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ABSTRACT
The Log Structured Merge (LSM) Tree is a popular choice for key-

value stores focusing on optimized write throughput while main-

taining performant, production-ready read latencies. LSM stores

rely on a probabilistic data structure called the Bloom Filter (BF) to

optimize read performance. In this paper, we focus on adversarial

workloads that lead to a sharp degradation in read performance

by impacting the accuracy of BFs used within the LSM store. Our

evaluation shows up to 800% increase in the read latency of lookups

for popular LSM stores. We define adversarial models and security

definitions for LSM stores. We implement adversary resilience into

two popular LSM stores, LevelDB and RocksDB. We use our imple-

mentations to demonstrate how performance degradation under

adversarial workloads can be mitigated.
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1 INTRODUCTION
A large number of modern key-value stores are based on Log-

structured Merge Trees (LSM Trees) [8, 19]. LSM trees allow for

write-optimized [8], highly configurable [28] storage while being

relatively simple to implement. These qualities have made them

common as the storage engine for a large number of commercial

and open-source database systems including LevelDB [16] from

Google, bLSM [27] and cLSM [15] from Yahoo, RocksDB [21] and

Cassandra [1] from Meta, WiredTiger [22] from MongoDB, Mon-

key [8] from Harvard’s Data Systems Lab, Apache HBase [2], [11]

from DGraph and many others [9, 19].

LSM stores use Bloom Filters [4, 5] to reduce unnecessary disk

access. This strategy depends on Bloom Filters maintaining a low

false positive rate (FPR). In normal workloads, this works well as

Bloom Filters filter non-existent keys, so the LSM store does not

have to look on disk [8]. An adversary can strategically insert keys

into an LSM store that saturate its Bloom Filters, drastically raising

their FPR. In this case, lookups for non-existing keys (called zero-

result lookups [8]) require multiple disk accesses, increasing query

latency by up to 800% according to our experiments. An adversary
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only needs a modest number of well-chosen insertions to render

Bloom Filters in LSM stores ineffective. This motivates the need for

adversarially resilient mechanisms in LSM store.

We make the following contributions in this paper.

(1) We define rigorous adversarial models for LSM store and

reason about their performance under computationally

bound adversaries.

(2) We demonstrate significant performance degradation un-

der adversarial workloads, showing an increase in lookup

latency by up to 800%. Our experiments are conducted on

two popular LSM stores, LevelDB and RocksDB.

(3) We introduce a lightweight and provably secure mitigation

strategy that employs keyed pseudorandom permutations

(PRPs) to obfuscate key placement.

(4) We implement our mitigation in LevelDB and RocksDB,

and demonstrate that it reduces the impact of adversarial

workloads while maintaining performance.

2 PRELIMINARIES
In this section, we first go over notation and rigorously define an

LSM store. We then define a set of axioms that hold for a large

number of popular LSM store implementations. Lastly, we use this

axiomatic framework to introduce multiple aspects of LSM store

design and performance include the performance of zero-result

lookups and the use of auxiliary data structures.

Notation. We review notation common in adversarial data structure

literature [12, 13, 24, 29]. Given set 𝑆 , we write 𝑥 ←$ 𝑆 to mean that

𝑥 is sampled uniformly randomly from 𝑆 . For set 𝑆 , we denote by |𝑆 |
the number of elements in 𝑆 . The same notation is used for a list L.
We write variable assignments using←. If the output is the value

of a randomized algorithm, we use←$ instead. For a randomized

algorithm A, we write output ← A𝑟 (input1, input2, · · · , input𝑙 ),
where 𝑟 ∈ R are the random coins used by A and R is the set of

possible coins. For natural number 𝑛, we denote the set {1, · · · , 𝑛}
by [𝑛]. Table 1 contains a summary of all the notation used in this

paper.

2.1 LSM stores
An LSM Tree consists of N levels [8]. 𝐿𝑖 indicates level 𝑖 in the

LSM Tree. 𝐿0 is typically an in-memory buffer, while the remaining

levels [𝐿1, · · · , 𝐿N] consist of data in secondary storage including

SSDs, Hard Disks, and external storage nodes connected over the

network. We formalize the general syntax and behavior of an LSM

store. Given an LSM store,Λ, we denote the set of public parameters

of an LSM store by Φ. The public parameters contain all the knobs

relevant to the LSM store implementation including the number of

levels in the LSM Tree as well as the knobs of any auxiliary data

structures (discussed below) used by the LSM store. We denote

the elements stored in Λ by LΛ (a list). We denote the state of Λ
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by 𝜎 ∈ Σ where Σ is the space of all possible states of Λ. Λ can

store elements from any finite domain𝔇, where𝔇 = ∪𝐿
𝑙=0
{0, 1}𝑙

for any natural number 𝐿 ∈ N. An LSM store, Λ consists of three

algorithms.

Construction. 𝜎 ←$ 𝐶𝑟 (Φ) sets up the initial state of an empty

LSM store with public parameters Φ.

Insertion 𝜎′ ←$ 𝐼𝑟 ((𝑘, 𝑣), 𝜎), given a tuple (𝑘, 𝑣) ∈ 𝔇× (𝔇∪ {⊥}),
returns the state 𝜎′ after insertion. After insertion, the key 𝑘 is

an element of LΛ. The value ⊥, referred to as a tombstone [8], is

used to indicate a deletion. Deletions have the same control flow as

insertions in LSM stores [8].

Query. 𝑣 ← 𝑄 (𝑘, 𝜎), given an element 𝑥 ∈ 𝔇 returns a value

𝑣 ∈ 𝔇 ∪ {⊥}. The return value is either the value inserted by 𝐼𝑟 for

key 𝑘 , or ⊥ if no such key was inserted. In the case of a deletion, a

⊥ is returned as the tuple (𝑘,⊥) was inserted by 𝐼𝑟 .

Note that, unlike 𝐶𝑟 and 𝐼𝑟 , the query algorithm 𝑄 is not allowed

to change the value of the state. While 𝐶𝑟 and 𝐼𝑟 are allowed to

use random coins, 𝑄 is deterministic. A class of LSM stores can

be uniquely identified by its algorithms: Λ = (𝐶𝑟 , 𝐼𝑟 , 𝑄). We also

assume all three algorithms always succeed and their outputs are

correct with probability 1.

2.2 LSM Axioms
We define two axioms to reason about the performance of an LSM

store, the Axiom of Cost (Axiom 1) and the Axiom of Recency

(Axiom 2). Our axioms hold for many popular LSM store imple-

mentations including LevelDB [16], RocksDB [21], Monkey [8],

WiredTiger [22], HBase [2] and Cassandra [1].

Axiom 1 (Axiom of Cost). If 𝑖 > 𝑗 , then 𝐸𝐶 (𝐿𝑖 ) ≥ 𝐸𝐶 (𝐿𝑗 ) where
𝐸𝐶 (𝐿𝑥 ) is the expected cost of accessing an entry in 𝐿𝑥 .

LSM stores optimize for writes (inserts, deletes, and updates) using

Axiom 1. The LSM store immediately stores written entries in the

in-memory buffer in 𝐿0 without accessing slower storage in higher

levels [8]. When the 𝐿0 buffer reaches capacity, it is sorted (by key)

and flushed to 𝐿1. These sorted arrays are called runs [8, 10, 19]. We

refer to a run 𝑥 within a level 𝐿𝑖 as 𝑅𝑖,𝑥 . We denote the number of

runs within a level 𝐿𝑖 by N𝑅 (𝐿𝑖 ). The value of N𝑅 (𝐿𝑖 ) for a given
LSM Tree depends on the merge policy of the LSM store [8].

Axiom 2 (Axiom of Recency). For an entry (𝑘, 𝑣) in 𝑅𝑖,𝑥 and an

entry (𝑘, 𝑣 ′) in 𝑅 𝑗,𝑦 (with the same key 𝑘) if one of the following two

conditions holds, then value 𝑣 was written before value 𝑣 ′: 𝑖 > 𝑗 (Case

1), or 𝑖 = 𝑗 and 𝑥 > 𝑦 (Case 2).

Using these axioms, we can explain LSM store design and perfor-

mance.

2.3 Zero-result Lookups.
In an LSM Tree with 𝐿N levels, when any key 𝑘 is queried, the

LSM store begins at the in-memory buffer at 𝐿0 and traverses from

𝐿0 to 𝐿N in ascending order. If the LSM store finds a matching

key at level 𝐿𝑖 , the query returns early [8]. Entries at higher levels

are superseded by more recent entries at lower levels thanks to

Axiom 2, so looking further is unnecessary. For a key whose most

recent entry is present in run 𝑅𝑖,𝑥 , the number of runs an LSM store

Symbol Description
General Notation

𝔇 Finite domain of elements

𝑆 A set of elements

𝑥 ←$ 𝑆 𝑥 sampled randomly from 𝑆

|𝑆 | Cardinality of set 𝑆

[𝑛] Set {1, . . . , 𝑛}
LSM Store Notation

𝜎 ∈ Σ State of LSM store

Λ An LSM store

Φ Public parameters

𝐿𝑖 Level 𝑖 in LSM Tree

𝑅𝑖,𝑥 Run 𝑥 in level 𝐿𝑖

𝑁𝑅 (𝐿𝑖 ) Number of runs in 𝐿𝑖

𝐸𝐶 (𝐿𝑖 ) Expected access cost in 𝐿𝑖

(𝑘, 𝑣) Key-value pair

𝐶𝑟 (Φ) Construction algorithm

𝑄 (𝑘, 𝜎 ) Query operation for key 𝑘

𝐼𝑟 ( (𝑘, 𝑣), 𝜎 ) Insert operation

⊥ Tombstone (deletion marker)

Bloom Filter Notation
Π = (𝐶†𝑟 ,𝑄† ) Bloom Filter (BF) construction/query

𝜎† Internal state of BF

𝑚† BF bit array size

𝑘† Number of BF hash functions

ℎ𝑖 (𝑘 ) 𝑖𝑡ℎ BF hash function

𝑃𝐵 (𝑅𝑖,𝑥 ) BF false positive probability

Adversarial Model Notation
A ∈ A Computationally-bound adversary

A ∈ A𝐵𝐹 BF-targeting adversary

𝜆 Security parameter

𝑡 Number of adversary queries

Smash-Lsm Adversarial game for LSM stores

Smash-Bloom Adversarial game for Bloom Filters

𝐹𝜅 Keyed pseudorandom permutation

𝜖 False positive/security bound

Oracle Notation
O𝑄 (𝑘 ) returns ⊤ if ∃ a BF Π in LSM Λ s.t Π (𝑘 ) = ⊤
O𝑅 Returns state 𝜎† of each BF Π𝑖 in LSM Λ

O𝐼 (𝑘, 𝑣) Inserts (𝑘, 𝑣) into LSM Λ

O𝐶 (Φ) Constructs LSM Λ with parameters Φ

O†𝑄 (𝑘 ) Queries BF Π for 𝑘

O†𝑅 Returns state 𝜎† of BF Π

Table 1: Mathematical notation used in the paper

needs to probe is at most

∑𝑖
𝑙=0

∑𝑁𝑅 (𝐿𝑙 )
𝑟=0

𝐸𝐶 (𝑅𝑙,𝑟 ) where 𝐸𝐶 (𝑟 ) is
the expected I/O cost of probing run 𝑟 .

A query on a key 𝑘 that is not stored in the LSM Tree is called a

zero-result lookup. Such queries have a high worst-case I/O cost

2



because the LSM store must probe every run within every level

before the LSM store can be sure the key does not exist. Zero-result

lookups are very common in practice [8, 27]. They have been the

focus of LSM store analysis and new LSM store designs proposed

by prior work [8, 9]. A zero-result lookup is the worst-case lookup

time [8] because the number of runs the LSM store must prove

now is

∑N
𝑙=0

∑𝑁𝑅 (𝐿𝑙 )
𝑟−0 𝑅𝑙,𝑟 . This is the worst case for a point query

because this is a probe of every run present in the LSM store.

2.4 Auxiliary Data Structures
For each run 𝑅𝑖,𝑥 in an LSM Tree, modern LSM stores store two

auxiliary data structures inmainmemory [8]: a Bloom Filter (BF) [4]

and an array of fence pointers [8, 17]. The fence pointers contain

min/max information for the disk pages that store run 𝑅𝑖,𝑥 [16, 21].

In a point query, the LSM store uses this array of fence pointers

when traversing a level to figure out which disk page to read when

searching for a key [8]. The LSM store only has to read one disk

page for each run.

For a point query, the LSM store first probes a run’s Bloom Filter.

The LSM store only accesses the run in secondary storage if the

corresponding BF returns positive. If the run indicated by the BF

does indeed have the key, the LSM store returns the query early

following Axiom 1. However, the BF is a probabilistic data structure

with one-sided errors, so it can have false positives with some

probability [4, 5]. In the case of a false positive, the query continues

to run [8]. Having a Bloom Filter in main memory for each run

reduces the expected I/O cost of the LSM store for a point query,

depending on the false positive probability of the BF. For a key

whose most recent entry is present in run 𝑅𝑖,𝑥 , the LSM store needs

to probe, in expectation:

𝐸𝐶 (𝑅0,0) · (
𝑖∑︁

𝑙=0

𝑁𝑅 (𝐿𝑖−1 )∑︁
𝑟=0

𝑃𝐵 (𝑅𝑙,𝑟 )𝐸𝐶 (𝑅𝑙,𝑟 ) +
𝑥−1∑︁
𝑟=0

𝑃𝐵 (𝑅𝑖,𝑟 )𝑅𝑖,𝑟 +𝑅𝑖,𝑥 ))

where 𝑃𝐵 (𝑟 ) is the false positive probability of the BF corresponding
to run 𝑟 . The extra 𝐸𝐶 (𝑅0,0) factor comes from the fact that each BF

resides in the main memory, which involves the cost of accessing a

main memory page. Since 𝑅0,0 (the run at 𝐿0) is also a main memory

page. Therefore, the expected cost of accessing a mainmemory page

is the same as that of accessing run 𝑅0,0.

3 ADVERSARIAL MODEL
In this section, we first discuss the performance degradation caused

by adversarial attacks and the feasibility of such attacks. We then in-

troduce a game-based adversarial model for LSM stores and propose

a security definition for LSM stores.

3.1 Performance Degradation
The key idea for our adversarial workloads is to target the false pos-

itive rate (FPR) of the per-run Bloom Filters implemented in an LSM

store. Since most popular LSM stores [8, 16, 21] use BFs with non-

cryptographic hashes, such attacks are feasible and inexpensive.

Even if an adversary is allowed a very small bound on insertions,

they can still fully insert enough elements to saturate the BFs. For

a Standard Bloom Filter implementation with a memory budget of

𝑚† bits and 𝑘† hashes, only
𝑚†
𝑘†

adversarial insertions are required
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Figure 1: Performance degradation of zero-result lookups on
a uniformly random query workload

to make the BF’s FPR become 1. Figure 1 shows the impact of Bloom

Filter FPR on the zero-result lookup latency for LevelDB [16] and

RocksDB [21]. We insert 10M keys in batch sizes of 10K. We bench-

mark 50K uniformly randomly sampled zero-result look-ups for

each experiment. Between the insertion stage and the lookup stage,

we save and re-open the store to mitigate the effects of caching.

As BF FPR increases, the lookup latency of LevelDB and RocksDB

becomes 2x and 8x respectively.

3.2 Feasibility of Attacks
We first give an overview of how the standard implementation of

a Bloom Filter first suggested in [4] and used in LevelDB [16] and

RocksDB [21] works. A Standard Bloom Filter (SBF) construction

is a zero-initialized array of𝑚† bits [5, 14] and requires a family

of 𝑘† independent hash functions, ℎ𝑖,𝑚 : 𝔇 ↦→ [𝑚†] for all 𝑖 ∈
[𝑘†][5, 29]. Upon setup, For each element 𝑥 ∈ 𝑆 (𝑆 is the set being

encoded by the Bloom Filter), the bits ℎ𝑖 (𝑥) are set to 1 for 𝑖 ∈ [𝑘†].
When querying an element 𝑥 , we return true if all ℎ𝑖 (𝑥) map to bits

that are set to 1. If there exists an ℎ𝑖 (𝑥) that maps to a bit that is 0,

we return false.

0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1

x1 x2

0 1 0 0 1 1 0 1

y1 y2

Figure 2: Bloom Filter example (𝑚† = 8, 𝑘† = 2) adapted
from [3]. Inserted 𝑥𝑖 is hashed 𝑘† times, setting mapped bits.
Queried 𝑦𝑖 is hashed 𝑘 times. If a mapped bit is unset, 𝑦𝑖 ∉ 𝑆 .
Otherwise 𝑦𝑖 is in 𝑆 or a false positive

The expected number of entries to fully saturate an SBF is

⌊𝑚† log𝑚†
𝑘†

⌋ [14]. An adversary can pick well-chosen items to insert

such that sets 𝑘† previously unset bits (one new bit for each hash

function). This reduces the number of entries to fully saturate an

SBF down to ⌊𝑚†
𝑘†
⌋. [14] show many practical saturation attacks for

real-world Standard Bloom Filter deployments. This is particularly

easy to do when a non-cryptographic hash is invertible. However,

even a brute force strategy where the adversary crafts well-chosen

inputs offline does not take a large amount of time if the mem-

ory budget of a Bloom Filter is small. Since the entire point of a

3
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Figure 3: Time taken by a brute force algorithm running
sequentially on a local machine to saturate LevelDB’s Bloom
Filter implementation with various memory budgets.

Bloom Filter is for it to use a small number of bits (otherwise we

can simply replace it with a non-probabilistic data structure such as

a hash-table-based set), this is commonly the case. Our inexpensive

experimental setup (Section 4) running a sequential brute force al-

gorithm can fully saturate LevelDB’s Bloom Filter implementation

with a memory budget of up to 4 kilobits in about 11 seconds.

3.3 Game-based Model
We define a self-contained game-based [3, 23, 24] adversarial model

for LSM stores that is restricted to adversaries that target an LSM

store’s Bloom Filters. For cryptography-focused readers, we also

define a more general simulator-based [20] adversarial model for

any class of adversaries in Appendix A. We will be assuming our

adversary is efficient. We will assume that the adversary works in

non-uniform probabilistic polynomial time (n.u. p.p.t). This stan-

dard notion is used to model efficient adversaries in cryptography

literature [25]. Moreover, we will restrict our model to ABF, the set

of efficient adversaries that target the Bloom Filters in the LSM store.

We discuss other adversarial targets in Appendix ??. To capture the
notion of adversary resilience in an LSM store setting, we propose

a game inspired by prior work on game-based adversary models

for other probabilistic data structures [23, 24]. We first define the

notion of a Bloom Filter in our adversarial game.

Definition 3.1 (Bloom Filter). Let Π = (𝐶†𝑟 , 𝑄†) be a pair of poly-
nomial time algorithms. 𝐶†𝑟 is randomized, it takes a set 𝑆† ⊆ D as

input and outputs a state 𝜎†.𝑄† is deterministic, it takes as a state 𝜎†
and a key 𝑘 ∈ D as input and returns 𝑦 𝑖𝑛{⊤,⊥}. Π is an (𝑛, 𝜖)-BF if
for all sets 𝑆Π ⊆ 𝔇 of cardinality 𝑛 and suitable public parameters

Φ†, the following two properties hold.

• Completeness: ∀𝑥 ∈ 𝑆 : 𝑃 [𝑄† (𝑥,𝐶†𝑟 (Φ†, 𝑆†)) = ⊤] = 1

• Soundness: ∀𝑥 ∉ 𝑆 : 𝑃 [𝑄† (𝑥,𝐶†𝑟 (Φ†, 𝑆†)) = ⊤] ≤ 𝜖

where the probabilities are over the coins of 𝐶†𝑟 .

In our game, the adversary A = (A𝐶 ,A𝑄 ) consists of two parts:

A𝐶 chooses a list L ⊂ D × (D ∪ {⊥}. A𝑄 gets L as input and

attempts to find a false positive key 𝑘 given only oracle access

to the LSM store Λ initialized with L. A succeeds if key 𝑘 is not

among the queried elements and is a false positive. We measure the

success probability of A for the random coins in Λ and in A. For

computationally bound adversaries, our game includes a security

parameter 𝜆 which is given to the adversary A in unary 1
𝜆
and

given to the LSM store implicitly as part of the public parameters

Φ. For LSM store Λ = (𝐶𝑟 , 𝐼𝑟 , 𝑄), the adversaryA is allowed access

to two oracles. The first oracle, O𝑄 (𝑘), returns ⊤ if there exists a

Bloom Filter Π in LSM store Λ such that Π(𝑘) = ⊤. Otherwise, it
returns ⊥. The second oracle, O𝑅 returns a list 𝜎†𝑖 of internal states
for each Bloom Filter Π𝑖 in the LSM store Λ.

Game 3.1 (Smash-Lsm). We have a challenger Υ, security parameter

𝜆, and a n.u p.p.t adversary A = (A𝐶 ,A𝑄 ). A is a Bloom Filter

targeting adversary, A ∈ ABF. We have an LSM store Λ with public

parameters Φ. We define the game Smash-Lsm(A, 𝑡, 𝜆) as follows.

Step 1 L ←$ 𝐴𝐶 (1𝜆) where L ⊂ D × (D ∪ {⊥}) and |L| = 𝑛.

Step 2 Υ initializesΛwith𝜎 ←$ 𝐶𝑟 (Φ) and invokes𝜎 ←$ 𝐼𝑟 ((𝑘, 𝑣), 𝜎)
for each (𝑘, 𝑣) ∈ L.

Step 3 𝑘A ←$ A𝑄 (1𝜆,L).A𝑄 canmake atmost 𝑡 queries𝑘1, · · · , 𝑘𝑡
to O𝑄 and unbounded queries to O𝑅 .

Step 4 We denote the set of keys inL by 𝐿𝑘 . If 𝑘A ∉ L𝑘 ∪{𝑘1, ·, 𝑘𝑡 }
and O𝑄 (𝑘A ) = ⊤, A wins (Smash-Lsm returns ⊤). Other-
wise, A loses (Smash-Lsm returns ⊥).

Clearly, if adversary A wins the Smash-Lsm game, A has forced

an unnecessary run access by exploiting Bloom Filter false positives

in the LSM store.

3.4 Security Definition
We now define our notion of the security of an LSM store Λ against

Bloom Filter targeting adversaries ABF using the Smash-LSM game.

Definition 3.2. For an LSM store Λ, we say that Λ is (𝑛, 𝑡, 𝜀)-secure
against Bloom Filter targeting adversaries if for all n.u p.p.t adversaries

A ∈ ABF and for all lists of cardinality 𝑛, for all large enough 𝜆 ∈ N,
it holds that

Pr[Smash-Lsm(A, 𝑡, 𝜆) = ⊤] ≤ 𝜀

where the probabilities are taken over the random coins of Λ and A.

The definition essentially states a requirement for declaring that

an LSM store is secure against computationally bound adversaries

that are looking to sabotage its Bloom Filters. We have to prove

that no such adversary can, with high probability, find a previously

unused key that results in a false positive for any of the Bloom

Filters being used by the LSM store. This must be proven, even if

the adversary chooses the initial list of keys to be inserted into the

LSM store, even if the adversary makes 𝑡 queries to the LSM store’s

Bloom Filters before answering, and even if the adversary can look

at the internal state of the Bloom Filters.

4 ADVERSARY RESILIENCE
We construct an adversary-resilient implementation of LevelDB [16]

and RocksDB [21]. Our secure construction is simple and easily

pluggable in any popular LSM store. Instead of writing and reading

keys directly, we simply patch the LSM store API to maintain a

keyed pseudorandom permutation (PRP) and read/write the per-

muted value of the key. The values are kept unchanged. This does

not affect the correctness of the LSM store. As an example, assume

we use a PRP that permutes 𝑎 to 𝑥 and 𝑏 to 𝑦. Inserting two key-

value pairs (𝑎, 𝑣1) and (𝑏, 𝑣2) will instead insert (𝑥, 𝑣1) and (𝑦, 𝑣2).
4
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Figure 4: Zero-result lookup performance on a uniformly random query workload for LevelDB ( left) and RocksDB (right) with
adversarial resilience.

When key 𝑎 is queries, since our PRP is consistent, it is mapped

again to 𝑥 and Λ returns the correct corresponding value 𝑣1. PRPs

are bijections therefore the keys themselves can also be recovered

by running the inverse permutation. We informally summarize our

result here and then rigorously prove it below in Section 5.

Theorem 4.1. Let Λ = (𝐶𝑟 , 𝐼𝑟 , 𝑄) be an LSM store using𝑚 bits of

memory for its Bloom Filters. If pseudo-random permutations exist,

then there exists a negligible function negl(·) such that for security

parameter 𝜆, there exists an LSM engine Λ′ that is (𝑛, 𝑡, 𝜖 + negl(𝜆))-
secure against Bloom Filter targeting adversariesABF using𝑚

′
=𝑚+𝜆

bits of memory for its Bloom Filters.

Proof Sketch: Applying a keyed PRP to LSM store keys before inser-

tion and query ensures that adversaries cannot control key place-

ments to force high false positive rates. Correctness is due to PRP

bijectivity: queries map consistently to transformed keys, retrieving

the correct values. Security follows from PRP indistinguishability. If

an adversary could significantly increase false positives, they could

distinguish the PRP from random, which contradicts the existence

of PRPs. We need extra 𝜆 bits of memory to store the PRP’s secret

key.

4.1 Implementation & Experimental Setup
We use the experimental setup discussed here for all experiments

in this work. We use an Apple M2 processor with 8 cores, 8 GB

of Memory, a 128 KB L1 cache, a 1 MB L2 cache, and 256 GB of

SSD storage out of which 245 GB is usable storage. We evaluated

the most recent versions of RocksDB (9.10) and LevelDB (1.23).

We run each experiment 5 times and display the median, the error

bars indicate standard deviations. We implement security as an

easily pluggable module written in C++ 17 for both LevelDB and

RocksDB. Our implementation relies on the hardness of AES. Our

implementation uses the AES-128 implementation provided by

OpenSSL v3.4.0 in CTR mode. We use a 16 byte (𝜆 = 128 bits)

AES secret key to parameterize the PRP. To prevent secret key

leakage, production-scale deployments can rely on secret stores

and ephemeral key rotation mechanisms. We have released our

implementation and evaluation as open-source software.

4.2 Performance
We compare our adversary-resilient implementations to untouched

releases of LevelDB and RocksDB under adversarial workloads.

Figures4 and 5 show performance under the same workload as Sec-

tion 3. For zero-result lookups, our implementations reduce latency

by 60% and 78% for LevelDB and RocksDB respectively. Our imple-

mentations are slower for workloads with existing keys (where not

all the runs need to be probed, in expectation) by 30% and 6% for Lev-

elDB and RocksDB respectively. We also measured the latency for

50 K uniformly random inserts with our implementation and saw a

median latency increase of 39% and 49% for LevelDB and RocksDB

respectively. These increases are due to the extra compute over-

head of AES for every key. This is a constant compute cost that can

potentially be reduced by using a hardware-implemented version

of AES such as AES-NI [23] for Intel processors. This overhead also

is not a major concern when I/O dominates lookup performance,

which is frequently the case for LSM stores [8].

5 SECURITY PROOFS
We first define the notion of secure Bloom Filters (Def. 3.1). We use

known definitions [13, 29] for Bloom Filter (BF) constructions. A

BF, Π consists of two algorithms.

Construction. 𝜎† ← 𝐶†𝑟 (Φ†, 𝑆†) sets up the initial state of a BF

with public parameters Φ† and a given set 𝑆† ⊆ 𝔇.

Query. 𝑏 ← 𝑄† (𝑥, 𝜎†), given an element 𝑥 ∈ 𝔇 returns a boolean

𝑏 ∈ {⊥,⊤}. The return value approximately answers whether 𝑥 ∈
𝑆† (𝑏 = ⊤) or 𝑥 ∉ 𝑆† (𝑏 ≠ ⊥).
The construction algorithm 𝐶𝑟 is called first to initialize Π. The
query algorithm 𝑄 is not allowed to change the value of the state.

While𝐶𝑟 is randomized,𝑄 is deterministic. Both algorithms always

succeed. A class of BFs can be uniquely identified by its algorithms:

Π = (𝐶𝑟 , 𝑄).
We now define a well-known [23, 24] security game for Bloom

Filters. Our adversary, A† = (A†𝐶 ,A†𝑄 consists of two parts:

A†𝐶 chooses a set 𝑆† ⊂ D. A†𝑄 gets 𝑆† as input and attempts

to find a false positive key 𝑘 given only oracle access to the BF

Π initialized with 𝑆†. We measure the success probability of A†
for the random coins in Π and in A†. For computationally bound
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Figure 5: Existing query lookup performance on a uniformly random query workload for LevelDB (left) and RocksDB (right)
with adversarial resilience.

adversaries, our game includes a security parameter 𝜆 which is

given to the adversaryA† in unary 1𝜆 and given to the BF implicitly

as part of the public parameters Φ†.
For a BF Π = (𝐶†𝑟 , 𝑄†), the adversary A† is allowed access to

two oracles. The first oracle, O𝑄† (𝑘), returns 𝐶†𝑟 (𝑘). The second
oracle, O𝑅† returns 𝜎†, the internal states for the Bloom Filter Π.
Note that the internal state returned does not include any secret

keys used in the construction. This assumption is consistent with

prior work [12, 13, 23, 24, 29].

Game 5.1 (Smash-Bloom). We have a challenger Υ, security pa-

rameter 𝜆, and a n.u p.p.t adversary A† = (A†𝐶 ,A†𝑄 . We have

a Bloom Filter Π with public parameters Φ†. We define the game

Smash-Bloom(A†, 𝑡, 𝜆) as follows.
Step 1 𝑆† ←$ 𝐴𝐶† (1𝜆)
Step 2 Υ initializes Π with 𝜎† ←$ 𝐶†𝑟 (Φ†, 𝑆†).
Step 3 𝑘A ←$ A𝑄† (1𝜆, 𝑆†).A𝑄† canmake atmost 𝑡 queries𝑘1, · · · , 𝑘𝑡

to O𝑄† and unbounded queries to O𝑅† .

Step 4 If 𝑘A ∉ 𝑆† ∪ {𝑘1, ·, 𝑘𝑡 } and O𝑄† (𝑘A ) = ⊤, A wins (Smash-

Bloom returns ⊤). Otherwise,A loses (Smash-Bloom returns

⊥).

Definition 5.1. For an Bloom Filter Π, we say that Π is (𝑛, 𝑡, 𝜀)-
secure if for all n.u p.p.t adversaries A† and for all sets of cardinality
𝑛, for all large enough 𝜆 ∈ N, it holds that

Pr[Smash-Bloom(A†, 𝑡, 𝜆) = ⊤] ≤ 𝜀

where probabilities are over the random coins of Π and A†.

Pseudo-random Permutations.We provide a brief self-contained

treatment of a cryptographic construction called pseudorandom

permutations adapted from [18] that will allow the construction of

secure Bloom Filters. Let Perm𝑛 be the set of all permutations on

{0, 1}𝑛 .

Definition 5.2. Let an efficient permutation 𝐹 be any permutation

for which there exists a polynomial time algorithm to compute 𝐹𝑘 (𝑥)
given 𝑘 and 𝑥 , and there also exists a polynomial time algorithm to

compute 𝐹−1
𝑘
(𝑥) given 𝑘 and 𝑥 .

Definition 5.3. Let 𝐹 : {0, 1}∗ × {0, 1}∗ ↦→ {0, 1}∗ be an efficient,

length-preserving, keyed function. 𝐹 is a keyed permutation if ∀𝑘 ,
𝐹𝑘 (·) is one-to-one.
Definition 5.4. Let 𝐹 : {0, 1}∗ × {0, 1}∗ ↦→ {0, 1}∗ be an efficient

keyed permutation. 𝐹 is a pseudo-random permutation if for all prob-

abilistic polynomial time distinguishers 𝐷 , there exists a negligible

function negl, such that

| Pr[𝐷𝐹𝑘 ( ·)𝐹 −1𝑘
( ·) (1𝑛) = 1] − Pr[𝐷 𝑓𝑛 ( ·) 𝑓 −1𝑛 ( ·) (1𝑛) = 1] |

≤ negl(𝑛)
where the first probability is taken over uniform choice of 𝑘 ∈ {0, 1}𝑛
and the randomness of 𝐷 , and the second probability is taken over

uniform choice of 𝑓 ∈ Perm𝑛 and the randomness of 𝐷 .

Secure Bloom Filters.We show a well-known result for Bloom

Filters initially proved by [23]. The proof was expanded by [3] to

make it clearer that it holds even for the case where an adversary

has access to the internal state of a Bloom Filter. We include a self-

contained proof here using our notation based on proofs in the two

cited works.

Theorem 5.1. Let Π = (𝐶†𝑟 , 𝑄†) be a Bloom Filter using𝑚† bits
of memory. If pseudo-random permutations exist, then there exists a

negligible function negl(·) such that for security parameter 𝜆, there

exists an (𝑛, 𝑡, 𝜖 + negl(𝜆))-secure BF using 𝑚†
′
= 𝑚† + 𝜆 bits of

memory.

Proof. We first demonstrate a secure construction. We then

prove its security and correctness.

Construction: Choose a key 𝜅 ∈ {0, 1}𝜆 for a pseudorandom permu-

tation 𝐹𝜅 . Let Π
′ = (𝐶†′𝑟 , 𝑄

′
†) where

(1) 𝐶†′𝑟 (Φ†, 𝑆†) = 𝐶†𝑟 (Φ†, 𝑆
′
†) where 𝑆

′
† is the permuted set 𝑆†

i.e. 𝑆 ′† = {𝐹𝜅 (𝑥) : 𝑥 ∈ 𝑆†}.
(2) 𝑄 ′† (𝑥, 𝜎†) = 𝑄† (𝐹𝜅 (𝑥), 𝜎†).

𝐶′†𝑟 initializes Bloom Filter Π′ with 𝑆 ′†. 𝑄
′
† on input 𝑥 queries for

𝑥
′
= 𝐹𝜅 (𝑥). The only additional memory required is for storing 𝜅

which is 𝜆 bits long.

Security Proof: The security of Π′ follows from a hybrid argu-

ment. Consider an experiment where 𝐹𝜅 in Π′ is replaced by a
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truly random oracle R(·). Since 𝑥 has not been queried, R(𝑥) is
a truly random element that was not queried before, and we may

think of it as chosen before the initialization of Π′. No n.u. p.p.t

adversaryA† can distinguish between the Π′ we constructed using
R(·) and the Π′ construction that uses the pseudo-random permu-

tation 𝐹𝜅 by more than a negligible advantage. We can prove this

by contradiction. Suppose that there does exist a non-negligible

function 𝛿 (𝜆) such that A† can attack Π′ and find a false positive

with probability 𝜖 + 𝛿 (𝜆). We can run 𝐴† on Π′ where the oracle is
replaced by an oracle that is either random or pseudo-random, and

return 1 if A† finds a false positive. This allows us to distinguish
between R(·) and 𝐹𝜅 (·) with probability ≥ 𝛿 (𝜆). This contradicts
the indistinguishability of pseudo-random permutations.

Correctness proof: Π′ is still a valid Bloom Filter as per Def. 3.1.

Π′’s completeness follows from the completeness of the original BF

Π. From the soundness of 𝑃𝑖 , we get that the probability of 𝑥 being

a false positive in Π′ is at most 𝜖 . Therefore, the probability of A†
winning the Smash-Bloom game is Pr[Smash-Bloom(A†, 𝑡, 𝜆) =
⊤] ≤ 𝜀 + negl(𝜆). □

We can now prove our main result regarding the security of LSM

stores.

Theorem 5.2. Let Λ = (𝐶𝑟 , 𝐼𝑟 , 𝑄) be an LSM store using𝑚 bits of

memory for its Bloom Filters. If pseudo-random permutations exist,

then there exists a negligible function negl(·) such that for security

parameter 𝜆, there exists an LSM engine Λ′ that is (𝑛, 𝑡, 𝜖 + negl(𝜆))-
secure against Bloom Filter targeting adversariesABF using𝑚

′
=𝑚+𝜆

bits of memory for its Bloom Filters.

Proof. We first demonstrate a secure construction. We then

prove its security and correctness.

Construction: Choose a key 𝜅 ∈ {0, 1}𝜆 for a pseudorandom permu-

tation 𝐹𝜅 . Let Λ
′ = (𝐶𝑟 , 𝐼 ′𝑟 , 𝑄′) where

(1) 𝐼 ′𝑟 ((𝑘, 𝑣), 𝜎) = 𝐶𝑟 ((𝐹𝜅 (𝑘), 𝑣), 𝜎)
(2) 𝑄 ′ (𝑥, 𝜎) = 𝑄 (𝐹𝜅 (𝑥), 𝜎).

The only additional memory required is for storing 𝜅 which is 𝜆

bits long.

Security Proof : We prove this by contradiction. Suppose there

does exist an n.u. p.p.t. adversary A that can with the Smash-Lsm

gamewith probability greater than 𝜀+negl(𝜆). Then by definition of
oracleO𝑄 , there exists a Bloom Filter Π′ with the construction from
Thm 5.1 for which A can generate false positives with probability

higher than 𝜀 +negl(𝜆). SoA can also win the Smash-Bloom game

with a probability higher than 𝜀 + negl(𝜆). This is a contradiction
as Thm 5.1 proves that no n.u p.p.t adversary can win the Smash-

Bloom game against Bloom Filter constructions of type Π′ with
probability higher than 𝜀 + negl(𝜆).

Correctness Proof : The correctness of our construction follows

from the fact that 𝐹𝜅 is a bijection so it does not affect the correct-

ness of the internal Bloom Filters, fence pointers, or the algorithms

called on the LSM tree. □

Since only the keys are permuted, not the values stored in the LSM

store, we only need to do a forward permutation 𝐹𝜅 but not an

inverse permutation 𝐹−1𝜅 for a point query.

6 RELATEDWORK
We discuss two areas of research relevant to our work: adversarial

correctness of probabilistic data structures, and LSM store bench-

marking and optimization.

Adversarial Data Structures. There have been many recent efforts

to rigorously define a game-based [3, 6, 23, 24] and simulator-

based [12, 13, 29] adversarial model for probabilistic data structures

such as the Bloom Filter and the Learned Bloom Filter. In particular,

the work of Naor et. al. [23, 24] was the first to show provably

secure constructions for the Bloom Filter. There is also prior work

showing feasible attacks on probabilistic data structures including

the Bloom Filter [14] and the Learned Bloom Filter [26]. Our work

builds upon these insights by applying them to LSM stores and

designing countermeasures tailored to real-world storage systems.

LSM Store Benchmarking / Optimization. KVBench [30] is one of

many works that focus on benchmarking workloads for LSM stores.

Prior work on LSM store optimizations includes [8, 10, 17, 28].

Monkey [8] focuses on optimizing the memory budget allocation of

the Bloom Filters used in LSM stores for better query performance.

Huynch et. al. [17] use Large Language Models (LLMs) to tune the

design knobs of LSM stores. All prior work discussed primarily

focuses on benchmarking and improving performance under non-

adversarial workloads. To the best of our knowledge, this is the

first paper to rigorously define an adversarial model for LSM stores

and propose concrete, provably secure LSM store constructions.

7 OPEN PROBLEMS
We leave the community with open problems in four categories

that emerge from our work.

7.1 Adversarial Targets.
The experiments in our work focus on adversaries that target Bloom

Filters in LSM stores via well-chosen insertions. We conduct our

experiments on, LevelDB and RocksDB, both of which use a merge

policy called leveling [8, 17]. There is a vast universe of adversarial

targets we leave as open problems that emerge from our work.

Empirical evidence showing performance degradation from these

targets would help greatly in the design of future LSM stores.

Deleted Insertions. A direct follow-up for our attacks comes from

the observation that Bloom Filters in LSM trees cannot perform

deletions. This means that if an adversary A sabotages Bloom Fil-

ters via well-chosen insertions and then deletes the keys it inserted,

the false positive rate of the Bloom Filters remains high unless the

Bloom Filter is reconstructed from existing keys.

Range Queries. Range queries [8, 19] look for a larger number of

keys in multiple levels of an LSM tree compared to point queries.

Therefore, they are potentially more vulnerable to adversarial work-

loads. Adversary A can insert data in a manner that forces range

queries to access an excessive number of runs, increasing read

latency. Studying adversarial range query complexity and design-

ing more efficient prefetching and merging strategies could help

mitigate these attacks.

Merge Policy. There are different merge policies within LSM stores

including leveling and tiering [8]. Prior work [17] has shown that

7



leveling is more robust to uncertain (but not explicitly adversarial)

workloads than tiering. We conducted our evaluations on LevelDB

and RocksDB, both of which use leveling. We might potentially see

higher performance degradation on LSM stores that rely on tiering.

7.2 General Adversary-resilience
In our work, we have shown a construction that provides adversary-

resilience in an LSM store against ABF, the set of computationally

bound Bloom Filter targeting adversaries. We leave answering the

following follow-up questions as open problems:

(1) Does our construction provide adversary resilience against

other classes of adversaries?

(2) Is there a construction, perhaps using our simulator-based

model (𝐴𝑝𝑝𝑒𝑛𝑑𝑖𝑥 𝐴) guaranteeing reasonable adversary

resilience against all computationally bound adversaries?

(3) Is a construction possible (either only for ABF or for the

general set A) that provides adversary-resilience if the ad-
versary is computationally-unbounded?

Helpful starting points for this work include [23, 24] who provide an

adversary-resilient construction of the Bloom Filter against compu-

tationally unbounded adversaries, and the simulator-based security

constructions of [12, 13].

7.3 Learned Bloom Filters.
We conjecture that replacing Bloom Filters used by an LSM store

with Learned Bloom Filters [3] with a better false positive rate

may lead to better performance. Adversary resilience for Learned

Bloom Filters can be solved using the construction of [3]. We leave

experimental validation of this as an open problem. Similar research

for Adaptive Bloom Filters (or Learned Adaptive Bloom Filters [7])

will also be interesting. A helpful starting point for this work is [3]

who provide an adversary-resilient construction of the Learned

Bloom Filter, called the Downtown Bodega Filter, in the same game-

based setting as [23].

7.4 Existence of an Ideal-World Simulator
In our simulator-based adversarial model (Appendix A), we have not

proved the existence of an ideal-world simulator. We leave proving

the existence of and providing a construction for an ideal-world

simulator for LSM stores as an open problem. The constructions of

an ideal-world simulator for probabilistic data structures by [12, 13]

may be a good starting point. However, their constructions require

two properties in a data structure: function decomposability and

reinsertion variance. Informally, reinsertion invariance requires the

internal state of a probabilistic data structure to remain unchanged

when the same key is reinserted. This does not necessarily apply

to LSM stores.

8 CONCLUSION
In this paper, we investigate the performance of LSM stores under

adversarial workloads. Our analysis shows that adversaries can

significantly increase zero-result lookup latencies. We introduce a

lightweight, provably secure mitigation strategy based on keyed

pseudorandom permutations. Our implementation in LevelDB and

RocksDB shows that this approach effectively reduces adversarial

impact while maintaining overall system performance. Our work

demonstrates the importance of adversarial resilience in storage

systems. We introduce the community to several important open

problems calling for both theoretical and experimental research

into broader classes of attacks and secure designs for LSM stores.
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A SIMULATOR-BASED MODEL
In this section, we define a simulator-based [20] adversarial model

for LSM stores inspired by the simulator-based model of [13] for

Bloom Filters. The game-based adversarial model of Section 3 is

restricted to adversaries that target an LSM store’s Bloom Filters.

The simulator-based adversarial model, on the other hand, applies to

any class of adversaries. We reuse the notation defined in Section 2.

Adversarial Setting. Let Λ = (𝐶𝑟 , 𝐼𝑟 , 𝑄) be an LSM store, with

public parameters Φ. Let A be any given set of adversaries play-

ing Game A.1 that are bound by time 𝑡A and are allowed at most

𝜓𝑖,𝜓𝑞,𝜓𝑟 queries to oracles O𝐼 ,O𝑄 ,O𝑅 respectively. Let D be the

set of all distinguishers bound by time 𝑡D. To establish any results

regarding the behavior of LSM stores in the presence of adversaries,

we need to compare it to what the behavior of an LSM store with-

out the presence of an adversary is expected to be. We call any

simulator that provides a view of the LSM store without adversarial

interference an ideal-world simulator. Let S be an ideal-world simu-

lator bound by time 𝑡S that provides a non-adversarially-influenced

view of Λ to adversaries in set A. For simpler notation, we denote

Ψ = (𝜓𝑖 ,𝜓𝑞,𝜓𝑟 ) and 𝑇 = (𝑡A, 𝑡S, 𝑡D).

Definition A.1 (Adversary Resilient LSM store).
We say that Λ is an (Ψ,𝑇 , 𝜀)-resilient LSM store if for all adversaries

A ∈ A and for all distinguishers D ∈ D in Game A.1, it holds that:

|Pr[Real(A,D)=1]−Pr[Ideal(A,D,S)=1] |≤𝜀.

where the constructions Λ,A,D,Ψ, and𝑇 are defined in the Adversar-

ial Setting section above. The probabilities are taken over the random

coins used by 𝐼𝑟 and 𝐶𝑟 within O𝐼 and O𝐶 , as well as any random

coins used by A,S, or D.

Game A.1. We have an adversaryA, a simulator S, a distinguisher
D, and public parameters Φ.

Real-Or-Ideal(A,S,D,Φ)

1 : 𝑑 ←$ {0, 1}
2 : if 𝑑 = 0 // Real

3 : 𝜎 ←$ 𝐶𝑟 (Φ)

4 : 𝑦 ←$ AO𝐼 ,O𝑄 ,O𝑅

5 : else // Ideal

6 : 𝑦 ←$ S(A,Φ)
7 : return 𝑑 ′ ←$ D(𝑦)

Oracle O𝐼 (𝑘, 𝑣)
𝜎 ←$ 𝐼𝑟 (𝑘, 𝑣, 𝜎 )

Oracle O𝑄 (𝑘)
return𝑄 (𝑘, 𝜎 )

Oracle O𝑅 ()
return 𝜎
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