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Abstract. We introduce a general, low-cost, low-power statistical test for

transactions in transaction protocols with small anonymity set authentication
(TPSASAs), such as Monero. The test classifies transactions as ad hoc (spon-

taneously constructed to spend a deterministically selected key) or self-churned

(constructed from a probability distribution very close to that of the default
wallet software, and with the same sender and receiver). The test is a uniformly

most powerful (UMP) likelihood ratio tests (LRT) from the Neyman-Pearson

Lemma, and makes no assumptions about user behavior. We extend these
tests to expoit prior information about user behavior. We discuss test param-

eterization, as well as how anonymity set cardinality and user behavior impact

test performance. We also describe a maximum-likelihood de-anonymization
attack on Monero based on our test.

1. Introduction

Output-based transaction protocols (TPs) verifiably authenticate transactions
with digital signatures ([11], [2]). With digital signatures, public keys are directly
linkable with corresponding signatures, so it is simple to directly trace the chain
of custody of funds. On the other hand, some TPs instead introduce spender
ambiguity by authenticating transactions with anonymity sets of public keys, e.g.
via ring signatures as in the original CryptoNote protocol ([15]) or zero-knowledge
proofs ([6], [5]). Tracing the chain of custody of funds through anonymity sets with
cardinality n requires computing correct paths through a directed acyclic graph
where each node has n children, which is thought to be more difficult as n increases
(and n = 1 is the non-ambiguous case).

Unfortunately, when these anonymity sets are small, transactions leak informa-
tion about user behavior, e.g. via so-called EAE attacks ([9], [1]), allowing attackers
to gain advantage at tracing funds. Self-churn, a folklore mitigation to these leaks,
is the practice of punctuating real transactions with sequences of simulated trans-
actions where the sender and receiver are the same ([7], [4], [14], [16], [13]). We call
these intermediate simulated transactions churn transactions. On the other hand,
real transactions are typically made ad hoc by spending one or more deterministi-
cally selected outputs.

The distributions of ad hoc transactions and churn transactions are different
enough to build statistical tests exploiting the gap. We introduce a general statisti-
cal test which classifies transactions in TPs with small anonymity set authentication
(TPSASAs, e.g. as in Monero via ring signatures) as ad hoc or churned. We call
this the basic test for ad hoc transactions. The basic test is a uniformly most pow-
erful (UMP) likelihood ratio test (LRT), due to the Neyman-Pearson lemma [12].
Assuming a prior distribution describing user behavior and/or more sophisticated
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default wallet software, similar approaches yield extended tests for ad hoc transac-
tions. The existence of these tests represent a tremendous security threat for users
of TPSASAs, even when these tests have low power.

Our basic test is low cost and has variable, but generally low, power, and is
related to previous attacks. Our extended tests are similarly low cost but can
attain greater power by violating uniformity of the basic test. Test parameteriza-
tion is generally very expensive, must be re-computed in the event of a blockchain
re-organization, and must be re-computed regularly as the blockchain grows. Pro-
totype python code for parameterizing our tests by estimating critical values of
harmonic means of sets of random variables sampled from mixed distributions
is available at this paper’s repository on GitHub at https://www.github.com/

cypherstack/churn.
Test power responds strongly to variations in the statistical distance between

user-selected distributions and default wallet distributions, explaining practical se-
curity improvements since [10], [8]. Test power responds weakly to variations in
anonymity set size, so increasing anonymity set sizes is not an effective mitigation.
Our tests have no practical utility in protocols with very large anonymity sets (e.g.
ZK-SNARKs in [6] or full-chain membership proofs in in [5]). Our tests have no
practical utility when user behavior is very well-described by the default wallet
distribution, whether due to low prevalence of ad hoc transactions or similarity
between user behavior and the default wallet distributions. Unfortunately, if user
behavior is very different from the default wallet distribution, prevalence of ad hoc
transactions must be low before the basic test loses its practical utility.

1.1. Organization. This paper is organized as follows. In Section 2, we set out
preliminary notation and background. In Section 3, we derive our basic test and
describe its extensions. In Section 4, we discuss the parameterization of our basic
test. In Section 5, we discuss tracing attacks against TPSASAs using our tests. In
Section 6, we discuss our results. In Section 7, we draw some conclusions and make
notes on directions for future work.

Changes

This paper is part of an open, iterative research process and will be regularly
updated, with each revision accompanied by a detailed changelog. Future ver-
sions will include expanded analyses, new findings, numerical parameterization,
additional experimental results, refinements to our formal models and their prac-
tical applications, corrections, and more. We use version control via GitHub at
https://www.github.com/cypherstack/churn. The following describes changes
made to this document since 21 October 2024.

• 21 October 2024. Initial draft.

2. Preliminaries and Notation

We use ≈ informally as “approximately equal,” not to indicate statistically neg-
ligible differences.

Let ϵ > 0. Let n,m, d ∈ N. For any subset T ⊆ S, define the set complement
T = {s ∈ S | s /∈ T} as usual. Let I be the boolean indicator function, such that
I(P ) = 1 when proposition P is true and I(P ) = 0 otherwise. For some real
numbers x1, . . . , xn, denote the tuple x = (x1, . . . , xn) and, for any function f with

https://www.github.com/cypherstack/churn
https://www.github.com/cypherstack/churn
https://www.github.com/cypherstack/churn
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domain dom(f) ⊆ Rn, denote f(x) = (f(x1), . . . , f(xn)). Define the harmonic

mean H(x) = n
(∑n

i=1 x
−1
i

)−1
and the log harmonic mean h(x) = ln(H(x)).

A probability mass function (PMF) on a finite set S is a function f : S → [0, 1]
such that

∑
s∈S f(s) = 1. We say a random variable X has PMF f if P[X =

s] = f(s). Note that, generally, if f is a PMF on S, the function we denoted
f(s) = (f(s1), . . . , f(sn)) is not a PMF.

We follow usual likelihood principles ([3]) as follows. For a parameter space Θ,
subset Θ0 ⊆ Θ, an element θ ∈ Θ, and a random variable X which takes on values
in some set X , and let R ⊆ X be a region. Then R corresponds to the rejection
region of an inferential statistical test for a hypothesis that θ ∈ Θ0.

A type I error occurs when θ ∈ Θ0 yet x ∈ R. The probability of a type I error
is the size α = Pθ[x ∈ R | X = x, θ ∈ Θ0]. The complement of the size 1− α is the
specificity of the test. An upper bound on the size α a level of the test.

A type II error occurs when θ /∈ Θ0 and x /∈ R. The probability of a type II
error is the miss rate β = Pθ[x /∈ R | X = x, θ /∈ Θ0]. The complement of the miss
rate 1− β is the power or sensitivity of the test.

Lemma 2.1 (Neyman-Pearson). Let A ⊆ Θ be a negligible set, θ0, θ1 ∈ Θ such
that θ0 ̸= θ1, α ∈ (0, 1), and k ∈ (0,∞). For an unknown θ ∈ Θ, let H0 be the
hypothesis that θ = θ0, and let H1 be the hypothesis that θ = θ1. If R is the rejection
region for H0 corresponding to this test such that

• x ∈ R \A implies P[X = x | θ = θ0] < kP[X = x | θ = θ1], and
• x ∈ R \A implies P[X = x | θ = θ0] > kP[X = x | θ = θ1],

then the test has size α, is UMP in the set of level α tests, every UMP test in the set
of level α tests also satisfies these conditions with the same k (but possibly different
sets A), and every UMP test in the set of level α tests agrees with the others except
possibly on their corresponding negligible sets A.

We say that the test is parameterized by k. Given a distribution for a random
variable X with parameter space Θ, we define the usual likelihood function as

L(θ′ | x) = P [X = x | θ = θ′]

and, given subset Θ0 ⊆ Θ, we define the likelihood ratio as follows.

Λ(x) =
supθ′∈Θ0

L(θ′ | x)
supθ′∈Θ L(θ′ | x)

The likelihood ratio is a metric for the likelihood that H0 is true. Thus, rejection
region R in the Neyman-Pearson lemma satisfies the following.

• Small likelihood is necessary to reject H0: x ∈ R \A implies Λ(x) < k.
• Large likelihood is necessary to accept H0: x ∈ R \A implies Λ(x) > k.

Let Y be a finite set of public keys for a TPSASA (the entire key space). Let
y∗ ∈ Y be an unknown, fixed element. In the sequel, let f be a PMF on Y from
default wallet software, which is used to sample anonymity set members.

We assume that the wallet distribution f is not dependent upon y∗. This assump-
tion is not valid, in general, but in practice, f is usually only dependent upon the
time at which the transaction was constructed, which we can approximate by proxy
with the time the transaction appeared. Moreover, our approach below can be im-
mediately modified so that f depends on y∗; we describe these modifications as we
go. This, also, is not a valid assumption, in general, as users may sign a transaction
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offline and wait a period of time before relaying it on the network. However, this
is a rather unusual occurrence given the typical use-case of permissionless e-cash,
which we describe below.

3. Basic Test for Churn

3.1. Ad Hoc Anonymity Sets. The usual use-case for permissionless e-cash is
an ad hoc transaction. The user owns some fixed, unknown y∗ ∈ Y and decides
that y∗ must be spent, so they do the following.

(1) Sample a distinguished index 1 ≤ i∗ ≤ d with the default wallet software.
(2) Set yi∗ = y∗.
(3) For each 1 ≤ i ≤ n such that i ̸= i∗, independently sample yi ∈ Y with

PMF f employed by the default wallet software, re-sampling in the case of
collisions. Then the tuple y = (y1, . . . , yn) can be interpreted as an n-set.

(4) Use y as the anonymity set to authorize the transaction.

Consider observing y conditioned upon the event that this anonymity set comes
from an ad hoc transaction spending y∗ = yi∗ for an unknown index i∗. The
probability of this occurrence can be computed with the law of total probability
and modeling the index i∗ corresponding to y∗ with a uniform random variable J
on {1, . . . , n}.

P[y] =
n∑

j=1

P[y | J = j]P[J = j](3.1)

=n−1
n∑

j=1

P[y | J = j](3.2)

=n−1
n∑

j=1

P[y | yj = y∗](3.3)

=n−1
n∑

j=1

n∏
i=1
i ̸=j

f(yi)(3.4)

If the distribution f depends on y∗, there exists some family of PMFs fy on Y
and parameterized by y ∈ Y such that P[y | yj = y∗] =

∏n
i=1,i̸=j fyj

(yi). The same

approach works without the assumption that f does not depend on y∗ (but our
resulting basic test no longer is a UMP). In this case, we just obtain the following.

P[y] = n−1
n∑

j=1

n∏
i=1
i ̸=j

fyj
(yi)(3.5)

We only use Equation 3.4 in the sequel for simplicity of our analysis.

3.2. Churn Anonymity Sets. Churn transactions, on the other hand, are not just
ad hoc transactions with the same sender and receiver, since y∗ may be unlikely to
appear in a random transaction. Indeed, churn transactions have anonymity sets y
distributed like a sample of n elements without replacement from the default wallet
PMF f . In particular, we must have P [{y1, . . . , yn}] = f(y1)f(y2) . . . f(yn). How-
ever, f(y∗) is not entirely within the user control. In practice, f and Y evolve over
time, and anonymity sets in transactions are typically sampled only a (relatively)
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brief time before the transaction is broadcast. Thus the equality may be relaxed
slightly to approximate equality.

P
[
y
]
≈ f(y1)f(y2) . . . f(yn)(3.6)

Default wallet distributions f are not unimodal in practice, because they are
locally sensitive to blockchain density. However, f does tend to be approximately
unimodal with respect to the age of elements of Y. So, if y∗ is sufficiently young,
then the user can wait a random period of time such that the observed f(y∗) is not
unusual-looking before constructing an otherwise ad hoc transaction. In this case,
the transaction does not appear to have a real signer, and therefore the simulation
cannot reveal anything about the true signer i∗.

To approximate a churn transaction, beginning at a secret time t and ending at
time t′, users may employ the following approach.

(1) Independently sample some ỹ with PMF f and compute secret u = f(ỹ).
(2) Discard ỹ safely and keep u secret.
(3) Wait until a future time such that f(y∗) ≈ u, then immediately construct

the transaction with the ad-hoc approach from the previous section.
(4) Discard u safely.

The resulting sample y appears to be sampled from the wallet PMF. If an observer
learns of u and/or the starting time t, they gain an advantage in distinguishing that
the transaction is a churn transaction. If f is unimodal with respect to the age of
elements of Y and y∗ is not sufficiently young for this churn procedure to work, the
user cannot spend y∗ in a churn as described. Unfortunately, this forces the user to
spend y∗ as an ad hoc transaction. However, if this ad hoc transaction is to oneself,
the user receives a new y′ which is sufficiently young to be subsequently spent in a
churn transaction.

Just as before, we can consider the case that f depends on y∗. We again use the
law of total probability, an independent uniform random variable J on {1, 2, . . . , n}.

P[y] =
n∑

j=1

P[y | yj = j∗]P[J = j∗](3.7)

=n−1
n∑

j=1

n∏
i=1

fyj (yi)(3.8)

However, in the sequel, we use Equation 3.6 for simplicity of our analysis.

3.3. Distribution of Anonymity Sets. We model the distribution of anonymity
sets with the following PMF g with parameter space Θ = {0, 1} with parameter
θ ∈ Θ.

gθ(y) = Pθ[y] =(1− θ)

n∏
i=1

f(yi) +
θ

n

n∑
j=1

∏
i ̸=j

f(yi)(3.9)

g0(y) = Pθ=0[y] =

n∏
i=1

f(yi)(3.10)

g1(y) = Pθ=1[y] =
1

n

n∑
j=1

∏
i̸=j

f(yi)(3.11)
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where θ = 0 corresponds to a churn transaction and θ = 1 corresponds to an ad
hoc transaction.

3.4. Test Statistic for Basic Test. Now to test the null hypothesis H0 that
θ = 0 against the alternative hypothesis H1 that θ = 1 with the Neyman-Pearson
Lemma, we have the following likelihood function and likelihood ratio.

L(θ | y) =gθ(y) = Pθ[y](3.12)

=(1− θ)

n∏
i=1

f(yi) +
θ

n

n∑
j=1

∏
i ̸=j

f(yi)(3.13)

Λ =
L(0 | y)

max
{
L(0 | y),L(1 | y)

} =
g0(y)

max
{
g0(y), g1(y)

}(3.14)

=

{
1; g0(y) > g1(y)∏

i f(yi)

n−1
∑

j

∏
i̸=j f(yi)

; g0(y) ≤ g1(y)
(3.15)

=

{
1; g0(y) > g1(y)

H(f(y)); g0(y) ≤ g1(y)
(3.16)

Thus, our test statistic is just the harmonic mean of probabilities of the sample
under f , H(f(y)).

That the harmonic mean appears here may be surprising. The harmonic mean is
biased towards the smallest element of a sample. If a sample of probabilities has a
small harmonic mean, the sample must therefore have at least one small probability.
In this way, the Neyman-Pearson lemma just formalizes the notion that the test
statistic is small when at least one element of the sample y does not appear to have
been sampled independently from f , i.e. H0 appears to be unlikely.

3.5. Computing PMF. To compute our test statistic requires computing f(y)
for various values of y ∈ Y, where f is the PMF implied by the default wallet decoy
selection algorithm. The function f is generally not easy to derive in a closed-form
solution, even with access to default wallet source code. However, we can follow a
few general rules to obtain a model for f(y) which is sufficient for practical testing.

Recall Y is a description of the keys available for use as anonymity set members
on the blockchain, Y has a structure imposed by the blockchain. In particular, there
is a partition of Y, one part for each block. The parts of this partition are linearly
orderable by block height, and these different blocks have different cardinalities.
The linear order can be interpreted as a clock, and for a given block Bi, we refer to
the average number of keys per block in blocks close in time to Bi as the blockchain
density at height i. Generally, for any y ∈ Bi, f(y) is inversely proportional to
blockchain density at height i.

Also, f(y) is also dependent on the age of y, in terms of block height when y
was mined. Since [10], it has been popular to empirically estimate the distribu-
tions of ground-truth spend-times, modeling these as Gamma-distributed random
variables (which can be thought of as sums of exponentially-distributed random
variables). Spend-time is a continuous random variable, whereas a sampled block
on the blockchain is a discrete random variable, however, and the discrete analogue
of the exponential random variable is the geometric random variable. Since a sum
of geometric random variables is a negative binomial random variable, we can model
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f(y) as proportional to a negative binomial PMF, P[k] =
(
k+r−1

k

)
(1 − p)kpr, for

some parameters r > 0 and p ∈ (0, 1). If these parameters are not specified directly
in the default wallet software, they can be estimated using standard statistical
inference techniques and samples from the default wallet software.

Hence, if we denote the local blockchain density near y with density(y), the age

of y in Y in terms of block height with age(y), we have f(y) ≈ (age(y)+r−1
age(y) )(1−p)age(y)pr

density(y) .

3.6. The Basic Test. The Neyman-Pearson Lemma intuitively rejects the hypoth-
esis that the data was generated with parameter θ = 0 if the likelihood that θ = 0
is much smaller than the likelihood that θ = 1. Note that the only negligible subset
of {0, 1} is the empty set.

Corollary 3.1. Let α ∈ (0, 1), c ∈ (0,∞), y ∈ Yn. For an unknown θ ∈ {0, 1}, let
H0 be the hypothesis that θ = 0 and let H1 be the hypothesis that θ = 1. If R is the
rejection region for H0 corresponding to this test such that

• y ∈ R implies P[y | θ = 0] < kP[y | θ = 1], and
• y /∈ R implies P[y | θ = 0] > kP[y | θ = 1],

then the test has size α, is UMP in the set of level α tests, every UMP test in the
set of level α tests also satisfies these conditions with the same k, and every UMP
test in the set of level α tests agrees with the others.

A rejection region which satisfies these conditions is R =
{
y | kg1(y) > g0(y)

}
.

This region has a corresponding significance α = P
[
y ∈ R | θ = 0

]
=
∑

y∈R g0(y),

the resulting test has size α and is UMP in the set of tests with level α. Rewriting

kg1(y) > g0(y) as Λ =
g0(y)

g1(y)
< k, we have the following rejection region

R =
{
y | H(f(y)) < k

}
=
{
y | h(f(y)) < hα

}
where hα = ln(k) parameterizes the test at size α. This provides a one-sided
test which rejects H0 whenever the (log) harmonic mean of the probabilities of
occurrence is sufficiently small.

To run the basic test, the following is sufficient.

• Evaluate f n times.
• Compute n inversions of floating point numbers.
• Compute a mean of these n floating point numbers.
• Invert a floating point number.
• Comparing two floating point numbers.

If evaluating f takes time at most tf , inverting a floating point number takes
time at most tinv, computing a mean of n floating point numbers takes time at most
tn,mean, and comparing two floating point numbers takes time tcomp, then the test
takes time O(n · tf + (n+ 1)tinv + tn,mean + tcomp).

As we shall see, evaluating the wallet distribution f is, itself, a nontrivial chal-
lenge; see Section ?? for a discussion.

3.7. Extensions. Attackers may utilize additional knowledge about user behavior
to develop non-uniform tests with better performance than our basic UMP LRTs.
Indeed, exchanges and large economic actors with detailed ground-truth knowledge
of user identities and locations can leverage these data. Such an actor could use the
distribution g1 from our basic test as a Bayesian prior, and uses their ground-truth
knowledge to compute an update to develop a new prior ĝ1, one for each user. Of
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course, for every user, most of ĝ1 is fixed by the default wallet distribution, and we

have ĝ1(y) =
∑n

j=1 f̂(yj)
∏

i ̸=j f(yi) for some f̂ associated with the user. Thus we
obtain the distribution

ĝθ(y) =(1− θ)
∏
i

f(yi) +
θ

n

∑
j

f̂(yj)
∏
i̸=j

f(yi)(3.17)

=L̂(θ | y)(3.18)

Λ̂ =
L̂(0 | y)

max
{
L̂(0 | y), L̂(1 | y)

} =
ĝ0(y)

max
{
ĝ0(y), ĝ1(y)

}(3.19)

=

∏
i f(yi)

n−1
∑

j f̂(yj)
∏

i ̸=j f(yi)
(3.20)

=H

(
f(y1)

f̂(y1)
,
f(y2)

f̂(y2)
, . . . ,

f(yn)

f̂(yn)

)
(3.21)

Following the same reasoning as for the basic test, we reject the null hypothesis H0

that θ = 0 whenever Λ̂ is sufficiently small. We have the following rejection region

R =

{
y | H

(
f(y1)

f̂(y1)
, . . . ,

f(yn)

f̂(yn)

)
< k

}
=

{
y | h

(
f(y1)

f̂(y1)
, · · · , f(y1)

f̂(yn)

)
< hα

}
where hα = ln(k) parameterizes the test for size α, providing a similar one-sided
test to the basic test.

To run the extended test, the following is sufficient.

• Evaluate f and f̂ n times each.
• Compute n inversions of floating point numbers.
• Compute n products of floating point number pairs.
• Compute a mean of these n products.
• Invert a floating point number.
• Comparing two floating point numbers.

If evaluating f̂ takes time tf̂ , computing a product of two floating point numbers

takes time tmul, then the extended test takes time O(n·(tf+tf̂+tmul)+(n+1)tinv+

tn,mean + tcomp).

4. Basic Test Parameterization and Power

To apply this test with a given α, we require a value hα such that α = Pθ=0

[
y ∈ R

]
=

Pθ=0

[
h(f(y)) < hα

]
. An estimate of hαis possible without any additional assump-

tions or ground-truth data. We explain the general approach in this section.
See Figure 4 for a diagram showing the idea for an arbitrary unimodal distribu-

tion on h ∈ R<0. The shaded region is the rejection region for the size α UMP LRT
basic test for churn, where the dashed line is the critical value h = hα. The har-
monic mean of elements from (0, 1) is an element from (0, 1), so h < 0, explaining
the domain of Figure 4. Since anonymity set members are sampled from a finite
set, our test statistic is a discrete random variable, but the general picture also
applies for densities.

In the case of densities, the critical value hα is the exact value such that α =
Pθ=0

[
h(f(y)) < hα | H0

]
; equivalently, the area of the shaded region is exactly α.
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In the case of mass functions, hα = sup
{
ln(k) | Pθ=0

[
h(f(y)) < ln(k) | H0

]
≤ α

}
;

equivalently, the area of the shaded region is as close to α as the distribution allows
without exceeding α.

Figure 1. Illustrative sketch of a possible PMF (or PDF) for the
log harmonic mean of n-tuples of probabilities under the null hy-
pothesis H0; this is only a sketch, and should not be expected to
resemble the ground-truth.

4.1. Suggested Empirical Approach. The distribution of h(f(y)), conditioned
upon y being sampled from f , is sensitive to the distribution of f(y) under this
same condition. No model of the distribution of the values f(y) conditioned upon
y being sampled from f is immediately obvious. An empirical distribution of f(y)
from Monte Carlo approaches is easily obtainable, though, from which we can
estimate the 100α-th percentile critical value hα as follows.

We use the fact that the ℓth order statistic in a sample of m observations is an
unbiased estimate of the 100 · ℓ

m+1 -th percentile critical value, and compute the

estimate for α = ℓ
m+1 . For example, for α = 0.05, the classic critical value used in

mathematical statistics, set ℓ = 1 and m = 19.
However, a point estimate for hα alone does not provide a good description of the

precision to which we can represent hα. To rectify this, we use interval estimation,
taking large enough sample sizes to guarantee a decimal representations with some
κ ∈ N digits of precision in using scientific notation.
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A popular option for interval estimation is the 100(1−α∗)% confidence interval.(
h− tα∗

2 ,L−1

S√
L
, h+ tα∗

2 ,L−1

S√
L

)
(4.1)

where h is the sample mean, L is the sample size, tα∗
2 ,L−1 is the α∗

2 -th critical

value for Student’s t-distribution with L − 1 degrees of freedom, and S is the
sample standard deviation. This interval contains an independently sampled h
with probability around 1 − α∗. However, our task is to find hα such that, for
an independently sampled y, α = P

[
h(f(y)) < hα | H0

]
. Thus, the 100(1 − α∗)%

prediction interval in Equation 4.2 is more appropriate(
h− tα∗

2 ,L−1S

√
1 +

1

L
, h+ tα∗

2 ,L−1

√
1 +

1

L

)
(4.2)

where h, L, tα∗
2 ,L−1, and S are all as in Equation 4.1. We suggest the following

procedure with multilevel sampling.

(1) Input digits of precision κ ∈ N, tuple length n ∈ N, desired sizes α, α∗ ∈
(0, 1), inner sample size m ∈ N such that α = ℓ

m+1 for some integer 1 ≤
ℓ ≤ m, and outer sample size L ∈ N, and the α∗

2 -th critical value for the t
distribution with L− 1 degrees of freedom, tα∗

2 ,L−1 .

(2) For each 1 ≤ i ≤ L, do the following.
(a) For each 1 ≤ j ≤ m, sample anonymity set y

i,j
= {yi,j,1, . . . , yi,j,n}

and compute hi,j = h(f(y
i,j
).

(b) Compute hi,(ℓ), the ℓth order statistic of {hi,1, . . . , hi,m}, and set hi =
hi,(ℓ).

(3) Now we have a sample h1, h2, . . . , hL of ℓth order statistics; we use the fact
that the ℓth order statistic is an unbiased estimate of the 100 ℓ

m+1 -th critical
value. Compute the following:

h =L−1
∑
i

hi(4.3)

S =

√∑
i(hi − h)2

L− 1
(4.4)

hlow =h− tα′/2,L−1S

√
1 +

1

L
(4.5)

hhigh =h+ tα′/2,L−1S

√
1 +

1

L
(4.6)

(4) If rounding the significands of the scientific notation representations of h,
hlow, and hhigh to κ digits does not yield the same result, increase L (say,
by doubling the sample size) and repeate the process again.

(5) Otherwise, set hα to be this rounded value and terminate.

We make no assumptions about user behavior, using only honestly sampled
anonymity sets. Unfortunately, f evolves as the blockchain evolves, so the critical
values hα are sensitive to the state of Y at the time the transaction appeared. Thus,
the same empirical sampling procedure needs to be repeated at different block
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heights. Possibly, this may be optimized by binning blocks into epochs without
sacrificing much performance.

This process is guaranteed to terminate, thanks to the law of large numbers
and the central limit theorem. However, by doubling sample sizes repetitively,
we risk wastefully oversampling, and by performing test statistic computations
which are not rolling computations in between each doubling, we introduce a lot of
unnecessary overhead.

While a small optimization to this basic algorithm is to compute h in a rolling
fashion, we cannot do this with S. Another small optimization is to avoid wastefully
oversampling and wasting time on intermediate computations which are not relevant
to the final output. Do this with a small initial sample L′ to get initial observations

h
′
, S′, h′

low, and h′
high, then estimating an improved sample size L such that a

follow-up sample of L elements is very likely to satisfy κ digits of precision.
Running this parameterization procedure only needs to be done once for each

confirmed block height, and executed again in the case of a block reorganization.
However, the procedure requires taking L · m · n samples of from the wallet dis-
tribution f , evaluating f on each observation from this sample, computing the
corresponding log harmonic means of the n-tuples from these samples, and finding
the ℓ-th order statistics from the m-tuples of these log harmonic means. Lastly,
we compute the mean and sample standard deviation, but this is done once and is
very fast compared to all the previous.

Thus, if it takes time tsample to sample an churned anonymity set with cardinality
n from f , time tf to evaluate f , time th to compute the log harmonic mean of an
n-tuple, and time tord,k,m to compute the k-th order statistic from a sample ofm log
harmonic means, then it takes about time O(Lmtsample+Lmntf+Lmth+Ltord,k,m)
to parameterize the scheme. Thus, once the test is parameterized, the test is very
low-cost to execute, and the test only needs to be parameterized once. However,
test parameterization takes O(Lmn) time, and L generally grows quadratically with
required precision. This, coupled with the fact that test parameterization must be
occasionally done as the blockchain grows, test parameterization as described here
is much more expensive than running the test itself.

4.2. Model Selection. In addition to empirically estimating hα, we can perform
goodness-of-fit tests on the empirical distribution of the values v = f(y) to deter-
mine useful families models and infer parameters. Beta-distributed random vari-
ables, in particular, are capable of modeling many unimodal distributions on (0, 1),
and are a good candidate. Then, numerical integration or Monte Carlo techniques
from the model can be used to determine hα similarly as in the previous section,
but from the inferred model instead of the empirically observed data. Indeed, in
the previous section, we essentially used Monte Carlo sampling of anonymity sets
from f to estimate hα directly, whereas this approach first determines a model for
v = f(y) and uses numerical integration or Monte Carlo techniques from the model
instead. As model selection improves, we expect these two approaches to produce
similar results, providing a useful “reality check.”

Prototype python code for estimating critical values of harmonic means of sets
of random variables sampled from mixed distributions is available at this paper’s
repository on GitHub at https://www.github.com/cypherstack/churn. This
code focuses on moding these v with beta distributions.

https://www.github.com/cypherstack/churn
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4.3. Relating Parameterization to Power. In this section, we relate β of our
basic test with rejection region R to the test specificity 1−α′ of a related test with
a similar rejection region R′.

Recall the following. A type I error occurs when a churned transaction is clas-
sified as ad hoc; this occurs with probability α and is called a false positive. Test
specificity is the true negative rate, which is 1−α. These probabilities are selected
during parameterization. A type II error, on the other hand, occurs when an ad
hoc transaction is classified as churned; this occurs with probability β, and is called
a false negative. Test sensitivity is the true positive rate, also known as test power,
which is 1−β. These probabilities are difficult to estimate without access to ground
truth data, generally, but we have the following.

In the case that θ = 1, every yi for i ̸= i∗ is sampled via f , and the final yi∗ = y∗

is fixed and unknown. For this fixed unknown yi∗ , we have a fixed and unknown
v = f(yi∗). Then, given that θ = 1, H(f(y)) > k if and only if

n

v−1 +
∑

i̸=i∗ f(yi)
−1

> k.

Equivalently, n > k
v + k

∑
i ̸=i∗ f(yi)

−1. Since H(f((yi)i ̸=i∗)) = n−1∑
i̸=i∗ f(yi)−1 ,

we have that
∑

i ̸=i∗ f(yi)
−1 = n−1

H(f((yi)i̸=i∗ ))
, so H(f(y)) > k if and only if n >

k
v + k(n−1)

H(f((yi)i̸=i∗ ))
. Thus, n − k

v > k(n−1)
H(f((yi)i̸=i∗ ))

, or H(f((yi)i̸=i∗)) > k n−1
n− k

v

. For

convenience, set k′ = k n−1
n− k

v

and y′ = (yi)i ̸=i∗ . Note that, where y is an ad hoc

transaction and is therefore sampled with gθ=1, y
′ is, on the other hand, sampled

entirely with f .
Thus, we have the following key observation: k′ parameterizes a rejection re-

gion R′ for a test which is similar to our basic test, but for anonymity sets with
cardinality n− 1 instead of n. The corresponding test has rejection region

R′ =
{
y′ | H(f(y′)) < k′

}
=

{
y′ | H(f(y′)) < k

n− 1

n− k
v

}
and some corresponding probability of a type I error α′ determined by the critical
test statistic value k′ = k n−1

n−k/v . Thus, the probability of a type II error for our

basic test is

β =P
[
H(f(y)) > k | θ = 1

]
(4.7)

=P
[
H(f(y′)) > k′ | θ = 0

]
(4.8)

=P
[
y′ /∈ R′ | θ = 0

]
(4.9)

=1− α′(4.10)

The size of the related test α′ = P
[
H(f(y′)) > k′ | θ = 0

]
coincides with the power

of our basic test 1− β.
Note 0 < k

v always, but k
v < 1 or not. So, we have two cases. In the first case,

k
v < 1, so n− 1 < n− k

v < n, so 1
n < 1

n− k
v

< 1
n−1 , and

n−1
n < n−1

n− k
v

< 1. Of course,

if n is sufficiently large, n−1
n ≈ 1, so we must have n−1

n− k
v

≈ 1. In particular, when

k
v < 1 and n is sufficiently large, k′ ≈ k so R′ ≈

{
y′ | H(f(y′)) < k

}
. Also, the

harmonic mean is weighted towards the smallest elements, so when k < v and n
is sufficiently large, H(f(y′)) ≈ H(f(y)) with high probability. Thus, in the first



UNIFORMLY MOST POWERFUL TESTS FOR AD HOC TRANSACTIONS IN MONERO 13

case, if our basic test has significance α, then our related test will have significance
approximately α, indicating that our basic test also has power α.

In the other case, 1 < k
v . As k

v gets larger, n−1
n− k

v

gets larger, leading to larger

rejection regions R′ associated with these related tests. Larger rejection regions
R′ =

{
y′ | H(f(y′)) < k′

}
are associated with related tests which more aggressively

reject the null hypothesis. These related tests have increased sizes α, and therefore
the associated basic tests should have increased power.

Thus, we ought to expect test power to roughly begin at our significance α when
v = f(y∗) is large and to increase as v = f(y∗) decreases. In particular, we ought
to expect that test power is greatest against the least-likely y∗ ∈ Y to be sampled
under the default wallet distribution f .

4.4. Parameterization of Extensions. The extended test uses the test statistic

H
(

f(y1)

f̂(y1)
, . . . , f(yn)

f̂(yn)

)
. Finding hα, then, requires some knowledge of f̂ , the distri-

bution selected by the user. Given this additional information, parameterization
can proceed nearly identically as in the previous sections.

Unfortunately, while v = f(y) may be well-described by Beta distributed random

variables, the corresponding value from the extended test r = f(y)

f̂(y)
generally cannot

be, even if both f̂(y) and f(y) are Beta distributed. However, using ratios of two
random variables with the Monte Carlo approaches described in Sections ?? through
?? is very straightforward; our prototype Python code can be easily modified to
find these associated critical values.

5. Test-Based Attacks

5.1. Basic Attack. Attackers apply one of the tests from the previous section to
determine if a transaction has been churned. If they reject the null hypothesis,
they conclude that the data is consistent with the notion that we may determine
the true signer with better performance than guessing randomly.

Specifically, for each 1 ≤ j ≤ n, we let H′
j be the hypothesis that θ = 1 and i∗ =

j, i.e. there is a true signer at index j. These hypotheses partition the hypothesis
H1 that θ = 1. The distribution of the anonymity set conditioned upon this event
is exactly

P[y1, . . . , yn | θ = 1, i∗ = j] =
∏
i̸=j

f(yi)I(yj = y∗)(5.1)

and therefore we have the jth likelihood function

L((θ, i∗) = (1, j) | y) =
∏
i ̸=j

f(yi)(5.2)

and the jth likelihood ratio

Λ∗
j =

L((θ, i∗) = (1, j) | y)
max1≤i≤n L((θ, i∗) = (1, i) | y)

(5.3)

yielding an index ι which maximizes Λ∗
ι . Call this ι themaximum likelihood estimate

for i∗. With this strategy, an attacker performs the following, beginning by setting
m = 1.
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(1) Apply one of the tests in the previous section to each non-singleton anonymity
set on the blockchain, labeling the anonymity sets for whom the null hy-
pothesis was rejected as accusedm and labeling the ones for whom the null
hypothesis was accepted as churnedm.

(2) For each non-singleton anonymity set y
i
= {yi,1, . . . , yi,ni

} ∈ accusedm,
compute the likelihood ratio Λi,j for each member yi,j of the anonymity
set. Store the maximum likelihood ratio Λi = maxj Λi,j of this anonymity
set, the index ι = argmaxjΛi,j corresponding to that maximum, and the
cardinality ni. For the greatest cardinality n > 1, compute the grand
maximum likelihood ratio Λ(n) = maxi Λi and the corresponding index
ι′ = argmaxiΛi. Accuse yι′,ι of being the true signer of y

ι′
by doing the

following.
• Strike out each yι′,j ̸= yι′,ι from

{
yι′,1, . . . , yι′,nι′

}
.

• For each anonymity set {yi,1, . . . , yi,n} such that yι′,ι is an element and
i ̸= ι′, strike out yι′,ι.

(3) Increment m← m+ 1 and go back to step 1.

Following this procedure, each accusation is taken into account in future tests.
The sets accusedm are absorbing sets, in the sense that some transactions labeled
as churnm may find themselves in accusedm+k for some k ≥ 1 later, but no ele-
ments can exit accusedm for some churnm+k. Once the sets satisfy accusedm+1 =
accusedm and churnm+1 = churnm, the process can terminate.

Note that we proceed by the anonymity sets with greatest cardinality first, de-
creasing in cardinality as we go, forcing the algorithm to make accusations based
on the most information possible and to eventually terminate. However, this attack
is not particularly efficient.

5.2. Similarity to previous attacks. With the “guess newest” heuristic, the
distribution f was heavily weighted toward old outputs. Any time a user spent
a young output, that output had v = f(y∗) < c, so the harmonic mean of the
probabilities was very small. This allowed the harmonic mean to enter the rejection
region more often, and the maximum likelihood estimate of the true spender was,
with high probability, the youngest output.

5.3. Other Related Attacks. The basic attack can be leveraged in other ways.

5.3.1. Detecting Periodicity. Presume an attacker receives money from you and
hypothesizes that you churn your transactions exactly k times separated by T
day intervals. The attacker can step back through the transaction history of the
corresponding outputs and apply the basic churn test. For example, an attacker is
given a TPSASA transaction history. The attacker is told that exactly one user is
churning their transactions and all other transactions are not churned. The attacker
is told the churning user always churns 5 times in between real transactions. The
attacker is asked to identify whether the churning user made any such chain of
churned transactions within this subset of the transaction history.

The attacker sets α = 0.05 and applies the basic test for churn to all transactions.
Each churned transaction is independently flagged with probability 0.95, and (1−
α)k = 0.955 ≈ 0.77, so every chain of 5 churned transactions within this connected
subset is flagged as such about 77% of the time, regardless of the amount of time
separating them. If no such chain is flagged, the attacker can conclude it is more
likely that the target user has been absent.
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If many such chains are flagged, the attacker has more work to do. Indeed, if the
default wallet distribution is very close to ad hoc user behavior (i.e. only one user
is churning, but ad hoc transactions are still very similar to churned transactions),
the test has power around 0.05. Thus, about 95% of ad hoc transactions are flagged
as churned. For this reason, as default wallet distributions approach user behavior
or as sample sizes increase, more and more chains of 5 ad hoc transactions will be
incorrectly flagged as churned. This is the sense in which we say this test is all but
useless if users behave similarly to the default wallet distribution. However, even
if many chains of 5 transactions are flagged as churned regardless of their ground-
truth classification, it is unlikely that chains have transactions separated by exactly
T days each. Thus, despite low test power, the additional temporal information
can be more than enough to identify the target user transactions.

Note that if users are behaving even a little differently from the default wallet
distribution, then test power increases a little. If test power attains 0.15, then only
85% of ad hoc transactions are flagged as churned. Then, since (1− 0.85)5 ≈ 0.44,
only about 44% of sequences of 5 ad hoc transactions are flagged as being churned,
improving test utility significantly.

5.3.2. Weighted Matching Algorithms. Instead of the approach in the previous sec-
tion, attackers can arrange the set of keys Y as one part in a bipartite graph, with
ring signatures as the other part. An edge connects a ring signature in the part
with signatures to every key implicated as an anonymity set member. Then every
matching in this graph is a plausible transaction history implied by the state of
the blockchain. An attacker can use our tests to determine which ring signatures
appear to be ad hoc, and to assign likelihood ratios as weights to graph edges.
Since matching algorithms can be made very efficient, this is approach is likely
much more efficient than the näıve attack presented in Section ??, and with similar
performance.

6. Discussion

Users should be advised that unless churn rates on the network as a whole are
sufficiently great, the test-based attack presented herein remains a threat to user
privacy, even for individual users who churn their own funds on a randomized
schedule.

6.1. Low Sensitivity to Anonymity Set Size. When if n is sufficiently large,
H(f(y)) ≈ H(f(y′)), so our test performance is resistant to changes in anonymity
set sizes. Thus, increasing anonymity set sizes is not a particularly effective solution
to defusing our attack. However, our tests are essentially useless if small anonymity
sets are replaced with full anonymity sets, as in [5].

6.2. Effect of Binning. It is sometimes suggested that anonymity set members
are sampled from bins to improve security against tracing. Our basic test can be
modified to work under a binning paradigm. In this case, the basic test is somewhat
less expensive to parameterize, and no less powerful, indicating that binning will
not change how mustard tastes.
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6.3. Violate Assumptions. Our attack is based on certain assumptions which can
be violated. In our work above, we assume f is independent of y∗. This is not valid
in general, but our tests can be modified to account for this as described above.
We also use the time the transaction was first relayed as a proxy (alternatively,
the block height the transaction was mined) to determine the PMF f , which we
assume is independent of y∗. This proxy is not generally valid, since users can
sign transactions offline some time before broadcasting those transactions on the
network.

Thus, users may obtain a small degree of obfuscation by not only separating
churned transactions by random wait times, but also waiting a random period of
time between computing a transaction and relaying it on the network. Unfortu-
nately, this may have a trade-off in security, because if the user waits too long, then
f will evolve. Then, the anonymity set will not be distributed according to gθ any
longer, and y∗ may look suspicious. Thus, this random time cannot be too long
compared to, say, block arrival times.

6.4. Avoid “Gaming” Tests and Big Data. If the rejection region R corre-
sponds toH(f(y)) < k, why not construct an anonymity set such thatH(f(y)) > k?
Along a similar vein, if these tests single out the anonymity set member which is
least likely to be sampled by f , why not wait until f(y∗) is the greatest of all the
anonymity set members? In both cases, given a wallet algorithm for constructing
anonymity sets in a different way, a LRT like the one described herein exists and
can be deployed to test for that behavior. If the behavior is parameterizable under
the Neyman-Pearson lemma, then the resulting LRT is a UMP, although such ex-
tensions are usually not UMP. Even without a closed-form description of the wallet
algorithm distribution, we may empirically estimate test statistics rather than re-
lying on the convenient closed-form description as a harmonic mean, so even if the
resulting LRT is complicated, it is far from useless.

That is to say, by trying to “game” our UMP LRT, users open themselves up to
similar LRTs, and it is not possible to defend against them all in a protocol with
sub-cryptographic levels of security.

Moreover, an entity with access to a lot of data (such as a KYC/AML exchange
which has ground-truth linking behavior across a multitude of blockchains, some
transparent and some spender-ambiguous) can use the same sorts of techniques
to take into account various cases of human behavior, and deploy simultaneous
testing procedures to amplify the power of their tests. The degree to which these
approaches can be exploited at a large scale given access to additional data is not
known precisely, but the threat is known to be highly non-trivial.

6.5. Too Many People Have to Churn. Our test efficacy varies with the preva-
lence of ad hoc transactions. In an environment with high prevalence (of ad hoc
transactions), low power tests are nevertheless useful; positive predictive value can
remain high until prevalence drops below a critical threshold. Reducing prevalence,
in this context, occurs when a larger proportion of users churn their transactions.
As prevalence rises, ad hoc transactions are more likely. As this occurs, the positive
predictive value of our test rises, despite the low power. The prevalence threshold
is the point at which the positive predictive value of our test, as a function of
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prevalence, has an inflection point, and is changing most rapidly.√
(1− β)α− α

1− β − α

The prevalence threshold roughly is the point at which we see reduced rates of
return in terms of positive predictive value.

We can loosely think of the prevalence threshold as the maximum allowable
proportion of ad hoc transactions for the purposes of this discussion. In a previous
example, we considered the case that 1−β = 0.15 and α = 0.05. For that example,
the prevalence threshold is 0.36. The test therefore gains power most quickly as
the percentage of ad hoc transactions passes 36%. In this scenario, for every ad
hoc transaction, users might consider making at least 2.77 churn transactions to
mitigate our basic test. Of course, if users followed this advice, the majority of the
transactions in the TP must be simulated in order for spender-ambiguity to hold,
calling into question the utility of the protocol for permissionless e-cash.

7. Conclusion

Our UMP LRT for detecting ad hoc transactions in a TPSASA presents a serious
threat. That these tests even exist with non-trivial power is a matter of concern,
despite that they are expensive to parameterize. The tests are low-cost, can be
carried out by small-scale threats, and can be used as a “wedge” by parties with
access to lots of additional information to reduce effective anonymity set sizes.
Unlike previous attacks, assessing the power of our test is equivalent to assessing the
significance of a related test, so we are able to say much about otherwise unknown
false negative rates. Moreover, UMP tests are famously low-power if uniformity in
test power across the whole parameter space is not necessary. Thus, we can directly
modify our approaches to handle more complicated scenarios, often obtaining even
more powerful tests (e.g. the case that the default wallet distribution PMF f is
dependent on y∗, or the case that we have access to prior models of user behavior).
All this emphasizes the urgency with which migrations to full-chain membership
proofs should take place.

7.0.1. Future Work. Future work may include any of the following.

• Theoretically modeling the PMF f .
• Numerically parameterizing our tests using simulated data from a simulated
blockchain.
• Numerically parameterizing our tests using empirical data from a snapshot
of an example blockchain.
• Numerically estimating how our test’s performance varies as statistical dis-
tance between user behavior and default wallet distributions expands.
• Our approaches may fit into (or be falsified by) a more broad context in
mathematical statistics, which may be more appropriate for our use-cases,
suggesting a deeper investigation into statistical models of anonymity sets.
• Extending the extended attacks to formally take Bayesian updating into
account given new ground-truth user information.
• Similarly, a deeper discussion on the threat represented by low power tests
in high-prevalence, high-sample-size environments by attackers with lots of
additional information about users.
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• Our work herein is, in some senses, a generalization of previous work. More
detailed descriptions drawing equivalencies between this work and previous
work would be appropriate.
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