
Slot à la carte: Centralization Issues in Ethereum’s
Proof-of-Stake Protocol
JÁNOS TAPOLCAI∗, University of Technology and Economics (BME), Hungary
BENCE LADÓCZKI†, BME and HUN-REN Information Systems Research Group, Hungary
ÁBEL NAGY‡, Eötvös Loránd University (ELTE), Hungary

In this paper, we demonstrate that Ethereum’s current proof-of-stake (PoS) consensus mechanism poses a
significant threat to decentralisation. Our research focuses on the manipulability of distributed randomness
beacons (DRBs) in leader selection. Specifically, we show that RANDAO– Ethereum’s DRB – is seriously
vulnerable to manipulations in its current form. For example, if a lucrative slot is foreseen, there is a risk that
staking entities may temporarily collude to control 33% of the validators, enabling them to execute a series of
RANDAO manipulation attacks that secure the target slot with a 99.5% success rate. The effectiveness of our
method stems from the fact that we work with a significantly richer model of the possible attacks compared
to previous works. Our manipulative strategies work by missing blocks from the canonical chain – either by
withholding blocks in the adversary’s own slots or by forking out blocks proposed by others. We argue that
while PoS can pave the path in the future for blockchains, Ethereum’s current DRB implementation has to be
replaced with a more secure mechanism.

Additional KeyWords and Phrases: blockchain, cryptocurrency, proof-of-stake, strategic mining, centralization
Contents

Abstract 0
Contents 0
1 Introduction 1
1.1 Our contributions 4
2 Preliminaries and System model 4
2.1 Leader Selection in Ethereum 4
2.2 Network Assumptions 5
2.3 Illustrative Examples of RANDAO Manipulation Attacks 6
2.4 Block Statuses and General Notations 7
3 Mathematical Model of Forking Attacks 7
3.1 Discussion on the Lengths of Forking Strings 9
3.2 Realisation Strings of a Forking String 9
4 Characterisation of Attack Strings 10
4.1 Recursive Characterisation of Attack Strings 10
4.2 Finding the Longest Attack String for a Given Chain String 11
4.3 Enumerating the Decompositions of an Attack String 12
4.4 Enumerating the Realisation Strings of an Attack String 13
5 Heuristic RANDAO Manipulation Attack Strategy 14
5.1 Heuristic Utility of Attack Strings 14
5.2 Algorithm to Compute Heuristic Utility Distributions 15
5.3 Utility of an extended attack string and enumerating attack strings 16
5.4 Constructing Attack Decision Trees 17
6 Evaluation 18
6.1 Properties of Attack Strings 19
6.2 Accuracy of the Proposed Heuristic Utility 19
6.3 Performance of the Proposed RANDAO Manipulation Strategy 20
6.4 Chain Quality Degradation During the Attack 20
7 Related Works 21
8 Conclusions and Future Directions 21
References 22

∗tapolcai@tmit.bme.hu
†ladoczki.bence@vik.bme.hu
‡nagyabi@gmail.com

Cryptology ePrint Archive.

HTTPS://ORCID.ORG/0000-0002-3512-9504
HTTPS://ORCID.ORG/0000-0002-5056-4184
HTTPS://ORCID.ORG/0009-0006-0932-5591

János Tapolcai, Bence Ladóczki, and Ábel Nagy 1

1 INTRODUCTION
Randomness is indispensable for (permissionless) consensus. A celebrated and influential theorem
by Fischer, Lynch, and Paterson state that a deterministic algorithm for achieving consensus is
impossible in an asynchronous network setting [Fischer et al., 1985]. Recently, an analogous result
was shown by Lewis-Pye and Roughgarden [Lewis-Pye and Roughgarden, 2023], proving that even
in synchronous settings, there exists no deterministic algorithm that can achieve permissionless
consensus. These findings highlight that a source of randomness is necessary in permissonless
blockchains. Fair and unbiasable randomness for leader selection mechanisms is crucial for de-
centralised consensus and distributed ledgers that administer user accounts. In this work, we
investigate whether a validator, once elected as a leader, has the power to influence subsequent
elections and, if so, then how much manipulative power it has. Similar attacks were possible in
earlier Proof-of-Work (PoW) blockchains [Eyal and Sirer, 2014, Negy et al., 2020], as well as in
modern Proof-of-Stake (PoS) blockchains [Ferreira et al., 2022, 2024].

Bitcoin [Nakamoto, 2008], introduced by Nakamoto as the first cryptocurrency, relies on PoW to
both protect against Sybil attacks and to provide a source of randomness. In PoW, a computational
task is generated using the head of the chain, and as a positive side effect the participant who
finds it is elected by a random process. Once a block is published, the nodes, to become the
proposer of the new block, begin searching for the solution in parallel. This process is also called
mining. The expected value of the speed of finding a valid hash preimage can be controlled by
changing a so-called difficulty parameter. Owing to the sheer number of PoW miners, this process
has become very energy-intensive, and PoW has also proven to be vulnerable. Colluding miners
forming mining pools can exacerbate the problem of selfish mining [Eyal and Sirer, 2014, Negy
et al., 2020], allowing colluding miners to subtly influence the randomness source used in the
leader selection process. From our work’s perspective, this manifests in a behaviour, whereby a
miner, when finding the correct hash preimage does not publish the block immediately but instead
first shares it only with nodes within the pool, giving them an advantage in finding the next
solution, thus influencing who the subsequent leaders will be. These attacks yield significant profits,
see Table 1. In practice, evidence of such attacks is hard to find, probably due to the continuous
monitoring of the blockchain.1
Many blockchains use PoS consensus algorithms [Chen and Micali, 2019, Daian et al., 2019,

Ganesh et al., 2019, Gilad et al., 2017, Kiayias et al., 2017] mainly motivated by the need to reduce
the environmental externalities of PoW [Cohen and Pietrzak, 2019, Park et al., 2018]. Classical PoS
and its variants (e.g., Ouroboros) are present in modern blockchains (for example, Algorand [Chen
and Micali, 2019] and Cardano [Kiayias et al., 2017]). The strategic manipulation of PoS consensus
protocols is an emerging research topic. Initial works have mainly focused on Algorand [Ferreira
et al., 2022, 2024]. In this work, we extend a very recent line of research that studies the manipula-
bility of Ethereum’s randomness source that should in theory underpin the security of distributed
systems with billions of dollars in economic value.
Ethereum [Wood et al., 2014], the second-largest cryptocurrency by market capitalisation and

the largest by transaction volume, transitioned to a PoS consensus algorithm in September 2022. In
PoS, block proposers are pseudo-randomly selected using cryptographic algorithms and protocols.
Examples include the use of verifiable random functions, as seen in Algorand [Gilad et al., 2017],
or distributed randomness beacons (DRB) as in Ethereum [Choi et al., 2023], among other meth-
ods [Kavousi et al., 2024, Raikwar and Gligoroski, 2022]. Ethereum’s DRB is called RANDAO. It was
introduced in [Zhang and Qian, 2019]. While RANDAO is an efficient DRB protocol, it is not robust
against strategic manipulations [Alpturer and Weinberg, 2024, Nagy et al., 2025, Wahrstätter, 2023].

1There are variants of selfish mining attacks that are harder to detect [Bahrani and Weinberg, 2024].

János Tapolcai, Bence Ladóczki, and Ábel Nagy 2

In Ethereum PoS, blocks are published at fixed time intervals (i.e., at every 12 seconds on average),
referred to as slots, and the validator elected to publish a block is appointed by the RANDAO
mechanism. In each slot, there is only one uniquely determined validator who can publish a block.
Should it fail to do so, the slot is treated as missed in the canonical chain. As the outcome of
the randomness beacon depends on these missed slots, this creates an opportunity for an attack.
Validators, being aware of this dependency, might find it profitable to intentionally miss blocks if
doing so affects the RANDAO outcome in such a way that the entity (e.g., staking pool) running the
validator would get more slots in the upcoming epochs (myopic strategy). From this perspective,
staking pools are similar to mining pools in the PoW world. The effect of these missed slots is only
predictable before the so-called epoch boundaries (every 32nd slot) (tail slots).

The first analysis of the manipulability of the current RANDAO protocol was conducted in a blog
post by Wahrstätter [Wahrstätter, 2023]. He examined the aforementioned attack (selfish mixing)
and demonstrated that major staking entities could have manipulated RANDAO dozens of times
since the genesis of PoS Ethereum by strategically publishing or withholding tail slots. Wahrstätter
proposed two utility functions a RANDAO manipulator could consider: first, maximising the
number of blocks proposed; second, obtaining a specific slot in a future epoch. The second utility
function has not received much attention in the literature. Alpturer andWeinberg, applying Markov
Decision Processes (MDP), determined optimal selfish mixing strategies in [Alpturer and Weinberg,
2024]. In [Nagy et al., 2025] selfish mixing was extended with a second attack, whereby a strategic
player can also fork out honest (tail) blocks from the canonical chain with multiple adversarial
slots surrounding the honest blocks.
In this paper, we consider a significantly broader set of forking attacks. First, we introduce a

new type of forking attack, the weak forking attack. We abandon the methodologies of [Alpturer
and Weinberg, 2024] and [Nagy et al., 2025] modelling RANDAO attacks using Markov Decision
Processes (MDP). Instead, we take a different approach that allows us to handle a wider range of
potential attacks, as the MDP framework imposes severe constraints on the size of the manageable
state space. Although anMDP-based formulation can effectively handle selfish mixing [Alpturer and
Weinberg, 2024] incorporating forking attacks requires a modification to the classical MDP approach
to prevent state space explosion. For a small staking power (𝛼), these restrictions introduce only
a negligible error in the model. However, when analysing centralisation effects, particularly for
larger stakes (𝛼 ≥ 30%), these constraints lead to significant inaccuracies.
Our goal is to describe and evaluate attack strategies that cover the broadest possible range of

RANDAO manipulation attacks. The model is evaluated using Monte Carlo simulations. In other
words, rather than focusing on the optimal attack policy of a small set of attacks, we attempt to
cover as many RANDAO manipulation attacks as possible and use a near-optimal attack policy.
Table 1 summarises the performance of various RANDAO manipulation strategies in PoS

Ethereum and that of PoW selfish mining. For PoS we evaluate selfish mixing with and with-
out forking using MDP-based approaches. Two utility functions are considered: #slots, which aims
to maximise the number of slots controlled by the adversary. target denotes the utility for obtaining
a specific slot. For selfish mining there exists no strategy to target specific slots so the two values
are identical.
Observe that our proposed method significantly improves the average number of acquired

slots by incorporating more RANDAO manipulation attacks. Ethereum’s PoS DRB was designed
such that these manipulation strategies require sacrificing blocks and this inherently limits the
effectiveness of these attacks. In this regard, PoS improves upon PoW, because PoW miners using
selfish mining can more effectively compromise the system’s decentralisation characteristics. The
primary vulnerability of the current RANDAO mechanism emerges in the second metric. When an

János Tapolcai, Bence Ladóczki, and Ábel Nagy 3

Table 1. Advantages in terms of the staking power of strategic RANDAO manipulators. We compare this
work to prior work on Selfish Mixing (SM) [Alpturer and Weinberg, 2024], Selfish Mixing and Forking without
double forking [Nagy et al., 2025], and Selfish Mining [Eyal and Sirer, 2014, 𝛾 = 1 in (3)] for various stake sizes

Stake Ethereum PoS PoW

(𝛼) Selfish Mixing (SM) SM&Forking with MDP This work Selfish
Mining

#slots target #slots target #slots target

5% 5.05% 5.28% 5.05% 5.28% 5.07% 5.28% 5.24%
10% 10.19% 11.20% 10.19% 11.24% 10.23% 11.20% 10.92%
15% 15.40% 18.00% 15.42% 18.22% 15.51% 18.22% 17.01%
20% 20.67% 25.74% 20.95% 28.15% 21.00% 28.99% 23.51%
25% 26.02% 34.63% 26.60% 41.00% 26.80% 47.20% 30.48%
30% 31.45% 44.63% 32.83% 60.66% 33.43% 81.50% 38.06%
35% 36.97% 56.22% 40.28% 88.28% 44.36% 99.98% 46.55%
40% 42.62% 69.61% 47.49% 98.88% 53.08% ∼ 100% 56.74%
45% 48.49% 83.18% 53.77% 99.94% 60.00% ∼ 100% 70.94%

adversary aims to control a specific slot –e.g., because a new ERC token or NFT is launching in
the corresponding block, leading to lucrative arbitrage opportunities2 –the system becomes highly
vulnerable.

Currently, the largest staking pool controls 𝛼 = 28%3 of the total PoS stake. This alone allows
the pool to gain control of any given slot with 65% probability. The attack essentially works as
follows: several epochs before the target slot, the adversary awaits an opportunity to secure a
favourable slot (e.g. tail slots) or perform a forking attack near an epoch boundary to gain leverage
for manipulation. And from that point onward, the adversary is very likely to retain these favourable
slots across epochs until the target slot. What is rather surprising is that, although the adversary
initially sacrifices a few blocks to mount the attack, it later manages to retain its full 28% block
share. This is because these favourable slots enable such efficient RANDAO manipulation that in
each epoch the adversary can choose among an average of 24 RANDAO outcomes (for 𝛼 = 28%),
and from these it will select the one that, in addition to preserving the favourable slots for the next
epoch, provides some extra slots to cover the required sacrifice in the following epoch. From an
average of 24 RANDAO outcomes, one can infer that the adversary possesses roughly 5 bits of
manipulative power, implying that, on average, 2.5 slots will be missing per epoch. In actuality,
about half of this suffices: 1.1 slots is sacrificed, with an additional 0.5 honest slot forked to further
aid the manipulation. This is because the favourable slots are predominantly located among the
last 7 slots of the epoch, from which the adversary can choose in such a way as to minimise the
required sacrifice. For comparison, if the goal is purely to maximise the number of controlled slots,
the performance of the proposed attack strategy is 30.57% at 𝛼 = 28%.
If a lucrative slot is foreseen due to the significant profit potential, there is a risk that entities

temporary collude to control 33% of the validators to mount such an attack with 99.5% success
rate. This effectively implies that the reliability of the current RANDAO mechanism is questionable.
Furthermore, the detectability of these attacks is no easy task, because, a few missed slots through
some epochs are often attributed to network issues, making it difficult to distinguish intentional
manipulation from regular disruptions.

2Or because RANDAO outcomes are used for applications such as decentralised lotteries or setting conference deadlines.
3See: https://dune.com/hildobby/eth2-staking

https://dune.com/hildobby/eth2-staking

János Tapolcai, Bence Ladóczki, and Ábel Nagy 4

We argue that RANDAO should be urgently replaced with a more resilient design that prevents
the immediate computation of the impact of a missed slot on the RANDAO outcome. One potential
solution is the use of verifiable delay functions (VDFs) introducing an inherent computational
delay. While this approach at first glance might seem like a step back to PoW principles–requiring
significant computation by a few participants–we currently see no viable alternative to protect
against these types of attacks effectively.

1.1 Our contributions
In this work, we make the following contributions:
• We define a model of forking RANDAO manipulation attacks that encompasses significantly
more potential attack strategies than [Nagy et al., 2025]. First, we introduce the weak forking
attack, a type of attack that terminates with an honest slot (see Section 3). Additionally,
we provide a recursive characterisation that systematically generates all possible RANDAO
manipulation attacks. We prove that this characterisation is complete, meaning that under
our network assumptions no other forking attacks are possible.
• We propose an attack strategy capable of handling all RANDAO manipulation attacks. For
computational efficiency, we later introduce constraints to slightly prune the action space.
We define a heuristic utility function to eliminate the need for poorly scalable black-box
optimization methods (e.g. MDP).
• We demonstrate through simulation studies that our heuristic utility function is a good ap-
proximation of the optimal MDP solution. What’s more, by accounting for nearly all possible
attack strings, our approach significantly improves the performance of RANDAO manipula-
tion strategies compared to previously known methods. This manipulation is particularly
dangerous when the adversary aims to get hold of specific future slots. Given the current
staking pool sizes, such targeted slot attacks are more feasible than anticipated.
• For the sake of reproducibility, we release all our program codes in an open-source repository.

The rest of this paper is organised as follows. In Section 2, we describe the relevant components
of Ethereum’s proof-of-stake protocol. Section 3 formally defines the forking attack, translates its
mechanics into mathematical terms and describes some example attacks. In Section 4, we introduce
a recursive structure that characterises all possible RANDAO manipulation attacks, relying solely
on the theorems established in the earlier sections. From this stage, we no longer refer directly
to Ethereum’s PoS mechanism. Section 5 presents an attack strategy with heuristic steps. These
heuristic refinements primarily involve defining the utility function required for the formulation
of the optimal policy and slightly pruning the set of considered attack strategies. In Section 6,
we assess the effectiveness of our attack strategies through simulations. Finally, in Section 8 we
summarise our findings, discuss open problems and future research directions.

2 PRELIMINARIES AND SYSTEMMODEL
In this section, we present an overview of the key steps of randomness generation and leader
selection in PoS Ethereum. For a detailed explaination of the protocol see [Pavloff et al., 2023].

2.1 Leader Selection in Ethereum
In PoS Ethereum, time progresses in slots, each lasting 12 seconds. During each slot, a single
validator is eligible to propose a block. The validator for a given slot is selected using a distributed
randomness beacon called RANDAO. An epoch consists of 32 slots, numbered from 0 to 31, where
slot 31 is colloquially called a tail slot. At the end of each epoch 𝑒 , a 96-byte value (RANDAO
outcome) is generated. This value is used to determine the validators for epoch 𝑒 + 2, see Figure 1.

János Tapolcai, Bence Ladóczki, and Ábel Nagy 5

HAH . . .HHAH·AHH . . .HAHAA·

𝑒th epoch string (𝑒 + 1)th epoch string

(𝑒 + 2)th
epoch string

attack string: AH·A

realisation string:
CCC . . .CC CN· RAN

DAO
attack decision points

Fig. 1. A RANDAO manipulation attack

Part of the
Canonical chain

Not part of the
canonical chain

Honest slot Ch: proposed Nf : forked

Adversary slot Co: opted Nm: missed

A published later Cp: private Nd: dropped

A aim to get forked Ck: kept Ns: self-forked

Fig. 2. Notations for slot realisations

The RANDAO outcome for an epoch is computed as the bitwise XOR of all randao_reveal
values from the blocks published during the epoch. The randao_reveal value of each block is a
96-byte BLS signature generated on the epoch number, calculated using the block proposer’s private
key. The BLS signature scheme is deterministic [Boneh et al., 2001] and the block’s randao_reveal
is validated against the block proposer’s public key.
In our simple model, we consider two entities: an adversarial entity, A, with staking power 𝛼

(i.e., controlling 𝛼 proportion of all validators), and an honest entity,H , with staking power (1 − 𝛼).
The slots assigned to proposers controlled by the adversarial entity A (or strategic player) are
referred to as A, while the slots assigned to the honest entityH are referred to as H.
Using our slot notation, we define a continuously growing sequence called the chain string. At

the end of epoch 𝑒 , the chain string (cs) is extended by a {A,H}32 string, termed the (𝑒 + 2)th epoch
string. When referring to a specific slot, subscripts are used to indicate its slot number.
The randao_reveal information for A slots is known in advance by A, whereas for Hs, this

information is unknown to the adversary until the corresponding block is published.
During the attack the adversary A may withhold blocks in the allotted slots. Moreover, the

adversary can strategically fork the chain, i.e., propose blocks on blocks that are parents of the
current head of the blockchain. We assume that for 𝛼 ≤ 50% only ex-ante reorgs are possible,
whereby the adversary does not publish the block in its own slot but rather builds it privately and
later publishes its private branch.

Definition 1 (Slot realisation). Following the attack each slot either:
Canonical: becomes part of the canonical chain and contributes to the RANDAO outcome of the

epoch, or
Non-canonical: gets omitted from the canonical chain.

RANDAO manipulation strategies leverage the fact that N blocks do not contribute to the
RANDAO outcome because they are not part of the canonical chain. A RANDAO manipulation
attack can be interpreted as a state transition that transforms an epoch string into an epoch
realisation string. The epoch realisation string is a {C,N}32 string. We often add a superscript to
the slot realisation to encode the history of a block, see Figure 2 and Section 2.4.

Finally, we define two utility objectives: maximising the number of slots and obtaining/targeting
a specific slot. For the former, the goal is to maximise the number of As that are C. For the latter,
the adversary aims to get hold of a specific slot, implying that a particular slot must be an A slot,
which then becomes a C slot.

2.2 Network Assumptions
We make the following network assumptions. The honest entity always builds on the head block
determined by the LMD-GHOST fork choice rule and broadcasts the new block no later than the

János Tapolcai, Bence Ladóczki, and Ábel Nagy 6

Slot 28
Honest

Slot 29
Adversary

Slot 30
Adversary

Slot 31
Honest

Slot 0
Adversary

Publish
Block

Private Private CpCpNf ·

NsCpNf ·

CpNsNf ·

NmNmCh· or CkNmNm· or NmCkCh·
depending on the de-
cision made in slot 29CoCoCh·

Private

Private

Publish

PublishPublishPublish

At slot 29, A is aware
of three RANDAO out-
comes R(AAH·A)
= {CpCpNf ·,

NsCpNf ·, CpNsNf ·}
A has to make a decision
at slot 29: either start a

forking attack, or it may opt
not to fork if none of the
R(AAH·A) is good enough.

At slot 31 after the honest block
is proposed, A has a second

decision point: to either publish
the private branch or drop it
in favour of the public branch,
should it offer a better outcome.

Fig. 3. Decision tree for selfish mixing and forking with attack string AAH·A and 𝛼 > 0.35.

4th second of a H slot. In each slot, 1
32 of the total validators cast votes (attestations) for the head

block. The head block is defined as the block with the highest weight, calculated as the sum of
attestations referencing the block or its descendants. It is assumed that the adversary controls
exactly 𝛼 fraction of the total voting power in each slot. We believe that the law of large numbers
justifies this simplification over the long run.
In the current implementation of LMD-GHOST, a block published before the 4th second of its

slot receives virtual votes, known as the proposer boost (pboost). As of this writing, pboost = 0.4,
meaning that a newly published block gains virtual votes equivalent to 40% of the total stake.. It is
important to note that the proposer boost only applies to blocks in the given slot.

We assume that the network is synchronous and the upper bound on message delivery is shorter
than a third of a slot’s length (4 seconds). Finally, we assume that cryptographic building blocks
are idealised (e.g. the RANDAO is truly uniform).

To summarise the key assumptions used in this study are:
(1) Honest validators always publish their block within the first 4 seconds of the slot.
(2) Honest validators always build on the head of the chain with the most number of votes.
(3) Between the 4th and 12th seconds of a slot, the adversary can propagate its private branch.
(4) In every slot, the adversary has exactly 𝛼 votes.

2.3 Illustrative Examples of RANDAOManipulation Attacks
This work considers two main strategies (i.e., selfish mixing and forking) that allow an adversary
to manipulate RANDAO outcomes. The feasibility of an attack depends on the epoch strings at
the boundary between epochs 𝑒 and 𝑒 + 1. The relevant segment is called the attack string. We use
this to identify attacks. For a description of basic selfish mixing attacks and forking attacks, see ??
or [Nagy et al., 2025]

Next, we go through a more complex attack scenario, whereby selfish mixing is combined with
a forking attack and the attack string is AAH·A, as illustrated in Figure 3. Note that the number
of realisation strings available to the adversary depends on the value of 𝛼 , as 𝛼 determines the
length an adversary can fork out. For example, when 𝛼 = 0.2, the outcome NsCpNf· is no longer a
viable realisation string. This is because if no block appears in the canonical chain at slot 29, the
𝛼-fraction of validators controlled by the adversary cannot privately vote for these slots, leading to
fewer votes on the private branch [Neuder et al., 2021].

This example gives rise tomore advanced attack techniques. Consider an adversarywho calculates
that having a missed slot at position 29 or 30 can be advantageous for attacks in the future. First,
the adversary can publish the block to the public chain rather than not producing the block at all.
The adversary still retains the ability to fork out this branch in the future. These slots are denoted
by Ns and we call the corresponding technique self-forking.

János Tapolcai, Bence Ladóczki, and Ábel Nagy 7

Later, in Section 4.1, we provide a general description of how to construct decision trees recur-
sively. We will decompose decision trees into building blocks to ease comprehension.

2.4 Block Statuses and General Notations
In this section, in addition to the two possible slot realisations, C and N, we add information about
the history of the blocks using subscripts. These are referred to as block statuses. An important
observation is that, at any given time, there can be at most two branches: one public and one
private. In other words, there is a public chain and although the adversary can build multiple
private branches, we consider only the best private chain among them and this is well defined.

We have the following eight block statuses (Figure 2):

Ch (Proposed) A block successfully proposed by a honest validator, gets accepted by the su-
permajority of validators (i.e., 2/3) and becomes part of the canonical chain. In our analysis
honest validators always exhibit this behaviour.

Nf (Forked) A block proposed by a honest validator that ends up in a non-canonical branch of
the blockchain. It is no longer considered canonical by supermajority validators.

Co (Opted) A block proposed by an adversarial validator in its designated slot. Such a block is
accepted by supermajority validators and becomes part of the canonical chain.

Nm (Missed) The adversarial validator does not publish a block in its designated slot during a
RANDAO manipulation attack. This does not apply to cases in which honest validators miss
a block due to connectivity issues or other operational problems (e.g., the node is accidentally
turned off).

Cp (Private) An adversarial validator builds a block but does not publish it on time during the
given slot. The block is broadcast among adversary validators and later becomes part of the
canonical chain.

Nd (Drop) A block privately built by the adversary but never published because the adversary
changed its strategy during the attack for a better RANDAO outcome.

Ck (Kept) The adversary builds a private branch but publishes a block in the public branch
instead. The private branch is eventually abandoned and the block remains part of the
canonical chain. Although rare, this scenario may occur depending on the RANDAO outcomes.

Ns (Self-forked) While building a private branch, the adversary publishes a block in the public
chain. Later, this private block gets forked out, see Section 3.2.

We use a Python-like notation for array elements and slices, e.g., v[0] or v[𝑖 : 𝑗], which is
non-inclusive on the right, i.e., v[𝑗] /∈ v[𝑖 : 𝑗]. v[−1] refers to the last element of the array.
𝑋 ∼ Binom(𝑛, 𝑝) denotes a draw from a binomial distribution with parameters 𝑛, 𝑝 . In our case the
parameters are 𝑛 = 32, 𝑝 = 𝛼 .

3 MATHEMATICAL MODEL OF FORKING ATTACKS
In this section, we provide mathematical formalism to forking attacks. Later in our analysis, we will
rely solely on these definitions and lemmas, allowing us to abandon several unimportant details
of the PoS protocol. A forking attack always begins with an A block that is privately built by A.
During the attack, honest validators continue to build blocks on the public chain, while A has the
option to either build its A block privately for the private chain or publicly for the public chain,
or simply miss the slot. The attack concludes either when the privately built chain is published
or when the private chain is no longer eligible to become the head of the chain. This occurs at
a well-defined point in time (for 𝛼 < 0.5), dictated by the LMD-GHOST protocol invoked at the
end of the attack string. When the attack reaches this point we say that the adversary drop the

János Tapolcai, Bence Ladóczki, and Ábel Nagy 8

blocks built up until this point. In this case the adversary anticipates a more favourable RANDAO
outcome in epoch 𝑒 + 2 and it is more beneficial to abandon the private branch.
The end of an attack string can be either A or H. For attack strings ending in A, the length is

significantly larger due proposal boost, see Table 2. When the attack string ends in H we call the
corresponding attack a weak forking attack, during which A has to wait until a block is proposed
in the previous slot. This, according to our model, happens by the 4th second of the slot. Between
the 4th and 12th seconds, A has sufficient time to broadcast its private branch in the peer-to-peer
network. This branch then becomes the head of the chain according to LMD-GHOST protocol
rules, forking out the public branch with H being the last slot. Note that the pboost is valid only for
attestations in the current slot; therefore, the next slot–the final H–will be forked.

Definition 2 (Forking string). An 𝑥-long string S starting with A𝑎1H ending with X ∈ {A,H}
is called a forking string, if 𝑥X ≥ 𝑥 > 𝑎1 ≥ 1 where

𝑥A =
⌊
𝑎1(1 − 𝛼) + pboost

1 − 2𝛼

⌋
+ 1 and 𝑥H =

⌊
𝑎1(1 − 𝛼)
1 − 2𝛼

⌋
. (1)

We call it weak forking string, if the the last slot of the string is H.

A A H A H A

Cp Cp

Nf

Cp

Nf

Co

𝑎1

𝑥

(a) Forking string (ends with A).

A A A H A H

Cp Cp Cp

Nf

Cp

Nf

C
𝑎1

𝑥

(b) Weak forking string (ends with H).

Fig. 4. General forking attack strings.

Lemma 1. Every honest block of a (weak) forking string S can be forked out from the canonical
chain.

Proof. If S ends with A, then Eq. (1) can be rearranged as:
(𝑥 − 1) · 𝛼 + pboost > (1 − 𝛼)(𝑥 − 𝑎1 − 1) (2)

and if S ends with H, then Eq. (1) can be rearranged as:
𝑥 · 𝛼 > (1 − 𝛼)(𝑥 − 𝑎1) (3)

In Figure 4a, the upper branch represents the adversary’s branch. This branch was privately built
throughout the attack, so during the attack – except for the last slot – it has 𝛼 votes on it, plus the
proposal boost. On the other branch, the honest votes up to the first H are lost because they land
on the last published block before the attack. After that, in every subsequent slot, (1− 𝛼) votes land
on this branch.

In Figure 4b, in the upper branch the blocks are privately built throughout the attack, so during
the attack it accumulates 𝛼 votes. The adversary must broadcast its private branch right after
the last honest block is published and it should be done before the next slot. According to our
assumptions, the adversary has an 8-second window for this, as honest proposers always broadcast
their blocks within the first 4 seconds of their slots. On the other branch, the honest votes up to
the first H are lost. After that, in every subsequent slot, (1 − 𝛼) votes land on this branch. In this

János Tapolcai, Bence Ladóczki, and Ábel Nagy 9

𝑎1(1 − 𝛼)

0

−𝑃boost − (1 − 2𝛼) forkingweak forking
H A

𝑎1 𝑥

slope: −(1 − 2𝛼)

Fig. 5. The graphical illustration of Eq. (1)
for 𝑎1 = 2 and 𝛼 = 0.4, as a function of
forking string length 𝑥 .

Table 2. The maximal length of a forking attack string after A𝑎1 ,
i.e. 𝑥 − 𝑎1. The “-” sign indicates that a forking attack is not
possible with the given parameters.

Attack ends with A Attack ends with H
𝛼 0.2 0.25 0.3 0.35 0.4 0.45 0.2 0.25 0.3 0.35 0.4 0.45

𝑎1 = 1 2 2 2 3 5 9 - - - 1 2 4
𝑎1 = 2 2 2 3 4 7 14 - 1 1 2 4 9
𝑎1 = 3 2 3 4 5 9 18 1 1 2 3 6 13
𝑎1 = 4 3 3 5 7 11 23 1 2 3 4 8 18
𝑎1 = 5 3 4 5 8 13 27 1 2 3 5 10 22

equation, we assume that during the last H slot, due to the presence of proposal boost, no honest
validator casts attestations to the private branch in this slot. □

We note that Lemma 1 is tight in a sense that when the conditions in Definition 2 are not met the
success of the forking attack cannot be guaranteed under our network assumptions (see Section 2.2).

3.1 Discussion on the Lengths of Forking Strings
Let us elaborate on Eq. (1) in Definition 2. It states that 𝑎1 consecutive As provide a window of
control for the adversary. Figure 5 shows a graphical illustration of Eq. (1). The left-hand side is
a linear function that equals 𝑎1(1 − 𝛼) at 𝑥 = 𝑎1 and has slope −(1 − 2𝛼). The right-hand side is a
constant function that depends on whether the last slot of the forking string is an A or an H.

Table 2 shows the maximum value of 𝑥 − 𝑎1 for both cases, depending on whether the next slot
is an A or an H. According to the table, AHA is a valid forking string for 𝛼 = 0.2, because in this
case the forking attack requires 2 more slots following an A slot (𝑎1 = 1).

3.2 Realisation Strings of a Forking String
As mentioned at the beginning of the section, A has the option to either build its A slots privately,
publicly on the public chain or simply skip the slot. In this subsection, we provide precise definitions
to describe an adversarial action space for forking attacks.
The realisation string of a forking string is a string of C and N characters (or the block states

of Figure 2). When a forking string spans across an epoch boundary, it is also considered as an
attack string. Otherwise it can be part of a longer attack string. The length of the realisation string
corresponds to the portion of the forking string in epoch 𝑒 .

Recall that, A must know the BLS signatures for all blocks (in the canonical chain) of the given
epoch to be able to compute the RANDAO outcome. While the signatures for past slots are public,
for future slots computation is only possible for A slots. In other words, A knows the RANDAO
outcome ahead of time only for a realisation string where every future H slots are forked out. The
A slots on the other hand can be either C or N, if the adversary can perform a forking attack.

For instance, if the forking string is S = AAH·A, then it has two possible realisation strings:
R(S) = {ChCoNf·,ChNmNf·} for 𝛼 = 16%. The crux of the matter here is that in some cases in the
second slot of the forking attack A may decide not to publish a block because doing so would
result in a more favourable RANDAO outcome. As mentioned earlier in this section, A might have
a third option as well: broadcasting a block in the corresponding A slots to the public branch. We
refer to these slots as self-forking slots, as they represent blocks broadcast by the adversary with
the intention of forking them later. The corresponding realisation of such slots is denoted by Ns.
Once the private branch gets forked out of the public branch, these A slots, initially published

on the public chain, transition to state Nm in the canonical chain. This is not always an option

János Tapolcai, Bence Ladóczki, and Ábel Nagy 10

for the adversary publishing blocks to the public chain (Ns). In some cases, the adversary can
choose to broadcast these blocks, which is more advantageous than omitting them from the private
branch (Nm). This is because if it later turns out that extending the public branch results in the best
RANDAO outcome, the sacrifice of abandoning the private branch will be smaller. In such cases,
the blocks published in these slots to the public branch remain valid, reducing the overall cost of
discarding the private branch. Next, we formalise under what circumstances missed slots can be
part of the public chain.

Lemma 2. An A slot of a forking string can be in state Ns iff.
(1) it is not the first or the last slot of the forking string,
(2) it is after the first H of the attack string,
(3) if it is before the first H of the attack string, and the left-hand side of Eqs. (2) and (3) exceeds the

right-hand side by more than 1 − 𝛼 .
Additionally, any A slot can be in state Nm that satisfies condition 1).

Proof. Recall that the first slot of the private branch must always be published, as established
in Claim 2. We call a forking string confident when condition (3) is met. For the subsequent 𝑎1 − 1
As, if the forking attack string is confident, these slots will be in state Ns rather than in state Nm.
In this scenario, these blocks are published by the adversary only at the 𝑎1-th slot of the attack.
Consequently, these blocks receive an additional 1 − 𝛼 votes for the public branch. Clearly, the A
slots will be in state Ns instead of state Nm which are not part of the starting consecutive 𝑎1 As,
see Figure 4. □

Based on the above lemma we can enumerate the realisations R(S) of a forking sting S. Each
realisations starts and ends with a C slot. Otherwise each A slots can be either in state Cp or state
N, while each H slot is in state Nf . According to Lemma 2 the N block is either in state Nm or in
state Ns. The number of realisations of S is 2𝑎 , where 𝑎 is the number of As in S[1 : −1] if the
forking string is confident, and in S[𝑎1 : −1] otherwise, where S starts with A𝑎1 .

4 CHARACTERISATION OF ATTACK STRINGS
In this section we provide a characterisation of the attack strings.

Definition 3 (Attack string). An attack string is a segment of the chain string for which the
adversary can compute at least one potential RANDAO outcome at its first slot.

For convenience the epoch boundary, denoted as “·” is included in the attack string. These type
of attack strings are called no-attack strings. We denote the substring before the epoch boundary
as postfix(S) and the substring after the epoch boundary as prefix(S)

4.1 Recursive Characterisation of Attack Strings
This subsection is dedicated to the formalisation of attack strings as a recursive construction. We
present the construction through lemmas. In general, 𝑎 denotes the total number of A slots in the
attack string, and ℎ denotes the total number of H slots. An attack string always begins with an A.

Lemma 3 (Recursive selfish-mixing). If S is an attack string, then AS is also an attack string.

Proof. By Definition 3 the A can already calculate at least one potential RANDAO outcome at
the first slot of the attack string S. With anA slot before S,A can calculate them one slot earlier. □

A similar lemma can be stated for the case of a forking attack as well.

Lemma 4 (Forking through epochs). A forking string S with epoch boundary is an attack string.

János Tapolcai, Bence Ladóczki, and Ábel Nagy 11

Proof. If S is a forking string, then according to Lemma 1, the adversary can fork out all the H
blocks, thus it can calculate a potential RANDAO outcome at the first slot of the attack string. □

Lemma 5 (Recursive forking attack). If S1 is forking string and S2 is any attack string, then
S1 + S2 is also an attack string, where + is a concatenation of two strings.

Proof. At the first slot of S1 the adversary can fork out all the H blocks of S1 by Lemma 1; and
by Definition 3, kowns at least one potential RANDAO outcome of the attack string S2. □

Theorem 1. Assume that Definition 2 defines a necessary condition for a successful ex-ante reorg.
Then, by recursively applying Lemmas 3 to 5 one can generate every possible attack strings for 𝛼 < 0.5.

Proof. A proof by contradiction is given. Assume that there exists an attack string that cannot
be decomposed into a sequence of forking and selfish-mixing attack strings. Under this assumption,
there cannot be an H slot between the beginning of the attack string and the epoch boundary that
is not part of at least one forking attack string. Should such a slot exist, it would contradict the
definition of an attack string. Namely that by Definition 3 we require that a possible RANDAO
outcome can be computed at the first slot of the attack. However, the RANDAO outcome of the
block at this H slot is unknown, therefore we arrive at a contradiction.
On the other hand, supposing that no such H exists, the attack string can be generated by

forking and selfish-mixing strings. With this assumption in place, it remains to determine whether
overlapping attack strings pose a problem. If they do not overlap, they lend themselves to a valid
decomposition into forking and selfish-mixing strings.

Each forking attack string begins with consecutive A slots, see Definition 2. If there are selfish-
mixing strings preceding a forking attack string, they can be merged into the forking attack string,
because Eq. (1) holds. This merging results in the forking attack string starting with an extended
sequence of consecutive A slots. Consequently, the attack string can be represented as a sequence
of forking attack strings, each followed by a tail of selfish-mixing A slots (optional). These forking
strings collectively generate all Hs within the attack string.
Additionally, observe that overlapping forking attack strings can be shortened while preserving

the predefined structure. Specifically, a forking attack string can be reduced to include only its
initial consecutiveA slots, followed by aH, and ending just before the beginning of the next forking
attack string. In this case Eq. (1) still holds. This adjustment ensures that the forking attack strings
are disjoint while still generating the full attack string. □

4.2 Finding the Longest Attack String for a Given Chain String
In this subsection, we investigate how to find all the attack strings for a given chain string. Recall
that every attack string contains the epoch boundary. As such, wo only have to perform a substring
match as the alignment of the two strings is unambiguous. The input of this operation is the 𝑒-th
and (𝑒 + 1)-th epoch strings, collectively referred to as the two-epoch string and denoted by T.

Definition 4. For a given two-epoch string T, let 𝜅(T) = S denote the attack string S with the
maximal postfix(S).

When computing 𝜅(T), the target is exclusively to find an attack string S with maximal postfix(S).
This is because 𝜅 is used to search for slots where the adversary is required to make decisions,
specifically to identify the first decision point within S.
One can conveniently find 𝜅(T) = S by following the logic of Theorem 1, by traversing the

two-epoch string once from left to right. Whenever an A appears in position 𝑖 , we check if it is the
beginning of a forking string. First, we set 𝑖𝑠𝑡𝑎𝑟𝑡 = 𝑖 , unless 𝑖𝑠𝑡𝑎𝑟𝑡 has been already initialised. Let 𝑎1
denote the number of consecutive A slots. Then, using Eq. (1) we compute the number of slots 𝑥

János Tapolcai, Bence Ladóczki, and Ábel Nagy 12

that can be forked out. Note that 𝑥 is at least 𝑖 + 𝑥H , or it is an A in T[𝑖 + 𝑥H + 1 : 𝑖 + 𝑥A], if any. If 𝑥
is a tail slot or part of the next epoch, the longest attack string S equals T[𝑖𝑠𝑡𝑎𝑟𝑡 : 𝑖 + 𝑥]. Otherwise,
we save this slot as 𝑥𝑚𝑎𝑥 .

Repeating the steps above, we continue moving to the right. If we traverse 𝑥𝑚𝑎𝑥 , it means that the
attack’s starting point can only be further to the right, and we unset 𝑖𝑠𝑡𝑎𝑟𝑡 . We repeat the traversal
steps until we reach the epoch boundary. We must also ensure that the A slot at the end of a forking
attack cannot be the first A slot of the next forking string, as the latter must always be published,
whereas the former is privately built.

4.3 Enumerating the Decompositions of an Attack String
AMonte Carlo simulator that will be used to evaluate the proposed strategies necessitates a decision
tree to be used by the adversary at each step. We use the (longest) attack string at the construction
of this tree. In addition to the string itself, the decision tree requires information on how the
string was built following Lemmas 3 to 5. We extract this information using string decomposition.
Note that there can be many decompositions of the same attack string. For example, for 𝛼 > 20%,
the string AAH·A satisfies the definition of an attack string (Definition 2) on its own, but it can
also be interpreted as a recursive selfish-mixing attack A followed by a forking string AH·A, as
mentioned in Lemma 3. The difference between these two interpretations lies in whether in A30
slot A privately builds a block or if it can be a missed slot. According to Lemma 1, under the first
decomposition, it could be in state Nm, because Eq. (2) would hold. However, under the second
decomposition, it cannot be in state Nm, and the first slot of the forking string AH·A must be Ch.
Consequently, with the first decomposition the adversary has more options to consider and it
would result in an attack with more degrees of freedom. Next, we provide a recursive algorithm to
find the longest attack string with all of its possible decompositions. Compared to the previous
algorithm, it works in the opposite direction, from right to left, and follows the logic of Lemma 3,
4, and 5. The algorithms will not directly list the matching attack strings; instead, they will call a
saveAttackString function with each attack string found.
To establish a hierarchy of attack strings, the saveAttackString function will also take the

parent attack string as a parameter. The parent attack string is S if Lemma 3 is applied last, and S2
if Lemma 5.

ALGORITHM 1: fndAttackStrRec
Input: T (epoch string segment),

𝛼 (staking percentage),
S (attack string)

Output: Call saveAttackString for each
matching attack string

1 𝑡 = len(T) ;
2 if T[𝑡 − 1] = A then
3 saveAttackString(AS, S) ;
4 fndAttackStrRec(T[: 𝑡 − 1],AS, 𝛼)
5 for 𝑖 ← 𝑡 − 1 to 0 do
6 if T[i:] meets Eq. (1) then
7 saveAttackString(T[𝑖 :]S, S) ;
8 fndAttackStrRec(T[: 𝑖], T[𝑖 +1 :]S, 𝛼)

ALGORITHM 2: findAllAttackStrings
Input: T (two-epoch string), 𝛼 (staking)

1 saveAttackString(·, ·) ;
2 for 𝑖 ← 31 to 0 do
3 if T[𝑖 : 32]meets Eq. (1) then
4 saveAttackString(T[𝑖 : 33], ·)
5 else
6 ℎ2 = firstA(T[33 :]) ;
7 if 𝑥 of Eq. (1) is ≥ 𝑖 + ℎ2 then
8 saveAttackString(T[𝑖 : 33 + ℎ2], ·) ;

9 S = saved_attack_strings ;
10 for S ∈ S do
11 fndAttackStrRec(T[:

32 − len(postfix(S))], S, 𝛼)

Alg. 1 shows how to translate Lemma 5 and Lemma 3 into an efficient recursive algorithm. The
algorithm extends an attack string by attempting to prepend additional attack strings to it.

János Tapolcai, Bence Ladóczki, and Ábel Nagy 13

First, it checks whether the last slot is A. If so, a selfish mixing attack can be performed, and
the function is called recursively. Next, it attempts a forking attack. The process starts by iterating
through the epoch string T backward. For each postfix of T, checks via the inequality in Eq. (1)
whether the substring T[: −𝑖] can be a forking string.

Alg. 2 provides the pseudo code for generating all attack strings through epoch boundary for a
given T. The algorithm starts by saving the honest attack string. Next, it generates a list of epoch
strings that include the epoch boundary, using a similar approach to Alg. 1. It begins at the epoch
boundary and iterates backward through T. At each step, it calculates the values of 𝑎, 𝑎1, and ℎ for
T[𝑖 : 33]. If 𝑎1 ≥ 1 and ℎ ≥ 1, the algorithm checks, using the inequality in Eq. (1), whether the
substring T[𝑖 : 33] qualifies as a forking string. If it does not, the substring is extended toward the
next epoch until the first A. The position of the first A after the epoch boundary is returned by
ℎ2 = firstA(T[33 :]). Then we check if the length of the attack string 𝑖 + ℎ2 meets Eq. (1).

Once all attack strings with an epoch boundary have been identified and saved into S, the
algorithm finally calls Alg. 1 for each attack string in S.

4.4 Enumerating the Realisation Strings of an Attack String
According to Definition 3 A can compute some RANDAO outcome at the first slot of the attack
string. Each outcome corresponds to a realisation string, see Section 3.2. In this section, we show
how to enumerate all realisation strings for a given attack string.

We assume that an attack is entirely deterministic, meaning that the conditions at the beginning
of the attack uniquely determine the outcome. In particular, the only condition we consider is
whether the slots were in status C or N in the epoch up to the point where the attack begins. This
information is represented by the epoch realisation prefix string. Now, we can precisely define the
realisation string (called observation in [Alpturer and Weinberg, 2024]).

Definition 5 (Attack string realisation). For a given attack string S and an epoch realisation
prefix string C, let R(C, S) denote the realisation string obtained after the attack.

Recall that C + R(C, S) forms a 32-character string, referred to as the epoch realisation string,
see Section 2.1. Furthermore, if C is omitted from the notation, i.e., we write R(S), it means that C
contains nothing but Cs.
Next, we present two claims without proofs. These are very similar to Lemmas 3 and 5. Note

that, Lemma 4 is already covered, because Lemma 2 describes the set of realisation strings of a
forking string, which is also an attack string if goes through the epoch boundary.

Claim 1. If S is an attack string, then AS is an attack string with R(AS) = {Nm,Co} × R(S), where
× denotes the direct product, i.e., prepending either Nm or Co to every realisation string in R(S).
Claim 2. If S1 is forking string and S2 is any attack string, then R(S1 + S2) ⊇ R(S2) × R(S2).
Note that ⊇ appears in the formula because there are multiple ways an attack string can be

decomposed into smaller attack strings.

5 HEURISTIC RANDAOMANIPULATION ATTACK STRATEGY
In this section, we describe the RANDAO manipulation attack. Our approach fundamentally differs
from previous attempts [Alpturer and Weinberg, 2024, Nagy et al., 2025] that restricted the set
of possible attacks and then searched for an optimal policy within that limited space. Using the
recursive construction to describe all possible attacks, we propose a near-optimal attack policy,
which can be evaluated with a Monte Carlo simulator.

During the attack A has to make a series of decisions. The slots of the attack string where these
decisions are made are called decision points. The first decision point is 𝜅(T) = S, where T is the two

János Tapolcai, Bence Ladóczki, and Ábel Nagy 14

epoch string. The next one can be calculated with function 𝜅(postfix(S)[1 :] + T[32 :]). This is called
the no-fork attack string of S. Section 4.2 describes how to compute 𝜅 by a single traversal of the
attack string. We note that, an attack string and its no-fork attack string can be of different types.
For example AHA· is a forking string, but 𝜅(S[1 :]) corresponds to a selfish mixing attack, A·.
Decision points can only occur at some of the A slots and at the epoch boundary (the honest

attack string). At each decision point, the adversary may have the following three actions to choose
from: private build a block (in case of forking attack, when the statuses are either Cp or Nd), publish
a block (in case of selfish mixing string, with status Co), miss a slot (in case of selfish mixing string,
with status Nm). In addition, when the adversary (A) builds a private chain, then during the last
8 seconds of the slot preceding a decision point, it can perform the following two more actions:
publish the private chain (Cp or Ns), or drop the private chain (Nd or Ck).

5.1 Heuristic Utility of Attack Strings
The idea behind our heuristic utility function is to ignore what happens after epoch 𝑒 + 2. For a
given attack string, we know the exact value of sacrifice (the number of blocks need to be sacrificed
(Nm, Ns or Nd) in epoch 𝑒), and the distribution of the immediate reward in epoch 𝑒 + 2 (i.e., the
number of A slots). The estimated immediate reward minus the sacrifice is the heuristic utility
function we use.

The adversary observes several RANDAO outcomes during the attack. Some of these outcomes
are known already at the first slot of the attack. Let 𝑋𝑘 be a random variable representing the
maximum utility of these known outcomes (i.e., the immediate reward in terms of slots minus
the sacrificed slots). Its discrete distribution is denoted by 𝜇𝑘 (S), where 𝜇𝑘 (S)[𝑖] represents the
probability that the number of A slots in epoch 𝑒 + 2, minus the sacrificed slots (𝑖) for the best
known outcome. In later slots of the attack, further some other RANDAO outcomes can appear to
be chosen by the adversary. Let 𝑋𝑢 denote the random variable representing the maximum utility
of the outcomes that are unknown at present. The corresponding distribution is denoted by 𝜇𝑢 (S).
It is a heuristic simplification in our approach to assume that 𝑋𝑘 and 𝑋𝑢 are independent.
Each RANDAO outcome is either known or unknown at the first slot of the attack, and the

adversary will eventually select the one with maximal utility. Let us denote its utility by random
variable 𝑋 , whose distribution 𝜇(S) is the maximum of the discrete distributions 𝜇𝑘 (S) and 𝜇𝑢 (S):

𝜇(S)[𝑖] = 𝜇𝑘 (S)[𝑖] ·
𝑖∑︁
𝑗=0

𝜇𝑢 (S)[𝑗] + 𝜇𝑢 (S)[𝑖] ·
𝑖−1∑︁
𝑗=0

𝜇𝑘 (S)[𝑗] . (4)

As the outcomes are independent, here we assume that 𝑋𝑘 and 𝑋𝑢 are independent.
Finally the expected value of 𝑋 , i.e. E[𝑋], is defined as the heuristic utility value of S, calculated

as ∑33
𝑖=0 𝜇(S)[𝑖]. Observe that, 𝜇𝑢 (S) can be calculated iteratively from the given 𝜇(S) and 𝜇𝑘 (S).

5.2 Algorithm to Compute Heuristic Utility Distributions
First, we discuss how to compute the utility distributions for simple attack strings.

5.2.1 Heuristic utility of honest attack strings. For the honest attack string, the number ofA in epoch
𝑒 + 2 is a random variable 𝑥 with distribution 𝜇(·), which is a binomial distribution Binom(32, 𝛼).
Furthermore, 𝑥 is known at the starting A, thus 𝜇𝑘 (·) = 𝜇(·) and 𝜇𝑢 (·) = 0.

5.2.2 Heuristic utility of selfish mixing attack string A·. Here, we have two possible RANDAO
outcomes, let 𝑥C denote the number of A in epoch 𝑒 + 2 for realisation C·, and 𝑥N denote the
number of A in epoch 𝑒 + 2 minus 1 (the sacrifice in epoch 𝑒) for realisation N·. Both have a discrete
distributions, 𝑥C has 𝜇(·), while 𝑥N has shiftDistr(𝜇(·),−1). Here, the shiftDistr operation shifts

János Tapolcai, Bence Ladóczki, and Ábel Nagy 15

the discrete distribution by a given offset. Note that, this shifting operator can be generalised to
non-integer offsets as well.
Since the two random variables are considered independent, their maximum can be calculated

with Eq. (4), see Figure 6. Furthermore, 𝜇𝑘 (A·) = 𝜇(A·) and 𝜇𝑢 (A·) = 0.

5.2.3 Heuristic utility of forking attack string AH·A. We assume, R(S) = {CoNf·} which holds for
𝛼 ≥ 20. Let 𝑥𝑟 be a random variable that denote the number of A slots in epoch 𝑒 + 2 for realisation
𝑟 . We can formalise the forking attack such that it examines 𝑥CN, and if it is larger than a threshold
𝑡 then it will start building the private chain, otherwise proceed by publishing a block in its A slot.
When the adversary initiates a forking attack, it can then still disregard the private chain if 𝑥NC is
a better RANDAO outcome than 𝑥CN even if sacrificing a block. Formally,

𝑥 =
{
𝑥CC, if 𝑥CN < 𝑡 (no-fork),
max(𝑥CN, 𝑥NC − 1), if 𝑥CN ≥ 𝑡 (fork).

In this stochastic optimization problem where we seek the value of 𝑡 that maximizes the expected
value of the resulting distribution. Formally, observe that 𝑥 = 𝑘 if and only if:

(𝑥CN < 𝑡 & 𝑥CC = 𝑘) or (𝑡 ≤ 𝑥CN & max(𝑥CN, 𝑥NC − 1) = 𝑘). (5)

Furthermore, max(𝑥CN, 𝑥NC − 1) = 𝑘 means either:

(𝑡 ≤ 𝑥CN = 𝑘 & 𝑥NC − 1 ≤ 𝑘) or (𝑥NC − 1 = 𝑘 & 𝑡 ≤ 𝑥CN < 𝑘).

Thus, we can split:

𝜇(AH·A)[𝑘] = 𝑃 (𝑥 = 𝑘) = 𝑃 (𝑥CN < 𝑡, 𝑥CC = 𝑘) + 𝑃 (𝑡 ≤ 𝑥CN = 𝑘, 𝑥NC ≤ 𝑘 + 1)+
𝑃 (𝑥NC = 𝑘 + 1, 𝑡 ≤ 𝑥CN < 𝑘) .

Let 𝜇𝑘 denote the distribution of 𝑥CN, and 𝜇𝑛 the distribution of 𝑥CC, and 𝜇𝑓 denote that, the
distribution of 𝑥NC. In this example, all equal to 𝜇(·). Since 𝑥CN and 𝑥NC are independent, we get:

𝜇(AH·A)[𝑘] = max
𝑡 ∈{0,...,31}

[
𝜇𝑛[𝑘] ·

𝑡−1∑︁
𝑖=0

𝜇𝑘 [𝑖] + 𝐼𝑘≥𝑡

(
𝜇𝑘 [𝑘] ·

𝑘+1∑︁
𝑗=0

𝜇𝑓 [𝑗] + 𝜇𝑓 [𝑘 + 1] ·
𝑘−1∑︁
𝑗=𝑡

𝜇𝑘 [𝑗]
)]

.

(6)

where 𝐼𝑘≥𝑡 is an indicator function which is 1 if 𝑘 ≥ 𝑡 , and 0 otherwise. We can compute the 𝑡 that
maximizes the heuristic utility E[𝜇(S)] = ∑32

𝑘=0 𝜇(AH·A)[𝑘].
Once we have 𝜇(AH·A) we assume there is an 𝜇𝑢 (AH·A) for the distribution of unknown RNDAO

output, which can be
The function 𝜇𝑢 (AH·A) can only be approximated by solving Eq. (4) iteratively, see Alg. Algo-

rithm 3. If the solution to the equation in Line 4 does not yield a value between [0, 1], then a small
noise term is heuristically added.

5.2.4 Heuristic utility of selfish mixing attack string. In the general case, when selfish mixing is
performed as described in Lemma 3, the derivation in Section 5.2.2 becomes more involved because
𝜇𝑢 (S) is a non-zero distribution. In this case, we have

𝜇𝑢 (AS) = shiftDistr(𝜇(·),−𝑠),

where the shift parameter 𝑠 satisfies 0 < 𝑠 < 0.5 and is heuristically estimated based on the expected
probability that a slot will be C or N.

János Tapolcai, Bence Ladóczki, and Ábel Nagy 16

ALGORITHM 3: computeMuU(𝜇(S), 𝜇𝑘 (S))
1 Initialize 𝜇𝑢 (S)[𝑘]← 0 for all 𝑘 ;
2 for 𝑘 ← 0 to max_k do
3 if

∑𝑘
𝑗=0 𝜇𝑘 (S)[𝑗] ̸= 0 then

4 𝜇𝑢 (S)[𝑘]←
𝜇(S)[𝑘]−𝜇𝑘 [𝑘]·

(∑𝑘−1
𝑗=0 𝜇𝑢 (S)[𝑗]

)∑𝑘
𝑗=0 𝜇𝑘 (S)[𝑗]

5 return 𝜇𝑢 (S) ;

0 5 10 15
0

0.1

0.2

The expected number of A slots in epoch 𝑒 + 2

Pr
ob
ab
ili
ty

·
A·
AHA·

Fig. 6. The distribution 𝜇(S) for various attack strings S
for 𝛼 = 0.2.

5.2.5 Heuristic utility of recursive forking attack string. Finally, we need to consider the situation
for the utility calculation of the recursive forking attack string based on Theorem 1. In this case,
the computations in Section 5.2.3 must be supplemented with a non-zero 𝜇𝑢 (S), and the average
sacrifice must also be taken into account.

5.3 Utility of an extended attack string and enumerating attack strings
As shown in Figure 1, The adversary does not decide on attack strings but rather on epoch
strings. This means that when selecting the epoch string for 𝑒 + 2, the slots of epoch 𝑒 + 1 are
already determined in the chain string, cf. Figure 1. In other words, when choosing between
RANDAO outcomes, the adversary must simultaneously consider two attack opportunities: one at
the boundary of epoch 𝑒 + 1 and another at the boundary of epoch 𝑒 + 2. Accordingly, we require
a utility function that evaluates both the start and the end of the epoch string, incorporating the
outcome of epoch 𝑒 + 1, called an extended attack string [Nagy et al., 2025], and denoted by 𝑢().

Claim 3. It suffices to deal with forking strings with no prefix or with ·H𝑦A prefix, where 𝑦 ≥ 0.

Proof. If the attack string cannot be terminated at a tail slot, when reaching the first A of the
next epoch the adversary can publish its private branch. □

To summarise, knowing the end of epoch 𝑒 + 1, the beginning of epoch 𝑒 + 2 either has no
significance or its utility can be described by an array. In this array, the 𝑖-th element represents
how much more valuable the epoch string becomes, should the first A appear at position 𝑖 at the
start of the epoch. The values in the array are non-increasing, and the array is usually quite short.
At the end of the epoch string, we check for the longest (i.e. the one with the highest utility)

matching attack string. We can calculate the probability of the attack string if the string extends
over the attack boundary. Recall that the overlapping part consists of 𝑦 Hs followed by an A slot,
i.e. it ends with ·H𝑦A. In this case, the utility is multiplied by 𝛼(1 − 𝛼)𝑦 and we consider the sum of
this value across the longest attack strings. To find the longest attack string, the simplest approach
is to generate all candidate attack strings by extending Algorithms 1 and 2 and constructing a trie
data structure (a binary tree) from them. This structure supports fast longest postfix matching4.
Generating all possible attack strings would be computationally expensive, so we control the

recursion by introducing a probability threshold for occurrences. The probability of an attack string
occurring (in the absence of manipulation) can be calculated using 𝛼𝑎 · (1 − 𝛼)ℎ ,where 𝑎 is the
number of As, and ℎ is the number of Hs.

During attack string generation, for each attack string S, we compute R(S)–its no-fork string–as
well as its heuristic utility function, following the examples and recursive logic introduced in the
4Such data structures have been implemented for longest prefix matching, and we utilise them by reading the attack strings
backward.

János Tapolcai, Bence Ladóczki, and Ábel Nagy 17

previous section. Note that the no-fork strings define a hierarchy different from the one established
by recursion. Therefore, we model both hierarchies as directed trees and take their union. It is easy
to see that their union forms a directed acyclic graph (DAG), and within this DAG, we need to find
a topological order before we can compute the heuristic utility for each attack string.
That is, these calculations only need to be performed once. During an actual attack, we simply

traverse the binary tree to obtain the utility of an epoch string.

5.4 Constructing Attack Decision Trees
Finally, we briefly discuss how to construct the adversary’s decision tree, e.g., the one in Section 2.3.
A key observation is that we can define general rules for each slot so that the adversary always
makes the same decision regardless of the actual branch.
The adversary always follows the actual strategy. At each slot, if new RANDAO outcomes can

be computed (the decision points), the adversary must decide whether these outcomes, combined
with the information at hand, yield a better strategy than the one being followed. If so, we refer to
this as a drop, after which the new strategy becomes the current one. For example, if the adversary
has an opportunity to engage in selfish mixing, it exploits this opportunity regardless of whether it
has previously built private blocks in that epoch.

Let S be the attack string corresponding to a given decision point. The A computes all possible
RANDAO outcomes for each element of R(𝑆). For each of these outcomes, A determines the
heuristic utility (i.e. slots that must be sacrificed in epoch 𝑒 , minus the number of A slots that will
be obtained in epoch 𝑒 + 2). In addition, an estimate of the utility of the extended attack string is
used to predict the number of A slots to be expected in epoch 𝑒 + 4.

Observe that present decisions affect subsequent decisions. For example, choosing status N over
C is only worthwhile if the best known RANDAO outcome is sufficiently promising. Otherwise,
withholding a slot is too risky, as it increases the sacrifice by 1 and cannot be undone later. To
address this, we use 𝜇𝑢 (S) to describe the distribution of unknown outcomes.
Note that if we formulate this as a stochastic decision problem, we obtain a model very similar

to that described in Section 5.1. There are two key differences: (1) in this case 𝑋𝑘 is not a random
variable, but its realisation is already known – denoted by 𝑥𝑘 ; and (2) we also need to consider
the expected utility for epoch 𝑒 + 4. Technically, we can reuse the stochastic model described in
Section 5.1 by treating 𝜇𝑘 (S) as a degenerate distribution with a fixed value of 𝑥𝑘 , and incorporating
the expected utility for epoch 𝑒 + 4. For the known RANDAO outcomes it is computed as described
in Section 5.3. While for an unknown outcomes it is the average utility value over all attack strings,
weighted by their probability of occurrence, which is determined during the enumeration of all
attack strings (see Section 5.3). To do so, we consider a large set of possible attacks and make each
attack independent of its postfix. That is, we prepend H slots (and, if necessary, A slots) so that one
attack does not become the postfix of another, and we assign each attack string a probability of
occurrence based on this independence.

We note that the actual number of A in epoch 𝑒 + 2 and its expected value are not independent,
even though our heuristic approach treated them as such. The correct method, as in [Alpturer
and Weinberg, 2024], would be to first determine the actual number of A in epoch 𝑒 + 2 and then
consider the feasible attacks accordingly. For example, if there are only two A in the epoch, then
the probability of a AAA· attack is zero. In our experience, ignoring this interdependence results in
negligible performance degradation while significantly simplifying the stochastic model.

6 EVALUATION
In this section we examine four aspects: first, the characteristics of the attack strings; second,
the accuracy of the proposed heuristic utility; third, the performance of the proposed approach;

János Tapolcai, Bence Ladóczki, and Ábel Nagy 18

0 0.1 0.2 0.3 0.4 0.5100

102

104

106

Stake 𝛼

#
at
ta
ck

st
rin

gs

All attack strings
EAS62
No weak forking
Selfish mixing

(a) Number of possible attack strings for each type

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

Stake 𝛼

pr
ob
ab
ili
ty

All attack strings
EAS62
No weak forking
Selfish mixing

(b) The probability of attack strings with type

Fig. 7. Classification of the optimal attack strings. Selfish Mixing ⊆ EAS62 ⊆ No weak forking ⊆ All.

and fourth, the extent to which the attack affects chain quality. We compare our results with two
previous works: Selfish mixing [Alpturer and Weinberg, 2024] and EAS62 [Nagy et al., 2025].

Additionally, we analyse a variation of our method where weak forking strings are not allowed,
called No weak forking. Note that EAS62 does not consider weak forking attacks either. In a weak
forking attack, the adversary may need to retain its private branch between two HH slots. A has
to wait for the block to be published in the first H slot and then it can propagate the private branch
before the start of the next slot. This is feasible under our network assumptions.

6.1 Properties of Attack Strings
Figure 7 shows the optimal attack strings observed across 1 000 000 randomly generated two-epoch
strings. In Figure 7a, we can observe the total number of occurrences, displayed separately for the
four RANDAO attack scenarios we are comparing. From the figure we learn that up to 𝛼 = 15%
staking power it is enough to implement selfish mixing. An optimal strategy for this was provided
by [Alpturer and Weinberg, 2024]. In the range of 15 − 25%, the MDP-based strategy from [Nagy
et al., 2025] seems efficient. From 25% the recursive construction presented in this work proves
useful. Surprisingly, for 𝛼 ≥ 45%, we observe that for each of the one million epochs, a different
attack string turned out to be optimal. This highlights the fact that calculating the optimal strategy
necessitates methods with unrestricted problem space.

Figure 7b presents the same results in terms of probability distributions for the attack strings. We
can see that at 20%, two non-selfish mixing strings, AH·A and AHA· are frequent. The significance
of weak forking starts to emerge at 25%, and while weak forking strings remain relatively rare,
their role is moderate. Above 33%, attack strings become significantly longer and more frequent.
Note that while this figure presents optimal strings non-optimal attack strings can also lead to
lucrative RANDAO manipulation strategies as depicted by Figure 9.

Figure 8 illustrates the length of attack strings, with Figure 8a depicting postfix lengths and Fig-
ure 8b showing prefix lengths, highlighting how far the attack string extends into the next epoch.
As stake ratio 𝛼 increases, the attack strings become progressively longer. Interestingly, at > 40%,
the curve completely flattens out, and in some cases, the attack string reaches all the way to the
beginning of the epoch (we do not consider extensions beyond that point). For prefixes, we observe
that most attack string does not span across the epoch boundary.

János Tapolcai, Bence Ladóczki, and Ábel Nagy 19

08162432
10−5

10−3

10−1

Postfix lengths

Pr
ob
ab
ili
ty

of
at
ta
ck

st
rin

gs 0.2 0.25 0.3
0.35 0.4 0.45

(a) Histogram of the postfix lengths of attack strings

0 8 16 24 32
10−5

10−3

10−1

Prefix lengths

Pr
ob
ab
ili
ty

of
at
ta
ck

st
rin

gs 0.2 0.25 0.3
0.35 0.4 0.45

(b) Histogram of the prefix lengths of attack strings

Fig. 8. Th lengths of the attack strings’ prefix and postfix weighted with their occurrence probabilities.

Table 3. Performance degradation of heuristic utility compared to the optimal solution by MDP columns two
and four of Table 1.

Stake Selfish Mixing EAS62

5% 0.00% 0.00%
10% 0.00% 0.00%
15% 0.00% 0.00%
20% 0.00% 0.02%
25% 0.00% 0.05%
30% 0.01% 0.12%
35% 0.00% 0.35%
40% 0.04% 0.57%
45% 0.14% 0.71%

6.2 Accuracy of the Proposed Heuristic Utility
For validation, the key question is whether the MDP approach can be sidestepped and substituted
with a near-optimal policy. To verify this, we generated our heuristic utility function for attack string
sets for which an optimal MDP exists and evaluated its accuracy using Monte Carlo simulations.
The difference is measured in ten-thousandths compared to Selfish Mixing and in thousandths for
EAS62 in 𝛼 ≤ 30%, see Table 3.

6.3 Performance of the Proposed RANDAOManipulation Strategy
A comparison of the various attack strategies has been given in Table 1. For target slot utility, the
attack efficiency is computed for each point, as shown in Figure 9. This probability was calculated
by considering the average number of available RANDAO outcomes during an attack, denoted by
𝑡 , and assuming that each outcome contains the desired slot with probability 𝛼 , resulting in an
expected probability of 1 − (1 − 𝛼)𝑡 . Our proposed method becomes highly effective at around 25%,
as it is capable of handling significantly more attack strings than prior art. Fortunately, the effective
execution of the RANDAO manipulation attack is practically infeasible below 20%.

Note that Ethereum blockchain functionalities rely on the execution chain and use block numbers.
For example, in Solidity, only the block number is accessible as a global variable and the slot
number is not visible. However block and slots increase differently, because the block number is

János Tapolcai, Bence Ladóczki, and Ábel Nagy 20

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Stake 𝛼

Th
e
pr
ob
ab
ili
ty

to
ge
ta

ta
rg
et

slo
t

Proposed
EAS62
No weak forking
Selfish Mixing

Fig. 9. Probability of getting a target slot

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

Stake 𝛼

Pe
rc
en
to

fm
iss

ed
/re

or
ge
d
slo

ts

forked (reorged)
sacrifice (missed)
disregard
self-forked

Solid lines are for slot
number maxmisation,
and dashed is during
a target slot attack.

Fig. 10. Chain quality during the attack.

not incremented for N slots. Consequently, important events – such as NFT mints – are typically
scheduled using block numbers. Rough estimates can predict howmany blocks will be non-canonical
in the upcoming few epochs. When the adversary wants to be sure, slot within a given range should
be acquired. This in turn requires a high target slot probability.

6.4 ChainQuality Degradation During the Attack
Figure 10 shows the degradation of chain quality during the attack. Note that, forked and self-forked
slots manifest as reorgs, while sacrificed slots appear as missed slots. Forked blocks correspond to
H slots and a small number of self-forked blocks can also appear. Sacrificed slots are missed by
the adversary. When optimiding for slot numbers, the adversary typically reorgs roughly twice as
many H slots as it misses. When targeting a specific slot, the difference is much smaller.
The figure also shows that for 𝛼 > 30%, the adversary, in addition to achieving significant

profit from the attack, inadvertently cripples the blockchain’s operation; the combined reorged and
missed slots amount to 25%. Interestingly, around 𝛼 ∼ 25%, both reorged and missed slots constitute
only a few percentage points during the attack. This level of disruption is hard to distinguish from
temporary poor network conditions. Moreover, it is difficult to predict in advance which slots will
yield high MEV and thus serve as realistic targets for a target slot attack. Consequently, detecting
such an attack retrospectively from historical data is challenging [Nagy et al., 2025], and we did
not observe such attacks in our empirical investigations. Additionally, the attack can be further
complicated by allowing the adversary, through missed slots, to shift a block from its ideal position
– a scenario that is beyond the scope of this paper.

7 RELATEDWORKS
Following the seminal paper of Eyal and Sirer [Eyal and Sirer, 2014], Sapirshtein et al. in [?] extend
the model for selfish mining attacks in Bitcoin [Nakamoto, 2008]. A few years later, strategic ma-
nipulation schemes were presented in [?]. Bar-Zur et al. in [?] introduce the concept of probabilistic
termination optimization to analyse selfish mining in PoW blockchains and identify the threshold
beyond which miners deviate from the protocol for higher rewards. PoW-specific stochastic mining
games were further investigated in [?] and in [?]. Statistical results on selfish mining were presented
in [?]. Long et al. [?] examine unusual miner behaviours, including the formation of mining cartels
and active chain switching, finding examples of cartelisation in ZCash and Litecoin. Ferreira et al.
in [?] investigate the strategic manipulations in longest-chain proof-of-stake protocols with access
to perfect external randomness, finding that such protocols admit richer strategic manipulations
than PoW-based consensus.

János Tapolcai, Bence Ladóczki, and Ábel Nagy 21

The manipulability of leader election in byzantine fault tolerant PoS blockchains has been
examined in [Ferreira et al., 2022, 2024], revealing the link between adversarial power and network
connectivity. Yaish et al. [Yaish et al., 2023] define several variants of a timestamping attack and
report that such attacks have been carried out in practice, marking the first confirmed case of
consensus-level manipulation in a major cryptocurrency. Forking attacks, in which a sufficient
amount of stake allows the adversary to reorg honest blocks from the canonical chain as a general
attack against the protocol, were investigated in [Schwarz-Schilling et al., 2022].

A comprehensive overview of DRBs is provided in [Kavousi et al., 2024, Raikwar and Gligoroski,
2022]. The vulnerabilities of DRBs in PoS Ethereum have been discussed by the community since
2018, e.g. [Wahrstätter, 2023].An initial formal verification of an earlier, two-round version of
the RANDAO protocol was presented in [Alturki and Roşu, 2020]. Alpturer et al. [Alpturer and
Weinberg, 2024] show that the RANDAO manipulation game in Ethereum can be modelled as an
MDP for selfish mixing, which was extended to forking attacks in [Nagy et al., 2025].

8 CONCLUSIONS AND FUTURE DIRECTIONS
This work presented the currently known most powerful RANDAO manipulations by considering
all possible RANDAO manipulation attacks, including selfish mixing strategies and the ex-ante
forking strategy as well, whereby the adversary forks out honest blocks from the canonical chain
to increase its manipulative power over Ethereum’s DRB.

We provide a recursive construction to describe all possible attacks, then compute a near-optimal
attack policy and evaluate the attack’s effectiveness via Monte Carlo simulations. This approach
fundamentally differs from previous attempts that restricted the set of possible attacks and then
searched for an optimal policy within that limited space. Our method has shown that an adversary
controlling more than 30% of the stake can pose a significant threat to the blockchain’s operation.
Not only can such an adversary secure virtually any future slot – or even an entire range of slots –
but by executing the attack, it can cripple the blockchain. What is even worse, the high number of
reorgs increases uncertainty for the average user.
For the distributed operation of a PoS blockchain, the DRB is a key element. Its susceptibility

to manipulation jeopardises the functioning of the entire system. Future work should provide a
fix to the current RANDAO protocol that minimally modifies the existing system while reducing
the manipulability of the DRB protocol. For example, the RANDAO outcome received at the epoch
boundary could serve as the input to a verifiable delay function (VDF), thereby hindering the
adversary from assessing the viability of an attack.

REFERENCES
Kaya Alpturer and Matthew Weinberg. 2024. Optimal RANDAO Manipulation in Ethereum. AFT (2024).
Musab A Alturki and Grigore Roşu. 2020. Statistical model checking of RANDAO’s resilience to pre-computed reveal

strategies. In Formal Methods (FM). Springer,
Maryam Bahrani and S Matthew Weinberg. 2024. Undetectable selfish mining. In ACM EC .
Dan Boneh, Ben Lynn, and Hovav Shacham. 2001. Short signatures from the Weil pairing. In ASIACRYPT. Springer,
Jing Chen and Silvio Micali. 2019. Algorand: A secure and efficient distributed ledger. Theoretical Computer Science (2019)
Kevin Choi, Aathira Manoj, and Joseph Bonneau. 2023. Sok: Distributed randomness beacons. In IEEE SP .
Bram Cohen and Krzysztof Pietrzak. 2019. The chia network blockchain. White Paper, Chia. net 9 (2019).
Phil Daian, Rafael Pass, and Elaine Shi. 2019. Snow white: Robustly reconfigurable consensus and applications to provably

secure proof of stake. In Int. Conf. Financial Cryptography and Data Security (FC). Springer, 23–41.
Ittay Eyal and Emin Gün Sirer. 2014. Majority is not enough: Bitcoin mining is vulnerable. In FC.
Matheus V. X. Ferreira, Ye Lin Sally Hahn, S Matthew Weinberg, and Catherine Yu. 2022. Optimal strategic mining against

cryptographic self-selection in proof-of-stake. In ACM Conference on Economics and Computation (EC).
Matheus V. X. Ferreira, Aadityan Ganesh, Jack Hourigan, Hannah Huh, S. Matthew Weinberg, and Catherine Yu. 2024.

Computing Optimal Manipulations in Cryptographic Self-Selection Proof-of-Stake Protocols. In ACM EC

János Tapolcai, Bence Ladóczki, and Ábel Nagy 22

Michael J Fischer, Nancy A Lynch, and Michael S Paterson. 1985. Impossibility of distributed consensus with one faulty
process. Journal of the ACM (JACM) 32, 2 (1985), 374–382.

Chaya Ganesh, Claudio Orlandi, and Daniel Tschudi. 2019. Proof-of-Stake Protocols for Privacy-Aware Blockchains. In
Advances in Cryptology – EUROCRYPT.

Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. 2017. Algorand: Scaling byzantine
agreements for cryptocurrencies. In Proc. Symposium on Operating Systems Principles (SOSP). 51–68.

Alireza Kavousi, Zhipeng Wang, and Philipp Jovanovic. 2024. SoK: Public Randomness. In IEEE Privacy (EuroS&P).
Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 2017. Ouroboros: A provably secure proof-of-

stake blockchain protocol. In Annual international cryptology conference. Springer, 357–388.
Andrew Lewis-Pye and Tim Roughgarden. 2023. Permissionless Consensus. arXiv preprint arXiv:2304.14701 (2023).
Ábel Nagy, János Tapolcai, István András Seres, and Bence Ladóczki. 2025. Forking the RANDAO: Manipulating Ethereum’s

Distributed Randomness Beacon. Cryptology ePrint Archive, Paper 2025/037. https://eprint.iacr.org/2025/037
Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).
Kevin Alarcón Negy, Peter R Rizun, and Emin Gün Sirer. 2020. Selfish mining re-examined. In FC.
Michael Neuder, Daniel J Moroz, Rithvik Rao, and David C Parkes. 2021. Low-cost attacks on Ethereum 2.0 by sub-1/3

stakeholders. arXiv preprint arXiv:2102.02247 (2021).
Sunoo Park, Albert Kwon, Georg Fuchsbauer, Peter Gaži, Joël Alwen, and Krzysztof Pietrzak. 2018. Spacemint: A cryptocur-

rency based on proofs of space. In FC.
Ulysse Pavloff, Yackolley Amoussou-Guenou, and Sara Tucci-Piergiovanni. 2023. Ethereum proof-of-stake under scrutiny.

In Proc. of ACM/SIGAPP Symposium on Applied Computing. 212–221.
Mayank Raikwar and Danilo Gligoroski. 2022. Sok: Decentralized randomness beacon protocols. In ACISP22.
Caspar Schwarz-Schilling, Joachim Neu, Barnabé Monnot, Aditya Asgaonkar, Ertem Nusret Tas, and David Tse. 2022. Three

Attacks on Proof-of-Stake Ethereum. In Financial Cryptography and Data Security.
Toni Wahrstätter. 2023. Selfish Mixing and RANDAO Manipulation. https://ethresear.ch/. Accessed: 2025-02-03.
Gavin Wood et al. 2014. Ethereum: A secure decentralised generalised transaction ledger. Ethereum project yellow paper 151,
Aviv Yaish, Gilad Stern, and Aviv Zohar. 2023Uncle maker:(time) stamping out the competition in Ethereum. ACM SIGSAC
Yaning Zhang and Youcai Qian. 2019. RANDAO: A DAO working as RNG of Ethereum.

https://eprint.iacr.org/2025/037
https://ethresear.ch/

János Tapolcai, Bence Ladóczki, and Ábel Nagy 23

Table 4. Top 50 attack strings for various stake with its heuristic utility value, and the number of realizations.
The attack strings with bold numbers require weak forking attacks. Selfish mixing attack strings are built
of A only. The eas62 strings have a prefix that is at most 6 slots long, and contain only a single segment of
consecutive Hs.

𝛼 = 15% 𝛼 = 25% 𝛼 = 35% 𝛼 = 45%
S 𝜇(S) |R(S)| S 𝜇(S) |R(S)| S 𝜇(S) |R(S)| S 𝜇(S) |R(S)|

· 0.0 1 · 0.0 1 · 0.0 1 · 0.0 1
A· 0.8 2 A· 1.1 2 A· 1.2 2 A· 1.3 2
AA· 1.5 4 AA· 2.0 4 AH· 1.1 1 AH· 1.1 1
AAA· 2.0 8 AHA· 0.9 1 AA· 2.2 4 AA· 2.3 4
AAHA· 0.8 2 AH·A 0.9 1 AHA· 2.0 2 AHH· 1.1 1
AAH·A 0.9 2 AAH· 1.2 3 AH·A 1.1 1 AHA· 2.1 2
AAAA· 2.3 16 AAA· 2.6 8 AAH· 1.9 3 AH·A 1.1 1
AAHAA· 1.4 4 AHAA· 1.7 2 AHHA· 1.1 1 AAH· 2.0 3
AAAHA· 1.4 6 AAHA· 1.9 5 AH·HA 1.1 1 AAA· 3.1 8
AAAH·A 1.5 6 AAH·A 1.7 3 AHAH· 1.4 1 AHHH· 1.1 1
AAAAA· 2.4 32 AAAH· 1.9 7 AHH·A 1.1 1 AHHA· 2.1 2
AAHAAA· 1.9 8 AAAA· 3.1 16 AAHH· 1.4 3 AH·HA 1.1 1
AAAHAA· 1.8 12 AHAAA· 2.3 4 AAA· 2.9 8 AHAH· 1.8 2
AAAAHA· 1.8 14 AAHAA· 2.5 10 AHAA· 2.7 4 AHH·A 1.1 1
AAAAH·A 1.9 14 AAAHA· 2.5 13 AHA·A 1.5 2 AAHH· 2.0 3
AAAAAH· 2.2 30 AAAH·A 2.3 7 AAHA· 2.6 6 AHAA· 2.8 4
AAAAAA· 2.3 64 AAAAH· 2.5 15 AAH·A 1.9 3 AHA·A 1.6 2
AAHAAAA· 2.2 16 AHAAHA· 1.3 1 AAAH· 2.6 7 AAHA· 2.7 6
AAAHAAA· 2.2 24 AAHAHA· 1.3 2 AHHAA· 1.9 2 AAH·A 2.0 3
AAAAHAA· 2.2 28 AAAHHA· 1.7 4 AHAHA· 2.2 2 AAAH· 2.7 7
AAAAAHA· 2.6 46 AAAH·HA 1.8 7 AAHHA· 2.2 5 AHHHH· 1.1 1
AAAAAH·A 2.3 30 AHAAAH· 1.7 3 AAH·HA 1.9 3 AAAA· 3.6 16
AAAAAAH· 2.6 62 AHAAH·A 1.2 1 AHAAH· 2.2 3 AHHHA· 2.1 2
AAHAAAHA· 1.4 4 AAHAAH· 2.0 7 AHAH·A 1.4 1 AH·HHA 1.1 1
AAHAAAH·A 1.4 4 AAHAH·A 1.4 2 AAHAH· 2.2 5 AHHAH· 1.8 2
AAAAAAA· 1.7 128 AAAHH·A 1.8 4 AAHH·A 1.9 3 AHH·HA 1.1 1
AAHAAAAA· 2.5 32 AAAAHH· 2.3 12 AAAHH· 2.2 7 AHAHH· 1.8 2
AAAHAAAA· 2.5 48 AAAAA· 3.4 32 AAAA· 3.5 16 AHHH·A 1.1 1
AAAAHAAA· 2.6 56 AHAAAA· 2.7 8 AHAHHA· 1.4 1 AAHHH· 2.0 3
AAAAAHAA· 2.9 92 AAHAAA· 3.0 20 AAHHHA· 1.4 2 AHHAA· 2.8 4
AAAAAAHA· 2.9 110 AAAHAA· 3.0 26 AAH·HHA 1.4 3 AHA·HA 1.6 2
AAAAAAH·A 2.6 62 AAAHA·A 2.3 13 AHHAAH· 1.4 1 AHAHA· 2.5 4
AAAAAAAH· 2.9 112 AAAAHA· 3.0 29 AHAH·HA 1.4 1 AHHA·A 1.6 2
AAHAAAHAA· 1.8 8 AAAAH·A 2.8 15 AHAHAH· 1.6 1 AAHHA· 2.7 6
AAHAAAAHA· 1.8 12 AAAAAH· 3.0 31 AAHHAH· 1.6 2 AAH·HA 2.0 3
AAAHAAAHA· 1.8 12 AHAAHAA· 1.9 2 AAHH·HA 1.4 3 AHAAH· 2.4 4
AAHAAAAH·A 1.9 12 AAHAHAA· 2.0 4 AHAAHH· 2.0 3 AHAH·A 1.8 2
AAAHAAAH·A 1.9 12 AAAHHAA· 2.3 8 AHAHH·A 1.4 1 AAHAH· 2.5 6

	Abstract
	Contents
	1 Introduction
	1.1 Our contributions

	2 Preliminaries and System model
	2.1 Leader Selection in Ethereum
	2.2 Network Assumptions
	2.3 Illustrative Examples of RANDAO Manipulation Attacks
	2.4 Block Statuses and General Notations

	3 Mathematical Model of Forking Attacks
	3.1 Discussion on the Lengths of Forking Strings
	3.2 Realisation Strings of a Forking String

	4 Characterisation of Attack Strings
	4.1 Recursive Characterisation of Attack Strings
	4.2 Finding the Longest Attack String for a Given Chain String
	4.3 Enumerating the Decompositions of an Attack String
	4.4 Enumerating the Realisation Strings of an Attack String

	5 Heuristic RANDAO Manipulation Attack Strategy
	5.1 Heuristic Utility of Attack Strings
	5.2 Algorithm to Compute Heuristic Utility Distributions
	5.3 Utility of an extended attack string and enumerating attack strings
	5.4 Constructing Attack Decision Trees

	6 Evaluation
	6.1 Properties of Attack Strings
	6.2 Accuracy of the Proposed Heuristic Utility
	6.3 Performance of the Proposed RANDAO Manipulation Strategy
	6.4 Chain Quality Degradation During the Attack

	7 Related Works
	8 Conclusions and Future Directions
	References

