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The cryptographic scheme and NIST candidate HAWK [DPPvW22; ABC+24] makes use of a
particular module lattice and relies for its security on the assumption that finding module lattice
isomorphisms (module LIP) is hard. To support this assumption, we compute the mass of the
HAWK lattice, which gives a lower bound on the number of isometry classes of module lattices
which cannot be distinguished from the HAWK lattice by an easily computed invariant called
the genus. This number turns out to be so large that an attack based on the genus alone seems
infeasible.

We assume the reader is familiar with some basic number theory. We will use definitions and
notation from [Kir16], restating some. Fix some integers m ≥ 1 and n ≥ 2. Let E = Q(ζ) be the
number field where ζ is a primitive 2n-th root of unity and let K = Q(ζ + ζ−1) be its maximal
totally real subfield. We write · for the non-trivial automorphism of E over K, which is given
by ζ 7→ ζ−1. We equip E with a positive definite Hermitian form Φ(x, y) = x · y. The maximal
order OE of E is an OE-lattice in E, and we let H = OmE be its m-fold orthogonal sum. This H
is the module lattice used by HAWK when m = 2 and n ∈ {9, 10, 11}, depending on the security
parameter.

Definition 1. Let Λ be an OE-lattice. We write Λp for its localization at a prime ideal p of K,
and [Λ] for its isometry class. The genus of Λ is the sequence g(Λ) = ([Λp])p, where p ranges over
all primes of K. The mass of Λ is

Mass(Λ) = Mass(g(Λ)) =
∑
[Λ′]

1

# Aut(Λ′)
,

where the sum ranges over all isometry classes of lattices with genus g(Λ).

Although we are more interested in the in the number of terms in the above sum, the ‘size’ of
the genus, a lower bound of {ζi | i ∈ Z} ⊆ Aut(Λ′) for every OE-lattice Λ′ shows that the number
of isometry classes with genus g is at least 2n ·Mass(g). We can efficiently compute the mass of a
genus using Siegel’s mass formula, which we specialize for OE .

Theorem 2 (cf. Proposition 4.2.7 in [Kir16]). Let Λ be an OE-lattice of rank m. Then

Mass(Λ) = 21−m2n−1

·
∏
p

λ(Λp) ·
m∏
i=1

{
ζE
ζK

(1− i) if i is odd

ζK(1− i) if i is even
,

where λ is as in Definition 4.2.6 of [Kir16], p ranges over all primes of K, and ζ is the Dedekind
zeta function.

It remains to compute the local factors λ(Hp). However, compared to the zeta functions they
barely contribute to the mass.

Write dB/A for the relative discriminant of a finite separable field extension A ⊆ B, and
similarly NB/A and TrB/A for its relative norm and trace. We first collect some data about the
field extension K ⊆ E.
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Lemma 3. The extensions E/Q and K/Q are totally ramified above 2 with primes P = (1−ζ) and
say p respectively, and are unramified elsewhere. We also have dE/K = p2 and TrE/K(OE) ⊆ p.

Proof. We refer to [Neu99]. Note that OE = Z[ζ] = Z[X]/(f) for f = X2n−1

+1 by (I.10.2). Hence

dE/Q = NE/Q(f ′(ζ)) · Z = NE/Q(2n−1ζ2n−1−1) · Z = 2(n−1)2n−1

· Z

by (III.2.4) and (III.2.9). By (I.10.1), the extension E/Q is totally ramified above 2 with prime
P = (1− ζ), while it is unramified elsewhere by (III.2.12). Consequently, K/Q is totally ramified
above 2 with some prime p, and P2 = pOE .

Note that OK = OE∩K = Z[ζ+ζ−1] and OE = OK [ζ] = OK [X]/(g) for g = X2−(ζ+ζ−1)X+
1. Since (1 − ζ2)Z[ζ2] is the prime of Q(ζ2) above 2, we have P2 = (1 − ζ2)OE = (ζ − ζ−1)OE .
Then

dE/K = NE/K(g′(ζ)) · OK = NE/K(ζ − ζ−1) · OK = NE/K(P2) = p2, and

TrE/K(OE) = TrE/K(1 · OK + ζ · OK) = 2 · OK + (1 + ζ2)ζ−1 · OK ⊆ P2 ∩ OK = p,

as was to be shown.

Lemma 4. Let p be a prime of K. Then

λ(Hp) =


1 if p is odd

2−1 if p is even and m is odd

2m − 1 if p is even and m is even

.

Proof. Note that Hp is unimodular, i.e. p0-modular. If p is odd, we are done by Lemma 4.2.9
in [Kir16]: We are in the case where Ep/Kp is either split or inert by Lemma 3, dimK(E) = 2
and m = m0. Now assume p is the unique prime above 2. If m is odd, we are done by Theorem
4.5.2 in [Kir16], so assume m is even. We compute the parameters to Theorem 4.5.5 in [Kir16].
We have q = #(OK/p) = 2 and e = ordp(dE/K) = 2 by Lemma 3. We have n(Hp) = OK,p and
n(PHp) = pOK,p, so `0 = 0 and `1 = 1. Since the hyperbolic lattices have norm TrE/K(Pi) ⊆
TrE/K(OK) ⊆ p by Lemma 3, we conclude that we are not in case 1 of the theorem. Hence

λ(Hp) = qm(e/2−1)(qm − 1) = 2m − 1.

Table 5. We compute the mass of H for m = 2 and multiple values of n.

n (ζE/ζK)(0) ζK(−1) Mass(H)
7 1.36969375610352 · 243 1.16760364270761 · 2149 1.19944456426526 · 267

8 1.13294712862486 · 2119 1.43912186258186 · 2395 1.22283673646503 · 2261

9 1.02161863077143 · 2301 1.09587067352026 · 2984 1.67934284547651 · 2775

10 1.52878054160373 · 2729 1.27373529240083 · 22353 1.46044629763225 · 22061

11 1.74088377909975 · 21714 1.72075720829338 · 25475 1.12336436688259 · 25145

We used the following PARI/GP [PARI] code.

fE=x^(2^(n -1))+1;

fK=minpoly(Mod(x+1/x,fE));

zE=lfun(fE,x+O(x^2))/ lfun(fK,x+O(x^2))

zK=lfun(fK ,-1)

mass =2^(1 -2^n)*3*zE*zK

We take m = 2. Note that the rank of H as Z-lattice is m2n−1 = 2n. For 8 ≤ n ≤ 11, the mass
of H is larger than 22n

. It shows that the genus has insufficient distinguishing power to efficiently
solve the Decisional Lattice Isomorphism Problem (DLIP): If H ′ is a random lattice in the genus
of H, the probability that it is isomorphic to H is negligible. Moreover, for n ∈ {10, 11}, the mass
is also larger than (22n

)2, leaving no room for a genus-based quantum search or birthday attack
either.

The following corollary to the mass formula shows that a LIP to DLIP reduction, as for example
in [Szy03], based on the genus alone would be infeasible, since all OE-lattice in E2 have large mass.
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Corollary 6. If Λ ⊆ E2 is an OE-lattice of rank 2, then Mass(Λ) ≥ 1
3Mass(O2

E).

Proof. By Proposition 4.2.10 in [Kir16] and Lemma 3 we have
∏

p λ(Λp) ≥ 1. The result then
follows from Theorem 2 and Lemma 4.
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[DPPvW22] Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, and Wessel van Woerden.
Hawk: module LIP makes lattice signatures fast, compact and simple. In Springer-
Verlag, 2022.

[Kir16] Markus Kirschmer. Definite quadratic and hermitian forms with small class number
(Habilitation). RWTH Aachen University, 2016.

[Neu99] Jürgen Neukirch. Algebraic Number Theory. Springer Berlin, 1999.

[Szy03] Michael Szydlo. Hypercubic lattice reduction and analysis of ggh and ntru sig-
natures. In Eli Biham, editor, Advances in Cryptology — EUROCRYPT 2003,
pages 433–448. Springer Berlin Heidelberg, 2003.

3

http://pari.math.u-bordeaux.fr/
https://doi.org/https://doi.org/10.6028/NIST.IR.8528
https://doi.org/https://doi.org/10.6028/NIST.IR.8528

