
Practical Circuit Privacy/Sanitization for TFHE

Intak Hwang , Seonhong Min , and Yongsoo Song

Seoul National University, Seoul, Republic of Korea
{intak.hwang,minsh,y.song}@snu.ac.kr

Abstract. Fully homomorphic encryption (FHE) enables the computa-
tion of arbitrary circuits over encrypted data. A widespread application
of FHE is a simple two-party computation (2PC) protocol, where the
server evaluates a circuit over the client’s encrypted data and its private
inputs. However, while the security of FHE guarantees that the client’s
data is protected from the server, there is no inherent support for the
privacy of the server’s input and the circuit.
One effective solution to this problem is an additional algorithm for FHE
called sanitization, introduced by Ducas and Stehlé (Eurocrypt 2016).
Roughly speaking, a sanitization algorithm removes any meaningful in-
formation contained in the ciphertext, including previous evaluations of
circuits. Following their definition, several constructions for sanitization
have been proposed, particularly for TFHE. However, all of these meth-
ods were impractical, requiring several bootstrappings or an excessive
amount of randomized evaluations.
In this work, we construct a novel sanitization algorithm for TFHE that
overcomes these issues. Our method only adds two lightweight random-
ization steps to the original TFHE bootstrapping, without any modifica-
tions to the core algorithms. As a result, our algorithm achieves saniti-
zation with a single bootstrapping and minimal randomization, bringing
sanitization closer to practicality.
To empirically evaluate the efficiency of our method, we provide con-
crete benchmark results based on our proof-of-concept implementation.
Our algorithm sanitizes a single TFHE ciphertext in 35.88 ms, which is
only 3.4% (1.18 ms) slower than the original TFHE bootstrapping with
the same parameters. When directly compared to previous works, our
method achieves a speedup by a factor of 4.82 to 209.03.

Keywords: Fully Homomorphic Encryption, TFHE, Circuit Privacy, Sanitiza-
tion

1 Introduction

Fully Homomorphic Encryption (FHE) is a cryptosystem that allows the eval-
uation of an arbitrary circuit over encrypted data, without any limitation on
the circuit depth. Thanks to such functionality, it can be utilized to construct
a low-communication two-party computation protocol for scenarios where the
client owns private data and the server owns a circuit. In this protocol, the

https://orcid.org/0009-0005-3870-2096
https://orcid.org/0000-0002-1151-2453
https://orcid.org/0000-0002-0496-9789

client first encrypts its private data using an FHE scheme and sends it to the
server. Then, the server evaluates some circuit over the given ciphertexts and
its own private data, and returns the output ciphertext to the client. Finally,
the client decrypts the returned ciphertext and obtains the evaluation result on
its data. By the security of the underlying FHE scheme, it is guaranteed that
the server learns nothing about the private data of the client nor the evaluation
result. However, generally the converse is not true: the client can learn some
information about the server’s data, namely the circuit being evaluated or the
server’s private inputs.

To solve this problem, Gentry [Gen09] introduced the concept of circuit
privacy. Roughly speaking, an FHE scheme is circuit-private if the output ci-
phertext does not contain any information about the circuit after being evalu-
ated. There is a line of works that studies using multi-party computation tech-
niques, such as Garbled Circuit or Oblivious Transfer, to achieve circuit pri-
vacy [GHV10,OPP14,DD22]. However, they are mainly of theoretical interest,
often suffering from high communication costs and computational complexity.
A more common approach to achieving circuit privacy is noise flooding [Gen09],
which erases the information left over in the ciphertext by adding an encryp-
tion of zero with an exponentially large noise term. Naturally, this leads to
exponential overhead in the parameters, as one needs to guarantee correct de-
cryption even with the added noise. In RLWE-based FHE schemes such as
BFV [Bra12,FV12], BGV [BGV14] and CKKS [CKKS17], this can be a minor
problem, as the usual parameters of these schemes are already large, with cipher-
text modulus often spanning hundreds of bits. However, some FHE schemes, such
as FHEW [DM15] and TFHE [CGGI16], use very compact parameters, making
the noise flooding method impossible.

Alternatively, Ducas and Stehlé [DS16] proposed the soak-spin-repeat ap-
proach. First, they defined a special algorithm for FHE ciphertexts called sani-
tization, which transforms a ciphertext in a way that any two ciphertexts that
encrypt the same plaintext are indistinguishable. The soak-spin-repeat method
achieves sanitization by repeating two operations: adding a moderately sized
noise, and bootstrapping. The general idea is that by repetitively adding noise to
two ciphertexts, their statistical distance decreases. Therefore, by sufficiently re-
peating this cycle, two ciphertexts eventually become statistically indistinguish-
able. The obvious disadvantage of this approach is that one needs to perform
several consecutive bootstrappings. For example, in usual TFHE parameters, to
achieve a sufficiently low statistical distance, the number of cycles required is
around 5 to 10. This implies that soak-spin-repeat sanitization is 5 to 10 times
slower than normal TFHE bootstrapping.

Recently, Bourse and Izabachène [BI22] and Kluczniak [Klu22] independently
proposed an alternative construction for TFHE that overcomes this issue. The
core idea of their work lies in randomizing the bootstrapping, more specifically
randomizing the external product in a similar way to [ASP14,BdMW16]. Instead
of computing the external product ACC⊡ BRK = h(ACC)⊤ · BRK directly, they
replace the gadget decomposition h(ACC) with Gaussian random variables sam-

2

pled from a coset h(ACC) +Λ⊥(g). Then, using the convolution property of the
Gaussian distribution, we can remove the information about ACC in the error
term of the output ciphertext by adding a moderately sized Gaussian noise. Fi-
nally, to erase the information in the mask, they add a public key encryption of
zero (RLWE in the case of [BI22], and LWE in the case of [Klu22]) to the boot-
strapped ciphertext. While their construction achieves sanitization with only a
single bootstrapping, it practically often performs worse than soak-spin-repeat
sanitization. The main culprit of this issue is their heavy use of the discrete
Gaussian distribution, which is notoriously hard to sample efficiently. To be pre-
cise, they require O(|g|nN) Gaussian samples, which translates to millions of
samples in practical parameters. Therefore, achieving efficient circuit privacy or
sanitization in TFHE remains an open problem.

1.1 Our Contribution

In this paper, we construct a novel sanitization algorithm for the TFHE scheme,
which solves the aforementioned issues: it only requires a single, unmodified
TFHE bootstrapping, in contrast to [DS16], and the required number of Gaus-
sian samples is only O(N), which is significantly lower than the constructions
of [BI22,Klu22]. As a result, the performance of our sanitization algorithm is
significantly faster than previous works, nearly matching the original TFHE
bootstrapping.

The core idea of our sanitization method is derived from the observation that
the bootstrapping algorithm of TFHE can be written as a linear combination
of a monomial and an RLWE ciphertext, each only containing the information
about the body and the mask of the input ciphertext, respectively. In other
words, for (b,a) ∈ ZN+1

q ,

BlindRotate(BRK, KeySwitch(KSK, (b,a)))

= Xb · BlindRotate(BRK, KeySwitch(KSK, (0,a)))

where b only depends on b. Using this relationship, we add a simple post-
processing and pre-processing step to the bootstrapping algorithm, each eras-
ing the information about a and b, respectively. To be precise, we first reran-
domize the mask of the input ciphertext a to some vector a′ ∈ ZNq which is
uniformly random. Then, the distribution of the RLWE ciphertext ACC :=
BlindRotate(BRK, KeySwitch(KSK, (0,a′))) becomes simulatable without any
modifications to BlindRotate and KeySwitch, since all of the inputs BRK,KSK,a′

are known constants or follow a known distribution. Then, after bootstrapping,

we compute Xb · ACC with a randomized linear evaluation algorithm, which

hides the information of Xb. As a result, all information of b and a is removed,
achieving sanitization.

For the pre-processing step, we propose a new mask randomization method
based on the construction of [BI22]. In [BI22], the authors showed that the
mask can be randomized by adding an RLWE public key encryption of zero by

3

sampling from a moderately sized discrete Gaussian distribution. By doing so,
the mask of the resulting ciphertext follows a uniform distribution, independent
of the secret key. We improve their method by replacing the discrete Gaussian
distribution with rounded Gaussians, which is significantly faster to sample. We
stress that our modification is not based on heuristics, as we provide a rigorous
security proof for using a rounded Gaussian distribution.

On the other hand, the circuit-private linear HE scheme by de Castro et
al. [dCKK+24] can be used for randomized linear evaluation in the post-processing
step. Briefly speaking, given an affine function ax+ b over the polynomial ring
Rp, we sample r from a coset a + pZN and homomorphically compute rx + b.
Then, we add a moderately sized Gaussian noise to smooth the noise distribu-
tion. This allows us to perform the linear evaluation obliviously, without leaking
partial information on the coefficients a and b to the output ciphertext. How-
ever, their method was only proven secure when the input ciphertext was a
(fresh) public key encryption. We expand on their work so that it supports an
arbitrary ciphertext. In addition, we replace the discrete Gaussian distribution
with a rounded Gaussian distribution and prove its security, similar to the mask
randomization explained above.

Finally, we implement our sanitization algorithm in Go and provide bench-
mark results. The experimental results show that the latency of sanitization is
reduced from 7500ms of [BI22] and 1330ms of [Klu22] to 35.88ms, yielding a
speedup with a factor of 209.03 and 37.07, respectively. Compared to the soak-
spin-repeat strategy [DS16], it also gives a 4.82× speedup, with a significantly
lower failure rate. Moreover, our method merely adds 1.18ms of overhead to
the original TFHE bootstrapping, which is only 3.4% of the total runtime of
bootstrapping.

While we focus on the TFHE scheme in this paper, our method can be ap-
plied to any AP-like cryptosystems that utilize monomials to bootstrap, such
as FHEW [DM15] or LMKCDEY [LMK+23], without heavy modifications. We
also stress that our sanitization algorithm only uses existing TFHE bootstrap-
ping subroutines, such as BlindRotate and KeySwitch, as a black box. As a
result, recent advances in TFHE bootstrapping [LMSS23,LY23,BCL+23] can be
immediately applied to our algorithm, enhancing the performance even further.

2 Preliminaries

2.1 Notation

We denote the quotient polynomial ring Z[X]/(XN + 1) by R, for some power
of two N . The quotient ring R/qR is written as Rq. For a ring element a =∑N−1
i=0 aiX

i, we define its coefficient vector a and negacyclic matrix A as

a = (a0, . . . , aN−1), A =

a0 −aN−1 · · · −a1
a1 a0 · · · −a2
...

...
. . .

...
aN−1 aN−2 · · · a0

 .

4

We denote the ℓ-norm of a vector x by ∥x∥ℓ, and the ℓ-norm of a matrix M
by ∥M∥ℓ. For a positive definite matrix Σ,

√
Σ denotes a matrix that satisfies

Σ =
√
Σ
⊤√

Σ. We write B ≥ A if BB⊤ −AA⊤ is positive semi-definite. For
simplicity, we write B ≥ k for k ∈ R if B ≥ kI.

For a probability distribution X , we denote sampling x from X as x ← X .
For sampling from a uniform distribution over a set S, we write x

$←− S. If a
distribution X is multivariate, we denote the distribution of the i-th element
as X|i. The statistical distance between two distributions X1 and X2 with the
same support Ω is defined as ∆SD(X1,X2) =

1
2

∑
x∈Ω |X1(x)−X2(x)|. We write

X1
ε
≈ X2 when ∆SD(X1,X2) ≤ ε. We say that two distributions are statistically

indistinguishable if the statistical distance between them is negligible, and write
X1 ≈s X2. Similarly, we say that two distributions are computationally indistin-
guishable if no probabilistic polynomial-time (PPT) algorithm can distinguish
between them, and write X1 ≈c X2.

2.2 Discrete Gaussian over Lattices

The n-dimensional Gaussian function ρc,
√
Σ with center c and parameter

√
Σ is

defined as

ρc,
√
Σ(x) = exp

(
−1

2
(x− c)⊤Σ−1(x− c)

)
.

We define the (discrete) Gaussian distribution over a lattice coset a+Λ and the
continuous Gaussian distribution over Rn with center c and parameter

√
Σ as

Da+Λ,c,
√
Σ(x) =

ρc,
√
Σ(x)∑

v∈a+Λ ρc,
√
Σ(v)

, DRn,c,
√
Σ(x) =

ρc,
√
Σ(x)√

2π detΣ

respectively. We also define the rounded Gaussian distribution as
⌊
DRn,c,

√
Σ

⌉
:=

{⌊x⌉ | x ← DRn,c,
√
Σ}. We simplify the notation in special cases. When c = 0,

we omit c. If Σ = σ2I for some σ > 0, we denote σ instead of
√
Σ. For a

polynomial a and its coefficient vector a, we denote the lattice coset a+ pZN as
a+ pZN .

2.3 LWE and RLWE

In the following sections, we describe the RGSW cryptosystem and the TFHE
scheme. Its security relies on the hardness of the LWE problem [Reg09] and its
ring variant, the RLWE problem [LPR13].

Definition 1 (LWE). Let m,n, q be positive integers, and χ, ψ be a distribu-
tion over Zn and Z respectively. The decisional LWE problem LWEm,n,qχ,ψ is to
distinguish the following two distributions.

{(A,As+ e) | A $←− Zm×nq , s← χ, e← ψm}, {(A,u) | A $←− Zm×nq ,u
$←− Zmq }.

If χ or ψ is a Gaussian distribution with parameter σ, we simply denote them
as σ in the subscript.

5

Definition 2 (Ring-LWE). Let m,n, q be positive integers, and χ, ψ be a dis-
tribution over R = Z[X]/(Xn + 1). The decisional RLWE problem RLWEm,n,qχ,ψ

is to distinguish the following two distributions.

{(a,as+ e) | a $←− Rmq , s← χ, e← ψm}, {(a,u) | a,u $←− Rmq }.

If χ or ψ is a Gaussian distribution with parameter σ, we simply denote them
as σ in the subscript.

Under these hardness assumptions, we can construct LWE and RLWE cryp-
tosystems. An LWE ciphertext has the form (b,a) ∈ Zn+1

q , and an RLWE ci-
phertext has the form (b, a) ∈ R2

q . For convenience, we introduce the phase for
both LWE and RLWE ciphertexts. For the LWE secret s and RLWE secret t,
the LWE phase φs : Zn+1

q → Zq is defined by φs(b,a) := b + ⟨a, s⟩, and the
RLWE phase φt : R

2
q → Rq is defined by φt(b, a) := b+ a · t.

2.4 Homomorphic Encryption

Definition 3 (Homomorphic Encryption [Gen09]). A homomorphic en-
cryption scheme Π is a tuple of PPT algorithms Setup, KeyGen, Enc, Dec and
Eval, defined as follows.

– Setup(1λ): Given a security parameter λ, output a public parameter pp.
– KeyGen(pp): Given a public parameter pp, output a secret key and evaluation

key (sk, evk).
– Enc(sk, pt): Given a secret key sk and plaintext pt, output a ciphertext ct.
– Dec(sk, pt): Given a secret key sk and ciphertext ct, output a plaintext pt.
– Eval(evk, C, (ct1, · · · , ctℓ)): Give an evaluation key evk, circuit C and ci-

phertexts ct1, · · · , ctℓ, output a ciphertext ctout.

Π is said to be correct if for any circuit C with ℓ input wires and x1, . . . , xℓ,

Dec(sk, Eval(evk, C, (ct1, . . . , ctℓ))) = C(x1, . . . , xℓ)

with an overwhelming probability where (sk, evk) ← KeyGen(pp) and cti ←
Enc(sk, xi) for 1 ≤ i ≤ ℓ. Π is also said to be compact if ciphertexts are of
polynomial size.

Definition 4 (Circuit Privacy [Gen09]). A homomorphic encryption scheme
Π = (Setup, KeyGen, Enc, Dec, Eval) is circuit private for a class of circuits C if
there exists a PPT algorithm Sim such that for any circuit C ∈ C and x1, · · · , xℓ,

{(sk, evk, (ct1, · · · , ctℓ), Eval(evk, C, (ct1, . . . , ctℓ)))}
≈c {(sk, evk, Sim(evk, (ct1, · · · , ctℓ), C(x1, . . . , xℓ)))}

where (sk, evk)← KeyGen(pp) and cti ← Enc(sk, xi) for 1 ≤ i ≤ ℓ.

6

Definition 5 (Sanitization [DS16]). For a homomorphic encryption scheme
Π = (Setup, KeyGen, Enc, Dec, Eval), a PPT algorithm Sanitize(pk, ct) is said
to be message-preserving if for any ciphertext ct,

Dec(sk, Sanitize(evk, ct)) = Dec(sk, ct)

with an overwhelming probability where (sk, evk) ← KeyGen. Moreover, we say
Sanitize is sanitizing if for any two ciphertexts ct, ct′ such that Dec(sk, ct) =
Dec(sk, ct′),

{(sk, evk, Sanitize(evk, ct)} ≈c {(sk, evk, Sanitize(evk, ct′)}.

Note that sanitization implies circuit privacy in the semi-honest model, since
we can construct a circuit-private evaluation algorithm by sanitizing the output
ciphertext after evaluating a circuit.

Circuit Privacy/Sanitization in malicious model, where the keys and ci-
phertexts may not be well-formed, is also studied. We note that Ostrovsky et
al. [OPP14] gives a generic transformation from semi-honest circuit-private FHE
scheme to maliciously circuit-private one.

Therefore, in this paper, we only focus on sanitization in the semi-honest
model.

2.5 Gadget Decomposition

The gadget toolkit is a widely used technique in HE construction for noise man-
agement. A fixed vector g ∈ Zd is called a gadget vector, and the map h : Zq → Zd
is called a gadget decomposition corresponding to g if h satisfies the following
conditions for any a ∈ Zq and some small ϵ, δ > 0:

– ∥h(a)∥∞ ≤ δ
– |⟨h(a),g⟩ − a| ≤ ε

A common choice of gadget decomposition is the digit decomposition. In digit
decomposition, we choose the gadget vector g = [q/Bd, q/Bd−1, . . . , q/B] for
some positive integers B, d such that Bd divides q. The decomposition function
h(·) is then given by a function that outputs each digit of ⌊Bd/q · a⌉ for the
input a, i.e., ⌊Bd/q · a⌉ =

∑
0≤i<d ai · Bi where h(a) = (a0, . . . , ad−1). For

smaller noise growth, the balanced representation can be utilized, ensuring that
ai ∈ (−B/2, B/2] for 0 ≤ i < d. In this case, it is straightforward to show
that δ = B

2 and ε = q
2Bd . It is worth noting that the distributions of h(a)

and ⟨h(a),g⟩ − a can be regarded as uniform distributions over (−B2 ,
B
2] and

(− q
2Bd ,

q
2Bd], respectively, as long as a is drawn from the uniform distribution

over Zq.

2.6 RGSW and External Product

First, we remark that a gadget decomposition h : Zq → Zd can be naturally
extended to a tuple of ring elements as h : R2

q → R2d by decomposing each

7

coefficient of the input polynomials. The RGSW cryptosystem [GSW13] is a
cryptosystem that is based on the gadget toolkit. For a gadget decomposition
h : R2

q → R2d associated with a gadget vector g ∈ Zd, the encryption algorithm
for RGSW is given as follows.

• RGSW.Enc(t, µ): Given a secret key t ∈ R and a message µ ∈ R, sample a← R2d
q

and e← D2d
ZN ,β . Return C← [−t · a+ e,a] + µ ·

[
g 0
0 g

]
∈ R2d×2

q .

We introduce a multiplicative operation between RLWE and RGSW cipher-
texts, called the external product. An external product between a RLWE cipher-
text ct and RGSW ciphertext C is defined as follows:

ct⊡C = h(ct)⊤ ·C (mod q).

We remark that the external product only introduces an additive noise after
multiplication. We provide a more detailed analysis below. Let C be an encryp-
tion of µ ∈ R under secret t, and e be the noise vector of C. Then, the following
holds:

φt(ct⊡C) = ⟨h(ct),C ·
[
1 t
]⊤⟩

= ⟨h(ct), µ ·
[
g 0
0 g

]
·
[
1 t
]⊤

+ e⟩

= µ · ct ·
[
1 t
]⊤

+ µ · (⟨h(ct),g⟩ − ct) ·
[
1 t
]⊤

+ ⟨h(ct), e⟩
= µ · φt(ct) + e′ (mod q)

for small e′.

2.7 TFHE scheme

We review the TFHE scheme [CGGI16] below.

• Setup(1λ): For the security parameter λ, generate and output the parameter

pp = (n,N, q, α, β,g, h,g′, h′) for LWE dimension n, RLWE dimension N , plain-
text and ciphertext modulus p, q, error parameters α, β > 0, the gadget vector
and decomposition g ∈ Zd and h : Zq → Zd, and the key-switching gadget vector

and decomposition g′ ∈ Zd′ and h′ : Zq → Zd′ .
For simplicity, we suppose that the plaintext modulus p divides the ciphertext

modulus q. We also define the scaling factor ∆ = q
p ∈ Z.

• KeyGen(pp):

– Sample si
$←− {0, 1} for 0 ≤ i < n and return the LWE key s = (s0, . . . , sn−1).

– Sample ti
$←− {0, 1} for 0 ≤ i < N and return the RLWE key t =

∑N−1
i=0 tiX

i.
– Set BRKi ← RGSW.Enc(t; si) for 0 ≤ i < n and return the blind rotation key

BRK = {BRKi}0≤i<n

8

– Sample Ai,1
$←− Zd′×nq and ei ← Dd′α for 0 ≤ i < n, and set KSKi ←

(Ai,0|Ai,1) ∈ Zd
′×(n+1)
q where Ai,0 = −Ai,1 · s+ g′ · ti + ei (mod q).

– Sample pk1
$←− Rq, epk ← DNα . Compute and output pk = (pk0, pk1) where

pk0 = −pk1 · t+ epk (mod q).

For simplicity, we write evk = (pk,KSK,BRK). Moreover, we denote t as the
vectorized ring secret (t0, t1, . . . , tN−1) ∈ ZN .

• Enc(t,m): Given the secret key t and a message 0 ≤ m < p
2 + 1, sample

a
$←− ZNq and e← DZN ,α. Return c = (b,a) ∈ ZN+1

q where b = −⟨a, t⟩+∆ ·m+e
(mod q).

• Dec(t, c): Given the ciphertext c = (b,a) ∈ ZN+1
q , output µ = ⌊ 1

∆ ·[b+⟨a, t⟩]q⌉.

The TFHE bootstrapping consists of three steps: 1. Key-switching, 2. Blind
Rotation, and 3. Sample Extraction. In the key-switching step, the ciphertext
size is switched from the RLWE dimension N to LWE dimension n in order to
enhance the bootstrapping performance, using the key-switching key KSK. It is
followed by the blind rotation step, which homomorphically decrypts the input
ciphertext over the exponent of a monomial. Finally, the constant term of the
phase of the output RLWE ciphertext from blind rotation is extracted during
the sample extraction step. We describe the algorithms for each step below.

• KeySwitch(KSK, c): Given an LWE ciphertext c = (b, a0, . . . , aN−1) ∈ ZN+1
q ,

return (b,0) +
∑N−1
i=0 h′(ai)

⊤ · KSKi ∈ Zn+1
q .

• BlindRotate(BRK, c): Given the blind rotation key BRK and LWE ciphertext

c ∈ ZN+1
q , run Algorithm 1.

Algorithm 1 Blind Rotation

Input: Blind Rotation Key BRK, LWE ciphertext c = (b,a) ∈ Zn+1
q

1: Let b̃ = ⌊ 2N
q
· b⌉, ãi = ⌊ 2Nq · ai⌉ for 0 ≤ i < n

2: tv := ∆ ·
∑(p−1)N/p

i=−N/p+1⌊
p

2N
i⌉ ·X2N−i

3: ACC← (X b̃ · tv, 0) ∈ R2
q

4: for 0 ≤ i < n do
5: ACC← ACC+ (X ãi − 1) · (ACC⊡ BRKi)
6: end for
7: Return ACC

• SampleExtract(ct): Given an RLWE ciphertext ct = (b =
∑N−1
i=0 biX

i, a =∑N
i=0 aiX

i) ∈ R2
q , return (b0, a0,−aN−1, . . . ,−a1) ∈ ZN+1

q .
The entire bootstrapping procedure is provided in Algorithm 2.
One intrinsic feature of the TFHE scheme is that it can evaluate a univariate

function while bootstrapping. To be precise, given a function f : Zp ∩ [0, p/2)→

9

Algorithm 2 TFHE Bootstrapping

Input: Blind Rotation Key BRK, Key Switching Key KSK, LWE ciphertext c =
(b,a) ∈ ZN+1

q

1: cks ← KeySwitch(KSK, c)
2: ctbr ← BlindRotate(BRK, c′)
3: cout ← SampleExtract(ct)
4: Return cout

Zp, the test vector tv is replaced by the following polynomial:

∆ ·
(p−1)N/p∑
i=−N/p+1

f
(⌊ p

2N
i
⌉)
·X2N−i.

In the following sections, we define the error function Errs(c) : Zn+1
q → Z,

defined by Errs(c) := [φs(c)]∆. Naturally, this function outputs the noise term of
the input ciphertext. Similarly, we generalize this definition to RLWE ciphertext
as well, by Errt(ct) := [φt(ct)]∆.

2.8 Useful Lemmas

Definition 6 ([MR07, Smoothing Parameter]). For a n-dimensional lat-
tice Λ and ε > 0, the smoothing parameter ηε(Λ) is defined as the smallest σ
such that ρ1/(σ

√
2π)(Λ

∗ \ {0}) ≤ ε.

Lemma 1 ([MR07, Lemma 3.3]). For a n-dimensional lattice Λ and ε > 0,

ηε(Λ) ≤ λn(Λ) ·
√

ln(2n(1 + 1/ε))

π

where λn(Λ) is the n-th successive minimum of Λ.

Lemma 2 ([Pei10, Theorem 3.1]). Let Σ1,Σ2 be positive definite matrices,
and let Σ−1 := Σ−11 +Σ−12 . If ηε(Zn)/

√
2π ≤

√
Σ for 0 < ε < 1, then for any

c1, c2 ∈ Rn,

∆(DZn,c1,
√
Σ1

+DZn,c2,
√
Σ2
,DZn,c1+c2,

√
Σ1+Σ2

) ≤ 2ε.

Lemma 3 ([dCKK+24, Lemma 6]). Let E ∈ Zm×n be a matrix, t > 0 be
an integer, and σ, τ > 0 be reals such that

1

σ2
+
∥E∥22
τ2
≤ 2π

ηε(tZn)2

for 0 < ε ≤ 1/2. Then, for any a ∈ Zn,

∆
(
EDa+tZn,σ +DZm,τ ,DZm,

√
σ2EE⊤+τ2I

)
≤ 4ε.

10

3 Randomization Techniques for Sanitization

In this section, we describe two randomization techniques that serve as building
blocks for our sanitization algorithm. The first technique is mask rerandomiza-
tion, which transforms the distribution of the mask in a given ciphertext to
a uniform distribution without altering the message. The second technique is
randomized linear evaluation, which enables the homomorphic evaluation of an
affine function ax+ b without revealing a and b in the output ciphertext.

3.1 Mask Rerandomization

In this subsection, we explain the (modified) mask rerandomization algorithm
based on the construction from [BI22], and present the correctness and security
proofs. Our mask rerandomization algorithm leverages the fact that the mask
of a public key encryption of zero is computationally indistinguishable from a
uniformly random variable over Rq under careful parameter choices. By adding
this specially crafted encryption of zero to a given ciphertext, we can achieve
mask rerandomization.

Below, we provide the algorithm that generates a public key encryption of
zero, with Gaussian parameters σr and τr.

• EncZeroσr,τr (pk) : For a public key pk ∈ R2
q , sample e1, e2 ← DZN ,σr

and

e0 ←
⌊
DRN ,τr

⌉
. Output e2 · pk+ (e0, e1) (mod q).

It is straightforward to show that this algorithm outputs an encryption of
zero under the secret t as long as the noise parameters σr and τr are sufficiently
small, since

φt(ctr) = e2 · pk0 + e0 + t · (e2 · pk1 + e1)

= e2 · epk + e0 + e1 · t (mod q)

for ctr ← EncZeroσr,τr (pk) and pk = (pk0, pk1). Moreover, observe that the
mask of ctr is e2 · pk1 + e1. When combined with the error of ctr, the mask
can be viewed as an RLWE sample with the key e2 and error e1, given with a
linear hint epk · e2 + t · e1 + e0. Therefore, the distribution of the mask can be
shown to be computationally indistinguishable from uniform by a reduction to
the Hint-RLWE problem [KLSS23,MKMS22]. However, since the Hint-RLWE
problem was only proven secure in the discrete Gaussian setting in prior works,
we provide a new proof for the rounded Gaussian setting. We provide a detailed
analysis of the distribution of ctr in the following lemma.

Lemma 4 (Distribution of EncZero). Let σr, τr > 0 be reals. Let B > 0
be an upper bound of ∥

[
Epk T

]
∥2 for any t, pk sampled from KeyGen, where Epk

and T are the negacyclic matrices of epk := Errt(pk) and t respectively. If for
0 < ε ≤ 1/2,

1

κ2
:=

1

σ2
r

+
B2

τ2r
≤ π

2ηε(Z2N)2

11

and RLWE1,N,q

κ/
√
2,κ/
√
2
is hard, then

{(t, evk, ctr) | ctr ← EncZeroσr,τr (pk)}

≈c {(t, evk, (−ut+ er, u)) | u
$←− Rq, er ← Dσr,τr

EncZero}

where (t, evk)← KeyGen and

Dσr,τr
EncZero := {(te1 + epke2 + e0) | e1, e2 ← DZN ,σr

, e0 ←
⌊
DRN ,τr

⌉
}.

Moreover, the noise of EncZero is bounded by

Var(Errt(EncZeroσr,τr (pk))) ≤ V
σr,τr
EncZero := N

(
β2 +

1

4

)
σ2
r + τ2r +

1

12
.

Proof. For Γ =
[
Epk T

]
, consider a sample

{(A,
[
I A

]
r,Γ,Γr+ y) | a $←− Rq, r← DZ2N ,σr

,y← DRN ,τr}

whereA is a negacyclic matrix of a. We claim that this sample is computationally
indistinguishable from

{(A,u,Γ,Γr+ y) | a, u $←− Rq, r← DZ2N ,σr
,y← DRN ,τr}

given the conditions in Lemma 4, where u is a coefficient vector of u.
Since the conditional distribution of r given Γr+ y satisfies

Pr
r←DZ2N,σr
y←DRN,τr

[r = v | Γr+ y = w] = DZ2N ,σr
(v) · DRN ,τr (w − Γv)

∝ exp

[
−π
(

1

σ2
r

v⊤v +
1

τ2r
(w − Γv)⊤(w − Γv)

)]
∝ exp

[
−π(v − τ−2r ΣE⊤z)⊤Σ−1(v − τ−2r ΣΓ⊤w)

]
∝ ρ√Σ(v − c)

where Σ =
(
σ−2r · I+ τ−2r Γ⊤Γ

)−1
and c = τ−2r ΣΓ⊤w, we have

{(A,
[
I A

]
r,Γ,Γr+ y) | a $←− Rq, r← DZ2N ,σr

,y← DRN ,τr}

≡
{
(A,

[
I A

]
r′,Γ,w)

∣∣∣∣ a $←− Rq, r← DZ2N ,σr
,y← DRN ,τr

w = Γr+ y, r′ ← DZ2N ,c,
√
Σ

}
.

Then, using Lemma 2, we decompose the distribution of r′ as

DZ2N ,c,
√
Σ ≈s DZ2N ,κ/

√
2 +DZ2N ,c,

√
Σ−κ2/2I

.

This decomposition is valid under the condition that Σ − κ2/2 · I is positive
definite and

ηε(Z2N)/
√
2π ≤

√
(κ2/2 · I)−1 + (Σ− κ2/2 · I)−1

−1
.

12

We can check these conditions by noticing

σmin(Σ) =

∥∥∥∥ 1

σ2
r

I+
Γ⊤Γ

τ2r

∥∥∥∥−1
2

≥
(

1

σ2
r

+
B2

2

τ2r

)−1
= κ2.

Therefore, Σ− κ2/2 · I is positive-definite, and

√
(κ2/2 · I)−1 + (Σ− κ2/2 · I)−1

−1
≥ κ

2
≥ ηε(Z2N)√

2π
.

Finally, we conclude that{
(A,

[
I A

]
r′,Γ,w)

∣∣∣∣ a $←− Rq, r← DZ2N ,σr
,y← DRN ,τr

w = Γr+ y, r′ ← DZ2N ,c,
√
Σ

}
≈s
{
(A,

[
I A

]
(r′1 + r′2),Γ,w)

∣∣∣∣ a
$←− Rq, r← DZ2N ,σr

,y← DRN ,τr

w = Γr+ y, r′1 ← DZ2N ,c,κ/
√
2, r
′
2 ← DZ2N ,c,

√
Σ−κ2/2I

}
≈c
{
(A,

[
I A

]
r′2 + u,Γ,w)

∣∣∣∣ a
$←− Rq, r← DZ2N ,σr

,y← DRN ,τr

w = Γr+ y, u← Rq, r
′
2 ← DZ2N ,c,

√
Σ−κ2/2I

}
≡
{
(A,u,Γ,w)

∣∣∣∣ a $←− Rq, r← DZ2N ,σr
,y← DRN ,τr

w = Γr+ y, u
$←− Rq

}
as desired, where the last computational indistinguishability comes from the
hardness of RLWE1,N,q

κ/
√
2,κ/
√
2
.

Finally, since

ctr = e2 · pk+ (e0, e1) = (−e2pk1t+ e2epk + e0, e2pk1 + e1)

= (−(pk1e2 + e1)t+ (te1 + epke2 + e0), pk1e2 + e1),

the sample (t, evk, ctr) is equivalent to (evk, pk1, pk1e2 + e1, t, epk, te1 + epke2 +
e0). Let P1 be negacyclic matrix of pk1, and e0, e1, e2 be coefficient vectors of
e0, e1, e2. Then the distribution of the sample satisfies{(

evk,P1,
[
I P1

] [e2
e1

]
,Γ,Γ

[
e2
e1

]
+ e0

) ∣∣∣∣ pk1
$←− Rq, e1, e2 ← DZN ,σr

e0 ←
⌊
DRN ,τr

⌉}
≡
{(

evk,P1,
[
I P1

] [e2
e1

]
,Γ,

⌊
Γ

[
e2
e1

]
+ e0

⌉) ∣∣∣∣ pk1
$←− Rq, e1, e2 ← DZN ,σr

e0 ← DRN ,τr

}
≈s
{(

evk,P1,u,Γ,

⌊
Γ

[
e2
e1

]
+ e0

⌉) ∣∣∣∣ u, pk1 $←− Rq, e1, e2 ← DZN ,σr

e0 ← DRN ,τr

}
≡
{(

evk,P1,u,Γ,Γ

[
e2
e1

]
+ e0

) ∣∣∣∣ u, pk1 $←− Rq, e1, e2 ← DZN ,σr

e0 ←
⌊
DRN ,τr

⌉} .
We conclude that

{(t, evk, ctr) | ctr ← EncZeroσr,τr (pk)}

≈c {(t, evk, (−ut+ er, u)) | u
$←− Rq, er ← Dσr,τr

EncZero}.

13

Since Errt(EncZeroσr,τr (pk)) follows D
σr,τr
EncZero, the bound on the variance can be

computed as

Var(Errt(EncZeroσr,τr (pk))) ≤ NVar(t)Var(e1) +NVar(epk)Var(e2) + Var(e0)

≤ N 1

4
σ2
r +Nβ2σ2

r + τ2r +
1

12

= N

(
β2 +

1

4

)
σ2
r + τ2r +

1

12
.

⊓⊔

Now we describe the mask rerandomization algorithm for LWE ciphertexts.
In our mask rerandomization method, we utilize the EncZero procedure de-
scribed above. Since an RLWE ciphertext can be decomposed into N LWE ci-
phertexts, each corresponding to a coefficient of the plaintext in the RLWE en-
cryption, we can obtain an LWE encryption of zero by extracting the constant
term of the RLWE public key encryption of zero using the sample extraction
algorithm. Since the mask remains the same up to the sign and order after the
sample extraction, the mask of the extracted LWE ciphertext remains uniform.
Consequently, the mask of an LWE ciphertext can be randomized by adding
the extracted LWE public key encryption of zero. The exact algorithm and the
security proof are provided below.

• ReRandσr,τr (pk, c) : For a public key pk ∈ R2
q and ciphertext c ∈ ZN+1

q , output

c+ SampleExtract(EncZeroσr,τr (pk)) (mod q).

Lemma 5 (Mask Rerandomization). Let c = (b = −⟨a, t⟩+∆m+ e,a) ∈
ZN+1
q be an LWE ciphertext. If σr, τr > 0 satisfy the conditions of Lemma 4,

then

{(t, evk, ReRandσr,τr (pk, c))}

≈s {(t, evk, (−⟨u, t⟩+∆m+ e+ er) | u
$←− ZNq , er ← D

σr,τr
EncZero|0}

where (t, evk)← KeyGen. Moreover,

Var(Errt(ReRandσr,τr (pk, c))) ≤ Var(Errt(c)) + V σr,τr
EncZero.

Proof. Let (b̂, â) =
(∑N−1

i=0 b̂iX
i,
∑N−1
i=0 âiX

i
)
← EncZeroσr,τr (pk). By Lemma 4,

the distribution of (b̂, â) is computationally indistinguishable from {(−ât+er, â) |
â

$←− Rq, er ← Dσr,τr
EncZero}. Therefore, the distribution of SampleExtract((b̂, â)) =

(b̂0, â0,−âN−1, . . . ,−â1) is computationally indistinguishable from {(−⟨u, t⟩ +
er,u) | u

$←− ZNq , er ← D
σr,τr
EncZero|0}. This implies that

{(t, evk, ReRandσr,τr (pk, c))}

≡ {(t, evk, (b+ b̂,a+ â)) | (b̂, â)← SampleExtract(EncZeroσr,τr (pk))}

14

≈s {(t, evk, (−⟨a+ â, t⟩+∆m+ e+ er,a+ â)) | â $←− ZNq , er ← D
σr,τr
EncZero|0}

≡ {(t, evk, (−⟨u, t⟩+∆m+ e+ er) | u
$←− ZNq , er ← D

σr,τr
EncZero|0}

as desired. Moreover, the bound of the variance of Errt(ReRandσr,τr (pk, c)) =
e+ er immediately follows from Lemma 4. ⊓⊔

3.2 Randomized Linear Evaluation

In this subsection, we explain the randomized linear evaluation technique for
RLWE ciphertexts based on circuit-private linear homomorphic encryption from
de Castro et al. [dCKK+24]. Recall that the RLWE encryption of m is given by
ct = (b = −as + ∆m + e, a) ∈ R2

q , where ∆ = q/p for p dividing q. Then, an
affine function f(x) = am+ b for a, b ∈ Rp can be evaluated as follows:

ct′ := a · ct+ (∆b, 0) = (a · b+∆b, a · a) = (−(a · a)s+∆(am+ b) + ae, a · a).

However, this resulting ciphertext clearly leaks information about a in the mask
and the error of the output ciphertext. To address this issue, we use a Gaussian
random variable r sampled from the coset a + pZN . By adding a moderately
sized Gaussian error, we can erase the information of a from the error of the
output ciphertext. Finally, we rerandomize the mask by adding a ciphertext
from EncZero, similar to the previous section. We provide a full description of
our randomized linear evaluation algorithm below.

• RandLinEvalσℓ,τℓ,σr,τr (pk, ct, a, b): Given a ciphertext ct and ring elements

a, b ∈ Rp, sample r ← Da+pZN ,σℓ
and ê ←

⌊
DRN ,τℓ

⌉
. Compute and output

r · ct+ (∆b+ ê, 0) + EncZeroσr,τr (pk) (mod q).

It is worth noting that the additional Gaussian noise is chosen as a rounded
Gaussian distribution in our construction, compared to the discrete Gaussian
distribution in [dCKK+24]. Now, we prove that the distribution of the output
ciphertext of this randomized linear evaluation is independent of a and b, except
for the message. Before that, we prove the following lemma, which is an adap-
tation of the Gaussian lemma Lemma 3 to the rounded Gaussian distribution.

Lemma 6 (Rounded Gaussian Lemma). Let E ∈ Zm×n be a matrix, t > 0
be an integer, and σ, τ > 0 be reals such that

1

σ2
+
∥E∥22
τ2
≤ 2π

ηε(tZn)2

for 0 < ε < 1/2. Then, for any a ∈ Zn,

∆
(
EDa+tZn,σ + ⌊DRm,τ⌉,

⌊
DRm,

√
σ2EE⊤+τ2I

⌉)
≤ 4ε.

Proof. Let p > 0 be an integer. By Lemma 3, we have

EDa+tZn,σ +D 1
pZm,τ ≡

1

p
(EDpa+ptZn,pσ +DZm,pτ)

15

4ε
≈ 1

p
DZm,p

√
σ2EE⊤+τ2I

≡ D 1
pZm,
√
σ2EE⊤+τ2I

.

The result follows by taking p→∞ and rounding both sides. ⊓⊔

Lemma 7 (Randomized Linear Evaluation). Let σr, τr, σℓ, τℓ > 0 be reals,
and ct = (−at + ∆m + e, a) ∈ R2

q be an RLWE ciphertext. Let B > 0 be an
upper bound of ∥E∥2 where E is the negacyclic matrix of e. If σr, τr satisfy the
condition of Lemma 4 and σℓ, τℓ > 0 satisfy

1

σ2
ℓ

+
B2

τ2ℓ
≤ 2π

ηε(pZn)2

for some 0 < ε ≤ 1/2, then for any a, b ∈ Rq,

{(t, evk, RandLinEvalσr,τr,σℓ,τℓ(pk, ct, a, b))}
≈c {(t, evk, RandLinEvalσr,τr,σℓ,τℓ(pk, ct, 0, 0) + (∆(am+ b), 0))}.

Moreover,

Var(Errt(RandLinEvalσr,τr,σℓ,τℓ(pk, ct, a, b)))

≤ Nσ2
ℓVar(Errt(ct)) + τ2ℓ +

1

12
+ V σr,τr

EncZero.

Proof. Let ct′ = r · ct + (∆b + ê, 0) where r ← Da+pZN ,σℓ
and ê ←

⌊
DRN ,τℓ

⌉
.

Then,

ct′ = r · (b, a) + (∆b+ ê, 0)

= (−rat+∆rm+ re+∆b+ ê, ra)

= (−(ra)t+∆(am+ b) + re+ ê, ra) (mod q).

By Lemma 6, it follows that

Errt(ct
′) = re+ ê ∼ EDa+pZN ,σℓ

+
⌊
DRN ,τℓ

⌉ 4ε
≈
⌊
DRN ,

√
σ2
ℓEE⊤+τ2

ℓ I

⌉
whereE is a negacyclic matrix of e. Therefore, the distribution of RandLinEval(pk, ct, a, b)
can be written as

{(t, evk, RandLinEvalσr,τr,σℓ,τℓ(pk, ct, a, b))}

≡

{
(t, evk, ct′ + ctr)

∣∣∣∣∣ r← Da+pZN ,σℓ
, ê←

⌊
DRN ,τℓ

⌉
ct′ ← r · ct+ (∆b+ ê, 0)
ctr ← EncZeroσr,τr (pk)

}

≈c
{
(t, evk, (−ut+∆(am+ b) + eℓ + er, u)

∣∣∣∣ r← Da+pZN ,σℓ
, ê←

⌊
DRN ,τℓ

⌉
er ← Dσr,τr

EncZero, eℓ ← re+ ê, u
$←− Rq

}
≈s

{
(t, evk, (−ut+∆(am+ b) + eℓ + er, u)

∣∣∣∣∣ eℓ ←
⌊
DRN ,

√
σ2
ℓEE⊤+τ2

ℓ I

⌉
er ← Dσr,τr

EncZero, u
$←− Rq

}

16

where the first computational indistinguishability comes from lemma 4.
Now, let ct′′ = r′ ·ct+(∆(am+b)+ê, 0) where r′ ← DZN ,σℓ

and ê←
⌊
DRN ,τℓ

⌉
.

Then, analogous to the logic above, we have

ct′′ = (−(r′a)t+∆(am+ b) + r′e+ ê, r′a) (mod q)

and

Errt(ct
′′) = r′e+ ê ∼ EDpZN ,σℓ

+
⌊
DRN ,τℓ

⌉ 4ε
≈
⌊
DRN ,

√
σ2
ℓEE⊤+τ2

ℓ I

⌉
.

Hence, the distribution of RandLinEval(pk, ct, 0, 0)+(∆(am+b), 0) can be writ-
ten as

{(t, evk, RandLinEvalσr,τr,σℓ,τℓ(pk, ct, 0, 0) + (∆(am+ b), 0))}

≡

{
(t, evk, ct′′ + ctr)

∣∣∣∣∣ r′ ← DpZN ,σℓ
, ê←

⌊
DRN ,τℓ

⌉
ct′′ ← r · ct+ (∆(am+ b) + ê, 0)

ctr ← EncZeroσr,τr (pk)

}

≈c
{
(t, evk, (−ut+∆(am+ b) + eℓ + er, u)

∣∣∣∣ r′ ← DpZN ,σℓ
, ê←

⌊
DRN ,τℓ

⌉
er ← Dσr,τr

EncZero, eℓ ← re+ ê, u
$←− Rq

}
≈s

{
(t, evk, (−ut+∆(am+ b) + eℓ + er, u)

∣∣∣∣∣ eℓ ←
⌊
DRN ,

√
σ2
ℓEE⊤+τ2

ℓ I

⌉
er ← Dσr,τr

EncZero, u
$←− Rq

}
where the first computational indistinguishability comes from Lemma 4. We
conclude that

{(t, evk, RandLinEvalσr,τr,σℓ,τℓ(pk, ct, a, b))}

≈c

{
(t, evk, (−ut+∆(am+ b) + eℓ + er, u)

∣∣∣∣∣ eℓ ←
⌊
DRN ,

√
σ2
ℓEE⊤+τ2

ℓ I

⌉
er ← Dσr,τr

EncZero, u
$←− Rq

}
≈c {(t, evk, RandLinEvalσr,τr,σℓ,τℓ(pk, ct, 0, 0) + (∆(am+ b), 0))}.

Finally, the bound of variance of the output error can be computed as

Var(Errt(RandLinEvalσr,τr,σℓ,τℓ(pk, ct, a, b)))

≤ NVar(r)Var(e) + Var(ê) + Var(EncZeroσr,τr (pk))

≤ Nσ2
ℓVar(Errt(ct)) + τ2ℓ +

1

12
+ V σr,τr

EncZero.

⊓⊔

4 Our Sanitization Method

In this section, we provide a detailed analysis of our novel sanitization method
for TFHE, leveraging the mask rerandomization and the randomized linear eval-
uation algorithm described in Section 3.

17

4.1 Our Algorithm

To achieve sanitizability, we modify the bootstrapping algorithm, as it is the
most straightforward way to remove the existing error of the input ciphertext.
Note that it is essential to randomize the underlying bootstrapping algorithm,
since the noise term of the output ciphertext of the bootstrapping may leak par-
tial information about the input ciphertext. Prior works [BI22,Klu22] focused on
the randomization of unit operations in bootstrapping. In particular, they ran-
domized the external products in the blind rotation, exploiting the randomized
gadget decomposition technique [ASP14,BdMW16].

In contrast, in our sanitization algorithm, we directly randomize the input
and output ciphertexts, rather than the unit operations. The key idea is to ran-
domize the mask of the input ciphertext and run the bootstrapping algorithm
only with the rerandomized mask, without the body. After bootstrapping, we
perform a randomized linear evaluation to ensure that the bootstrapped result
is correct. Let us explain in more detail. Let cin ∈ ZN+1

q be the input ciphertext.
First, we randomize the input ciphertext by computing crand := (brand,arand)←
ReRand(cin). By Lemma 5, the mask arand is computationally indistinguishable
from a uniformly sampled vector over ZNq . Next, we run the key-switching al-
gorithm over crand, resulting in cks := (bks,aks) ← KeySwitch(KSK, crand).
Note that the mask aks is fully simulatable as well, since it is identical to
the mask of KeySwitch(KSK, (0,arand)) due to the linearity of LWE cipher-
texts. Now, using only the mask aks, we perform the blind rotation algorithm as
ctbr ← BlindRotate(BRK, (0,aks)). Since ctbr only depends on arand, it can be
simulated by running the same algorithm with a uniformly random vector over
ZNq . Now, to realize the correct functionality of blind rotation, we homomor-

phically multiply the monomial X⌊2N/q·bks⌉ to the resulting ciphertext ctbr. The
correctness of this modification follows from the functionality of blind rotation,
since

φt(BlindRotate(BRK, (b,a))) ≈ tv ·X⌊2N/q·b⌉+
∑n−1

i=0 ⌊2N/q·ai⌉·si

≈ X⌊2N/q·b⌉ · tv ·X
∑n−1

i=0 ⌊2N/q·ai⌉·si

≈ φt
(
X⌊2N/q·b⌉ · BlindRotate(BRK, (0,a))

)
.

However, a naive multiplication of the monomial will result in the leakage of the
value ⌊2N/q · bks⌉, since it is multiplied to the final noise term. Therefore, the
randomized linear evaluation technique from Section 3.2 is utilized to multiply
the monomial obliviously. Then, we can simulate the output noise as a compo-
sition of the error distribution of blind rotation and the error distribution after
the randomized linear evaluation, finally achieving sanitization. We provide the
exact algorithm in Algorithm 3.

It is worth noting that our sanitization method can be naturally applied to
any AP-like cryptosystems without any modification of key algorithms. For ex-
ample, FHEW or LMKCDEY schemes realize the blind rotation by directly mul-
tiplying the monomialsXaisi to the accumulator. Unlike prior works [BI22,Klu22],

18

Algorithm 3 New Sanitization Method Sanitizeσr,τr,σℓ,τℓ(evk, cin)

Input: Public key pk, blind rotation key BRK, key-switching key KSK, input LWE
ciphertext cin ∈ ZN+1

q and Gaussian parameters σr, τr, σℓ, τℓ > 0.
1: crand ← ReRandσr,τr (pk, cin)
2: cks := (bks,aks)← KeySwitch(KSK, crand))
3: ctbr ← BlindRotate(BRK, (0,aks))
4: ctlin ← RandLinEvalσℓ,τℓ(pk, ctbr, X

⌊2N/q·bks⌉, 0)
5: cout ← SampleExtract(ctlin)
6: return cout

the blind rotation remains a black-box subroutine and therefore does not need
to be modified at all.

We also remark that our sanitization algorithm can be naturally extended
to accept arbitrary test vectors. Therefore, to construct a circuit-private evalu-
ation algorithm, one can simply replace the last functional bootstrapping with
Algorithm 3, instead of having an additional sanitization step at the end of the
evaluation.

4.2 Noise and Security Analysis

In this section, we provide a noise analysis for our sanitization algorithm and
its major building blocks, and give a detailed security proof. In our analysis,
we assume that each component of LWE and RLWE ciphertexts follows the
uniform distribution over Zq and Rq due to the (R)LWE assumption. Then, the
gadget decomposition result and the decomposition error will also follow uniform
distributions. More precisely, for any a ∈ Zq, the inner product ⟨h(a),g⟩−a and
the gadget decomposition h(a) follow uniform distributions over Z ∩ [−B2 ,

B
2]

and Z ∩ [− q
2Bd ,

q
2Bd], respectively. Therefore, their variances are given by B2

12

and q2

12B2d .

Lemma 8 (Key Switching). For an LWE ciphertext c ∈ ZN+1
q , the noise

variance of cks ← KeySwitch(KSK, c) is bounded by

Var(Errs(cks)) ≤ Var(Errt(c)) + VKeySwitch

for

VKeySwitch :=
1

12

1

B′2d
′ q

2N +
1

12
α2d′NB′

2
.

Proof. Let c = (b, a0, . . . , aN−1) and ei denote the encryption noise vector of
i-th key-switching key KSKi for 0 ≤ i < N . Then, we have

φs(cks)− φt(c) = b+

N−1∑
i=0

h′(ai)
⊤φs(KSKi)− (b+

N−1∑
i=0

ai · ti)

=

N−1∑
i=0

(⟨h′(ai),g′ · ti + ei⟩ − aiti)

19

=

N−1∑
i=0

ti · (⟨h′(ai),g′⟩ − ai) +
N−1∑
i=0

⟨h′(ai), ei⟩

from definition. Then, since each ti is either zero or one, the final error term is

bounded by q2N

12B′2d′ +
1
12α

2d′NB′
2
and it concludes the proof. ⊓⊔

Lemma 9 (Modulus Switching). For an LWE ciphertext c = (b, a0, . . . , an−1) ∈
Zn+1
q , the noise variance of c′ = (⌊ 2Nq · b⌉, ⌊

2N
q · a0⌉, . . . , ⌊

2N
q · an−1⌉) ∈ Z2N is

bounded by

Var(Errs(c
′)) ≤

(
2N

q

)2

Var(Errs(c)) + VModSwitch

for VModSwitch :=
n+1
12 .

Proof. We have

φs(c
′)− 2N

q
φs(c) = (⌊2N

q
· b⌉ − 2N

q
· b) +

n−1∑
i=0

(⌊2N
q
· ai⌉ −

2N

q
· ai) · si.

Similar to the previous proofs, we assume that the ciphertext follows the uniform
distribution. Therefore, ⌊ 2Nq · b⌉−

2N
q · b and ⌊

2N
q · ai⌉−

2N
q · ai follow a uniform

distribution over 1
qZ ∩ [− 1

2 ,
1
2] for 0 ≤ i < n. Moreover, as si is either one or

zero, the variance of the term above is bounded by n+1
12 . ⊓⊔

Lemma 10 (Blind Rotation). For an LWE ciphertext c = (b, a0, · · · , an−1) ∈
Zn+1
q , the noise variance of ctbr ← BlindRotate(BRK, c) is bounded by

Var(Errt(ctbr)) ≤ VBlindRotate :=
1

12

1

B2d
n(N + 1)q2 +

1

6
β2ndNB2.

Proof. Let ACCi be the value of the accumulator before i-th iteration of the for
loop in Algorithm 1 (lines 4-6). Also, let ACCn denote the output of Algorithm 1.
Then, by definition, it follows that

φt(ACCi+1)

= φt(ACCi) + (X ãi − 1) · φt(ACCi ⊡ BRKi)

= φt(ACCi) + (X ãi − 1) · ⟨h(ACCi),g ·
[
1
t

]
si + ei⟩

= X ãisiφt(ACCi) + (X ãi − 1) ·
(
si (⟨h(ACCi),g⟩ − ACCi) ·

[
1
t

]
+ ⟨h(ACCi), ei⟩

)
where ei denotes the noise vector of i-th blind rotation key BRKi. As si is a
binary value and t is a polynomial with binary coefficients, the introduced error
can be bounded by

(N + 1)
q2

12B2d
+

1

6
dNβ2B2.

20

Note that each line introduces an additional error, and monomial multiplication
only rotates the coefficient vector (up to sign). So the variance for the final noise
term, i.e., Var(Errt(ACCn)) is given by

n(N + 1)
q2

12B2d
+

1

6
dnNβ2B2.

⊓⊔

Lemma 11 (Sanitization). For an LWE ciphertext cin ∈ ZN+1
q , the noise

variance of cout ← Sanitizeσr,τr,σℓ,τℓ(evk, cin) is bounded by

Var(Errt(cout)) ≤ V σr,τr,σℓ,τℓ
Sanitize := Nσ2

ℓVBlindRotate + τ2ℓ +
1

12
+ V σr,τr

EncZero.

Proof. Recall that our sanitization method performs the randomized linear eval-
uation right after the blind rotation, so the noise variance directly follows from
Lemma 10 and Lemma 7. ⊓⊔

Finally, we provide the correctness and security proof of our sanitization
algorithm. The correct parameter selection will be discussed in Section 5.1.

Theorem 1 (Correctness of Sanitize). Let σr, τr and σℓ, τℓ be reals that
satisfy the conditions of Lemma 4 and Lemma 7 respectively. For an LWE en-
cryption cin ∈ ZN+1

q of m ∈ Zp ∩ [0, p/2), let

cSanitize ← Sanitizeσr,τr,σℓ,τℓ(evk, cin).

Then,
φt(cSanitize) = ∆mSanitize + eSanitize

such that mSanitize := ⌊m+ p
2N e⌉ ∈ Zp for some e ∈ Z where

Var(e) ≤
(
2N

q

)2

·
(
Var(Errt(cin)) + V σr,τr

EncZero + VKeySwitch
)
+ VModSwitch.

Moreover, the variance of eSanitize ∈ Z is bounded by V σr,τr,σℓ,τℓ
Sanitize .

Proof. We will follow the notations from Algorithm 3 in the following proof.
In our sanitization algorithm, the mask rerandomization and key-switching are
performed before the blind rotation. By Lemma 5 and Lemma 10, it follows that
the Errt(cks) is bounded by Var(Errt(cin))+V

σr,τr
EncZero+VKeySwitch. Subsequently,

in the blind rotation, the ciphertext modulus is switched from q to 2N and it
introduces error with variance VModSwitch, resulting in the error variance with
bound (

2N

q

)2

·
(
Var(Errt(cin)) + V σr,τr

EncZero + VKeySwitch
)
+ VModSwitch.

Therefore, in the blind rotation, it essentially computes X
2N
p ·m+e with Var(e) ≤(

2N
q

)2
·
(
Var(Errt(cin)) + V σr,τr

EncZero + VKeySwitch
)
+VModSwitch, and the functionality

21

of the blind rotation implies that the constant term of the final accumulator is
a noisy encoding of ∆mSanitize = ∆⌊m+ p

2N e⌉. On the other hand, the variance
of the output noise is bounded by V σr,τr,σℓ,τℓ

Sanitize by Lemma 11. ⊓⊔

Theorem 2 (Sanitizability of Sanitize). Let σr, τr, σℓ, τℓ be reals that sat-
isfy the conditions of Theorem 1. Then, Sanitizeσr,τr,σℓ,τℓ (Algorithm 3) is
sanitizing.

Proof. Let cin = (bin = −⟨ain, t⟩ + ∆m + ein,ain). To prove the sanitization
property, we alternatively show that the distribution of the output ciphertext of
Sanitize only depends on evk and m. We proceed using the hybrid argument,
where Hyb0 corresponds to the output of Sanitizeσr,τr,σℓ,τℓ(evk, cin).

Hyb1. In this hybrid, we replace crand with a ciphertext with uniform mask.
By Lemma 5, the distribution of Hyb0 and Hyb1 are computationally indistin-
guishable.

Hyb1(t, evk,m, ein)

arand
$←− ZN

q , er ← Dσr,τr
EncZero|0

crand ← (brand := −⟨arand, t⟩+∆m+ ein + er,arand)

cks := (bks,aks)← KeySwitch(KSK, crand)

ctbr ← BlindRotate(BRK, (0,aks))

ctlin ← RandLinEvalσℓ,τℓ(pk, ctbr, X
⌊2N/q·bks⌉, 0)

cout ← SampleExtract(ctlin)

return cout

Hyb2. In this hybrid, we replace ctlin. Note that by the correctness of BlindRotate,

ctbr encrypts tv ·X
∑n−1

i=0 ⌊2N/q·aks,i⌉si , where tv is defined as in Algorithm 1 and
aks = (aks,0, . . . , aks,n−1). Therefore, by Lemma 7, the distribution of Hyb1 and
Hyb2 are computationally indistinguishable.

Hyb2(t, evk,m, ein)

arand
$←− ZN

q , er ← Dσr,τr
EncZero|0

crand ← (brand := −⟨arand, t⟩+∆m+ ein + er,arand)

cks := (bks,aks)← KeySwitch(KSK, crand)

ctbr ← BlindRotate(BRK, (0,aks))

m′ ← tv ·X⌊2N/q·bks⌉+
∑n−1

i=0 ⌊2N/q·aks,i⌉si

ctlin ← RandLinEvalσℓ,τℓ(pk, ctbr, 0, 0) + (m′, 0)

cout ← SampleExtract(ctlin)

return cout

Hyb3. In this hybrid, we replace m′ with ∆m. Note that the output ciphertext

cout only encrypts the constant term of m′ = tv ·X⌊2N/q·bks⌉+
∑n−1

i=0 ⌊2N/q·aks,i⌉si ,

22

which is ∆m by the correctness of bootstrapping. Therefore, this change is only
syntactic, and the distribution of Hyb2 and Hyb3 are identical.

Hyb3(t, evk,m, ein)

arand
$←− ZN

q , er ← Dσr,τr
EncZero|0

crand ← (brand := −⟨arand, t⟩+∆m+ ein + er,arand)

cks := (bks,aks)← KeySwitch(KSK, crand)

ctbr ← BlindRotate(BRK, (0,aks))

ctlin ← RandLinEvalσℓ,τℓ(pk, ctbr, 0, 0) + (∆m, 0)

cout ← SampleExtract(ctlin)

return cout

Hyb4. In this hybrid, we remove bks entirely. This change is only syntactical, as
bks is not used anywhere in Hyb3. Note that we also remove brand, since

KeySwitch(KSK, (brand,arand)) = KeySwitch(KSK, (0,arand)) + (brand, 0)

by definition. Therefore, the distribution of Hyb3 and Hyb4 are identical.

Hyb4(evk,m)

arand
$←− ZN

q

(· ,aks)← KeySwitch(KSK, (0,arand))

ctbr ← BlindRotate(BRK, (0,aks))

ctlin ← RandLinEvalσℓ,τℓ(pk, ctbr, 0, 0) + (∆m, 0)

cout ← SampleExtract(ctlin)

return cout

We conclude that the output of Sanitizeσr,τr,σℓ,τℓ(evk, cin) is computation-
ally indistinguishable from Hyb4(evk, Dec(t, cin)). This implies that for any two
ciphertexts c, c′ where m = Dec(t, c) = Dec(t, c′), we have

{(t, evk, Sanitizeσr,τr,σℓ,τℓ(evk, c)}
≈c {(t, evk,Hyb4(evk,m))}
≈c {(t, evk, Sanitizeσr,τr,σℓ,τℓ(evk, c

′)}.

Therefore, Sanitizeσr,τr,σℓ,τℓ is sanitizing. ⊓⊔

4.3 Performance Analysis

In this subsection, we analyze and compare the performance of our new san-
itization method with previous works that utilize randomized external prod-
ucts [BI22,Klu22]. Specifically, we focus on the number of Gaussian samples re-
quired for sanitization, as Gaussian sampling is often the primary bottleneck in

23

practical implementations. For instance, in previous works [BI22,Klu22], Gaus-
sian sampling accounted for up to 80% and 60%, respectively, of the total running
time.

In our sanitization method, Gaussian sampling is required in ReRand and
RandLinEval. In ReRand, we needN Gaussian samples forDZN ,σr

andN rounded
Gaussian samples for

⌊
DRN ,τr

⌉
when calling EncZero. However, since we only

use the extracted LWE ciphertext of EncZero, we only need to sample the con-
stant term of the rounded Gaussian distribution. This reduces the requirement
to N Gaussian samples and 1 rounded Gaussian sample. In RandLinEval, we
need N Gaussian samples for DX−b+pZN ,σℓ

and N rounded Gaussian samples
for
⌊
DRN ,τℓ

⌉
. Additionally, we need N Gaussian samples and N rounded Gaus-

sian samples from EncZero, as described earlier. We note that in our saniti-
zation algorithm (Algorithm 3), SampleExtract is invoked immediately after
RandLinEval. This means that only the constant term of the rounded Gaus-
sian samples is needed, similar to ReRand. This results in 2N Gaussian samples
and 2 rounded Gaussian samples. Therefore, our method requires a total of 3N
Gaussian samples and 3 rounded Gaussian samples.

In contrast, the major source of Gaussian sampling in previous works stems
from their heavy use of randomized gadget decomposition. Specifically, they re-
place a gadget decomposition h(ACC) with samples from Dh(ci,j)+Λ⊥(g),σ, where
ci,j are coefficients of ACC. Therefore, a single decomposition requires 2dN Gaus-
sian samples. Since we need to decompose an RLWE ciphertext n times for a
single blind rotation, the total amount of Gaussian samples needed is 2dnN . Pre-
vious works also require a post-processing step. Bourse and Izabachène [BI22]
use a technique similar to ours, adding an RLWE public key encryption of zero.
Using the optimization we mentioned earlier, this requires an additional N + 1
Gaussian samples. On the other hand, Kluczniak [Klu22] uses an LWE public
key encryption of zero, which requires an additional h + 1 Gaussian samples,
where h is the length of the LWE public key.

We summarize the number of Gaussian samples required in Table 1. In short,
our method reduces the required samples by up to a factor of O(dn).

Ours [BI22] [Klu22]

3N + 3 2dnN +N + 1 2dnN + h+ 1

Table 1. Number of Gaussian samples required for sanitization.

5 Experiments

In this section, we present the experimental results of our sanitization algorithm
from our proof-of-concept implementation and compare them with those of pre-
vious works.

24

5.1 Parameters Selection

Our parameters for the base TFHE scheme are given in Table 2. We set p = 4
and q = 264, which are common parameters for instantiating binary TFHE. We
choose the LWE parameters n, α and the RLWE parameters N, β to achieve
128-bit security, as verified by the lattice estimator [APS15]. The gadget decom-
position parameters B, d and B′, d′ were chosen to optimize performance while
ensuring correct decryption.

n N p q α β B d B′ d′

612 2048 22 264 250.40 212.65 211 3 23 4

Table 2. Base parameters for TFHE.

Now we discuss the selection of Gaussian parameters σr, τr, σℓ, τℓ. In a nut-
shell, we select them to minimize the output error variance while satisfying the
conditions of Lemma 4 and Lemma 7. Note that the conditions and the error
terms for the mask rerandomization and randomized linear evaluation are not
related; thus, we can choose them independently to minimize the final error.
Moreover, we remark that the selection of parameters σr, τr and σℓ, τℓ can be
done by solving the same minimization problem, as given below:

minimize Sσ2 + τ2

subject to
1

σ2
+
T

τ2
≤ 1

η2
.

By using Lagrange multipliers, one can easily check that the solution of the
above problem is

σ = η ·

√√
S +
√
T√

S
, τ = η ·

√
T +
√
ST .

In Lemma 4, we can take η = max(ηε(Z2N)
√

2/π, ρ) where RLWE1,N,q

ρ/
√
2,ρ/
√
2
is

hard, S = N(β2 + 1/4), and T as a bound of ∥
[
Epk T

]
∥22. A small issue is

that since epk is sampled from a Gaussian distribution, its bound is infinite.
Therefore, we use a probabilistic Gaussian bound of 12σ for a random variable
sampled from a Gaussian distribution with parameter σ. This bound is satisfied
with an overwhelming probability of approximately

1− erfc

(
12σ

σ
√
2

)
= 1− erfc(6

√
2) ≥ 1− 2−107.

Using this bound, we set T as

∥
[
Epk T

]
∥22 ≤ ∥Epk∥22 + ∥T∥22 ≤ N2(122β2 + 1) := T.

25

Similarly, for σℓ, τℓ, we can take η = ηε(pZN)/
√
2π, S = NVBlindRotate and

T = 122N2VBlindRotate. For smoothing parameters, we use ηε(Z2N) ≈ ηε(ZN) ≈ 6
for ε = 2−128. For the security parameter for Lemma 4, we use ρ ≈ 66.82, which
was also validated by lattice-estimator to support 128-bit security. We provide
the selected Gaussian parameters in Table 3.

σr τr σℓ τℓ

210.61 233.29 27.80 257.18

Table 3. Gaussian parameters for Sanitize.

Finally, we show that our sanitization algorithm returns a correct result with
a high probability, given these parameters. We first measure the noise from each
operation given the parameters. By substituting the parameters into the noise
estimation in Lemmas 8 to 10 and Lemma 4, we obtain VKeySwitch = 2116.27,
VModSwitch = 25.67, VBlindRotate = 278.67 and VEncZero = 266.60. Hence, in Theo-
rem 1, the standard deviation of the distribution of error e is given by ≈ 70.52.
Note that for correct bootstrapping, p

2N e should not exceed 1/2. Therefore, as-
suming that the distribution of e is close to Gaussian following the analysis
from prior works [CGGI16], we obtain that the failure probability is bounded by
≈ 2−41.23.

On the other hand, the sanitization output may fail as well, due to the large
noise growth. Substituting the parameters to the formula in Lemma 11 gives the
bound 257.18 for the output standard deviation of sanitization noise. Therefore,
the decryption failure probability for the sanitization is bounded by ≈ 2−147.32.

5.2 Implementation Details

In this subsection, we describe some of the details for our implementation of
Sanitize.

Gaussian Sampler. In our sanitization algorithm, we require two types of
Gaussian samplers: the discrete Gaussian sampler and the rounded Gaussian
sampler. For discrete Gaussian sampling, we need samples from two distribu-
tions: DZN ,σr

and DXb+pZN ,σℓ
for some b. Given that σr and σℓ are reason-

ably small in our parameter settings (see Table 3), we utilize the inversion
sampler with precomputed cumulative distribution tables. For sampling from
DXb+pZN ,σℓ

, we note that the negacyclic matrix of Xb is essentially a permuta-
tion matrix. Therefore, the following equivalence holds, where Xb is the nega-
cyclic matrix of Xb:

DXb+pZN ,σℓ
≡ XbD1+pZN ,σℓ

≡ Xb

(
(1, 0, . . . , 0) + p

(
DZ, 1p ,

1
pσℓ
×
N−1∏
i=1

DZ, 1pσℓ

))
.

26

Thus, we can sample from DXb+pZN ,σℓ
using only two Gaussian samplers, each

sampling from DZ,σℓ/p and DZ,1/p,σℓ/p. For rounded Gaussian sampling, we use
the Ziggurat method by Marsaglia and Tsang [MT00].

Exact Polynomial Multiplication. In most TFHE implementations, the Fast
Fourier Transform (FFT) is used for fast polynomial multiplication. However,
since FFT is computed over floating-point numbers, it can only provide an ap-
proximate result, especially when the coefficients of the polynomials are large.
In the original TFHE scheme, this error was tolerable because all Ring-LWE
operations are inherently noisy. However, when implementing randomized algo-
rithms, this can be problematic, as the additional FFT error is not simulatable.
Therefore, to securely implement the previous TFHE sanitization methods with
randomizations [BI22,Klu22], much slower exact polynomial multiplication al-
gorithms, such as the Number Theoretic Transform (NTT) or Karatsuba multi-
plication must be used, or parameters must be heavily restricted.

On the other hand, our sanitization algorithm uses the blind rotation of the
original TFHE bootstrapping as a black box, freeing us from such restrictions.
In our method, exact polynomial multiplication is only required in the ReRand

and RandLinEval steps.
To perform exact polynomial multiplication, we use the split-FFT trick [Hwa23,WHS+24].

We first note that when computing f · g in the ReRand and RandLinEval steps,
the coefficients of one polynomial, say f , are sampled from a Gaussian distri-
bution with parameter σr or σℓ, which is small. Then, to reduce FFT error, we
decompose the other polynomial g as

g = g0 + g1BF + · · ·+ gdF−1B
dF−1
F

where ∥gi∥∞ ≤ BF , and compute

f · g = (f · g0) + (f · g1)BF + · · ·+ (f · gdF−1)B
dF−1
F .

In our work, we set BF = 222 and dF = 3 so that BdFF = 266 ≥ q = 264.
According to the estimation in [WHS+24], the variance of the FFT error is
bounded by 2−108.6N2∥f∥2∞B2

F . This translates to a failure probability of less
than 2−2373.48 in our parameter settings.

5.3 Benchmark Results

We present the benchmark results of our and previous sanitization algorithms
in Table 4, along with the base TFHE bootstrapping performance. We imple-
mented our sanitization algorithm in Go, based on the TFHE-go library [Hwa23],
which provides a fast AVX2-accelerated implementation of the TFHE scheme.
All benchmark results of our implementation were measured on a server ma-
chine equipped with an Intel Xeon Platinum 8268 CPU. Our code is available
at https://github.com/SNUCP/tfhe-sanitization.

We also implement the soak-spin-repeat sanitization [DS16] based on our pa-
rameters given in Table 2. For decryption failure rate ≈ 2−40, we can add error

27

https://github.com/SNUCP/tfhe-sanitization

with a standard deviation of approximately 258.15 in each cycle. Since the stan-
dard deviation of the output error after a single bootstrapping is

√
VBlindRotate ≈

239.34 in our parameters, the statistical distance between ciphertexts decreases
by a factor of 239.34/258.15 = 2−18.81 each cycle. Therefore, to achieve 80 bits
of statistical security, we need 80/18.81 ≈ 5 cycles. Note that this increases the
bootstrapping failure rate to 2−21.64. To target a lower failure rate, more cycles
might be necessary, which would further degrade performance.

Finally, for the sanitization algorithms from [BI22,Klu22], we directly take
the performance numbers of their algorithms and the base TFHE bootstrapping
from the respective papers. Kluczniak [Klu22] provides two implementations,
one based on NTT and the other on FFT. In the table, we denote them as (Int)
and (Double) respectively. Note that [BI22] only achieves 100 bits of computa-
tional security, while [Klu22] achieves 128 bits. However, both target 80 bits of
statistical security.

Ours [DS16] [BI22]
[Klu22]
(Int)

[Klu22]
(Double)

Sanitization 35.88ms 173.00ms 7500ms 1360ms 1330ms

Bootstrapping 34.70ms 420ms 140ms 270ms

Table 4. Performance of sanitization algorithms.

As we can clearly see, our sanitization method offers significant speedups
compared to previous works. Specifically, it is approximately 4.82, 209.03, and
37.07 times faster than [DS16,BI22,Klu22], respectively. When compared to the
original TFHE bootstrapping with the same parameters, our method is only 3.4%
slower, with a 1.18ms difference in performance. In contrast, [DS16], [BI22], and
[Klu22] are 4.99, 17.85, and 4.92 times slower than the original TFHE bootstrap-
ping, respectively.

References

APS15. Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete hard-
ness of learning with errors. Journal of Mathematical Cryptology, 9(3):169–
203, 2015.

ASP14. Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with poly-
nomial error. In Advances in Cryptology–CRYPTO 2014: 34th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014,
Proceedings, Part I 34, pages 297–314. Springer, 2014.

BCL+23. Loris Bergerat, Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila, Ade-
line Roux-Langlois, and Samuel Tap. New secret keys for enhanced per-
formance in (T)FHE. Cryptology ePrint Archive, Report 2023/979, 2023.

BdMW16. Florian Bourse, Rafaël del Pino, Michele Minelli, and Hoeteck Wee. FHE
circuit privacy almost for free. In Matthew Robshaw and Jonathan Katz,

28

editors, Advances in Cryptology – CRYPTO 2016, Part II, volume 9815
of Lecture Notes in Computer Science, pages 62–89, Santa Barbara, CA,
USA, August 14–18, 2016. Springer, Berlin, Heidelberg, Germany.

BGV14. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully
homomorphic encryption without bootstrapping. ACM Transactions on
Computation Theory (TOCT), 6(3):1–36, 2014.

BI22. Florian Bourse and Malika Izabachène. Plug-and-play sanitization for
TFHE. Cryptology ePrint Archive, Paper 2022/1438, 2022. https:

//eprint.iacr.org/2022/1438.
Bra12. Zvika Brakerski. Fully homomorphic encryption without modulus switch-

ing from classical gapsvp. In Annual Cryptology Conference, pages 868–
886. Springer, 2012.

CGGI16. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachene.
Faster fully homomorphic encryption: Bootstrapping in less than 0.1 sec-
onds. In international conference on the theory and application of cryptol-
ogy and information security, pages 3–33. Springer, 2016.

CKKS17. Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomor-
phic encryption for arithmetic of approximate numbers. In International
Conference on the Theory and Application of Cryptology and Information
Security, pages 409–437. Springer, 2017.

dCKK+24. Leo de Castro, Duhyeong Kim, Miran Kim, Keewoo Lee, Seonhong Min,
and Yongsoo Song. More efficient lattice-based OLE from circuit-private
linear HE with polynomial overhead. Cryptology ePrint Archive, Paper
2024/1534, 2024.

DD22. Nico Döttling and Jesko Dujmovic. Maliciously circuit-private FHE
from information-theoretic principles. Cryptology ePrint Archive, Report
2022/495, 2022.

DM15. Léo Ducas and Daniele Micciancio. Fhew: bootstrapping homomorphic
encryption in less than a second. In Annual international conference on
the theory and applications of cryptographic techniques, pages 617–640.
Springer, 2015.

DS16. Léo Ducas and Damien Stehlé. Sanitization of fhe ciphertexts. In Advances
in Cryptology–EUROCRYPT 2016: 35th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Vienna, Aus-
tria, May 8-12, 2016, Proceedings, Part I 35, pages 294–310. Springer,
2016.

FV12. Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homo-
morphic encryption. IACR Cryptol. ePrint Arch., 2012:144, 2012.

Gen09. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Pro-
ceedings of the forty-first annual ACM symposium on Theory of computing,
pages 169–178, 2009.

GHV10. Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. i-Hop homomor-
phic encryption and rerandomizable Yao circuits. In Tal Rabin, editor,
Advances in Cryptology – CRYPTO 2010, volume 6223 of Lecture Notes
in Computer Science, pages 155–172, Santa Barbara, CA, USA, August 15–
19, 2010. Springer, Berlin, Heidelberg, Germany.

GSW13. Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based. In Annual Cryptology Conference, pages 75–92. Springer,
2013.

29

https://eprint.iacr.org/2022/1438
https://eprint.iacr.org/2022/1438

Hwa23. Intak Hwang. TFHE-go. Online: https://github.com/sp301415/

tfhe-go, 2023.
KLSS23. Duhyeong Kim, Dongwon Lee, Jinyeong Seo, and Yongsoo Song. Toward

practical lattice-based proof of knowledge from hint-mlwe. In Annual In-
ternational Cryptology Conference, pages 549–580. Springer, 2023.

Klu22. Kamil Kluczniak. Circuit privacy for FHEW/TFHE-style fully homomor-
phic encryption in practice. Cryptology ePrint Archive, Paper 2022/1459,
2022. https://eprint.iacr.org/2022/1459.

LMK+23. Yongwoo Lee, Daniele Micciancio, Andrey Kim, Rakyong Choi, Maxim
Deryabin, Jieun Eom, and Donghoon Yoo. Efficient fhew bootstrapping
with small evaluation keys, and applications to threshold homomorphic
encryption. In Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, pages 227–256. Springer, 2023.

LMSS23. Changmin Lee, Seonhong Min, Jinyeong Seo, and Yongsoo Song. Faster
TFHE bootstrapping with block binary keys. In Joseph K. Liu, Yang Xi-
ang, Surya Nepal, and Gene Tsudik, editors, ASIACCS 23: 18th ACM
Symposium on Information, Computer and Communications Security,
pages 2–13, Melbourne, VIC, Australia, July 10–14, 2023. ACM Press.

LPR13. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. Journal of the ACM (JACM), 60(6):1–35,
2013.

LY23. KangHoon Lee and Ji Won Yoon. Discretization error reduction for high
precision torus fully homomorphic encryption. In Alexandra Boldyreva and
Vladimir Kolesnikov, editors, PKC 2023: 26th International Conference on
Theory and Practice of Public Key Cryptography, Part II, volume 13941
of Lecture Notes in Computer Science, pages 33–62, Atlanta, GA, USA,
May 7–10, 2023. Springer, Cham, Switzerland.

MKMS22. Jose Maria Bermudo Mera, Angshuman Karmakar, Tilen Marc, and Azam
Soleimanian. Efficient lattice-based inner-product functional encryption.
In IACR International Conference on Public-Key Cryptography, pages 163–
193. Springer, 2022.

MR07. Daniele Micciancio and Oded Regev. Worst-case to average-case reductions
based on gaussian measures. SIAM Journal on Computing, 37(1):267–302,
2007.

MT00. George Marsaglia andWaiWan Tsang. The ziggurat method for generating
random variables. Journal of statistical software, 5:1–7, 2000.

OPP14. Rafail Ostrovsky, Anat Paskin-Cherniavsky, and Beni Paskin-Cherniavsky.
Maliciously circuit-private FHE. In Juan A. Garay and Rosario Gennaro,
editors, Advances in Cryptology – CRYPTO 2014, Part I, volume 8616 of
Lecture Notes in Computer Science, pages 536–553, Santa Barbara, CA,
USA, August 17–21, 2014. Springer, Berlin, Heidelberg, Germany.

Pei10. Chris Peikert. An efficient and parallel gaussian sampler for lattices. In
Annual Cryptology Conference, pages 80–97. Springer, 2010.

Reg09. Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. Journal of the ACM (JACM), 56(6):1–40, 2009.

WHS+24. Ruida Wang, Jincheol Ha, Xuan Shen, Xianhui Lu, Chunling Chen, Kun-
peng Wang, and Jooyoung Lee. Fhew-like leveled homomorphic evaluation:
Refined workflow and polished building blocks. Cryptology ePrint Archive,
Report 2024/1318, 2024.

30

https://github.com/sp301415/tfhe-go
https://github.com/sp301415/tfhe-go
https://eprint.iacr.org/2022/1459

	Practical Circuit Privacy/Sanitization for TFHE

