
Rejected Challenges Pose New Challenges: Key
Recovery of CRYSTALS-Dilithium via

Side-Channel Attacks
Yuanyuan Zhou1 , Weijia Wang2,3 , Yiteng Sun2,3 and Yu Yu4,5

1 SGS Brightsight BV, Delft, The Netherlands zhou.yuanyuan@gmail.com
2 Shandong University, School of Cyber Science and Technology, Qingdao, China

wjwang@sdu.edu.cn,sunyiteng@mail.sdu.edu.cn
3 Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education,

Shandong University, Qingdao, China
4 Shanghai Jiao Tong University, Shanghai 200240, China yuyu@yuyu.hk
5 Shanghai Qi Zhi Institute, 701 Yunjin Road, Shanghai 200232, China

Abstract. Rejection sampling is a crucial security mechanism in lattice-based sig-
nature schemes that follow the Fiat-Shamir with aborts paradigm, such as ML-
DSA/CRYSTALS-Dilithium. This technique transforms secret-dependent signature
samples into ones that are statistically close to a secret-independent distribution (in
the random oracle model). While many side-channel attacks have directly targeted
sensitive data such as nonces, secret keys, and decomposed commitments, fewer stud-
ies have explored the potential leakage associated with rejection sampling. Notably,
Karabulut et al. showed that leakage from rejected challenges can undermine, but
not entirely break, the security of the Dilithium scheme.
Motivated by the above, we convert the problem of key recovery (from the leakage of
rejection sampling) to an integer linear programming problem (ILP), where rejected
responses of unique Hamming weights set upper/lower constraints of the product
between the challenge and the private key. We formally study the worst-case com-
plexity of the problem as well as empirically confirm the practicality of the rejected
challenge attack. For all three security levels of Dilithium-2/3/5, our attack recovers
the private key in seconds or minutes with a 100% Success Rate (SR).
Our attack leverages knowledge of the rejected challenge and response, and thus we
propose methods to extract this information by exploiting side-channel leakage from
Number Theoretic Transform (NTT) operations. We demonstrate the practicality
of this rejected challenge attack by using real side-channel leakage on a Dilithium-
2 implementation running on an ARM Cortex-M4 microcontroller. To the best
of our knowledge, it is the first efficient side-channel key recovery attack on ML-
DSA/Dilithium that targets the rejection sampling procedure. Furthermore, we
discuss some countermeasures to mitigate this security issue.
Keywords: Dilithium · ML-DSA · Side-channel attacks · Rejection sampling ·
Integer Linear Programming.

1 Introduction
1.1 Side-channel attacks on Dilithium/ML-DSA
Side-channel attacks (SCA) [Koc96, KJJ99] exploit physical information leaked during
the executions of cryptographic algorithm implementations. Unlike classical cryptanalytic
techniques, which focus on the mathematical structure of the algorithms, SCA takes

https://orcid.org/0000-0002-8703-219X
https://orcid.org/0000-0001-6982-2537
https://orcid.org/0009-0009-7674-1327
https://orcid.org/0000-0002-9278-4521
mailto:zhou.yuanyuan@gmail.com
mailto:wjwang@sdu.edu.cn, sunyiteng@mail.sdu.edu.cn
mailto:yuyu@yuyu.hk

2 Rejected Challenges Pose New Challenges

advantage of unintended physical emissions such as power consumption, electromagnetic
radiation, or timing information. Since most cryptographic algorithms were not designed
with physical information leakage in mind, SCA can be more effective and powerful. For
example, it has shown that SCA can successfully compromise the implementations of
almost all well-known cryptographic algorithms.

The National Institute of Standards and Technology (NIST) has recently standardized
CRYSTALS-Dilithium (or Dilithium for short) [DKL+18] and has named it the Module-
Lattice-Based Digital Signature Algorithm (ML-DSA) [NIS24]. Its security has been
thoroughly studied from reductionist and cryptanalytic perspectives [DKL+18, KLS18,
LZ19, DFMS19, BDK+20, DFPS23, BBD+23, JMW24], particularly in the (classical or
quantum) Random Oracle Model (ROM or QROM). As expected, Dilithium is vulnerable
to side-channel attacks, given additional information about the secret signing key.

Algorithm 1 Dilithium Sign [DKL+18] (Simplified)
Input: sk=(ρ, K, tr, s1, s2, t0), message M , pk = (ρ, t1)
Output: (z, c)

1: z← ⊥
2: while z = ⊥ do
3: y $←− S̃ℓ

γ1
4: w← Ay
5: w1 ← HighBitsq(w) ▷ w = w1 · 2γ2 + w0
6: c← H(µ∥w1Encode(w1))
7: z← y + cs1 ▷ Compute cs1 as NTT−1(ĉ · ŝ1)
8: if CheckBound1(z) == False or CheckBound2(w− cs2) == False then
9: z← ⊥

10: return σ = (z, c)

Algorithm 1 provides an overview of the Dilithium signing process, where the subroutines
CheckBound1 and CheckBound2 verify whether or not z and w− cs2 meet the respective
constraints and output the corresponding Boolean values. The ‘keep sampling until the
constraints are met’ process, known as rejection sampling, is essential for ensuring the
correctness and security of the scheme. Most SCAs on Dilithium focus on the leakage of its
signing process. Table 1 provides a summary of existing SCAs on Dilithium, categorized
by attack type and the intermediate values they target.

Ravi et al. first published a SCA attack on Dilithium [RJH+18]. They specifically
targeted the leakage during the point-wise multiplication of cs1 and recovered the secret
s1 using differential power analysis. They further demonstrated that recovering s1 enables
the forgery of signatures. This approach of exploiting point-wise multiplication has since
been extended to other components, such as cs2 and ct0, and has been further optimized
in subsequent literature [CKA+21,SLKG23,WGL+24,LLZ+24,QLZ+23b,TS24,TMS24].

Another attack strategy directly recovers the secrets s1 and s2. Kim et al. demonstrated
that they could recover the secret by constructing a deep learning-based template [KLH+20].
However, in many cases, side-channel analysis only provides partial information about the
secret due to noise, making direct recovery of the secret challenging. A more practical
approach is to recover sensitive intermediate values being more susceptible to side-channel
leakage first and then use multiple such intermediates to reconstruct the secret key. For
example, Marzougui et al. [UMTS22] proposed a method to distinguish signatures in
which one coefficient in y is 0 based on side-channel leakage. By obtaining multiple such
signatures, they were able to recover the secret. Qiao et al. demonstrated that one bit in
coefficients of y is sufficient for the key recovery [QLZ+23a], at the cost of using many
more signatures. Berzati et al. [BVC+23] extended this strategy by focusing on the leakage
of w0.

Yuanyuan Zhou , Weijia Wang , Yiteng Sun and Yu Yu 3

Table 1: Summary of the types and targets of side-channel attacks on Dilithium, where NTT
refers to the Number Theoretic Transform, and SPA/CPA refers to the Simple/Correlation
Power Analysis, respectively.

Target Attack Type
This work c & z Profiled SPA
[BAE+24] y & cs1 Simulation
[BVC+23] w0 Profiled SPA

[LZS+21, UMTS22] y Profiled SPA
[QLZ+23a, QLZ+24] y & cs1 Profiled SPA

[RJH+18] cs1 CPA
[KLH+20, CKA+21, QLZ+23b, SLKG23, WGL+24, LLZ+24, TS24, TMS24] NTT(cs1), NTT(cs2) CPA

[WNGD23] s1, s2 Profiled SPA

However, in the literature, little attention has been paid to the leakage of public data,
such as the rejected challenge c. It is worth noting that in [KAA21] Karabulut et al.
targeted challenge c and recovered the signs of its nonzero coefficients. They concluded
that this did not compromise the overall security of Dilithium but resulted in a reduction
of τ bits of entropy in c, where τ is the number of nonzero coefficients in c. Moreover,
Bronchain et al. explored attacks targeting the rejected response z and y in [BAE+24].
Based on simulation experiments, they show that key recovery of s1 is feasible assuming
the knowledge of 32 Hamming weight (HW) classes of all coefficients of y and the index of
the rejected coefficient of z in an Early-Abort setting. It requires about 107 rejected z
values to recover s1 for Dilithium-2 with a relatively high signal-to-noise ratio (SNR) of 1
and an even higher SNR of 10 for Dilithium-3/5.

In the Dilithium scheme, challenge c is generally regarded as public randomness
(produced by a random oracle) and is thus considered benign from a leakage perspective.
As a result, no specific side-channel countermeasures have been recommended [ABC+23],
nor have any been implemented in open-source libraries such as Dilithium reference
implementation [KPR+], Botan library’s [Bot24] Dilithium implementation, or the ML-DSA
implementation in the OQS (Open Quantum Safe) library (a provider of the widely used
OpenSSL library) [Lib24]. Besides, it is well-known that the rejected response z can exhibit
a bias related to the private key s1, as discussed in the specification document [DKL+18,
NIS24]. It is recommended in [ABC+23] to keep z protected until it passes the bound check
to mitigate its potential SCA leakage. However, no published SCA attacks have specifically
targeted z. Furthermore, the proposed masking countermeasure [ABC+23, CGL+24]
to protect z is rather costly, with first-order masking that slows down operations by
approximately 40 times according to the state-of-the-art results [CGL+24], which is
particularly challenging for embedded devices. In contrast, developers are well aware that
they must adequately protect other targeted variables y, w0, s1, s2, cs1, cs2, NTT(cs1), and
NTT(cs2) in the literature as shown in Table 1 against SCA attacks [DKL+18, NIS24,
ABC+23,RCDB24].

1.2 Our contribution
In this work, we aim to answer the question: how and to what extent can we recover the
Dilithium private key by combining the implementation leakages of rejected challenge c
and its corresponding response z theoretically and empirically? Our contributions in this
context are summarized as follows.

First, we formalize the problem of key recovery from the leakages of rejected challenge
and response. Specifically, we observe that rejections are caused by out-of-bound coefficients
in z. Therefore, we use rejected z (especially those with unique Hamming weights favored by
side-channel attacks) and the corresponding challenge to construct a system of inequalities
involving the private key s1. We then study the worst-case complexity of the key recovery
problem given a linear number of these inequalities (signature generations). We also

https://orcid.org/0000-0002-8703-219X
https://orcid.org/0000-0001-6982-2537
https://orcid.org/0009-0009-7674-1327
https://orcid.org/0000-0002-9278-4521

4 Rejected Challenges Pose New Challenges

empirically determine the required number of signatures and the bounds for all three NIST
security levels 2, 3, and 5 for the proposed rejected challenge attack. We show that the
3× 106 (resp., 2.3× 107 and 1.3× 107) signature generation trials are sufficient for our
attack to recover s1 in seconds or minutes for security level 2 (resp., 3 and 5) with a 100%
SR.

Second, since the rejected challenge attack requires the knowledge of the rejected
challenge c, we propose methods to extract those information. Our attack on rejected
challenge focuses on NTT operations that are particularly vulnerable to side-channel
attacks due to the intensive use of sensitive values. We experimentally verify the feasibility
and validity of our rejected challenge key attack using deep learning-based side-channel
leakage from a typical real-world target, namely, a reference Dilithium-2 implementation
on a 32-bit STM32F microcontroller. The experimental results demonstrate the successful
recovery of both the rejected challenge and the response with a 100% accuracy rate.

As a takeaway message, our work highlights that existing countermeasures for side-
channel leakages in other operations are inadequate. We must focus on rejection sampling
procedures as well. We discuss some potential countermeasures, such as masking and
hiding techniques.

1.3 Related works
Azevedo-Oliveira et al. recently proposed a fault attack against Dilithium [AOVCG25]
that builds on the premise that the bound check could be skipped (by, e.g., injecting
faults), enabling the recovery of the secret with a sufficient number of samples. Despite
the shared similarity with this concurrent work, our attack is non-invasive and exploits
only the power leakages corresponding to the challenge and response. Furthermore, we
empirically validate the practicality of our attack. Given the ubiquity of power leakage,
we believe our attack underscores the critical importance of thoroughly protecting the
challenge and response in the implementation of Dilithium.

1.4 Organization of the paper
The rest of this paper is structured as follows. Section 2 introduces background information
about rejection sampling and Dilithium. Section 3 formulates the rejected challenge key
recovery attack on Dilithium, and provides a formal analysis. Section 4 experimentally
verifies the effectiveness and efficiency of this approach. Finally, Section 5 demonstrates
the practicality of the rejected challenge attack by leveraging side-channel leakages from a
typical real-world implementation of Dilithium.

2 Preliminaries
2.1 Notations
We adhere to the conventions defined in the NIST FIPS 204 [NIS24] wherever applicable.
Let [a, b] denote the intervals of integers {a, a + 1, . . . , b} given a, b ∈ Z. We denote by
N (0, σ2) the normal distribution with mean 0 and standard deviation σ. We denote
polynomials by regular lowercase letters (e.g., c), vectors of polynomials by lowercase
letters in bold (e.g., z) and matrices of polynomials by uppercase letters in bold (e.g., A).
We define the polynomial ring Rq

def= Zq[X]/⟨Xn+1⟩ with Zq = Z/qZ, in which, q is an
odd prime number and n ∈ N, they are set to 8380417 and 256 respectively in the ML-
DSA/Dilithium scheme. We represent a polynomial c = c0 + c1X + · · ·+ cn−1Xn−1 ∈ Rq

as a vector (c0, . . . , cn−1) ∈ Zn
q . Given r ∈ Zq, r mod ± q is defined to be the unique

element r′ ∈ Z such that −(q − 1)/2 ≤ r′ ≤ (q − 1)/2 and r′ ≡ r mod q. For any c ∈ Rq,

Yuanyuan Zhou , Weijia Wang , Yiteng Sun and Yu Yu 5

we define |c|i
def= |ci mod ± q| for all i ∈ {0, 1, . . . , n− 1} and ∥c∥∞

def= maxi |c|i. Similarly,
we define ∥z∥∞

def= maxi∈[1,ℓ] ∥zi∥∞ for any z ∈ Rℓ
q. A capital alphabet in italics (e.g., S)

refers to a finite nonempty set, s ← S denotes an assignment of an element s from S . Let
Sη denote the set {s ∈ Rq | ∥s∥∞ ≤ η} with η ∈ N. Similarly, we denote Bτ as the set
{b ∈ Rq | ∥b∥∞ = 1} and b has exactly τ nonzero coefficients with τ ∈ N, so, |Bτ | = 2τ

(
n
τ

)
.

By ‘log’ we denote the base 2 logarithm.

2.2 Rejection sampling in Lyubashevsky’s signature scheme
Schnorr [Sch89] employed the Fiat-Shamir transformation [FS86] to transform a constructed
identification scheme into a signature scheme. Lyubashevsky introduced lattice-based
signature schemes in [Lyu09,Lyu12] by adapting Schnorr’s approach and incorporating
aborts during signature generation. This “Fiat-Shamir with aborts” paradigm aims
to abort/discard signatures that could potentially leak secret key information. This
rejection sampling [Lyu09] is a cornerstone used to construct many lattice-based signature
schemes [Lyu12, BG14], including Dilithium/ML-DSA [DKL+18, NIS24]. It produces a
distribution that is statistically independent of the secret key in the random oracle model,
and thus eliminates the leakage of secret key information.

2.3 Dilithium

Algorithm 2 KeyGen
1: ζ ← {0, 1}256

2: (ρ, ρ′, K) ∈ {0, 1}256 × {0, 1}512 × {0, 1}256 ← H(ζ, 1024) ▷ H is instantiated as SHAKE-256
throughout

3: A ∈ Rk×ℓ
q ← ExpandA(ρ) ▷ A is generated and stored in NTT representation as Â

4: (s1, s2) ∈ Sℓ
η × Sk

η ← ExpandS(ρ′)
5: t← As1 + s2 ▷ Compute As1 as NTT−1(Â · NTT(s1))
6: (t1, t0)← Power2Roundq(t, d)
7: tr ∈ {0, 1}256 ← H(ρ∥t1, 256)
8: return (pk = (ρ, t1), sk = (ρ, K, tr, s1, s2, t0))

Dilithium includes three basic procedures: key generation, signature generation, and
signature verification. In this subsection, we provide a brief overview of these processes, and
refer the readers to official documentation for more details about the scheme. Algorithm 2
illustrates the key generation process of Dilithium. One should pay particular attention
to the secret polynomials s1 and s2. These polynomials have a small norm such that
||s1||∞ ≤ η and ||s2||∞ ≤ η. All coefficients in these polynomials are considered uniformly
and independently drawn (using ExpandS).

The signing process depicted in Algorithm 3 generates a masking vector of polynomials
y with coefficients bounded by γ1. The signer then computes w = Ay and extracts w1,
representing the “high-order” bits of the coefficients in this vector. Specifically, each
coefficient in w can be decomposed canonically as w = w1 · 2γ2 + w0, where ∥w0∥∞ ≤ γ2.
Subsequently, a challenge c is generated as the hash of the message and w1. The resulting
c is a polynomial in Rq with exactly τ coefficients of ±1’s, and the rest being 0. This
distribution is designed in such a way that c has a small norm while still coming from
a domain with a size greater than 2256. Finally, the signer computes z = y + cs1 as the
potential signature.

Rejection sampling is used to eliminate the dependency of z on the secret key. The
parameter β is the maximum absolute value of any coefficient in csi. Given that c has τ
coefficients of ±1’s and the maximum absolute value of any coefficient in si is η, we have
∥csi∥∞ ≤ β = τη. If the absolute value of any coefficient of z exceeds γ1 − β, the signing

https://orcid.org/0000-0002-8703-219X
https://orcid.org/0000-0001-6982-2537
https://orcid.org/0009-0009-7674-1327
https://orcid.org/0000-0002-9278-4521

6 Rejected Challenges Pose New Challenges

Algorithm 3 Sign(sk, M)
1: A ∈ Rk×ℓ

q ← ExpandA(ρ) ▷ A is generated and stored in NTT representation as Â
2: µ ∈ {0, 1}512 ← H(tr∥M, 512)
3: κ← 0, (z, h)← ⊥
4: ρ′ ∈ {0, 1}512 ← H(K∥µ, 512) ▷ or ρ′ ← {0, 1}512 for randomized signing
5: while (z, h) = ⊥ do ▷ Pre-compute ŝ1

def= NTT(s1), ŝ2
def= NTT(s2), and t̂0

def= NTT(t0)
6: y ∈ S̃ℓ

γ1 ← ExpandMask(ρ′, κ)
7: w← Ay ▷ or w← NTT−1(Â · NTT(y))
8: w1 ← HighBitsq(w, 2γ2)
9: c̃ ∈ {0, 1}256 ← H(µ∥w1, 256)

10: c ∈ Bτ ← SampleInBall(c̃) ▷ Store c in NTT representation as ĉ
def= NTT(c)

11: z← y + cs1 ▷ Compute cs1 as NTT−1(ĉ · ŝ1)
12: r0 ← LowBitsq(w− cs2, 2γ2) ▷ Compute cs2 as NTT−1(ĉ · ŝ2)
13: if ∥z∥∞ ≥ γ1 − β or ∥r0∥∞ ≥ γ2 − β then
14: (z, h)← ⊥
15: else
16: h← MakeHintq(−ct0, w− cs2 + ct0, 2γ2) ▷ Compute ct0 as NTT−1(ĉ · t̂0)
17: if ∥ct0∥∞ ≥ γ2 or the number of 1’s in h is greater than ω then
18: (z, h)← ⊥
19: κ← κ + ℓ

20: return σ = (c̃, z, h)

procedure is rejected and is restarted. Likewise, if the absolute value of any coefficient
of “low-order” bits of Az− ct exceeds γ2 − β, the procedure is also restarted. The first
check is necessary for security, and the second is essential for security and correctness. The
signing repeats until both conditions are satisfied.

Algorithm 4 Verify(pk, M, σ)
1: A ∈ Rk×ℓ

q ← ExpandA(ρ) ▷ A is generated and stored in NTT representation as Â
2: µ ∈ {0, 1}512 ← H(H(ρ∥t1)∥M, 512)
3: c← SampleInBall(c̃)
4: w′

1 ← UseHintq(h, Az− ct1 · 2d, 2γ2) ▷ Compute as
NTT−1(Â · NTT(z)− NTT(c) · NTT(t1 · 2d))

5: return [∥z∥∞ < γ1 − β] and [c̃ = H(µ∥w′
1)] and [# of 1’s in h is ≤ ω]

Dilithium’s verification process is depicted in Algorithm 4. It computes w′
1, which

represents the “high-order” bits of Az − ct. The verifier accepts the signature if all
coefficients of z fall within the range of [−γ1 + β + 1, γ1 − β − 1] and if c matches
the hash of the message and w′

1. Since Az − ct = Ay − cs2, it suffices to show that
HighBitsq(Ay, 2γ2) = HighBitsq(Ay−cs2, 2γ2). The reason is that a valid signature ensures
∥LowBitsq(Ay− cs2, 2γ2)∥∞ < γ2−β. Given that the coefficients of cs2 are upper-bounded
by β, adding cs2 cannot cause any low-order coefficient to exceed γ2 by introducing carry
bits. Thus, the above equations and inequalities hold, and the signature is verified correctly.

Dilithium has three security levels, namely, Dilithium-2/3/5 [BDK+20], which corre-
spond to the ML-DSA security levels ML-DSA-44/65/87 [NIS24]. Table 2 summarizes the
parameter choices related to this attack for each security level.

2.4 Integer Linear Programming (ILP)
Following Lenstra’s work [Jr.83], we consider a variant of the ILP problem as follows: for
integral matrix A ∈ Zm×n and vector b ∈ Zm, find a vector x ∈ Zn that satisfies the
system of m inequalities Ax ≤ b.

Yuanyuan Zhou , Weijia Wang , Yiteng Sun and Yu Yu 7

Table 2: Relevant ML-DSA/Dilithium parameter choices [BDK+20,NIS24]
Scheme/NIST security level (k, ℓ) η τ β(= η · τ) γ1 #Reps

ML-DSA-44 (L2) (4,4) 2 39 78 217 4.25
ML-DSA-65 (L3) (6,5) 4 49 196 219 5.1
ML-DSA-87 (L5) (8,7) 2 60 120 219 3.85

In general, the ILP problem is NP-complete [GJ79,vzGS78]. Lenstra [Jr.83] showed that
this problem is polynomially solvable with a time complexity of 2O(n3) ·(m · log V)O(1) when
the number of variables n is a constant, where V represents the maximum absolute value
of the coefficients in A and b. More recently, Reis et al. improved this time complexity to
(log n)O(n) · (m · log V)O(1) in [RR23, Theorem 41].

3 Rejected challenge attack on Dilithium
As discussed in Section 2.2, the rejection sampling of Dilithium guarantees that those z
that leak substantial information about the private key are rejected and not produced as
output. In the context of side-channel attack, our objective is to recover the private key s1
using implementation leakages of the rejected z and the corresponding c.

As shown in Algorithm 4, z = y + cs1 and the coefficients of the mask polynomial
vector y are uniformly distributed in the interval [−γ1 + 1, γ1], the challenge polynomial
c has precisely τ nonzero coefficients (−1 or 1), the secret key polynomial vector has a
small norm such that ∥s1∥∞ ≤ η with each coefficient drawn from a discrete form of the
Gaussian distribution N (0, η·(η+1)

3). Moreover, we recall a basic property of polynomial
multiplication modulo Xn + 1. Denoted by ci the (i + 1)-th row of the coefficient matrix
as Equation (1), which is given by rot(c, i) = c ·Xi mod Xn + 1. Then, denoted by xi the
(i + 1)-th coefficient of the product cs1, which is given by the inner product xi = ⟨ci, s1⟩.

x0
x1
x2
...

xn−2
xn−1

def= cs1 =

c0 −cn−1 −cn−2 · · · −c2 −c1
c1 c0 −cn−1 · · · −c3 −c2
c2 c1 c0 · · · −c4 −c3
...

...
...

...
cn−2 cn−3 cn−4 · · · c0 −cn−1
cn−1 cn−2 cn−3 · · · c1 c0

s10

s11

s12
...

s1n−2

s1n−1

(1)

By the Central Limit Theorem, the distribution of each xi approximates N (0, τ ·η·(η+1)
3),

taking into account that c has exactly τ non-zero coefficients. This equation is straightfor-
ward to solve to recover s1 with known cs1 and its corresponding challenge c. However, as
mentioned above, known SCA countermeasures already suggest protecting secret-involved
calculations such as cs1 and the mask polynomial vector y. We address the problem of
recovering s1 using rejection information alone (without leakage about multiplication cs1
or mask polynomial vector y).

The probability of z been rejected is Pr
[
∥z∥∞ ≥ γ1 − β

]
= 1 − (1 − β

γ1−0.5)ℓn ≈
1− e−βℓn/γ1 according to the Dilithium documentation [DKL+18]. Given a rejected z, at
least one of its coefficients zi will be in the interval [−γ1 + 1−β,−γ1 + β]∪ [γ1−β, γ1 + β],
i.e., 4β + 1 possible integral values zi. These 4β + 1 possible zi values can confine the
corresponding yi to a much smaller interval than the original [−γ1 + 1, γ1] and thus further
limit the range of xi. For instance,

• if zi = −γ1, then −γ1 + 1 ≤ yi ≤ −γ1 + β and −β ≤ xi ≤ −1;

• if zi = −γ1 − 1, then −γ1 + 1 ≤ yi ≤ −γ1 − 1 + β and −β ≤ xi ≤ −2;

https://orcid.org/0000-0002-8703-219X
https://orcid.org/0000-0001-6982-2537
https://orcid.org/0009-0009-7674-1327
https://orcid.org/0000-0002-9278-4521

8 Rejected Challenges Pose New Challenges

• if zi = γ1 − 1, then γ1 − 1− β ≤ yi ≤ γ1 and −1 ≤ xi ≤ β;

• if zi = γ1, then γ1 − β ≤ yi ≤ γ1 and 0 ≤ xi ≤ β;

• if zi = −γ1 + 1, then −γ1 + 1 ≤ yi ≤ −γ1 − 1 + β and −β ≤ xi ≤ 0;

• if zi = γ1 − 2, then γ1 − 1− β ≤ yi ≤ γ1 and −2 ≤ xi ≤ β.

With the aforementioned upper/lower constraints of xi, we can construct an ILP
instance of xi with (ℓn) variables (the polynomial degree parameter n is 256 and the ℓ
parameter of s1 set to 4/5/7 for security level 2/3/5 in ML-DSA/Dilithium respectively).
By solving this ILP problem, we can recover s1 given linearly many pairs of rejected (zi,
c).

Our main result of the rejected challenge attack on s1 is as follows:

Definition 1 (Rejected coefficient of a rejected challenge). For a rejected challenge c, its
rejected coefficient is a coefficient in c’s corresponding z such that |zi| ≥ γ1 − β. Moreover,
i is referred to as the position of the rejected coefficient.

Theorem 1 (ILP-based Dilithium key recovery). For the Dilithium signing (Algorithm 3),
given m > ℓn rejected challenges c and the corresponding values and positions of their
rejected coefficients, an adversary can recover s1 with probability of at least 1− ℓn · e− τm

ℓn

and a time complexity of (log ℓn)O(ℓn) · (m · log β)O(1).

Proof. Each rejected coefficient zi will assume one of 4β+1 values in the set defined as Sz
def=

{−γ1+1−β,−γ1+2−β, . . . ,−γ1−1+β,−γ1+β}∪{γ1−β, γ1−β+1, . . . , γ1−1+β, γ1+β}.
For each rejected coefficient zi, one can construct two inequalities about the unknown
s1. For example, if the rejected zi = −γ1, we get two inequalities −β ≤ ⟨ci, s1⟩ ≤ −1
according to 3, which can be further written as:[

−rot(c, i)
rot(c, i)

]
s1 ≤

[
β
−1

]
Taking into account the m rejected coefficients, we can construct an ILP instance Cs1 ≤ b
for a 2m × ℓn matrix C and a 2m × 1 vector b, where the number of variables in s1
is ℓn, and the maximum absolute value of the coefficients in C and b is β. According
to [RR23, Theorem 41], one can solve this ILP problem in time (log ℓn)O(ℓn) · (m · log β)O(1)

to recover the secret key s1.
For each rejected zi, only τ non-zero coefficients in the corresponding c are multiplied

with the corresponding s1 as shown in Equation (1). Thus, each rejected zi can only add
constraints to the constructed ILP instance about τ coefficients of s1. To fully recover
s1, all the ℓn coefficients of s1 must be covered by the rejected coefficients zi. We denote
Ej(j ∈ [1, ℓn]) as the event that those m rejected coefficients zi have not bounded the j-th
coefficient of s1. The probability that those m rejected coefficients zi have not bounded
at least one coefficient of s1 is Pr

[
∪ℓn

j=1 Ej

]
≤

∑ℓn
j=1 Pr

[
Ej

]
= ℓn · (1− p)m ≈ ℓn · e−pm,

in which, p = τ
ℓn corresponds to the probability of any coefficient of s1 bounded by any

rejected zi. Putting all together, the probability that all coefficients of s1 bounded by that
m rejected zi is 1− Pr

[
∪ℓn

j=1 Ej

]
≥ 1− ℓn · e− τm

ℓn . This completes the proof.

In practice, the coefficient zi is typically a 32-bit signed integer using two’s complement
representation. It is very difficult to recover each and every 4β + 1 values in Sz with 100%
SR. Targeting HW values of the rejected coefficients zi can significantly reduce the number
of classes to identify. There are four particular values −γ1, −γ1 − 1, γ1 − 1, and γ1 in
Sz that correspond to unique HW values (detailed in Appendix A), which are easier to
extract via SCA leakages. We thus define the following rejected challenge that we will
exploit towards a more useful and practical attack.

Yuanyuan Zhou , Weijia Wang , Yiteng Sun and Yu Yu 9

Definition 2 (Rejected challenge of interest - RCoI). For the Dilithium signing (Algo-
rithm 3), a challenge c is a rejected challenge of interest, if c is a rejected challenge and c’s
rejected coefficient equals −γ1, −γ1 − 1, γ1 − 1 or γ1.

Lemma 1. For each generation of the challenge c in Dilithium signing (Algorithm 3), the

probability that c is a rejected challenge of interest is
1− (1− β

γ1−0.5)ℓn

β + 0.25 .

Proof. Conditioned on the event ∥z∥∞ ≥ γ1 − β, which occurs with probability

Pr
[
∥z∥∞ ≥ γ1 − β

]
= 1− (1− β

γ1 − 0.5)ℓn ,

at least one coefficient of z is uniform over Sz. It thus hits the four values (as in Definition 2)
with probability 4

4β+1 = 1
β+0.25 , which completes the proof.

Taking into account Lemma 1, we can deduce a special case of Theorem 1 as below
based on rejected challenge of interest,

Theorem 2 (Key recovery with RCoI). For M executions of the Dilithium signing
(Algorithm 3) with M > ℓnu and u = 2β + 0.5

1− (1− β
γ1−0.5)ℓn

, an adversary who obtains the

rejected challenges of interest and the corresponding values and positions of their rejected
coefficients can recover s1 with a probability of at least (1− ℓne− τM

ℓnu − e− M
4u) and a time

complexity of (log ℓn)O(ℓn) · (M log β
u)O(1).

Proof. According to Lemma 1, the expected number of rejected challenges of interest

among M signing executions is M ·
1− (1− β

γ1−0.5)ℓn

β + 0.25 = 2M
u . We have by a Chernoff

bound that the number of rejected challenges of interest is at least, M
u except with a

probability of e− M
4u . Then, it is natural to replace m = M

u in Theorem 1, which leads to
recovering s1 with probability of at least (1− ℓne− τM

ℓnu − e− M
4u) and a time complexity of

(log ℓn)O(ℓn) · (M log β
u)O(1).

4 Experimental results
The time complexity given in Theorem 2 is not of much practical significance because it
corresponds to the worst-case scenario and contains a huge exponential factor. To assess
the effectiveness of the proposed rejected challenge attack, we first evaluate it to recover
the entire private key s1 considering Dilithium-2/3/5 parameter sets. In our experiments,
instead of implementing the algorithm proposed in [RR23], we choose the built-in branch
and bound [LMSK63] exact algorithm from GLPK MILP solver of SAGE to solve the above
ILP. This exact algorithm turns out to be very efficient in practice, especially with effective
bounding techniques one can prune away large sections of the tree, dramatically reducing
the actual computation time. Our experimental results are in line with this intuition, i.e.,
the constructed ILP instances are solved in seconds or minutes.

Since the coefficients of s1 follow the discreet Gaussian distribution with a mean
of 0, we set the objective function of the constructed ILP instance to minimize the
sum of all s1 coefficients (i.e., the variables of the constructed ILP instance). This is
equivalent to minimizing the mean value of all coefficients of s1, which is expected to
be close to 0. We emulate the rejected challenge attack by sampling random pairs of
Dilithium keys, generating corresponding signatures, and recording only those rejected

https://orcid.org/0000-0002-8703-219X
https://orcid.org/0000-0001-6982-2537
https://orcid.org/0009-0009-7674-1327
https://orcid.org/0000-0002-9278-4521

10 Rejected Challenges Pose New Challenges

z with zi ∈ {−γ1,−γ1 − 1, γ1 − 1, γ1} and the corresponding c, where ‘i’ is the index of
the coefficient of z that fails the bound check. Our experiments consider the bound check
of z from the Early-Abort implementation, which is regarded as the worst-case scenario
from the attacker perspective. This is because, in the Early-Abort implementation, only
one zi can be exploited for each rejected z (before reaching an early abort). In contrast,
in other (for example, constant-timing) implementations, multiple interesting zi values
may be found in a single rejected z. We summarize the experimental rejected challenge
attack results in Table 3. The experiments are repeated 100 times for each setting on
randomly generated key pairs, so the success rate “SR” column of full key recovery of s1
corresponds to the average of 100 experiments. We implemented the experiments in SAGE
10.3 (Ubuntu 22.04.4) with an Intel® CoreTM i5-7500 CPU 3.40GHz. All experiments
used the default GLPK MILP solver of SAGE with a timeout of 1 hour. Each successful full
key recovery of s1 takes a matter of seconds or minutes.

The second column of Table 3 contains two numbers. The first number indicates the
number of signatures generated for each random key pair. The second number corresponds
to the expected number of rejected signatures. Interestingly, the results suggest that the
complexity of this attack does not directly depend on the security levels. On the one
hand, higher security levels require more signatures. The SR reaches 100% for Dilithium-
2/3/5. On the other hand, Dilithium-3 requires 107 more signatures than Dilithium-5
(with 7× 106 more signatures than for Dilithium-5, 17 out of 100 experiments failed to
recover the full s1 with timeout error). The fact that the expected number of rejected
four particular zi values depends on the parameters ℓ and β explains this. That is, the
probability of at least one (considering the Early-Abort setting in the bound check of the
reference implementation) zi coefficient rejected is Pr

[
∥z∥∞ ≥ γ1−β

]
= 1− (1− β

γ1−0.5)ℓn,
approximately, 45.64%, 38.04%, 33.65% for Dilithium-2/3/5, respectively. With higher
security levels, the expected number of rejected z is getting smaller, given the same amount
of signature generation trials. However, the probability of the rejected zi coefficient being
one of those four values is about 1

4β+1 , i.e., 1
313 , 1

785 , 1
481 for Dilithium-2/3/5, respectively.

This explains the fact that Dilithium-3 needs more signature generations to get sufficient
rejected zi compared to Dilithium-5.

Table 3: Rejected challenge attack results using 4 rejected values of z’s coefficients
#Sign (#Rejected z) SR ILP constraint bounds Running time (s)

ML-DSA-44 (L2) 3× 106 (1.37× 106) 100% [−52,−1]; [−52,−2]; [−1,49]; [0,49] 104
ML-DSA-65 (L3) 2.3× 107 (8.75× 106) 100% [−112,−1]; [−112,−2]; [−1,111]; [0,111] 201
ML-DSA-87 (L5) 1.3× 107 (4.38× 106) 100% [−63,−1]; [−63,−2]; [−1,63]; [0,63] 75

The fourth column of Table 3 consists of four pairs of constraints, represented by interval
[lower-bound,upper-bound], which correspond to the four respective rejected zi values,
namely zi = −γ1, zi = −γ1 − 1, zi = γ1 − 1, or zi = γ1. As discussed, we could have just
put the standard constraints [−β,−1], [−β,−2], [−1,β] and [0,β] to represent the respective
inequalities for the four cases −β ≤ xi ≤ −1, −β ≤ xi ≤ −2, −1 ≤ xi ≤ β, and 0 ≤ xi ≤ β,
where β is 78, 196 or 120 for Dilithium-2/3/5 respectively. For further optimization, we
observe that smaller absolute values can be used in place of above upper/lower bound ±β
without affecting the accuracy. We statistically analyze the distribution of xi of a rejected
zi. As depicted in the histogram of Figure 1a (resp., Figure 1b and Figure 1c), we execute
109 (resp., 2.5× 109 and 2× 109) times of Dilithium-2 (resp., Dilithium-3 and Dilithium-5)
signing process, and record 458508787 (resp., 952794746 and 675233816) rejected zi and
the corresponding values of xi. As can be observed from the experimental results, the
lower bound of −β = −78 (resp., −β = −196 and −β = −120) can be reduced to −52
(resp., −112 and −63) for Dilithium-2 (resp., Dilithium-3 and Dilithium-5), which already
bounds all values in our experiments. The case for upper bound β is likewise.

We mention that the above empirical optimization has theoretical support. We can

Yuanyuan Zhou , Weijia Wang , Yiteng Sun and Yu Yu 11

observe that xi approximates the N (0, σ2 = τ ·η·(η+1)
3) normal distribution as outlined in

black in Figures 1a, 1b and 1c. The probability that a value drawn from this distribution
falls in the interval [−5.3σ, 5.3σ], is at least 99.99999% (see e.g., [FSK03]) by substituting
concrete values into the parameters. The last column of Table 3 gives the average running
time of full key recovery of s1, which is less than 4 minutes for all three security levels.

(a) Dilithium-2. (b) Dilithium-3. (c) Dilithium-5.

Figure 1: Distributions of xi for Dilithium at different security levels.

In all Dilithium-2/3/5 cases, we verified the effectiveness of the proposed rejected
challenge attack using those four particular values of z’s rejected coefficient with the
corresponding challenge c to disclose the entire private key s1. Next, we will demonstrate
utilizing this rejected challenge attack using the obtained side-channel leakages of z’s
coefficients and its corresponding c via profiled attacks in a realistic context.

5 A use case of proposed attack from real SCA leakage
In this section, we validate the practicality and effectiveness of our attack. Specifically,
we propose a deep learning-based method to recover the rejected coefficient of z and
the corresponding challenge c from side-channel leakage. By leveraging the proposed
rejected challenge attack, we achieve a successful side-channel key-recovery attack on real
implementations.

5.1 Deep learning profiled attack
Since the introduction of template attacks [CRR02], the SCA community has regarded
profiled attacks as the most powerful type of side-channel attacks. Profiled attacks consist
of two phases, i.e., profiling and attacking phases. In the profiling phase, an attacker
uses a profiling device, where he controls or at least knows the key, to model the leakage
characteristics of key-dependent sensitive data (e.g., the coefficients of the rejected challenge
c in this work). In the attacking phase, the attacker recovers sensitive information from
the target device using side-channel leakage and the model built during the profiling phase.

We employ Deep Learning (DL) profiled attacks to experimentally evaluate the ef-
fectiveness of our proposed rejected challenge attack. Specifically, we use a Multi-Layer
Perceptron (MLP) neural network model for these DL profiled attacks. Despite its simple
and shallow structure, the MLP model demonstrated strong performance. Unlike the classi-
cal profiled attacks (e.g., template attacks), DL profiled attacks do not assume any specific
leakage characteristics. They exploit features (sample points from side-channel traces)
via neural networks to classify labels (sensitive data in the SCA context). The training
process of neural networks in the profiling phase aims to construct a classifier function
F(.) : Rd → R|S|, mapping the input trace l ∈ Rd to an output vector p ∈ R|S|, represent-
ing classification scores. During training, the backpropagation method [Kel60,GBC16] is
applied to each training batch, updating the trainable parameters of the neural network
model to minimize the loss function, which quantifies classification errors. In the attacking
phase, the trained model (i.e., F(.) with all the final updated parameters) is used to classify

https://orcid.org/0000-0002-8703-219X
https://orcid.org/0000-0001-6982-2537
https://orcid.org/0009-0009-7674-1327
https://orcid.org/0000-0002-9278-4521

12 Rejected Challenges Pose New Challenges

each attack trace and produce a probability vector p[sg]. We detail the parameter settings
for our neural networks in Section 5.2.

5.2 Attack setup
Our target is the reference Dilithium implementation 1 on a 32-bit STM32F microcontroller
running at 8 MHz. During the execution of the signing process in Dilithium (before
obtaining the signature σ), the values of c and z, whether z is rejected in the while loop,
are unknown to the attacker. We need to recover the corresponding intermediate values
through SCA. The following are the leakage points for the corresponding intermediate
values.

To implement the attack, we acquired power consumption traces using a Picoscope
5244D oscilloscope and set the sampling rate to 62.5 MHz. We need to distinguish
between the various types of leakage discussed above, concretely differentiating the values
of the coefficients of c, distinguishing some specific values of the coefficients of z, and
determining whether the coefficients of z will be rejected. This task involves a one-
dimensional data classification problem. Given that each type of leakage corresponds to a
limited number of categories, we found that the representational capacity of an MLP is
sufficient. Consequently, we designed an MLP model to perform this classification. Table 4
summarizes the details of the used MLP model and the corresponding hyper-parameters.

Table 4: MLP Model Architecture
Layer Type Output Size Details
Input Layer (input size,) -
Dense Layer 128 Activation: ReLU, Regularization: L2 (0.01)

Dropout 128 Dropout Rate: 0.2
Output Layer classes num Activation: Softmax, Optimizer: Adam

It is a simple MLP structure, where the Dense layer (fully connected layer) is the core
component. Each neuron connects to all neurons in the previous layer. We use the ReLU
activation function to introduce non-linearity and accelerate the training process. We add
L2 regularization to constrain the weight values to reduce the risk of overfitting, along with
Dropout, which randomly “disables” a portion of the neurons during training to enhance
the model’s generalization ability.

In terms of data preprocessing, all profiling and attacking traces are normalized using
the StandardScalar function from the Scikit-learn [PVG+11] library by removing the mean
and scaling to unit variance. For each data point x, the standardized data is xscaled = x−µ

σ ,
where µ is the mean of the sample data, and σ is the standard deviation of the sample
data.

There is an implicit assumption about the knowledge of the Points of Interest (POIs),
i.e., the attackers/evaluators can determine the rough timing intervals of each coefficient
processing of the rejected challenge c and the corresponding zi in the side-channel traces.
It is feasible for most of security products in a grey-box testing context shown in [KAA21,
QLZ+23a,QLZ+24].

5.3 Recovering c

c is transformed into its NTT form by employing the Cooley-Tukey (CT) Algorithm.
Figure 2 illustrates the NTT code provided by the Dilithium’s reference implementation 2.

1The specific implementation is detailed in the Dilithium repository on GitHub: https://github.com/
pq-crystals/dilithium

2The reference implementation is available at https://github.com/pq-crystals/dilithium.

https://github.com/pq-crystals/dilithium
https://github.com/pq-crystals/dilithium
https://github.com/pq-crystals/dilithium

Yuanyuan Zhou , Weijia Wang , Yiteng Sun and Yu Yu 13

The leakage generated by the butterfly operation, highlighted in red, can help us recover c.
For the polynomial c with n coefficients c0, . . . , cn−1, this process consists of log n layers,
with n/2 CT Butterfly Units (BFUs) repeated for all coefficients in each layer.

Figure 2: C Implementation of NTT.

Each CT BFU operates on two coefficients, referred to as upper and lower coefficients,
and produces two outputs involving a twiddle factor. Specifically, the product between
the upper coefficient and the twiddle factor is added to (or subtracted from) the lower
coefficient to generate the results.

Figure 3 provides a brief summary of the NTT process with 16 coefficients. Our attack
is to recover the entire challenge c by exploiting the leakage from NTT. In the rest of
this subsection, we denote each coefficient in the input and output of the NTT as ci

and ĉi, respectively, with i ∈ [0, n−1], and we call them as input or output coefficients.
Additionally, we denote each coefficient in the jth layer as ci,j with i ∈ [0, n−1] and we
call them as inner coefficients, or, coefficients for the sake of brevity. Moreover, for an
upper coefficient ci,j in the jth layer, we denote the corresponding product of ci,j and the
associated twiddle factor as c′

i,j = ci,j · ζ.

5.3.1 Attacking the first layer

First, we can recover the upper input coefficient of each BFU in the first layer with perfect
accuracy. Because the possible values of the upper input coefficient, namely −1, 0, and 1,
produce significantly distinct leakage patterns. These patterns are related to the leakages
of the upper input coefficient, denoted as ci and ci · ζ, where n

2 ≤ i ≤ n−1. We focus on
the Hamming weight leakage and present the Hamming weights of ci and ci · ζ below.

• When ci = −1, the Hamming weights are 32 and 14, respectively.

• When ci = 0, the Hamming weights are 0 and 0, respectively.

• When ci = 1, the Hamming weights are 1 and 19, respectively.

Additionally, we can distinguish each lower input coefficient value of −1 from 0 and
1 in the first layer with perfect accuracy. Because the Hamming weight of −1 differs
significantly from those of 0 and 1.

Figure 4 presents the attack results for both the upper and lower input coefficients
in the first layer of the NTT. Figures Figure 4a and Figure 4c illustrate a relationship
between the model’s (epochs=4, batch size=512) prediction accuracy and the number of
profiling traces for the upper and lower input coefficients, respectively. For the upper input
coefficients, the accuracy is measured by distinguishing between −1, 0, and 1. At the same
time, for the lower input coefficients, the task is to distinguish −1 from {0, 1}.

https://orcid.org/0000-0002-8703-219X
https://orcid.org/0000-0001-6982-2537
https://orcid.org/0009-0009-7674-1327
https://orcid.org/0000-0002-9278-4521

14 Rejected Challenges Pose New Challenges

Figure 3: 16×16 BFU construction.

We also provide the confusion matrix to describe the accuracy. Each element in the
confusion matrix represents the model’s prediction and the actual class matching for a
specific category. We can observe from Figures 4b and 4d that the prediction accuracy has
reached 100%.

In the rest of this subsection, let B denote the input coefficients directly recovered by
the first-layer leakage, and thus all the input upper input coefficients are contained in
B, i.e.,

⋃ n

2j

k=1 cn−k ⊆ B. However, since the Hamming weight leakage of 0 and 1 are very
similar, it is challenging to distinguish the lower input coefficient value of 1 from 0. To
address this, we need to consider further leakages from other layers.

5.3.2 Attacking the other layers

Given all the lower input coefficients with values of −1 and the values of upper input
coefficients in the first layer, we propose the method to distinguish the remaining lower
input coefficients whose values are within {0, 1}. Through the propagation of BFU in
NTT, the differences in Hamming weights will be amplified, especially before and after the
multiplication. Our attack exploits the leakages of ci,j and c′

i,j .
Through side-channel leakage, we can recover approximately the Hamming weight of

each lower coefficient and its product with the corresponding twiddle factor in the 2nd

to (log n)th layers. We mean by ‘approximately’ that a tolerance ϵ is allowed between
the actual Hamming weight and the predicted Hamming weight. In other words, through
leakage, in 2nd to (log n)th layers, we can recover that the Hamming weight of a lower
coefficient (say, ci,j) lies between HW(ci,j)−ϵ to HW(ci,j)+ϵ, as well as the Hamming weight

Yuanyuan Zhou , Weijia Wang , Yiteng Sun and Yu Yu 15

(a) Profiling set size vs. attack accuracy of an
upper input coefficient.

(b) The confusion matrix of the upper input
coefficient for distinguishing among the classes
{0, 1,−1}

.

(c) Profiling set size vs. attack accuracy of a
lower input coefficient.

(d) The confusion matrix of the lower input coef-
ficient for distinguishing between the class {−1}
and {0, 1}.

Figure 4: Attack results of the first-layer NTT.

of c′
i,j lies between HW(c′

i,j)−ϵ to HW(c′
i,j)+ϵ. Specifically, we denote the approximate

Hamming weight of a coefficient ci,j (resp., c′
i,j) with tolerance ϵ as HWϵ(ci,j) (resp.,

HWϵ(c′
i,j)).

The side-channel prediction accuracy of this approximation depends on the value of
ϵ. Figure 5 illustrates the prediction accuracy relative to ϵ. We observe that when ϵ ≥ 3,
the prediction accuracy reaches 100% (The model has epochs set to 20 and a batch size
of 512). In the rest of this subsection, we present the recovery of lower input coefficients
c0, . . . , c n

2 −1 using the approximate Hamming weights.

Upper coefficients Ci,j
def=

{
cf(i,j,k),j , c′

f(i,j,k),j | k = 0, 1, 2, . . . , 2j−1−1, n− n
2j ≤ i < n

}
,

where f(i, j, k) def= i− k·n
2j−1 . These coefficients in the jth layer are determined by the input

coefficients Ai,j
def=

{
ci− k·n

2j−1
| k = 0, 1, . . . , 2j−1−1

}
. Let Aj

def= Aj−1 ∪
⋃ n

2j

k=1 An−k,j , so we
have Alog n = {c1, c2, . . . , cn−1}, and {c

i−(2j−1)·n

2j

} = Ai,j/Aj−1.

Assuming Aj−1 is known, it is possible to resolve the input coefficients cg(i,j) = Ai,j/Aj−1,
with g(i, j) def= i− (2j−1−1)·n

2j−1 by a probability. It can be achieved by exhaustively guessing
the value of cg(i,j), calculating the corresponding Hamming weights of the coefficients
in Ci,j , and verifying whether the computed Hamming weights fall within the expected

https://orcid.org/0000-0002-8703-219X
https://orcid.org/0000-0001-6982-2537
https://orcid.org/0009-0009-7674-1327
https://orcid.org/0000-0002-9278-4521

16 Rejected Challenges Pose New Challenges

Algorithm 5 Attack with the approximate Hamming weights
1: Input:
2: Side-channel leakage of NTT, MLP model, tolerance ϵ.
3: Output:
4: All input coefficients {c0, . . . , c255} or Unsuccess.
5: B

MLP←− Side-channel leakage
▷ B represents the input coefficients recovered by leakage of the first layer.

6: for j ← 2 to log n do ▷ j represents the jth layer in the NTT.
7: for i← n− n

2j to n−1 do
8: f(i, j, k) def= i− k·n

2j−1 , g(i, j) def= i− (2j−1−1)·n
2j−1

9: Ci,j
def=

{
cf(i,j,k),j , c′

f(i,j,k),j | k = 0, 1, 2, . . . , 2j−1−1
}

10: Ai,j
def= {cf(i,j,k) | k = 0, 1, 2, . . . , 2j−1−1} ▷ Related input coefficients.

11: cg(i,j) = Ai,j/Aj−1 ▷ cg(i,j) is the input coefficient to be recovered.
12: if cg(i,j) ∈ B then ▷ Check if cg(i,j) is recovered in the first layer.
13: cg(i,j) ← −1 and break
14: mark1 ← {F alse}2 ▷ Indicate whether c̃g(i,j) can be recovered.
15: mark2 ← {F alse}2j−1

▷ Indicate whether cf(i,j,k),j can be recovered.
16: for c̃g(i,j) ← 0 to 1 do
17: C̃i,j

def=
{

c̃f(i,j,k),j , c̃′
f(i,j,k),j | k = 0, 1, 2, . . . , 2j−1−1

}
▷ Coefficients derived from c̃g(i,j) and Aj−1 in jth layer.

18: for k ← 0 to 2j−1−1 do
19: HWϵ(cf(i,j,k),j), HWϵ(c′

f(i,j,k),j) MLP←− Side-channel leakage

20: HW(c̃f(i,j,k),j), HW(c̃′
f(i,j,k),j)

c̃g(i,j),Aj−1←− Deduction
▷ Derive HW from guessed c̃g(i,j) and previously recovered Aj−1.

21: if |HW(c̃f(i,j,k),j)−HWϵ(cf(i,j,k),j)|≤ϵ
22: and |HW(c̃′

f(i,j,k),j)−HWϵ(c′
f(i,j,k),j)|≤ϵ then

▷ Check if HW is in the range of HWϵ

23: mark2[k]← T rue

24: if F alse ∈ mark2 then
▷ If at least one HW is not in the range of HWϵ.

25: return Unsuccess
26: else
27: mark1[c̃g(i,j)]← T rue

28: if mark1[0] == mark1[1] then ▷ There exist conflicting results.
29: return Unsuccess
30: else
31: cg(i,j) ← (mark1[0] == T rue) ? 0 : 1
32: Aj

def= Aj−1 ∪
⋃ n

2j

k=1 An−k,j ▷ The set of recovered coefficients.
▷ Alog n = {c1, c2, . . . , cn−1}

33: if c0 ∈ B then ▷ Check if c0 is recovered in the first layer.
34: c0 ← −1
35: else
36: c0 ← (Alog n contains τ nonzero input coefficients) ? 0 : 1
37: return Alog n ∪ {c0}

Yuanyuan Zhou , Weijia Wang , Yiteng Sun and Yu Yu 17

Figure 5: The relation between the calculated SR, prediction accuracy, and tolerance ϵ.

range of their approximated Hamming weights. Therefore, we can execute the attack by
leveraging the leakage from each successive layer. Algorithm Algorithm 5 describes the
process of this attack. In addition, we give an example of the attack in Section 5.3.3 for
better understanding.

In the jth iteration in the algorithm (lines 10 to 30), Aj−1 is already recovered by
previous layers. Then, for the lower input coefficient cg(i,j), if cg(i,j) = −1, then cg(i,j) ∈ B
is recovered in the first layer. Otherwise, we take a guess value c̃g(i,j) ∈ {0, 1}, and calculate
the coefficients in Ci,j through the NTT route, denoted as C̃i,j

def=
{

c̃f(i,j,k),j , c̃′
f(i,j,k),j |

k = 0, 1, 2, . . . , 2j−1−1
}

. If all the Hamming weights of the coefficients in C̃i,j fall within
the range of approximated Hamming weights of the coefficients in Ci,j , the guessed value
c̃g(i,j) may be correct. However, note that the two guess values 0 and 1 may both exhibit to
be correct ones because of the too-large tolerate ϵ of the approximated Hamming weights.
We regard this case as an unsuccessful attack.

At last, the only undetermined input coefficient is c0, which can be obtained based on
the value of τ . Concretely, since the number τ of nonzero input coefficients in c1, . . . , cn−1
is known, we can directly ascertain whether or not c0 is zero. Additionally, as we already
know, if c0 is −1 or not, its exact value can be determined.

The success rate of recovering all input coefficients using the above attack method
depends on the value of the tolerance ϵ. To evaluate this, we perform the attack with
different ϵ values and calculate the success rate by iterating the attack 40 million times
for each ϵ value. Figure 5 shows the relationship between the success rate, the prediction
accuracy of the SCA model, and the tolerance ϵ. As observed, both the attack success
rate (of Algorithm 5) and the prediction accuracy of approximate Hamming weight reach
100% when ϵ = 3.

5.3.3 Attack example

To better illustrate this algorithm, we provide an example based on NTT with 16 input
coefficients, shown in Figure 3. Our example traces the process from the 1st to the final
layer of the NTT.

• 1st layer: In conjunction with the description in Section 5.3.1, we can leverage the
side-channel leakage from the first layer to recover the upper input coefficients of the
first layer BFU (i.e., {c8, c9, . . . , c15}), as well as the lower input coefficients whose
values are −1. It recovers input coefficients in the set B. The subsequent attacks are
conducted based on the method described in Section 5.3.2.

• 2nd layer: Taking i = 15 as a case example, set C15,2 = {c15,2, c′
15,2, c7,2, c′

7,2} is
a function of input coefficients A15,2 = {c15, c7}, where c15 ∈ A1 has already been
determined during the attack process in the previous (i.e., the first) layer. If c7 = −1,
then c7 ∈ B is also known from the previous layer. If c7 ̸= −1, then we have

https://orcid.org/0000-0002-8703-219X
https://orcid.org/0000-0001-6982-2537
https://orcid.org/0009-0009-7674-1327
https://orcid.org/0000-0002-9278-4521

18 Rejected Challenges Pose New Challenges

A15,2/A1 = c7 and attempt to recover this input coefficient through the side-channel
leakage of the second layer. For a hypothesis c̃7 ∈ {0, 1} of c7, we can compute
the set C̃15,2 = {c̃15,2, c̃′

15,2, c̃7,2, c̃′
7,2} by c̃7 and c15 (c15 ∈ A1) along the NTT path.

Thus, we can compute the predicted Hamming weights of c̃15,2, c̃′
15,2, c̃7,2, and

c̃′
7,2. Additionally, we can obtain the approximate Hamming weights of those four

coefficients by exploiting the side-channel leakage. If and only if all predicted guessed
Hamming weights match the corresponding approximate Hamming weights, the guess
c̃7 is deemed valid. Furthermore, the attack is successful if only one guessed value of
c7 is valid. If both hypotheses c̃7 = 0 and c̃7 = 1 are valid, this situation is considered
an attack failure. Through the above attack scheme for the second layer attack, we
can recover c7, c6, c5, and c4, so we have A2 = A1 ∪A15,2 ∪A14,2 ∪A13,2 ∪A12,2, or
equivalently, i.e., A2 = A1 ∪ {c7, c6, c5, c4}.

• 3rd layer: Taking i = 15 as a case example, set C15,3 =
{

cf(15,k,3),3, c′
f(15,k,3),3 |

k = 0, 1, 2, 3
}

is a function of input coefficients A15,3 = {c15, c11, c7, c3}, where
{c15, c11, c7} ∈ A2 have been determined during the attack process in the second
layer. If c3 = −1, then c3 ∈ B is known in the first layer. If c3 ̸= −1, we have
A15,3/A2 = c3, and we attempt to recover this input coefficient through the side-
channel leakage of the 3rd layer. For a hypothesis c̃3 ∈ {0, 1} of c3, we can compute
the set C̃15,3 =

{
c̃f(15,k,3),3, c̃′

f(15,k,3),3 | k = 0, 1, 2, 3
}

by c̃3 and {c15, c11, c7} ∈ A2
along the NTT path. The subsequent attack process is similar to the description of
attacking c7 in the second layer. In the third layer attack, we can recover c3 and c2,
so we have A3 = A2 ∪

⋃2
k=1 An−k,3, or equivalently i.e. A2 ∪ {c3, c2}.

• 4th layer: Taking i = 15 as a case example, set C15,4 =
{

cf(15,k,4),4, c′
f(15,k,4),4 | k =

0, 1, 2, · · · , 7} is a function of input coefficients A15,4 = {c15, c13, c11, c9, c7, c5, c3, c1},
where {c15, c13, c11, c9, c7, c5, c3} ∈ A3 have been determined during the attack process
in the third layer. If c1 = −1, we know c3 ∈ B in the first layer. If c1 ̸= −1,
we have A15,4/A3 = c1 and attempt to recover this input coefficient through the
side-channel leakage of the 4th layer. For a hypothesis c̃1 ∈ {0, 1} of c1, we can
compute the set C̃15,4 =

{
c̃f(15,k,4),4, c̃′

f(15,k,4),4 | k = 0, 1, 2, · · · , 7} by c̃1 and
{c15, c13, c11, c9, c7, c5, c3} ∈ A3 along the NTT path. The subsequent attack process
is similar to the description of attacking c7 in the second layer. In the fourth layer
attack, we can recover c1, so we have A4 = A3 ∪

⋃1
k=1 An−k,4, i.e. A3 ∪{c1}. At this

point, we can recover all input coefficients involved in the multiplications within the
NTT, with the only undetermined input coefficient being c0. We can obtain its value
through the τ value. If we have recovered the τ nonzero input coefficients in the
polynomial c from c1, c2, . . . , c15, then c0 = 0. Additionally, since we already know if
c0 is −1 or not, its exact value can be determined.

5.4 Recovering z

In Algorithm 3, line 11, z is calculated by z = y + cs1 in the polynomial ring modulo q. By
exploiting the leakage of the z using DL profiled attacks, we can directly determine whether
a given coefficient of z takes one of the following critical values: −γ1,−γ1− 1, γ1− 1, γ1, or
any other value. Notably, a rejection occurs if any coefficient of z hits these values during
the Dilithium signing process.

Figure 6a depicts the relationship between the profiling set size of this function and the
attack success rate (The model has epochs set to 4 and a batch size of 512), and Figure 6b
presents the confusion matrix when the attack set size is 50 000.

Yuanyuan Zhou , Weijia Wang , Yiteng Sun and Yu Yu 19

(a) Profiling set size vs. attack accuracy. (b) The confusion matrix.

Figure 6: Attack result for distinguishing the coefficient values −γ1,−γ1 − 1, γ1 − 1, γ1,
and other values.

5.5 Countermeasures
There are different potential countermeasures to eliminate or mitigate this threat. Masking
countermeasures proposed in recent literature, including but not limited to [BBE+18,
MGTF19,ABC+23,CGL+24], are expected to provide provably secure protection against
this rejected challenge attack. However, as mentioned before, the disadvantage of masking
countermeasures is the performance penalty.

Apart from the masking, one can also implement classical hiding countermeasures, e.g.,
increasing the noise level during the bound check of z and handling of c. They can be done
by adding time noise (for instance, variable clock, jitters, random delay) or balancing power
consumption while processing different target data (z and c in this case) values. A shuffling
countermeasure can be another way to mitigate the attack [RPBC20,LHL+23], i.e., using
a shuffled order to process z and c, an attacker then needs to additionally recover the
shuffling sequence after recovering the correct values of the rejected zi and c. In conclusion,
a combination of those mitigation countermeasures can render the attack complexity much
higher, while it can only mitigate, but might not fix, the potential security issue completely.

6 Conclusion and future work
Existing SCA research on ML-DSA/Dilithium mainly focuses on direct leakages of sensitive
data, such as the nonce y, polynomial multiplications cs1 and cs2, and the decomposed
commitment w0. The rejection sampling mechanism prevents secret key leakage by
discarding responses z that fail the bound check.

In this work, we introduced a rejected challenge attack to recover the private key s1,
exploiting side-channel leakages from rejected z values and their corresponding challenges
c. This is formulated as an ILP problem with bounded cs1 constraints derived from the
rejected z and c.

Our experiments across all security levels of Dilithium-2/3/5 validate the effectiveness of
this approach, demonstrating the feasibility of private key recovery with sufficient rejected
zi and challenge pairs. Real-world experiments on a Dilithium-2 implementation on a
32-bit ARM Cortex-M4 further confirm the practicality of this attack.

As a possible future direction, we plan to enhance the attack’s tolerance to generic SCA
errors in the recovered zi and c coefficients, particularly in low-SNR scenarios, where only
a single attack trace is available. Additionally, we should investigate countermeasures to
mitigate the proposed attacks and strengthen the security of real-world implementations.

https://orcid.org/0000-0002-8703-219X
https://orcid.org/0000-0001-6982-2537
https://orcid.org/0009-0009-7674-1327
https://orcid.org/0000-0002-9278-4521

20 Rejected Challenges Pose New Challenges

Acknowledgments
The authors would like to thank the Eurocrypt 2025 anonymous reviewers for their helpful
feedback.

References
[ABC+23] Melissa Azouaoui, Olivier Bronchain, Gaëtan Cassiers, Clément Hoffmann,

Yulia Kuzovkova, Joost Renes, Tobias Schneider, Markus Schönauer, François-
Xavier Standaert, and Christine van Vredendaal. Protecting dilithium against
leakage: Revisited sensitivity analysis and improved implementations. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2023, Issue
4:58–79, 2023.

[AOVCG25] Paco Azevedo-Oliveira, Andersson Calle Viera, Benoît Cogliati, and Louis
Goubin. Finding a polytope: A practical fault attack against dilithium.
Cryptology ePrint Archive, Paper 2025/195, 2025.

[BAE+24] Olivier Bronchain, Melissa Azouaoui, Mohamed ElGhamrawy, Joost Renes,
and Tobias Schneider. Exploiting small-norm polynomial multiplication with
physical attacks: Application to crystals-dilithium. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 024 No. 2:359–383, 2024.

[BBD+23] Manuel Barbosa, Gilles Barthe, Christian Doczkal, Jelle Don, Serge Fehr,
Benjamin Grégoire, Yu-Hsuan Huang, Andreas Hülsing, Yi Lee, and Xiaodi
Wu. Fixing and mechanizing the security proof of fiat-shamir with aborts
and dilithium. Springer-Verlag, 2023.

[BBE+18] Gilles Barthe, Sonia Belaïd, Thomas Espitau, Pierre-Alain Fouque, Benjamin
Grégoire, Mélissa Rossi, and Mehdi Tibouchi. Masking the glp lattice-based
signature scheme at any order. In EUROCRYPT (2), pages 354–384. Springer,
2018.

[BDK+20] Shi Bai, Láo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
Peter Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS–dilithium:
Algorithm specification and supporting documentation (version 3.1). Round-3
:ubmission to the NIST Post-Quantum Cryptography Standardization Project,
2020. https://cryptojedi.org/papers/#dilithiumnistr3.

[BG14] Shi Bai and Steven D. Galbraith. An improved compression technique for
signatures based on learning with errors. In Josh Benaloh, editor, Topics
in Cryptology - CT-RSA 2014 - The Cryptographer’s Track at the RSA
Conference 2014, San Francisco, CA, USA, February 25-28, 2014. Proceedings,
volume 8366 of Lecture Notes in Computer Science, pages 28–47. Springer,
2014.

[Bot24] Botan. Botan, a Crypto and TLS for Modern C++ library, Version: 3.5.0.
Available at https://github.com/randombit/botan/blob/master/src/
lib/pubkey/dilithium/dilithium_common/dilithium_algos.cpp, 2024.

[BVC+23] Alexandre Berzati, Andersson Calle Viera, Maya Chartouny, Steven Madec,
Damien Vergnaud, and David Vigilant. Exploiting intermediate value leakage
in dilithium: A template-based approach. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, 2023, Issue 4:188–210, 2023.

https://cryptojedi.org/papers/#dilithiumnistr3
https://github.com/randombit/botan/blob/master/src/lib/pubkey/dilithium/dilithium_common/dilithium_algos.cpp
https://github.com/randombit/botan/blob/master/src/lib/pubkey/dilithium/dilithium_common/dilithium_algos.cpp

Yuanyuan Zhou , Weijia Wang , Yiteng Sun and Yu Yu 21

[CGL+24] Jean-Sébastien Coron, François Gérard, Tancrède Lepoint, Matthias Trannoy,
and Rina Zeitoun. Improved high-order masked generation of masking vector
and rejection sampling in dilithium. IACR Cryptol. ePrint Arch., page 1149,
2024.

[CKA+21] Zhaohui Chen, Emre Karabulut, Aydin Aysu, Yuan Ma, and Jiwu Jing.
An efficient non-profiled side-channel attack on the crystals-dilithium post-
quantum signature. In 39th IEEE International Conference on Computer
Design, ICCD 2021, Storrs, CT, USA, October 24-27, 2021, pages 583–590.
IEEE, 2021.

[CRR02] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In
Cryptographic Hardware and Embedded Systems - CHES 2002, 4th Interna-
tional Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised
Papers, volume 2523 of Lecture Notes in Computer Science, pages 13–28.
Springer, 2002.

[DFMS19] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Secu-
rity of the fiat-shamir transformation in the quantum random-oracle model.
11693:356–383, 2019.

[DFPS23] Julien Devevey, Pouria Fallahpour, Alain Passelègue, and Damien Stehlé. A
detailed analysis of fiat-shamir with aborts. Springer-Verlag, 2023.

[DKL+18] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter
Schwabe, Gregor Seiler, and Damien Stehlé. Crystals-dilithium: A lattice-
based digital signature scheme. Transactions on Cryptographic Hardware and
Embedded Systems, 2018, Issue 1:238–268, 2018.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In Advances in Cryptology - CRYPTO
’86, Santa Barbara, California, USA, 1986, Proceedings, volume 263 of Lecture
Notes in Computer Science, pages 186–194. Springer, 1986.

[FSK03] Daniel L. Fulks, Michael K. Staton, and Leonard J. Kazmier. Business
Statistics : Based on Schaum’s Outline of Theory and Problems of Business
Statistics. McGraw-Hill, 2003.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[GJ79] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

[JMW24] Kelsey A. Jackson, Carl A. Miller, and Daochen Wang. Evaluating the security
of crystals-dilithium in the quantum random oracle model. Springer-Verlag,
2024.

[Jr.83] Hendrik W. Lenstra Jr. Integer programming with a fixed number of variables.
Math. Oper. Res., 8(4):538–548, 1983.

[KAA21] Emre Karabulut, Erdem Alkim, and Aydin Aysu. Single-trace side-channel
attacks on ω-small polynomial sampling: With applications to ntru, NTRU
prime, and CRYSTALS-DILITHIUM. In IEEE International Symposium
on Hardware Oriented Security and Trust, HOST 2021, Tysons Corner, VA,
USA, December 12-15, 2021, pages 35–45. IEEE, 2021.

https://orcid.org/0000-0002-8703-219X
https://orcid.org/0000-0001-6982-2537
https://orcid.org/0009-0009-7674-1327
https://orcid.org/0000-0002-9278-4521
http://www.deeplearningbook.org

22 Rejected Challenges Pose New Challenges

[Kel60] Henry J Kelley. Gradient theory of optimal flight paths. Ars Journal,
30(10):947–954, 1960.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999.

[KLH+20] Il-Ju Kim, Taeho Lee, Jaeseung Han, Bo-Yeon Sim, and Dong-Guk Han.
Novel single-trace ML profiling attacks on NIST 3 round candidate dilithium.
IACR Cryptol. ePrint Arch., page 1383, 2020.

[KLS18] Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. A concrete treat-
ment of fiat-shamir signatures in the quantum random-oracle model. In
EUROCRYPT (3), pages 552–586. Springer, 2018.

[Koc96] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems. In Neal Koblitz, editor, Advances in Cryptology
- CRYPTO ’96, 16th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 18-22, 1996, Proceedings, volume 1109 of
Lecture Notes in Computer Science, pages 104–113. Springer, 1996.

[KPR+] Matthias J. Kannwischer, Richard Petri, Joost Rijneveld, Peter Schwabe, and
Ko Stoffelen. PQM4: Post-quantum crypto library for the ARM Cortex-M4.
https://github.com/mupq/pqm4.

[LHL+23] Jonghyeok Lee, Jaeseung Han, Sangyub Lee, Jihoon Kwon, Keon-Hee Choi,
Jae-Won Huh, Jihoon Cho, and Dong-Guk Han. Systematization of shuffling
countermeasures: With an application to crystals-dilithium. IEEE Access,
11:142862–142873, 2023.

[Lib24] Liboqs. Liboqs, the open quantum safe quantum-safe cryp-
tographic algorithms library, Version: 0.10.1. Available at
https://github.com/open-quantum-safe/liboqs/blob/main/src/sig/
ml_dsa/pqcrystals-dilithium-standard_ml-dsa-44-ipd_ref/poly.c,
2024.

[LLZ+24] Yong Liu, Yuejun Liu, Yongbin Zhou, Yiwen Gao, Zehua Qiao, and Huaxin
Wang. A novel power analysis attack against crystals-dilithium implementa-
tion. In IEEE European Test Symposium, ETS 2024, The Hague, Netherlands,
May 20-24, 2024, pages 1–6. IEEE, 2024.

[LMSK63] John D. C. Little, Katta G. Murty, Dura W. Sweeney, and Caroline Karel.
An algorithm for the traveling salesman problem. Operations Research,
11(6):972–989, 1963.

[Lyu09] Vadim Lyubashevsky. Fiat-shamir with aborts: Applications to lattice and
factoring-based signatures. In Advances in Cryptology - ASIACRYPT 2009,
15th International Conference on the Theory and Application of Cryptology
and Information Security, Tokyo, Japan, December 6-10, 2009. Proceedings,
volume 5912 of Lecture Notes in Computer Science, pages 598–616. Springer,
2009.

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In EUROCRYPT,
volume 7237 of Lecture Notes in Computer Science, pages 738–755. Springer,
2012.

https://github.com/mupq/pqm4
https://github.com/open-quantum-safe/liboqs/blob/main/src/sig/ml_dsa/pqcrystals-dilithium-standard_ml-dsa-44-ipd_ref/poly.c
https://github.com/open-quantum-safe/liboqs/blob/main/src/sig/ml_dsa/pqcrystals-dilithium-standard_ml-dsa-44-ipd_ref/poly.c

Yuanyuan Zhou , Weijia Wang , Yiteng Sun and Yu Yu 23

[LZ19] Qipeng Liu and Mark Zhandry. Revisiting post-quantum fiat-shamir.
11693:326–355, 2019.

[LZS+21] Yuejun Liu, Yongbin Zhou, Shuo Sun, Tianyu Wang, Rui Zhang, and Jingdian
Ming. On the security of lattice-based fiat-shamir signatures in the presence
of randomness leakage. IEEE Trans. Inf. Forensics Secur., 16:1868–1879,
2021.

[MGTF19] Vincent Migliore, Benoît Gérard, Mehdi Tibouchi, and Pierre-Alain Fouque.
Masking dilithium - efficient implementation and side-channel evaluation. In
Robert H. Deng, Valérie Gauthier-Umaña, Martín Ochoa, and Moti Yung,
editors, Applied Cryptography and Network Security - 17th International
Conference, ACNS 2019, Bogota, Colombia, June 5-7, 2019, Proceedings,
volume 11464 of Lecture Notes in Computer Science, pages 344–362. Springer,
2019.

[NIS24] NIST. FIPS 204, Module-Lattice-Based Digital Signature Standard (FIPS
204). Available at https://doi.org/10.6028/NIST.FIPS.204, 2024.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–
2830, 2011.

[QLZ+23a] Zehua Qiao, Yuejun Liu, Yongbin Zhou, Jingdian Ming, Chengbin Jin, and
Huizhong Li. Practical public template attack attacks on crystals-dilithium
with randomness leakages. IEEE Trans. Inf. Forensics Secur., 18:1–14, 2023.

[QLZ+23b] Zehua Qiao, Yuejun Liu, Yongbin Zhou, Mingyao Shao, and Shuo Sun. When
NTT meets SIS: efficient side-channel attacks on dilithium and kyber. IACR
Cryptol. ePrint Arch., page 1866, 2023.

[QLZ+24] Zehua Qiao, Yuejun Liu, Yongbin Zhou, Yuhan Zhao, and Shuyi Chen. Single
trace is all it takes: Efficient side-channel attack on dilithium. IACR Cryptol.
ePrint Arch., page 512, 2024.

[RCDB24] Prasanna Ravi, Anupam Chattopadhyay, Jan-Pieter D’Anvers, and Anub-
hab Baksi. Side-channel and fault-injection attacks over lattice-based post-
quantum schemes (kyber, dilithium): Survey and new results. ACM Trans.
Embed. Comput. Syst., 23(2):35:1–35:54, 2024.

[RJH+18] Prasanna Ravi, Mahabir Prasad Jhanwar, James Howe, Anupam Chattopad-
hyay, and Shivam Bhasin. Side-channel assisted existential forgery attack on
dilithium - A NIST PQC candidate. IACR Cryptol. ePrint Arch., page 821,
2018.

[RPBC20] Prasanna Ravi, Romain Poussier, Shivam Bhasin, and Anupam Chattopad-
hyay. On configurable SCA countermeasures against single trace attacks
for the NTT - A performance evaluation study over kyber and dilithium on
the ARM cortex-m4. In Lejla Batina, Stjepan Picek, and Mainack Mondal,
editors, Security, Privacy, and Applied Cryptography Engineering - 10th
International Conference, SPACE 2020, Kolkata, India, December 17-21,
2020, Proceedings, volume 12586 of Lecture Notes in Computer Science, pages
123–146. Springer, 2020.

https://orcid.org/0000-0002-8703-219X
https://orcid.org/0000-0001-6982-2537
https://orcid.org/0009-0009-7674-1327
https://orcid.org/0000-0002-9278-4521
https://doi.org/10.6028/NIST.FIPS.204

24 Rejected Challenges Pose New Challenges

[RR23] Victor Reis and Thomas Rothvoss. The subspace flatness conjecture and
faster integer programming. In 64th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2023, Santa Cruz, CA, USA, November 6-9,
2023, pages 974–988. IEEE, 2023.

[Sch89] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In
Advances in Cryptology - CRYPTO ’89, 9th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 20-24, 1989, Proceedings,
volume 435 of Lecture Notes in Computer Science, pages 239–252. Springer,
1989.

[SLKG23] Hauke Malte Steffen, Georg Land, Lucie Johanna Kogelheide, and Tim
Güneysu. Breaking and protecting the crystal: Side-channel analysis of
dilithium in hardware. In Thomas Johansson and Daniel Smith-Tone, editors,
Post-Quantum Cryptography - 14th International Workshop, PQCrypto 2023,
College Park, MD, USA, August 16-18, 2023, Proceedings, volume 14154 of
Lecture Notes in Computer Science, pages 688–711. Springer, 2023.

[TMS24] Tolun Tosun, Amir Moradi, and Erkay Savas. Exploiting the central reduction
in lattice-based cryptography. IACR Cryptol. ePrint Arch., page 66, 2024.

[TS24] Tolun Tosun and Erkay Savas. Zero-value filtering for accelerating non-profiled
side-channel attack on incomplete ntt-based implementations of lattice-based
cryptography. IEEE Trans. Inf. Forensics Secur., 19:3353–3365, 2024.

[UMTS22] Vincent Quentin Ulitzsch, Soundes Marzougui, Mehdi Tibouchi, and Jean-
Pierre Seifert. Profiling side-channel attacks on dilithium - A small bit-fiddling
leak breaks it all. In Benjamin Smith and Huapeng Wu, editors, Selected
Areas in Cryptography - 29th International Conference, SAC 2022, Windsor,
ON, Canada, August 24-26, 2022, Revised Selected Papers, volume 13742 of
Lecture Notes in Computer Science, pages 3–32. Springer, 2022.

[vzGS78] Joachim von zur Gathen and Malte Sieveking. A bound on solutions of linear
integer equalities and inequalities. Proceedings of the American Mathematical
Society, 72(1):155–158, 1978.

[WGL+24] Huaxin Wang, Yiwen Gao, Yuejun Liu, Qian Zhang, and Yongbin Zhou.
In-depth correlation power analysis attacks on a hardware implementation of
crystals-dilithium. Cybersecur., 7(1):21, 2024.

[WNGD23] Ruize Wang, Kalle Ngo, Joel Gärtner, and Elena Dubrova. Single-trace
side-channel attacks on crystals-dilithium: Myth or reality? IACR Cryptol.
ePrint Arch., page 1931, 2023.

Appendix

A Concrete Hamming weights of rejected coefficient zi

For each security level of Dilithium-2/3/5, we analyzed the histogram of the Hamming
weights of those 4β + 1 possible values of rejected coefficient zi. For Dilithium-2, HW-
15/31/21/25 are unique ones when the rejected zi is in the interval of [−γ1+1−β,−γ1+1+β],
however, HW-21/25 were never observed during our analyses of the distribution of xi

shown in 1a. Thus, only HW-15/31 corresponding to −γ1 and −γ1 − 1 in this interval are
considered for our rejected challenge attack in this work. Similarly, HW-17/1/7/11 are
unique ones when the rejected zi is in the interval of [γ1 − β, γ1 + β], however, HW-7/11

Yuanyuan Zhou , Weijia Wang , Yiteng Sun and Yu Yu 25

were never observed during our analyses of the distribution of xi shown in 1a. Thus, only
HW-17/1 corresponding to γ1 − 1 and γ1 in this interval are considered for our rejected
challenge attack in this work.

For Dilithium-3/5, only HW-13/31 corresponding to −γ1 and −γ1 − 1 in the interval
of [−γ1 + 1− β,−γ1 + 1 + β], and HW-19/1 corresponding to γ1 − 1 and γ1 in the interval
of [γ1 − β, γ1 + β] are considered for our rejected challenge attack. Because they are the
only ones with unique HW values in those two intervals, respectively.

We summarized the histogram of HW values of those 4β + 1 possible values of rejected
coefficient zi in Tables 5 to 10.

Table 5: HW corresponding to 2β possible rejected zi coefficient in the interval of [−γ1 +
1− β,−γ1 + 1 + β] for Dilithium-2

HW 15 16 17 18 19 20 21 25 26 27 28 29 30 31
Frequency 1 7 19 26 18 6 1 1 6 17 26 19 7 1

Table 6: HW corresponding to 2β + 1 possible rejected zi coefficient in the interval of
[γ1 − β, γ1 + β] for Dilithium-2

HW 1 2 3 4 5 6 7 11 12 13 14 15 16 17
Frequency 1 7 19 26 19 6 1 1 6 18 26 19 7 1

Table 7: HW corresponding to 2β possible rejected zi coefficient in the interval of [−γ1 +
1− β,−γ1 + 1 + β] for Dilithium-3

HW 13 14 15 16 17 18 19 20 24 25 26 27 28 29 30 31
Frequency 1 8 28 52 56 36 13 2 2 13 36 55 52 28 8 1

Table 8: HW corresponding to 2β + 1 possible rejected zi coefficient in the interval of
[γ1 − β, γ1 + β] for Dilithium-3

HW 1 2 3 4 5 6 7 8 12 13 14 15 16 17 18 19
Frequency 1 8 28 53 56 36 13 2 2 13 36 56 52 28 8 1

Table 9: HW corresponding to 2β possible rejected zi coefficient in the interval of [−γ1 +
1− β,−γ1 + 1 + β] for Dilithium-5

HW 13 14 15 16 17 18 19 25 26 27 28 29 30 31
Frequency 1 7 21 35 34 18 4 3 18 34 35 21 7 1

Table 10: HW corresponding to 2β + 1 possible rejected zi coefficient in the interval of
[γ1 − β, γ1 + β] for Dilithium-5

HW 1 2 3 4 5 6 7 13 14 15 16 17 18 19
Frequency 1 7 21 35 35 18 4 4 18 34 35 21 7 1

https://orcid.org/0000-0002-8703-219X
https://orcid.org/0000-0001-6982-2537
https://orcid.org/0009-0009-7674-1327
https://orcid.org/0000-0002-9278-4521

	Introduction
	Side-channel attacks on Dilithium/ML-DSA
	Our contribution
	Related works
	Organization of the paper

	Preliminaries
	Notations
	Rejection sampling in Lyubashevsky’s signature scheme
	Dilithium
	Integer Linear Programming (ILP)

	Rejected challenge attack on Dilithium
	Experimental results
	A use case of proposed attack from real SCA leakage
	Deep learning profiled attack
	Attack setup
	Recovering c
	Recovering z
	Countermeasures

	Conclusion and future work
	Concrete Hamming weights of rejected coefficient zi

