
“Check-Before-you-Solve”: Verifiable Time-lock Puzzles

Jiajun Xin∗ Dimitrios Papadopoulos∗

Abstract

Time-lock puzzles are cryptographic primitives that guarantee to the generator that the
puzzle cannot be solved in less than T sequential computation steps. They have recently found
numerous applications, e.g., in fair contract signing and seal-bid auctions. However, solvers
have no a priori guarantee about the solution they will reveal, e.g., about its “usefulness”
within a certain application scenario. In this work, we propose verifiable time-lock puzzles
(VTLPs) that address this by having the generator publish a succinct proof that the solution
satisfies certain properties (without revealing anything else about it). Hence solvers are now
motivated to “commit” resources into solving the puzzle. We propose VTLPs that support
proving arbitrary NP relations R about the puzzle solution. At a technical level, to overcome the
performance hurdles of the “naive” approach of simply solving the puzzle within a SNARK that
also checks R, our scheme combines the “classic” RSA time-lock puzzle of Rivest, Shamir, and
Wagner, with novel building blocks for “offloading” expensive modular group exponentiations
and multiplications from the SNARK circuit. We then propose a second VTLP specifically for
checking RSA-based signatures and verifiable random functions (VRFs). Our second scheme
does not rely on a SNARK and can have several applications, e.g., in the context of distributed
randomness generation. Along the road, we propose new constant-size proofs for modular
exponent relations over hidden-order groups that may be of independent interest. Finally, we
experimentally evaluate the performance of our schemes and report the findings and comparisons
with prior approaches.

∗Hong Kong University of Science and Technology, jxin@cse.ust.hk, dipapado@cse.ust.hk

1

Contents

1 Introduction 3

2 Related Work 6

3 Preliminaries 7

4 Proofs of Modular Exponentiations 11
4.1 Proof of modular exponent . 11
4.2 Proof of modular double exponent . 12

5 Verifiable Time-lock puzzles 15
5.1 Definitions and Security . 15
5.2 Building Block: Offloading set products and modular exponentiations from SNARK 18
5.3 Our construction . 21
5.4 Verifiable Time-lock for VRFs/Signatures . 23

6 Experimental Evaluation 25
6.1 Proofs of Modular Exponent . 25
6.2 VTLP Performance . 26
6.3 Offloading Signatures . 28

7 Conclusion 29

8 Acknowledgments 29

A Offloading signatures verifications 34
A.1 RSA signatures inside SNARK . 34

B Proofs for Section 4 37
B.1 Proof for Lemma 1 . 37
B.2 Proof for the PoKEModN . 38
B.3 Proof for the ZK-PoKEModN . 39
B.4 Proof for PoKDE . 40
B.5 Backgrounds on smooth numbers and proof for Lemma 2 40
B.6 Proof for ZK-PoKDE . 44
B.7 Non-interactive variants and their security . 45
B.8 Proof for NIZK-PoMoDE . 46

C Security proofs for Section 5 47
C.1 Proof for Theorem 2 . 48
C.2 Proof for Theorem 3 . 49

D Security analysis for offloading signature verifications and applications 50
D.1 Proof for Theorem 4 . 50
D.2 Applications of signature offloading . 51

E Non-interactive PoKEModN and PoKDE variants 52

2

1 Introduction

Time-lock puzzles (TLPs) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] are cryptographic primitives that allow a
puzzle generator to produce a puzzle such that anyone attempting to compute its solution will only
be able to do so after devoting T sequential computational “steps” (even using multiple machines
or parallelism). The key property of TLPs is the asymmetricity of the puzzle: the puzzle generator
can generate the puzzle easily for any T while solving the puzzle takes time linear with T . This
finds many applications when such a “time delay” needs to be imposed, for example, fair contract
signing [2], sealed-bid auctions [1, 11, 8, 12], zero-knowledge proofs [13, 14], timed encryption [7,
15, 16], non-malleable timed commitments [2, 17, 18], distributed randomness generation [8, 19], or
Byzantine consensus [9, 20]. With the popularity of cryptocurrencies, TLPs have attracted additional
attention due to promising applications in Decentralized-Finance distributed systems, like preventing
front-running [21], multi-signature transactions [6], and cross-chain atomic swaps [22].

However, the asymmetry of TLPs in terms of computational resources between the generator
and the solvers is a “double-edged sword”. It enables many interesting applications but, on the
other hand, it imposes a simple limitation: puzzle solving takes effort but the solver cannot be sure
it will retrieve valid, useful information unless the puzzle generator is trusted. E.g., in a blockchain
setting, a malicious puzzle generator may abuse this to force other participants to “waste” their
computational resources in hopes of benefiting from the solution, only to find out the latter is
“bogus”. As a solution to this problem, a recent work by Thyagarajan et al. [6], examined the case
of time-lock signatures. These are time-lock puzzles where the solution is a signature of a public
message under a public key (e.g., useful to impose a minimum delay before blockchain transactions
can be processed). Their approach requires the puzzle generator to provide a proof about this, that
can be checked by interested solvers before they solve the puzzle so that they decide whether to
commit their resources.

In this work, we look into the more general version of this problem, aiming for time-lock puzzles
with general provable guarantees regarding their solution. In particular, we ask whether it is possible
to efficiently prove a solution to a time-lock puzzle satisfies an arbitrary NP relation?

Verifiable Time-lock Puzzles. We first introduce the notion of verifiable time-lock puzzles for NP
relations (VTLP for NP), which extends time-lock puzzles to support proving the solution fulfills
an NP relation. Our definition enhances conventional time-lock puzzles by requiring the puzzle to
be accompanied by proof for this claim. Hence, VTLPs must satisfy soundness (i.e., no cheating
puzzle generator can convince verifiers about the validity of a false claim) and zero-knowledge (i.e.,
the proof and verification reveal nothing about the solution–or any additional witness detail in the
NP relation). In practice, the former guarantees that, upon validating the proof, the verifier is
convinced that the execution of exactly T computational steps will yield a solution that conforms
to the specified NP relation. The latter guarantees that no information is leaked until the puzzle is
solved. For example, the VTLP can prove that the solution is the preimage of a public hash value,
and solving the puzzle guarantees a solution after T “steps”. Another example is proving the time-
lock puzzle hides a valid transaction signature, where the sender is the preimage of “some” leaf node
of a public tree root, with enough balance to make the transaction. This directly enables delayed
transactions without relying on a trusted party or smart contracts. In that sense, verifiability for
time-lock puzzles extends what can be achieved in the context of classical TLP applications for fair
contract signing [2], auctions [1, 12] and more [6].

Building Efficient VTLPs. A rather straightforward, but terribly inefficient, VTLP construction
for arbitrary relations can be achieved by combining a TLP with a succinct non-interactive argument
of knowledge (SNARK) for NP [23, 24]. The puzzle generator provides a SNARK proof for a circuit
that (i) checks solution s satisfies the relation (using possibly a witness w), and (ii) proves the

3

puzzle indeed opens to solution s by performing T steps of computation. For some TLPs, it may
be possible to “speed up” proving (ii). For instance, consider the “widely-used” RSA-based time-

lock puzzle [1] that, given (z, T , N) accepts solution z2
T

mod N . With the RSA trapdoor ϕ(N) as
witness input, the prover can perform the target exponentiation much faster in the SNARK. However,
even this faster approach can have prohibitively large overheads for most applications. E.g., using
xjSNARK [25], we observe that a single group operation—either multiplication or squaring—with
a 2048-bit modulus necessitates approximately 18, 000 constraints. To further illustrate, verifying
exponentiation of the form zτ mod N (where τ is a 2048-bit integer, i.e., after reducing modulo
ϕ(N)) would take roughly 2048 squarings and multiplications, resulting in a SNARK circuit with
approximately 72 million constraints.

In this work, we propose a more efficient alternative for practical VTLPs following a modular
approach for the proof. We first propose two Σ-protocols [26] for modular exponentiation relations
in hidden order groups (Section 4). The first protocol is PoKEModN and it extends the protocol
of [27] to the general moduli case, proving a committed integer x modulo n is x̂. Our second
protocol is PoMoDE and it proves a committed integer x raised to the power of e modulo n is x̂.
Both constructions achieve O(1) proof size and verification time, improving upon the prior state-of-
the-art for hidden-order groups [28]. We then extend them to achieve zero-knowledge and propose
two “SNARK-offloading” techniques, which allow a SNARK prover to offload parts of an elaborate
computation from the SNARK circuit and prove them separately. The first one is OffloadProd
and it works for computing products of sets of values, and the second is OffloadExp, for modular
exponentiations for large integers.

Comparing with the “direct” computation of ux mod N (where x is a 2048-bit integer) inside
the circuit that we mentioned above, our OffloadExp helps prove the same statement with merely
535, 000 constraints, yielding a circuit ∼140 times smaller! Finally, relying on these techniques,
we build our VTLP from the RSA-based TLP [1].
Comparison with Time-lock Signatures. Besides supporting arbitrary NP relations, our solution also
yields time-lock signatures that are both more efficient and more secure relative to the verifiable-
time-lock signature than the scheme of Thyagarajan et al. [6]. At a high level, that work (as well as
follow-ups [29, 30]) achieves verifiability by integrating a linearly-homomorphic time-lock puzzle [3]
with multiple iterations of threshold secret sharing [31]. However, the soundness depends on having a
substantial number of secret shares, which directly impacts the proving time and proof size, resulting
in significant computational overhead and large proofs. Moreover, this approach suffers from a non-
negligible soundness error for practical implementations of any time-lock signature, although in the
scenario of TLPs, such soundness errors are practically benign. For instance, to verify a time-lock
BLS signature [32] with a time parameter of T = 106 using 40 shares, the proving procedure demands
approximately 30 seconds, the proof size scales with the number of shares, and the soundness error is
at 10−12. Verification consumes 40 seconds, also scaling with the number of shares. In comparison,
our approach instantiated with Groth16 [23] enables the proving of a VTLP for a BLS signature in a
mere 1.37 seconds, yielding a proof whose size remains constant irrespectively of the time parameter
T . Verification is swift, requiring just 1ms, and this efficiency is maintained regardless of the time
parameter—after a one-time transparent setup to establish T . Crucially, our system’s soundness
error is negligible, overall substantially improving over [6]. On the other hand, [6] satisfies simulation-
soundness, which guarantees that when the prover has access to simulated proofs for (possibly false)
statements of its choice, it cannot generate fresh false statements. Our work cannot support this
property easily.
TLPs for sealed-bid auctions. A recent work by Tyagi et al. [12] proposed Riggs, a system for sealed-
bid auctions with guaranteed bid opening and provably valid price bids. To efficiently support
simultaneous bids in multiple auctions, it uses Pedersen commitments for the bids which can then

4

be homomorphically aggregated in a single commitment. Then, to avoid “over-bidding”, bidders
must provide a (range) proof that the pre-image of this aggregated commitment is smaller than
their available assets. Computing such a proof for Pedersen is fairly efficient, however, to guarantee
auction fairness (i.e., that all bids are eventually opened) bidders must also submit a TLP with the
Pedersen pre-image as the solution. This raises the issue of ensuring consistency between TLPs and
Pedersen commitments.

The authors of [12] consider using a SNARK, however, they deem this approach prohibitively
costly. Instead, Riggs requires all bidders to put a significant amount per bid into escrow as collateral
in case of misbehavior. If the bidder provides a TLP solution that is also the Pedersen pre-image
within the bid opening phase, they can claim back the escrow; otherwise, after T time, the escrow
is claimed by anyone providing a solution. While this guarantees consistency against rational ad-
versaries that do not wish to lose their escrow, it imposes financial burdens on all honest bidders as
well. Their funds must be held in escrow for a period, and if for any reason they cannot be online in
time, they risk losing them altogether. Our VTLP can be used as a drop-in replacement of the above
to provably “link” the TLP with the Pedersen commitment. Our experimental results demonstrate
that this approach is around 150× more efficient than the SNARK-based option considered in [12].

Time-lock RSA signature and VRF. We also propose a second VTLP for the specific case of
verifying the solution with respect to an RSA signature, or RSA-based verifiable random function
(VRF) evaluation [33, 34, 35]. For the former, the puzzle’s solution is “guaranteed” to be a valid
RSA signature for a given message. Regarding the latter, at a high level, VRFs are analogous
to pseudo-random functions in the public-key setting. Given an input and a private key, one can
produce a unique pseudo-random value, accompanied by a publicly verifiable proof of correctness.
Our VTLP can hide the VRF evaluation for given public input and key until the puzzle is solved. Our
construction again combines our modular proof techniques with the RSA-based TLP but, crucially,
does not require a SNARK to produce the proof. Below, we discuss possible applications of our
second VTLP in the context of distributed random beacons and online lotteries.
Applications of Time-lock RSA Signature/VRF. The VRF use-case can directly apply to distributed
random beacon generations [36]. A common strategy for creating a distributed random beacon
involves multiple entities committing to their VRF values and subsequently revealing them after
a designated accumulation phase. Nonetheless, this approach is vulnerable to manipulation by
adversarial participants who may opt to withhold their commitments, e.g., in a DoS attack or to
affect the outcome of the beacon. Our scheme would circumvent this critical issue by ensuring that
the committed (time-lock) VRF values will mandatorily be exposed when the puzzle is solved, thus
preserving the fairness and unpredictability of the random beacon. We consider this a meaningful
advancement in developing reliable distributed randomness systems.

Another application of time-lock VRF is distributed online lottery and gaming, described in [37].
In this scenario, a VRF value is committed first, and after the bidding/gaming phase, the committed
VRF value “should be” revealed when the game organizer is honest. However, if the organizer is
malicious, they might abstain from revealing the committed VRF value, thereby stalling the game’s
resolution. To counter this problem and ensure a fair game, our VTLP for VRF can be integrated
with smart contracts. Again, this enforces the eventual revelation of the VRF value, safeguarding
the integrity of the game’s outcome. In contrast, [37] focused on efficiently proving the legitimacy
of a committed VRF but without achieving enforced openings.

Finally, our VTLP can facilitate RSA screening [38], a technique that for batch authentication
of messages through a single proof (essentially the product of the individual signatures modulo N ,
where N denotes the RSA group). Hence, our VTLP for RSA signatures can encompass an arbitrary
amount of messages with a single proof.

Offloading RSA Signature Verifications. A “by-product” application of the building blocks we

5

develop, besides VTLPs, is an efficient SNARK-offloading tool for RSA signature checking, e.g., to
prove several elements of a SNARK witness are signed, crucially, without verifying all the signatures
within the SNARK circuit. The most efficient existing tool for directly checking signatures inside a
SNARK is BabyJubjub [39]. We measured that with Groth16 it takes ∼7 million constraints to check
1000 EdDSA signatures using BabyJubjub, while it takes ∼1.3 million constraints with our signature
offloading technique for 1000 RSA 3072-bit signatures, resulting in 5-6× faster provers. A recent work
by Fiore and Tucker [40] follows a different approach for signature-offloading, based on a scheme
with homomorphic signatures called SPHinx. They target the problem of verifiable computation
over streams of signed data, e.g., with applications in stock market oversight or forecasting services.
Although SPHinx also deploys a SNARK, it leverages a special “tagged” signature, where each
message is accompanied by a unique tag, that must be public and checked as part of the proof. This
immediately makes the signature verification grow linearly with the number of signed messages. In
comparison, our signature offloading focuses on the standard RSA signature with the PKCS 2.1
standard [41].

Summary of Contributions. Our overall contributions can be summarized as follows:

1. We propose definitions for VTLPs for NP and the first construction that satisfies them. Our
scheme has efficient proof generation, and O(1) proof size and verification cost. As a special
case, it achieves very efficient verifiable time-lock signatures, for SNARK-friendly signatures,
e.g., BabyJubjub, and BLS.

2. We propose a VTLP for efficient RSA signature/VRF checking, without relying on SNARKs.

3. We propose a SNARK-offloading scheme for batch verification of standard full-domain-hash RSA
signatures.

4. As important building blocks to the above, we propose protocols for proving different modular
exponent relations in hidden order groups and use them to enable offloading product and modular
exponentiation computations from a SNARK circuit.

5. We experimentally evaluate the performance of our constructions and compare it with prior
state-of-the-art approaches.

2 Related Work

Verifiable Delay functions (VDFs), TLPs and VTLPs. VDFs [42, 43] are functions requiring
T steps to compute, even using parallelization. In this sense, VDF is a close notation to TLP, espe-
cially since they are usually based on similar cryptographic primitives and assumptions. However,
their concepts differ in purpose: TLPs are designed to generate puzzles easily without guaranteeing
a valid solution, while VDFs require a prover to demonstrate that they have performed T steps for a
specific problem, which the verifier can check efficiently, often with less than log(T) steps. There is
a line of works [2, 7, 8, 44, 45] that aims to combine both approaches to allow the solver (after per-
forming T steps of computation) to convince third parties about the validity of a computed solution
(thereby also proving the solver’s computational effort). In contrast, VTLPs allow the generator to
provide a proof about certain properties of the solution, without revealing the solution.

TLPs with batch solving. The fact that TLPs do not guarantee any specific property of the
solution raises important challenges in many real-world TLP applications. For instance, in a sealed-
bid Vickrey auction, it is necessary to eventually reveal all bids to deduce the winner and the hammer
price (the second-highest price). One way to enforce bid “openability” by the auctioneer is to use
TLPs for the bids, in case adversarial bidders refuse to open their bids (e.g., to drive the price down).

6

To make things easier for the auctioneer, [3, 4, 46, 9, 47] propose TLPs with efficient batch opening,
where puzzles are time-locked towards a certain “key”, and all the puzzles can be solved in T steps.
While VTLPs do not directly solve this problem, they can offer a defense mechanism by asking each
bidder to prove the validity of its bid. It is also an interesting problem to design VTLPs with batch
solving.

Proof of knowledge of Exponent (PoKE) and Double Exponent (PoKDE). Various ver-
sions of proof-of-exponent protocols have been extensively studied in the literature [48, 49, 50, 51,
52, 27]. In this paper, we focus on the special case of PoKDE over hidden-order groups. This
problem was first studied by Camenisch and Stadler [28] to build group signatures. The authors
provide two protocols for PoKDE, with proof size and verification overhead either linear to the
security parameter or linear to the bit-length of the “upper” exponent. Their protocol has since
been adopted in Zerocoin [53]. In this paper, we propose a PoKDE with constant proof size and
verification time, building upon the PoKE of [27] to extend it to the double-exponent case.

3 Preliminaries

Notation. Let λ denote a security parameter. By Primes(λ) we denote the set of integer primes
less than 2λ. A function negl(λ): N→ R+ is negligible if for every positive polynomial poly(λ) there
exists a λ0 ∈ N, such that for all λ > λ0 : ϵ(λ) < 1/poly(λ). We denote PPT as “probabilistic
polynomial time” with respect to λ through our paper. Let [i, j] = {i, i + 1, . . . , j − 1, j}, and

[j] = {0, 1, . . . , j − 1}. We denote by x
$←− F sampling uniformly at random from domain F . We

denote a vector by a⃗ and denote the size of vector a⃗ by |⃗a|.
Argument system. An argument system for a relation R ⊂ X ×W is a triple of PPT algorithms
(PGen,P,V). PGen inputs security parameter λ and outputs a common reference string crs. The
prover P takes as input a statement x ∈ X , a witness w ∈ W, and crs. The verifier V takes as
input crs and x and after interaction with P outputs 0 or 1. We denote the transcript between the
prover and verifier by ⟨V(pp, x),P(pp, x;w)⟩ and write ⟨V(pp, x),P(pp, x;w)⟩ = 1 to indicate that
the verifier accepted the transcript.

Definition 1 (Argument). The triple (PGen,P,V) is called an argument for relation R if for all
adversaries A it has the the following properties:

Completeness: For any (x;w) ∈ R, Pr[⟨V(pp, x),P(pp, x;w)⟩ = 1] ≥ 1− negl(λ).
Soundness: For any (x;w) /∈ R, Pr[⟨V(pp, x),P(pp, x;w)⟩ = 1] ≤ negl(λ).

Definition 2 (Public Coin). The triple (PGen,P,V) is called public coin, if all challenges sent
from V to P are chosen uniformly at random and independently of P’s messages, i.e., the challenges
correspond to V’s randomness.

Furthermore, an argument system is called an argument of knowledge if it further satisfies the
following property:

Definition 3 (Argument of knowledge.). The triple (PGen,P,V) is called an argument of knowl-
edge for relation R, if for all PPT adversary A1 there exists a poly-time extractor Ext such that
for all PPT adversary A0 :

Pr

 ⟨V(pp, x),A1(pp, x, state)⟩ = 1∧
(x;w′) /∈ R

crs← PGen(1λ)
(x, state)← A0(crs)
w′ ← Ext(crs, x, state)

 < negl(λ).

7

An argument of knowledge inherently satisfies soundness, often referred to as special soundness.
An argument of knowledge is zero knowledge if it does not leak information about w apart from
what can be deduced from the fact that (x;w) ∈ R. Formally:

Definition 4 (Zero-knowledge). The triple (PGen,P,V) is called zero-knowledge for R if there
exists a PPT simulator Sim s.t. for any (x;w) ∈ R, the following two distribution are indistin-
guishable:

D1 = {⟨V(pp, x),P(pp, x;w)⟩|crs← PGen(1λ)},
D2 = {Sim(crs, x,V(pp, x))|crs← PGen(1λ)}.

When the distributions are computationally indistinguishable for bounded adversaries, we call
it computational zero-knowledge. If the distributions are statistically close, we call it statistical
zero-knowledge.

Proof of Exponentiation. Given a hidden order group G?, one integer x and generator g and
another group element y, a Proof of Exponentiation (PoE) protocol [42] proves the exponentiation
relation gx = y ∈ G? with a constant-sized proof. The verifier first sends a prime challenge l,
the prover calculates q, r s.t. x = ql + r, r ∈ [0, l), and sends π = gq ∈ G? to the verifier. The

verifier computes r = x mod l and checks πlgr
?
= y. Boneh et al. [27] extended the above idea

to proof of knowledge of exponent for several different cases: PoKE∗ for the base g encoded in
the public parameter and PoKE2 for any base g ∈ G? and provided a Non-Interactive (NI) zero-
knowledge variants [27]. Taking PoKE2 for example, we refer to their protocols as (1) a prove
function π ← NI-ZKPoKE2 (g,G;x) where π is the proof, x is the witness and G = gx, and (2) a
verification function 1/0← NI-ZKPoKE2(g,G, π).

SNARKs. A Succinct Non-interactive ARgument of Knowledge (SNARK) for a relation R com-
prises of three algorithms as follows:

• Π.Setup(1λ,R)→ crs. crs is a common reference string.

• Π.Prove(crs, x;w)→ π. x is a statement and w is the witness such that R(x,w) holds. It outputs
π as proof.

• Π.Verify(crs, x, π)→ {0, 1}. It inputs the crs, statement x and proof π. It outputs 1 if the proof
checks correctly; otherwise 0.

A SNARK is complete, knowledge-sound, and succinct. Completeness means that if R(x,w) holds,
an honest prover fails to generate a valid proof with less than negligible probability. Knowledge
soundness means that given valid proof, an extractor exists to extract the witness for that statement.
Finally, a SNARK is succinct if the proof and verification time are poly-logarithmic in the witness
size. This property allows the verifier to check any statement in R faster than directly checking the
statement and witness (if given). If a SNARK is also zero-knowledge, a simulator exists to generate
proofs without knowing the witness [54, 23]. In this paper, for the security and composition of
different SNARK proofs, we employ Commit-and-Prove SNARKs (CP-SNARKs) [55]. Informally,
the prover can commit the inputs and witnesses of a SNARK through some commitment scheme,
e.g., extended Pedersen commitments which are perfect hiding and computationally binding. We
denote cw1 the committed witness w1 for a CP-SNARK proof π ← Π.Prove(crs, cw1 , x;w2)

where w2 is the non-committed part of the witness. As discussed in [55], CP-SNARK allows the
modular composition of SNARKs through the committed witness.

Time-lock puzzles (TLPs). A time-lock puzzle scheme is a tuple of three PPT functions
(KeySetup,GenPuz,SolvPuz) between a puzzle generator and a solver. Function KeySetup
takes in security parameter λ and outputs a public/private key pair for the puzzle generator. Func-
tion GenPuz takes in its public/private key pair, a solution s, and a hardness parameter T . It

8

outputs a puzzle z. Function SolvPuz takes in the public key, a puzzle z, and the hardness param-
eter T . It outputs the solution s. Following the definitions in [1, 3], TLPs need to be correct and
time-lock secure. Correctness means that a puzzle generated by honest execution of GenPuz can
be solved using SolvPuz with respect to the public key and T . Time-lock security requires that a
puzzle z generated under parameter T cannot be solved with time less than T .
RSA signatures. RSA signatures are classical public key digital signature schemes. It involves
three steps: key generation, sign, and verification. During key generation, two large primes are
chosen and multiplied to form the modulus N = pq, while the private and public exponents d, e are
chosen such that d · e = 1 mod ϕ(N), ϕ(·) is the Euler’s totient function. To sign a message m, the
signer computes the signature σ = FDH(m)d mod N where FDH(·) is a full-domain hash [56].
To verify a signature σ′ for message m, the verifier checks if σ′e = FDH(m) mod N . For faster
verification, e is usually chosen to be a small prime number, e.g., 3, 17, 216 + 1.

Verifiable Random functions (VRFs). VRFs are cryptographic functions that, for a given input
and public key, generate a unique random number and a corresponding proof, which can be verified
to confirm that the number was produced deterministically and honestly in relation to the public
key and specific input. We follow the VRF definitions provided by [57, 58]. VRFs are delineated
by three properties: provability, uniqueness, and existential pseudorandomness. Provability ensures
a prover can convince a verifier that the random number was generated correctly. Uniqueness
guarantees that for a given input and public key, there is only one random number that the verifier
will accept as valid. Existential pseudorandomness ensures that to any PPT adversary, the output
appears indistinguishable from a truly random value, except if the adversary executes the verification
function.

Strong RSA assumption. Given a hidden order group G? and a random x
$←− G?, it is hard to find

a non-trivial root e ∈ [2, N−1] of a random group element y ∈ G? such that ye = x. The strong RSA
assumption was introduced in [59] and used in many cryptographic schemes (e.g., [60, 27, 61, 62]).
It can be formally stated as follows:

Assumption 1. Strong RSA assumption. For every PPT algorithm A, and GGen(1λ) is an algo-
rithm that generates a group G with hidden order.

Pr

 G? ← GGen(1λ)

ye = g ∧ e > 1 g
$←− G?

(y, e)← A(G?, g)

 < negl(λ).

Order assumption. Given a hidden order group G?, and a random group element g ∈ G?, it is
hard to find any multiples of its order [63]. It can be formally stated as:

Assumption 2. Order assumption. For every PPT algorithm A and GGen(1λ) is an algorithm
that generates a group G with hidden order.

Pr

 ge = 1G?

G? ← GGen(1λ)

g
$←− G?

e← A(G?, g)

 < negl(λ).

Adaptive Root assumption. The adaptive root assumption was introduced by Wesolowski [42].
It implies that adversaries cannot compute the order of any non-trivial element. We denote 1G as
the identity element in group G. Identity elements are excluded as challenges since any root of the
identity element is itself. It can be formally stated as follows:

9

Assumption 3. Adaptive Root assumption. For every PPT algorithm (A0,A1), and given a
GGen(1λ) algorithm generating a group G? of hidden order

Pr

 ue = g∧
g ̸= 1G?

G? ← GGen(1λ)
(g, state)← A0(G?)

e
$←− Primes(λ)

u← A1(g, state, e)

 < negl(λ).

Sequential Squaring assumption. The sequential squaring assumption is first implicitly in-
troduced by Rivest, Shamir, and Wagner [1] and summarized in the indistinguishability-style by
Malavolta and Thyagarajan in [3].

Assumption 4. Let N be a uniform strong RSA integer, g be a generator of QRN , and T (·) be a
polynomial. There exists some 0 < ϵ < 1 such that for every polynomial-size adversary A = {Aλ}λ∈N
whose depth is bounded from above by T ϵ(λ), there is a negligible function µ(·) such that

Pr

 b = b′

s
$←− QRN ; b

$←− {0, 1}
if b = 0, then z

$←− QRN
if b = 1, then z = s2

T (λ)

b′ ← A(N, g, T (λ), s, z)

 < 1/2 + negl(λ).

Decisional Modular Subset Sum (DMSS) assumption. This decisional modular variant of the
subset sum assumption was initially proposed by Impagliazzo and Naor in [64] and later employed
in [65, 66]. The DMSS assumption posits that distinguishing between a sum of a randomly chosen
subset of integers modulo a given modulus and a random number drawn from a uniform distribution
modulo the same modulus is a computationally infeasible task. It can be formally stated as follows:

Assumption 5. Decisional modular subset sum assumption. For every PPT algorithm A, and
given a modulus(1λ) algorithm generating a random integer modulus n and l = poly(λ),

Pr

 b = b′

n←modulus(1λ)

γ⃗
$←− [n]l, x⃗

$←− {0, 1}l

t0 =
∑l
i=1 γixi mod n

t1
$←− [n], b

$←− {0, 1}
b′ ← A(1λ, n, γ⃗, tb)

 < 1/2 + negl(λ).

The hardness of the DMSS assumption depends on the random set size l, the modulo n, and the
“density” l/ log n. The DMSS problem becomes easy when the density is too small (l/ log n < 1) [67].
l and n need to be larger than 256 to achieve 128 bits of security [67, 68].

DDH-II assumption. DDH-II assumption for hidden order groups was first introduced in [69] for
a well-spread distribution. A distribution WS2λ with domain X2λ is called well-spread if Pr[X =

x|X $←− WS2λ] ≤ 2−2λ for each x ∈ X2λ. In other words, elements sampled from this distribution
are sufficiently random. Because the order of the group is unknown, we denote the upper bound of
the group order as maxord(G) and the lower bound of the group as minord(G). It can be formally
stated as follows:

Assumption 6. DDH-II assumption. For every PPT algorithm A, and GGen(1λ) is an algorithm

that generates a group G with hidden order, g
$←− G. Let WS2λ be a well-spread distribution with

domain X2λ ⊆ [1,minord(G)]. Then for any PPT adversary A
|Pr[A(gx, gy, gxy) = 0]−Pr[A(gx, gy, gr) = 0]| < negl(λ) where x

$←−WS2λ, y, r
$←− [1,maxord(G)2λ].

10

Params: security parameter λ, g ∈ G?;
Inputs: C ∈ G?, n ∈ Z, x̂ ∈ [n]; Witness: x ∈ Z;
Claim: C = gx and x mod n = x̂.
PoKEModN

1. Verifier sends ℓ
$←− Prime(λ).

2. Prover computes the quotient q ∈ Z and residue r ∈ [ℓ · n] such that x = q(ℓ · n) + r. It
sends the pair (Q← gq, r) to the verifier.
3. Verifier accepts if r ∈ [ℓ · n] and Qℓ·ngr = C holds in G? and r mod n = x̂.
ZK-PoKEModN with parameter B > maxord(G)2λ

1. Prover samples m
$←− [B] and sends D = gm and π = NI-PoKE∗(g,D;m).

2. Verifier checks if 1 = NI-PoKE∗(g,D, π). If not, it aborts. Then, it sends ℓ
$←− Prime(λ).

3. Prover computes the quotient q ∈ Z and residue r ∈ [ℓ · n] such that x+mn = q(ℓ · n) + r.
It sends the pair (Q← gq, r) to the verifier.
4. Verifier accepts if r ∈ [ℓ · n] and Qℓ·ngr = C ×Dn holds in G? and r mod n = x̂.

Figure 1: Protocol PoKEModN and ZK-PoKEModN.

4 Proofs of Modular Exponentiations

In this section, we present several new succinct proofs in hidden order groups. We first build
the PoKEModN protocol and its zero-knowledge variant ZK-PoKEModN. Then we build the
PoKDE protocol and its zero-knowledge variant ZK-PoKDE. Lastly, we build the ZK-PoMoDE
protocol based on the above protocols. Let G? be a hidden order group and g its generator. The
first two proofs extend the PoKEMon protocol from [27], which proves the committed exponent x
modulo a prime p is x̂:

RPoKEMon = {(C ∈ G?, x̂ ∈ [p];x ∈ Z) : C = gx, x mod p = x̂}.

We observe that the protocol can be further extended to a more general relation for any integer n,
denoted as:

RPoKEModN = {(C ∈ G?, x̂ ∈ [n];x ∈ Z) : C = gx, x mod n = x̂}.

We then provide an efficient zero-knowledge version of the protocol. Furthermore, we design a new
protocol for the modular double exponent relation, which proves the committed exponent in C when
raised to the power of e and taken modulo n, equals x̂:

RPoMoDE = {(C ∈ G?, e, n, x̂ ∈ Z;x ∈ Z) : C = gx, xe mod n = x̂}.

We provide an efficient zero-knowledge version of the protocol. All protocols in this section are
public-coin and can be made non-interactive using the Fiat-Shamir heuristic.

4.1 Proof of modular exponent

We observe that the original proof of modular exponent is limited to prime moduli because the
soundness of the protocol relies on Shamir’s trick [70], which requires the exponents to be co-prime
with the modulus. We first extend Shamir’s trick by the following simple lemma with the proof in
Appendix B.1. We do not claim any novelty for this lemma because we consider it straightforward.

11

Lemma 1. For any integer N , given integer g, h ∈ Z∗
N and a, b ∈ Z, such that ga = hb mod N and

gcd(a, b) < min(a, b), one can efficiently compute D ∈ Z∗
N and α ∈ Z such that Dα = h and α > 1

(D is a non-trivial root of h).

Based on Lemma 1, we can extend PoKEMon to PoKEModN, from prime moduli only to a
general moduli N . We depict our PoKEModN protocol in Figure 1 and prove its security in the
Appendix B.2.

Zero-knowledge PoKEMod. Our protocols fall within the family of Σ-protocols [26]. A com-
mon way to make such protocols zero-knowledge is by using additional random “blinding” factors.
However, this method does not work easily for the PoKEModN protocol for two reasons: (1) if
we add a random number m to hide the witness x, the remainder modulo n changes according to
the prover’s intent and this can compromise soundness; (2) if we blind the witness by multiplying a
random number m, the remainder modulo n changes and correctness doesn’t hold.

Instead, we can cloak the exponent as z = mn + x, which makes the randomizer mn divide
n so it does not affect soundness. To correctly extract the value x, we additionally require m to
be committed first, together with a zero-knowledge proof of knowledge of m as the first step. To
further reduce the overhead of the protocol, we show that a simple PoKE∗ is enough to provide a
zero-knowledge proof of knowledge for the random number m. We present the ZK-PoKEModN
protocol in Figure 1. We introduce an additional parameter B > maxord(G?)2

λ where maxord(G)
is the upper bound for the group order and can be set to the modulus of G? in practice. We prove
its security in the Appendix B.3. We provide the non-interactive variants in Appendix E.

4.2 Proof of modular double exponent

Before we present PoMoDE, we introduce as a building block the proof of knowledge of double
exponent (PoKDE) for the following relation. It proves the committed exponent in C1, when raised
to the power of e equals the committed exponent in C2:

RPoKDE = {(C1, C2 ∈ G?, e ∈ Z;x ∈ Z) : C1 = gx, C2 = gx
e

}.

We present our PoKDE protocol in Figure 2 and prove its security in Appendix B.4. Intuitively,
its correctness relies on the observation that:

• Fact 1 For a prime ℓ, if x mod ℓ = r, then for any positive integer e, xe ≡ re mod ℓ.

Zero-knowledge version of ZK-PoKDE. Similarly, we cannot directly build a zero-knowledge
PoKDE by “naively” adding randomizers. This is because once we cloak the exponent with random
numbers, the remainder changes accordingly, and correctness does not hold. We turn to another
approach based on the following observation:

• Fact 2 For integer x, c, γ, and positive integer e, the binomial-type polynomial of the form (x +
γ)e − ce is divisible by γ when c = x.

We can extend Fact 2 with this corollary:

Corollary 1. Let λ be a security parameter, and let e be any positive integer. For committed integer
x, c and a prime challenge γ uniformly sampled from [1, 2λ], if c ̸= x, (x+ γ)e − ce is divisible by γ
with negligible probability.

This corollary provides intuition, and a more general version will be presented and proved later. To
protect the privacy of committed x and c, the prover needs to use a randomizer m to cloak x and

12

Params: security parameter λ, g ∈ G?;
Inputs: C1, C2 ∈ G?, e ∈ Z+; Witness: x ∈ Z;
Claim: C1 = gx, C2 = gx

e

.
PoKDE

1. Verifier sends ℓ
$←− Prime(λ) to the prover.

2. Prover computes r1 = x mod ℓ, q1 = ⌊x/ℓ⌋, Q1 = gq1 , r2 = xe mod ℓ, q2 = ⌊xe/ℓ⌋, Q2 = gq2 .
It sends (Q1, r1, Q2, r2) to the verifier.
3. Verifier accepts if r1, r2 ∈ [ℓ], Qℓ1g

r1 = C1, Q
ℓ
2g
r2 = C2 and re1 mod ℓ = r2.

ZK-PoKDE with parameters: range of non-smooth randomizer [B = 2λ
2

], S =
max(22λ|G?|, 22λM,B)

1. Prover samples m
$←− [S], calculates D = gm and π1 = NI-PoKE(g,D;m).

It sends (D,π1) to the verifier.

2. Verifier checks if 1 = NI-PoKE(g,D, π1). If not, it aborts. Then, it samples γ
$←− [B],

ℓ
$←− Prime(λ) and sends (γ, ℓ) to the prover.

3. Prover computes z = xℓ + m + γ, E = gz
e

, K = Cℓ
e

2 , ω = ze − (xℓ)e, ω′ = ω/(m + γ),
F = gω = gω

′(m+γ), π2 = NI-PoE(C2,K, ℓ
e), π3 = NIZK-PoKE2(gm+γ , F ;ω′), π4 =

NI-PoKDE(Cℓ1 ×D × gγ , E, e; z). It sends (E,K,F, π2, π3, π4).
4. Verifier accepts if all the following are correct: E/K

?
= F , 1 = NI-PoE(C2,K, ℓ

e, π2),
1 = NIZK-PoKE2(D × gγ , F, π3) and 1 = NI-PoKDE(Cℓ1 ×D × gγ , E, e, π4).

Figure 2: Protocol PoKDE and ZK-PoKDE.

c, leading to the equation of (x +m + γ)e − (c +m)e. This is a stringent condition because if γ is
sampled uniformly at random, either prime or not, from [1, 2λ], m+ γ is not prime with probability
around 1 − 1/λ based on the prime number theorem. If m + γ is not prime, Corollary 1 no longer
holds, and cannot check if x = c.

To address this issue, we relax the requirement for γ to be a prime number. Instead, we require
γ to be non-smooth . Informally, an integer γ is y-smooth if all its prime factors are smaller than
y. We provide more background regarding smooth numbers in Appendix B.5. We also introduce
the following proposition, initially discussed as a subcase in Proposition 7 of [71]:

Proposition 1. Given a security parameter λ, a uniform random integer in [0, 2λ
2

] is 2λ-smooth
with negligible probability.

As discussed in both [71] and [72], this proposition suggests a crude bound: to achieve 80 bits of
security, the random integer needs to be sampled from [0, 26400]. Further experimental analysis
in [72] shows a random integer sampled from [0, 21024] is 280-smooth with probability around 1/280

and a random integer sampled from [0, 22048] is 2120-smooth with probability around 1/2120. We
propose the following lemma, based on the observation that as a increases, finding a y-smooth
random number within the interval [0, a] becomes more difficult.

Lemma 2. Given a security parameter λ, an integer y > 2λ an integer a > 2λ
2

and any fixed integer
∆, denote P1 the probability that a uniform random integer in [0, a] is y-smooth and denote P2 the
probability that a uniform random integer in [∆,∆ + a] is y-smooth. Then, P2 ≤ ϵ(a)P1 + negl(λ)
where ϵ(a) is an error term that approaches 1 as a becomes large.

13

Params: security parameter λ, g ∈ G?, B > maxord(G)2λ;
Inputs: C1 ∈ G?, n, e ∈ Z, x̂ ∈ [n]; Witness: x ∈ Z;
Claim: C1 = gx and xe mod n = x̂.
ZK-PoMoDE

1. Prover samples m
$←− [B] and computes D = gm, π1 = NI-PoKE∗(g,D;m), C2 = g(x+mn)

e

,
π2 = NIZK-PoKDE(C1 ×Dn, C2, e;x+mn),
π3 = NIZK-PoKEModN(g, C2, n, x̂; (x+mn)e).
It sends (D,C2, π1, π2, π3) to the verifier.
2. Verifier accepts if all the following are correct: 1 = NI-PoKE∗(g,D, π1),
1 = NIZK-PoKDE(C1 ×Dn, C2, e, π2) and
1 = NIZK-PoKEModN(g, C2, n, x̂, π3).

Figure 3: Protocol ZK-PoMoDE.

We refer to Appendix B.5 for the proof of Lemma 2. Intuitively, Lemma 2 suggests that if the
prover uses a random integer m to hide the exponent, and the verifier sends the challenge γ, which is
large enough to be non-smooth, after seeing the committed m, then m+ γ is at least as non-smooth
as γ. We further extend Corollary 1 with the following corollary, based on Lemma 2:

Corollary 2. Let λ be a security parameter, and let e be any positive integer. For committed integer
x, c and an integer challenge γ uniformly sampled from [1, 2λ

2

], if c ̸= x, (x+ γ)e− ce is divisible by
γ with negligible probability.

The proof of Corollary 2 is deferred to the security proof of the ZK-PoKDE protocol. We describe
the ZK-PoKDE protocol in Figure 2 based on Corollary 2, and capture its security by the following
theorem:

Theorem 1. Protocol ZK-PoKDE is a statistically zero-knowledge proof of knowledge for re-
lation RPoKDE if protocol NI-PoE is an argument of exponent for the relation RPoE, protocol
NI-PoKDE is an argument of knowledge for relation RPoKDE, protocol NIZK-PoKE2 is a sta-
tistically zero-knowledge argument of knowledge of exponent for the relation RPoKE2.

We refer to Appendix B.6 for the security proof of Theorem 1. The intuition of the proof is that:
(1) because of the bitlength of γ, (m + γ) is non-smooth with overwhelming probability based on
Lemma 2; (2) based on NIZK-PoKE2(gm+γ , F ;ω′), the extractor can extract the integer commit-
ted in F that divides m + γ; (3) E/K = F = gω

′×(m+γ), because E = g(xℓ+m+γ)e and K = Cℓ
e

2 ,
(m + γ)|(logE/K), based on Corollary 2, the integer committed in C2 is xe with overwhelming
probability. We denote by NI-PoKDE and NIZK-PoKDE the non-interactive adaptation of the
PoKDE and ZK-PoKEModN protocol, respectively, using the Fiat-Shamir heuristic and provide
details in Appendix E. We include a detailed security discussion of non-interactive variants in Ap-
pendix B.7. We present our ZK-PoMoDE protocol in Figure 3 by combining the ZK-PoKEModN
protocol and the ZK-PoKDE protocol with additional random numbers. We refer to Appendix B.8
for its proof. The intuition of the NIZK-PoMoDE protocol is that: (1) committing random num-
ber D = gm; (2) proving C2 commits (x+mn)e in zero-knowledge with the ZK-PoKDE protocol;
(3) using NIZK-PoKEModN protocol, a non-interactive adaptation of the ZK-PoKEModN
protocol using the Fiat-Shamir heuristic, to show (x+mn)e mod n = x̂.

14

5 Verifiable Time-lock puzzles

In this section, we present our construction for a verifiable time-lock puzzle (VTLP) for general NP
relations. Compared to “classic” time-lock puzzles (e.g., [1, 3]), a VTLP is enhanced by facilitating
the puzzle generator to prove that the solution to a puzzle is compliant with a predetermined NP
relation without leaking the solution. Upon the validation of such a proof, the verifier is assured that
the execution of exactly T computational steps will yield a solution to the puzzle that, moreover,
conforms to the specified NP relation. In practice, such relations may capture validated signatures
on the solution, checking that it is a well-formed VRF evaluation or hash pre-image, or any arbitrary
computation on the solution in the general case.

First, we present a formal definition of VTLPs and their security properties. We then provide
a “strawman” solution from SNARKs and discuss limitations for use in practice. We then describe
offloading techniques to offload the computations of set products and modular exponentiations from
the computed circuit as an essential building block. Subsequently, in Subsection 5.3, we provide
our VTLP construction that can be used to prove solutions belong to any NP relation—while this
still entails a SNARK, our above building blocks provide improved performance compared to the
strawman approach. Finally, in Subsection 5.4, we delineate a “simple” VTLP construction for the
specific problem of proving that the solution is valid VRF-evaluation/RSA signature. Compared to
our general-purpose VTLP, this scheme does not rely on a SNARK to check this relation, instead
utilizing our proofs for modular exponentiations in hidden order groups from Section 4.

5.1 Definitions and Security

Our VTLP definition adapts those of classic time-lock puzzles [1, 3] with suitable modifications
to capture the verifiability of solutions for arbitrary NP relations. Formally, a verifiable time-lock
puzzle (VTLP) for NP comprises the following six algorithms:

• KeySetup(1λ) → (pk, sk): a probabilistic algorithm that takes as input security parameter 1λ

and outputs a public/private key pair (pk, sk).

• GenPuz(s, T , pk, sk)→ z: a probabilistic algorithm that takes as input a solution s ∈ S, hardness
parameter T and public/private key pairs (pk, sk), and outputs a puzzle z.

• SolvPuz(pk, z, T)→ s: a deterministic algorithm that takes as input the public key pk, puzzle z
and hardness parameter T , and outputs a solution s.

• FuncSetup(1λ,R) → crs: a deterministic algorithm that takes as input security parameter 1λ,
the relation R and outputs a common reference string crs to describe the relation. This function
is run by a trusted party. Note that this step is optional when using a SNARK that does not
require pre-processing or the relation is easy to check.

• Prove(crs, z, s, T , pk, sk, w)→ (πT , πR): a probabilistic algorithm that takes as input a common
reference string crs, a puzzle z, a solution s, a hardness parameter T , a pair of key (pk, sk), a
statement s and a private witness w s.t. (s;w) ∈ R. It outputs a pair of proofs (πT , πR). πT is
used for verifying after exact T computational steps, the verifier is assured to get a solution, and
πR is used for verifying the relation R holds for the solution. The verifier can verify (s;w) ∈ R
without seeing the witness w.

• Verify(crs, z, T , pk, πT , πR) → 1/0: a deterministic algorithm that takes as input a common
reference string crs, a puzzle z, a hardness parameter T , a public key pk, and a proof π. It
outputs 1 if all proofs are verified and 0 otherwise.

15

VTLPs must satisfy correctness, time-lock security, soundness, and zero-knowledge.

Definition 5 (Correctness). For all λ ∈ N, T = poly(λ) and any relation R in NP language, for all
input s and witness w s.t. (s;w) ∈ R, a VTLP is correct if

Pr

(pk, sk)← KeySetup(1λ),
crs← FuncSetup(1λ,R),
z ← GenPuz(s, T , pk, sk),

(πT , πR)← Prove(crs, z, s, T , pk, sk, w),
s← SolvPuz(pk, z, T),

1← Verify(crs, z, T , pk, πT , πR)

≥ 1− negl(λ)

The definition of time-lock security is extended based on the general idea of homomorphic time-
lock puzzle [3] (without involving any homomorphic property). A VTLP is time-lock secure if an
adversary cannot distinguish between two puzzles and their proofs, even if the adversary can choose
any two solutions in advance.

Definition 6 (Time-lock Security). A VTLP scheme is secure with gap ε < 1 if for any NP relation
R, there exists a polynomial T̃ (·) such that for all polynomials T (·) ≥ T̃ (·) and every polynomial-size
adversary (A1,A2) = {(A1,A2)λ}λ∈N where the depth of A2 is bounded from above by T ε(λ), there
exists a negligible function negl(·) such that

Pr

b = b′

(pk, sk)← KeySetup(1λ),
crs← FuncSetup(1λ,R),

(s0, w0, s1, w1, state)← A1(1
λ, pk, crs, T (λ)),

b
$←− {0, 1},

z ← GenPuz(sb, T (λ), pk, sk),
(πT , πR)← Prove(crs, z, sb, T (λ), pk, sk, wb),

b′ ← A2(state, pk, z, πT , πR)

< 1/2 + negl(λ)

where both (s0;w0) and (s1;w1) are in the same NP relation R.

The soundness property ensures that if a proof π is verified against a puzzle z, then the solution
s after solving the puzzle for time T , is in the NP relation R. In practice, this is extremely useful to
stop an adversary from launching a Denial of Service (DoS) attack that fools the verifier into solving
a “fake” time-lock puzzle and getting a solution not in the desired relation.

Definition 7 (Soundness). Let R be any relation in NP language and LR be the language consisting
of statements where there exist witnesses in R. For all T = poly(λ) and for all PPT adversaries
A, a VTLP is sound if

Pr

crs← FuncSetup(1λ,R),

(z, T , pk, πT , πR)← A(1λ, crs),
1← Verify(crs, z, T , pk, πT , πR),

s̄← SolvPuz(pk, z, T),
s̄ /∈ LR

 ≤ negl(λ)

Zero-knowledge ensures that, after solving the puzzle, the proof does not reveal additional infor-
mation about the witness w if a witness exists in the NP relation R.

16

Definition 8 (Zero-knowledge). For any NP relation R, denote RealAdv(1
λ), IdealAdv,Sim(1λ)

as games between a challenger, an adversary Adv and a simulator Sim:
RealAdv(1

λ):

• Setup. The challenger runs crs ← FuncSetup(1λ,R) and (pk, sk) ← KeySetup(1λ) and for-
wards crs, pk to Adv. Adv chooses (s;w) ∈ R and sends to the challenger.

The challenger runs z ← GenPuz(s, T , pk, sk), and (πT , πR)← Prove(crs, z, s, T , pk, sk, w) and
replies with (πT , πR).

• Respond. Adv outputs a bit b.

IdealAdv,Sim(1λ):

• Setup. The simulator Sim inputs (1λ) and forwards (pk, crs) to Adv. Adv chooses (s;w) ∈ R
and sends s to the simulator. The simulator responds with (πT , πR) to the Adv.

• Respond. Adv outputs a bit b.

A VTLP is zero-knowledge if there exists a PPT simulator Sim such that for all PPT adver-
saries Adv:

|Pr[RealAdv(1
λ) = 1]− Pr[IdealAdv,Sim(1λ) = 1]| ≤ negl(λ).

Note that in RealAdv(1
λ), the challenger runs GenPuz(·) only to get z as input for Prove.

This property is different from the time-lock security: (1) it aims to protect the witness’s privacy
even if the puzzle is solved; (2) it provides stronger privacy guarantees than time-lock security, which
offers only limited privacy. In the zero-knowledge security game, the adversary has polynomial time
to distinguish proofs, whereas in the time-lock security game, the adversary is constrained by T ε(λ).
This distinction can be particularly useful in applications such as blockchain, where the puzzle/proof
is public, and the traditional zero-knowledge property is essential. For example, in an anonymous
seal-bid auction, the puzzle contains the bid value and a ring signature, and the witness is the bidder’s
identity and proof of asset with respect to a blockchain’s state root, which remains anonymous even
if the puzzle is solved/revealed.
We say a VTLP is succinct if checking the proof is more efficient than solving the puzzle (and
checking the relation).

Definition 9 (Succinctness). A VTLP is succinct if πT , πR have size and executing Verify takes
time at most polylogarithmic in (T , w).

Strawman solutions based on black-box SNARK use. As already discussed in our introduc-
tion, a straightforward approach to build a VTLP is to combine any TLP with a general-purpose
SNARK, for a circuit running SolvPuz in T steps and checking the solution satisfies R. Unfor-
tunately, the performance of this approach quickly deteriorates as T grows. For instance, a recent
benchmark [6] with the RSA TLP [1] shows that securing a puzzle for just one hour requires setting
T to approximately 231. A circuit encoding a 2-billion-step computation is arguably beyond the
practical limitations of most modern SNARKs.

For some TLPs, there may be faster ways to check the correct execution of SolvPuz inside the
SNARK, exploiting the trapdoor information available to the generator. For instance, consider the

widely-used repeated square-based RSA TLP [1]. For RSA public key N = pq, checking z2
T
mod N

is equivalent to checking z2
T mod ϕ(N) mod N (assuming the circuit tests the correctness of ϕ(N) for

N).1 However, even with this optimization, the SNARK circuit is still concretely large. As discussed

1Note that such an “optimized” approach for checking SolvPuz may not be possible for any arbitrary TLP.
E.g., there is nothing in the TLP definition that precludes the possibility that an adversarial generator can provide
a “solution” as SNARK witness that passes the check but is different from what is computed by honestly running
SolvPuz.

17

Public params pp = (security parameter λ, g ∈ G?)
Setup(λ)

return crs← Π.Setup(1λ,RAllMod)
Prove(pp, crs, v⃗, cv⃗ , A, x)

ℓ = HashToPrime(pp, crs, A, cv⃗),

q = ⌊x/ℓ⌋, r = x mod ℓ,Q = gq, π1 = (Q, r),
π2 ← Π.Prove(crs, cv⃗ , ℓ, r), return(π1, π2).

Verify(pp, crs, cv⃗ , A, x, π1, π2)

ℓ = HashToPrime(pp, crs, A, cv⃗), parse π1 as (Q, r)

Check if 1← Π.Verify(crs, cv⃗ , ℓ, r, π2) and Q
ℓgr = A.

return 1 if all check passed and 0 otherwise.

Figure 4: Protocol OffloadProd, a protocol for offloading set product from SNARK, proving A =
gx, x =

∏
∀vi∈v⃗ vi.

in the introduction, using the SNARK circuit to check roughly 2048 squaring and multiplications
takes approximately 72 million constraints.

5.2 Building Block: Offloading set products and modular exponentiations
from SNARK

This subsection presents two protocols for the specific problem “offloading” set product and modular
exponentiation computation from within a SNARK circuit. We employ “commit-and-prove” CP-
SNARK techniques [55] to get a commitment of the witnesses as the first step and then combine
different SNARKs. We assume the commitment scheme that is computational binding and perfect
hiding, e.g., like Pedersen commitment [73] and most vector commitments used for CP-SNARK [74].
For simplicity of presentation, we describe non-interactive versions of the protocols, by using a
HashToPrime function that is collision-resistant, modeled as a random oracle, and outputs 2λ-bit
prime numbers.2

Offloading set products. The general idea of our offloading technique is to employ a hidden order
group to generate a commitment A (with a single base g for efficiency; this is similar to an RSA
accumulator [27, 55, 75], but we will not need membership proofs) to commit to the set. We then
prove that A and cv⃗ commit the same set, where cv⃗ is a CP-SNARK-compliant commitment

scheme committing to v⃗, and v⃗ is an appropriate encoding of the set for the chosen SNARK (e.g.,
as vector of elements for [76]). We implement this by checking the products of the two pre-images
modulo a prime challenge ℓ have the same remainder r. Similar to Theorem 7 (for the case e = 1), if
they are not the same, they have the same remainder with probability less than 1/2λ. Note that A
directly encodes the product of all accumulated integers in the set. We provide our protocol details
in Figure 4. More specifically, we “offload” by proving the following relation using the combination

2We stress that this is just for presentation purposes; we provide the proof of the interactive versions of our
schemes. Since their verification is public-coin, the Fiat-Shamir heuristic for the hash function yields their non-
interactive versions.

18

of PoKE protocols and CP-SNARKs:

ROffloadProd = {(cv⃗ , A ∈ G?;x) : A = gx, x =
∏

∀vi∈v⃗

vi}.

The SNARK circuit itself only needs to check: r =
∏

∀vi vi mod ℓ. Without loss of generality,
we assume the prime challenge ℓ resides within the SNARK system’s native prime field. Compared
to the strawman solution, this simplified circuit design reduces the computational overhead by only
checking a single remainder within the prime field for each integer and calculating their cumulative
product modulo ℓ. We denote the above SNARK relation as RAllMod, where the SNARK circuit
computes:

1. Initiate r = 1;

2. Ranging all vi, r = r × vi mod ℓ.

We note that this trick was used in [69] to prove a set of integers committed in an RSA accumulator is
the same as the one in CP-SNARK in the context of a MultiSwap application. We refer to the proofs
in Appendix C. Note that the OffloadProd protocol described above can check integer products
more efficiently than naive methods. However, when the integers are larger than the native field of
SNARKs (particularly in the RSA setting), the checking process remains expensive. In the next part,
we will demonstrate how to address this issue in the context of integer modular exponentiations.

Offloading modular exponentiations. We present a protocol to offload modular exponentiations
from a SNARK. More specifically, we prove the following relation using the combination of PoKE
protocol, ZK-PoKEModN protocol, and a CP-SNARK, where x is committed by cx using any
CP-SNARK commitment scheme:

ROffloadExp = {(u,C ∈ Z∗
N , cx) : C = ux mod N}.

As we explain next, such a protocol becomes especially challenging when N is an RSA modulus
generated by the prover, even if we ignore the requirement of x being committed using SNARK-
friendly commitment. Although this relation looks similar to RPoKE, it turns out it is very hard
to prove using directly PoKE-style protocols. This is because the prover knows the order of the
group Z∗

N ; hence, the adaptive root assumption does not hold for Z∗
N which is essential to PoKE-

style protocols. For our VTLP, we will only use this protocol for an RSA modulus N ; we focus on
this case during the presentation (our analysis trivially extends to arbitrary natural numbers as the
modulus).

We first simplify ux mod N to prove this relation efficiently using the square-and-multiply algo-
rithm. We denote x using its binary form: x = x0+x1×2+x2×4+ · · ·+x|N |−1×2|N |−1 with each
xi ∈ {0, 1}. Because x ∈ ϕ(N), all xi = 0 when i > |ϕ(N)|. We write till |N − 1| for simplicity of

explanation. ux mod N can then be computed as (u2
0

)x0 × (u2
1

)x1 × · · · × (u2
|N|−1

)x|N|−1 mod N .

Thus, the prover can input (v0 = u2
0

mod N, v1 = u2
1

mod N, . . . , v|N |−1 = u2
|N|−1

mod N) into
the SNARK circuit that applies the above equation to compute ux mod N with N multiplications.
Based on our set product offloading techniques above, we can further offload this computation, com-
bining it with a hidden order group element g ∈ G?, PoKE∗, ZK-PoKEModN protocol and a
simple SNARK circuit checking subset selection based on x and their cumulative product modulo ℓ.
The prover first commits to x using cx and then commits ω =

∏
vxi
i using a hidden order group

A = gω. It then inputs (cx , A) and the remaining parts of the statement to HashToPrime to get
the prime challenge ℓ. The SNARK circuit needs to check the product of the “selected” vi modulo
ℓ is r, where r is also the remainder of ω modulo ℓ.

19

Public params pp = (security parameter λ, g ∈ G?)
Setup(λ)

return crs← Π.Setup(1λ,RSelectMod)
Prove(pp, crs, N, u, cx , C)

Parse x to binaries (x0, . . . , x|N |−1)

For i ∈ [|N |], vi = u2
i

mod N , ω =
∏
vxi
i , A = gω,

ℓ = HashToPrime(pp, crs, N, u, C,A, cx).

For i ∈ [|N |], wi = vi mod ℓ,
q = ⌊ω/ℓ⌋, r = ω mod ℓ,Q = gq, π1 = (Q, r),
π2 ← Π.Prove(crs, cx , ℓ, r, w0, . . . , w|N |−1),

π3 ← NIZK-PoKEModN(g,A,N,C;ω)
return(cx , A, π1, π2, π3),

Verify(pp, crs, N, u, cx , C,A, π1, π2, π3)

ℓ = HashToPrime(pp, crs, N, u, C,A, cx),

For i ∈ [|N |], vi = u2
i

mod N , wi = vi mod ℓ.
Parse π1 as (Q, r), check if Qℓgr = A.
Check if 1← Π.Verify(crs, cx , ℓ, r, w0, . . . , w|N |−1, π2)

Check if 1← NIZK-PoKEModN(g,A,N,C, π3).
return 1 if all check passed and 0 otherwise.

Figure 5: Protocol OffloadExp, a protocol for offloading modular exponentiations from SNARK,
proving C = ux mod N .

Moreover, because ℓ and all vi are public, vi modulo ℓ can be computed outside the SNARK
to simplify the circuit further. More specifically, both the prover and the verifier compute wi =
vi mod ℓ, and the SNARK circuit takes as input public values (ℓ, r, w0, w1, . . . , w|N |−1) with witness
x. Finally the circuit for relation RSelectMod computes:

1. Initiate r = 1; parse x as its binary form;

2. Ranging xi from x0 till x|N | − 1, if xi = 1, r = r × wi mod ℓ.

We denote the protocol as OffloadExp and depict its details in Figure 5. It is now evident
that the circuit checks at most |N | − 1 native field modular multiplications. We refer to the proofs
in Appendix C. Recall that we assume ℓ falls within the native field size of the SNARK (from the
analysis of [27], this does not impact the protocols’ security).

Finally, we further extend protocol OffloadExp to support the relation ROffloadExpCom where
the exponentiation result is committed using a hidden order group:

ROffloadExpCom = {(u ∈ Z∗
N , D ∈ G?, cx) : D = gu

x mod N}.

This modified protocol OffloadExpCom has similar steps and security properties as OffloadExp,
except that C = ux mod N is no longer provided but committed in a hidden order group element
D. We depict the protocol details in Figure 6. Committing x does not directly make Protocol
OffloadExpCom zero-knowledge. However, committing x provides the advantage that when x is
sampled randomly following some simulatable distribution, we can build a simulator to simulate

20

Public params pp = (security parameter λ, g ∈ G?)
Setup(λ)

return crs← Π.Setup(1λ,RSelectMod)
Prove(pp, crs, N, u, cx , D)

Parse x to binaries (x0, . . . , x|N |−1).

For i ∈ [|N |], vi = u2
i

mod N , ω =
∏
vxi
i , A = gω,

ℓ = HashToPrime(pp, crs, N, u,D,A, cx).

For i ∈ [|N |], wi = vi mod ℓ,
q = ⌊ω/ℓ⌋, r = ω mod ℓ,Q = gq, π1 = (Q, r),
π2 ← Π.Prove(crs, cx , ℓ, r, w0, . . . , w|N |−1;x),

k = ⌊ω/N⌋, E = gkN ,
π3 ← NIZK-PoKE2(gN , E; k).
return(cx , A, π1, π2, E, π3)

Verify(pp, crs, N, u, cx , D,A, π1, π2, E, π3)

ℓ = HashToPrime(pp, crs, N, u,D,A, cx).

For i ∈ [|N |], vi = u2
i

mod N , wi = vi mod ℓ.
Parse π1 as (Q, r), check if Qℓgr = A.
Check if 1← Π.Verify(crs, cx , ℓ, r, v0, . . . , v|N |−1, π2).

Check if 1← NIZK-PoKE2(gN , E, π3).
Check if D × E = A.
return 1 if all check passed and 0 otherwise.

Figure 6: Protocol OffloadExpCom, a protocol for offloading RSA exponentiations from SNARK,
proving a commitment D satisfies D = gu

x mod N .

OffloadExpCom and achieve zero knowledge. We will see the details in the next subsection in our
construction of VTLP.

5.3 Our construction

Next, we present our VTLP protocol for general NP relations. Without loss of generality, we assume
the bit-length of the solution s is less than 2λ (larger s can always be hashed down to 2λ bits, and
the SNARK in our VTLP will also “open” the hash).

Our methodology unfolds in two primary parts. The initial part involves the secure encoding of
the SNARK output within an integer commitment scheme that is compatible with SNARKs [69, 27],
ensuring that the actual output’ s remains confidential. The second part employs ourOffloadExpCom
protocol to prove that, after executing exactly T computational steps of the puzzle, the outcome
is an integer that matches the one previously committed. It is noteworthy that for most SNARKs,
the output is conventionally encoded via a commitment scheme such as Pedersen [73] or polynomial
commitments [74]. However, directly integrating these commitments with our OffloadExp to get
the committed version of the protocol presents significant challenges. For efficiency, we encode the
SNARK output using a hidden order group element, which is consistent with protocol OffloadExp.

Committing SNARK output with hidden order groups. For a CP-SNARK that checks

(s;w) ∈ R, the puzzle generator additional samples a random number that is well-spread: ν
$←− [24λ].

21

Public params pp = (security parameter λ,T , g ∈ G?)
Setup(λ)

return crs1 ← Π.Setup(1λ,RSelectMod)
KeySetup(λ)

Sample large safe primes p′ = 2p+ 1, q′ = 2q + 1, N = p′q′.
return pk = N , sk = (p, q)
TimeParaSetup(λ, sk, T)
Compute τ = 2T mod pq, u′ = H(λ||T ||N) mod N, u = (u′)2 mod N .
Commit τ in cτ , compute µ = uτ mod N , πSetup ← OffloadExp(crs1, N, u, cτ , µ)

return (cτ , πSetup)

GenPuz(s, T , pk, sk)

Sample ν
$←− [24λ], s.t. s′ = s||ν, s′ ∈ QRN ,

η = τ−1 mod pq, z = (s′)η mod N , return z
SolvPuz(pk, z, T)
s = ⌊(z2T mod N)/24λ⌋
return s

FuncSetup(1λ,R)
crs2 ← Π.Setup(1λ,R+)
return crs2

Prove(crs1, crs2, cτ , z, s
′, T , pk, w)

\\ w is reserved for any potential relation R
Commit s′ in cs′ , D = gs

′
,

ℓ = HashToPrime(pp, crs1, crs2, cτ , D, cs′ , pk, z),

q = ⌊s′/ℓ⌋, r = s′ mod ℓ,Q = gq, π1 = (Q, r),
π2 ← OffloadExpCom(crs1, N, z, cτ , D; τ) \\Proving D = gz

τ mod N where τ = 2T mod pq

πR+ ← Π.Prove(crs2, cs′ , ℓ, r;w),

return (cs′ , πT = (π1, D, π2), πR+)

Verify(crs1, crs2, cτ , z, cs′ , T , pk, πT , πR+)

Parse πT as (π1, D, π2), ℓ = HashToPrime(pp, crs1, crs2, cτ , D, cs′ , pk, z).

Parse π1 as (Q, r), check if Qℓgr = D.
Check if 1← OffloadExpCom(crs1, N, z, cτ , D, π2).

Check if 1← Π.Verify(crs2, cs′ , ℓ, r, πR+).
return 1 if all check passed and 0 otherwise.

Figure 7: Protocol VTLP for NP.

The puzzle generator commits the SNARK “output” by concatenating s and ν: C = gs||ν without

eliminating potential leading ‘0’s of ν. In other words, the commitment C = gs||ν = gs×24λ+ν .
We additionally require minord(G?) > s||ν holds, which is typically true for all reasonable choices
of RSA-style parameters for hidden order groups when s has 2λ bits. We can “connect” C and
s inside the SNARK using the PoKE∗ protocol, similar to our offloading technique, to prove the
integer committed in C is the same as in the CP-SNARK. We denote s′ = s||ν. In the interactive
version, the prover commits C and cs′ first, then the verifier samples prime challenge ℓ. The prover

responds with Q, r and a SNARK proof showing s′ mod ℓ = r. We show this randomization is
sufficient to hide s, based on the DDH-II assumption over hidden order groups [69]. We refer to the

22

security analysis, following Theorem 12 in Appendix C.

Construction details. A “classic” RSA-style time-lock puzzle [1] is secure in any subgroup of Z∗
N

with large enough order. For an RSA public key N = p′q′ where p′ = 2p + 1 and q′ = q + 1, its
subgroups with order pq, 2pq, 4pq are all considered to be secure for time-lock puzzles. For simplicity
of construction and analysis, we use the subgroup of QRN with order pq to build our VTLP. Figure 7
presented our detailed construction. Initially, we require a one-time setup for each puzzle generator
to set up its VTLP keys pk, sk. For each hardness parameter T and an RSA public key N = p′q′, the
puzzle generator additionally runs the function TimeParaSetup to prove that a commitment cτ

commits 2T mod pq. Because checking this directly using a SNARK is very inefficient, we simplify
this by a reduction to fixed-sized exponentiation. First, the puzzle generator samples a random
element in u ∈ QRN by hashing u′ = H(λ||T ||N) mod N where H(·) is a cryptographically secure
hash function (modeled as a random oracle) which outputs to a domain larger than N and u = (u′)2

mod N . This step stops the puzzle generator from maliciously picking a generator u /∈ QRN . As
proved in Lemma 1 in [77], u is a generator in QRN if and only if gcd(u − 1, N) = 1. Then, it

computes µ = u2
T

mod N , which can be simplified by first calculating τ = 2T mod pq first and
then computing µ = uτ mod N . Finally, it commits to τ using CP-SNARK commitment cτ and

further uses our OffloadExp protocol to prove uτ mod N = µ. cτ and πSetup are published and

πSetup needs to be verified at least once. Verifiers can compute u in the same way, compute µ = u2
T

mod N and verify πSetup.
3 To prove the puzzle solution satisfies the chosen relation, we rely on a

SNARK that checks the relation (s;w) ∈ R and checks s||ν mod ℓ = r. We denote this SNARK
relation as R+, which is set up by FuncSetup(·). The following theorem captures the security of
our construction:

Theorem 2. The protocol in Figure 7 satisfies the VTLP security definitions for relation R if
protocol PoKE∗ is an argument of knowledge for the relation RPoKE∗ , OffloadExp is an argument
of knowledge for relation ROffloadExp, OffloadExpCom is an argument of knowledge for relation
ROffloadExpCom, Π.R+(cs′ , ℓ, r;w, s) is a secure CP-SNARK and DDH-II assumption, sequential
squaring assumption, and order assumption hold for group G?.

The intuition of Protocol VTLP for NP is using the OffloadExpCom protocol to show the
solution raised to the power of τ mod N , which is equivalent to raising the power of 2T mod N , is
the exponent s′, committed in D. We refer to the full proof in Appendix C.1.

Discussion for a malicious public key. Protocol VTLP for NP does not require the prover to
generate the RSA public key (including N) honestly. This is because the verifier checks the following

once in the TimeParaSetup(·): (1)µ = u2
T

mod N and (2)OffloadExp(crs1, N, u, cτ , µ) = 1. (1)
ensures that even if N is generated maliciously, computing T steps of modular squaring from u
gets µ; (2) ensures that even if N is generated maliciously, τ = 2T mod ϕ(N). In other words,
if the prover does not generate the public honestly following description KeySetup(·), it can only
potentially affect the time-lock security without giving the prover any benefits.

5.4 Verifiable Time-lock for VRFs/Signatures

In addition to our above general-purpose VTLP construction that accommodates any NP language,
we propose a specialized and efficient protocol tailored specifically for statements involving RSA-
based verifiable random functions (VRFs) or signatures over the solution to the puzzle. This cus-
tomized VTLP can be used to prove the puzzle conceals a valid VRF evaluation or signature for a

3These checks guarantee even if the RSA key is generated maliciously, the soundness still holds: 2T computations
guarantee a “valid” solution.

23

Public params pp = (security parameter λ, g ∈ G?)
Setup(λ)

return crs← Π.Setup(1λ,RSelectMod)
KeySetup(λ)

Sample large safe primes p′ = 2p+ 1, q′ = 2q + 1, N = p′q′.
return pk = N , sk = (p, q)
TimeParaSetup(λ, sk, T)
Compute τ = 2T mod pq, u′ = H(λ||T ||N) mod N, u = (u′)2 mod N .
Commit τ in cτ , compute µ = uτ mod N , πSetup ← OffloadExp(crs1, N, u, cτ , µ),

return (cτ , πSetup)

KeySetupForVRF/Sig(λ)

Samples two large safe primes p̄, q̄, N̄ = p̄q̄, ϕ(N̄)= (p̄− 1)(q̄ − 1).
Find d̄, ē s.t. d̄ = ē−1 mod ϕ(N̄).
return p̄k = (N̄ , ē), s̄k = (p̄, q̄, d̄)
GenVRF/Sig(s̄k,m)

s = FDH(m)d̄ mod N̄ , return s

GenPuz(s, T , pk, sk)
η = (2T)−1 mod ϕ(N)
return z = sη mod N

SolvPuz(pk, z, T)
s = z2

T
mod N

return s

Prove(crs, cτ , z, s, T , pk,m, p̄k)
D = gs, π1 ← NIZK-PoMoDE(D, ē, N̄ ,FDH(m); s)
\\ Proving D = gs, sē mod N̄ = FDH(m)
π2 ← OffloadExpCom(crs, N, z, cτ , D; τ) \\ ProvingD = gz

τ mod N where τ = 2T mod pq

return (πT = π2, πR = (D,π1))
Verify(crs, cτ , z, T , pk,m, p̄k, πT , πR)

Check if 1← NIZK-PoMoDE(D, ē, N̄ ,FDH(m), π1).
Check if 1← OffloadExpCom(crs, N, z, cτ , D, π2).
return 1 if all check passed and 0 otherwise

Figure 8: Protocol VTLP for RSA VRFs/signatures. FDH denotes a secure full-domain hash
function.

given context/message related to a public RSA key. Notably, this protocol achieves this without the
need for SNARKs.

The intuition behind this construction is as follows. Assume the standard RSA-based VRF [34,
35, 33] or RSA signature schemes with full domain hash [56]. The prover evaluates the VRF s
(resp. computes the signature) for a specific message m and commits to it as a hidden-order group
element D = gs. It then uses our PoMoDE to show the integer committed in D is indeed a valid
VRF/signature for a given context/message, which can be presented by the following relation:

RVTLPVRF = {((g,D) ∈ G?, (ē, N̄ ,m) ∈ Z; s) : D = gs, sē mod N̄ = FDH(m)}.

We use the public key ē as the exponent and N̄ as the modulus, and the PoMoDE protocol to
prove sē mod N̄ = FDH(m). Then, we use the same technique (OffloadExpCom) to show the

24

execution of exactly T computational steps yields the committed VRF/signature. We provide the
construction details in Figure 8. Its security is captured by the following theorem:

Theorem 3. The protocol in Figure 8 satisfies the VTLP security definitions for RSA VRF and sig-
natures relations RVTLPVRF if NIZK-PoMoDE is a zero-knowledge argument of knowledge for re-
lation RPoMoDE, OffloadExp is an argument of knowledge for relation ROffloadExp, OffloadExpCom
is an argument of knowledge for relation ROffloadExpCom, and order assumption holds for G?.

The intuition to achieve the zero-knowledge property is using the existential pseudorandomness
properties of VRF, which says the VRF value is indistinguishable from a random value unless you can
run the verification of VRF. Because the VRF value is committed and time-locked, its commitment
is indistinguishable from a random group element unless the puzzle is first solved. We refer to the
full proof in Appendix C.2.

Due to space limitations, we discuss new techniques for offloading RSA signature verification
from SNARK based on OffloadProd protocol in Appendix A.

6 Experimental Evaluation

In this section, we experimentally evaluate the performance of our constructions. We test the per-
formance of PoMoDE, VTLP for general NP, VTLP for RSA VRF/signatures, as well as our RSA
signatures offloading techniques as a standalone tool. Our code is available online.4 Our imple-
mentations are in Golang, and we used gnark [78] for Groth16-type SNARKs [23], optimized with
DIZK [79] with the BN254 elliptic curve. Our Groth16 is not CP-SNARK but can be modified
easily to a CP-SNARK by committing the witness first, with slight impacts on the performance [55].
We conducted on a laptop with AMD Ryzen 7 5800H, 8 3.2GHz cores, and 16GB RAM running
Windows 10. We use MiMC [80] hash as the SNARK-friendly hash function. First, we benchmark
our modular exponentiation protocols, focusing on prover and verifier time, as well as proof size.
Specifically for PoMoDE, we benchmark its proving time with different exponents. Next, we evalu-
ate our two VTLP schemes for general NP-relations (with our exponentiation offloading technique)
and RSA VRF/signatures (based on our PoMoDE protocol). For the former, we chose specific
relations to be checked by the SNARK circuit. Namely, checking the solution with (i) a MiMC hash
and (ii) an EdDSA signature [81]. We also compare its performance with the time-lock signatures
of Thyagarajan et al. [6]. Finally, we evaluate our RSA signatures offloading techniques, with and
without zero-knowledge guarantees, as a stand-alone tool and compare its performance with other
approaches for batch verification of signatures within a SNARK.

6.1 Proofs of Modular Exponent

We first summarize the proof sizes of our various protocols from Section 4 and show the results
in Table 1. Recall that protocol PoKDE and ZK-PoKDE have a remainder r ∈ [ℓ · n] in the
proof where ℓ is a 2λ-bit challenge and n is the modulus. We take the example of a 128-bit λ and
2048-bit n, which is also the case we use in the offloading exponentiations and signatures. Protocol
PoKDE and ZK-PoKDE have constant-sized proofs regardless of the exponent to prove. Because
PoMoDE protocol calls all of ZK-PoKEModN, PoKDE, ZK-PoKDE, it is the most time-
consuming protocol for the prover and will be used directly for our VTLPs, we next focus on it and
benchmark its performance with 2048-bit modulus n and variable exponent. Table 2 showcases the
prover time, averaged over five runs. The result indicates that the prover time correlates almost

4https://github.com/jiajunxin/VTLP

25

Protocol # G? elem. # Field elem. ProofSize(Bytes)
PoKEModN 1 1 544

ZK-PoKEModN 3 2 1088
PoKDE 2 2 576

ZK-PoKDE 13 6 3520
PoMoDE 17 9 4896

Table 1: Proof sizes of different protocols. We consider G? with 2048 bits, λ = 128 and modulo n
with 2048 bits.

linearly with the size of the exponent. This empirical finding aligns with observations from the
PoMoDE protocol, where the prover is tasked with calculating gx

e

, for exponent e.
It is important to note that the primary constraint in the PoMoDE proving process is the

computation of a fixed base g raised to a substantial integer power. This can be heavily optimized
using precomputation tables (at the cost of increased storage) and with multiple threads; num-
bers reported in Table 2 do not use either of these optimizations. Finally, the verification time of
PoMoDE protocol is constant; in practice, it was measured within 29− 32ms.

6.2 VTLP Performance

Next, we evaluate the performance of VTLP for NP and VTLP for RSA VRF/signatures, which are
based on our offloading modular exponentiation from the SNARK technique.

Checking the Puzzle Solution. First, we report the time to prove a solution is correctly concealed
within a time-lock puzzle on our test machine, using the RSA-based time lock puzzle [1] (see Sec-
tion 3). Checking a puzzle solution assuming a 2048-bit modulus takes 535, 048 constraints and
approximately 2.08 seconds to prove (averaged over five executions). The proof size is constantly 256
bytes (a Groth16 proof [23]) and takes around 1 ms to verify. We note that the proving/verification
time as well as the proof size are independent of T .
Additional Relations. Recall that our VTLP for NP is built in a modular way, such that it can be
combined with any SNARK to prove the SNARK result is encoded in the puzzle with the same
overhead. For example, when combined with checking the preimage of a MiMC Hash (takes around
330 constraints and 7ms to prove), we can build a VTLP for Hash-preimage with 2.087 seconds
prover time. When combined with checking one EdDSA signature (it takes around 7000 constraints
and 50ms to prove), we can build a VTLP for EdDSA with a prover time of 2.13 seconds.

Comparison with Time-lock Signatures [6]. Specifically focusing on the VTLP for general signatures,
we compare our construction with the state-of-the-art time-lock signatures presented by Thyagarajan
et al. [6]. To maintain consistency with their parameters and reported results, we also benchmarked
our VTLP using a 1024-bit modulus. For BLS signatures, our result shows that our VLTP requires
267, 784 (for RSA time-lock) plus 14, 918 (to validate a single BLS signature) constraints and ap-
proximately 1.37 seconds in total to generate a proof, based on an average of five trials. In contrast,
the estimated results presented in [6] suggest a proving time for T = 106 of approximately 30 seconds
and a verification time of 41 seconds. For EdDSA signatures, ours takes around 274, 000 constraints
and 1.27 seconds to prove, while the estimation of [6] shows around 10 seconds to prove and verify.
Their proof sizes and verification scale linearly with the number of shares (unlike ours, which are con-
stant). We stress that their solution suffers from non-negligible soundness error (7.25×10−12). Note
that the estimates from [6] assume perfect parallelization across two threads. On the other hand,

26

Exponent 3∗ 8 17∗ 32 64 128 256
Prover time (sec) 0.2 0.48 1.0 1.9 3.5 7.2 14.3

Table 2: Prover time of PoMoDE protocol with various exponents under 2048-bit modulus n.
Because 3, 17 are usually used as RSA signature/VRF public keys, we especially test them in place
of 4 and 16.

Figure 9: Subfigure (a) illustrates the number of constraints for our offloading RSA signature tech-
niques with and without zero-knowledge, alongside the constraints for MiMC hash verifications and
EdDSA signature verifications across different numbers of messages to prove; Subfigure (b) displays
the corresponding proving times for these cases.

ours are derived from actual code execution on an eight-core setup, but the benefits of parallelization
for Groth16 are not linear.

Comparison with Riggs [12]. In [12], the authors benchmarked the verification of the TLP from [3]
using Groth16 and a Pedersen commitment over its native field. As discussed in [3], a randomizer
value of at least 2048-bits (chosen from [1, 2λN], where N is the hidden order modulus) should be
applied as the exponent to achieve security. Riggs [12] only reports tests for a randomized of 128 bits
and takes approximately 21 seconds to compute the proof. We run their code on a Linux machine
with 6 cores and 40 GB of memory and we also observe 20.8 seconds. Increasing the randomized
length yields 41.2 seconds for 256 bits, and 82.1 seconds for 512 bits; we were not able to run
their code for larger randomizers. Erring on the conservative side, we can estimate that it will
take close to 328 seconds to check a secure TLP with a 2048-bit randomizer with their approach.
For comparison, our VTLP takes around 2.13 seconds to check the solution is the pre-image of a
Pedersen commitment, which is about 150× more efficient than the result of [12].

Performance of our VRF/Signatures VTLP. Finally, we test the performance of our tailor-made
VTLP for RSA-based VRFs/signatures from Section 5. For an RSA public key equal to 3 and a
2048-bit modulus, the proving time is 2.28 seconds, while for a public key equal to 17 it is 3.08
seconds. Recall that verifying an RSA VRF/RSA signature inside a SNARK is hard. Although
it might not be as fast as checking an EdDSA/BLS/ECDSA signature inside SNARK (depending
on the public key size, SNARK choices, and optimization), verifying an RSA signature is the same
as verifying an RSA screening proof, which enables the authentication of a batch of messages via
a single proof, making our VTLP for RSA signatures encompass an arbitrary amount of messages
with a single proof.

27

6.3 Offloading Signatures

Finally, we evaluate the performance of our RSA signature offloading techniques as a stand-alone
tool. We consider both variants, with and without zero-knowledge property. We also compare
our results with the efficient batch verifications of signatures inside a SNARK, which is based on
combining the EdDSA with SNARK-friendly curves, also known as BabyJubjub [39]. In both cases,
messages are first hashed using MiMC. Our implementation of RSA signature verification adheres to
a Hash-then-padding paradigm, also leveraging the MiMC hash function. We use RSA at 3072 bits
so that the RSA signatures have the same estimated level of security with EdDSA according to NIST
standards [82]. However, we stress that the choice of RSA modulo size has minimal effect on the
performance of our construction (as the SNARK circuit performs a single modular operation, and
other parts strongly dominate the overhead). We use 2048 random numbers as the randomizer set for
the zero-knowledge version so that the DMSS assumption holds with respect to the randomizer set
and modulus 3072-bits N . To provide a baseline, we additionally show the cost of simply verifying
the MiMC hashes in the SNARK (without signature verification). The results are presented in
Figure 9, where we report the size of the circuit as the number of constraints (left) and the prover
time (right).

The experimental results indicate our technique is extremely efficient for offloading RSA sig-
nature verification. In practice, it remains around 2× slower than simply checking the messages’
MiMC hashes. Checking each RSA signature takes around 800 constraints, where 350 of the con-
straints are contributed by checking the MiMC hash. This result is consistent with our theoretical
analysis since the prover only needs to prove one modular multiplication for each hash result. To
achieve zero knowledge for the offloaded signatures, the signature offloading requires an additional
530, 000 constraints for each verification batch (approximately 1.6 seconds more for the prover).
This is only related to the randomizer set size, not the number of signatures. Compared to the
EdDSA+BabyJubJub approach, our prover is 1.5− 4 times faster throughout the experiment. For
fairness, we note that there also exist batch verification techniques for EdDSA, but we are un-
aware of any batch verification of EdDSA that can easily be embedded into a SNARK with sig-
nificant improvement in efficiency. There do exist such in-SNARK batch-verification techniques
for ECDSA signatures [83] that can provide a 2-3× speed-up. However, due to the structure of
ECDSA, it takes about 15 million constraints to verify 32 signatures, which is not as efficient as the
EdDSA+BabyJubJub we tested and is entirely incomparable to our own offloading approach.

Non-hash-based Signatures. A recent work by Fiore and Tucker [40] proposed SPHinx, a SNARK-
friendly homomorphic signature scheme, focusing on verifiable computation over authenticated
(signed) data streams. Their implementation assumes messages are signed directly (without hashing
them first), allowing easy computation within the SNARK. Due to this, their batched signature ver-
ification is extremely efficient. Benchmarked on a Linux server with 8 cores Xeon-Gold-6154 clocked
at 3GHz and with 98 GB of RAM, their reported prover time is 0.6 seconds for 1000 messages (on
our testbed our prover with RSA-3072 and 1000 messages takes 3.8 seconds). On the other hand,
assuming an application that requires first hashing the messages (e.g., if messages correspond to
blockchain transactions that do not fit in the underlying field of SPHinx) would impose a similar
overhead as the one we reported for our MiMC baseline above. Also, the verification time of SPHinx
grows with the number of messages, e.g., it requires 41ms to verify 1000 signatures (vs. one Groth16
verification in 1ms for ours).

28

7 Conclusion

In this paper, we introduce the notion of verifiable time-lock puzzles that support efficiently check-
ing that the puzzle solution satisfies certain properties, before solvers commit resources towards
solving the puzzle. We propose two constructions, one for arbitrary NP relations and one for tying
the solution to an RSA signature or VRF evaluation. Our schemes are concretely efficient, as we
demonstrate experimentally, and are useful in various application scenarios.

8 Acknowledgments

We would like to thank the anonymous reviewers and our shepherd for their constructive feedback.
This work was partially supported by Hong Kong RGC under grant 16200721 and by the Sui
Foundation via an Academic Research Award.

References

[1] R. L. Rivest, A. Shamir, and D. A. Wagner, “Time-lock puzzles and timed-release crypto,” in
Technical Report, 1996.

[2] D. Boneh and M. Naor, “Timed commitments,” in CRYPTO, 2000.

[3] G. Malavolta and S. A. K. Thyagarajan, “Homomorphic time-lock puzzles and applications,”
in CRYPTO, 2019.

[4] Z. Brakerski, N. Döttling, S. Garg, and G. Malavolta, “Leveraging linear decryption: Rate-1
fully-homomorphic encryption and time-lock puzzles,” in Theory of Cryptography Conference
(TCC), 2019.

[5] A. Abadi and A. Kiayias, “Multi-instance publicly verifiable time-lock puzzle and its applica-
tions,” in International Conference on Financial Cryptography and Data Security (FC), 2021.

[6] S. A. K. Thyagarajan, A. Bhat, G. Malavolta, N. Döttling, A. Kate, and D. Schröder, “Verifiable
timed signatures made practical,” in Proceedings of the ACM CCS, 2020.

[7] J. Katz, J. Loss, and J. Xu, “On the security of time-lock puzzles and timed commitments,” in
Theory of Cryptography Conference (TCC), 2020.

[8] C. Freitag, I. Komargodski, R. Pass, and N. Sirkin, “Non-malleable time-lock puzzles and
applications,” in Theory of Cryptography Conference (TCC), 2021.

[9] S. Srinivasan, J. Loss, G. Malavolta, K. Nayak, C. Papamanthou, and S. A. Thyagarajan,
“Transparent batchable time-lock puzzles and applications to byzantine consensus,” in Public
Key Cryptography (PKC), 2023.

[10] K. Eldefrawy, B. Terner, and M. Yung, “Composing timed cryptographic protocols: Founda-
tions and applications,” Cryptology ePrint Archive, 2024.

[11] D. Deuber, N. Döttling, B. Magri, G. Malavolta, and S. A. K. Thyagarajan, “Minting mecha-
nism for proof of stake blockchains,” in Applied Cryptography and Network Security (ACNS),
2020.

29

[12] N. Tyagi, A. Arun, C. Freitag, R. Wahby, J. Bonneau, and D. Mazières, “Riggs: Decentralized
sealed-bid auctions,” in Proceedings of the ACM CCS, 2023.

[13] C. Dwork, M. Naor, and A. Sahai, “Concurrent zero-knowledge,” Journal of the ACM (JACM),
2004.

[14] N. Bitansky and H. Lin, “One-message zero knowledge and non-malleable commitments,” in
Theory of Cryptography Conference (TCC), 2018.

[15] L. Baird, P. Mukherjee, and R. Sinha, “i-tire: Incremental timed-release encryption or how to
use timed-release encryption on blockchains?” in Proceedings of the ACM CCS, 2022.

[16] N. Döttling, L. Hanzlik, B. Magri, and S. Wohnig, “Mcfly: verifiable encryption to the future
made practical,” in International Conference on Financial Cryptography and Data Security
(FC), 2023.

[17] H. Lin, R. Pass, and P. Soni, “Two-round and non-interactive concurrent non-malleable commit-
ments from time-lock puzzles,” Annual IEEE Symposium on Foundations of Computer Science
FOCS, 2017.

[18] P. Chvojka and T. Jager, “Simple, fast, efficient, and tightly-secure non-malleable non-
interactive timed commitments,” in Public Key Cryptography (PKC), 2023.

[19] S. A. K. Thyagarajan, G. Castagnos, F. Laguillaumie, and G. Malavolta, “Efficient cca timed
commitments in class groups,” in Proceedings of the ACM CCS, 2021.

[20] A. B. Alexandru, J. Loss, C. Papamanthou, G. Tsimos, and B. Wagner, “Sublinear-round
broadcast without trusted setup,” Cryptology ePrint Archive, 2024.

[21] C. Baum, J. Hsin-yu Chiang, B. David, T. K. Frederiksen, and L. Gentile, “Sok: Mitigation of
front-running in decentralized finance,” in International Conference on Financial Cryptography
and Data Security (FC), 2022.

[22] Y. Manevich and A. Akavia, “Cross chain atomic swaps in the absence of time via attribute
verifiable timed commitments,” in European Symposium on Security and Privacy (EuroS&P),
2022.

[23] J. Groth, “On the size of pairing-based non-interactive arguments,” in EUROCRYPT, 2016.

[24] A. Gabizon, Z. J. Williamson, and O. Ciobotaru, “Plonk: Permutations over lagrange-bases for
oecumenical noninteractive arguments of knowledge,” Cryptology ePrint Archive, 2019.

[25] A. E. Kosba, C. Papamanthou, and E. Shi, “xjsnark: A framework for efficient verifiable
computation,” in IEEE Symposium on Security and Privacy, SP, 2018.

[26] R. Cramer, “Modular design of secure yet practical cryptographic protocols,” Ph. D.-thesis,
CWI and U. of Amsterdam, 1996.

[27] D. Boneh, B. Bünz, and B. Fisch, “Batching techniques for accumulators with applications to
iops and stateless blockchains,” in CRYPTO, 2019.

[28] J. Camenisch and M. Stadler, “Efficient group signature schemes for large groups,” in CRYPTO,
1997.

30

[29] X. Zhou, D. He, J. Ning, M. Luo, and X. Huang, “Efficient construction of verifiable timed sig-
natures and its application in scalable payments,” IEEE Transactions on Information Forensics
and Security, 2023.

[30] S. A. Thyagarajan, G. Malavolta, F. Schmid, and D. Schröder, “Verifiable timed linkable ring
signatures for scalable payments for monero,” in ESORICS, 2022.

[31] A. Shamir, “How to share a secret,” Communications of the ACM, 1979.

[32] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil pairing,” in ASIACRYPT,
2001.

[33] S. Goldberg, M. Naor, D. Papadopoulos, L. Reyzin, S. Vasant, and A. Ziv, “NSEC5: provably
preventing DNSSEC zone enumeration,” in Network and Distributed System Security Sympo-
sium NDSS, 2015.

[34] M. Naor and A. Ziv, “Primary-secondary-resolver membership proof systems,” in Theory of
Cryptography Conference (TCC). Springer, 2015, pp. 199–228.

[35] S. Goldberg, L. Reyzin, D. Papadopoulos, and J. Včelák, “Verifiable Random Functions
(VRFs),” RFC 9381, Aug. 2023. [Online]. Available: https://www.rfc-editor.org/info/rfc9381

[36] K. Choi, A. Manoj, and J. Bonneau, “Sok: Distributed randomness beacons,” in IEEE Sympo-
sium on Security and Privacy, SP, 2023.

[37] A. Kate, E. V. Mangipudi, S. Maradana, and P. Mukherjee, “Flexirand: Output private (dis-
tributed) vrfs and application to blockchains,” in Proceedings of the ACM CCS, 2023.

[38] M. Bellare, J. A. Garay, and T. Rabin, “Fast batch verification for modular exponentiation and
digital signatures,” in EUROCRYPT, 1998.

[39] B. WhiteHat, J. Baylina, and M. Bellés, “Baby jubjub elliptic curve,” Ethereum Improvement
Proposal, EIP-2494, vol. 29, 2020.

[40] D. Fiore and I. Tucker, “Efficient zero-knowledge proofs on signed data with applications to
verifiable computation on data streams,” in Proceedings of the ACM CCS, 2022.

[41] “Pkcs 2.1,” https://www.rfc-editor.org/rfc/rfc8017.html, 2016, accessed: 2023-12-12.

[42] B. Wesolowski, “Efficient verifiable delay functions,” in EUROCRYPT, 2019.

[43] D. Boneh, B. Bünz, and B. Fisch, “A survey of two verifiable delay functions,” Cryptology
ePrint Archive, 2018.

[44] C. Baum, B. David, R. Dowsley, J. B. Nielsen, and S. Oechsner, “Tardis: a foundation of
time-lock puzzles in uc,” in EUROCRYPT, 2021.

[45] M. Ambrona, M. Beunardeau, and R. R. Toledo, “Timed commitments revisited,” Cryptology
ePrint Archive, 2023.

[46] J. Burdges and L. De Feo, “Delay encryption,” in EUROCRYPT, 2021.

[47] J. Dujmovic, R. Garg, and G. Malavolta, “Time-lock puzzles with efficient batch solving,” in
EUROCRYPT, 2024.

31

https://www.rfc-editor.org/info/rfc9381
https://www.rfc-editor.org/rfc/rfc8017.html

[48] M. Bellare and O. Goldreich, “On defining proofs of knowledge,” in CRYPTO, 1992.

[49] M. Girault, “Self-certified public keys,” in EUROCRYPT, 1991.

[50] C. Schnorr, “Efficient signature generation by smart cards,” J. Cryptol., 1991.

[51] F. Boudot, “Efficient proofs that a committed number lies in an interval,” in EUROCRYPT,
2000.

[52] I. Damg̊ard and E. Fujisaki, “A statistically-hiding integer commitment scheme based on groups
with hidden order,” in ASIACRYPT, 2002.

[53] I. Miers, C. Garman, M. Green, and A. D. Rubin, “Zerocoin: Anonymous distributed e-cash
from bitcoin,” in IEEE Symposium on Security and Privacy, SP, 2013.

[54] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer, “From extractable collision resistance to
succinct non-interactive arguments of knowledge, and back again,” in Innovations in Theoretical
Computer Science, 2012.

[55] M. Campanelli, D. Fiore, and A. Querol, “Legosnark: Modular design and composition of
succinct zero-knowledge proofs,” in Proceedings of the ACM CCS, 2019.

[56] D. Boneh et al., “Twenty years of attacks on the rsa cryptosystem,” Notices of the AMS, 1999.

[57] S. Micali, M. O. Rabin, and S. P. Vadhan, “Verifiable random functions,” in Annual IEEE
Symposium on Foundations of Computer Science FOCS, 1999.

[58] Y. Dodis and A. Yampolskiy, “A verifiable random function with short proofs and keys,” in
Public Key Cryptography (PKC), 2005.

[59] N. Barić and B. Pfitzmann, “Collision-free accumulators and fail-stop signature schemes without
trees,” in EUROCRYPT, 1997.

[60] J. Li, N. Li, and R. Xue, “Universal accumulators with efficient nonmembership proofs,” in
ACNS, 2007.

[61] I. A. Tomescu Nicolescu, “How to keep a secret and share a public key (using polynomial
commitments),” Ph.D. dissertation, Massachusetts Institute of Technology, 2020.

[62] A. Tomescu, Y. Xia, and Z. Newman, “Authenticated dictionaries with cross-incremental proof
(dis) aggregation.” IACR Cryptol. ePrint Arch., vol. 2020, p. 1239, 2020.

[63] G. L. Miller, “Riemann’s hypothesis and tests for primality,” in Proceedings of the seventh
annual ACM symposium on Theory of computing, 1975.

[64] R. Impagliazzo and M. Naor, “Efficient cryptographic schemes provably as secure as subset
sum,” Journal of cryptology, vol. 9, no. 4, pp. 199–216, 1996.

[65] V. Lyubashevsky, A. Palacio, and G. Segev, “Public-key cryptographic primitives provably as
secure as subset sum,” in Theory of Cryptography Conference (TCC), 2010.

[66] J. Maire and D. Vergnaud, “Commitments with efficient zero-knowledge arguments from subset
sum problems,” in Computer Security. ESORICS 2023, ser. Lecture Notes in Computer Science.
Springer, 2023.

32

[67] M. J. Coster, A. Joux, B. A. LaMacchia, A. M. Odlyzko, C.-P. Schnorr, and J. Stern, “Improved
low-density subset sum algorithms,” Computational complexity, 1992.

[68] K. Koiliaris and C. Xu, “Faster pseudopolynomial time algorithms for subset sum,” ACM
Transactions on Algorithms (TALG), 2019.

[69] M. Campanelli, D. Fiore, S. Han, J. Kim, D. Kolonelos, and H. Oh, “Succinct zero-knowledge
batch proofs for set accumulators,” in Proceedings of the ACM CCS, 2022.

[70] A. Shamir, “On the generation of cryptographically strong pseudorandom sequences,” ACM
Transactions on Computer Systems (TOCS), 1983.

[71] R. Gennaro, S. Halevi, and T. Rabin, “Secure hash-and-sign signatures without the random
oracle,” in EUROCRYPT, 1999.

[72] J.-S. Coron and D. Naccache, “Security analysis of the gennaro-halevi-rabin signature scheme,”
in EUROCRYPT, 2000.

[73] T. P. Pedersen, “Non-interactive and information-theoretic secure verifiable secret sharing,” in
CRYPTO, 1992.

[74] A. Kate, G. M. Zaverucha, and I. Goldberg, “Constant-size commitments to polynomials and
their applications,” in ASIACRYPT, 2010.

[75] A. Ozdemir, R. Wahby, B. Whitehat, and D. Boneh, “Scaling verifiable computation using
efficient set accumulators,” in USENIX Security Symposium, 2020.

[76] E. Ghosh, O. Ohrimenko, D. Papadopoulos, R. Tamassia, and N. Triandopoulos, “Zero-
knowledge accumulators and set algebra,” in ASIACRYPT, 2016.

[77] D. Micciancio, “The RSA group is pseudo-free,” in EUROCRYPT, 2005.

[78] G. Botrel, T. Piellard, Y. E. Housni, I. Kubjas, and A. Tabaie, “Consensys/gnark: v0.8.0,”
Feb. 2023. [Online]. Available: https://doi.org/10.5281/zenodo.5819104

[79] H. Wu, W. Zheng, A. Chiesa, R. A. Popa, and I. Stoica, “DIZK: A distributed zero knowledge
proof system,” in USENIX Security Symposium, 2018.

[80] M. R. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen, “Mimc: Efficient encryption
and cryptographic hashing with minimal multiplicative complexity,” in ASIACRYPT, 2016.

[81] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, “High-speed high-security
signatures,” Journal of cryptographic engineering, 2012.

[82] NIST, “Sp 800-52 rev. 1. nist special publication (2013),” https://nvlpubs.nist.gov/nistpubs/
specialpublications/nist.sp.800-52r1.pdf/, 2013, accessed: 2023-01-02.

[83] 0xPARC Foundation, “Batch ecdsa in snarks,” https://0xparc.org/blog/batch-ecdsa, 2022, ac-
cessed: 2023-01-02.

[84] M. Bellare and P. Rogaway, “The exact security of digital signatures - how to sign with RSA
and rabin,” in EUROCRYPT, 1996.

[85] J. Coron, “On the exact security of full domain hash,” in CRYPTO, 2000.

33

https://doi.org/10.5281/zenodo.5819104
https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-52r1.pdf/
https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-52r1.pdf/
https://0xparc.org/blog/batch-ecdsa

[86] L. Grassi, D. Khovratovich, C. Rechberger, A. Roy, and M. Schofnegger, “Poseidon: A new
hash function for zero-knowledge proof systems,” in USENIX Security Symposium, 2021.

[87] A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, and B. Parno, “Cinderella: Turning shabby x.
509 certificates into elegant anonymous credentials with the magic of verifiable computation,”
in IEEE Symposium on Security and Privacy, SP, 2016.

[88] G. Ateniese, E. De Cristofaro, and G. Tsudik, “(if) size matters: Size-hiding private set inter-
section,” in Public Key Cryptography (PKC), 2011.

[89] E. R. Canfield, P. Erdös, and C. Pomerance, “On a problem of oppenheim concerning ”factori-
satio numerorum”,” Journal of number theory, 1983.

[90] N. G. de Bruijn, “On the number of positive integers ≤ x and free of prime factors > y,” Pro-
ceedings of the Koninklijke Nederlandse Akademie van Wetenschappen: Series A: Mathematical
Sciences, vol. 54, no. 1, pp. 50–60, 1951.

[91] D. Bernhard, O. Pereira, and B. Warinschi, “How not to prove yourself: Pitfalls of the fiat-
shamir heuristic and applications to helios,” in ASIACRYPT, 2012.

[92] A. Ivić and G. Tenenbaum, “Local densities over integers free of large prime factors,” The
Quarterly Journal of Mathematics, 1986.

[93] “Perpetual trading,” https://docs.starkware.co/starkex/perpetual/oracle-price-tick.html,
2023.

A Offloading signatures verifications

This section describes new techniques for offloading RSA signature checks from SNARK. We first
describe a basic solution that verifies whether all private inputs to a SNARK, termed “messages”
from the signature perspective or “witnesses” from the SNARK perspective, are signed by a known
RSA public key. We detail an efficient construction that utilizes RSA screening and SNARK-friendly
full-domain hashes. Then, we describe how to offload the RSA screening part of the SNARK using
our OffloadProd protocol. Our method is universally applicable to any SNARK framework that
supports CP-SNARK. Moreover, we show how to achieve zero knowledge while offloading signatures.

A.1 RSA signatures inside SNARK

RSA screening. For standard “hash-then-sign” RSA signatures, there exists a batching technique
called RSA screening [38]. This technique enables an aggregator to produce a constant-sized proof
that validates a set of unrepeated messages as being signed by a public key (N, e). The verifier can
then ascertain the authenticity of the entire message batch by verifying this single proof, obviating
the need to check each signature individually. This technique not only streamlines the verification
process but also reduces the data transmission load and lessens the computational burden on the
verifier. We briefly introduce this technique below and refer to [38] for more details. Given an RSA
public key pair (N, e), consider a sequence of k unrepeated messages m0,m1, . . . ,mk accompanied
by their RSA signatures σ0, σ1, . . . , σk. The aggregator computes the proof, denoted as πsig, simply
by computing the product of all signatures modular N : πsig =

∏
i∈[k] σi mod N . The verifier checks

πesig
?
=

∏
i∈[k]H(mi) mod N where H(·) is the Hash function used for the RSA signature.

34

https://docs.starkware.co/starkex/perpetual/oracle-price-tick.html

Secure hashing within SNARK. Most established RSA signature schemes rely on a sophisticated
structure of the message to be signed to resist attacks [56]. The principle is that the Hash output
needs to span the full domain of the RSA modulus. There are two common approaches for RSA
signatures as listed by PKCS 2.1 [41]:
Full Domain Hash [84, 85]. In this approach, the hash function outputs a value that can directly
cover the entire domain space. There are two main methods to achieve this. The first one is
concatenating multiple hash outputs: shorter hash functions, e.g., SHA-256, are repeatedly applied
to the input together with a counter, and their outputs are concatenated together until the combined
length matches the bit length of the domain. For example, to compute a 2048 bits Full Domain
Hash, we can compute
H2048(m) = SHA256(m||8)|| . . . ||SHA256(m||1).
The second one uses sponge hashes, e.g., SHA3, which output to an arbitrary length and directly
satisfies.
EMSA-PKCS1-v1 5 . In this approach, a standard hash function like SHA-256 is applied to the
input to generate an initial output. This hash output is then concatenated with a fixed padding
string to extend the total length beyond the size of the target domain. This approach can be viewed
as computing the final output by adding a large constant number so that the result is larger than
the RSA modulus N . For example, to compute a 2048 bits Hash-then-Padding hash, we compute
H2048(m) = ∆+ SHA256(m) where ∆ is a fixed integer with 2048 bits.

Given the computational intensity of evaluating hash functions within SNARKs, two efficient
methods stand out for encoding RSA signatures within these constraints: (1) using SNARK-friendly
sponge hashes like Poseidon [86] to construct a Full Domain Hash; (2) using SNARK-friendly hashes
and adding a large fixed integer to construct Hash-then-Padding. In this work, we prefer method (2)
for encoding within SNARKs, following the precedent set by [87]. This preference is due to method
(2)’s practical speed advantages (we can encode the integers within the native field of the SNARK)
and potential compatibility with existing PKI standards when incorporating SHA256 as the hash
function.

SNARK-friendly RSA signatures. Based on the above information, we present a basic solution
to authenticate a set of messages inside SNARK. We first illustrate the system model to clarify the
problem definition and security goals. Then, we provide a basic solution based on RSA screening.

This model has three entities: signer, verifier, and aggregator. Their roles are summarized as
follows:
• Signer. The signer owns an RSA public/private key pair, sequentially signs a stream of messages
M = (m0, . . . ,mk) and sends the respective RSA signatures σ⃗ = (σ0, . . . , σk) to the aggregator.

• Aggregator. The aggregator is malicious. It receives all the signed messages and picks a subset of
messages M ′ for a public function f(x;w). For the function f(x;w), x denotes public inputs, e.g.,
data labels and public parameters, and w denotes private inputs, which are the messages signed
by the signer. It proves with SNARK to show that all private inputs to function f(·) are signed
by the signer and f(x;M ′) = y.

• Verifier. The verifier is curious but honest. It knows the public key, function f(·), and public
input x for f(·). It checks the SNARK proof to verify that all the private inputs to function f(·)
are signed by the signer and f(x;M ′) = y.

The aggregator implements the SNARK prove function, and the verifier implements the SNARK

35

Public params pp = (security params λ, g ∈ G?, ∆)
Setup(λ, f(·))
return crs← Π.Setup(1λ,RHashMod,∆)
Prove(pp, crs, N, e,M ′, σ⃗′)

∀σi ∈ σ⃗′, πsig =
∏
σi mod N , ∀mi ∈M ′, ui = ∆+H(mi), cu⃗ = Commit(u⃗), x =

∏
ui∈u⃗ ui,

A = gx, ξ = x mod N ,
ℓ = HashToPrime(pp, crs, A, cu⃗), q = ⌊x/ℓ⌋, r = x mod ℓ,Q = gq, π1 = (Q, r),

π2 ← Π.Prove(crs, cu⃗ , ℓ, r;M
′),

π3 ← NI-PoKEModN(g,A,N, ξ;x),
return(πsig, cu⃗ , A, ξ, π1, π2, π3)

Verify(pp, crs, N, e, πsig, cu⃗ , A, ξ, π1, π2, π3)

ℓ = HashToPrime(pp, crs, A, cu⃗), parse π1 as (Q, r)

Check if πesig = ξ mod N and Qℓgr = A.
Check if 1← Π.Verify(crs, cu⃗ , ℓ, r, π2).

Check if 1← NI-PoKEModN(g,A,N, ξ, π3).
return 1 if all check passed and 0 otherwise.

Figure 10: Protocol OffloadSig, a protocol for offloading RSA signatures from SNARK without
privacy guarantees.

verify function for the following relation ROffloadSig for any function f(·):

ROffloadSig = {(f(·), x, y,N, e, πsig;M ′) : f(x;M ′) = y∧

∀mi ∈M ′,mi < mi+1 ∧ πesig ≡
∏

mi∈M ′

H(mi) mod N}.

The completeness, soundness, zero-knowledge, and succinctness follow directly from the same defi-
nition of SNARK. Setting aside the generic function f(·), the SNARK circuit checks:

1. ∀mi ∈M ′,mi < mi+1;

2. πesig ≡
∏
mi∈M ′ H2048(mi) mod N .

Checking (1) guarantees that the messages are not repeated, as required by RSA screening [38]. This
check is straightforward to implement inside SNARK. We employ our OffloadProd technique to
streamline the process of checking (2). We can ask the signer to pick a small public key (e.g., 17) for
faster verification. We begin by presenting a basic variant of the protocol that doesn’t incorporate
privacy considerations; instead, it only uses the succinctness offered by SNARK. Messages are treated
as SNARK witnesses, which serves to compress the size of the statement. Given RSA public key
pair (N, e), set of messages M ′ and their corresponding signatures σ⃗′, the general idea of offloading
RSA signatures scheme is the following:

• Use an additional hidden order group element A to commit the hashes of M ′ and prove they
are the same as the witnesses inside SNARK (by checking they have the same remainder r
modulo prime challenge ℓ);

• By the analysis of OffloadProd protocol, we directly have the product of all accumulated
hashes;

36

• Employ our PoKEModN protocol to prove the product of hashes committed in the A modulo
N is ξ;

• Provide a πsig and show πesig = ξ mod N .

Besides the function f(·), the SNARK circuit checks:

1. ∀mi ∈M ′,mi < mi+1;

2. ∆′ = ∆ mod ℓ, ∀mi ∈M ′, ui = ∆′ +H(mi) mod ℓ;

3. r =
∏

∀ui
ui mod ℓ.

Ensuring that the messages are sorted and that their corresponding hash outputs match is typically
indispensable for the integrity of these schemes. In comparison, the simplified circuit design reduces
the computational overhead by only checking a single addition and multiplication within the prime
field. We denote the above SNARK relation as RHashMod, the committed Hash outputs as cu⃗ and

Commit(·) the commitment function. We provide the protocol details in Figure 10. We further
discuss the applications of OffloadSig in Appendix D.2.

Zero-knowledge RSA signature offloading. To fulfill the zero-knowledge property in this pro-
tocol, we require (1) k random numbers (denoted by βj) as public parameters; (2) the signer signs
the random numbers and publishes the signatures as a one-time setup; (3) use NIZK-PoKEModN
instead of the NI-PoKEModN. The general idea is to allow the aggregator to pick a random subset
of the public random numbers to randomize the accumulator and proofs to achieve zero knowledge.
Because the whole set of random numbers is signed by the signer, it is easy to calculate the πsig even
if the set is randomized. Similar to our OffloadExp protocol, because βj are public, ςj = βj mod ℓ
can be input to the SNARK circuits to decrease the prover’s overhead further. We denote the en-
hanced relation as RHashMod′ , which checks the cumulative remainder r respect to ςj and the subset
selection. More specifically, r =

∏
∀ui

ui ×
∏

∀ςj ς
vj
j mod ℓ, where vj denotes the subset selection of

random numbers. We present protocol details in Figure 11 and capture its security by the following
theorem and refer to its security proof in Appendix D.1:

Theorem 4. Let Π be secure CP-SNARK for relation RHashMod, then the protocol in Figure 11
is a succinct computational zero-knowledge argument of knowledge for relation ROffloadSig if the
NIZK-PoKEModN is a zero-knowledge argument of knowledge for relation RPoKEModN, the
order assumption holds for G? and DMSS assumption holds for the set size k and modulus Order(G?)
and N respectively.

B Proofs for Section 4

B.1 Proof for Lemma 1

Proof. Denote gcd(a, b) = k. Because gcd(a, b) = k, we can calculate α = a/k, β = b/k such that
gcd(α, β) = 1, and gα = hβ mod N . Because k < min(a, b), α = a/k > 1 and β = b/k > 1.

Because gcd(α, β) = 1, we can use the extended Euclidian Algorithm to find x, y ∈ Z such that
αx+ βy = 1. Let D = gy × hx mod N , then Dα = gαy × hαx = hβy × hαx = h.

37

Public params pp = (λ, k, g ∈ G?, ∆)
Setup(λ, f(·))

D = max(maxord(G?), 2
|N |), |α⃗| = k, ∀α⃗, αi

$←− [D],
crs← Π.Setup(1λ,RHashMod′ ,∆), return crs
SignerSetup(α⃗, N, d)

|β⃗| = k, ∀β⃗, βj ← Sign(αi, N, d), return β⃗

Prove(pp, crs, N, e,M ′, σ⃗′, α⃗, β⃗)

For j ∈ [k], vj
$←− {0, 1},

πsig =
∏

∀σi∈σ⃗′ σi ×
∏

∀βj∈β⃗ β
vj
j mod N ,

∀mi ∈M ′, ui = ∆+H(mi), if vj = 1, u|M ′|+i = αj
\\ u⃗ contains all the messages and the random subset.
cu⃗ = Commit(u⃗), x =

∏
ui∈u⃗ ui, A = gx,

ℓ = HashToPrime(pp, crs, A, cu⃗), ξ = x mod N ,

ςj = βj mod ℓ, q = ⌊x/ℓ⌋, r = x mod ℓ,Q = gq,
π1 = (Q, r), π2 ← Π.Prove(crs, cu⃗ , ℓ, ς⃗ , r;M

′),

π3 ← NIZK-PoKEModN(g,A,N, ξ;x).
return(πsig, cu⃗ , A, ξ, π1, π2, π3)

Verify(pp, crs, N, e, πsig, cu⃗ , A, ξ, π1, π2, π3)

ℓ = HashToPrime(pp, crs, A, cu⃗), parse π1 as (Q, r)

Check if πesig = ξ mod N , Qℓgr = A mod N and ςj = βj mod ℓ.
Check if 1← Π.Verify(crs, cu⃗ , ℓ, ς⃗ , r, π2).

Check if 1← NIZK-PoKEModN(g,A,N, ξ, π3).
return 1 if all check passed and 0 otherwise.

Figure 11: Protocol OffloadSigZK, a zero-knowledge protocol for offloading RSA signatures from
SNARK.

B.2 Proof for the PoKEModN

Theorem 5. Protocol PoKEModN is an argument of knowledge for the relation RPoKEModN if
protocol PoKE∗ is an argument of knowledge for the relation RPoKE∗ and the strong RSA assump-
tion holds for the group G?.

Proof. The correctness of the protocol directly follows. To prove the special soundness, we use the
extractor Ext∗ of PoKE∗ to build an extractor Ext for PoKEModN, which extracts x such that
gx = C and x = x̂ mod n with overwhelming probability against any PoKEModN adversary that
has a non-negligible success rate.

Similar to Theorem 9 in [27], Ext runs a copy of Ext∗ and simulates both the PoKE∗ challenges
and a PoKE∗ adversary’s response. When Ext receives the challenge ℓ from Ext∗ and the PoKE-
ModN adversary’s response (Q, r), it computes q′ = ⌊r/ℓ⌋ and r′ = r mod ℓ so that r = q′ℓ+r′ and
sets Q′ = Qngq

′
. It forwards (ℓ,Q′, r′) to Ext∗. If the PoKEModN adversary’s response is valid,

then Qℓnge = C. It implies Q′ℓgr
′
= C. If PoKEModN adversary responds with a non-negligible

success rate, Ext∗ extracts x with overwhelming probability such that gx = C.
Note the above step is the same as the Theorem 9 in [27], we put it here for completeness of

38

proof. Now we prove x = r mod ℓ · n.
We consider two cases: (1) x−r > ℓ·n and (2) x−r ≤ ℓ·n. For case (1), we prove by contradiction.

Because x ̸= r mod ℓ·n, ℓ·n ∤ x−r, gcd(ℓ·n, x−r) < ℓ·n < min(ℓ·n, x−r). Recall that Qℓ·n = gx−r,
according to Lemma 1, we can efficiently compute Dα = g mod N , where α > 1. This breaks the
strong RSA assumption. This contradicts our assumption. Therefore, x = r mod ℓ ·n, which implies
r mod n = x with overwhelming probability for any verified transcript. Moreover, for any accepting
transcript, x̂ = r mod n, we have x̂ = x mod n.

For case (2), x−r ≤ ℓ·n. Because ℓ is a prime challenge picked after seeing x and r, Pr[(x−r)|ℓ] ≤
negl(λ). We consider two sub-cases: (2.1) (x − r) ∤ n and (2.2) (x − r)|n. For case (2.1), because
(x− r) ∤ n and because (x− r) ∤ ℓ with overwhelming probability, gcd(ℓ · n, x− r) < x− r < min(ℓ ·
n, x − r). Similar to case (1), according to Lemma 1, we can efficiently compute Dα = g mod N ,
where α > 1. This breaks the strong RSA assumption, which contradicts our assumption. For case
(2.2), because (x − r)|n, there exists an integer k s.t. x − r = k × n. Thus, x − r mod n = 0,
x ≡ r mod n. Because x̂ = r mod n, x̂ = x mod n, which is the statement.

B.3 Proof for the ZK-PoKEModN

We capture the security of the Protocol ZK-PoKEModN by Theorem 6. Note that we require
trapdoor simulation, a technique previously used in other hidden-order group proofs [88].

Theorem 6. Protocol ZK-PoKEModN is a statistical zero-knowledge argument of knowledge for
the relation RPoKEModN if protocol PoKE∗ is an argument of knowledge for the relation RPoKE∗

and the strong RSA assumption holds for the group G?.

Proof. The correctness of the protocol directly follows.

Special Soundness. We denote C × Dn = gβ . Based on the same analysis in Theorem 5, if
the strong RSA assumption holds and protocol PoKE∗ is a valid argument of knowledge, we can
extract the exponent β s.t. β mod n = x̂. We then use the extractor of D to extract its exponent
m and calculate the x by x = β −mn s.t. C = gx. Because mn|n, and β ≡ x̂ mod n, we can get
x ≡ β −mn ≡ x̂ mod n.

Zero knowledge. Recall that Order(G?) denotes the order of the hidden order group. We build
a simulator Sim(D̃, π̃, Q̃, r̃) as follow:

• m̃
$←− [B], D̃ = gm̃, π̃ = NI-PoKE∗(g, D̃; m̃)

• ι = (ℓ · n)−1 mod Order(G?)

• ρ
$←− [ℓ], r̃ = x̂ · ρ, Q̃ = (C × D̃n × g−r̃)ι

We can calculate ι efficiently using the extended Euclidean algorithm because Order(G?) is the
product of two large primes that are co-prime with (ℓ · n) with overwhelming probability.

We now argue that (D̃, π̃, Q̃, r̃) is statistically indistinguishable from a transcript between an
honest prover and verifier (D,π,Q, r). Because (m̃, D̃) are generated in the same way as the honest
prover and verifier. Thus, (m̃, D̃) are perfect zero-knowledge. Because NI-PoKE∗ is made non-
interactive using Fiat-Shamir heuristic, π̃ is deterministic based on (m̃, D̃) and also perfect zero-
knowledge.

It remains to prove (Q̃, r̃) have the correct distribution. We first introduce the following facts:

• Fact 3 [27]. If a distribution Z is a uniform random variable over N consecutive integers and
m < N , then Z mod m has statistical distance at most m/N from the uniform distribution
over [m].

39

• Fact 4 (ring isomorphism based on Chinese Remainder Theorem). Given two positive integers
a, b that are co-prime, then x mod ab 7−→ (x mod a, x mod b).

• Fact 5. Given two positive integers a, b that are co-prime, then xb mod ab 7−→ x mod a.

Fact 5 can be checked based on Fact 4 in the following way: xb mod ab 7−→ (xb mod a, xb mod b)
where xb mod b = 0 is fixed. Because b is a fixed positive integer, xb mod a 7−→ x mod a.

Next, we analyze the distribution of r = x+mn mod ℓ·n. Based on Fact 3 and B > maxord(G)2λ,
the distribution m mod ℓ has statistical distance at most 1/2λ from uniform random in [0, ℓ − 1].
Because ℓ is a prime challenge randomly selected after seeing the statement including n, ℓ is co-
prime with n with overwhelming probability. Based on Fact 5, the distribution mn mod ℓ · n is
isomorphism with the distribution mn mod ℓ. Because n is fixed in the statement, the distribution
mn mod ℓ is the same as the distribution m mod ℓ and has statistical distance at most 1/2λ from
uniform random in [0, ℓ− 1].

We rewrite x as x̂ + kn. The distribution x + mn = x̂ + kn + mn = x̂ + (k + m)n. Based
on Fact 5, the distribution x̂ + (k +m)n mod ℓ · n forms a ring isomorphism with the distribution
(k +m) mod ℓ. Because k is fixed before choosing ℓ, the distribution (k +m) mod ℓ is same as the
distribution m mod ℓ, and has statistical distance at most 1/2λ from uniform random in [0, ℓ − 1].
Therefore, r = x +mn mod ℓn ∈ {0, x̂, 2x̂, . . . , (ℓ − 1)x̂} and has statistical distance at most 1/2λ

from uniform random. According to the definition of the Sim, the distribution of r̃ is the uniform
distribution of {0, x̂, 2x̂, . . . , (ℓ − 1)x̂}, the distribution of r and r̃ has statistical distance at most
1/2λ.

Because Q̃ = (C × D̃n × g−r̃)ι, which is computed based on (C, D̃, ℓ, n, r̃) uniquely. (C, ℓ, n) are
the same for both the simulator and the verifier, and (D̃, r̃) are statistically indistinguishable from
(D, r), thus, Q and Q̃ are also statistically indistinguishable.

B.4 Proof for PoKDE

Theorem 7. Protocol PoKDE is an argument of knowledge for relation RPoKDE if adaptive root
assumption and order assumption holds for G?.

Proof. The correctness can be checked based on Fact 1.

Special soundness. First, we show we can build an extractor to extract the exponent of C1 and
C2. The PoKDE is running the PoKE protocol in parallel for both C1 and C2, we can extract
x1 = logg C1 and x2 = logg C2 similar to the PoKE protocol with overwhelming probability if
adaptive root assumption holds for G?.

Next, we prove x2 = xe1. We prove by contraposition supposing x2 ̸= xe1. Because x1 mod ℓ = r1
and re1 = r2 mod ℓ, we know xe1 mod ℓ = r2. We rewind the extractor for K = poly(λ) times, and
compute xe1 using Chinese Remainder Theorem for K times based on ℓ and r2, to get the only
solution within range [0, 2λK] s.t. xe1 mod ℓ = r2. Similarly, we can compute x2 using Chinese
Remainder Theorem for K times based on ℓ and r2, to get the only solution within range [0, 2λK]
s.t. x2 mod ℓ = r2. Because there is only one solution within [0, 2λK] that modulo ℓ equals to r2,
and because we can extract a x2 s.t. x2 ̸= xe1, we have two different integer representation of C2. In
other words, we have C2 = gx2 = gx

e
1 , which breaks the order assumption.

B.5 Backgrounds on smooth numbers and proof for Lemma 2

Smooth numbers. For a positive integer z, it is y-smooth if all prime factors of z are less than y.
Denote by ψ(a, y) the number of integers 1 ≤ z ≤ a that are y-smooth. The following theorem [89]
can estimate the density of smooth numbers:

40

Theorem 8. If ϵ is an arbitrary positive constant, then uniformly for a ≥ 10 and y ≥ (log a)e+ϵ,

ψ(a, y) = au−u+o(u) as a→∞

where u = (log a)/(log y).

Coron and Naccache [72] showed that setting y = La[β] = exp((β+o(1))
√
log a log log a), we can

describe the probability that a uniform random integer z between one and a is y-smooth is:

Pr[z is y − smooth] =
ψ(a, y)

a
= La[−

1

2β
]. (1)

Coron and Naccache [72] also analyzed and tested Theorem 8 for condition β =
√
2/2. The time

complexity to find a smooth number for uniform random numbers [1, a] is:

exp ((
√
2/2 + o(1))

√
log a log log a).

For a = 21024, it takes time 286 to find a number that is 286-smooth, and for a = 22048, it takes time
around 2120 to find a number that is 2120-smooth.

Proof for Lemma 2.
Before proving Lemma 2, we first introduce the following corollary which extends Theorem 8

and Equation 1:

Corollary 3. For three positive integer a, b, y such that a ≥ b ≥ y and ϵ is an arbitrary positive
constant. Denote P1 the probability that a uniform random integer between one and a is y-smooth
and P2 the probability that a uniform random integer between one and b is y-smooth. If b ≥ 10 and

y ≥ (log a)e+ϵ, then P1 ≤ ε(a, b)P2. ε(a, b) is an error term of the form exp (o(1)
√
log a log log a)

exp (o(1)
√
log b log log b)

, which

goes to 1 for large a and b.

Proof. Setting y = La[β1] = exp((β1+o(1))
√
log a log log a) = Lb[β2] = exp((β2+o(1))

√
log b log log b).

Because a ≥ b, β1 ≤ β2. According to Theorem 8 and Equation 1, P1 = La[− 1
β1
] and P2 = Lb[− 1

β2
].

Because β1 ≤ β2, 1
β1
≥ 1

β2
. We can further rewrite P1 as

P1 = La[−
1

β1
] = exp ((− 1

β1
+ o(1))

√
log a log log a)

= exp (− 1

β1

√
log a log log a)× exp (o(1)

√
log a log log a)

=
exp (o(1)

√
log a log log a)

exp (1
β1

√
log a log log a)

.

Similarly, we can rewrite P2 as

P2 =
exp (o(1)

√
log b log log b)

exp (1
β2

√
log b log log b)

.

Because 1
β1
≥ 1

β2
, and a ≥ b, exp (1

β1

√
log a log log a) ≥ exp (1

β2

√
log b log log b). In summary, we

41

have

P1 =
exp (o(1)

√
log a log log a)

exp (1
β1

√
log a log log a)

≤ exp (o(1)
√
log a log log a)

exp (1
β2

√
log b log log b)

≤ exp (o(1)
√
log a log log a)

exp (o(1)
√
log b log log b)

exp (o(1)
√
log b log log b)

exp (1
β2

√
log b log log b)

=
exp (o(1)

√
log a log log a)

exp (o(1)
√
log b log log b)

P2.

The intuitive correctness of Lemma 2 can be understood as a natural extension of Dickman
function [90]. The Dickman function demonstrates that for a fixed y, as a increases significantly,
the frequency of y-smooth numbers in the interval [0, a] diminishes. To precisely estimate the error
term for Lemma 2, we provide the following proof based on Corollary 3.

Proof. We analyze different cases based on the size of ∆. We denote P3 = ψ(∆ + a, y)/(∆ + a) as
the probability that a uniform random integer in [1,∆+a] is y-smooth, and denote P4 = ψ(∆, y)/∆
as the probability that that a uniform random integer in [1,∆] is y-smooth.

Case 1: ∆ ≥ a > 0. According to Corollary 3, P3 ≤ ε(∆ + a,∆)P4 and P4 ≤ ε(∆, a)P1.
Combined together, we have P3 ≤ ε(∆ + a,∆)P4 ≤ ε(∆ + a, a)P1. Thus,

ψ(∆ + a, y)

∆ + a
≤ ε(∆ + a,∆)

ψ(∆, y)

∆
≤ ε(∆ + a, a)

ψ(a, y)

a
.

We can further derive that

ψ(∆ + a, y) ≤ ε(∆ + a,∆)
∆+ a

∆
ψ(∆, y)

≤ ε(∆ + a, a)
∆ + a

a
ψ(a, y).

Recall that ε(a, b)× ε(b, a) = 1 and ε(a, b)× ε(b, c) = ε(a, c), in summary we have

P2 =
ψ(∆ + a, y)− ψ(∆, y)

a

≤
ε(∆ + a,∆)∆+a

∆ ψ(∆, y)− ψ(∆, y)
a

≤ ε(∆ + a,∆)
∆+ a

∆

ψ(∆, y)

a
− ψ(∆, y)

a

≤ ε(∆ + a,∆)
∆+ a

a

ψ(∆, y)

∆
− ∆

a

ψ(∆, y)

∆

≤ ε(∆ + a,∆)
ψ(∆, y)

∆

(
(∆ + a)−∆ε(∆,∆+ a)

a

)
≤ ε(∆ + a, a)

ψ(a, y)

a

(
1 +

∆(1− ε(∆,∆+ a))

a

)
= P1 × ε(∆ + a, a)

(
1 +

∆(1− ε(∆,∆+ a))

a

)
.

42

Because ε(∆+ a, a) approaches 1 for large ∆ and a, and (1− ε(∆,∆+ a)) approaches 0 for large ∆

and a, ε(∆ + a, a)
(
1 + ∆(1−ε(∆,∆+a))

a

)
approaches 1 for large ∆ and a.

Case 2: a > ∆ ≥ y > 0. According to Corollary 3, P3 ≤ ε(∆ + a, a)P1 and P1 ≤ ε(a,∆)P4. We
can further derive that ψ(∆ + a, y) ≤ ε(∆ + a, a)∆+a

a ψ(a, y) and ∆P1 ≤ ε(a,∆)ψ(∆, y). Similarly,
we have

P2 =
ψ(∆ + a, y)− ψ(∆, y)

a

≤
ε(∆ + a, a)a+∆

a ψ(a, y)− ψ(∆, y)
a

≤ ε(∆ + a, a)ψ(a, y)

a
+
ε(∆ + a, a)∆P1 − ψ(∆, y)

a
.

Because ∆P1 ≤ ε(a,∆)ψ(∆, y), we have

P2 ≤
ε(∆ + a, a)ψ(a, y)

a
+
ε(∆ + a,∆)ψ(∆, y)− ψ(∆, y)

a

= P1 × ε(∆ + a, a) + (ε(∆ + a,∆)− 1)
ψ(∆, y)

a
.

ε(∆ + a, a) approaches 1 for large ∆ and a. Because ψ(∆,y)
a < 1 and (ε(∆ + a,∆) − 1) approaches

0 for large ∆ and a. ψ(∆,y)
a ≤ ψ(a,y)

a , and according to Proposition 1, ψ(a,y)
a is negligible, (ε(∆ +

a,∆)− 1)ψ(∆,y)a is negligible.
Case 3: a > y > ∆ > 0. Because y > ∆ > 0, ψ(∆, y) = ∆. According to Corollary 3,

P3 ≤ ε(∆ + a, a)P1. We can further derive that ψ(∆ + a, y) ≤ ε(∆ + a, a)∆+a
a ψ(a, y). Similarly, we

have

P2 =
ψ(∆ + a, y)− ψ(∆, y)

a

≤
ε(∆ + a, a)∆+a

a ψ(a, y)−∆

a

≤ ε(∆ + a, a)ψ(a, y)

a
+
ε(∆ + a, a)∆a ψ(a, y)−∆

a

≤ P1 × ε(∆ + a, a) +

(
ε(∆ + a, a)

ψ(a, y)

a
− 1

)
∆

a
.

Similarly, ε(∆+a, a) approaches 1 for large a.
(
ε(∆ + a, a)ψ(a,y)a

)
< 1, and

∣∣∣ε(∆ + a, a)ψ(a,y)a − 1
∣∣∣ <

1. Because a > 2λ∆, ∆
a < negl(λ) and

(
ε(∆ + a, a)ψ(a,y)a − 1

)
∆
a is negligible.

Case 4: 0 > ∆ > −a. Because smoothness is symmetric with respect to negation, the smooth-
ness of uniform sampling in [∆,∆ + a] can be analyzed by the combination of two distributions:
the smoothness of uniform sampling in [∆, 0) and the smoothness of uniform sampling in [0,∆+ a].
According to Corollary 3, generally, the smaller the values |∆| and ∆ + a, the smoother the uni-
form sampling in the intervals [∆, 0) and [0,∆ + a], respectively. Let us consider the case where
−∆ = ∆+ a. Here, the two distributions have equal smoothness and are smoother than any other

configuration of ∆. Given −∆ = ∆+ a, it follows that ∆ + a = a/2. Thus, we have P2 = ψ(a/2,y)
a/2 .

By Corollary 3, we find P1 ≤ ε(a, a/2)P2. This implies that for 0 > ∆ > −a, the distribution
generally becomes smoother due to the loss of 1 bit for a. However, this effect is negligible when
a is sufficiently large. We demonstrate this by noting the trivial condition P2 < P1 + P2, where

43

P2 = ψ(a/2,y)
a/2 . Since a > 2λ

2

, and according to Proposition 1, it follows that P2 < negl(λ), and

consequently, P2 < P1 + negl(λ).
Case 5: ∆ > −a. Since smoothness is symmetric with respect to negation, this is the symmetric

case as Case 1, and the same analysis applies.

B.6 Proof for ZK-PoKDE

We prove the security of Theorem 1 by the following proof:

Proof. Correctness. We can check that Cℓ1 × D = gxℓ+m = gz−γ , K = Cℓ
e

2 = gx
eℓe = g(ℓx)

e

,
E/K = gz

e−(ℓx)e = gω = gω
′×(m+γ).

Special soundness. To show the special soundness, we build an extractor Ext to extract valid
witness x, xe, s.t. C1 = gx and C2 = gx

e

. Ext can use the extractor ofNI-PoKDE(Cℓ1×D×gγ , E, e)
together with γ to extract the witness xℓ + m. Ext can use the extractor of NI-PoKE(g,D) to
extract the random number m. Then, Ext can extract x based on xℓ+m, ℓ and m.

We show the extracted x raised to the power of e is the witness of C2. We prove gx
e

= C2 by
contradiction. Under the generic group model, there is a unique integer to generate C2. We denote
C2 = gσ. Because NI-PoKDE is an argument of double exponent, and gz = Cℓ1 ×D × gγ , given a
valid proof for NI-PoKDE(Cℓ1 ×D × gγ , E), we have E = gz

e

. Given a valid NI-PoE(C2,K, ℓ
e)

proof, we know K = Cℓ
e

2 = gℓ
e×σ. When σ ̸= xe, by the binomial expansion:

logg E/K = ze − ℓe × σ = (xℓ+m+ γ)e − ℓe × σ

=

(
e

0

)
(xℓ)e +

(
e

1

)
(xℓ)e−1 × (m+ γ) + · · ·+

(
e

0

)
(m+ γ)e − ℓe × σ

= (xe − σ)le +
(
e

1

)
(xℓ)e−1 × (m+ γ) + · · ·+

(
e

0

)
(m+ γ)e

= (xe − σ)le + (m+ γ)× (

(
e

1

)
(xℓ)e−1 + · · ·+

(
e

0

)
γe−1).

Because NIZK-PoKE2 is an argument of knowledge of exponent for the relation RPoKE2, given
a valid proof NIZK-PoKE2(gm+γ , F, π4), we know there is a valid exponent η s.t. (gm+γ)η =
g(m+γ)η = F . Because E/K = F , we have

logg F =(m+ γ)η = (xe − σ)le + (m+ γ)× (

(
e

1

)
(xℓ)e−1 + · · ·+

(
e

0

)
γe−1).

Since (m + γ)|(xe − σ)le + (m + γ) × (
(
e
1

)
(xℓ)e−1 + · · · +

(
e
0

)
γe−1), we have (m + γ)|(xe − σ)le.

Because ℓ is a prime with λ bits, (m+γ) ∤ le with overwhelming probability. Thus, (m+γ)|(xe−σ).
Because γ is uniformly sampled from [2λ

2

], according to Proposition 1 γ is non-smooth. According
to Lemma 2, (m+ γ) is also non-smooth.

Since (xe − σ) is fixed before the verifier chooses γ, and (m + γ) is non-smooth, (m + γ)|(xe −
σ) happens with negligible probability and contradicts our assumption. Therefore, xe = σ with
overwhelming probability.

Zero-knowledge. To prove the statistically zero-knowledge, we build a simulator Sim, which
computes (D̃, π̃1, Ẽ, K̃, F̃ , π̃2, π̃3, π̃4) as follow:

• m̃
$←− [S], D̃ = gm̃, π̃1 = NI-PoKE(g, D̃; m̃)

• z̃
$←− [S], Ẽ = gz̃

e

, K̃ = Cℓ
e

2 , F̃ = gω = gω
′(m+γ)

44

• π̃2 = NI-PoE(C2,K; ℓe)

• π̃3 = NIZK-PoKE2(gm+γ , F ;ω′)

• π̃4 = NI-PoKDE(Cℓ1 × D̃ × gγ , Ẽ, e; z̃)
Because D̃, π̃1, K̃ are computed in the same way as the transcript between an honest prover and
verifier, they are perfect zero-knowledge. Recall that π2 is the proof of PoE protocol and provided
for the verifier’s efficiency. Because the distribution of z̃ is the same as z, thus, Ẽ, F̃ have the
same distribution as the transcript between an honest prover and verifier. π̃3 is the proof of the
NIZK-PoKE protocol, we can directly use the simulator of NIZK-PoKE to simulate them, which
is statistically zero-knowledge. Because NI-PoKDE is made non-interactive using Fiat-Shamir
heuristic, π̃4 is deterministic based on (C1, ℓ, D̃, γ, Ẽ, e; z). Because the input and witness of the
simulator and honest prover and verifier follow the same distribution, the simulator’s transcript
is the same as the honest prover and verifier’s transcript, π̃4 is also perfect zero-knowledge. In
summary, the protocol is statistically zero-knowledge.

B.7 Non-interactive variants and their security

All of the protocols in this section can be made non-interactive using the Fiat-Shamir transform. In
these non-interactive variants, the prover solely computes the protocol transcripts. This is achieved
by substituting the interactive challenges with hash values generated by a collision-resistant hash
function, denoted as H, which can be modeled as a random oracle. To compute these challenges,
the hash function H intakes as its argument the concatenation of all prior protocol transcripts. It is
imperative that this input also includes any relevant protocol statements and any public parameters.
This ensures that the challenge is intrinsically bound to the specific instance of the protocol to resist
certain attacks [91].

More specifically for our protocols, the challenge is either a large integer or a prime. Hashing
to large integers can be implemented by repeating the hash functions and concatenating them
together. We denote hash to the range [B] by HB(·). For an input x, generating a Hash to prime
can be implemented by finding the smallest counter i such that H(x||i) is a prime. Especially, in
the interactive protocols, the prime challenges are required to have λ bits, while in non-interactive
cases, they are required to have 2λ bits. We denote hash to prime with 2λ bits by HPrime2λ(·).

Both Wesolowski proof, PoE protocol, and PoKE protocol suffer from a sub-exponential attack,
especially in non-interactive cases [42, 43, 27]: the adversary sets the exponent to be the product of
O(2λ/2) random primes with 2λ bits so that the exponents divide the prime challenge with O(2−λ/2)
probability. Therefore, the prime challenges in non-interactive cases are set to 2λ-bit to resist this
attack in these protocols.

We analyze the same attack and show it does not apply to our ZK-PoKDE protocol for the
smooth number part, not even in the non-interactive cases. We describe the attack as shown below:

• Adversary computes Ψ to be the product of 2λ/2 random primes in [2, 2λ].

• Adversary finds a random x and compute σ such that xe − σ = Ψ, C = gσ, Croot = gx,
γ = HB(g||G?||N ||e||C||Croot), γ divides (xe − σ).

Suppose HB can be modeled as a random oracle that outputs uniform random numbers in the
range [B], such that numbers are 2λ-smooth. To simplify our analysis, we will first introduce a
fundamental principle of square-free numbers. Square-free numbers are defined as those numbers
that, in their prime factorization, each prime number appears at most once. This means that no
prime number is squared or appears multiple times in the factorization. According to [92], random

45

numbers are square-free asymptotically with probability 6/π2. If γ is not square-free, γ ∤ (xe − σ)
because the repeated prime factor p is “included” in Ψ twice, with probability 1/2λ.

Suppose γ is square-free, we can express γ as the product of its distinct prime factors in ascending
order, written as γ = p1p2 . . . pk. Because γ is non-smooth with respect to 2λ, pk ≥ 2λ. If pk > 2λ,
the adversary fails. If pk has 2λ bits, Pr[pk divides Ψ] ≤ 1/2λ/2. Because γ > 2λ, it has at least
another prime factor pk−1 ≤ 2λ. Because each prime is included into Ψ with same probability, then
Pr[pk−1 divides Ψ] ≤ 1/2λ/2. In summary,

Pr[γ divides Ψ] ≤ Pr[γ divides Ψ|γ is square-free]

≤ Pr[pk−1 divides Ψ]× Pr[pk divides Ψ]

≤ 1/2λ/2 × 1/2λ/2 < 1/2λ.

The above analysis also suggests the time complexity of a trivial attack: the adversary: (1)
compute Ψ to the product of all primes less than 2λ and (2) repeatedly queries a new challenge γ
until γ is 2λ-smooth. The step (1) takes time at least O(22λ) and step (2) happen with probability
less than 1/2λ.

B.8 Proof for NIZK-PoMoDE

Theorem 9. Protocol NIZK-PoMoDE is a statistical zero knowledge argument of knowledge for
the relation RPoMoDE if protocol PoKE∗ is an argument of knowledge for the relation RPoKE∗ ,
protocol NIZK-PoKEModN is a statistical zero-knowledge argument of knowledge for the relation
RPoKEModN and the order assumption holds for the group G?.

Proof. The correctness of the protocol follows directly from the correctness of the NIZK-PoKDE
protocol and NIZK-PoKEModN protocol.

Special Soundness. To prove the statistical zero-knowledge, we build an extractor Ext to extract
the witness x so that xe mod n = x̂. Ext can use the extractor of PoKE∗ to extract m. Then, Ext
can use the extractor of PoMoDE to extract x+mn and find x. Ext can relay on the extractor of
PoKEModN to guarantee that xe ≡ (x+mn)e ≡ x̂ mod n.

Zero-knowledge. To prove the statistical zero-knowledge, we build a simulator Sim(D̃, C̃2, π̃1, π̃2, π̃3)
as follow:

• m̃
$←− [B], D̃ = gm̃, π̃1 = NI-PoKE∗(g, D̃; m̃)

• r̃
$←− [Order(G?)], C̃2 = gr

e

• π̃2 = NIZK-PoKDE(C1 × D̃n, C̃2, e; r̃)

• π̃3 = NIZK-PoKEModN(g, C̃2, n, x̂; r̃)

Sim can simulate D̃ and π̃1 similar to our analysis in Theorem 6. We prove C̃2 and C2 are indistin-
guishable. We start with showing x+mn mod Order(G?) is indistinguishable from uniform random
in [Order(G?)]. Because m is uniformly sampled from [B], according to Fact 1 in Theorem 6, it
is indistinguishable from uniform random in [Order(G?)]. Recall that Order(G?) equals to the
product of two large primes p and q. Given that n is coprime to pq with overwhelming probability,
we can efficiently compute its multiplicative inverse modulo pq. Let this inverse be denoted as n′. By
applying the extended Euclidean algorithm, we obtain n×n′+ b×pq = 1, where b is an integer such
that the equality holds. For any element in the group Zpq, dubbed as t, it can be generated uniquely

46

by t = mn mod pq where m = n′ × t mod pq. Because m is indistinguishable from uniform random
in [pq], mn mod pq is also indistinguishable from uniform random in [pq]. Thus, x+mn mod pq is
indistinguishable from uniform random in [pq] and C1 ×Dn is indistinguishable from gr. Because
C2 = g(x+mn)

e

is deterministic computed from C1 and C̃2 is deterministic computed from gr, C̃2

and C2 are statistical indistinguishable.
Sim can simulate π2 independently using the simulator of the NIZK-PoKEModN protocol.

Sim can simulate π3 independently using the simulator of the NIZK-PoKEModN protocol. In
conclusion, (D̃, C̃2, π̃1, π̃2, π̃3) is statistically indistinguishable from the transcript between an honest
prover and verifier

C Security proofs for Section 5

Theorem 10. Let Π be secure CP-SNARK for relation RAllMod, then the protocol in Figure 4 is
a succinct argument of knowledge for relation ROffloadProd if PoKE∗ is an argument of knowledge
for relation RPoKE.

Proof. The completeness and succinctness come directly from the completeness and succinctness of
CP-SNARK and PoKE∗ protocol. Because cv⃗ and A are input to HashToPrime to generate a

prime challenge ℓ with 2λ-bit, cv⃗ and A commits the same set of integers with probability larger

than 1 − 1/2λ. Based on the nature of A, committing the set is raising the base g to the power of
the product of the set elements. Thus, A = gx where x is the product of set of v⃗. We can extract
the product using either the extractor of the SNARK or A under the generic group model [27].

Theorem 11. Let Π be secure CP-SNARK for relation RSelectMod, then the protocol in Figure 5 is
an argument of knowledge for relation RRSAExp if NIZK-PoKEModN is an argument of knowl-
edge for relation RPoKEModN and the order assumption holds for G?.

Proof. The correctness can be checked by ω mod N = (u2
0

)x0×(u21)x1×· · ·×(u2|N|−1

)x|N|−1 mod N =
ux mod N = C.

We prove the special soundness by building an extractor Ext that extracts the correct witness
for the relation RRSAExp. Ext first uses the extractor of the CP-SNARK to extract the witness
x. Based on the soundness of CP-SNARK, cx commits x. Because cx , u, A are inputs of
HashToPrime to generate the prime challenge, A commits the same set of squares of u selected
according to x with overwhelming probability, similar to our analysis in Theorem 10. Based on the
nature of the RSA accumulator, committing the set is raising the base g to the power of the product
of the set elements. Thus, the RSA accumulator is gω where ω is the product of selected squares of
u. Based on the special soundness of the NI-PoKEModN protocol, Ext can extract an exponent
ω′ s.t. ω′ mod N = C. If ω′ ̸= ω, then Ext finds two different integer ω, ω′ s.t. gω = gω

′
, which

breaks the order assumption.

Theorem 12. The commitment of form C = gs||ν presented in Section 5.3 and proofs (C,Q, r) are
computationally indistinguishable from uniformly random group elements in G? and uniform random
numbers in [ℓ] under the DDH-II assumption.

Proof. Because G? is a hidden order group, the distribution of s||ν is well-spread, minord(G?) > s||ν,
according to Theorem 4.1 in [69], C is computationally indistinguishable from a uniformly random
group element in G? under the DDH-II assumption. According to Fact 3 in Theorem 6, ν mod ℓ has
statistical distance at most 22λ/24λ = 1/22λ from uniform in [22λ]. Therefore, r = s×24λ+ν mod ℓ
has statistical distance at most = 1/22λ from uniform in [ℓ]. Because Q is uniquely determined by

47

C and r, (C,Q, r) are computationally indistinguishable from uniformly random group elements in
G? and uniform random numbers in [ℓ] under the DDH-II assumption.

C.1 Proof for Theorem 2

Proof. Correctness. The puzzle generator can determine if s′ in QRN using Legendre symbol
based on its knowledge of p′ and q′. The puzzle generator can compute η = τ−1 mod pq because
τ = 2T mod pq and coprime with pq with overwhelming probability. The rest of the correctness
follows directly.

Time-lock security. We prove (z, cs′ , πT = (D,Q, r, π2), πR+) are computationally indistinguish-

able between the two cases of puzzle/witness pair (s0;w0) and (s1;w1) for any adversary bounded
by T ϵ(λ).

Firstly, we prove (z, cs′ , πT = (D,Q, r, π2)) are computationally indistinguishable for the two
cases. We prove this by building a simulator with a randomly input s̃ without seeing sb. By showing
that both cases are indistinguishable when using the simulator, we establish their indistinguishability
overall. We build the simulator Sim as follow:

• s̃
$←− QRN , D̃ = gs̃, commit s̃ in cs′

• z̃ = (s̃)η mod N

• ℓ = HashToPrime(pp, crs1, crs2, cτ , D̃, cs′ , pk, z̃)

• q̃ = ⌊s̃/ℓ⌋, r̃ = s̃ mod ℓ, Q̃ = gq̃

• π̃2 ← OffloadExpCom(crs1, N, z̃, cτ , D̃; τ)

cs′ is perfect hiding if implemented by a Pedersen commitment or polynomial commitment, random-
ized independently from other elements in the transcripts, and therefore indistinguishable. Because
s̃ is uniformly sampled from QRN and η is predetermined in the public/private key, z̃ = (s̃)η mod N
is a uniformly random group element in QRN . z in the real world is indistinguishable from a uniform
random group element in QRN (z̃ in this case) for any adversary bounded by T ϵ(λ) according to
sequential squaring assumption. (D̃, Q̃, r̃) are computationally indistinguishable from (D,Q, r) in
the real world for either of the two cases according to Theorem 12 under the DDH-II assumption be-
cause s′ is randomized with ν. Because Sim knows the witness τ , it carries the OffloadExpCom(·)
protocol honestly and the cτ are identical in the real world and the ideal world.

Next, we show πR+ are indistinguishable for the two cases. This can be easily based on the zero-
knowledge property of CP-SNARK because zero-knowledge implies witness indistinguishability. In
other words, πR+ are indistinguishable if Π.R+(·) is a secure CP-SNARK.

We further show the OffloadExpCom(·) protocol and TimeParaSetup(·) are zero-knowledge,
i.e., they do not leak information about the witness τ , which contains information regarding the
private key (pq). If the private key is leaked, then the sequential squaring assumption no longer
holds, and an adversary can potentially distinguish the time-lock puzzle z. We prove this by building
another simulator Sim′ with the statement (pp = (λ, g ∈ G?), crs, T , N, z̃, cτ̃ , D̃) as follow:

• τ̃
$←− [N], find the opening s.t. τ̃ is committed in cτ̃ using the simulator trapdoor of the

commitment scheme (i.e., Pedersen commitment or polynomial commitment)

• u′ = H(λ||T ||N) mod N, u = (u′)2 mod N

48

• Compute µ̃ = uτ̃ mod N , πSetup ← OffloadExp(crs1, N, u, cτ̃ , µ̃)

• Ã = gτ̃ , ℓ = HashToPrime(pp, crs, N, z̃, D̃, Ã, cτ̃)

• r̃
$←− [ℓ], Q̃ = (Ã/gr)ℓ

−1

using the trapdoor of G?

• Compute π̃2 using the simulator of SNARK

• Compute π̃3 using the simulator of NIZK-PoKE2

Note that we use trapdoored simulation for the simulator. In the real world, p′, q′ are selected
after seeing 2T , τ is statistically indistinguishable from uniform random in [pq] and µ is statistically
indistinguishable from uniform in QRN . In the ideal world, µ̃ is a uniform random element in QRN
and, therefore, indistinguishable from the real world. Ã is indistinguishable from A based on the
DMSS assumption over the set vi and modular ϕ(N). r̃ is indistinguishable from r based on the
DMSS assumption over the set vi and modular ℓ. Q̃ is then uniquely determined based on Ã and
r̃. Ẽ is uniquely generated by Ã/D. We can simulate OffloadExp(·) similarly as we simulate
OffloadExpCom.

Soundness. Because Π.R+(cs′ , ℓ, r;w, s) is a secure CP-SNARKs, cs′ commits the encoded s

s.t. (s;w) ∈ R. Because protocol PoKE∗ is an argument of knowledge for the relation RPoKE∗ , D
and cs′ are presented before seeing the challenge ℓ, D commits the same integer s′ as committed

in cs′ , following the same analysis by Theorem 10.

Because u′ is sampled uniformly from random in [N], u = (u′)2 mod N , u is a generator of QRN
with overwhelming probability. Because OffloadExp protocol is an argument of knowledge for
relation RRSAExp, cτ commits τ s.t. τ = 2T mod pq. Because OffloadExpCom is an argument

of knowledge for relation ROffloadExpCom, D commits τ s.t. D = gz
τ mod pq, which is s′. If there

exists an adversary A that outputs z and valid proof s.t. s̄← SolvPuz(pk, z, T), 0← R(s̄, πR), we
can build another adversary B that finds another exponent s̄ for group element D, which breaks the
order assumption for G?.

Zero-knowledge. We build a simulator to simulate the result πR+ by inputting the statement. The
simulator can simply runGenPuz(·) and generate (z, πT) honestly. We can simulate πR+ if Π.R+(·)
is a secure CP-SNARK and, therefore, the real world and ideal world are indistinguishable.

C.2 Proof for Theorem 3

Proof. Most parts of the protocol are similar to the protocol VTLP for NP, which is analyzed in
Theorem 2. We focus on the different parts.

Time-lock security. π1 can be simulated independently using its own simulators. It remains to
show that D is simulatable. We prove this by considering s as a VRF value. We simulate s by
sampling a random value s′ in the VRF space V, more specifically in Z∗

N̄
. Because s is committed

using g, the adversary cannot run the verification of VRF unless solving the puzzle first. Based
on the Pseudorandomness of the VRF, the adversary has a negligible advantage in distinguishing s
from s′.

Soundness. Because NIZK-PoMoDE is an argument of knowledge for relation RPoMoDE, πR
shows D commits a valid RSA VRF/signature for the message m. Otherwise, we can find another
exponent x′ for D, which breaks the order assumption.

49

D Security analysis for offloading signature verifications and
applications

Theorem 13. Let Π be secure CP-SNARK for relation RHashMod, then the protocol in Figure 10
is a succinct argument of knowledge for relation ROffloadSig if NI-PoKEModN is an argument of
knowledge for relation RPoKEModN.

Proof. The completeness and succinctness come directly from the completeness and succinctness of
CP-SNARK, PoKE∗ protocol, and NI-PoKEModN protocol.

Now, we prove the special soundness by building an extractor Ext that extracts the correct
witness for the relation RSig. Ext first uses the extractor of Π to extract the witness M ′. Based
on the soundness of CP-SNARK, cu⃗ is the vector of hash outputs of M ′. Because cu⃗ and A are

input to HashToPrime to generate a prime challenge with 2λ-bit, cu⃗ and A commits the same

set of hash outputs with overwhelming probability. We refer to Theorem B.1 from [55] for a detailed
proof. Based on the nature of the RSA accumulator, committing the set is raising the base g to the
power of the product of the set elements. Thus, the RSA accumulator is gx where x is the product
of hash outputs of M ′. Based on the special soundness of the NI-PoKEModN protocol, Ext can
extract an exponent x′ s.t. x′ mod N = ξ. If x′ ̸= x, then Ext finds two different integer x, x′ s.t.
gx = gx

′
, which breaks the order assumption. If x′ = x, then x mod = ξ. Because πesig = ξ mod N ,

πsig is a valid RSA signature screening proof for the messages M ′.

D.1 Proof for Theorem 4

Proof. The completeness and succinctness come directly from the completeness and succinctness
of CP-SNARK, PoKE∗ protocol, and NIZK-PoKEModN protocol. The special soundness is
the same as the analysis in Theorem 13 based on the fact that each β is a valid signature for the
randomizer α.

We prove the protocol is computational zero-knowledge by building a simulator Sim(˜πsig, c̃u⃗ , Ã,

ξ̃, π̃1, π̃2, π̃3):

• j ∈ [k], vj
$←− {0, 1}, ˜πsig =

∏
∀βj∈β⃗ β

vj
j mod N

• If vj = 1, ui = αj , c̃u⃗ = Commit(u⃗)

• x̃ =
∏
ui∈u⃗ ui, Ã = gx̃, ξ̃ = x̃ mod N

• q = ⌊x̃/ℓ⌋, r̃ = x̃ mod ℓ, Q̃ = gq, π1 = (Q̃, r̃)

• π̃2 ← Π.Prove(crs, cu⃗ , ℓ, r;M
′)

• π̃3 ← NIZK-PoKEModN(g, Ã,N, ξ;x)

Additionally, Sim computes the challenge ℓ in the same way as an honest verifier. We first prove
πsig and ˜πsig are indistinguishable. Because α⃗ is uniformly sampled from [D] where D > N before
the signer generates N , and N is generated by the trusted signer, each element in α⃗ modular N
is uniformly random in [N]. Because each signature is signed by the honest signer, there is a

bilinear mapping between αj mod N and βj mod N , each element in β⃗ modular N is uniformly
random in [N]. Because DMSS assumption holds for the set size k and modulus N , and each

element in β⃗ modular N is uniformly random, ˜πsig is computational indistinguishable from uniform

50

in [N]. Similarly, for the honest prover, the integer ω =
∏

∀βj∈β⃗ β
vj
j mod N is computational

indistinguishable from uniform in ZN . Because πsig =
∏

∀σi∈σ⃗′ σi×ω mod N , πsig is computational
indistinguishable from uniform in ZN and computational indistinguishable from ˜πsig. Similarly, ξ

and ξ̃ are computational indistinguishable.
Because α⃗ is uniformly sampled from [D], D > maxord(G?), and the DMSS assumption holds

for the set size k and modulus Order(G?), ρ =
∏

∀αj∈α⃗ α
vi
i mod Order(G?) is computationally

indistinguishable from uniform in [Order(G?)]. Because

x ≡ ρ×
∏

∀mi∈M ′

(∆ +H(mi)) mod Order(G?),

x mod Order(G?) is computationally indistinguishable from uniform in [Order(G?)]. Similarly,
x̃ mod Order(G?) is also computationally indistinguishable from uniform in [Order(G?)] and
computationally indistinguishable from x mod Order(G?). Because A = gx = gx mod Order(G?),
Ã = gx̃ mod Order(G?), A and Ã are computationally indistinguishable.

Because the exponent x̃ is computationally indistinguishable from x, and PoKE∗ is a determin-

istic protocol, π1 and π̃1 are also computationally indistinguishable. cu⃗ and c̃u⃗ are statistically
indistinguishable based on the perfect hiding property of the commitment scheme. π̃2 and π̃3 can be
simulated independently using the simulator of SNARK and the NIZK-PoKEModN protocol.

Statistical zero-knowledge. While our protocol achieves computational zero knowledge, we point
out that it is possible to achieve statistical zero-knowledge with additional cost. To achieve this, the
signer must generate and sign a large random number of size 2λmaxord(G?) for each individual proof.
This random number is then utilized by the aggregator to randomize A and π1. The computational
burdens placed on the signer while the verifier remain almost consistent between the computational
and statistical zero-knowledge scenarios.

D.2 Applications of signature offloading

On-chain Perpetual trading, as delineated in [93], is an innovative decentralized exchange mech-
anism for cryptocurrencies. This system facilitates the trading of digital assets where users rely
on pricing information provided by trusted sources known as Oracle Price Ticks (OPTs). OPTs
provide signed price tuples in real-time in data streams, which consist of the asset’s current price,
a precise timestamp, and the asset’s name. The transactions are then organized by a prover and
posted on blockchains through a SNARK proof for succinct proof sizes. Inside the SNARK circuit,
each transaction must match the tuple provided and signed by the OPT for the same timestamp.

To resist a single point of failure of OPTs, provers usually collect the prices from at least three
different OPTs. This redundancy means for each transaction, the SNARK circuit checks not only one
signature of the asset owner but also at least three signatures from OPTs. However, this requirement
to validate multiple signatures introduces a significant computational burden on the prover, often
emerging as a system bottleneck. To address this, compromises are made that can affect the precision
and granularity of price data. For instance, provers may simplify computations by verifying within
the zk-SNARK circuit that transactions are bounded by the minimum and maximum prices for the
time interval for a batch of transactions. While this approach reduces the computational load, it
can also attenuate the degree of fairness, as it does not account for the exact prices at the time of
each transaction.

Because the perpetual trading system uses SNARK only for its proof succinctness, all transactions
and price tuples are naturally public, we can solve the prover bottleneck using our basic RSA-

51

offloading protocol to offload all the signatures of OPTs, at the cost of additional constant-sized
proofs.

E Non-interactive PoKEModN and PoKDE variants

Params: security parameter λ, g ∈ G?;
Inputs: C ∈ G?, n ∈ Z, x̂ ∈ [n]; Witness: x ∈ Z;
Claim: C = gx and x mod n = x̂.
NI-PoKEModN
1. Prover computes ℓ← HashToPrime(λ, g, C, n, x̂), q ∈ Z, r ∈ [ℓ·n] such that x = q(ℓ·n)+r.
Prover sends (Q← gq, r) to the verifier.
2. Verifier computes ℓ← HashToPrime(λ, g, C, n, x̂).
Verifier accepts if r ∈ [ℓ · n] and Qℓ·ngr = C holds in G? and r mod n = x̂.
NIZK-PoKEModN with parameter B > maxord(G)2λ

1. Prover samplesm
$←− [B], computesD = gm and π = NI-PoKE∗(g,D;m). Prover computes

ℓ ← HashToPrime(λ, g, C, n, x̂,D, π), the quotient q ∈ Z and residue r ∈ [ℓ · n] such that
x+mn = q(ℓ · n) + r. It sends (D,π,Q← gq, r) to the verifier.
2. Verifier computes ℓ← HashToPrime(λ, g, C, n, x̂,D, π).
Verifier accepts if 1 = NI-PoKE∗(g,D, π), r ∈ [ℓ · n], Qℓ·ngr = C × Dn holds in G? and
r mod n = x̂.

Figure 12: Protocol NI-PoKEModN and NIZK-PoKEModN.

52

Params: security parameter λ, g ∈ G?;
Inputs: C1, C2 ∈ G?, e ∈ Z+; Witness: x ∈ Z;
Claim: C1 = gx, C2 = gx

e

.
NI-PoKDE
1. Prover computes ℓ ← HashToPrime(λ, g, C1, C2, e), r1 = x mod ℓ, q1 = ⌊x/ℓ⌋, Q1 = gq1 ,
r2 = xe mod ℓ, q2 = ⌊xe/ℓ⌋, Q2 = gq2 .
Prover sends (Q1, r1, Q2, r2) to the verifier.
2. Verifier computes ℓ← HashToPrime(λ, g, C1, C2, e), r1 = x mod ℓ.
Verifier accepts if r1, r2 ∈ [ℓ], Qℓ1g

r1 = C1, Q
ℓ
2g
r2 = C2 and re1 mod ℓ = r2.

NIZK-PoKDE with parameters: range of non-smooth randomizer [B = 2λ
2

], S =
max(22λ|G?|, 22λM,B)

1. Prover samples m
$←− [S], computes D = gm, π1 = NI-PoKE(g,D;m),

γ ← HashB(λ, g, C1, C2, e,D, π1), ℓ← HashToPrime(λ, g, C1, C2, e,D, π1), z = xℓ+m+ γ,
E = gz

e

, K = Cℓ
e

2 , ω = ze − (xℓ)e, ω′ = ω/(m+ γ),
F = gω = gω

′(m+γ), π2 = NI-PoE(C2,K, ℓ
e), π3 = NIZK-PoKE2(gm+γ , F ;ω′),

π4 = NI-PoKDE(Cℓ1 ×D × gγ , E, e; z).
Prover sends (D,π1, E,K, F, π2, π3, π4) to the verifier.
2. Verifier computes γ ← HashB(λ, g, C1, C2, e,D, π1),
ℓ← HashToPrime(λ, g, C1, C2, e,D, π1).

Verifier accepts if 1 = NI-PoKE(g,D, π1), E/K
?
= F , 1 = NI-PoE(C2,K, ℓ

e, π2), 1 =
NIZK-PoKE2(D × gγ , F, π3) and 1 = NI-PoKDE(Cℓ1 ×D × gγ , E, e, π4).

Figure 13: Protocol NI-PoKDE and NIZK-PoKDE.

53

	Introduction
	Related Work
	Preliminaries
	Proofs of Modular Exponentiations
	Proof of modular exponent
	Proof of modular double exponent

	Verifiable Time-lock puzzles
	Definitions and Security
	Building Block: Offloading set products and modular exponentiations from SNARK
	Our construction
	Verifiable Time-lock for VRFs/Signatures

	Experimental Evaluation
	Proofs of Modular Exponent
	VTLP Performance
	Offloading Signatures

	Conclusion
	Acknowledgments
	Offloading signatures verifications
	RSA signatures inside SNARK

	Proofs for Section 4
	Proof for Lemma 1
	Proof for the PoKEModN
	Proof for the ZK-PoKEModN
	Proof for PoKDE
	Backgrounds on smooth numbers and proof for Lemma 2
	Proof for ZK-PoKDE
	Non-interactive variants and their security
	Proof for NIZK-PoMoDE

	Security proofs for Section 5
	Proof for Theorem 2
	Proof for Theorem 3

	Security analysis for offloading signature verifications and applications
	Proof for Theorem 4
	Applications of signature offloading

	Non-interactive PoKEModN and PoKDE variants

