
Building Hard Problems by Combining Easy Ones: Revisited

Yael Eisenberg∗ Christopher Havens† Alexis Korb‡ Amit Sahai§

Abstract

We establish the following theorem:
Let O0,O1,R be random functions from {0, 1}n to {0, 1}n, n ∈ N. For all polynomial-query-

bounded distinguishers D making at most q = poly(n) queries to each oracle, there exists a

poly-time oracle simulator Sim(·) and a constant c > 0 such that the probability is negligible,
that is ∣∣∣Pr [D(O0+O1),(O0,O1,O

−1
0 ,O−1

1)(1n) = 1
]
− Pr

[
DR,SimR

(1n) = 1
]∣∣∣ = negl(n).

∗Cornell University. Email: ye45@cornell.edu.
†Department of Computer Science, UCLA; Washington Corrections Center; and Prison Mathematics Project.

Email: chavens28@gmail.com.
‡UCLA. Email: alexiskorb@cs.ucla.edu. ORCID: 0000-0001-6888-5296.
§UCLA. Email: sahai@cs.ucla.edu. ORCID: 0000-0003-2216-9600.

Contents

1 Introduction 3

2 Preliminaries 3

3 Our Result 3

4 References 14

2

1 Introduction

In Theorem 3 of [GS23a, GS23b], Theorem 1.1 (below) was established, where the inverse oracles
are formally defined as O−1

1 : {0, 1}m → {0, 1}n ∪ {⊥}, and O−1
2 : {0, 1}m → {0, 1}n ∪ {⊥}:

Theorem 1.1. Let O1,O2,R are random functions from {0, 1}n to {0, 1}m, m = n+ t(n), m, n, t ∈
N. For all polynomial-query-bounded distinguishers D making at most q = poly(n) queries to each
oracle, there exists a poly-time oracle simulator Sim(·) and a constant c > 0 such that∣∣∣Pr [D(O1+O2),(O1,O2,O

−1
1 ,O−1

2)(1n) = 1
]
− Pr

[
DR,SimR

(1n) = 1
]∣∣∣ ≤ cq

2t
+

6q2

2n+t
.

Note that D’s advantage becomes negligible when t = Ω(log1+ε n), ε > 0

The theorem above trivializes if t = m−n is too small, since we have a term 2t in the denominator
on the right hand side of the bound. Thus, the work of [GS23a] left open whether a meaningful
similar theorem could be established for the case where t was small.

In this paper, we establish that a similar theorem holds even when t = 0, that is, when the
domain and the codomain of the oracles is {0, 1}n.

2 Preliminaries

Definition 2.1 (Polynomial-Query-Bounded Oracle Turing Machine). We say that an oracle Tur-
ing machine T (·) is polynomial-query-bounded if there exists a polynomial p : N→ N such that for
any input x ∈ {0, 1}∗ and for any oracle O, the execution of TO(x) makes at most p(|x|) many
queries to O. ♢

Definition 2.2 (Indifferentiability [MRH04, DKT16]).] Let C : {0, 1}n → {0, 1}m(n) be a construc-
tion having access to an ideal primitive F : {0, 1}p(n) → {0, 1}q(n) and implements a functionality
based on F, where p(n), q(n),m(n) = poly(n). We say that C is indifferentiable from a random
function RO : {0, 1}n → {0, 1}m, if there is a poly-time simulator Sim with oracle access to RO
such that for all polynomial-query-bounded distinguishers D, we have∣∣∣ Pr [DCF ,F

(
1n
)]
− Pr

[
DRO,SimRO(

1n
)] ∣∣∣ (1)

is negligible. ♢

3 Our Result

Formally, the inverse oracles are defined as O−1
0 : {0, 1}n → P({0, 1}n), and O−1

1 : {0, 1}n →
P({0, 1}n). However we will denote the empty set of inverses by ⊥. Below is our main result.

Theorem 3.1. Let O0,O1,R be random functions from {0, 1}n to {0, 1}n, n ∈ N. There exists
a negligible function negl(n) such that: for all polynomial-query-bounded distinguishers D making
at most q = poly(n) queries to each oracle, there exists a poly-time oracle simulator Sim(·) and a
constant c > 0 such that:∣∣∣Pr [D(O0+O1),(O0,O1,O

−1
0 ,O−1

1)(1n) = 1
]
− Pr

[
DR,SimR

(1n) = 1
]∣∣∣ = negl(n).

3

We prove the result using a sequence of intermediate indifferentiable hybrids. To help present
these hybrids, we define several working sets and registries, as well as some corresponding notations
used throughout the paper.

Within our security proof, we will use the following registers:

• Regi will contain (domain, codomain) pairs (a, bi) for oracle Oi. We write Regi(a) = bi to
mean that (a, bi) ∈ Regi.

• FReg will be the registry of determined pairs (a, f(a)), where f(a) = O0(a) + O1(a).

• RListi will be a set of some vectors v. Each vector in RListi has the form v = (⊥, b) if O−1
i (b)

is empty, or v = (a1, a2, ..., ak, b), if {a1, . . . , ak} are the preimages of b under Oi.

• DomListi = {a | ∃b s.t. Regi(a) = b}. We will use αi to denote the number of elements in
DomListi: αi := |DomListi|.

• ImListi will be a set of some codomain values b ∈ {0, 1}n whose preimages have been com-
pletely determined in our experiments. Symbolically, we will maintain the invariant that
ImListi = {b|∃a s.t. RListi(a) = b}. We will use βi to denote the number of elements in
ImListi: βi := |ImListi|.

• CodListi = {b | ∃a s.t. Regi(a) = b}.

Proof of Theorem 3.1. We present the proof using a hybrid argument. For notational simplicity,
we use (LOrai,ROrai) to denote the two oracles accessed by D in Hybrid i.

• Hybrid H1

This represents the case where D interacts with oracles (LOra1,ROra1) = (O0+O1, (O0,O
−1
0 ,O1,O

−1
1)).

– LOra1(a): Returns O0(a) + O1(a), where O0 and O1 are the real world random oracles.

– ROra1(a): Answers queries of the form O0(a), O
−1
0 (b), O1(a), O

−1
1 (b) according to the

corresponding real world random oracles O0 and O1.

• Hybrid H2

This is the same as the previous hybrid except that we record oracle queries in the corre-
sponding registers.

– LOra2(a):

1. Stores (a,O0(a)) in Reg0 and (a,O1(a)) in Reg1.

2. Returns O0(a) + O1(a).

– ROra2(a):

∗ On queries of the form Oi(a):

1. Set bi = Oi(a) and store (a, bi) in Regi
2. Run FReact2(i, (a, bi))

3. Return bi.

∗ On queries of the form O−1
i (b):

1. Compute the set S of all a ∈ {0, 1}n such that Oi(a) = b

2. ImListi = ImListi ∪ {b}
3. Return the set S. (Note that if S = ∅ then ⊥ is returned.)

We define:

4

FReact2(i, (a, bi)):

1. If (a, b1−i) /∈ Reg1−i for any b1−i.
(i.e. No query of the form O1−i(a) has been made),

(a) Set b1−i = O1−i(a) and store (a, b1−i) in Reg1−i

Lemma 3.2. For all n ∈ N and all polynomial-query-bounded oracle Turing Machines D,

Pr[DLOra1,ROra1(1n) = 1] = Pr[DLOra2,ROra2(1n) = 1]

Proof. It’s straightforward to see that H2 and H1 are identical since we are simply recording
additional information that does not affect the output of the left and right oracles.

• Hybrid H3

In this hybrid, we begin perfect but inefficient simulations of O0 and O1. Thus, in this hybrid,
there are no longer any oracles O0 and O1, rather they are simulated as described below.

– LOra3(a):

1. Below, all calls to O0 and O1 are implemented as shown in ROra3 below.

2. Stores (a,O0(a)) in Reg0 and (a,O1(a)) in Reg1.

3. Returns O0(a) + O1(a).

– ROra3 begins a simulation and introduces several registries and sets:

∗ On queries of the form Oi(a):

1. If a ∈ DomListi:

(a) BEGIN FReact3(i, (a,Regi(a)))

(b) Return bi = Regi(a)

2. Else:

(a) bi
$← {0, 1}n \ ImListi

(b) Set Regi(a) = bi

(c) BEGIN FReact3(i, (a, bi))

(d) Return bi

∗ On queries of the form O−1
i (b)

1. If b ∈ ImListi:

(a) Return v ∈ RListi with b as a final component

2. Else if b ∈ CodListi \ ImListi:

(a) Let {c1, c2, ..., cd} be the set of all elements x such that Regi(x) = b

(b) Choose k from Bin(2n − αi, (2
n − βi)

−1)

(c) Choose k additional domain elements aℓ ∈ {0, 1}n \ DomListi uniformly at
random, without replacement

(d) Set Regi(aℓ) = b for 1 ⩽ ℓ ⩽ k.

(e) RListi = RListi ∪ {(c1, c2, ..., cd, a1, a2, ..., ak, b)}
(f) ImListi = ImListi ∪ {b}
(g) Return (c1, c2, ..., cd, a1, a2, ..., ak, b)

3. Else (if b is neither in ImListi nor in CodListi):

(a) Choose k from Bin(2n − αi, (2
n − βi)

−1)

5

(b) If k = 0:

i. RListi = RListi ∪ {(⊥, b)}
ii. ImListi = ImListi ∪ {b}
iii. Return (⊥, b)

(c) Else: (if k > 0)

i. Choose k domain elements aℓ ∈ {0, 1}n \ DomListi uniformly at random,
without replacement

ii. Set Regi(aℓ) = b for 1 ⩽ ℓ ⩽ k

iii. RListi = RListi ∪ {(a1, a2, ..., ak, b)}
iv. ImListi = ImListi ∪ {b}
v. Return (a1, a2, ..., ak, b)

We define:

FReact3(i, (a, bi)): Assume that Oi(a) has already been established and stored in Regi.

1. If (a, c) ̸∈ FReg, for any c:

(a) If Reg1−i(a) exists:

i. Set b1−i = Reg1−i(a)

(b) Else:

i. Set Reg1−i(a) to a random element from {0, 1}n \ ImList1−i

ii. Set b1−i = Reg1−i(a)

2. Set c = b0 + b1

3. FReg = FReg ∪ {(a, c)}

We will use the following lemmas to argue that this hybrid is a perfect simulation of the previous
hybrid.

Lemma 3.3. The number of oracles with domain {0, 1}n \ DomList and range {0, 1} \ ImList is
(2n − β)2

n−α.

Proof. There are 2n codomain elements of which β have complete preimages, therefore there are
2n − β remaining codomain elements. Similarly, there are 2n − α remaining domain elements.
Therefore, the 2n−α remaining domain elements must be mapped to the 2n−β remaining codomain
values, which can be done in (2n − β)2

n−α ways.

Lemma 3.4. Suppose that in H2, no previous query Oi or O1−i on x has been made. On a query
Oi(x) or O1−i(x), the output will be one of the values yi ∈ {0, 1}n \ ImListi or y1−i ∈ {0, 1}n \

ImList1−i. The probability that Oi(x) = yi and O1−i(x) = y1−i is equal to
1

(2n − βi)(2n − β1−i)
.

Proof. By Lemma 3.3, there are (2n−βi)2
n−αi remaining oracles that are consistent with all queries

already made.

Now set Oi(x) = yi for some fixed value yi ∈ {0, 1}n \ ImListi. Of the (2n − βi)
2n−αi possible

6

oracles, there are still (2n − βi)
2n−αi−1 remaining oracles after choosing yi. Thus, the probability

that Oi(x) = yi is
(2n − βi)

2n−αi−1

(2n − βi)2
n−αi

=
1

2n − βi
.

For O1−i, there are a total of (2n−β1−i)
2n−α1−i possible oracles (by Lemma 3.3). Since no previous

query Oi on x has been made, Reg1−i(x) is set to O1−i(x) from the FReact3(x, yi) process. After
setting O1−i(x) = y1−i, there are (2n − β1−i)

2n−α1−i−1 remaining oracles. Thus, the probability
that O1−i(x) = y1−i is

(2n − β1−i)
2n−α1−i−1

(2n − β1−i)2
n−α1−i

=
1

2n − β1−i
.

Finally, we have

Pr[Oi(x) = yi] and Pr[O1−i(x) = y1−i] =
1

2n − βi
× 1

2n − β1−i

=
1

(2n − βi)(2n − β1−i)

Lemma 3.5. Let O−1
i (y) be a backwards query in H2 where no such query has yet been made.

Suppose that there exists a set {x1, x2, . . . xd} such that Regi(xℓ) = y for 1 ⩽ ℓ ⩽ d.

The conditional probability that y has ℓ + d preimages given that αi = |Regi| and βi = |ImListi| is
equal to (

2n − αi

ℓ

)(
1

2n − βi

)ℓ(
1−

1

2n − βi

)2n−αi−ℓ

.

Proof. Observe that there are
(
2n−αi

ℓ

)
subsets of exactly ℓ elements taken from a domain of size

2n−αi. There are now 2n−αi− ℓ remaining domain values which can be mapped to the remaining
2n − βi − 1 codomain values. This can be done in (2n − βi − 1)2

n−αi−ℓ ways, making(
2n − αi

ℓ

)
(2n − βi − 1)2

n−αi−ℓ

oracles for which there are exactly ℓ preimages for O−1
i (y).

The probability that {x1, x2, . . . , xd, x1+d, . . . , xℓ+d} is exactly equal to O−1
i (y), is then(

2n−αi
ℓ

)
(2n − βi − 1)2

n−αi−ℓ

(2n − βi)2
n−αi

=

(
2n−αi

ℓ

)
(2n − βi − 1)2

n−αi−ℓ

(2n − βi)ℓ(2n − βi)2
n−αi−ℓ

=

(
2n − αi

ℓ

)(
1

2n − βi

)ℓ(
1−

1

2n − βi

)2n−αi−ℓ

.

Without loss of generality, assume that whenever the adversary A makes a forward query, A
immediately makes the corresponding backwards query.

Our goal is to show that:

7

1) All probabilities and conditional probabilities are exactly the same in H2 as in H3.

2) The number of remaining choices for oracles O0 and O1 is given by Lemma 3.3.

We will induct on the number q of queries.

Let q = 0. In H2 on a forward query, we apply Lemma 3.4 to obtain the probability

Pr
[
Oi(x) = yi and O1−i(x) = y1−i

]
=

1(
2n − βi

)(
2n − β1−i

) =
1

22n
.

In H3 on a forward query, the probability that yi
$← {0, 1}n \ ImListi is equal to

Pr
[
yi
]
=

1

2n − |ImListi|
=

1

2n
.

The FReact3(x, yi) process then simulates the query O1−i(x), which gives the value y1−i with
probability

Pr
[
y1−i

]
=

1

2n − |ImList1−i|
=

1

2n
.

Thus,

Pr
[
yi
]
· Pr

[
y1−i

]
=

1(
2n
)2 =

1

22n
.

In other words, the distributions in H2 and H3 on a forward query when q = 0 is identical.
On a backwards query O−1(y) in H2, we wish to find the probability that y has k ⩾ 0 preimages.

There are a total of
(
2n
)2n

oracles. There are
(
2n
k

)
ways for which we can choose k domain elements.

This leaves a remaining 2n − k domain elements to be mapped to the remaining 2n − 1 codomain
elements, for which there are (2n − 1)2

n−k such oracles. Thus, there are(
2n

k

)(
2n − 1

)2n−k

oracles for which y has k preimages, and therefore

Pr[y has k preimages] =

(
2n

k

)(
2n − 1

)2n−k(
2n
)2n

=

(
2n

k

)(
2n − 1

)2n−k(
2n
)2n−k(

2n
)k

=

(
2n

k

)(
1

2n

)k(
1−

1

2n

)2n−k

.

In H3, by construction and the definition of the Binomial distribution, since αi = βi = 0, we have

Pr[y has k preimages] =

(
2n

k

)(
1

2n

)k(
1−

1

2n

)2n−k

.

Thus, when q = 0, the distributions in H2 and H3 are identical.

Now suppose that after q = ℓ−1 queries, 1) is satisfied so that H2 and H3 have the same probabilities

8

and conditional probabilities.

By Lemma 3.4, on a forward query in H2, we have

Pr[Oi(x) = yi and O1−i(x) = y1−i] =
1(

2n − βi
)
(2n − β1−i)

In H3, the probability that yi
$← {0, 1}n \ ImListi is equal to

Pr(yi) =
1

2n − |ImListi|
=

1

2n − βi
.

The FReact3(x, yi) process then simulates the query O1−i(x), which gives, in a similar way, the
value y1−i with probability

Pr(y1−i) =
1

2n − |ImList1−i|
=

1

2n − β1−i
.

Thus,

Pr[Oi(x) = yi and O1−i(x) = y1−i] = Pr(yi) Pr(y1−i)

=
1

(2n − βi)(2n − β1−i)
,

showing that the distributions in H2 and H3 on a forward query after q queries are identical.
On a backwards query O−1(y) in H2, for 1 ⩽ ℓ ⩽ k, denote by kq the number of added domain
values in Regi in the q-th query. Then we have

α = k1 + k2 + ...+ kℓ−1

elements taken from the domain after q = ℓ− 1 queries. Since there ℓ− 1 queries, then there are at
most β = ℓ− 1 elements in ImList. By Lemma 3.3, the number of oracles with our current α and β
is (2n−β)2

n−α, for the given y. Since there are a total of 2n−α domain elements, then choosing an
additional kq domain elements from {0, 1}n \ DomList can be done in

(
2n−α
kq

)
ways. The remaining

2n−α−kq domain elements must then be mapped to the remaining 2n−β−1 codomain elements,
for which there are (2n − β − 1)2

n−α−kq such oracles. Thus, there are(
2n − α

kq

)
(2n − β − 1)2

n−α−kq

oracles for which y has kq preimages. The probability that y has k preimages is:(
2n−α
kq

)
(2n − β − 1)2

n−α−kq

(2n − β)2n−α

=

(
2n−α
kq

)
(2n − β − 1)2

n−α−kq

(2n − β)2
n−α−kq(2n − β)kq

=

(
2n − α

kq

)(
1

2n − β

)kq(
1−

1

2n − β

)2n−α−kq

.

9

In H3, we have the identical probability by construction using the definition of the Bionomial
distribution. Therefore, the distributions in H2 and H3 are identical, i.e.

Pr[DLOra2,ROra2(1n) = 1] = Pr[DLOra3,ROra3(1n) = 1].

In the following hybrid we will make our simulation efficient, at the cost of a small probability
of error.

• Hybrid H4

– LOra4 remains identical to LOra3.

– ROra4 remains identical to ROra3 with the difference being that abort conditions are
introduced into O and O−1:

∗ On queries of the form Oi(a):

1. If a ∈ DomListi, then

(a) BEGIN FReact4(a,Regi(a))

(b) Return bi = Regi(a)

2. Else:

(a) bi
$← {0, 1}n \ ImListi

(b) If bi ∈ CodListi, then ABORT

(c) Set Regi(a) = bi

(d) BEGIN FReact4(a, bi)

(e) Return bi

∗ On queries of the form O−1
i (b)

1. If b ∈ ImListi:

(a) Return v ∈ RListi with b as a final component.

2. Else if b ∈ CodListi \ ImListi:

(a) Let {c1, c2, ..., cd} be the set of all elements x such that Regi(x) = b

(b) Choose k from Bin(2n − αi, (2
n − βi)

−1)

(c) If k > n : then ABORT.

(d) Choose k additional domain elements aℓ ∈ {0, 1}n \ DomListi uniformly at
random, without replacement

(e) Set Regi(aℓ) = b for 1 ⩽ ℓ ⩽ k.

(f) RListi = RListi ∪ {(c1, c2, ..., cd, a1, a2, ..., ak, b)}
(g) ImListi = ImListi ∪ {b}
(h) Return (c1, c2, ..., cd, a1, a2, ..., ak, b)

∗ Else:

1. Choose k from Bin(2n − αi, (2
n − βi)

−1)

2. If k = 0, then:

(a) RListi = RListi ∪ {(⊥, b)}
(b) ImListi = ImListi ∪ {b}
(c) Return (⊥, b)

3. If k > n: then ABORT

4. Else:

10

(a) Choose k domain elements aℓ ∈ {0, 1}n/DomListi uniformly at random, with-
out replacement

(b) Set Regi(aℓ) = b for 1 ⩽ ℓ ⩽ k

(c) RListi = RListi ∪ {(a1, a2, ..., ak, b)}
(d) ImListi = ImListi ∪ {b}
(e) Return (a1, a2, ..., ak, b)

In the algorithm above, FReact4 remains identical to FReact3. To calculate the transitional prob-
ability, we must only show that in H4, a forward query Oi(x) aborts with negligible probability, as
hybrid H4 is otherwise identical to H3.

The abort condition is triggered when bi ∈ CodListi after being randomly sampled from {0, 1}n \
ImListi. Note that |CodListi| is bounded above by the number q of queries. Thus, |CodListi| ⩽ q so
that

Pr[bi ∈ CodListi] ⩽
q

2n
.

Next, we want to show that, on a backwards query in H3 and H4, the indistinguishability advantage
is negligible. In H3, we have a perfect simulation, but in H4, we introduce abort conditions, which
affect the distribution. It will suffice to show that the sum of probabilities in H2 for n+1 ⩽ k ⩽ 2n−α
is negligible as this is the indistinguishability advantage in H2 and H3.

For n+ 1 ⩽ k ⩽ 2n − α, we have:(
2n − α

k

)(
1

2n − β

)k(
1−

1

2n − β

)2n−α−k

(2)

<

(
2n − α

k

)(
1

2n − β

)k

In general, we have α ⩾ β, so that by using Sterling’s formula, we have

⩽

(
2n − β

k

)(
1

2n − β

)k

<

(
e
(
2n − β

)
k

)k(
1

2n − β

)k

=

(
e

k

)k

(3)

<

(
1

2

)k

=
1

2k
. (4)

11

Summing (2) over all possible k, we obtain by (4)

2n−α∑
k=n+1

(
2n − α

k

)(
1

2n − β

)k(
1−

1

2n − β

)2n−α−k

(5)

<

2n−α∑
k=n+1

1

2k
(6)

=
(1/2)2

n−α+1 − (1/2)n+1

(1/2)− 1

=
1

2n
−

1

22n−α
=

1

2n

(
1−

1

22n−α−n

)

<
1

2n
,

showing that the indistinguishability advantage is negligible, i.e.∣∣∣Pr[DLOra3,ROra3(1n) = 1]− Pr[DLOra4,ROra4(1n) = 1]
∣∣∣ ≤ negl(n).

Finally, we will link to the random function R through the construction of Hybrid H5.

• Hybrid H5

– LOra5 remains identical to LOra4.

– ROra5 introduces two separate abort conditions, one in the FReact5 process and the
other when Oi(a) = b ∈ ImListi.

∗ On queries of the form Oi(a):

1. If a ∈ DomListi:

(a) BEGIN FReact4(a,Regi(a))

(b) Return bi = Regi(a)

2. Else:

(a) bi
$← {0, 1}n

(b) If bi ∈ ImListi:

i. ABORT

(c) Else:

i. Set Regi(a) = bi
ii. BEGIN FReact4(a, bi)

iii. Return bi

We define:

FReact5: Assume that Oi(a) has already been established and stored in Regi.

1. If for some c ∈ {0, 1}n, we have (a, c) ∈ FReg:

(a) Set Reg1−i(a) := R(a)− Regi(a)

(b) Return TRUE

12

2. Else:

(a) Send a as a query to the random function R.

(b) If R(a)− Regi(a) ∈ CodList1−i:

i. CABORT

(c) Else:

i. Set Reg1−i := R(a)− Regi(a)

ii. FReg = FReg ∪ {(a,R(a))}

Let x be the distribution for H2 and H3:

x =
2n−α∑
k=n+1

(
2n − α

k

)(
1

2n − β

)k(
1−

1

2n − β

)2n−α−k

Recall that the distribution for H4 is less than
∣∣x− 1

2n

∣∣.
For H5, we incorporate two abort conditions:

• FReact5 triggers a CABORT, which happens with probability q
2n .

• if bi ∈ ImListi, then we ABORT which happens with probability βi

2n .

The sum of the probabilities is q+βi

2n .
Next, to find the difference in distribution between H4 and H5, we have∣∣∣∣(x− 1

2n

)
−
(
x− q + βi

2n

)∣∣∣∣ = q + βi − 1

2n
⩽

2q − 1

2n

since βi ⩽ q. This indicates that the indistuinguishablility advantage between H4 and H5 is negli-
gible, i.e. ∣∣∣Pr[DLOra4,ROra4(1n) = 1]− Pr[DLOra5,ROra5(1n) = 1]

∣∣∣ ≤ negl(n).

Combining all the hybrids completes the proof.

13

4 References

[DKT16] Dana Dachman-Soled, Jonathan Katz, and Aishwarya Thiruvengadam. 10-round Feistel
is indifferentiable from an ideal cipher. In Marc Fischlin and Jean-Sébastien Coron,
editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 649–678, May 2016.

[GS23a] Riddhi Ghosal and Amit Sahai. Building hard problems by combining easy ones. In IEEE
International Symposium on Information Theory, ISIT 2023, Taipei, Taiwan, June 25-
30, 2023, pages 1770–1775. IEEE, 2023.

[GS23b] Riddhi Ghosal and Amit Sahai. Building hard problems by combining easy ones. Cryp-
tology ePrint Archive, Paper 2023/1088, 2023.

[MRH04] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, impossibil-
ity results on reductions, and applications to the random oracle methodology. In Moni
Naor, editor, TCC 2004, volume 2951 of LNCS, pages 21–39, February 2004.

14

	Introduction
	Preliminaries
	Our Result
	References

