pb)), x(Qb0) = x(ϕb0([4]Qb)), x(Rb0) = x(ϕb0(Pb − [4]Qb))
x(Pb1) = x(ϕb1(Pb +Qb)), x(Qb1) = x(ϕb1([4]Qb)), x(Rb1) = x(ϕb1(Pb − [3]Qb))
x(Pb2) = x(ϕb2(Pb + [2]Qb)), x(Qb2) = x(ϕb2([4]Qb)), x(Rb2) = x(ϕb2(Pb − [2]Qb))
x(Pb3) = x(ϕb3(Pb + [3]Qb)), x(Qb3) = x(ϕb3([4]Qb)), x(Rb3) = x(ϕb3(Pb −Qb)).

Notice that the above points to be evaluated imply six extra x-only point
additions for computing x(Pb0), x(Pb1), x(Pb2), x(Pb3), x(Rb0), x(Rb1), x(Rb2),
and x(Rb3).

On the running time of Searcher4: The cost of inspecting the 4-isogeny subtree
slightly changes as approximately 4

3 · 4h subfield checks, 2
3 · 4h point doublings,

17
12 · 4h point additions, 4h isogeny evaluations, and 4

3 · 4h isogeny codomain cal-
culations. Consequently, we get a running time bounded by

runtime4 =
1048

12
· 4h mul < 88 · 2d mul = 88 ·

(
#Sp2

#Sp

)
mul. (7)

Remark 2. Differently from the algorithm Searcher, observe that the algorithm
Searcher4 inspects 1

3 · (4
h+1 − 1) curves. If we restrict the search to the condition

h = log4

(
#Sp2

#Sp

)
− 1

then we end up by inspecting only 1
3 · (4h − 1) curves, which is lesser than

#Sp2
#Sp .

Therefore, we set

h = log4

(
#Sp2

#Sp

)
for Searcher4, which implies inspecting 4

3

(
#Sp2
#Sp

)
curves. Hence, from Remark 1,

the expected average running time of Searcher4 turns out to be

1

2
·
(
3

4
· runtime4

)
= 33 ·

(
#Sp2

#Sp

)
mul.
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4.1 Applicability to primes of the form p = da · f − 1

It is worth noting that the algorithm Searcher can be easily extended to any d-
isogeny, with the key difference that each node in the tree does not have two chil-
dren but d children. For simplicity, we label the d-variant algorithm by Searcherd.
If d is a small integer number, then Searcherd has a cost of O(dh) field multipli-
cations.

Setup when employing d-isogenies. Following the notation from Figure 3, the
input must satisfy E [dh] = ⟨P,Q⟩. In addition, the integer n determines the length
of the string b ∈ {0, . . . , d− 1}n, and we denote zb = {E , b, x(Pb), x(Qb), x(Rb)}
where Rb = Pb −Qb.

Calculating Codomain d-isogenies when n < (h − 1). We need to calculate d
different d-isogenies:

ϕbj : Eb → Ebj with kerϕbj = ⟨[dh−n−1](Pb + [j]Qb)⟩ for each j := 0, . . . , d− 1.

This time, the cost of computing the above d isogenies includes 3(h− n− 1)
x-only point multiplication by d and (d− 1) x-only point additions.

Calculating Codomain d-isogenies when n = (h − 1). We need to calculate d
different d-isogenies:

ϕbj : Eb → Ebj with kerϕbj = ⟨Pb + [j]Qb⟩ for each j := 0, . . . , d− 1.

Similarly, the cost of computing the above d isogenies only includes (d − 2)
x-only point additions.

Pushing Points Through d-isogenies. We need to push a total of 3d x-only points
through the isogenies:

x(Pbj) = x(ϕbj(Pb + [j]Qb)), x(Qbj) = x(ϕbj([d]Qb)), and
x(Rbj) = x(ϕbj(Pb − [d− j]Qb))

for each j := 0, . . . , d − 1. Those calculations includes 2(d − 1) x-only point
additions.

On the running time of Searcher12. To illustrate the impact of the algorithm
Searcherd, let us focus on primes of the form p = (4 · 3)a · f − 1, with f ∈ N
and a ≥ 1

2 log12 p (e.g., this kind of primes are used in [7,12]). Hence, let us take
d = 12. This time, the cost of inspecting the d-isogeny subtree slightly changes as
approximately 12

11 · 12h subfield checks, 3
121 · 12h point multiplications by twelve,

51
44 ·12

h point additions, 3
11 ·12

h isogeny evaluations, and 12
11 ·12

h isogeny codomain
calculations. Now, notice that

– A point multiplication by twelve requires calculating two-point doubling and
one-point tripling.
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– A 12-isogeny can be efficiently decomposed as the composition of a 4-isogeny
followed by a 3-isogeny:

• Computing a 12-isogeny curve codomain includes one point trinpling, one
4-isogeny curve codomain calculation, one 4-isogeny evaluation, and one
last 3-isogeny curve codomain calculation.

• Pushing a point through a 12-isogeny implies pushing the point through
a 4-isogeny and a 3-isogeny.

Then, running time of the algorithm Searcher12 is bounded by

runtime12 =
61452

484
· 12h mul < 127 · 12h mul = 127 ·

(
#Sp2

#Sp

)
mul. (8)

Furthermore, the expected average running time of Searcher12 becomes

1

2

(
11

12
· runtime12

)
≈ 58.21 ·

(
#Sp2

#Sp

)
mul.

4.2 Adapting the Fast Subfield Root Detection in X (Fp, ℓ)

Our description of algorithm Searcherd explicitly works over the elliptic curves,
which would require the calculation of j(Eb) (adding a field inversion calculation)
if using algorithm NeighbourInFp. For instance, from the optimized instantiation
of algorithm Searcherd over the Kummer line (see Section 4), we can calculate the
numerator u and denominator v of each j-invariant j = u · v−1. Then, we cannot
directly employ algorithm NeighbourInFp from [23] without the calculation of
v−1. 5 Including that field inversion would increase the overall complexity of our
searcher algorithm by a logarithm factor log2 p, therefore increasing the runtime
to Õ(p1/2).

However, to avoid the calculation of the inverse of v, we next adapt the
procedure NeighbourInFp to our case study. Let us assume we have u, v ∈ Fp2

such that v ̸= 0 and j(E) = u
v is the j-invariant of a supersingular elliptic curve

E , and consider the polynomial

∆ℓ(x, u, v) = vdℓ · Φℓ

(
x,
u

v

)
.

Notice that the coefficients of ∆ℓ(x, u, v) do not require the explicit value of
v−1, and we have

g1 =
1

2
(Φℓ + π(Φℓ)) =

1

2w

(
π(vdℓ) ·∆ℓ + vdℓ · π(∆ℓ)

)
, and

g2 = − i

2
(Φℓ − π(Φℓ)) = − i

2w

(
π(vdℓ) ·∆ℓ − vdℓ · π(∆ℓ)

)
,

5 Santos, Costello, and Shi highlight that having the j-invariants explicitly computed
is critical in their subfield root detection algorithm [23, Remark 2].
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where w = (v · π(v))dℓ and π : x 7→ xp denotes the Frobenius map. Re-writing g1
and g2 in terms of Θℓ = π(v)dℓ ·∆ℓ gives

g1 =
1

2w
(Θℓ + π(Θℓ)) and g2 = − i

2w
(Θℓ − π(Θℓ)) .

Observe that gcd(g1, g2) = gcd(w · g1, w · g2) holds, and we can evaluate Θℓ

at (u, v) as follows:

– Calculate u2, . . . , udℓ , v2, . . . , vdℓ , and t = π(v)
dℓ = π(vdℓ).

– Compute zm = t · un · vm for each n,m ∈ {0 . . . dℓ} such that dℓ = n+m.
– Multiply each coefficient zm by the corresponding coefficients of Φℓ.

The above third step essentially costs what EvaluateModularPolynomial does
for calculating Φℓ(x, j) but this time multiplying by zm instead of jm for obtaining
Θℓ(x, u, v). Then, we can evaluate Θℓ at (u, v) by performing (9dℓ(dℓ−1)+9(dℓ−
1))mul operations. On the other hand, InverseFreeGCD(w · g1, w · g2) still takes
(2dℓ + 1)(dℓ + 1) − 6 multiplications in Fp.

6 Thus, our modified subfield root
detection algorithm ScaledNeighbourInFp requires at most (11d2ℓ + 3dℓ − 14)mul
operations. We give a high-level description of ScaledNeighbourInFp in Figure 4.

ScaledNeighbourInFp(ℓ, u, v)

1 : f⋆ ← EvaluateScaledModularPolynomial(ℓ, u, v)

2 : Compute g⋆1 =
1

2
(f⋆ + π(f⋆))

3 : Compute g⋆2 = − i

2
(f⋆ − π(f⋆))

4 : return InverseFreeGCD(g⋆1 , g
⋆
2)

Fig. 4. Description of our modified subfield root detection algorithm. The input must
satisfies that j(E) = u

v
for some supersingular elliptic curve E defined over Fp2 . The sub-

routine EvaluateScaledModularPolynomial(ℓ, j) evaluates Θℓ(x, y) at (u, v), as described
above.

Optimized Subfield Curve Search Procedure. Given a list of t small odd
primes L = [ℓ1, ℓ2, . . . , ℓt], we suggest modifying the DFS algorithm in Figure 3
by including the subfield curve inspection for each ℓ ∈ L in Line 4. In that way,
we increase the number of elliptic curves inspected, i.e., it allows us to detect
if there is one ℓ-isogenous subfield curve among the (ℓ + 1) possibilities. That
optimization helps to increase the number of inspected curves in Searcherd by a

6 This is because Θℓ(x, u, v) = w ·Φℓ(x,
u
v
) with w ∈ Fp hold, and its leading coefficient

is w itself.
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factor of (1 +
∑

ℓ∈L dℓ) times bigger. Therefore, we can decrease the value of h
to (at most)

h = logd

(
#Sp2

#Sp

)
−

⌊
logd

(
1 +

∑
ℓ∈L

dℓ
)⌉

and still inspect around
#Sp2
#Sp curves.

Optimizing the choice of each ℓk. The situation here differs from [23] because
we do not need to calculate square roots to compute 2-isogenous curves. However,
we can isolate the cost associated with inspecting through d-isogenies in algorithm
Searcherd, then split the total associated cost to ScaledNeighbourInFp, and try to
maximize the number of inspected curves as much as possible.

In what follows, we label the modified algorithm, which includes the sub-
field curve search, by SuperSearcherd to distinguish it from the baseline algo-
rithm Searcherd. We adopt the subfield cost for each algorithm step as in [23] to
better understand the difference in cost of inspecting X (Fp, ℓ) when employing
NeighbourInFp and ScaledNeighbourInFp; more precisely, we take that cost as

cost∗ℓ =
1

dℓ
(cost of ScaledNeighbourInFp) ≤ 1

dℓ
(11d2ℓ + 3dℓ − 14) mul.

Table 4 presents and compares the concrete cost for inspecting X (Fp, ℓ) when
employing NeighbourInFp and ScaledNeighbourInFp. Observe that the procedure
ScaledNeighbourInFp is slightly costlier than NeighbourInFp, but we highlight that
the algorithm Searcherd with NeighbourInFp adds logarithmic factors in the overall
running time while with ScaledNeighbourInFp does not.

ℓ : 3 5 7 11 13 17 19 23 29 31 37 41 43

dℓ : 4 6 8 12 14 18 20 24 30 32 38 42 44

costℓ : 16.3 24.5 32.6 48.8 56.8 72.8 80.9 96.9 120.9 128.9 152.9 168.9 176.9

cost⋆ℓ : 25.8 35.8 43.9 61.4 69.2 85.9 93.8 110.2 134.4 142.2 166.3 182.5 190.4

Table 4. The row corresponding to costℓ presents the values from [23, Table 3].

We thus consider the running time of algorithm SuperSearcherd to be bounded
by

runtime∗d =
1

d

⌊
logd

(
1+

∑
ℓ∈L dℓ

)⌉ (c+ d

d− 1
·
∑
ℓ∈L

ScaledNeighbourInFp︷ ︸︸ ︷
dℓ · cost∗ℓ

)
︸ ︷︷ ︸

γ(L)

·dh mul, (9)
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where

c =


132 if d = 2,

88 if d = 4,

127 if d = 12.

Observe that γ(L) does not depend on either log2 p nor d; therefore, we can
consider it a constant factor. With that in mind, we want to minimize the value
of γ(L) ≤ 132. We combine the concrete costs from Table 4 to select the best
candidate of L with at most thirteen elements (any other larger prime number
ℓ implies a higher number of field operations when inspecting X (Fp, ℓ)). More
precisely, we perform a brute-force search on b ∈ {0, 1}13 to determine

argmin
b

γ(Lb),

where Lb denotes the list having the ith odd prime ℓi if the i
th bit of b is equal

to one. We plot all the values of γ(Lb) for each b ∈ {0, 1}13 in Figure 5 In
particular, we obtain that the best choice for L is

– L5 = [3, 7] with γ(L5) = 65 when employing the algorithm SuperSearcher2,
– L3 = [3, 5] with γ(L3) = 32 when performing the algorithm SuperSearcher4,
– L31 = [3, 5, 7, 11, 13] with γ(L31) = 18.874368 when using SuperSearcher12.

Consequently, we get that the algorithm SuperSearcherd has a running time
bounded by

runtime∗d = γ · 2h mul = γ ·
(
#Sp2

#Sp

)
mul (10)

with

γ =

{
65 if d = 2,

32 if d = 4.

For the case d = 12, the number of inspected curves is approximately 0.45 ·2h;
thus, we need to increase the h to logd

(
#Sp2
#Sp

)
−⌊logd (1 +

∑
ℓ∈L dℓ)⌉+1, which

gives γ = 18.874368 · 12 = 226.492416

On the average running time of SuperSearcherd: Observe that the algorithm
SuperSearcherd inspects

d

d− 1
· dh · (1 +

∑
ℓ∈L

dℓ)

curves, where h = logd

(
#Sp2
#Sp

)
− ⌊logd (1 +

∑
ℓ∈L dℓ)⌉. Hence, according to Re-

mark 1, the expected average running time of the algorithm SuperSearcherd turns
out to be 7

1

2
·

(
(d− 1) · d⌊logd (1+

∑
ℓ∈L dℓ)⌉

d · (1 +
∑

ℓ∈L dℓ)
· runtime∗d

)
= constant ·

(
#Sp2

#Sp

)
mul,

7 For the case d = 12, we need to divide by d = 12 since we have an increased value of
h← h+ 1.

18



0 2,048 4,096 6,144 8,192

0

130

260

390

520

x

o

x

o

x

o

γ = 132

Lb

γ

Fig. 5. Value of γ(Lb) for each b ∈ {0, 1}13. The x-axis represents the choice of the
list Lb sorted from the one with minimal constant min γ(Lb) to the one with maximal
constant max γ(Lb). The y-axis determines the constant γ(Lb) as given in Equation (9).
In addition, we mark the maximum max γ(Lb) by o, and the minimum min γ(Lb) with
x. The curve in blue ink color corresponds with algorithm SuperSearcher, while the one
with cyan (resp. teal) ink determines the values for algorithm SuperSearcher4 (resp.
SuperSearcher12).

where

constant =


20 if d = 2,

17.45 if d = 4,

27.68 if d = 12.

5 RadicalSearcherℓ: Efficient Subfield Curve Searching
through radical ℓ-isogenies

One of the main disadvantages of the algorithm SuperSolver is its incompatibility
with radical isogeny formulas. For example, the formulas from [5,8,4] work over
the curve coefficients instead of the j-invariants, which (naively) would increase
the cost per step from one square root into one field radical exponentiation along
one field inversion. As highlighted in [23], those operations overkill the savings
from employing the algorithm SuperSolver. In particular, such radical isogeny
improvement was left as an open problem in [23].

Our proposed subfield root detection algorithm ScaledNeighbourInFp allows
the compatibility with radical isogeny formulas [5,8,4] to find subfield curves in
the general case (i.e., with slightly more generic primes).

To illustrate, let us focus on the radical 3-isogeny scenario. Therefore, we
assume that p = 4 · f − 1 for some positive integer f . Additionally, we work on

19



the supersingular curve model E : y2+a1xy+a3y = x3 for some a1, a3 ∈ Fp2 . We
summarize the subfield searching algorithm in Figure 6.

RadicalSearcher3(F , h, L)

1 : Initialize an empty stack for storage of nodes, S

2 : Deterministically find a curve E : y2 + a1xy + a3y = x3 isomorphic to F
3 : Push the root z∅ = {(a1, a3)),∅} onto S

4 : Pop the first element in S, zb = {(a1,b, a3,b), b} where b ∈ {0, 1, 2}n

5 : Compute the den. u and num. v of j(Eb) where Eb : y2 + a1,bxy + a3,by = x3

6 : if j(Eb) ∈ Fp

7 : return (b, 3)

8 : endif

9 : for for each ℓ ∈ L

10 : if ScaledNeighbourInFp(ℓ, u, v)

11 : return (b, ℓ)

12 : endif

13 : endfor

14 : if n ≤ (h− 1)

15 : Calculate α = 3
√
−a3,b

16 : for k := 0 to 2

17 : a1,bk ← −6α+ a1,b

18 : a3,bk ← 3a1,bα
2 − (a1,b)

2α+ 9a3,b

19 : Update α← ζ3α

20 : endfor

21 : Push zb2 = {Eb2, b2} onto S

22 : Push zb1 = {Eb1, b1} onto S

23 : Push zb0 = {Eb0, b0} onto S

24 : Go to Line 4

25 : endif

26 : if S is empty

27 : return ⊥
28 : else

29 : Go to Line 4

30 : endif

Fig. 6. Description of the optimized subfield searching algorithm using radical 3-
isogenies. In practice, L is a list of small (odd prime) numbers and 3 ̸∈ L. The integer
n determines the length of the string b, and ζ3 ∈ Fp2 is a cube-root of unity. For the
empty bitstring b = ∅, we set n = 0. The check j(Eb) can be done using u and v without
a field inversion.
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A concrete running time for RadicalSearcher3: Let us focus on the scenario
when p = 4f − 1 with f = 3g and gcd(3, g) = 1. Therefore, we have

ζ3 =
−1 + i

√
3

2
and 3

√
a = aN3 with N3 = 3−1 mod

(
1

3
(p2 − 1)

)
.

Notice that for concrete cryptographic parameters, we have that N3 has a Ham-
ming weight equal to 1

2 log2N3 = (log2 p − 2). Consequently, computing a cube
root requires

(log2 p− 2)M+ 2(log2 p− 2)S = (log2 p− 2)(3mul) + 2(log2 p− 2)(2mul)

= 7(log2 p− 2)mul.

Now, apart from the cube root calculations per step in RadicalSearcher3, we
need to compute 9M + 6S = 39mul operations. Consequently, the algorithm
RadicalSearcher3 performs

costs = 7(log2 p− 2)mul+ 39mul = (7 log2 p+ 25)mul

operations per step. On the other hand, the j-invariant of Eb coincides with

j(Eb) =
(a1,b)

3 ·
(
(a1,b)

3 − 24a3,b
)3

(a3,b)
3 ·
(
(a1,b)

3 − 27a3,b
) .

Therefore, we can determine if j(Eb) ∈ Fp at the cost of 5M+3S+2mul = 23mul
operations.

Hence, we consider the running time of algorithm RadicalSearcher3 to be
bounded by

runtime3 =
1

3

⌊
log3

(
1+

∑
ℓ∈L dℓ

)⌉ (1
2
costs +

3

2

(
23 +

∑
ℓ∈L

ScaledNeighbourInFp︷ ︸︸ ︷
dℓ · cost∗ℓ

))
︸ ︷︷ ︸

γp(L)

·3h mul.

Similarly as in Section 3, we focus on minimizing the value of 1
log2 p · γp(L) ≤

costeqn
log2 p ∈ O(1). In particular, we take the concrete costs of costℓ from Table 4 to

select the best candidate of L with at most thirteen elements (any other larger
prime number ℓ implies a higher number of field operations when inspecting
X (Fp, ℓ)). More precisely, we perform a brute-force search on b ∈ {0, 1}13 to
determine

argmin
b

1

log2 p
· γp(Lb),

where Lb denotes the list having the ith odd prime ℓi if the i
th bit of b is equal

to one. Our experiments illustrate that the running time of RadicalSearcher3 is
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bounded by

runtime3 = c · log2 p · 3h mul = c · log2 p ·
(
#Sp2

#Sp

)
mul (11)

where 0 < c ≲ 1.44.

On the expected average running time of RadicalSearcher3: Observe that the al-
gorithm RadicalSearcher3 inspects

3

2
· 3h · (1 +

∑
ℓ∈L

dℓ)

curves, where h = log3

(
#Sp2
#Sp

)
− ⌊log3 (1 +

∑
ℓ∈L dℓ)⌉. Hence, the expected av-

erage running time of the algorithm RadicalSearcher3 turns out to be

1

2
·

(
2 · 3⌊log3 (1+

∑
ℓ∈L dℓ)⌉

3 · (1 +
∑

ℓ∈L dℓ)
· runtime∗3

)
=

(
3⌊log3 (1+

∑
ℓ∈L dℓ)⌉

3 · (1 +
∑

ℓ∈L dℓ)
· runtime∗3

)
.

For example, for L2 we have 0.43·runtime∗3 , while for L54 we obtain 0.57·runtime∗3 .
In particular, when p increases, the constant c decreases slightly (see Table 5).

logp 32 64 96 128 192 256 384 512

c (max.) 1.44 0.84 0.57 0.44 0.31 0.24 0.18 0.14

c (avg.) 0.62 0.48 0.33 0.25 0.18 0.14 0.10 0.08

L L2 L54 L54 L54 L54 L54 L54 L54

Table 5. The row corresponding to L presents the best choice of L. In particular, we
have L2 = [5] and L54 = [5, 7, 13, 17]. The row corresponding with c (max.) determines
the constant factor in the running time of RadicalSearcher3 (i.e., Equation (11)), while
c (avg.) with the average running time of RadicalSearcher3.

6 Experimental Results

Since algorithms Searcher and SuperSearcher (resp. RadicalSearcher3) perform on
top of 2-isogenies (resp. 3-isogenies) between Montgomery curves, we generate
“random” curve instances by walking through the 5-isogeny graph to avoid bias.
We take j0 = 287496 as the supersingular j-invariant origin and calculate a

random 5-isogeny walk j0
ϕ1−→ j1

ϕ2−→ · · · ϕd−→ jd of length n = log5 p. Next, we
compute a Montgomery curve E : y2 = x3 +Ax2 + x with j-invariant jd and find
a basis {P,Q} of the torsion subgroup E [dh] with d ∈ {2, 4, 12}.

All our experiments rectify our theoretical results, highlighting the improve-
ments against [23]. We provide a proof-of-concept implementation using Sage-
Math [26], available at [21].
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Experiments concerning Searcher and SuperSearcher: We center our experiments
on r-bits prime numbers of the form p = 2a · f − 1 with a ≈ r and a ≈ 1

2r. In
particular, our experiments limit to r ∈ [31, 50] ∩ Z. We brute force search the
interval [31, 50]∩Z to get primes with a ≈ r, and employ the extended Euclidean
algorithm technique from [10] for primes with a ≈ 1

2r.
We include experiments for the algorithms Searcher and SuperSearcher for

both cases a ≈ 1
2r and a ≈ r. Given that Searcher4 and SuperSearcher4 implicitly

ask for 4 | a, we limit our experiments to a ≈ r for these 4-variant algorithms.
Additionally,

– For the experiments concerning Searcher, we take as inputs E , x(P ), x(Q)
x(P −Q), and h = 1

2 log2 p− 1.
– For the experiments concerning Searcher4, we take as inputs E , x(P ), x(Q)

x(P −Q), and h = 1
2 log4 p.

– For the experiments concerning SuperSearcher, we take as inputs E , x([24]P ),
x([24]Q) x([24](P −Q)), and h = 1

2 log2 p− 4.
– For the experiments concerning SuperSearcher4, we take as inputs E , x([24]P ),

x([24]Q) x([24](P −Q)), and h = 1
2 log4 p− 2.

Experiments concerning Searcher12 and SuperSearcher12: We include some exper-
iments for primes of the form p = 2a ·3b ·f−1 (such primes are used, for example,
in [12]); we assume f ∈ {5, 7, 11}. We present experiments for p = 12a ·f−1 with
a ⪆ 1

2 log12 p and f being a prime number. We brute-force search the interval
[29, 50] ∩ Z for finding these kinds of primes. In addition,

– For the experiments concerning Searcher12, we take as inputs E , x(P ), x(Q)
x(P −Q), and h = 1

2 log12 p.
– For the experiments concerning SuperSearcher12, we take as inputs E , x([12]P ),

x([12]Q) x([12](P −Q)), and h = 1
2 log12 p− 1.

We also include experiments for the algorithms Searcher and SuperSearcher
when p = 2a · 3b · f − 1.

Experiments concerning RadicalSearcher3: Additionally, we include some exper-
iments for primes of the form p = 4 · 3 · f − 1 for some positive integer f such
that gcd(3, f) = 1. For simplicity, we assume f is a prime number and brute-
force search the interval [30, 40] ∩ Z for finding these kinds of primes. In all the
experiments concerning RadicalSearcher3, we take as input E and h = 1

2 log3 p−1.

On the experiments: Tables 6, 7, 9 and 10 present the average running time
of solving 25 random instances using Searcherd, SuperSearcherd, RadicalSearcher3
and SuperSolver. We graphically illustrate the comparison between our proposed
algorithms in Figures 7, 8, 10 and 11. The horizontal line in black ink determines
the constant from Equation (6). The dashed lines in orange ink describe the
minimum and maximum values obtained from 25 random experiments, while the
blue dashed lines refer to the first and third quartiles. The line in blue ink
between the quartiles concerns the Median measured values.
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Fig. 7. These experiments correspond with the prime numbers p = 2a ·f −1 in Table 6.

Bits of p {a, f} Searcher SuperSearcher

32 {17, 19417} Running time: 23.7 · 2h 15.8 · 2h
Success rate: 0.9 1.0

35 {21, 10645} Running time: 47.5 · 2h 26.4 · 2h
Success rate: 0.8 0.9

37 {19, 140995} Running time: 40.6 · 2h 20.9 · 2h
Success rate: 0.8 1.0

38 {19, 337825} Running time: 31.5 · 2h 20.3 · 2h
Success rate: 0.9 1.0

40 {22, 152945} Running time: 25.0 · 2h 11.8 · 2h
Success rate: 1.0 1.0

41 {21, 601135} Running time: 14.0 · 2h 13.1 · 2h
Success rate: 1.0 1.0

42 {22, 861533} Running time: 13.5 · 2h 16.4 · 2h
Success rate: 1.0 1.0

43 {22, 1924415} Running time: 24.8 · 2h 23.9 · 2h
Success rate: 0.8 0.9

50 {26, 9365135} Running time: 10.9 · 2h 8.7 · 2h
Success rate: 1.0 1.0

Table 6. All the numbers correspond with the average of solving 25 random instances
by employing Searcher and SuperSearcher.

Some observations on the experiments for the case p = 12a · f − 1: Interestingly,
our experiments concerning Tables 9 and 10 and Figures 10 and 11 highlight
a lesser average running time than expected, about half than expected; such
behavior seems to occur because of the form of the primes.
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Fig. 8. These experiments correspond with the prime numbers p = 2a ·f −1 in Table 7.

Bits of p {a, f} Searcher SuperSearcher

31 {31, 1} Running time: 23.1 · 2h 15.8 · 2h
Success rate: 1.0 1.0

35 {32, 5} Running time: 39.1 · 2h 17.9 · 2h
Success rate: 0.8 1.0

36 {34, 3} Running time: 17.8 · 2h 9.7 · 2h
Success rate: 1.0 1.0

37 {31, 43} Running time: 36.3 · 2h 26.9 · 2h
Success rate: 0.8 0.9

38 {33, 31} Running time: 19.0 · 2h 20.5 · 2h
Success rate: 1.0 0.9

40 {35, 31} Running time: 46.6 · 2h 30.6 · 2h
Success rate: 0.7 0.8

41 {36, 17} Running time: 21.2 · 2h 17.1 · 2h
Success rate: 0.9 1.0

42 {37, 31} Running time: 11.7 · 2h 15.7 · 2h
Success rate: 1.0 1.0

45 {39, 61} Running time: 41.3 · 2h 29.5 · 2h
Success rate: 0.7 0.8

46 {41, 19} Running time: 29.9 · 2h 18.7 · 2h
Success rate: 1.0 1.0

47 {40, 107} Running time: 24.5 · 2h 21.0 · 2h
Success rate: 0.9 1.0

48 {42, 53} Running time: 31.1 · 2h 19.6 · 2h
Success rate: 0.8 1.0

Table 7. Same description as in Table 6.
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Fig. 9. These experiments correspond with the prime numbers p = 2a ·f −1 in Table 8.

Bits of p {a, f} Searcher4 SuperSearcher4

31 {31, 1} Running time: 24.6 · 2h 9.3 · 2h
Success rate: 1.0 1.0

35 {32, 5} Running time: 17.8 · 2h 11.5 · 2h
Success rate: 1.0 1.0

36 {34, 3} Running time: 3.4 · 2h 3.4 · 2h
Success rate: 1.0 1.0

37 {31, 43} Running time: 25.0 · 2h 12.1 · 2h
Success rate: 1.0 0.9

38 {33, 31} Running time: 19.7 · 2h 11.3 · 2h
Success rate: 0.9 0.6

40 {35, 31} Running time: 39.6 · 2h 17.9 · 2h
Success rate: 0.7 0.8

41 {36, 17} Running time: 10.8 · 2h 13.5 · 2h
Success rate: 1.0 0.9

42 {37, 31} Running time: 8.7 · 2h 6.9 · 2h
Success rate: 1.0 0.9

45 {39, 61} Running time: 40.4 · 2h 16.8 · 2h
Success rate: 0.9 0.7

46 {41, 19} Running time: 18.4 · 2h 7.7 · 2h
Success rate: 0.8 0.9

47 {40, 107} Running time: 16.1 · 2h 4.9 · 2h
Success rate: 1.0 1.0

48 {42, 53} Running time: 20.9 · 2h 9.4 · 2h
Success rate: 1.0 0.9

Table 8. Same description as in Table 6.
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Fig. 10. These experiments correspond with the prime numbers p = 12a·f−1 in Table 9.

Bits of p {a, f} Searcher12 SuperSearcher12

30 {4, 32783} Running time: 22.5 · 2h 16.0 · 2h
Success rate: 1.0 1.0

34 {5, 65599} Running time: 14.3 · 2h 14.2 · 2h
Success rate: 1.0 1.0

36 {5, 262151} Running time: 21.5 · 2h 11.3 · 2h
Success rate: 1.0 1.0

40 {6, 262231} Running time: 27.4 · 2h 13.5 · 2h
Success rate: 1.0 1.0

42 {6, 1048793} Running time: 12.8 · 2h 8.2 · 2h
Success rate: 1.0 1.0

44 {6, 4194493} Running time: 16.2 · 2h 11.3 · 2h
Success rate: 1.0 1.0

48 {7, 4194329} Running time: 10.5 · 2h 4.2 · 2h
Success rate: 1.0 1.0

50 {7, 16777499} Running time: 11.6 · 2h 6.0 · 2h
Success rate: 1.0 1.0

Table 9. Here, p = 12a · f with f being a prime number. All the numbers concern the
average of solving 25 random instances by employing Searcher12 and SuperSearcher12.

Therefore, it could be possible (in practice) to reduce the value of h to
1
2 log2 p − 1 (resp. 1

2 log12 p − 2), and still being able to find a subfield curve
when p = 2a · 3b · f − 1 with small f (resp. p = 12a · f − 1 with a ≈ 1

2 log12 p).
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Fig. 11. These experiments concerns the prime numbers p = 2a · f − 1 in Table 10.

Bits of p {a, f} Searcher SuperSearcher

29 {15, 15309} Running time: 22.1 · 2h 13.1 · 2h
Success rate: 0.9 1.0

34 {18, 45927} Running time: 14.6 · 2h 13.3 · 2h
Success rate: 1.0 1.0

36 {19, 98415} Running time: 9.6 · 2h 12.0 · 2h
Success rate: 1.0 1.0

37 {19, 216513} Running time: 27.7 · 2h 20.9 · 2h
Success rate: 0.9 0.9

38 {19, 413343} Running time: 15.5 · 2h 12.9 · 2h
Success rate: 1.0 1.0

39 {20, 413343} Running time: 29.4 · 2h 16.0 · 2h
Success rate: 1.0 1.0

45 {24, 1240029} Running time: 22.7 · 2h 17.5 · 2h
Success rate: 1.0 1.0

Table 10. Here p = 2a · f and f = 3b · g with g ∈ {5, 7, 11} and b ∈ Z. All the numbers
concern the average of solving 25 random instances using Searcher and SuperSearcher.

7 Concluding Remarks

Our results in Section 4, backed up with our experimental results from Section 6,
highlight a time complexity of

O
(
#Sp2

#Sp

)
= O

(
p1/2

)
field multiplications and memory complexity polynomial in log2 p for both algo-
rithms Searcherd and SuperSearcherd.
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Bits of p {a, f} SuperSolver RadicalSearcher3

30 {2, 201326943} Running time: 0.3 · log2 p · 2h 1.2 · log2 p · 2h
Success rate: 1.0 0.9

32 {2, 805306611} Running time: 0.4 · log2 p · 2h 1.7 · log2 p · 2h
Success rate: 1.0 0.9

34 {2, 3221225817} Running time: 0.5 · log2 p · 2h 1.9 · log2 p · 2h
Success rate: 0.9 1.0

36 {2, 12884901933} Running time: 0.2 · log2 p · 2h 0.5 · log2 p · 2h
Success rate: 1.0 1.0

38 {2, 51539607627} Running time: 0.5 · log2 p · 2h 0.9 · log2 p · 2h
Success rate: 0.9 1.0

40 {2, 206158430733} Running time: 0.2 · log2 p · 2h 0.7 · log2 p · 2h
Success rate: 1.0 1.0

Table 11. All the numbers correspond with the average of solving 25 random instances
by employing SuperSolver and RadicalSearcher3.

Some remarks on the impact of our result on current constructions. We
emphasize that our results should be taken as cautionary advice for proposing
conservative parameter sets in isogeny-based constructions with 2λ-bits prime
numbers of the form p = 2a · f − 1 with a ≥ λ and λ ∈ {128, 192, 256}. Table 12
presents some concrete numbers concerning the impact of our results from Sec-
tion 4.

Applicability to primes of the form p = 2a · f + 1. Our algorithms
straightforwardly apply to those kinds of primes. The reasoning for that claim
relies on the following two facts.

1. The torsion subgroup E [2a] has two generators, P and Q, with x-coordinates
in the field Fp2 and y-coordinates in Fp4 [10].

2. The optimized Algorithms from Section 4 perform operations on the Kummer
line (i.e., we only operate with the x-coordinates).

The main difference when employing primes of the form p = 2a · f +1 is that
we work on a field extension Fp2 = Fp[x]/(x

2 − µ) with a small µ ∈ Fp different
from 1. However, that difference does not affect the asymptotic complexity of
the algorithms (e.g., at the level of operations in Fp2 , we still perform the same
amount of multiplications and squares).

Parallel search optimizations. Observe that the presented subfield curve
searching algorithms are highly parallelizable when having M = 2m processors:
one can precompute all the nodes at depth m, and each processor takes one of
those nodes as the root and inspects a subtree of height (d−m).
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log2 p Delfs-Galbraith
Algorithm

This work

[2]
251 2128.5 2125.5

383 2194.6 2191.5

505 2255.7 2252.5

[14]
254 2130 2127

413 2209.6 2206.5

508 2257.2 2254

[19]
258 2132 2129

386 2196 2193

515 2260.6 2257.5

[12]
254 2130 2127

389 2197.6 2194.5

519 2262.6 2259.5

[24] 254 2130 2127

Table 12. On the impact of our result on current constructions. For the Delfs-Galbraith
algorithm, we take the quantity log2 p · p1/2.

In what follows, we describe another interesting parallel search. Let us assume
M ∈ N, take an integer ℓ of m = ⌊log2M⌉ bits, and proceed as below.

– Find a basis {R,S} for E [M ].

– For the kth processor:

• Calculate the ℓ-isogeny ψk : E → Ek with kernel ⟨R+ [k]S⟩.
• Run the subfield curve searching algorithm with inputs Ek, ψk(P ), ψk(Q),

and h−m.

The main limitation of the above parallel search is that we require ℓ to fac-
torize as the product of “small” primes ℓ1, . . . , ℓr. But, for efficiency, most of
the isogeny-based cryptographic constructions assume (p+ 1)(p− 1) = p2 − 1 is
as smooth as possible (which favors this kind of parallel search). Therefore, one
can take ℓ that divides (p2 − 1) and satisfies ℓ ≈ M . 8 Notice that the cost of
computing ψk is negligible compared with the running time of our subfield curve
searching algorithms when m ≪ 1

2 log2 p, and the number of processors is not
limited to a power of two.

Certainly, the calendar time when applying the above parallel search tech-
niques becomes O(p1/2/M) but the total running time is still O(p1/2). 9

8 For the case of SuperSearcher and RadicalSearcher, one should assume ℓ is not divisible
by some integer in the input list L.

9 By calendar time, we mean the elapsed time taken for a computation. The total time
is the sum of the time expended by all M processors.
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