
A Robust Variant of ChaCha20-Poly1305

Tim Beyne, Yu Long Chen, and Michiel Verbauwhede

COSIC, KU Leuven, Belgium
tim.beyne,yulong.chen,michiel.verbauwhede@esat.kuleuven.be

Abstract. The ChaCha20-Poly1305 AEAD scheme is widely used as
an alternative for AES-GCM on platforms without AES hardware in-
structions. Although recent analysis by Degabriele et al. shows that
ChaCha20-Poly1305 provides adequate security in the conventional multi-
user model, the construction is totally broken when a single nonce is
repeated – a real-word scenario that can occur due to faulty implemen-
tations or the desire to use random nonces.
We present a new nonce-misuse resistant and key-committing authenti-
cated encryption scheme, called ChaCha20-Poly1305-PSIV, that is based
on carefully combining the ChaCha20-Poly1305 building blocks into the
NSIV paradigm proposed by Peyrin and Seurin (CRYPTO 2016) with-
out performance loss. We analyze the security of the underlying mode
PSIV in the multi-user faulty-nonce model assuming that the underlying
permutation is ideal, and prove its key-committing security in the cmt-
1 model. Rust and C implementations are provided, and benchmarks
confirm that performance is comparable to the ChaCha20-Poly1305 im-
plementation in libsodium.
In terms of security and efficiency (without hardware support), our pro-
posal compares favorably to AES-GCM-SIV. Since we reuse the ChaCha20-
Poly1305 building blocks, we expect ChaCha20-Poly1305-PSIV to benefit
from existing analysis and to be easy to deploy in practice.

Keywords: Authenticated encryption · Nonce-misuse resistance · Key commit-
ment · ChaCha20-Poly1305

1 Introduction

Many applications rely on symmetric-key cryptography to provide a combina-
tion of confidentiality and integrity. This has led to the formalization of a single
security notion that combines both of these properties: authenticated encryp-
tion [3, 30].

Due to its excellent performance, AES-GCM [25] is one of the most widely
used authenticated encryption modes. For example, on platforms with hardware
support for AES, it is often the default choice for TLS. However, native AES
instructions are not always available. This led Langley to propose ChaCha20-
Poly1305 [23, 32] as an alternative to AES-GCM with often better software per-
formance on platforms without AES instructions. It combines the Poly1305 mes-
sage authentication code [4] and the ChaCha20 encryption scheme [5], both of

which are due to Bernstein. Its competitive performance derives from extensive
use of instruction-level parallelism on architectures with SIMD instructions such
as AVX. As of TLS 1.3, implementations are strongly recommended to support
ChaCha20-Poly1305 [29, §9.1].

Both AES-GCM and ChaCha20-Poly1305 are nonce-based authenticated en-
cryption schemes, meaning that the encryption and decryption operations take
an additional input (the nonce) that should be unique in normal operation. Even
a single nonce repetition leads to universal forgery attacks and, if one of the two
messages encrypted with the same nonce is known, plaintext recovery. How-
ever, ensuring the uniqueness of nonces implies that the implementation must
be stateful. This is not always feasible, for example when several devices share
the same key but are unable to synchronize reliably. Faulty implementations can
also lead to nonce repetitions. For example, in an Internet-wide scan, Böck et
al. [6] found several HTTPS servers that always use the same nonce and many
others that use random 64-bit nonces. Due to the birthday problem, the latter
approach severely limits the number of messages that can be safely encrypted.

To make authenticated encryption more robust to nonce repetitions, Rog-
away and Shrimpton [31] introduced the notion of nonce-misuse security. Sev-
eral constructions achieving this security goal were subsequently proposed. The
CAESAR portfolio for “defense in depth” includes two modes with some form
of nonce-misuse resistance: Deoxys-II and COLM. They are both based on vari-
ants of the AES, making them suitable alternatives for AES-GCM. During but
independently of the CAESAR competition, Gueron and Lindell proposed the
nonce-misuse resistant mode AES-GCM-SIV. A revised version of their original
proposal has been standardized for use in IETF protocols [17].

In addition to nonce reuse, there is another way in which incorrect usage of
authenticated encryption has led to vulnerabilities. Most authenticated encryp-
tion schemes are not key-committing: a given ciphertext can decrypt to a valid
plaintext for two different keys, and finding such a key pair is often computa-
tionally feasible. However, users sometimes implicitly rely on key-commitment.
For example, at Crypto 2017, Grubbs et al. studied the importance of key-
commitment for the message franking system used by Facebook Messenger for
abuse reporting. At Crypto 2018 Dodis et al. [13] demonstrated a vulnerabil-
ity in the same system, based on the lack of key-commitment in AES-GCM. In
addition, Len, Grubbs and Ristenpart [24] have introduced ‘partitioning oracle
attacks’ on AES-GCM and ChaCha20-Poly1305. Further attacks against the key-
commitment security of AES-GCM, AES-GCM-SIV and ChaCha20-Poly1305 were
presented by Albertini et al. [1].

1.1 Related work

Most nonce-misuse resistant authenticated encryption schemes, including Deoxys-
II and AES-GCM-SIV, are based on the synthetic initialization vector (SIV) ap-
proach of Rogaway and Shrimpton [31]. This approach involves two passes over
the message: a first pass to produce the tag, and a second pass to encrypt the
message. The tag is used as the initialization vector of the encryption scheme in

2

the second pass. Two-pass schemes typically result in lower encryption perfor-
mance. For example, AES-GCM-SIV encryption requires four additional AES calls
per message compared to AES-GCM. However, even for long messages, encryp-
tion could be significantly slower in practice because AES-GCM implementations
can interleave the evaluation of the universal hash function and AES to exploit
instruction-level parallelism. COLM does not follow the SIV approach and needs
only a single pass, but it aims for the weaker notion of online nonce-misuse
resistance [15,19].

The generic security of AES-GCM and AES-GCM-SIV has been extensively
analyzed. The AES-GCM-SIV proposal [18] included a security analysis in the
standard model (reduction to the prp-security of AES), but several flaws were
pointed out by Iwata and Seurin [21]. As a result, limits on the number of
messages that can be safely encrypted turned out to be quite stringent. Bose et
al. [7] provide a refined multi-user security analysis.

Until recently, the security analysis of ChaCha20-Poly1305 had received rela-
tively little attention. A single-user standard model proof was claimed by Proc-
ter [28] but it was shown to be flawed [11,20]. Degabriele et al. also provide the
first detailed multi-user security analysis in the ideal permutation model. Since
ChaCha20-Poly1305 is based on a public permutation in feed forward, the ideal
permutation model is more appropriate than the standard model. If qv verifica-
tion attempts can be made and the combination of the associated data and the
message consists of ℓ blocks, then the advantage upper bound is dominated by
ℓqv/2

103.
As AES-GCM and AES-GCM-SIV are not key-committing, Bellare and Hoang [2]

have proposed secure variants of these schemes at Eurocrypt 2022. Although
their modifications are sufficient to achieve key-committing security up to the
birthday bound in the tag length, the performance impact for short messages is
not completely clear as no implementation is available.

1.2 Contributions

We propose the PSIV construction, a nonce-misuse resistant and key-committing
authenticated encryption mode based on Poly1305 and the ChaCha20 permuta-
tion, with the same interface and performance as ChaCha20-Poly1305. The con-
struction is based on the NSIV approach [27], a variant of the SIV approach
where the encryption scheme is based on the tag and the input nonce. However,
for ChaCha20-Poly1305-PSIV, we are able to avoid any additional calls to the
ChaCha20 permutation by exploiting its large state size. In fact, when part of the
associated data is constant, performance is better than for ChaCha20-Poly1305.

To support our security claims, we provide a complete multi-user security
analysis in the ideal permutation model that takes into account the number
of repeated nonces per user. To do this, we rely on the “faulty nonce model”
formalized by Dutta et al. [14]. In the faulty nonce model, one labels a query as
“faulty” if it is performed for a repeated nonce. This contrasts with the older
multicollision model, which bounds the number of times each nonce can be used.
We believe that the faulty nonce model is more realistic for queries made by the

3

same user. For example, when a counter is implemented in an aperiodic manner
(such as timely nonces [6] used in TLS 1.2), a simple reset does not lead to a
large number of faulty nonces. An interesting aspect of our proof is that the
nonce-misuse analysis combines the multicollision (for queries across different
users) and faulty-nonce (for queries made by the same user) approaches. To the
best of our knowledge, this is the first time both models have been combined to
obtain a bound in the faulty-nonce model.

In the nonce-respecting setting, the security of PSIV is dominated by the same
term (qvℓ/2

103) as ChaCha20-Poly1305. The analysis shows that our construction
provides significantly more security against nonce-misuse than AES-GCM-SIV,
leading to less stringent limits on the number of messages that can be safely
encrypted. In addition, we show that it is safe to use the construction with
random nonces (both 96 bit and 64 bit).

ChaCha20-Poly1305-PSIV is shown to be key-committing up to the birthday
bound in the tag length, which is best-possible. We use the security definition
that was introduced by Bellare and Hoang [2]. Unlike ChaCha20-Poly1305, we are
able to achieve key-commitment at no additional cost because our construction
protects the output of Poly1305 using the ChaCha20 permutation with a feed-
forward. Another advantage of our construction is that it is straighforward to
increase the tag length.

In general, ChaCha20-Poly1305-PSIV offers better security with no perfor-
mance loss. Since existing implementations of ChaCha20-Poly1305 can easily be
adapted to implement the PSIV construction, we argue that ChaCha20-Poly1305
should be widely replaced by ChaCha20-Poly1305-PSIV. Moreover, there are ap-
plications where replacing ChaCha20-Poly1305 by ChaCha20-Poly1305-PSIV is
necessary to avoid potential security risks such as nonce reuse when synchro-
nization is not possible or when key-commitment is required. In particular,
ChaCha20-Poly1305-PSIV currently appears to be the only construction that
reuses the components of a widely used construction to achieve key-committing
security, whereas other existing constructions (including ChaCha20-Poly1305)
were shown to be insecure with potential real world attacks on some appli-
cations [1, 16, 24]. Table 1 compares ChaCha20-Poly1305-PSIV with widely used
authenticated encryption modes for general applications.

4

Table 1: Comparison of ChaCha20-Poly1305-PSIV with widely used authenticated
encryption modes for general applications. Only the leading term of the security
bound is given, with ℓ the message length and q the total number of encryption
and decryption queries.

security
(qv = 1)

primitive
calls

nonce
misuse

key
commitment

note

AES-GCM ℓ/263 ℓ+ 1 ✗ ✗ [25]

AES-GCM-SIV qℓ2/2129 ℓ+ 1 + 4� ✓ ✗ [18]
ChaCha20-Poly1305 ℓ/2103 ℓ+ 1 ✗ ✗ [23, 32]
ChaCha20-Poly1305-PSIV ℓ/2103 ℓ+ 1 ✓ ✓ §3

� Four additonal calls for each fresh nonce.

A reference implementation in Rust is provided as supplementary material
and is available online1. To support our performance claims, we also provide
an optimized C implementation that is compatible with libsodium. Benchmarks
indicate that performance is comparable to the ChaCha20-Poly1305 implemen-
tation of libsodium.

Overview Section 2 introduces the security notions that are used in this work
and reviews the main technical results that our security analysis relies on (the
H-coefficient technique and a balls-into-bins lemma). We introduce our construc-
tion PSIV in Section 3 and explain all important design choices. Its multi-user
security is discussed in Section 4 and compared to that of ChaCha20-Poly1305
in the nonce-respecting setting. Furthermore, nonce-misuse security is exam-
ined in detail and the impact of using random nonces is analyzed. The security
bounds that Section 4 relies on are proven in Section 5. Key-committing se-
curity is proven in Section 6. Finally, Section 7 discusses some aspects of the
implementation and contains benchmarking results.

2 Preliminaries

The set of bit strings of length n ≥ 1 is denoted by {0, 1}n. Furthermore, {0, 1}∗
denotes the set of all arbitrary-length bit strings. Let X be a bit string. The
length of X is denoted by |X|, and the size of X in n-bit blocks by |X|n. The
empty string is assigned a size of one so that |X|n = max(1, ⌊|X| /n⌋)). The
concatenation of X and a second bitstring Y is another bitstring X∥Y . For
X,Y ∈ {0, 1}n with |X| = |Y |, the bitstring X ⊕ Y ∈ {0, 1}n is their bitwise
exclusive-or. We define a truncation function truncn(X) that returns the first n
bits of X, and trunc∗n(X) that returns the last n bits of X. Finally, if |X| and |Y |
are multiples of 32, then X + Y and X − Y denote the strings that result from

1 https://github.com/MichielVerbauwhede/ChaCha20-Poly1305-PSIV

5

individually adding and subtracting the 32-bit subwords of X and Y modulo
232, where each subword is interpreted as an unsigned integer.

For a finite set S, we denote by S ←$ S that S is a random variable uniformly
distributed on S. In particular, let Perm(n) be the set of all permutations on
{0, 1}n. All constructions in this paper are based on a single public permutation.
For the security proof, this permutation is assumed to be uniform random: π ←$

Perm(n).
Adversaries are algorithms with access to oracles. The result of running al-

gorithm A with oracle O is denoted by AO. A distinguisher is an adversary D
that attempts to distinguish between oracles O and P by returning zero or one.
The advantage of a distinguisher D is

∆D
(
O ;P

)
=

∣∣Pr[DO = 1]− Pr[DP = 1]
∣∣ .

2.1 Nonce-Based MAC Algorithms

A nonce-based message authentication code (MAC) F is a family of functions
FK : {0, 1}b × {0, 1}∗ → {0, 1}t, one for every key K ∈ {0, 1}k. It maps a b-bit
nonce and a message to a tag.

The verification oracle VerK : {0, 1}b×{0, 1}∗×{0, 1}t → {0, 1} takes as input
a nonce, message, and tag and outputs 1 if the tag is correct and 0 otherwise. The
rejection oracle, which returns zero for every nonce, message and tag, is denoted
by Rej. In the following, it is assumed that both FK and VerK are based on the
same primitive π.

We use the pseudorandom mac security notion introduced by Jean et al. [22].
The multi-user pseudorandom message authentication code (mu-mac) security
of F is measured by considering an adversary with access to multiple verification
oracles with random keys and the primitive oracle. The goal of the adversary is
to forge a tag for a new message. This security notion can be quantified in terms
of the advantage of a distinguisher D. Let K1, . . . ,Ku be u ≥ 1 uniform random
keys and let $1, . . . , $u be oracles that return uniform random outputs of length
t. The mu-mac advantage of D is equal to

Advmu-mac
F (D) = ∆D

(
(FKj

,VerKj
)uj=1, π

± ; ($j ,Rej)
u
j=1, π

±
)
.

The notation π± indicates that D has bi-directional access to π. For u = 1,
this definition reduces to the single-user security of F and the corresponding
advantage is denoted by Advmac

F (D).
The distinguisher D is non-trivial if, for every j, it never makes a query to its

jth verification oracle with the result of a previous query to its jth MAC oracle.
A MAC query to the jth user is a faulty query if D has already queried FKj

with the same nonce and a different message. Suppose that D makes at most
µ faulty MAC queries. The distinguisher D is called nonce-respecting if µ = 0,
and nonce-misusing if µ ≥ 1. We stress that D may always repeat nonces in its
verification queries.

6

2.2 Nonce-and-IV-Based Encryption Schemes

A nonce-and-IV-based encryption mode Π = (E,D) consists of a family of en-
cryption and decryption functions EK and DK respectively, one for every key
K ∈ {0, 1}k. The encryption function EK takes a b-bit nonce N , a t-bit uniform
random initialization vector T , and an arbitrary-length message M , and outputs
a ciphertext C = EK(N,T,M) ∈ {0, 1}|M |. The decryption function DK takes
a b-bit nonce N , a t-bit IV T , an arbitrary-length ciphertext C, and outputs a
message M = DK(N,T,C) ∈ {0, 1}|C|. In the following, it is assumed that Π is
based on the primitive π.

Let E$
K denote the probabilistic algorithm which takes as input (K,N,M) ∈

{0, 1}k×{0, 1}b×{0, 1}∗, internally generates a uniformly random T ←$ {0, 1}t,
computes C = EK(N,T,M), and outputs (T,C) ∈ {0, 1}t × {0, 1}∗.

We rely on the nivE security notion introduced by Peyrin and Seurin [27].
The multi-user nonce-and-IV-based encryption security of Π can be measured
in terms of the advantage of a distinguisher D. Let K1, . . . ,Ku be u ≥ 1 uniform
random keys and $1, . . . , $u oracles that return a uniform random output of
length |M | given an input nonce N and an arbitrarily-length message M . The
mu-nivE advantage of D is equal to

Advmu-nivE
Π (D) = ∆D

(
(E$

Kj
)uj=1, π

± ; ($j)
u
j=1, π

±
)
.

Note that nivE security only considers forward construction queries (the en-
cryption oracles). The case u = 1 corresponds to single-user security and the
corresponding advantage is denoted by AdvnivE

Π (D).

2.3 Nonce-Based Authenticated Encryption

An authenticated encryption scheme E = (Enc,Dec) consists of a pair of en-
cryption and decryption function families. In this work we focus on nonce-
based authenticated encryption schemes. For every key K ∈ {0, 1}k, the en-
cryption function EncK takes as input a nonce N ∈ {0, 1}b, associated data
A ∈ {0, 1}∗, and a message M ∈ {0, 1}∗, and outputs a ciphertext C ∈ {0, 1}|M |

and tag T ∈ {0, 1}t. That is, EncK(N,A,M) = (C, T). The corresponding de-
cryption function DecK takes as input a nonce N ∈ {0, 1}b, associated data
A ∈ {0, 1}∗, a ciphertext C ∈ {0, 1}∗, and a tag T ∈ {0, 1}t, and outputs a mes-
sage M = Dec(N,A,C, T) ∈ {0, 1}|C| if the tag T is correct and ⊥ otherwise.
We require that

DecK(N,A,EncK(N,A,M)) = M .

In the following, it is assumed that E is based on the primitive π.
The multi-user authenticated encryption security of E is quantified in terms

of the advantage of a distinguisher D. Let K1, . . . ,Ku be u ≥ 1 uniform random
keys and define oracles $1, . . . , $u that output a uniform random bitstring of
length |M |+t given a nonce N , arbitrarily-length associated data, and a message

7

M . Denote the rejection oracle that returns ⊥ for every decryption query by Rej.
The mu-ae advantage of D is defined as

Advmu-ae
E (D) = ∆D

(
(EncKj ,DecKj)

u
j=1, π

± ; ($j ,Rej)
u
j=1, π

±
)
.

For u = 1, the above corresponds to the single-user security of E . The corre-
sponding advantage is denoted by Advae

E (D).
The distinguisher D is allowed to make at most µ faulty encryption queries

to the same user, and in total at most d encryption queries with the same nonce
to all users.

2.4 Universal Hash Functions

For a positive integer n, a universal hash function H is a family of functions
HL : {0, 1}∗ → {0, 1}n, one for every key L ∈ K. A universal hash function H is
ϵreg-regular if for all M ∈ {0, 1}∗ and all C ∈ {0, 1}n,

Pr [L←$ K : HL(M) = C] ≤ ϵreg .

A universal hash function H is ϵ∆-almost ∆ universal if for all distinct M,M ′ ∈
{0, 1}∗ and all C ∈ {0, 1}n,

Pr [L←$ K : HL(M)−HL(M
′) = C] ≤ ϵ∆ .

2.5 Patarin’s H-Coefficient Technique

We use the H-coefficient technique of Patarin [26], and our description of it
follows Chen and Steinberger [8].

Consider a deterministic distinguisher D that is given access to either a real
world oracle O or an ideal world oracle P. The query-response tuples learned by
D during its interaction with the oracle O or P can be summarized in a tran-
script τ . Let XO (respectively XP) be a random variable equal to the transcript
produced by the interaction between D and O (respectively P). A particular
transcript τ is called attainable if Pr[XP = τ] > 0 and the set of all attainable
transcripts is denoted by T .

Lemma 1 (H-coefficient technique). Let D be a deterministic distinguisher.
Define a partition T = Tgood ∪ Tbad, where Tgood is the subset of attainable
transcripts T which contains all the “good” transcripts and Tbad is the subset
with all the “bad” transcripts. If there exists an ϵ ≥ 0 such that for all attainable
τ ∈ Tgood,

Pr[XO = τ]

Pr[XP = τ]
≥ 1− ϵ ,

then ∆D
(
O ;P

)
≤ ϵ+ Pr[XP ∈ Tbad].

8

2.6 A Balls-Into-Bins Lemma

To bound the bad transcript probabilities in our security analysis, the following
lemma of Degabriele et al. [11] will be used.

Lemma 2 (Balls-into-bins [11, Lemma C.1]). Consider an experiment
where Q balls are thrown into a set of bins at random, where each throw may
depend on the outcome of the prior ones. Let 1/D ≤ 1 be an upper bound on
the probability that, when conditioned on prior throws, a ball lands into any
bin. If Q ≤ D log2(D)/3, then the probability that the heaviest bin contains
2 log2(D)/max(1, log2(D/Q)) or more balls is at most 1/D.

3 Construction

Our generic construction combines a universal hash function and a public per-
mutation using the synthetic initialization vector (SIV) approach of Rogaway
and Shrimpton [31] to build a nonce-misuse resistant authenticated encryption
scheme. The specific instantation based on the Poly1305 hash function and the
ChaCha20 permutation is called ChaCha20-Poly1305-PSIV. Similar to ChaCha20-
Poly1305, encryption is performed using a variant of counter mode. However, the
MAC function of our construction is considerably different.

The interface of our proposal is identical to that of ChaCha20-Poly1305 with
96-bit nonces. Specifically, the key length is 256 bits and the algorithm produces
128-bit tags. A high-level overview of the construction is given in Section 3.1.
Section 3.2 discusses the rationale behind the design and its main novelties.
Further details about the construction are given in Section 3.3.

3.1 Overview

A high-level overview of our construction PSIV is shown in Figure 1 and Al-
gorithm 1-4. It is based on a universal hash function H and two functions φm

and φe, both of which are based on a public permutation π. The hash function
key L is static and generated from the master key K using a third function:
L = φk(K). The detailed construction of the functions φk, φm and φe is given
in Section 3.3.

The PSIV AEAD scheme internally uses two subprocedures, the MAC func-
tion F and the IV-based encryption scheme Π. In the MAC algorithm F , the
function φm : {0, 1}k×{0, 1}b×{0, 1}t → {0, 1}t maps the key K, a nonce N and
the hash output H to a tag T = φm(K,N,H) 2. The tag is used as the initializa-
tion vector of the keystream generator of the encryption mode Π. The keystream
is generated by using the tag as a counter, incrementing it by one for every
block. More specifically, the function φe : {0, 1}k × {0, 1}b × {0, 1}t → {0, 1}n

2 The MAC algorithm can be seen as a permutation-based variant of the NaK con-
struction proposed in [10]. One of the main differences is that we benefit from the
large permutation size and the nonce is not xored to the universal hash output.

9

HL φm

φe φe · · · φe

A1

A2
.
.
.

Ala

M1

M2.
.
.

Mlm

N

K

1 1

C1 C2 ClmT

Fig. 1: The PSIV authenticated encryption scheme.

takes the key K, a nonce N and a counter T + i − 1, and produces the ith

keystream block φe(K,N, T + i − 1). The ciphertext blocks are obtained as
Ci = Mi ⊕ φe(K,N, T + i − 1), with Mi the ith message block. Note that for
our IV-based encryption mode Π, the decryption function is the same as the
encryption function: DK = EK .

Figure 1 does not include the padding scheme for the associated data and
message. It is the same as in ChaCha20-Poly1305; additional details are given in
Section 3.3.

3.2 Rationale

Reusing a nonce in ChaCha20-Poly1305 immediately leads to loss of authenticity
and confidentiality. Confidentiality is lost because the same nonce always pro-
duces the same keystream. This issue can be avoided by using SIV, since the
keystream then depends on the tag and hence indirectly on the associated data
and message. However, this means that – unlike in ChaCha20-Poly1305 – the
tag must be computed from the message rather than from the ciphertext. As
discussed below, our construction in fact achieves this without a loss in perfor-
mance.

It is not possible to directly use a Poly1305 hash of the associated data and
message as the tag, because this does not resolve the loss of authenticity when
nonces are repeated. Instead, a nonce-misuse resistant MAC is necessary. How-
ever, at the same time, additional calls to ChaCha20 should be avoided. We
achieve this by protecting the output of Poly1305 with a call to the function
φm. This approach makes it possible to reuse the universal hash function key L
instead of generating it from the nonce, thereby saving one call to ChaCha20. As

10

Algorithm 1 MAC function FK with key K ∈ {0, 1}k.
Input: N ∈ {0, 1}b, A ∈ {0, 1}∗, M ∈ {0, 1}∗
Output: T ∈ {0, 1}t
1: L← φk(K) ▷ Can be precomputed.
2: H ← HL(A∥pad(A)∥M∥pad(M)∥len(A)∥len(M))
3: T ← φm(K,N,H)
4: return T

Algorithm 2 Encryption algorithm EK with key K ∈ {0, 1}k.
Input: T ∈ {0, 1}t, N ∈ {0, 1}b, M ∈ {0, 1}∗
Output: C ∈ {0, 1}|M|

1: M1∥ . . . ∥Mℓm ←M
2: for i = 1, . . . , ℓm − 1 do
3: Ci ←Mi ⊕ φe(K,N, T + i− 1)
4: end for
5: Cℓm ←Mℓm ⊕ trunc|Mℓm |(φe(K,N, T + ℓm − 1))

6: return C1∥ . . . ∥Cℓm

Algorithm 3 AEAD encryption EncK with key K ∈ {0, 1}k.
Input: N ∈ {0, 1}b, A ∈ {0, 1}∗, M ∈ {0, 1}∗
Output: C ∈ {0, 1}|M|, T ∈ {0, 1}t
1: T ← FK(N,A,M)
2: C ← EK(N,T,M)
3: return (C, T)

Algorithm 4 AEAD decryption DecK with key K ∈ {0, 1}k.
Input: N ∈ {0, 1}b, A ∈ {0, 1}∗, C ∈ {0, 1}∗, T ∈ {0, 1}t
Output: M ∈ {0, 1}|C| or ⊥
1: M ← EK(N,T,C)
2: T ′ ← FK(N,A,M)
3: if T ̸= T ′ then
4: return ⊥
5: else
6: return M
7: end if

Fig. 2: Description of the PSIV mode in pseudocode.

11

a result, nonce-misuse resistance is achieved using the same number of ChaCha20
calls as in ChaCha20-Poly1305. Using a fixed hash function key L has the ad-
ditional benefit that the contribution of constant associated data or message
blocks can be precomputed.

It is worth noting that the modified order of operations (compared to ChaCha20-
Poly1305) does not have a negative impact on performance. This is unlike for
AES-GCM, where applying the SIV approach as in AES-GCM-SIV decreases en-
cryption speed for long messages by up to 50% on some platforms. This is be-
cause, unlike ChaCha20-Poly1305 implementations, AES-GCM implementations
interleave the evaluation of the universal hash function and AES to exploit in-
struction level parallelism.

3.3 Additional Details

The functions φk, φm and φe are constructed from the public permutation π :
{0, 1}n → {0, 1}n as follows (we assume n ≥ k + t+ b):

φk(K) = trunck(π(fk(K)∥00 · · · 0) + (fk(K)∥00 · · · 0)) ,
φm(K,N,H) = trunct(π(fm(K)∥N∥H) + (fm(K)∥N∥H)) ,

φe(K,N, T + i− 1) = π(fe(K)∥N∥T + i− 1) + (fe(K)∥N∥T + i− 1) .

For the concrete construction ChaCha20-Poly1305-PSIV, we have n = 512, k =
256, b = 96 and t = 128. Figure 3 illustrates the structure of the input to
ChaCha20. The injective functions fk, fm and fe : {0, 1}k → {0, 1}n−t−b expand
the master key by inserting constant bytes at specific positions. For generic
permutations, the positions of the constants does not matter. However, for
ChaCha20, we choose the positions to ensure that all input states are in dif-
ferent orbits of any column rotation. This is necessary because ChaCha20 sat-
isfies ChaCha20(ρ(x)) = ρ(ChaCha20(x)) for any rotation ρ of the columns. In
this way, our construction specifically accounts for the symmetry properties of
ChaCha20. In fact, although our security bounds do not state this explicitly,
we show that ChaCha20-Poly1305 is generically secure with a permutation cho-
sen uniformly at random from the set of all permutations satisfying the same
symmetry properties as ChaCha20. This is ensured by proper domain separation
between different orbits of the rotation action.

96-bit nonce N

128-bit hash or tag + counter

288-bit expanded key

Fig. 3: Modified input structure of ChaCha20.

12

Specifically, we choose fk, fm and fe as follows for ChaCha20-Poly1305-PSIV:

fk(K) = K1∥K2∥K3∥03∥K5∥K6∥K7∥0c∥K9∥K10∥K11∥30∥K4∥K8∥K12

∥c0∥K13∥K14∥ · · · ∥K32 ,

fm(K) = K1∥K2∥K3∥05∥K5∥K6∥K7∥0a∥K9∥K10∥K11∥50∥K4∥K8∥K12

∥a0∥K13∥K14∥ · · · ∥K32 ,

fe(K) = K1∥K2∥K3∥06∥K5∥K6∥K7∥09∥K9∥K10∥K11∥60∥K4∥K8∥K12

∥90∥K13∥K14∥ · · · ∥K32 ,

with K1, . . . ,K32 the 32 bytes of the master key K.
Compared to ChaCha20-Poly1305, the adversary-controlled words are mostly

in the third rather than the fourth row of the input state – but due to the
symmetry of the permutation this does not have a significant impact on existing
cryptanalysis. Note that in most cases, only the nonce can be freely chosen by the
adversary. The adversary does not know and has little control over the output
of Poly1305. The tag is known, but not chosen by the adversary.

Finally, the input to the Poly1305 hash function is padded as in ChaCha20-
Poly1305: the associated data A and message M are padded with zeros up to
a multiple of the block length, and their lengths are appended. Specifically, the
input to Poly1305 is equal to

A∥pad(A)∥M∥pad(M)∥len(A)∥len(M) ,

with pad(X) a minimum-length string of zeros such that |X∥pad(X)| is a multiple
of 128. Here, len(X) is the unsigned 64-bit integer representation of the byte
length of X.

3.4 Generic Construction

The construction described above can be generalized to arbitrary parameter
sizes. In particular, PSIV is the authenticated encryption mode with k-bit keys,
t-bit tags, b-bit nonces and n-bit blocks (with n ≥ k+t+b) corresponding to the
pseudocode in Figure 2. More specifically, PSIV instantiates the construction in
Figures 1 and 2 with functions φk, φm and φe based on an n-bit permutation
π in feed-forward (with proper domain separation as in Section 3.3), and an
ϵ-regular and ϵ-almost ∆ universal hash function H. If π is instantiated with
ChaCha20 and H with Poly1305, then the resulting mode is called ChaCha20-
Poly1305-PSIV. The security analysis in Section 5 considers the generic mode
PSIV, with π ←$ Perm(n).

4 Multi-user Security

In Section 5, we prove the following result about the multi-user security of PSIV
in the nonce-misuse setting.

13

Theorem 1. Let D be a multi-user authenticated encryption adversary for u ≤
2(n−k)/2−1 users against PSIV with π ←$ Perm(n) and H an ϵ-regular and ϵ-
almost ∆ universal hash function. Assume that D makes qe ≤ (n−k−t)/3·2n−k−t

encryption queries (in total over all users) totaling σ ≤ 2(n−k)/2−1 blocks, qv
decryption queries (in total over all users), and p primitive queries. Denote the
maximum number (accross all users) of faulty nonces within the same user by
µ < 2t/2−1, and let d ≤ t/3 · 2t be the total number of queries per nonce. If ℓ is
the maximum joint number of blocks of the associated data and message and ℓm
the maximum number of blocks of the message, then

Advmu-ae
PSIV (D) ≤ ϵ(ℓ)

(
2n (p+ qv)

2k
+

pqv
2k

+ 4qv + µ2 +
d(qe + p)

2k

)
+

(σ + qe)
2 + u(σ + 2qe + u− 1)

2n+1
+

4p(4 + t) + u(2p+ u− 1)

2k+1

+
1

2t

(
3qv + µ2ℓm +

qe(d− 1)ℓm
2k

)
+

3

2n−k−t
+

3

2t
,

assuming that dℓm ≤ t/3 · 2t, qe + u ≤ 2n and σ + p ≤ 2n.

For ChaCha20-Poly1305-PSIV, Theorem 1 can be simplified as follows. Corol-
lary 1 is based on the fact that Poly1305 is an ϵ-regular and ϵ-almost ∆ universal
hash function with ϵ(ℓ) = (ℓ+ 1)/2103 [4, Theorem 3.3]. The additional 16 byte
block is due to the padding scheme described in Section 3.3.

Corollary 1. Let D be a multi-user authenticated encryption adversary for u ≤
264 users against ChaCha20-Poly1305-PSIV, with ChaCha20 modeled as π ←$

Perm(512). Assume that D makes at most 2127 encryption queries (in total over
all users) totalling no more than 2127 blocks, qv ≤ 2128 decryption queries (in
total over all users), and p ≤ 2128 primitive queries. Denote the maximum num-
ber (accross all users) of faulty nonces within the same user by µ, and suppose
the total number of queries per nonce is at most 263. If ℓ ≤ 233 is the maximum
joint number of blocks of the associated data and message, then

Advmu-ae
PSIV (D) ≤ ℓ+ 1.001

2103
(
4qv + µ2

)
+

up

2256
+

1

2100
.

The following three sections discuss the practical implications of Corollary 1.
The nonce-respecting case (µ = 0) is compared to ChaCha20-Poly1305 in Sec-
tion 4.1. Section 4.2 examines the effect of reusing nonces, and compares ChaCha20-
Poly1305-PSIV to AES-GCM-SIV. Finally, Section 4.3 shows that it is safe to use
random nonces – even when nonces are restricted to 64 bits.

4.1 Nonce-Respecting Setting

In the nonce-respecting setting, the bound in Corollary 1 is dominated by the
term qv ℓ/2

101. Up to a factor of four, this term is exactly the same as for
ChaCha20-Poly1305 [11, Theorem 6.1]. In fact, the factor four loss is only due to

14

the simplifications we made to obtain a more compact bound. The more detailed
bounds in Section 5 and Lemma 3 in particular show that the dominant term is
equal to t/(t− 1)qv ℓ/2

103 ≈ qv ℓ/2
103 when µ = 0.

The term up/2256 corresponds to an offline attack on the hash function key
L. It can be avoided by generating L uniformly at random, instead of using
L = φk(K). In any case, it is usually negligible compared to qv ℓ/2

101.

4.2 Nonce-Misuse Setting

If the number of queries per nonce for the same user is large, then the term
µ2 ℓ/2103 may dominate the advantage bound in Corollary 1. With messages of
length ℓ = 233 or 512 GiB, the bound becomes µ2/270. That is, security is lost
only when a user makes about 235 queries with the same nonce.

Due to our use of the faulty nonce model, as opposed to the older multicol-
lision model that was used for the security analysis of AES-GCM-SIV, a direct
comparison with the latter mode is not straightforward. To make a reasonable
comparison, we consider a range of possible values for λ = µ/qe. The parameter
λ can be interpreted as the rate at which faulty nonces occur in the implemen-
tation.

As illustrated in Figure 4 for λ ∈ {2−8, 2−20, 2−32}, our bound leads to
less stringent data limits than the AES-GCM-SIV bound. A specific downside
of AES-GCM-SIV, which was first pointed out by Iwata and Seurin [21], is that
the dominant term in its insecurity bound is proportional to the square of the
message length – as opposed to the message length itself as in our Corollary 1.

0 10 20 30 40
0

20

40

60

80

log2(message length in bytes)

lo
g
2
q e

fo
r
a
d
va
n
ta
g
e
≤

1

Fig. 4: Maximum allowed amount of data as a function of message length for
faulty-nonce rate λ = µ/qe, for ChaCha20-Poly1305-PSIV (with λ = 2−8,

with λ = 2−20 and with λ = 2−32) and AES-GCM-SIV ().

15

4.3 Random Nonces

In implementations that are unable to keep state, it is often convenient to use
random nonces. In this case, our security bound in Theorem 1 remains the same
except for the terms that involve µ or d. The effect of random nonces on these
terms is analyzed in Appendix C. The analysis of the terms involving d introduces
a new bad event to ensure that d < 2t/2−1 and upper bounds its probability. For
the terms that depend on µ, the corresponding bad events are re-bounded. Under
the same assumptions but for random b-bit nonces, the bound in Theorem 1
becomes

Advmu-ae
PSIV (D) ≤ ϵ(ℓ)

(
2n (p+ qv)

2k
+

pqv
2k

+ 4qv +
q2e
2b+1

+
qe + p

2k−t/2+1

)
+

(σ + qe)
2 + u(σ + 2qe + u− 1)

2n+1
+

4p(4 + t) + u(2p+ u− 1)

2k+1

+
1

2t

(
3qv +

q2eℓm
2b+1

+
2t/2−1qeℓm

2k

)
+

4qe(qe − 1)

2b+t/2
+

3

2n−k−t
+

3

2t
.

Using the same assumptions as in Corollary 1, this simplifies to

Advmu-ae
PSIV (D) ≤ ℓ+ 1.001

2101
qv +

q2e
2b+61

+
up

2256
+

1

2100
.

This bound shows that for 96-bit nonces, up to 278 encryptions can be tolerated
for any message length. That is because the above bound is dominated by the
term l · qv/2101. In practice the number of allowed verification queries is often
low, so that the real limit here would be the length of the counter field. For
64-bit nonces, this reduces to 262 encryptions. The latter is still comparable to
the maximum acceptable number of nonce-respecting queries for many block
cipher-based modes including AES-GCM.

The random-nonce insecurity bounds for a given message length |M | (in bits)
and a total number of encryptions qe for AES-GCM-SIV and ChaCha20-Poly1305-
PSIV are compared in Table 2. We assume that qv = 1 like in many protocols,
including TLS. With 96-bit nonces, ChaCha20-Poly1305-PSIV provides better
security than AES-GCM-SIV (which also uses 96-bit nonces) – especially for long
messages.

5 Security Analysis

In this section, we prove the multi-user security of the PSIV construction in the
ideal permutation model, i.e., when the ChaCha20 permutation is replaced by a
uniform random permutation. This allows us to capture the local computation
of the adversary in terms of the number of offline queries that it makes to the
permutation.

Our proof is modular: we first prove the multi-user pseudorandom mac secu-
rity of F described in Algorithm 1 and the nivE security of Π = (E,D) described
in Algorithm 2. The following lemma upper bounds the adversarial distinguish-
ing advantage against F .

16

Table 2: Insecurity bounds for AES-GCM-SIV and ChaCha20-Poly1305-PSIV with
random 96-bit nonces.

Scheme log2 qe log2 |M | log2(Bound)

AES-GCM-
SIV

(b = 96)

32
14 −61
28 −52
42 −24

64
14 −29
28 −19
42 ≥ 0

ChaCha20-
Poly1305-PSIV

(b = 96)

32
14 −92
28 −82
42 −67

64
14 −29
28 −29
42 −29

Lemma 3. Let D be a multi-user authenticated encryption adversary for u ≤
2(n−k)/2−1 users against the MAC described in Algorithm 1 with π ←$ Perm(n),
and H an ϵ-regular and ϵ-almost ∆ universal hash function. Assume that D
makes qe ≤ (n − k − t)/3 · 2n−k−t MAC queries (in total over all users), qv
verification queries (in total over all users), and p primitive queries. Denote the
maximum number (accross all users) of faulty nonces within the same user by
µ < 2t/2−1, and let d ≤ t/3 · 2t be the total number of queries per nonce. If ℓ is
the maximum joint number of blocks of the associated data and message, then

Advmu-mac
F (D) ≤ ϵ(ℓ)

(
2n (p+ qv)

2k
+

pqv
2k

+ 4qv + µ2 +
d(qe + p)

2k

)
+

3qv
2t

+
q2e + u(2qe + u− 1)

2n+1
+

8p+ u(2p+ u− 1)

2k+1
+

24

2n−k−t
+

2

2t
,

where we require that qe + u ≤ 2n.

The proof of Lemma 3 is given in Section 5.1, with some details moved to Sup-
plementary Material A for brevity. The following lemma upper bounds the dis-
tinguishing advantage against the IV-based encryption scheme Π.

Lemma 4. Let D be a multi-user authenticated encryption adversary for u ≤
2(n−k)/2−1 users against Π described in Algorithm 2 with π ←$ Perm(n). As-
sume that D makes qe encryption queries (in total over all users) totalling
σ ≤ 2(n−k)/2−1 blocks, and p primitive queries. Denote the maximum number
(accross all users) of faulty nonces within the same user by µ, and let d be the
total number queries per nonce. If ℓm is the maximum message number of blocks,
then

Advmu-nivE
Π (D) ≤ 2(t+ 2)p

2k
+

ℓm
2t

(
µ2 +

qe(d− 1)

2k

)
+

σ2

2n+1
+

1

2n−k
+

1

2t
.

17

where we require that dℓm ≤ t/3 · 2t and σ + p ≤ 2n.

The proof of Lemma 4 is given in Section 5.2, with some details worked out
in Supplementary Material B. Finally, Theorem 1 is obtained by combining
Lemma 3 and Lemma 4 using the following lemma. The proof of Lemma 5
is given in Section 5.3.

Lemma 5. Let D be a multi-user authenticated encryption adversary for u ≤
2(n−k)/2−1 users against PSIV with π ←$ Perm(n) and H an ϵ-regular and ϵ-
almost ∆ universal hash function. Assume that D makes qe ≤ (n−k−t)/3·2n−k−t

encryption queries (in total over all users) totalling σ ≤ 2(n−k)/2−1 blocks, qv
decryption queries (in total over all users), and p primitive queries. Denote the
maximum number of all faulty nonces for the same user by µ < 2t/2−1, and
let d ≤ t/3 · 2t be the total number queries per nonce. If ℓ is the maximum
joint number of blocks of the associated data and message and ℓm the maximum
number of blocks of message, then there exist distinguishers D′ with the same
(u, qe, qv, p, µ, d, ℓ) and D′′ with the same (u, qe, σ, p, µ, d, ℓm) such that

Advmu-ae
PSIV (D) ≤ Advmu-mac

F (D′) +Advmu-nivE
Π (D′′) +

σ(qe + u)

2n
.

5.1 Security Proof of Lemma 3

In this section we prove Lemma 3. Let K1, . . . ,Ku ←$ {0, 1}k and π ←$

Perm(n). As explained in Section 2.1, we consider a computationally unbounded
and deterministic distinguisher D that has access to either the real world ora-
cles ((FKj

,VerKj
)uj=1, π

±), or the ideal world oracles (($j ,Rej)
u
j=1, π

±). Recall
that when using the H-coefficient technique, we only need to consider attainable
transcripts, i.e., those that occur in the ideal world with nonzero probability.

The distinguisher makes qe MAC queries to (FKj
)uj=1 or ($j)

u
j=1, with at

most µ faulty queries per user and in total at most d queries per nonce. For
the ith such query, there is a corresponding user index ji ∈ {1, . . . , u}, nonce
input Ni, associated data input Ai, message input Mi, and output tag Ti. For
convenience, we also let

Hji = HLji
(Ai∥pad(Ai)∥Mi∥pad(Mi)∥len(Ai)∥len(Mi)) .

In addition to T1, . . . , Tqe with Ti = φm(Kji∥Hji∥Ni), we give the distinguisher
access to the internal values V1, . . . , Vqe of φm (values output by ChaCha20
before truncation) in the real world, where the first t bits of these values (equal
to T1, . . . , Tqe) are given as the output of every query, and the remaining n − t
bits are revealed only at the end of the interaction but before D makes its final
decision. Including V1, . . . , Vqe in the transcript makes it easier to define the
tuple of bad transcripts in our proof, while only making the distinguisher more
powerful. In the ideal world, V1, . . . , Vqe are dummy values, with their first t bits
returned by oracles $1, . . . , $u and the remaining n− t bits generated uniformly

18

at random at the end of the interaction. To summarize, the qe MAC queries are
contained in a transcript

τe = {(con, j1, N1, A1,M1, V1), . . . , (con, jqe , Nqe , Aqe ,Mqe , Vqe)} .

The distinguisher D also makes qv verification queries to (VerKj)
u
j=1 or

(Rej)uj=1. As before, the ith such query corresponds to a user index j′i, nonce
input N ′

i , associated data input A′
i, message input M ′

i , tag T ′
i , and an output

decision bit b′i. We also let

H ′
j′i
= HLj′

i
(A′

i∥pad(A′
i)∥M ′

i∥pad(M ′
i)∥len(A′

i)∥len(M ′
i)) .

The qv verification queries are summarized in a transcript

τv = {(ver, j′1, N ′
1, A

′
1,M

′
1, T

′
1, b

′
1), . . . , (ver, j

′
qv , N

′
qv , A

′
qv ,M

′
qv , T

′
qv , b

′
qv)} .

In addition to construction queries, D also makes p primitive queries to π±, and
these are summarized in the transcript

τp = {(prim, x1, y1), . . . , (prim, xp, yp)} .

After D’s interaction with the oracles, but before it outputs its decision,
we disclose the key material used in the interaction. This can only increase
the advantage of the distinguisher. The first values that are revealed are values
K1, . . . ,Ku. In the real world, these are the keys K1, . . . ,Ku ←$ {0, 1}k that are
actually used by the construction oracles (MAC and verification); in the ideal
world, these are dummy keys K1, . . . ,Ku ←$ {0, 1}k. The second values that
are revealed are U1, . . . , Uu ∈ {0, 1}n. The first k bits of these values are the
universal hash function keys L1, . . . , Lu. In the real world, these are the internal
values U1, . . . , Uu ∈ {0, 1}n of φk (values output by ChaCha20 before truncation)
with Lj = φk(Kj) for j = 1, . . . , u; in the ideal world, these are dummy values
U1, . . . , Uu ←$ {0, 1}n. The revealed keys are summarized in a transcript

τk = {(K1, U1), . . . , (Ku, Uu)} .

Note that in the single-user setting, where u = 1, τk is a singleton.
The complete transcript is denoted by τ . We assume that the distinguisher

never makes any duplicate query, hence τe, τv and τp contain no duplicate ele-
ments.

Bad Events In the real world, all tuples in τp define exactly one input-output
pair for π. Likewise, every (K,U) ∈ τk defines one input-output pair for π,
namely (K∥00 · · · 0, U − (K∥00 · · · 0)). Finally, every tuple (con, ji, Ni, Ai,Mi, Vi) ∈
τe also defines one input-output pair for π, namely

((fm(Kji)∥Ni∥Hji), (Vi − (fm(Kji)∥Ni∥Hji))) .

19

On the other hand, every tuple (ver, j′i, N
′
i , A

′
i,M

′
i , T

′
i , b

′
i) ∈ τv implies that the

following cannot be an input-output pair for π:(
(fm(Kj′i

)∥N ′
i∥H ′

j′i
), (T ′

i∥W ′
i − (fm(Kj′i

)∥N ′
i∥H ′

j′i
))
)
,

for all W ′
i ∈ {0, 1}n−t. If among all these qe + p + u input-output pairs defined

by τe, τp, and τk there are two that have colliding input or output values, or if
one of the qe + p+u input values and the first t bits of its corresponding output
value collide with the qv input-output pairs defined by τv, then we say τ is a bad
transcript. Hence, τ ∈ Tbad if and only if one of the following cases happens:

1. There exist two distinct MAC queries (con, j,N,A,M, V) and (con, j∗, N∗, A∗,
M∗, V ∗) in τe and a primitive query (prim, x, y) ∈ τp such that one of the
following conditions holds:

bad1 : x = fm(Kj)∥N∥Hj , (1)

bad2 : y = V − (fm(Kj)∥N∥Hj) , (2)

bad3 : N = N∗ and Hj = Hj∗ and Kj = Kj∗ , (3)

bad4 : (Kj∥N∥Hj) ̸= (Kj∗∥N∗∥Hj∗) and

V − (fm(Kj)∥N∥Hj) = V ∗ − (fm(Kj∗)∥N∗∥Hj∗) . (4)

2. There exist a verification query (ver, j′, N ′, A′,M ′, T ′, 0) ∈ τv, a MAC query
(con, j,N,A,M, V) ∈ τe, and a primitive query (prim, x, y) ∈ τp such that
one of the following conditions holds:

bad5 : x = fm(Kj′)∥N ′∥H ′
j′ and trunct(x+ y) = T ′ , (5)

bad6 : N = N ′ and Hj = H ′
j′ and Kj = Kj′ and trunct(V) = T ′ . (6)

3. There exist a construction MAC query (con, j,N,A,M, V) ∈ τe, a primitive
query (prim, x, y) ∈ τp, and two distinct key pairs (K,U), (K∗, U∗) ∈ τk such
that one of the following conditions holds:

bad7 : x = fk(K)∥00 · · · 0 , (7)

bad8 : y = U − (fk(K)∥00 · · · 0) , (8)

bad9 : V − (fm(Kj)∥N∥Hj) = U − (fk(K)∥00 · · · 0) . (9)

bad10 : K = K∗ . (10)

bad11 : U = U∗ . (11)

Any attainable transcript τ for which τ /∈ Tbad will be called a good transcript.
In Supplementary Material A, we prove the following lemma.

Lemma 6. If qe ≤ (n − k − t)/3 · 2n−k−t, µ + 1 ≤ 2t/2−1, nt ≤ t/3 · 2t, and
u ≤ 2(n−k)/2−1, then the ideal world probability of the bad transcripts satisfies

Pr[XP ∈ Tbad] ≤ ϵ(ℓ)

(
2n (p+ qv)

2k
+

pqv
2k

+ 4qv + µ2 +
d(qe + p)

2k

)
+

qv
2t

+
q2e + u(2qe + u− 1)

2n+1
+

8p+ u(2p+ u− 1)

2k+1
+

2

2n−k−t
+

2

2t
.

20

Ratio for Good Transcripts Consider an attainable transcript τ ∈ Tgood. We
now lower bound Pr[XO = τ] and upper bound Pr[XP = τ] in order to obtain a
lower bound for the ratio of these probabilities.

Ideal World. For the ideal world oracle P = (($j ,Rej)
u
j=1, π

±), the transcript
τ = (τe, τv, τp, τk) consists of four lists of independent tuples: τe consists of
qe random n-bit strings V1, . . . , Vqe ←$ {0, 1}n (where the first t bits are the
output of $1, . . . , $u), τp defines exactly p input-output pairs for π, τk consists
of u random tuples (K1, U1), . . . , (Ku, Uu) ←$ {0, 1}k × {0, 1}n, and τv only
contains rejected verification queries. The probability of any good transcript τ
is equal to

Pr[XP = τ] = Pr
(
K ′

1, . . . ,K
′
u ←$ {0, 1}k : K ′

1 = K1 ∧ · · · ∧K ′
u = Ku

)
× Pr (U ′

1, . . . , U
′
u ←$ {0, 1}n : U ′

1 = U1 ∧ · · · ∧ U ′
u = Uu)

× Pr
(
$1, . . . , $u : ($j)

u
j=1 ⊢ τe

)
× Pr

(
trunc∗n−t(V

′
1), . . . , trunc

∗
n−t(V

′
qe)←$ {0, 1}n−t :

trunc∗n−t(Vi ⊕ V ′
1) = 0 ∧ · · · ∧ trunc∗n−t(Vqe ⊕ V ′

qe) = 0
)

× Pr (π ←$ Perm(n) : π ⊢ τp)

=
1

2(k+n)u
· 1

2nqe
· (2

n − p)!

2n!

=
1

2ku
·
(
(2n − 1)!

2n!

)u

·
(
(2n − 1)!

2n!

)qe

· (2
n − p)!

2n!

≤ 1

2ku
· (2

n − qe − p− u)!

2n!
, (12)

where we use the fact that (2n−qe)! ·(2n−u)!/2n! ≤ (2n−qe−u)! if qe+u ≤ 2n.
The first factor in the second equality is due to the number of possible user key
pairs (K1, U1), . . . , (Ku, Uu)←$ {0, 1}k×{0, 1}n. The second factor corresponds
to the probability that $1, . . . , $u are consistent with the transcript τe and the
number of possible truncn−t(V1), . . . , truncn−t(Vqe) ←$ {0, 1}n−t. Finally, the
third factor corresponds to the probability that the uniform random permuta-
tions π is consistent with the transcript τp. Note that since the verification oracle
in the ideal world always returns zero, it does not affect the probability of good
transcripts in the ideal world.

Real World. Similarly, a good transcript τ = (τe, τp, τk) compatible with the real
world oracle O = ((FKj

,VerKj
)uj=1, π) defines exactly qe + p+ u distinct input-

output pairs for π. Furthermore, τk consists of random values K1, . . . ,Ku ←$

{0, 1}k. Moreover, there are at most qv more calls to π done during verification
queries, and these are distinct from the ones in τe, τp, and τk. However, the input-
output pairs for π corresponding to these calls are not completely specified in τv;
only the inputs are. Since τ is a good transcript, the first t bits of the outputs
are required to be distinct from those defined by τe, τp, and τk. Therefore, we

21

obtain:

Pr[XO = τ] = Pr
(
K ′

1, . . . ,K
′
u ←$ {0, 1}k : K ′

1 = K1 ∧ · · · ∧K ′
u = Ku

)
× Pr

(
π ←$ Perm(n) : (FKj)

u
j=1 ⊢ τe ∧ π ⊢ (τp, τk)

)
× Pr

(
π ←$ Perm(n) : (VerKj

)uj=1 ⊢ τv
∣∣ (FKj

)uj=1 ⊢ τe ∧ π ⊢ (τp, τk)
)

≤ 1

2uk
· (2

n − qe − p− u)!

2n!
·
qv−1∏
i=0

(
1− B

2n − qe − p− u− i

)
, (13)

where the probability is taken with respect to π ←$ Perm(n) and conditional
on the keys. As before, the first factor corresponds to the number of possible
user keys K1, . . . ,Ku. The second factor is the probability that (FKj

)uj=1 is
consistent with τe and that π is consistent with τp and τk. The third factor is
the probability that (VerKj)

u
j=1 is consistent with τv under the condition that

(FKj)
u
j=1 is consistent with τe and that π is consistent with τp and τk.

The value B in (13) is a bound on the number of (T∥W) ∈ {0, 1}n such that
T = T ′ for a verification query (ver, j′, N ′, A′,M ′, T ′, 0). Since there are 2n−t

possible values for W , we can take B = 2n−t. Combining (12) and (13) with
B = 2n−t, we find that every good transcript τ ∈ Tgood satisfies

Pr[XO = τ]

Pr[XP = τ]
≥

qv−1∏
i=0

(
1− 2n−t

2n − q − p− u− i

)

≥
qv−1∏
i=0

(
1− 2n−t

2n−1

)
≥

(
1− 1

2t−1

)qv

≥ 1− 2qv
2t

. (14)

Conclusion Using Patarin’s H-Coefficient technique (Lemma 1), we obtain the
desired result:

Advmu-mac
F (D) ≤ ϵ(ℓ)

(
2n (p+ qv)

2k
+

pqv
2k

+ 4qv + µ2 +
d(qe + p)

2k

)
+

3qv
2t

+
q2e + u(2qe + u− 1)

2n+1
+

8p+ u(2p+ u− 1)

2k+1
+

2

2n−k−t
+

2

2t
,

for qe ≤ (n− k − t)/3 · 2n−k−t, µ+ 1 ≤ 2t/2−1, d ≤ t/3 · 2t, u ≤ 2(n−k)/2−1, and
qe + u ≤ 2n.

5.2 Security Proof of Lemma 4

In this section we prove Lemma 4. Let K1, . . . ,Ku ←$ {0, 1}k and π ←$

Perm(n). Without loss of generality, we can assume that D makes queries of
length a multiple of n bits. We are allowed to make this assumption because by
providing additional data, the adversary only learns more.

22

Let Rand1, . . . ,Randu be oracles that for every input (N,T,M) return a ran-
dom bitstring of length |M |. As discussed in Section 2.2, we consider a computa-
tionally unbounded deterministic distinguisher D with access to either the real
world oracles ((EKj)

u
j=1, π

±) or the ideal world oracles ((Randj)
u
j=1, π

±).
The distinguisher makes qe construction queries to (EKj

)uj=1 or (Randj)
u
j=1,

with each query of length at most ℓm blocks and totaling at most σ encrypted
blocks. It can make at most µ faulty queries per user, and in total at most d
queries per nonce. The ith such query corresponds to a user index ji, nonce input
Ni, tag input Ti, message inputMi, and ciphertext Ci. We also include the values
W1, . . . ,Wqe with Wi = Mi ⊕ Ci for i = 1, . . . , qe in the transcript. Due to the
assumption that |M | is a multiple of n, it holds that |Wi| = |M | = ℓm. Below,
the n-bit blocks in Wi will be denoted by Wi[1], . . . ,Wi[ℓm]. Note that in the real
world, Wi[l] = φe(Kji∥Ni∥T + l − 1) for l = 1, . . . , ℓm. Including W1, . . . ,Wqe

in the transcript makes it easier to define the tuple of bad transcripts for our
proof. The qe queries are summarized in a transcript

τe = {(con, j1, N1, T1,M1, C1,W1), . . . , (con, jqe , Nqe , Tqe ,Mqe , Cqe ,Wqe)} .

The distinguisher D also makes p primitive queries to π±, and these are
summarized in a transcript

τp = {(prim, x1, y1), . . . , (prim, xp, yp)} .

After D’s interaction with the oracles, but before it outputs its decision,
we disclose the keys K1, . . . ,Ku to the distinguisher. This can only increase its
advantage. In the real world, these are the keys used in the construction. In
the ideal world, K1, . . . ,Ku are uniform random dummy keys. The complete
transcript is denoted by τ .

Bad Events In the real world, all tuples in τp define exactly one input-output
pair for π. Furthermore, any (con, ji, Ni, Ti,Mi, Ci,Wi) ∈ τe also defines at most
ℓm input-output pairs for π, namely

(fe(Kji)∥Ni∥Ti + l − 1,Wi[l]− (fe(Kji)∥Ni∥Ti + l − 1)) ,

for l = 1, . . . , ℓm. If two of the σ + p input-output pairs defined by τ have
colliding input or output values, we say that τ is a bad transcript. Hence, τ ∈
Tbad if and only if there exist construction queries (con, j,N, T,M,C,W) ̸=
(con, j∗, N∗, T ∗,M∗, C∗,W ∗) in τe and a primitive query (prim, x, y) ∈ τp such
that one of the following conditions holds:

bad1 : x ∈
{
fe(Kj)∥N∥T, . . . , fe(Kj)∥N∥T + ℓm − 1

}
, (15)

bad2 : y ∈
{
W [1]− (fe(Kj)∥N∥T), . . . ,W [ℓm]− (fe(Kj)∥N∥T + ℓm − 1)

}
,
(16)

bad3 : N = N∗ and T = T ∗ + l∗ − 1 and Kj = Kj∗ for l
∗ = 1, . . . , ℓm , (17)

bad4 : (Kj∥N∥T + l − 1) ̸= (Kj∗∥N∗∥T ∗ + l∗ − 1) and

W [l]− (fe(Kj)∥N∥T + l − 1) = W ∗[l∗]− (fe(Kj∗)∥N∗∥T ∗ + l∗ − 1)

for l∗ = 1, . . . , ℓm . (18)

23

Any attainable transcript τ for which τ /∈ Tbad will be called a good transcript.
In Supplementary Material B, we prove the following lemma.

Lemma 7. If dℓm ≤ t/3 ·2t and σ ≤ 2(n−k)/2−1, then the ideal world probability
of the bad transcripts satisfies

Pr[XP ∈ Tbad] ≤
2(t+ 2)p

2k
+

ℓm
2t

(
µ2 +

qe(d− 1)

2k

)
+

σ2

2n+1
+

1

2n−k
+

1

2t
.

Ratio for Good Transcripts Consider an attainable transcript τ ∈ Tgood. We
lower bound Pr[XO = τ] and upper bound Pr[XP = τ] to obtain a lower bound
for the ratio of these probabilities.

Ideal World. For the ideal world oracle P = ((Randj)
u
j=1, π

±), the transcript
τ = (τe, τv,K1, . . . ,Ku) consists of the tuple τe containing σ random n-bit blocks
returned by Rand1, . . . ,Randu, the tuple τp that defines exactly p input-output
pairs for π, and u random bitstrings K1, . . . ,Ku ←$ {0, 1}k. The probability of
a good transcript τ is

Pr[XP = τ] = Pr
(
K ′

1, . . . ,K
′
u ←$ {0, 1}k : K ′

1 = K1 ∧ · · · ∧K ′
u = Ku

)
× Pr

(
Rand1, . . . ,Randu : (Randj)

u
j=1 ⊢ τe

)
× Pr (π ←$ Perm(n) : π ⊢ τp)

=
1

2uk
· 1

2nσ
· (2

n − p)!

2n!

≤ 1

2uk
· (2

n − σ − p)!

2n!
, (19)

using the fact that 1/2nσ ≤ (2n − σ)!/2n! and (2n − σ)! · (2n − p)!/2n! ≤
(2n − σ − p)! if σ + p ≤ 2n. The first factor is due to the number of possi-
ble user keys K1, . . . ,Ku. The second factor corresponds to the probability that
the Rand1, . . . ,Randu are consistent with the transcript τe. Finally, the third
factor corresponds to the probability that the uniform random permutation π is
consistent with the transcript τp.

Real World. Similarly, a good transcript τ = (τe, τp,K1, . . . ,Ku) compatible
with the real world oracle O = ((EKj

)uj=1, π
±) defines exactly σ+p input-output

pairs for π, and no two of them collide on the input or output. Therefore, we
obtain

Pr[XO = τ] = Pr
(
K ′

1, . . . ,K
′
u ←$ {0, 1}k : K ′

1 = K1 ∧ · · · ∧K ′
u = Ku

)
× Pr

(
π ←$ Perm(n) : (EKj)

u
j=1 ⊢ τe ∧ π ⊢ τp

)
=

1

2uk
· (2

n − σ − p)!

2n!
, (20)

where the probability is taken with respect to π ←$ Perm(n) and conditional on
the keys. As before, the first factor corresponds to the number of possible user

24

keys K1, . . . ,Ku. The second factor is the probability that (EKj
)uj=1 is consistent

with τe and that π is consistent with τp.
Combining (19) and (20), we obtain that every good transcript τ ∈ Tgood

satisfies

Pr[XO = τ]

Pr[XP = τ]
≥ 1 . (21)

Conclusion Using Patarin’s H-Coefficient technique (Lemma 1), we obtain the
desired result:

Advmu-nivE
Π (D) ≤ 2(t+ 2)p

2k
+

ℓm
2t

(
µ2 +

qe(d− 1)

2k

)
+

σ2

2n+1
+

1

2n−k
+

1

2t
,

for dℓm ≤ t/3 · 2t, σ ≤ 2(n−k)/2−1, and σ + p ≤ 2n.

5.3 Security Proof of Lemma 5

In this section we prove Lemma 5. We reuse the notations introduced in Sec-
tions 5.1 and 5.2. Let K1, . . . ,Ku ←$ {0, 1}k and π ←$ Perm(n). Let Rand1, . . . ,
Randu be functions that for each input (N,A,M) return a random string of
size |M | + t bits. As explained in Section 2.3, we consider a computation-
ally unbounded and deterministic distinguisher D that has access to either
the real world oracles O = ((EncKj

,DecKj
)uj=1, π

±), or the ideal world oracles
P = ((Randj ,Rej)

u
j=1, π

±). The distinguisher makes qe construction encryption
queries to (EncKj

)uj=1 or (Randj)
u
j=1, each query with a message length of less

than ℓm blocks, totaling at most σ encrypted blocks. It makes at most µ faulty
queries for the same user and in total at most d queries per nonce. Enc uses
two subprocedures: the MAC function F and the encryption function E of Π,
therefore we will also denote the encryption oracle of j-th user as EncKj

[F,E],
for each user j ∈ {1, . . . , u}. Then, EncKj

[F,E] works as follows for Ni ∈ {0, 1}b,
Ai ∈ {0, 1}∗ and Mi ∈ {0, 1}∗:

EncKji
[F,E](Ni, Ai,Mi) = (Ci, Ti)

where Ti = FKji
(Ni, Ai,Mi) and Ci = EKji

(Ni, Ti,Mi) ,

for i = 1, . . . , qe. The distinguisher also gets access to the values V1, . . . , Vqe ,
where the first t bits of these values are given as the output tags of each query,
and the remaining n − t bits of these qe values are revealed at the end of the
interaction, but before D makes its final decision. As before, in the real world,
Vi = φm(Kji∥Ni∥Hji). In the ideal world, (V1, . . . , Vqe) are dummy values, where
the first t bits are returned by oracles $1, . . . , $u, and the remaining n − t bits
are generated uniformly at random at the end of the interaction.

The distinguisherD also makes qv decryption queries to (DecKj
)uj=1 or (Rej)

u
j=1.

Dec uses two subprocedures: the verification function Ver of the MAC F and the
decryption function D of Π. Hence, we will denote the decryption oracle of

25

jth user as DecKj
[Ver,D]. Then, DecKj

[F,E] works as follows for N ′
i ∈ {0, 1}b,

A′
i ∈ {0, 1}∗ and C ′

i ∈ {0, 1}∗, T ′
i ∈ {0, 1}t:

DecKj′
i
[Ver,D](N ′

i , T
′
i , A

′
i, C

′
i) =

{
M ′

i if VerKj′
i
(N ′

i , A
′
i,M

′
i , T

′
i) = 1

⊥ if VerKj′
i
(N ′

i , A
′
i,M

′
i , T

′
i) = 0

where M ′
i = DKj′

i
(N ′

i , T
′
i , C

′
i), for i = 1, . . . , qv.

Apart from the construction queries (encryption and decryption), D also
makes p primitive queries to π±. Without loss of generality, it can be assumed
that the distinguisher does not make duplicate construction or primitive queries.

After D’s interaction with the oracles, but before it outputs its decision, we
disclose the key material used in the interaction. The first values that are re-
vealed are valuesK1, . . . ,Ku. In the real world, these are the keysK1, . . . ,Ku ←$

{0, 1}k that are actually used by the construction oracles (encryption and de-
cryption); in the ideal world, these are dummy keys K1, . . . ,Ku ←$ {0, 1}k. The
second values that are revealed are values U1, . . . , Uu ∈ {0, 1}n, where the first t
bits of these values are the universal hash functions keys L1, . . . , Lu. In the real
world, these are the values Uj = φk(Kj) for j = 1, . . . , u. In the ideal world,
these are dummy values U1, . . . , Uu ←$ {0, 1}n. All queries and revealed keys
are summarized in a transcript τ .

Now, from such a transcript τ , we can extract a transcript Rm(τ) for F
(as defined in Section 5.1), and another transcript Re(τ) for Π (as defined in
Section 5.2) as follows. The transcript Rm(τ) consists of the revealed keys, all
primitive queries in τ , and for every encryption (respectively decryption) query
in τ , we store a query (con, j,N,A,M, V) (respectively (ver, j′, N ′, A′,M ′, T ′, b′))
in Rm(τ). The transcript Re(τ) consists of the keys K1, . . . ,Ku, all primi-
tive queries in τ , and for every encryption query of τ a corresponding query
(con, j,N, T,M,C,W) in Re(τ) with W = M ⊕ C.

For a MAC query (con, j,N,A,M, V) ∈ Rm(τ), a key pair (K,U) ∈ Rm(τ),
and a construction encryption query (con, j∗, N∗, T ∗,M∗, C∗,W ∗) ∈ Re(τ), we
define the following bad events:

bad1 : V − (fm(Kj)∥N∥Hj) = W ∗[l∗]− (fe(Kj∗)∥N∗∥T ∗ + l∗ − 1)

for l∗ = 1, . . . , ℓm , (22)

bad2 : U − (fk(K)∥00 · · · 0) = W ∗[l∗]− (fe(Kj∗)∥N∗∥T ∗ + l∗ − 1)

for l∗ = 1, . . . , ℓm . (23)

Note that because the same master key is used for both the encryption and
MAC components of the mode, domain separation is required to ensure that the
permutation inputs and outputs do not collide between a MAC query and an
encryption query. However, this requirement does not apply in the ideal world.
Hence, the two bad events mentioned above are essential to ensuring that the
outputs do not collide in the ideal world.

26

Furthermore, we define BAD = bad1 ∨ bad2. Next, consider three worlds
Worldi for i = 1, 2, 3, defined as follows:

World1 = ((EncKj
[F,E],DecKj

[Ver,D])uj=1, π
±) ,

World2 = ((EncKj
[$j ,E],DecKj

[Rej,D])uj=1, π
±) ,

World3 = ((Randj ,Rej)
u
j=1, π

±) ,

where $1, . . . , $u are oracles that return uniform random outputs.
By the triangle inequality, the advantage of an adversary D against the mu-ae

security of PSIV satisfies

Advmu-ae
PSIV (D) = ∆D (World1;World3)

=
∣∣Pr[DWorld1 = 1]− Pr[DWorld3 = 1]

∣∣
≤

∣∣Pr[DWorld1 = 1 ∧ ¬BAD]− Pr[DWorld3 = 1 ∧ ¬BAD]
∣∣

+
∣∣Pr[DWorld1 = 1 ∧ BAD]− Pr[DWorld3 = 1 ∧ BAD]

∣∣
≤

∣∣Pr[DWorld1 = 1 ∧ ¬BAD]− Pr[DWorld3 = 1 ∧ ¬BAD]
∣∣

+ Pr[World3 sets BAD] . (24)

Note that for World1, the inputs to the permutation calls made by F and those
made by Π never collide due to the domain separation provided by fk, fm and
fe. Therefore, the event BAD never happens in World1.

Denoting the first term in (24) by ∆¬BAD
D (World1;World3) for brevity, the

triangle inequality shows that

∆¬BAD
D (World1;World3) ≤

∆¬BAD
D (World1;World2) +∆¬BAD

D (World2;World3) . (25)

Since World1 and World2 use (F,Ver) resp. ($j ,Rej) as subprocedures in their
construction oracles, we have

∆¬BAD
D (World1;World2) ≤ Advmu-mac

F (D′) , (26)

for an adversary D′ against the multi-user mac security of F that makes qe
encryption queries with at most µ faulty nonces for the same user and in total
at most d queries per nonce, qv construction verification queries (in total to all
u construction oracles), and p primitive queries in order to simulate D’s oracles.

In both World2 and World3, the decryption construction oracles behave in
the same way, always returning zero. Hence, without loss of generality, we can
assume that D makes queries only to the encryption oracles and the primitive
π±. We can then construct an adversary D′′ against the multi-user ivE security
of Π that makes qe construction encryption queries (in total to all users), each
query with a message length at most ℓm blocks, totaling at most σ encrypted
blocks, for at most µ faulty queries per user and in total at most d queries per
nonce, and p primitive queries in order to simulate D’s oracles. Then, we have

∆¬BAD
D (World2;World3) ≤ Advmu-nivE

Π (D′′) . (27)

27

It follows from (25), (26) and (27) that

∆¬BAD
D (World1;World3) ≤ Advmu-mac

F (D′) +Advmu-nivE
Π (D′′) .

Now consider the probability that World3 sets BAD in (24). We prove that

Pr [World3 sets BAD] ≤ σ(qe + u)

2n
. (28)

Using the union bound, we get

Pr [World3 sets BAD] ≤ Pr[bad1] + Pr[bad2] .

1st Bad Event. Since the values V and W ∗[l∗] are generated uniformly and in-
dependent in the ideal world, the probability that the event holds for fixed MAC
query (con, j,N,A,M, V) ∈ Rm(τ) and encryption query (con, j∗, N∗, T ∗,M∗, C∗,
W ∗[1]∥ · · · ∥W ∗[ℓm]) ∈ Re(τ) is 1/2

n. Summing over qe possible choices of MAC
queries and σ possible choices of encryption queries, we have

Pr[bad1] ≤
qeσ

2n
.

2nd Bad Event. Similarly, since the values U and W ∗[l∗] are generated uni-
formly and independent in the ideal world, the probability that the event holds
for a fixed key pair (K,U) ∈ Rm(τ) and encryption query (con, j∗, N∗, T ∗,M∗, C∗,
W ∗[1]∥ . . . ∥W ∗[ℓm]) ∈ Re(τ) is 1/2n. Summing over u possible choices of user
key pairs and σ possible choices of encryption queries, we have

Pr[bad2] ≤
uσ

2n
.

Summing over the probabilities of the bad events completes the proof of (28).
Combining this result with (24) and (25) completes the proof.

6 Key-Committing Security

We present provable security result for the key-committing security of the pro-
posed PSIV construction, assuming its underlying permutation is ideal. We prove
a birthday-type security bound in the tag length. Note that AES-GCM, AES-
GCM-SIV and ChaCha20-Poly1305 do not provide key-committing security [1].

6.1 Security Notion

We use the following “committing security” notion by Bellare and Hoang [2].

28

Definition 1. Let E = (Enc,Dec) be a nonce-based AE scheme with key space
{0, 1}k, nonce space {0, 1}b, message space {0, 1}∗, and AD space {0, 1}∗. The
CMT-1 insecurity is the maximum advantage over all adversaries whose goal
is to find two input tuples (K,N,A,M), (K ′, N ′, A′,M ′) ∈ {0, 1}k × {0, 1}b ×
{0, 1}∗ × {0, 1}∗ with K ̸= K ′ and Enc(K,N,A,M) = Enc(K ′, N ′, A′,M ′). The
CMT-1 advantage of an adversary D is defined as

Advcmt-1
E (D) := Pr[((K,N,A,M), (K ′, N ′, A′,M ′))← D

s.t. K ̸= K ′,Enc(K,N,A,M) = Enc(K ′, N ′, A′,M ′)].

There is an even stronger security notion called cmt-4, which is identical to cmt-1
except that only (K,N,A,M) ̸= (K ′, N ′, A′,M ′) is required instead of K ̸= K ′.
As shown in [2], a cmt-1 scheme can be turned into a cmt-4 scheme using their
proposed HtE transform that requires a suitable hash function. Whether or not
ChaCha20-Poly1305-PSIV can achieve cmt-4 security using only additional calls
to the ChaCha20 permutation is left as future work.

6.2 Proof of cmt-1 Security for ChaCha20-Poly1305-PSIV

Our proof is based on the notion of collision resistance. Let H : X → Y be
a function. An collision for H is a pair (X1, X2) of distinct points in X such
that H(X1) = H(X2). For an adversary D, define its advantage in breaking the
collision resistance of H built on a primitive π as

Advcol
H (D) = Pr[(X1, X2)← Dπ±

: X1 ̸= X2, H(X1) = H(X2)] .

Here ± means that the adversary is getting both forward and inverse access to
this primitive.

We rely on the following result on the collision resistance of the permutation-
based variant of the truncated Davies-Meyer (pDM). The result follows from the
multicollision resistance bound by Chen et al. [9]. In particular, let m ≤ n be
an integer and define pDMm(X) := (π(X) + X)[1..m] based on a permutation
π : {0, 1}n → {0, 1}n. For the special case m = n (no truncation), we write pDM
instead of pDMm.

Lemma 8 (Collision resistance of pDMm [9]). Let π : {0, 1}n → {0, 1}n be
an ideal permutation and m ≤ n a positive integer. For an adversary D that
makes at most p ideal permutation queries, we have

Advcol
pDMm

(D) ≤ p(p− 1)

2m
.

We now prove the following result about the cmt-1 security of PSIV.

Theorem 2. Let D be a cmt-1 adversary against PSIV with π ←$ Perm(n). If
D makes at most p ≤ 2n−1 − 2 primitive queries, then

Advcmt-1
PSIV (D) ≤ p(p− 1)

2t
.

29

Proof. We prove cmt-1 security by showing that the collision probability of the
tag is sufficiently small. Indeed, the tag is almost the same as the output of
the pDMt construction. For distinct input tuples of PSIV, (K,N,A,M) and
(K ′, N ′, A′,M ′) such that K ̸= K ′, the tag is given by T = φm(K∥H∥N).
Hence, we obtain

Advcmt-1
PSIV (D) ≤ Pr[((K,N,A,M), (K ′, N ′, A′,M ′))← D s.t. K ̸= K ′, T = T ′] .

Here, D has both forward and backward (inverse) access to the ideal permuta-
tion π. Next, we evaluate Advcmt-1

PSIV (D) for any adversary D. Without loss of
generality, we can assume that D makes no repeated queries. Hence, there exists
an adversary D′ such that

Advcmt-1
PSIV (D) ≤ Advcol

pDMt
(D′) .

The adversary D′ runs D and makes a total of p queries to the primitive. By
Lemma 8 with m = t, it follows that

Advcol
pDMt

(D′) ≤ p(p− 1)

2t
,

which concludes the proof. ⊓⊔

For ChaCha20-Poly1305-PSIV, Theorem 2 implies generic security up to ap-
proximately 264 queries to ChaCha20. This is the best possible cmt-1 security
that can be achieved with a 128 bit tag. Note that it is straightforward to increase
the tag length of PSIV.

7 Implementation

In this section, the performance of ChaCha20-Poly1305-PSIV is discussed. A ref-
erence implementation in Rust and an optimized implementation in C for lib-
sodium 1.0.18 [12] are provided as supplementary material, which are available
online. The implementation for libsodium was straightforward as all the SIMD
optimizations present in the library could be reused for ChaCha20-Poly1305-PSIV.

The encryption (top half) and decryption (bottom half) speed of ChaCha20-
Poly1305-PSIV and several AEAD modes implemented in libsodium 1.0.18 are
given in Table 3, and additional benchmarking results are discussed in Tables 4
and 5 in Appendix D. The measurements in Table 3 were made on an Intel Xeon
Gold 6320 processor at 2.10 GHz with Intel Turbo Boost Technology disabled.
Libsodium was configured with the default options for our processor, which
enable the AES, PCLMULQDQ, SSSE3 and AVX2 instructions set extensions
during compilation. Each message was encrypted with 13 bytes of additional
data3. Additional measurements on different platforms (AMD Ryzen 7, Intel i7)
are given in Appendix D.

3 This corresponds to the length of the additional data used in the AEAD benchmarks
of the speed utility of OpenSSL, results for other lengths are in Appendix D.

30

Table 3: Encryption (top) and decryption (bottom) speed of AES256-GCM,
ChaCha20-Poly1305 and ChaCha20-Poly1305-PSIV (Ours) in MiB/s. The mea-
surements were performed on an Intel Xeon Gold 6320 processor at 2.10 Ghz
with Intel Turbo Boost Technology disabled. The 95% confidence interval is
given.

|M |n AES-256-GCM ChaCha20-Poly1305 Ours

2 7.56− 7.67 3.66− 3.67 3.28− 3.29
32 112− 117 52.3− 52.4 50.1− 50.2
512 822− 837 432− 435 432− 435
8192 1073− 1081 737− 743 736− 742
16384 1083− 1091 755− 761 755− 761

2 8.10− 8.13 3.59− 3.59 3.28− 3.28
32 118− 118 49.0− 52.3 49.8− 50.4
512 820− 848 429− 431 425− 427
8192 1042− 1051 737− 743 735− 741
16384 1039− 1053 756− 761 756− 761

Table 3 (and Tables 4 and 5 in Appendix D) shows that their is no measurable
difference in speed between ChaCha20-Poly1305 and ChaCha20-Poly1305-PSIV,
except for small messages. This small difference can be attributed to small dif-
ferences in the implementations, such as in the initialization of the input to
ChaCha20, the generation of the tag or to the extra memory overhead in using
multiple keys.

Acknowledgments. This work was supported in part by the Research Coun-
cil KU Leuven: GOA TENSE (C16/15/058). Tim Beyne and Yu Long Chen
are recipients of postdoctoral Fellowships 1274724N and 1264825N, respectively,
funded by the Research Foundation - Flanders (FWO).

References

1. Albertini, A., Duong, T., Gueron, S., Kölbl, S., Luykx, A., Schmieg, S.: How to
abuse and fix authenticated encryption without key commitment. pp. 3291–3308

2. Bellare, M., Hoang, V.T.: Efficient schemes for committing authenticated encryp-
tion. pp. 845–875. LNCS

3. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. In: ASIACRYPT 2000. LNCS,
vol. 1976, pp. 531–545

4. Bernstein, D.J.: The poly1305-AES message-authentication code. In: FSE 2005.
LNCS, vol. 3557, pp. 32–49

5. Bernstein, D.J., et al.: Chacha, a variant of salsa20. In: Workshop record of SASC.
vol. 8, pp. 3–5

6. Böck, H., Zauner, A., Devlin, S., Somorovsky, J., Jovanovic, P.: Nonce-disrespecting
adversaries: Practical forgery attacks on GCM in TLS. In: 10th USENIX Workshop

31

on Offensive Technologies, WOOT 16, Austin, TX, USA, August 8-9, 2016. https:
//www.usenix.org/conference/woot16/workshop-program/presentation/bock

7. Bose, P., Hoang, V.T., Tessaro, S.: Revisiting AES-GCM-SIV: Multi-user security,
faster key derivation, and better bounds. In: EUROCRYPT 2018, Part I. LNCS,
vol. 10820, pp. 468–499

8. Chen, S., Steinberger, J.P.: Tight security bounds for key-alternating ciphers. In:
EUROCRYPT 2014. LNCS, vol. 8441, pp. 327–350

9. Chen, Y.L., Flórez-Gutiérrez, A., Inoue, A., Ito, R., Iwata, T., Minematsu, K.,
Mouha, N., Naito, Y., Sibleyras, F., Todo, Y.: Key committing security of AEZ
and more. ToSC 2023(4), 452–488

10. Cogliati, B., Lee, J., Seurin, Y.: New constructions of macs from (tweakable) block
ciphers. IACR Trans. Symm. Cryptol. 2017(2), 27–58

11. Degabriele, J.P., Govinden, J., Günther, F., Paterson, K.G.: The security of
ChaCha20-Poly1305 in the multi-user setting. pp. 1981–2003

12. Denis, F.: libsodium. https://github.com/jedisct1/libsodium (2013)
13. Dodis, Y., Grubbs, P., Ristenpart, T., Woodage, J.: Fast message franking: From

invisible salamanders to encryptment. In: CRYPTO 2018, Part I. LNCS, vol. 10991,
pp. 155–186

14. Dutta, A., Nandi, M., Talnikar, S.: Beyond birthday bound secure MAC in faulty
nonce model. In: EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 437–466

15. Fleischmann, E., Forler, C., Lucks, S.: McOE: A family of almost foolproof on-line
authenticated encryption schemes. In: FSE 2012. LNCS, vol. 7549, pp. 196–215

16. Grubbs, P., Lu, J., Ristenpart, T.: Message franking via committing authenticated
encryption. In: CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 66–97

17. Gueron, S., Langley, A., Lindell, Y.: AES-GCM-SIV: Nonce misuse-resistant au-
thenticated encryption, https://datatracker.ietf.org/doc/html/rfc8452

18. Gueron, S., Lindell, Y.: Better bounds for block cipher modes of operation via
nonce-based key derivation. In: ACM CCS 2017. pp. 1019–1036

19. Hoang, V.T., Reyhanitabar, R., Rogaway, P., Vizár, D.: Online authenticated-
encryption and its nonce-reuse misuse-resistance. In: CRYPTO 2015, Part I. LNCS,
vol. 9215, pp. 493–517

20. Imamura, K., Minematsu, K., Iwata, T.: Integrity analysis of authenticated en-
cryption based on stream ciphers. Int. J. Inf. Sec. 17(5), 493–511

21. Iwata, T., Seurin, Y.: Reconsidering the security bound of AES-GCM-SIV. IACR
Trans. Symm. Cryptol. 2017(4), 240–267

22. Jean, J., Nikolic, I., Peyrin, T., Seurin, Y.: The deoxys AEAD family. Journal of
Cryptology 34(3), 31

23. Langley, A.: Chacha20 and poly1305 based cipher suites for tls, https://

datatracker.ietf.org/doc/html/draft-agl-tls-chacha20poly1305-00

24. Len, J., Grubbs, P., Ristenpart, T.: Partitioning oracle attacks. pp. 195–212
25. McGrew, D.A., Viega, J.: The security and performance of the Galois/counter

mode (GCM) of operation. In: INDOCRYPT 2004. LNCS, vol. 3348, pp. 343–355
26. Patarin, J.: The “coefficients H” technique (invited talk). In: SAC 2008. LNCS,

vol. 5381, pp. 328–345
27. Peyrin, T., Seurin, Y.: Counter-in-tweak: Authenticated encryption modes for

tweakable block ciphers. In: CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 33–63
28. Procter, G.: A security analysis of the composition of ChaCha20 and Poly1305.

Cryptology ePrint Archive, Report 2014/613 (2014), https://eprint.iacr.org/
2014/613

29. Rescorla, E.: The transport layer security (TLS) protocol version 1.3, https://
www.rfc-editor.org/rfc/rfc8446

32

30. Rogaway, P.: Authenticated-encryption with associated-data. In: ACM CCS 2002.
pp. 98–107

31. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390

32. Yoav Nir, A.L.: Chacha20 and poly1305 for ietf protocols, https://datatracker.
ietf.org/doc/html/rfc8439

33

Supplementary Material
For any n-bit string w, we use [w]K+, [w]H+, and [w]K,H+ to denote the sub-
string of w corresponding to the key portion (the 256-bit key value without the
constant), the hash portion, and the substring that contains the key and the
hash portion, when w is interpreted as an input to π. Similarly, we use [w]K−,
[w]H−, and [w]K,H− to denote the complementary portion of the string.

A Proof of Lemma 6

We want to bound the probability Pr[XP ∈ Tbad] that an ideal world transcript
τ satisfies one of (1)-(11). Therefore, by the union bound, the probability that
XP ∈ Tbad can be bounded as

Pr[XP ∈ Tbad] ≤
11∑
i=1

Pr[badi] .

A.1 1st Bad Event

We first consider the bad event bad1. For any construction MAC query (con, j,N,
A,M, V) ∈ τe and any primitive queries (prim, x, y), we rely on the randomness
of Kj and the ϵ-regularity property of the function H based on the hash key Lj ,
the probability that [x]H+ = Hj is bounded by ϵ(ℓ). Since Kj and Lj are dummy
keys generated independently of τe and τp, the probability that (1) holds for fixed
construction MAC query (con, j,N,A,M, V) and primitive query (prim, x, y) is
ϵ(ℓ)/2k. Summing over the p possible primitive queries and d possible construc-
tion MAC queries with repeated nonces, we get

Pr[bad1] ≤
dpϵ(ℓ)

2k
.

A.2 2nd Bad Event

We now consider the event bad2. Let E2 be the event that there exists a bitstring
w ∈ {0, 1}n−k−t such that among all construction MAC queries, there are m2 =
⌈2(n− k − t)/max(1, n− k − t− log2 qe)⌉ or more values of [V]K,H− − (Z∥N)
that are equal to w, where N is the nonce associated to the encryption query of
V and Z is the constant part of fm(Kj) that is independent of Kj . Then,

Pr[bad2] = Pr[bad2 ∧ E2] + Pr[bad2 ∧ E2]

≤ Pr[bad2|E2] + Pr[E2] .

We now bound the probability of E2, so that we only have to consider the event
bad2 conditioned on E2 afterwards. Recall that in the ideal world, V values
are dummy values generated uniformly at random and independently from each

34

other. Every construction MAC query (con, j,N,A,M, V) can be considered as
throwing one ball, [V]K,H− − (Z∥N), uniformly at random into one of 2n−k−t

bins. Thus if we consider all construction MAC queries, we throw at most qe
balls uniformly at random into 2n−k−t bins. Using Lemma 2, with Q = qe and
D = 2−(n−k−t), the probability that the heaviest bin contains m2 or more balls
is at most 2−(n−k−t). Therefore, the probability of E2 is bounded by 2−(n−k−t).
Hence,

Pr[bad2] ≤ Pr[bad2|E2] + 2−(n−k−t) .

Note that E2 is the event that for all w ∈ {0, 1}n−k−t, among all MAC queries,
there are strictly less than m2 values of [V]K,H− − (Z∥N) that are equal to
w. For any of these m2 construction MAC query (con, j,N,A,M, V) ∈ τe and
any primitive queries (prim, x, y), we rely on the randomness of Kj and the
ϵ-regularity property of the function H with hash key Lj . In particular, the
probability that Hj = [V]H+ − [y]H+ is bounded by ϵ(ℓ). Since Kj and Lj are
dummy keys generated independently of τv and τp, the probability that (2) holds
for a fixed construction MAC query (con, j,N,A,M, V) and primitive query
(prim, x, y) is ϵ(ℓ)/2k. Moreover,

m2 =

⌈
2(n− k − t)

max(1, n− k − t− log2 qe)

⌉
≤ 2

⌈
(n− k − t)

max(1, n− k − t− log2 2qe)

⌉
≤ 2n .

Summing over the p possible primitive queries and m2 possible construction
MAC queries, we get

Pr[bad2] ≤
2n pϵ(ℓ)

2k
+

1

2n−k−t
.

A.3 3rd Bad Event

Next, we consider the bad event bad3. For this event, two cases are possible. The
first one is when the two queries are made to the same user, i.e., j = j∗, and the
second one is when the two queries are made to different users, i.e., j ̸= j∗.

– bad31 : case j = j∗. In the ideal world, bad3 for this case could be re-
defined by the tuple of all transcripts τ that contain two MAC queries
(con, j,N,M,A, V) ̸= (con, j∗, N∗,M∗, A∗, V ∗) such thatHLj

(A,M) = HLj
(A∗,M∗)

and N = N∗. To bound the probability of this case, we can use the ϵ-
almost ∆-universal property of the function H. However, this property re-
quires that (A,M) and (A∗,M∗) are distinct. However, if (A,M) = (A∗,M∗)
then we cannot have that N = N∗, as it would result in a repeated query.
Thus, the probability of this subcase is zero. If (A,M) ̸= (A∗,M∗), then
the probability that HLj

(A,M) = HLj
(A∗,M∗) is bounded by ϵ(ℓ) be-

cause H is the output of an ϵ-almost ∆-universal hash function with key
Lj . For every construction MAC query using a faulty nonce, there are at
most µ other MAC queries using the same nonce. So the number of pairs

35

(con, j,N,A,M, V) ̸= (con, j,N∗, A∗,M∗, V ∗) such that N = N∗ is at most
µ2. Hence,

Pr[bad31] ≤ µ2ϵ(ℓ) . (29)

– bad31 : case j ̸= j∗. For the first condition, we rely on the ϵ-regularity prop-
erty of the function H based on the hash key Lj : the probability that Hj =
Hj∗ is bounded by ϵ(ℓ). For the second condition, we rely on the randomness
of the key Kj . Since Kj and Lj are dummy keys generated independently
of τe, the probability that the event holds for fixed (con, j,N,A,M, V) ̸=
(con, j∗, N∗, A∗,M∗, V ∗) is ϵ(ℓ)/2k. Summing over qe possible construction
queries (con, j,N,A,M, V) and d−1 possible construction queries (con, j∗, N∗,
A∗,M∗, V ∗) such that N = N∗, we get

Pr[bad32] ≤
(d− 1)qeϵ(ℓ)

2k
. (30)

Combining the two cases (29) and (30) using the union bound, we obtain the
following result:

Pr[bad3] ≤ ϵ(ℓ)

(
µ2 +

qe(d− 1)

2k

)
.

A.4 4th Bad Event

Next, we consider the bad event bad4. Since the values V and V ∗ are generated
uniformly and independent in the ideal world, the probability that the event
holds for fixed (con, j,N,A,M, V) ̸= (con, j∗, N∗, A∗,M∗, V ∗) is 1/2n. Summing
over

(
qe
2

)
possible choices of construction MAC query pairs, we have

Pr[bad4] ≤
q2e

2n+1
.

A.5 5th Bad Event

This event is very similar to the bad event bad1. For any construction verification
query (ver, j′, N ′, A′,M ′, T ′, 0) ∈ τv and any primitive query (prim, x, y), we rely
on the randomness ofKj′ and the ϵ-regularity property ofH with key Lj′ . Specif-
ically, the probability that [x]H+ = HLj′ (A

′,M ′) is bounded by ϵ(ℓ). Since Kj′

and Lj′ are dummy keys generated independently of τv and τp, the probability
that (5) holds for a fixed construction verification query (ver, j′, N ′, A′,M ′, T ′, 0)
and primitive query (prim, x, y) is ϵ(ℓ)/2k. Summing over the p possible primitive
queries and qv possible construction verification queries, we get

Pr[bad5] ≤
qvpϵ(ℓ)

2k
.

36

A.6 6th Bad Event

Consider the bad event bad6. For this event, two cases are possible. The first
case is when the MAC and verification queries are made to the same user, i.e.,
j = j′, and the second one is when the two queries are made to different users,
i.e., j ̸= j′.

– bad61 : case j = j′. Note that for a verification query, we can always choose
N = N ′ for any N used in a MAC query. In the ideal world, bad6 for this
case could be redefined by the tuple of all transcripts τ that contain a veri-
fication query (ver, j,N,A′,M ′, T ′, 0) and a MAC query (con, j,N,A,M, V)
such that Hj = H ′

j′ and T ′ = trunct(V). To bound the probability of this
case, we use the ϵ-almost ∆-universal property of H with hash key Lj . How-
ever, this property requires that (A,M) and (A′,M ′) are distinct. Hence, we
first consider the case with (A,M) = (A′,M ′).
Depending on the order of the queries, we consider two subcases when
(A,M) = (A′,M ′). The first subscase is when the verification query is made
after the encryption query, and the second subcase is for the reverse or-
der. For the first subcase, we cannot have that trunct(V) = T ′, as it would
result in an invalid query. Hence, the probability of this subcase is zero.
For the second subcase, when the encryption query is made after the ver-
ification query, the probability that trunct(V) = T ′ is 1/2t, as encryption
queries return uniform random strings. For each of the qv verification queries
(ver, j,N,A′,M ′, T ′, 0), there can be at most one MAC query with the same
(j,N) and answer T = trunct(V) when (A,M) = (A′,M ′), and the proba-
bility that T = T ′ is 1/2t. Hence, the probability of this subcase is bounded
by qv/2

t.
Let bad∗61 be the subcase when (A,M) ̸= (A′,M ′). Let E6 be the event that
there exist a w ∈ {0, 1}t such that among all construction MAC queries,
there are m6 = ⌈2t/max(1, t− log2(µ+ 1))⌉ or more values of trunct(V)
that are equal to w. Then,

Pr[bad∗61] = Pr[bad∗61 ∧ E6] + Pr[bad∗61 ∧ E6]

≤ Pr[bad∗61 |E6] + Pr[E6] .

We first bound the probability of E6, so that we only have to consider the
event bad6 conditioned on E6 afterwards. Recall that in the ideal world, the
values trunct(V) are actually the tag values output by the oracles $, . . . , $u.
We can consider every construction MAC query (con, j,N,A,M, V) with
the same (j,N), as throwing one ball trunct(V), uniformly at random into
one of 2t bins. Hence, if we consider all faulty construction MAC queries
for one user, we throw at most µ + 1 balls (the first query with nonce N
is not considered as faulty, and there can be at most µ additional repeated
nonces.) uniformly at random into 2t bins. Using Lemma 2, with Q = µ+ 1
and D = 2t, the probability that the heaviest bin contains m6 or more balls
is at most 2−t. Therefore, the probability of E6 is bounded by 2−t. Hence,

Pr[bad∗61] ≤ Pr[bad∗61 |E6] + 2−t .

37

Note that E6 is the event that for all w ∈ {0, 1}t, among all MAC queries,
there are strictly less thanm6 values of trunct(V) that are equal to w. For any
of these m6 construction MAC query (con, j,N,A,M, V) ∈ τe and qv veri-
fication queries (ver, j,N,A′,M ′, T ′, 0), the probability that HLj (A,M) =
HLj

(A′,M ′) for a fixed MAC query (con, j,N,A,M, V) and verification
query (ver, j,N,A′,M ′, T ′, 0) is bounded by ϵ(ℓ). Moreover,

m6 =

⌈
2t

max(1, t− log2(µ+ 1))

⌉
≤ 2

⌈
t

max(1, t− log2(2µ+ 2))

⌉
≤ 4 ,

if µ+ 1 ≤ 2t/2−1. Summing over the qv possible verification queries and m6

possible MAC queries, we get

Pr[bad∗61] ≤ 4qvϵ(ℓ) +
1

2t
.

Combining the two subcases using a union bound, we obtain

Pr[bad61] ≤
qv
2t

+ 4qvϵ(ℓ) +
1

2t
. (31)

– bad62 : case j ̸= j′. Using the same approach as for bad61 , but with Q = d
and D = 2t, we have

m6 =

⌈
2t

max(1, t− log2 d)

⌉
≤ 2

⌈
t

max(1, t− log2 2d)

⌉
≤ 2n .

For the first condition, we rely on the ϵ-regularity property of the function H
with hash key Lj , i.e. the probability that Hj = H ′

j′ is bounded by ϵ(ℓ). For
the third condition, we rely on the randomness of the key Kj . Since Kj and
Lj are dummy keys generated independently of τe and τv, the probability
that the event holds for a fixed construction MAC query (con, j,N,A,M, V)
and construction verification query (ver, j′, N,A′,M ′, T ′, 0) is ϵ(ℓ)/2k. Sum-
ming over qv possible construction verification queries and m6 possible con-
struction MAC queries with repeated (N,T) pairs, we get

Pr[bad62] ≤
2n qvϵ(ℓ)

2k
+

1

2t
. (32)

Combining the two cases (31) and (32) using the union bound, we obtain the
following result:

Pr[bad6] ≤
qv
2t

+ 2qvϵ(ℓ)
(
2 +

n

2k

)
+

2

2t
.

A.7 7th Bad Event

This event is very similar to bad events bad1 and bad5. For all key pairs (K,U) ∈
τk and all primitive queries (prim, x, y), we rely on the randomness of Kj . Since
Kj is a dummy key generated independently of τk and τp, the probability that (7)
holds for fixed key pair (K,U) and primitive query (prim, x, y) is 1/2k. Summing
over p possible primitive queries and u possible key pairs, we get

Pr[bad7] ≤
up

2k
.

38

A.8 8th Bad Event

This analysis of this event is similar to that of bad event bad2. Let E8 be the
event that there exists a w ∈ {0, 1}n−k such that among all users, there are
m8 = ⌈2(n− k)/max(1, n− k − log2 u)⌉ or more values of [U]K− that are equal
to w. Then,

Pr[bad8] = Pr[bad8 ∧ E8] + Pr[bad8 ∧ E8]

≤ Pr[bad8|E8] + Pr[E8] .

We first bound the probability of E8, so that we only have to consider the event
bad8 conditioned on E8 afterwards. Recall that in the ideal world, the values U
are dummies generated uniformly at random and independent from each other.
We can consider each user key pair (K,U) as throwing a ball [U]K− uniformly
at random into one of 2n−k bins. Hence, if we consider all key pairs in τk, we
throw at most u balls uniformly at random into 2n−k bins. Using Lemma 2, with
Q = u and D = 2n−k, the probability that the heaviest bin contains m8 or more
balls is at most 2−(n−k). Therefore, the probability of E8 is bounded by 2−(n−k).
Hence,

Pr[bad8] ≤ Pr[bad8|E8] + 2−(n−k) .

Note that E8 is the event that for all w ∈ {0, 1}n−k, among all key pairs in τk,
there are strictly less than m8 values of [U]K− that are equal to w. For any of
these m8 key pairs (K,U) ∈ τk and any primitive queries (prim, x, y), we rely on
the randomness of K. Since K is a dummy key generated independently of τk
and τp, the probability that (8) holds for key pair (K,U) and primitive query
(prim, x, y) is 1/2k. Moreover,

m8 =

⌈
2(n− k)

max(1, n− k − log2 u)

⌉
≤ 2

⌈
n− k

max(1, n− k − log2(2u))

⌉
≤ 4 ,

for u ≤ 2(n−k)/2−1. Summing over the p possible primitive queries and m8 pos-
sible key pairs in τk, we get

Pr[bad8] ≤
4p

2k
+

1

2n−k
.

A.9 9th Bad Event

Since the values V and U are generated uniformly at random and independent
in the ideal world, the probability that the event holds for fixed construction
MAC query (con, j,N,A,M, V) and key pair (K,U) is 1/2n. Summing over qe
possible choices of construction MAC query and u possible choices of key pairs,
we have

Pr[bad9] ≤
uqe
2n

.

39

A.10 10th Bad Event

Since the keys K and K∗ are dummy keys generated uniformly and indepen-
dent in the ideal world, the probability that the event holds for fixed (K,U) ̸=
(K∗, U∗) is 1/2k. Summing over

(
u
2

)
possible choices of user pairs, we have

Pr[bad10] ≤
u(u− 1)

2k+1
.

A.11 11th Bad Event

Since the values U and U∗ are generated uniformly and independent in the ideal
world, the probability that the event holds for fixed (K,U) ̸= (K∗, U∗) is 1/2n.
Summing over

(
u
2

)
possible choices of key pairs in τk, we have

Pr[bad11] ≤
u(u− 1)

2n+1
.

B Proof of Lemma 7

We want to bound the probability Pr[XP ∈ Tbad] that an ideal world transcript
τ satisfies either of (15)-(18). Therefore, by the union bound, the probability
that XP ∈ Tbad can be bounded as

Pr[XP ∈ Tbad] ≤
4∑

i=1

Pr[badi] .

B.1 1st Bad Event

We first consider the bad event bad1. Let E1 be the event that there exists a
w ∈ {0, 1}t such that among all construction queries with the same nonce input,
there are m1 = ⌈2t/max(1, t− log2(d))⌉ or more values of T + l − 1 that are
equal to w, for l = 1, . . . , ℓm. Then,

Pr[bad1] = Pr[bad1 ∧ E1] + Pr[bad1 ∧ E1]

≤ Pr[bad1|E1] + Pr[E1] .

We first bound the probability of E1, so that we only have to consider the
event bad1 conditioned on E1 afterwards. Recall that the T values are indepen-
dent and uniformly distributed. Hence, we can view every construction query
(con, j,N, T,M,C,W), as throwing ℓm balls T + l− 1 (for l = 1, . . . , ℓm), into 2t

distinct bins. Hence, if we consider all construction queries with the same nonce
input, we throw at most d balls uniformly at random into 2t bins (since for each
of these d balls, additional ℓ − 1 balls will be thrown into distinct bins). Using
Lemma 2, with Q = d and D = 2t, the probability that the heaviest bin contains

40

m1 or more balls is at most 2−t. Therefore, the probability of E1 is bounded by
2−t. Hence,

Pr[bad1] ≤ Pr[bad1|E] + 2−t .

Note that E1 is the event that for all w ∈ {0, 1}t, among all construction queries
with the same nonce input, there are strictly less than m1 values of T + l−1 that
are equal to w. For any of these m1 construction query (con, j,N, T,M,C, V) ∈
τe and any primitive queries (prim, x, y), the event bad1 happens if the key is
sampled as Kj = [x]K+. Here, we rely on the randomness of Kj . Since Kj is
a dummy key generated independently of τe and τp, the probability that (16)
holds for fixed construction query (con, j,N, T,M,C, V) and primitive query
(prim, x, y) is 1/2k. Moreover,

m1 =

⌈
2t

max(1, t− log2 d)

⌉
≤ 2

⌈
t

max(1, t− log2 2d)

⌉
≤ 2t .

Summing over p primitive queries and m1 possible construction queries, we get

Pr[bad1] ≤
2tp

2k
.

B.2 2nd Bad Event

Let E2 be the event that there exists a w ∈ {0, 1}n−k such that among all con-
struction queries, there are m2 = ⌈2(n− k)/max(1, n− k − log2(σ))⌉ or more
values of [W [l]]K−−(Z∥N∥T+l−1) that are equal to w, for l = 1, . . . , ℓm, where
N and T are respectively the nonce and the tag associated to the encryption
query of V , and Z is the constant part of fe(Kj) which is independent of Kj .
Then,

Pr[bad2] = Pr[bad2 ∧ E2] + Pr[bad2 ∧ E2]

≤ Pr[bad2|E2] + Pr[E2] .

We first bound the probability of E2, so that we only have to consider the
event bad2 conditioned on E2 afterwards. Recall that in the ideal world, we have
W = M⊕C, hence W values are independent and uniformly distributed. We can
view each construction query (con, j,N, T,M,C,W [1]∥ . . . ∥W [ℓm]), as throwing
ℓm balls ([W [1]]K−−(Z∥N∥T)), . . . , ([W [ℓm]]K−−(Z∥N∥T+ℓm−1)), uniformly
at random into 2n−k bins. Hence, if we consider all construction queries, we throw
at most σ balls uniformly at random into 2n−k bins. Using Lemma 2, with Q = σ
and D = 2n−k, the probability that the heaviest bin contains m2 or more balls is
at most 2−(n−k). Therefore, the probability of E2 is bounded by 2−(n−k). Hence,

Pr[bad2] ≤ Pr[bad2|E2] + 2−(n−k) .

Note that E2 is the event that for all w ∈ {0, 1}n−k, among all construction
queries, there are strictly less than m2 values of [W [l]]K− − (Z∥N∥T + l − 1)

41

that are equal to w, for l = 1, . . . , ℓm. For any of these m2 construction query
(con, j,N, T,M,C,W [1]∥ . . . ∥W [ℓm]) ∈ τe and any primitive queries (prim, x, y),
the event bad2 happens if the key is sampled as Kj = [W [l]]K+ − [y]K+.
Since Kj is a dummy key generated independently of τe and τp, the probability
that (16) holds for fixed construction query (con, j,N, T,M,C,W [1]∥ . . . ∥W [ℓm])
and primitive query (prim, x, y) is 1/2k. Moreover,

m2 =

⌈
2(n− k)

max(1, n− k − log2(σ))

⌉
≤ 2

⌈
n− k

max(1, n− k − log2(2σ))

⌉
≤ 4 ,

using σ ≤ 2(n−k)/2−1. Summing over p possible primitive queries andm2 possible
construction queries, we get

Pr[bad2] ≤
8p

2k
+

1

2n−k
.

B.3 3rd Bad Event

Next, we consider the bad event bad3. For this event, two cases are possible. The
first one is when the two queries are made to the same user, i.e., j = j∗, and the
second one is when the two queries are made to different users, i.e., j ̸= j∗.

– bad31 : case j = j∗. In the ideal world, bad3 for this case could be rede-
fined by the tuple of all transcripts τ that contain two construction queries
(con, j,N, T,M,C,W) ̸= (con, j∗, N∗, T ∗,M∗, C∗,W ∗) such that T = T ∗ +
l∗ − 1 and N = N∗ for l∗ = 1, . . . , ℓm. Since the input tags are gener-
ated uniformly at random, the probability that T = T ∗ + l∗ − 1 for fixed
(con, j,N, T,M,C,W) ̸= (con, j∗, N∗, T ∗,M∗, C∗,W ∗) is bounded by 1/2t.
For every construction query using a faulty nonce, there are at most µ other
MAC queries using the same nonce. Hence, the number of construction query
pairs such that N = N∗ is at most µ2 and since there are ℓm possible l∗, we
get

Pr[bad31] ≤
µ2ℓm
2t

. (33)

– bad32 : case j ̸= j∗. For the first condition, since the input tags are gener-
ated uniformly at random, the probability that T = T ∗ + l∗ − 1 for fixed
(con, j,N, T,M,C,W) ̸= (con, j∗, N∗, T ∗,M∗, C∗,W ∗) and l∗ = 1, . . . , ℓm
is bounded by 1/2t. For the second condition, we rely on the random-
ness of the uniform key K. The probability that the event holds for fixed
(con, j,N, T,M,C,W) ̸= (con, j∗, N∗, T ∗,M∗, C∗,W ∗) is 1/2k+t. Summed
over qe possible construction queries (con, j,N, T,M,C,W), d − 1 possible
construction queries (con, j∗, N∗, T ∗,M∗, C∗,W ∗) such that N = N∗, and
ℓm possible l∗, we get

Pr[bad32] ≤
qe(d− 1)ℓm

2k+t
. (34)

42

Combining the two cases (29) and (34) using the union bound, we obtain the
following result:

Pr[bad3] ≤
ℓm
2t

(
µ2 +

qe(d− 1)

2k

)
.

B.4 4th Bad Event

Finally, we consider the bad event bad4. Since the values W [l] and W ∗[l∗] are
generated uniformly and independent in the ideal world, the probability that the
event holds for fixed (con, j,N, T,M,C,W [1]∥ . . . ∥W [ℓm]) ̸= (con, j∗, N∗, T ∗,M∗,
C∗,W ∗[1]∥ . . . ∥W ∗[ℓm]) is 1/2n. Summing over

(
σ
2

)
possible choices of construc-

tion query pairs, we have

Pr[bad4] ≤
σ2

2n+1
.

C Analysis in the Random Nonce Case

When a random nonce is used, the value d in Theorem 1 is bounded by the
maximum number of nonce collisions. The expected number of collisions is
qe(qe − 1)/2b−1. By Markov’s inequality, the probability that the number of
collisions exceeds 2t/2−1 is at most 4qe(qe − 1)/2b+t/2. Hence, the terms with d
in Theorem 1 can be upper bounded by

ϵ(ℓ)
d(qe + p)

2k
+

qe(d− 1)ℓm
2k+t

≤ ϵ(ℓ)
qe + p

2k−t/2+1
+

qeℓm
2k+t/2+1

.

For terms with µ, we bound the related bad events again with random nonces.
In particular, it follows from the analysis below that the terms related to µ can
be replaced by

q2eϵ(ℓ)

2b+1
+

q2eℓm
2t+b+1

.

Only bad31 and bad61 in Supplementary Material A, and bad31 in Supplementary
Material B are related to µ. The bound for bad61 in Supplementary Material A,
is independent of µ apart from the condition µ + 1 ≤ 2t/2−1. However, due
to µ ≤ d < 2t/2−1, this condition is always satisfied. Hence, we only have to
consider the events bad31 from Supplementary Material A and B.

C.1 3rd Bad Event of Supplementary Material A

Only the case j = j∗ has to be reconsidered. In the ideal world, bad3 for this
case could be redefined by the tuple of all transcripts τ that contain two MAC
queries (con, j,N,M,A, V) ̸= (con, j∗, N∗,M∗, A∗, V ∗) such that HLj

(A,M) =
HLj

(A∗,M∗) and N = N∗. To bound the probability of this case, we rely on the
ϵ-almost∆-universal property of the functionH, and the fact that the nonces are
generated uniformly at random. Note that when the nonce collides with one of

43

the previous nonces, we cannot have (A,M) = (A∗,M∗), otherwise this will be
a repeated query. When (A,M) ̸= (A∗,M∗) and H is an ϵ-almost ∆-universal
hash function based on the hash key Lj , the probability that HLj (A,M) =
HLj (A

∗,M∗) is bounded by ϵ(ℓ). Summing over
(
qe
2

)
possible pairs of distinct

MAC queries, we get

Pr[bad31] ≤
q2eϵ(ℓ)

2b+1
.

C.2 3rd Bad Event of Supplementary Material B

Consider the case j = j∗. In the ideal world, bad3 for this case could be re-
defined as the tuple of all transcripts τ that contain two construction queries
(con, j,N, T,M,C, V) ̸= (con, j∗, N∗, T ∗,M∗, C∗, V ∗) such that T = T ∗+ l∗ and
N = N∗ for l∗ = 0, . . . , ℓm − 1. Since the input tags and nonces are both gen-
erated uniformly at random, the probability that T = T ∗ + l∗ and N = N∗

for fixed (con, j,N, T,M,C, V) ̸= (con, j∗, N∗, T ∗,M∗, C∗, V ∗) is bounded by
1/2t+b. Summing over

(
qe
2

)
possible pair of distinct construction queries and at

most ℓm possible l∗, we get

Pr[bad31] ≤
q2eℓm
2t+b+1

.

D Additional Benchmarks

Additional benchmarking results on an AMD Ryzen 7 5700U and on an Intel
i7 10510U processor are given in Tables 4 and 5. In both cases, Turbo Boost
Technology was turned off and Libsodium was compiled with the default options.

44

Table 4: Performance of AES256-GCM, ChaCha20-Poly1305 and ChaCha20-
Poly1305-PSIV (ours) in MiB/s. The measurements were performed on an AMD
Ryzen 7 5700U processor at 1.796 Ghz with Turbo Boost Technology disabled.
The median value is given.

(a) Encryption speed in MiB/s.

A (bytes) M (bytes) AES-256-GCM ChaCha20-Poly1305 Ours

2

2 6.561 3.142 2.736
32 101.0 41.83 42.59
512 700.8 362.1 354.9
8192 880.0 591.4 590.4
16384 886.0 605.5 604.7

32

2 6.735 2.966 2.919
32 104.8 41.01 42.82
512 708.4 360.5 366.8
8192 880.8 590.5 593.5
16384 886.0 605.6 604.9

512

2 4.109 1.936 1.871
32 64.26 28.19 28.71
512 562.0 287.0 291.9
8192 861.5 577.0 575.9
16384 877.0 597.1 597.6

(b) Decryption speed in MiB/s.

A (bytes) M (bytes) AES-256-GCM ChaCha20-Poly1305 Ours

2

2 6.775 3.017 2.771
32 103.2 42.14 41.92
512 657.7 363.0 351.8
8192 800.9 590.6 590.0
16384 808.2 603.6 605.1

32

2 6.906 2.903 2.801
32 104.6 41.84 42.30
512 657.2 360.8 362.3
8192 802.0 591.0 591.3
16384 808.6 606.1 605.6

512

2 4.190 1.902 1.849
32 64.71 28.38 28.31
512 531.8 289.8 291.0
8192 786.6 578.5 577.8
16384 800.9 598.5 598.5

45

Table 5: Performance of AES256-GCM, ChaCha20-Poly1305 and ChaCha20-
Poly1305-PSIV (ours) in MiB/s. The measurements were performed on an Intel
i7 10510U processor at 1.80 Ghz with Turbo Boost Technology disabled. The
median value is given.

(a) Encryption speed in MiB/s.

A (bytes) M (bytes) AES-256-GCM ChaCha20-Poly1305 Ours

2

2 6.885 3.216 2.876
32 102.6 45.02 44.28
512 711.7 388.6 384.0
8192 904.7 681.7 679.6
16384 907.7 694.8 698.3

32

2 7.244 3.064 2.984
32 107.6 43.30 44.63
512 721.2 380.8 390.5
8192 900.2 679.8 681.1
16384 910.4 695.8 700.0

512

2 4.865 1.921 1.881
32 74.00 28.21 28.71
512 609.2 306.0 308.2
8192 892.8 656.9 660.9
16384 900.9 685.8 689.6

(b) Decryption speed in MiB/s.

A (bytes) M (bytes) AES-256-GCM ChaCha20-Poly1305 Ours

2

2 7.152 3.017 2.771
32 102.9 44.08 43.83
512 724.5 363.0 351.8
8192 899.5 680.5 678.6
16384 894.9 603.6 605.1

32

2 7.549 3.131 2.842
32 110.4 42.48 44.06
512 614.0 377.0 386.6
8192 901.2 674.5 679.8
16384 903.3 695.8 699.7

512

2 4.978 1.881 1.865
32 74.10 27.64 28.56
512 614.0 300.4 307.9
8192 887.6 656.2 662.3
16384 894.0 685.8 685.3

46

