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Abstract
Differential privacy (DP) is a fundamental technique used in ma-

chine learning (ML) training for protecting the privacy of sensitive

individual user data. In the past few years, a new approach for com-

bining prior-based Local Differential Privacy (LDP) mechanisms

with a relaxed DP criterion, known as Label DP, has shown great

promise in increasing the utility of the final trained model without

compromising on the DP privacy budget. In this work, we identify

a crucial privacy gap in the current implementations of these prior-

based LDP mechanisms, namely the leakage of sensitive priors. We

address the challenge of implementing such LDP mechanisms with-
out leaking any information about the priors while preserving the

efficiency and accuracy of the current insecure implementations.

To that end, we design simple and efficient secure two-party com-

putation (2PC) protocols for addressing this challenge, implement

them, and perform end-to-end testing on standard datasets such

as MNIST, CIFAR-10. Our empirical results indicate that the added

security benefit essentially comes almost for “free” in the sense

that the gap between the current insecure implementations and

our proposed secure version, in terms of run-time overhead and ac-

curacy degradation, is minimal. E.g., for CIFAR-10, with strong DP

privacy parameter, the additional runtime due to 2PC is ≈ 3.9% over

WAN with 0.4% decrease in accuracy over an insecure (non-2PC)

approach.

1 Introduction
Training machine learning (ML) models on user population data is

a core capability leveraged in applications that aim to understand

user behavior and preferences to be able to make meaningful pre-

dictions about them [2, 9, 13, 14, 36, 37]. Of course, the challenge in

these scenarios lies in the sensitivity of the input data for training,

which belongs to many users. Differential privacy (DP) [29] is a

privacy definition, which formalizes the idea that the output of a

computation that processes a dataset should not leak information

about individual records in that dataset. It has often been used as a

privacy measure for the output from ML training on private user

data.

∗
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There are generally two avenues towards achieving DP for ML

training. One of them relies on the notion of local differential pri-

vacy (LDP), where each user applies a DP mechanism to its individ-

ual contribution and the rest of the training is done as a postpro-

cessing on a differentially private data release. The second approach

relies on centralized mechanisms that need as input the original

users’ data and the computation process itself adds the appropriate

randomization to achieve DP output. While the former approach

presents a clean privacy argument, LDP mechanisms achieve less

utility for the same privacy budget.

In the case of the centralized mechanisms, utility is maximized,

but one needs to address the challenges on how to protect the

input data while the final DP output is computed. Cryptographic

techniques for secure computation (two-party 2PC or multi-party

MPC) [10, 38, 67] provide a solution for this question and they have

been applied in different contexts with different architectures. In

the setting of a single server and many clients, federated learning

techniques [9, 13, 14], which leverage the MPC functionality for

secure aggregation [14], have been a popular solution. Different

approaches rely on several non-colluding servers to execute se-

cure computation protocols for training on the secret-shared data

of the clients [5, 42, 58, 62–64]. The latter removes the need for

interaction with the users from single-server solutions but adds

the non-collusion assumption. Moreover, the efficiency of secure

computation for general ML training with even a small number of

parties remains a challenge.

Label DP. A recent line of work [18, 33, 36, 37, 54, 61] considers a

new notion of differential privacy called label DP, where the training
features are assumed to be known in the clear by the training party

(server), and the goal is to only protect the labels (held by clients).

A label DP trained model provides privacy only with respect to the

party with the features and it needs to be the only recipient of the

output model. This applies to scenarios where a service provider

is trying to compute a model over its users’ data. It has first party

context with its users when the features are generated, but the

labels are generated in a different third party context. This is the

case in many application scenarios: in user cross-site activities such

as online advertising, where features become available at impres-

sion time (when a user views an ad) and labels become available

during conversion (e.g., when a user buys the advertised product);

in recommendation systems where user preferences choices are

available to the service providers, but ratings need to be protected;

and in medical analyses where patient demographics and general
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information are available while the test for a particular disease

is sensitive. The Private Advertising Technology Working Group

(PATWG) at W3C has set forward to solve the question for machine

learning training in the setting where the features are known to

one party who will receive the model, and thus only the labels need

to be protected [57]. We emphasize that in all the aforementioned

application scenarios, Label DP is not a weaker privacy notion

compared to standard DP.

The local differential privacy (LDP) approach can be applied

to the setting of label DP by having all users use the randomized

response (RR) mechanism [65] to release their labels to the party

who knows the features and can then train a label DP model. How-

ever, this still suffers from the utility disadvantages of LDP. Ghazi

et. al [36, 37] introduced new techniques for randomized response

which leverage the prior knowledge about the data, e.g. the distri-

bution of the label values. In particular this solution changes the

distribution from which random labels are sampled when the real

values are not reported, to be consistent with the prior rather than

be uniformly random, i.e., the mechanism is biased by the prior.

Ghazi et. al [36] show that the accuracy gain of models trained

using prior based randomized response over non-prior based ran-

domized response can be as high as ≈ 8% for moderate DP privacy

parameter regimes and tends to increase even further when higher

differential privacy is desired.

Need for protecting the privacy of prior. The prior dependent
randomized response techniques have been adopted in recent pa-

pers [36, 37] to improve the quality of the trained model for clas-

sification and regression tasks. These works compute the priors

used for the biased randomized response algorithm executed by the

clients in different ways. Some of the techniques precompute the

priors directly on the input label data with aggregate computation,

for example, histograms estimation. Other techniques update the

prior throughout the training using both the feature and the label

information. Priors that are computed on the sensitive user data,

need to provide differential privacy properties.

These existing solutions enforce the training party (holding the

features and prior) to leak the sensitive priors to the users/clients in

order to enable them to compute their contributions using the biased

randomized response algorithm. In most application scenarios, the

user population is an open set where any party can pose as a user

in the system and participate in the model training protocol. In

fact, adversaries can often control a fraction of the users in the

system. From this perspective, users should not be trusted to receive

any sensitive information about other users as well as the party

computing the model. And in the solution using classical local

DP mechanisms, the users indeed do not receive any information.

While the label differential privacy property of the priors provides a

level of protection for the labels of individual users, the approach of

giving the priors to the clients effectively increases the information

leaked to any arbitrary party compared with pure Local DP setting.

This holds even if the features are public because the priors can be

an arbitrary function of (DP randomized) labels of all the clients.
While clients may be comfortable revealing a randomized version of

their label to a server, they may be less comfortable if data derived

from that label, such as the prior, is shared with all other clients.

Furthermore, while the label DP priors protect individual labels,

they do not protect user population level information, which could

potentially be sensitive information for the model owner in the case

of proprietary models. For example, the prior could be statistics

about the users of a certain service which the service owner may

not want to reveal to its competitors. There are also settings where

the features are not public information but are information that the

party building the model knows about the users of its service. In

these cases, priors that are computed using the features as well, do

not guarantee differential privacy for the individual user features.

As a concrete example, the model owner could be an ad tech orga-

nization holding the features of a proprietary ads dataset (akin to

Criteo dataset [27]) about users and then derives prior-based on

this proprietary information. In this case, the priors amount to the

model’s prediction on that client’s features. Since the model is only

Label-DP, it may not protect the other features used during train-

ing, so revealing this prior to a specific user may leak information

about other users’ features, which are sensitive. Furthermore, for a

sensitive model, releasing such prior information to the clients can

also leak information about the proprietary dataset and model to

competitors, potentially allowing them to gain advantage.

1.1 Our Contributions and Techniques
In this work, we show that revealing the priors to the users is not
necessary to use the label DP solutions that rely on prior-based

randomized response mechanisms. We present a novel solution

that leverages secure two-party computation (2PC) between the

client and the server that are trying to build the ML model. This

enables the server to obtain the client’s label value, computed with

randomized response with prior [36] mechanism, without the client

learning any information about the prior and without the server

learning anything more about the real label of the client than the

output of prior-based randomized response mechanism. This ap-

proach is illustrated in Figure 1.

At the core of our techniques is a novel protocol for joint sam-

pling from a non-uniform distribution where the distribution pa-

rameters are known by only one of the two parties (the server

holding priors) and should remain secret to the other (the client).

To that end, we take a two-fold approach. First, we algorithmi-

cally simplify the non-uniform sampling process in prior-based RR

mechanisms by representing the underlying distribution as a com-

position of uniform sampling and a biased bit (Bernoulli) sampling.

We do this because it seems non-trivial to construct an efficient
secure protocol for directly emulating the non-uniform sampling

procedure (and we are not aware of any prior work which provides

such a protocol). Our representation results in a distribution which

is identical to the original distribution while making the sampling

procedure more amenable to secure computation. Second, we de-

sign modular and efficient sub-protocols to securely sample from

these simpler distributions and compose them. All of our protocols

make black-box use of Oblivious Transfer (OT) functionality, which

is known to be necessary and sufficient for any non-trivial secure

computation in the two-party setting [49], and admits a practically

efficient realization using IKNP OT extension [45].

One of the main challenges in designing a secure protocol for

sampling from these simpler distributions, even after algorithmic

simplification, is that the parameter of the distribution is known

only to one of the parties. One particularly interesting case is where
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Client Client 
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Label Label 
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Label 
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Executed via
our 2PC
protocol

Figure 1: Securely randomizing the private label 𝑦𝑖 (held by
client 𝑖) using private prior ®𝑝 (held by the server) via an ideal
functionality FRRwithPrior for which we provide secure 2PC
protocol. The functionality outputs the perturbed label 𝑦𝑖 to
the server. After invoking the functionality between each
client and the server, the server obtains a list {𝑦𝑖 }𝑖∈[𝑛] of per-
turbed labels, which can be used for higher-level applications
such as model training.

one of the parties (the server) holds a private subsetY𝑇 ∗ ⊆ Y, where
Y is the public label set and 𝑇 ∗ = |Y𝑇 ∗ |. Both parties (client and

server) would like to securely sample a random element 𝑦 fromY𝑇 ∗
while keeping the sampled output 𝑦 in secret-shared form and also

protecting the input privacy of the setY𝑇 ∗ along with its size𝑇 ∗. We

show how to achieve this task efficiently using two sequential calls

to OT where the parties exchange their roles in the OT protocol.

We implement our protocol for RR with prior and use it to train

standard ML datasets such as MNIST and CIFAR-10. Our protocol

does not impose significant communication overhead or latency for

the clients. E.g., for training the CIFAR-10 dataset with the privacy

budget 𝜖 = 1 (our most expensive experiment), the runtime cost

added due to 2PC over plaintext is ≈ 1.3 minutes, which amounts to

≈ 3.9% overhead. This is a small fraction of the total 33.49min train-

ing cost. In total, we communicate 415MB and use 9 rounds. At the

same time, our technique does not noticeably degrade the accuracy

of the resulting model. Specifically, we observe up to 0.7% difference,

which can be reduced with higher fixed-point precision in exchange

for a modest increase in the runtime and communication costs (or

by using a better model). We also separately benchmark our RR

with prior protocol without the training procedure. To compute

RR with prior with 10 fractional bits and a label set of size 10, we

require 1.49KB of communication and a runtime of 2.2ms on LAN

and 320.7ms on WAN.

2 Related Work
Differentially private secure ML training. The notion of differ-

ential privacy has been applied to ML training as a way to achieve

privacy for the final outputs. The work on DP-SGD [3] presented

a method to train differentially private models using stochastic

gradient descent. However, this work assumes a trusted party that

can execute the DP mechanism.

There are different approaches that avoid the need for a trusted

party. E.g., they directly use local DP mechanisms such as random-

ized response [65] and other variants [4, 34, 36, 37]. Many of them

require the clients to have additional knowledge such as priors. An-

other intermediate approach has been the shuffle DP model, which

assumes there is a shuffler that shuffles all LDP contributions, before

sending them to the analyzer, who builds models [12, 21, 32].

A different technique is federated learning [9, 13, 14], where the

training protocol is an interactive process between the server and

the clients. In each iteration, the clients compute a gradient update

with respect to the current model they receive. The server then

obtains a differentially private aggregate of the gradient updates

across clients. Federated learning solutions that avoid placing trust

into the server use a secure aggregation protocol [14] that prevents

the server from seeing anything but the aggregated gradient (where

the clients themselves insert the DP noise).

There are also works that explore running the model training in

secure computation across a small number of non-colluding par-

ties [5, 42, 58, 62–64] (some works refer to this as vertical federated

learning). A recent paper [68] aims to apply the label DP notion

in the setting of distributed MPC training. Such solutions provide

less efficiency since they need to execute large functionalities in

MPC. Additionally, jointly sampling noise from the correct DP dis-

tribution is also a complex functionality and few papers do this in

a fully distributed setting.

We note that none of these prior works address the question of

secure evaluation of prior-based RR mechanism to enable Label

DP functionality. We are the first ones to do so by addressing the

unique challenges related to securely and efficiently noising the

labels in this setting.

Secure noise generation for DP. Starting from the work of Dwork

et. al. [28], many followup works [11, 20, 24, 31, 48, 60, 66] explore

the problem of securely sampling noise across two or more parties

for various DP relevant distributions. We note that in all of these

works, the parameter of the noise distribution is public whereas,
in our setting, the parameter is private to one of the parties. One

exception is the work of Choi et. al. [22] which studies the question

of noise sampling from private distributions. However, the focus

of [22] is to construct protocols where the communication cost

is sublinear in the description size of the distribution and their

protocols require Fully Homomorphic Encryption (FHE) to achieve

this task. In contrast, all of our protocols require Oblivious Transfer

(OT) which is computationally much more efficient than FHE.
1

3 Preliminaries
3.1 Notation
In the context of a classification task, we will use X and Y to

denote the set of possible features and labels, respectively. We

will use 𝑇 to denote the size of Y and assume without loss of

1
We do not focus on the goal of achieving sublinear communication as the description

size of our distribution is practically small.
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generality that Y = {0, . . . ,𝑇 − 1}. For a given scale (also called

fixed-point precision) 𝑓 ∈ N, we use 𝑥fix ∈ [0, 2𝑓 ) to denote the

fixed-point representation of a fractional real value 𝑥 ∈ [0, 1) where
𝑥fix =

⌊
𝑥 · 2𝑓

⌋
.

3.2 Secure Two-Party Computation (2PC)
Security model. In 2PC, each party has a private input and they

are interested in computing a function on their joint inputs in

a way so that both parties only learn the final output without

learning any extra information about the other party’s input. Our

protocol constructions, for different functions of interest, are in

this two-party setting and provide semi-honest security [38] (also

known as passive security). I.e., the parties are assumed to follow

the prescribed protocol, but can glean extra information passively

from the protocol transcript.We denote the two parties by P0 and P1.
The security in such a model is formally captured by the standard

real/ideal paradigm whereby the view of an adversary in the real-

world, which corrupts one of the parties (either P0 or P1), can
be efficiently simulated in the ideal world where parties interact

with a trusted third party (also called the ideal functionality). This

third party takes the inputs of all parties and outputs the function

evaluated on the joint set of all inputs. A detailed description of the

security model is in Appendix A.

Rationale behind the securitymodel.The aforementionedmodel

fits well in our specific Label DP application where the two parties

are the server and the client, with a prior and a label as their pri-

vate inputs, respectively. The function of interest is a randomized

response with prior mechanism. Moreover, in practical settings,

the server (e.g. Amazon, Google, Meta, etc.) will be obligated by an

authority (e.g. government) to follow the protocol instructions, but

not collect sensitive client information. Our modeling choice is not

merely theoretical; it has been deployed in practice for collecting

user-statistics for browser telemetry [1] and measuring advertising

conversions [63]. These systems assume one or more semi-honest

servers to ensure client privacy.
2

Offline-online 2PC. A 2PC protocol Π may sometimes be divided

into an offline preprocessing phase Π
offline

(independent of par-

ties’ inputs) and an online phase Π
online

that depends on parties’

inputs [15, 46]. The security model still remains the same. This

form of offline-online split is mainly aimed towards efficiency as

the parties can perform the offline part anytime before the inputs

arrive and then store the pre-processed information for future use

in the online part. We separately benchmark the offline and online

cost of our proposed protocols in addition to presenting the total

cost.

Secret sharing. We use J𝑥KR to denote an additive sharing of 𝑥

in ring R. We drop the superscript R when it is clear from context.

Our default choice of R in this work is Z𝑇 where 𝑇 denotes the

number of classification labels. We write J𝑥K = (J𝑥K0, J𝑥K1) to
denote that P0 and P1 get shares J𝑥K0 and J𝑥K1 respectively, such
2
In principle, one can also try to construct protocols in the malicious setting, where we

do not assume the corrupt parties follow protocol instructions. Semi-honest model is

commonly the first step to obtaining secure protocols in the malicious setting, which

is an interesting open problem for future work. Also, in our application, where an

authority can enforce parties to comply with the protocol instructions, it might be

counter-productive to deploy a maliciously secure protocol as it will add unnecessary

runtime and communication overhead.

that J𝑥K0 + J𝑥K1 = 𝑥 in R. An additive sharing is random if J𝑥K0
and J𝑥K1 are uniformly distributed in R subject to J𝑥K0 + J𝑥K1 = 𝑥 .

Analogously, we use ⟨𝑏⟩ to denote a random XOR-sharing of a bit

𝑏 ∈ {0, 1}, consisting of bits ⟨𝑏⟩0 and ⟨𝑏⟩1 such that ⟨𝑏⟩0 ⊕ ⟨𝑏⟩1 = 𝑏.

Oblivious transfer functionality.We use F (
𝑁
1
),G

OT to denote an

ideal 1-out-of-𝑁 chosen Oblivious Transfer (OT) functionality [17,

56] w.r.t. group G. The sender’s input to this functionality are 𝑁

elements, 𝑠0, . . . , 𝑠𝑁−1, where each 𝑠𝑖 ∈ G whereas the receiver’s

input is a choice index 𝑐 ∈ [0, 𝑁 − 1]. The receiver receives the
element 𝑠𝑐 from the functionality whereas the sender has no output.

Our usual choice of G in this work will be the additive group of Z𝑇
or Z2. Using the optimized OT extension in [6], we can generate

1-out-of-2 Random OT (ROT) correlations (where the inputs of

sender and receiver are uniformly random) using a single round

at an amortized cost of 𝜆 bits of communication from the sender

to the receiver and no communication in the other direction. One

can non-interactively convert log𝑁 instances of 1-out-of-2 ROT

correlations into a single instance 1-out-of-𝑁 ROT correlation using

[56]. An instance of 1-out-of-𝑁 ROT correlation can then be used to

perform 1-out-of-𝑁 chosen OT F (
𝑁
1
),G

OT (where the inputs of sender

and receiver are arbitrary) using just 2 rounds - first round from

the receiver to sender having log𝑁 bits and second round from the

sender to receiver having 𝑁 log |G| bits. 3

3.3 (Standard) Differential Privacy (DP) and
Label Differential Privacy (Label DP)

At a high-level, Differential Privacy (DP) [30] ensures that the out-

put of a randomized algorithm is nearly indistinguishable whether

or not any single individual’s data is included in the input dataset.

Formally, an algorithm A satisfies 𝜖-DP4 if for all neighboring

datasets 𝐷 and 𝐷′ (which differ by at most one element) and for

any subset of outputs 𝑆 :

Pr[A(𝐷) ∈ 𝑆] ≤ 𝑒𝜖 Pr
[
A(𝐷′) ∈ 𝑆

]
Label Differential Privacy (Label DP) [36, 37] is a relaxation of

the standard DP, tailored towards ML tasks, where the privacy

guarantee is only required w.r.t dataset labels whereas the dataset

features are considered non-sensitive. The formal definition of

𝜖-label DP is exactly same as 𝜖-DP defined above with a slight

modification to the notion of neighbouring datasets: Datasets 𝐷

and 𝐷′ are neighbors if differ by at most one label. We refer the

readers to Appendix B for a more detailed definition.

3.4 Prior-based Randomized Response
3.4.1 Randomized Response with Prior. Ghazi et. al. [36] re-
cently proposed a variant of the Randomized Response (RR) mech-

anism, termed Randomized Response with Prior (RRWithPrior). In
vanilla RR, the private input 𝑦 ∈ Y is randomized by either retain-

ing the same input 𝑦 with some fixed probability 𝑞 or replacing

3
While it is theoretically possible to reduce the cost of F(

𝑁
1
) ,

OT to𝑜 (𝑁 ) using techniques
based on single server Private Information Retrieval (PIR) [26, 52], the cost benefit

only shows up for large values of 𝑁 . In our experiments, the value of 𝑁 will be small

(on the order of 𝑁 ≈ 10) so we do not use heavy-weight PIR based optimization.

4
The parameter 𝜖 is typically known as the privacy parameter/budget. A lower value

of 𝜖 implies higher privacy.
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with a uniformly random input from Y with probability 1 − 𝑞. In
contrast, RRWithPrior, as the name suggests, uses a prior probabil-

ity distribution ®𝑝 = (𝑝1, . . . , 𝑝𝑇 ) to randomize the private input 𝑦 in

a way that maximizes the signal-to-noise ratio while maintaining

(𝜖, 𝛿)-DP guarantee w.r.t. 𝑦. Note that there is no DP requirement

w.r.t. the prior ®𝑝 .

Algorithm 1: RRWithPrior
Parameters: Number of labels𝑇 , Label set Y = {0, . . . ,𝑇 − 1},
privacy parameter 𝜖 ∈ R≥0, prior probability vector ®𝑝 = (𝑝1, . . . ,
𝑝𝑇 ) where each 𝑝𝑖 ∈ R.

Inputs: Label 𝑦 ∈ Y.
Output: A perturbed label 𝑦 ∈ Y.

1 Compute𝑇 ∗ = argmax𝑡 ∈ [𝑇 ]
(

𝑒𝜖

𝑒𝜖+𝑡−1 · (
∑

𝑖∈Y𝑡 𝑝𝑖 )
)
, where Y𝑡 is

the set of 𝑡 labels with maximum 𝑝𝑖 values.

2 Let Y𝑇 ∗ be the set of𝑇 ∗ labels with maximum 𝑝𝑖 values.

3 if 𝑦 ∈ Y𝑇 ∗ then
4 Define a random variable 𝑌1 with values in Y and let D1 be the

induced probability distribution s.t.

5

Pr

[
𝑌1 = 𝑦′

]
=


𝑒𝜖

𝑒𝜖+𝑇 ∗−1 ; 𝑦′ = 𝑦

1

𝑒𝜖+𝑇 ∗−1 ; 𝑦′ ∈ Y𝑇 ∗ \ {𝑦}
0 ; 𝑦′ ∈ Y \ Y𝑇 ∗

6 Sample 𝑦 ← D1

7 else
8 Define a random variable 𝑌2 with values in Y and let D2 be the

induced probability distribution s.t.

Pr

[
𝑌2 = 𝑦′

]
=

{
1

𝑇 ∗ ; 𝑦′ ∈ Y𝑇 ∗
0 ; 𝑦′ ∈ Y \ Y𝑇 ∗

9 Sample 𝑦 ← D2

10 return 𝑦.

In Algorithm 1, we describe the randomizer that is proposed

in [36]. At a high-level, the algorithm finds a reduced set Y𝑇 ∗ con-
sisting of𝑇 ∗ labels and then performs vanilla RR onY𝑇 ∗ if 𝑦 ∈ Y𝑇 ∗ .
If 𝑦 ∉ Y𝑇 ∗ , it simply returns a uniformly random label from Y𝑇 ∗ .
Ghazi et. al. [36] prove that this approach satisfies 𝜖-DP guarantee

and also maximizes the objective function capturing the signal-to-

noise ratio.

Theorem 3.1 ( [36]). For all𝑇 ∈ N, ®𝑝 ∈ R𝑇 , 𝜖 ∈ R≥0,RRWithPrior
(Algorithm 1) is 𝜖-DP (Definition B.2).

Ghazi et. al. [36] also show that in the Label DP setting, training

a model using labels perturbed via RRWithPrior algorithm achieves

a much better accuracy compared to performing the same training

using labels perturbed via vanilla RR mechanism for any fixed

privacy budget 𝜖 .

3.4.2 Prior computation and model training. In Algorithm

2, we describe the general domain-agnostic approach proposed

in [36], known as Label Privacy Multi-Stage Training (LP-MST),
which makes a black-box use of RRWithPrior as a subroutine. In
our experiments, we focus on this general approach for computing

the priors and performing model training. The authors show that

if RRWithPrior satisfies 𝜖-DP guarantee, then LP-MST will satisfy

𝜖-label DP guarantee which is captured by Theorem 3.2.
5

Theorem 3.2 ([36]). Let 𝜖 ∈ R≥0. If RRWithPrior (Algorithm 1)
is 𝜖-DP (Definition B.2), then for all feature sets X, 𝑇 ∈ N, 𝐼 ∈ N and
for all training algorithms A, LP-MST (Algorithm 2) is 𝜖-LabelDP
(Definition B.4).

At a high-level, this holds because each private label𝑦𝑖 is queried

only once in Line 7 of Algorithm 2 (highlighted in blue) via the

𝜖-DP mechanism RRWithPrior.

Algorithm2: Label PrivacyMulti-Stage Training (LP-MST)
Parameters: Feature set X, number of labels𝑇 , label set

Y = {0, . . . ,𝑇 − 1}, privacy parameter 𝜖 ∈ R≥0, number of

iterations 𝐼 , training algorithm A.

Inputs: Dataset 𝑆 = { (𝑥1, 𝑦1 ), . . . , (𝑥𝑛, 𝑦𝑛 ) } where
(𝑥𝑖 , 𝑦𝑖 ) ∈ X × Y for all 𝑖 ∈ [𝑛].

Output: A trained model𝑀 .

1 Arbitrarily partition 𝑆 into 𝑆 (1) , . . . , 𝑆 (𝐼 )

2 Let𝑀 (0) be the trivial model that always assigns equal probability

to each class.

3 for 𝑖 = 1 to 𝐼 :
4 Let 𝑆 (𝑖 ) = 𝜙

5 for (𝑥𝑖 , 𝑦𝑖 ) ∈ 𝑆 (𝑖 ) :
6 Let ®𝑝 = (𝑝1, . . . , 𝑝𝑇 ) be the probabilities predicted by𝑀 (𝑖−1)

on 𝑥𝑖

7 Let 𝑦𝑖 := RRWithPrior𝑇 ,Y,𝜖, ®𝑝 (𝑦𝑖 )
8 Add (𝑥𝑖 , 𝑦𝑖 ) to 𝑆 (𝑖 )

9 Let𝑀 (𝑖 ) be the model resulting from training on 𝑆 (1) , . . . , 𝑆 (𝑖 )

using A
10 return𝑀 (𝐼 ) .

4 Securely Computing RR with Prior
Note that classical RR, described in the beginning of Section 3.4,

admits a straightforward secure protocol wherein the client locally

perturbs its private label 𝑦 and sends the perturbed label 𝑦 to the

server
6
. However, the same protocol cannot be used to securely

compute prior based RR mechanisms. Specifically, let’s focus our

attention towards RRWithPriormechanism described in Section 3.4.

In this case, there are two private inputs namely the label𝑦 (privately

held by the client) and prior vector ®𝑝 (privately held by the server).

Therefore, the protocol needs to operate jointly on the private input

held by both parties while ensuring that the client learns nothing

about ®𝑝 and the server learns nothing about 𝑦 except 𝑦.

Problem formulation.We observe that securely training a neu-

ral network in a Label DP setting using LP-MST (Algorithm 2)

boils down to securely computing the randomizer RRWithPrior
(Algorithm 1). This is because once the private labels are randomly

5
We remark that while we stick to LP-MST approach in this work for computing the

priors in our experiments, the secure protocols that we propose are not limited to it

and can work with any prior that the server has independently of how the prior is

computed.

6
This protocol is secure only in the semi-honest setting which is the focus of our work.

In the malicious setting, we will need to additionally ensure that the client is adding

the DP noise from the right distribution. This is a much harder problem which we

leave as a part of future work.
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perturbed using RRWithPrior, the perturbed labels can be released

in clear to the party holding the features which it can then use for

performing training using LP-MST. In this section, we will design

an approach to securely execute the RRWithPrior randomizer in a

client-server setting. We will denote the server as P0 and the client

as P1.The setting is as follows: P0 privately holds a prior vector

®𝑝 ∈ R𝑇 whereas P1 privately holds a label 𝑦 ∈ Y. They would

like to execute Algorithm 1 securely in 2PC so that P0 learns the
output 𝑦 (i.e. perturbed label) in the clear. In terms of security, we

informally require the following guarantees:

• For a semi-honest P0, the view is simulatable given only

the perturbed label 𝑦 and prior vector ®𝑝 .
• For a semi-honest P1, the view is simulatable given only

the label 𝑦.

To capture the privacy requirements more formally, we need

to define an ideal functionality which precisely captures the task

RRWithPrior (Algorithm 1) that we wish to securely compute. Be-

fore doing that, we will simplify the non-uniform sampling step in

RRWithPrior (Algorithm 1) so that it is amenable to secure compu-

tation without modifying the underlying distribution.

Simplifying the non-uniform sampling. In Algorithm 3, we

describe an equivalent and simplified way of performing the non-

uniform sampling that happens in RRWithPrior (Steps 3-10 in Al-

gorithm 1). At a high-level, this simplification basically represents

the non-uniform distribution induced on 𝑦 in Algorithm 1 as a

composition of uniform distribution and a biased bit (Bernoulli)

distribution. Looking ahead, this simplified sampling procedure

will enable a simplified design of the 2PC protocol via modular

subprotocols.

Algorithm 3: Simplified sampling in RRWithPrior

1 Sample 𝑏1 ← Bernoulli(𝑞) , where 𝑞 = 𝑒𝜖 −1
𝑒𝜖+𝑇 ∗−1 .

2 Compute 𝑏2 := 1{𝑦 ∈ Y𝑇 ∗ }
3 Sample 𝑧 ← Y𝑇 ∗
4 If 𝑏1 ∧ 𝑏2 = 1, set 𝑦 := 𝑦. Else set 𝑦 := 𝑧

5 return 𝑦.

We now briefly explain why the Steps 1-5 of Algorithm 3 are

equivalent to Steps 3-10 of Algorithm 1. Suppose 𝑦 ∈ Y𝑇 ∗ . In this

case, 𝑏2 = 1 and the output 𝑦 is 𝑦 with probability 𝑞 + (1 − 𝑞) 1
𝑇 ∗ =

𝑒𝜖

𝑒𝜖+𝑇 ∗−1 , an element of 𝑦′ ∈ Y𝑇 ∗ \ {𝑦} each with probability (1 −
𝑞) 1

𝑇 ∗ =
1

𝑒𝜖+𝑇 ∗−1 , an element of 𝑦′ ∈ Y \ Y𝑇 ∗ each with probability

0. This distribution matches the distribution D1 in Algorithm 1.

Now let’s consider the case where 𝑦 ∉ Y𝑇 ∗ . In this case, 𝑏2 = 0

and the output 𝑦 is simply 𝑧 which is a uniformly random element

from Y𝑇 ∗ . Hence, this distribution matches the distribution D2 in

Algorithm 1.

Defining the ideal functionality. Now we define an ideal func-

tionality FRRwithPrior in Figure 2 which captures RRWithPrior (Al-
gorithm 1) where we replace Steps 3-10 of Algorithm 1 with Steps

1-5 of Algorithm 3 for simplification. The security of a protocol

ΠRRwithPrior realizing FRRwithPrior is captured via the standard sim-

ulation based security notion which is described in Appendix A.

Functionality: FRRwithPrior

Public Parameters: Number of classes 𝑇 , label set Y = {0, . . . ,
𝑇 − 1}, privacy parameter 𝜖 ∈ R≥0, fixed point precision 𝑓 ∈ N.
(1) Get a prior vector ®𝑝 = {𝑝𝑖 }𝑖∈ [𝑇 ] as input from P0 where

𝑝𝑖 ∈ R, 𝑝𝑖 ∈ [0, 1] and
∑

𝑖∈ [𝑇 ] 𝑝𝑖 = 1.

(2) Get a label 𝑦 ∈ Y as input from P1.

(3) Compute𝑇 ∗ = argmax𝑡 ∈ [𝑇 ]
(

𝑒𝜖

𝑒𝜖+𝑡−1 · (
∑

𝑖∈Y𝑡 𝑝𝑖 )
)
, where Y𝑡

is the set of 𝑡 labels with maximum 𝑝𝑖 values.

(4) Fix Y𝑇 ∗ to be the set of𝑇 ∗ labels with maximum 𝑝𝑖 values.

(5) Set 𝑞fix =
⌊

𝑒𝜖 −1
𝑒𝜖+𝑇 ∗−1 · 2

𝑓
⌋
.

(6) Sample 𝑏1 ← Bernoulli(𝑞fix/2𝑓 ) .
(7) Compute 𝑏2 := 1{𝑦 ∈ Y𝑇 ∗ }.
(8) Sample 𝑧 ← Y𝑇 ∗ .
(9) If 𝑏1 ∧ 𝑏2 = 1, set 𝑦 := 𝑦. Else set 𝑦 := 𝑧.

(10) Send 𝑦 to P0.

Figure 2: Ideal functionality for RRWithPrior

We remark two important differences between FRRwithPrior (Fig-
ure 2) and RRWithPrior (Algorithm 1). First, FRRwithPrior treats the
prior vector ®𝑝 as an input of party P0 instead of public parameter.

This, as explained earlier, is necessary to capture the privacy re-

quirements of the prior ®𝑝 w.r.t. P0. Second, FRRwithPrior introduces
an additional parameter 𝑓 which captures the fixed point precision

to be used for representing the bias value 𝑞. This is needed because

the secure protocol ΠRRwithPrior realizing this functionality will be

limited to performing computations in a finite fixed-point domain.

We note that this restriction to fixed-point domain does not lead

to leakage-based attacks [55] and has minimal effect on the 𝜖 as

explained in Section 5.

Protocol construction.We first note that Steps 3-5 in FRRwithPrior
can be computed locally by P0 to derive the set Y𝑇 ∗ and 𝑞fix since
it only depends on the prior vector ®𝑝 . The main challenge lies in

computing Steps 6 - 10. Note that securely computing these steps

requires the P0’s set Y𝑇 ∗ , along with it’s size 𝑇 ∗, to be kept private

(in addition to the keeping P1’s label 𝑦 private).

To design ΠRRwithPrior, a protocol that securely realizes the func-

tionality FRRwithPrior, we will take a modular approach and design

subprotocols for individually computing each step, from Steps 6 -

10, securely. These subprotocols will take either private or secret-

shared input and then output the result in a secret-shared form to

both parties. Table 1 shows the mapping between the above steps

and their corresponding subprotocol names. Since Step 10 has a

trivial protocol where both parties do a public reconstruction of 𝑦

(from Step 9) towards P0, we do not explicitly introduce a protocol

for it.

4.1 Subprotocols
In this section, we describe the construction of subprotocols from

Table 1. To formally prove the security of our subprotocols, we de-

fine functionalities F∗ in Appendix D corresponding to each of the

subprotocols Π∗ where ∗ ∈ {rand,membership, sample-bias-bit,
mux}. We then show that Π∗ securely realizes the functionality F∗
w.r.t a semi-honest adversary corrupting one of the parties.
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Steps in FRRwithPrior Subprotocols

6 ΠbiasBit
7 Πmembership
8 Πrand

9 Π
(4
1
)

mux
Table 1: Mapping between FRRwithPrior steps and correspond-
ing sub-protocols implementing them. These sub-protocols
would be combined to derive the final protocol ΠRRwithPrior.

4.1.1 Secure sampling from a private set. In this protocol, we

have a public set Y𝑇 = {0, . . . ,𝑇 − 1} and P0 has a private set

Y𝑇 ∗ ⊆ Y𝑇 of size𝑇 ∗ (which is also private). Both parties would like

to securely sample (an arithmetic sharing of) a uniformly random

element 𝑦 ∈ Y𝑇 ∗ .
Protocol. We describe a protocol for realizing this task in Figure 3.

This protocol proceeds in two stages. At a high-level, parties first

generate a sharing of random value 𝑣 ∈ [0,𝑇 ∗ − 1] and then, in

the second stage, simply retrieve the sharing of 𝑣 th element in P0’s
private set Y𝑇 ∗ . We now explain each stage in detail. In the first

stage, P1 samples a random mask 𝑧 and then both parties invoke

F (
𝑇
1
),Z𝑇

OT where P1 acts as the OT sender and sets the 𝑖th sender

string to be a fresh random value in [0, 𝑖] masked by 𝑧. P0 acts

as the OT receiver using 𝑇 ∗ − 1 as the choice index and ends up

retrieving a value J𝑣K0. Interpreting P1’s private mask 𝑧 as a share

J𝑣K1, it is clear that (J𝑣K0, J𝑣K1) form a random sharing of a random

value 𝑣 ∈ [0,𝑇 ∗ − 1].
In the second stage, both parties again invoke F (

𝑇
1
),Z𝑇

OT but this

time with the sender and receiver roles reversed. The aim of this

OT is to retrieve a sharing of the 𝑣 th element from P0’s private set
Y𝑇 ∗ . This can be done by having P0, acting as the OT sender, set

up the OT sender strings in a way so that whenever P1, acting as
the OT receiver, uses J𝑣K1 as its choice index, then P1 retrieves a
sharing of the 𝑣 th element from Y𝑇 ∗ . P0 can set-up the OT strings

in this desired fashion as it knows its own share of 𝑣 , which is J𝑣K0,
and can simply iterate over all possible values of J𝑣K1 (there are 𝑇
such possible values which is equal to the number of OT strings).

The protocol as described so far is not actually secure. The reason

is that the value 𝑣 is in the view of P1 as it was the one who sampled

it. As a concrete attack, suppose that all the OT sender strings in the

first OT happen to be a masking of 0 (which can happen with some

non-negligible probability). Then, P1 knows that irrespective of

what choice index P0 uses, both will end up with a sharing of 𝑣 = 0

at the end of stage one. This knowledge of 𝑣 implies that P1 knows
exactly which element of P0’s private set Y𝑇 ∗ will it retrieve (in a

shared form) in the second stage. This is a leakage which we do not

expect in an ideal setting (see Figure 11, Appendix D.2). To mitigate

this leakage, P0 locally shuffles the set Y𝑇 ∗ before starting the

second stage. At a high-level, this shuffling breaks the correlation

between 𝑣 and the index of element retrieved from Y𝑇 ∗ .
Security and Efficiency. To formally prove security of Πrand, we de-

fine an ideal functionality Frand (Figure 11,Appendix D.2) and show
thatΠrand securely realizes Frand in the F

(𝑇
1
),Z𝑇

OT hybrid model (The-

orem D.2, Appendix D.2). In terms of efficiency, the protocol simply

Protocol: Πrand

Public input: Set Y = {0, . . . ,𝑇 − 1} and arithmetic sharing do-

main Z𝑇 , where𝑇 ∈ N.
Private input: P0 holds Y𝑇 ∗ ⊆ Y where𝑇 ∗ = |Y𝑇 ∗ | .
Output: J𝑟K where 𝑟 ← Y𝑇 ∗ .
(1) P1 samples 𝑧 ← Z𝑇 and sets J𝑣K1 := 𝑧.

(2) P0 and P1 invoke a F
(𝑇
1
) ,Z𝑇

OT :

• P1 acts as the OT sender and sets the 𝑖th string (0-indexed)

as 𝑠𝑖 − 𝑧 (mod 𝑇 ) , where 𝑠𝑖 ← [0, 𝑖 ].
• P0 acts as the OT receiver using𝑇 ∗ − 1 as the choice index.

• P0 retrieves 𝑠𝑇 ∗−1 − 𝑧, denoted as J𝑣K0.
(3) P0 computes Ỹ𝑇 ∗ := 𝜋 (Y𝑇 ∗ ) , where 𝜋 is a random permuta-

tion.

(4) P0 samples 𝑧′ ← Z𝑇 .

(5) P0 and P1 invoke a F
(𝑇
1
) ,Z𝑇

OT :

• P0 acts as the OT sender and sets the 𝑖th OT string (0-indexed)

𝑢𝑖 = 𝑑𝑖 − 𝑧′ (mod 𝑇 ) , where 𝑑𝑖 := (J𝑣K0 + 𝑖 (mod 𝑇 ) ) th
label in Ỹ𝑇 ∗ . If J𝑣K0 + 𝑖 (mod 𝑇 ) ∉ {0, . . . ,𝑇 ∗ − 1}, then
set 𝑢𝑖 = 0.

• P1 acts as the OT receiver with the choice index J𝑣K1.
• P1 retrieves 𝑢J𝑣K1 .

(6) P0 outputs 𝑧′ .
(7) P1 outputs 𝑢J𝑣K1 .

Figure 3: Protocol for secure sampling from a private set

performs two calls to the OT functionality F (
𝑇
1
),Z𝑇

OT which incurs 1

round and 2𝜆 log𝑇 bits of communication in the offline phase. In

the online phase, we have 4 rounds (since the two OTs need to be

executed sequentially) and 2(𝑇 + 1) log𝑇 bits of communication

(across both parties).
7

4.1.2 Secure bit sampling with private bias. In this protocol,

P0 holds a private bias value 𝑞fix represented in fixed-point for-

mat with a public precision 𝑓 . Both parties would like to securely

sample (a boolean sharing of) a biased bit 𝑏 from the distribution

Bernoulli( 𝑞fix
2
𝑓 ).

Protocol. We describe a protocol for realizing this task in Figure 4.

The idea behind this protocol is simple: Both parties invokeF (
2
𝑓

1
),Z2

OT
where P0 acts as the OT sender and sets a random subset of 𝑞fix/2𝑓
fraction of the sender strings to be 1 and the rest to be 0. Then, P1
acts as the OT receiver and simply retrieves a random OT sender

string. This will result in P1 retrieving a bit 𝑏 from Bernoulli( 𝑞fix
2
𝑓 ).

To have the output bit 𝑏 in a secret-shared form across both parties,

instead of being available in clear to P1, P0 can simply mask all the

OT sender strings using a random mask bit 𝑧 and then interpreting

𝑧 as its share of bit 𝑏 whereas P1 interprets the OT retrieved bit as

its share of bit 𝑏.

7
As a minor optimization, we can reduce the number of rounds in the online phase

from 4 to 3 by parallelizing the second round message of first OT (which is sent by P1
as it is acting as the OT sender) with the first round message of the second OT (which

is again sent by P1 as it is acting as the OT receiver).

7
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Protocol: ΠbiasBit

Public input: Fixed point precision 𝑓 ∈ N.
Private input: P0 holds a value 𝑞fix ∈ [0, 2𝑓 ) .
Output: ⟨𝑏 ⟩ where 𝑏 ← Bernoulli( 𝑞fix

2
𝑓 ) .

(1) P0 samples 𝑧 ← {0, 1}.
(2) P0 samples a set 𝑆 ⊆ [0, 2𝑓 ) s.t. |𝑆 | = 𝑞fix.

(3) P1 samples 𝑟 ← [0, 2𝑓 ) .

(4) P0 and P1 invoke F
(2𝑓
1
) ,Z2

OT :

• P0 acts as the sender. For all 𝑖 ∈ [0, 2𝑓 ) , P0 sets 𝑖th sender

bit 𝑠𝑖 = 1 ⊕ 𝑧 if 𝑖 ∈ 𝑆 and 0 ⊕ 𝑧 otherwise.

• P1 acts as the receiver using 𝑟 as the choice index.

• P1 retrieves 𝑠𝑟 .
(5) P0 outputs 𝑧.
(6) P1 outputs 𝑠𝑟 .

Figure 4: Protocol for secure bit sampling with private bias.

Security and Efficiency. To formally prove the security of ΠbiasBit,

we define an ideal functionality FbiasBit (Figure 12 in Appendix

D.3) and then show that ΠbiasBit securely realizes FbiasBit in the

F (
2
𝑓

1
),Z2

OT hybrid model (Theorem D.3 in Appendix D.3). In terms of

efficiency, we note that the protocol simply performs a single call

to the OT functionality F (
2
𝑓

1
),Z2

OT which incurs 1 round and 𝜆𝑓 bits

of communication in the offline phase and 2 rounds and 2
𝑓 + 𝑓 bits

of communication (across both parties) in the online phase.

4.1.3 Securemembership test. In this protocol, we have a public
set Y = {0, . . . ,𝑇 − 1} and P0 has a private set Y𝑇 ∗ ⊆ Y𝑇 of size

𝑇 ∗. P1 has a private element 𝑦 ∈ Y and both parties would like to

securely compute (a boolean sharing of) a bit 𝑏 indicating whether

𝑦 ∈ Y𝑇 ∗ .
Protocol. We describe a protocol for realizing this task in Figure 5.

The idea behind the protocol is simple: P0 and P1 invoke a F
(𝑇
1
),

OT
where P0 acts as a sender and sets the 𝑖th OT sender string to be 1 iff

𝑖 ∈ Y𝑇 ∗ . Then P1 simply acts as the OT receiver using𝑦 as its choice

index. It is easy to see that the output of P1 will be 1 iff 𝑦 ∈ Y𝑇 ∗ . In
order to have the result of membership test be in a secret-shared

form (insted of revealing it in clear to P1), P0 can simply mask its

OT sender strings using a random bit 𝑧 and output 𝑧 as its share

of the result. The OT receiver output of the P1 together with the

output of P0 (which is 𝑧) will then constitute a boolean sharing of

the membership test result.

Security and Efficiency. To formally prove the security ofΠmembership,

we define an ideal functionality Fmembership (Figure 10 in Appendix

D.1) and then show that Πmembership securely realizes Fmembership

in the F (
𝑇
1
),Z2

OT hybrid model (Theorem D.1 in Appendix D.1). In

terms of efficiency, the protocol performs a single call to the OT

functionality F (
𝑇
1
),Z2

OT which incurs 1 round and 𝜆 log𝑇 bits of com-

munication in the offline phase and 2 rounds and 𝑇 + log𝑇 bits of

communication (across both parties) in the online phase.

Protocol: Πmembership

Public input: Set Y = {0, . . . ,𝑇 − 1}, where𝑇 ∈ N.
Private inputs: P0 holds Y𝑇 ∗ ⊆ Y where 𝑇 ∗ = |Y𝑇 ∗ | and P1
holds 𝑦 ∈ Y.
Output: ⟨𝑏 ⟩ where 𝑏 := 1{𝑦 ∈ Y𝑇 ∗ }
(1) P0 samples 𝑧 ← {0, 1}.

(2) P0 and P1 invoke a F
(𝑇
1
) ,Z2

OT :

• P0 acts as the OT sender and sets the 𝑖th OT bit 𝑠𝑖 = 1{𝑖 ∈
𝑌𝑇 ∗ } ⊕ 𝑧

• P1 acts as the OT receiver with the choice index 𝑦.

• P1 retrieves 𝑠𝑦 .
(3) P0 outputs 𝑧.
(4) P1 outputs 𝑠𝑦 .

Figure 5: Protocol for secure membership test.

4.1.4 4-choose-1 secure multiplexer. In this protocol, both par-

ties hold an arithmetic sharing of four values, (𝑥0,0, 𝑥0,1, 𝑥1,0, 𝑥1,1),
over Z𝑇 and a boolean sharing of two choice bits (𝑐, 𝑑). They would
like to securely compute an (fresh) arithmetic sharing of 𝑥𝑐,𝑑 .

Protocol.We describe a protocol for realizing this task usingF (
4

1
),Z𝑇

OT
in Figure 14 in Appendix D.4, which follows from [59].

Security and Efficiency. To formally prove the security of Π
(4
1
)

mux, we

define an ideal functionality F (
4

1
)

mux (Figure 13 in Appendix D.4) and

then state that Π
(4
1
)

mux securely realizes F (
4

1
)

mux in the F (
4

1
),Z𝑇

OT hybrid

model (Theorem D.4 in Appendix D.4). In terms of efficiency, the

protocol performs two calls to the OT functionality F (
4

1
),Z𝑇

OT which

incurs 1 round and 4𝜆 bits of communication in the offline phase

and 2 rounds (since the two OTs can be executed in parallel) and

2(4 log𝑇 + 2) bits of communication (across both parties) in the

online phase.

4.2 Overall Protocol
We will now describe the overall protocol ΠRRwithPrior for realizing

FRRwithPrior. To do so, we will assume that parties have access to

functionalities F∗ corresponding to the subprotocols Π∗ where
∗ ∈ {rand,membership, biasBit,mux}. These functionalities are

described in Appendix D.

Protocol. Figure 6 describes our protocol ΠRRwithPrior for securely

realizing the FRRwithPrior functionality introduced earlier. It is a

simple combination of the modular sub-protocols as we described

earlier in Table 1 followed by a final reconstruction of the perturbed

label 𝑦 in the last step towards P0. The correctness of the overall
protocol follows directly from the correctness of the underlying

sub-protocols.
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Protocol: ΠRRwithPrior

Public inputs: Number of classes 𝑇 , label set Y = {0, . . . ,𝑇 −
1}, privacy parameter 𝜖 ∈ R≥0, fixed point precision 𝑓 ∈ N,
arithmetic sharing domain Z𝑇 .

Private inputs: P0 holds a prior vector ®𝑝 = {𝑝𝑖 }𝑖∈ [𝑇 ] where 𝑝𝑖 ∈
R, 𝑝𝑖 ∈ [0, 1] and

∑
𝑖∈ [𝑇 ] 𝑝𝑖 = 1. P1 holds a label 𝑦 ∈ Y.

Output: P0 outputs a perturbed label 𝑦 ∈ Y.

(1) P0 computes𝑇 ∗ = argmax𝑡 ∈ [𝑇 ]
(

𝑒𝜖

𝑒𝜖+𝑡−1 · (
∑

𝑖∈Y𝑡 𝑝𝑖 )
)
, where

Y𝑡 is the set of 𝑡 labels with maximum 𝑝𝑖 values.

(2) P0 sets Y𝑇 ∗ to be the set of𝑇 ∗ labels with maximum 𝑝𝑖 values.

(3) P0 computes 𝑞fix =
⌊

𝑒𝜖 −1
𝑒𝜖+𝑇 ∗−1 · 2

𝑓
⌋

(4) P0 and P1 invoke FbiasBit, where P0 inputs 𝑞fix, and they re-

ceive shares J𝑏1K0 and J𝑏1K1 respectively.
(5) P0 and P1 invoke Fmembership, where P0 inputs Y𝑇 ∗ and P1
inputs 𝑦, and they receive shares J𝑏2K0 and J𝑏2K1 respectively.
(6) P0 and P1 invoke Frand, where P0 inputsY𝑇 ∗ , and they receive
shares J𝑧K0 and J𝑧K1 respectively.
(7) P0 and P1 set J𝑦K0 = 0 ∈ Z𝑇 and J𝑦K1 = 𝑦 ∈ Z𝑇 respectively,

where J𝑦K = (J𝑦K0, J𝑦K1 ) denotes a default sharing of the value
𝑦 over Z𝑇 held by P1.

(8) P0 and P1 invoke F
(4
1
)

mux using selection shares (J𝑏1K, J𝑏2K) and
value shares (J𝑧K, J𝑧K, J𝑧K, J𝑦K) . They finally receive a sharing of

J𝑦K, where 𝑦 = 𝑦 if 𝑏1 ∧ 𝑏2 = 1, and 𝑧 otherwise.

(9) P1 sends J𝑦K1 to P0. P0 then reconstructs 𝑦 := J𝑦K0 + J𝑦K1
(mod 𝑇 ) and outputs it.

Figure 6: Protocol for securely computing RRWithPrior.

Security and Efficiency. To formally prove the security ofΠRRwithPrior,

we show (Theorem D.6 in Appendix D.5) that ΠRRwithPrior (Figure 6)

securely realizes FRRwithPrior (Figure 2) in the Fmembership, FbiasBit,

F (
4

1
)

mux, Frand hybrid model, with respect to passive corruption. The

efficiency of ΠRRwithPrior will be governed by the efficiency of the

underlying sub-protocols namelyΠmembership,ΠbiasBit,Π
(4
1
)

mux,Πrand.

As each of these sub-protocols is invoked exactly once inΠRRwithPrior,

the communication cost is simply the sum of the communication

cost of each sub-protocol. Therefore, the offline and online commu-

nication cost of ΠRRwithPrior comes out to be 𝜆(3 log𝑇 + 𝑓 + 4) and
log𝑇 (2𝑇 + 11) +𝑇 + 2𝑓 + 𝑓 + 4 bits respectively. In terms of rounds,

the offline phase requires a single round as all the sub-protocols

just require a single offline round for OT extension which can be

performed in parallel.

For online rounds, we note that the sub-protocols for F ′ =

{FbiasBit, Fmembership, Frand} can be invoked in parallel as their

inputs and outputs do not have any inter-dependency. However, the

sub-protocol for F (
4

1
)

mux can only be invoked after the sub-protocols

for F ′ are completed because the output of F ′ is fed as input to

F (
4

1
)

mux. This means that the total online rounds for ΠRRwithPrior will

be 5 as we need maximum 3 online rounds for the sub-protocols

for F ′ and 2 online rounds for the sub-protocol for F (
4

1
)

mux. As an

optimization, we note that this can be reduced to 4 rounds instead by

parallelizing the third round of Πrand with the first round of Π
(4
1
)

mux.

This is possible because the first round of Π
(4
1
)

mux is only dependent

on the output of sub-protocols ΠbiasBit,Πinterval, both of which are

completed by the second round. As a summary, we present the

analytical costs of all our protocols in Table 2.

Theorem 4.1 (Secure RRWithPrior). Let 𝑇 be the number of
possible labels, 𝑓 be a fixed point parameter and 𝜆 be a security
parameter. There exists a protocolΠRRwithPrior (Fig.6) securely realizes
FRRwithPrior (Fig.2) in the FOT hybrid model against semi-honest
adversaries using ≈ 2𝑇 log𝑇 + 2𝑓 bits of online communication and
4 online rounds. Using OT-extension to instantiate FOT, we have
≈ 𝜆(3 log𝑇 + 𝑓 ) bits of offline communication and a single offline
round.8

Proof. We refer the readers to Section 4.2 for efficiency analy-

sis. For security, we take the following approach. First, we define

functionalities F∗ in Appendix D corresponding to each of the sub-

protocols Π∗ where ∗ ∈ {rand,membership, sample-bias-bit,mux}
and then show that Π∗ securely realizes the functionality F∗ in the

FOT hybrid model. We then show ( Theorem D.6, Appendix D) that

ΠRRwithPrior (Figure 6) securely realizes FRRwithPrior (Figure 2) in
theFmembership, FbiasBit, F

(4
1
)

mux, Frand hybridmodel. By invoking the

UC composability theorem [19], it follows thatΠRRwithPrior securely

realizes FRRwithPrior in the FOT hybrid model if the calls to F∗ are
replaced by calls to Π∗ for ∗ ∈ {rand,membership, sample-bias-bit,
mux}.

Note that RRWithPrior mechanism is aimed towards adding

Label DP guarantee for model training on classification tasks. Ghazi

et. al.[37] recently proposed a variant called Randomized Response

on Bins (RROnBins) which handles regression tasks. While the

focus of this work is specifically on RRWithPrior, our techniques
can also be extended to securely compute RROnBins. Due to space

limitation, we refer the readers to Appendix C for details.

5 Experimental Evaluation
Implementation Details. We implement our system in C++ and

Python 3. Our system implements the proposed secure protocol

ΠRRwithPrior (Figure 6) and applies it to train neural networks with

LabelDP using LP-MST (Algorithm 2). C++ coordinates the whole

computation and executes the 2PC protocols. At each LP-MST it-

eration, the C++ engine makes two invocations to Python scripts

that use the Keras [23] interface for neural networks with Tensor-

Flow [16] backend: (1) forward propagation to compute the priors

(Line 6 in Algorithm 2), and (2) model training on the randomized

labels (Line 9 in Algorithm 2). We embed Python in C++ using

C++’s default application programmer’s interface to Python (see

the Python.h header). This architecture enables us to use Python’s

convenient libraries for deep learning and linear algebra, includ-

ing Keras and TensorFlow, and support any (Keras-implemented)

model. We note some interesting aspects of our implementation:

• We store the neural network architecture, the model weights,

and the training configuration (e.g. loss function, optimizer, etc.) in

HDF5 file format. Keras’ API provides functions to load from and

8
This excludes the cost of “base OTs” as it is amortized away over large number of OT

instances.
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Protocol/Costs Online communication (bits) Online rounds Offline communication (bits)

Πmembership 𝑇 + log𝑇 14 2 𝜆 log𝑇 512

Πrand 2(𝑇 + 1) log𝑇 88 3 2𝜆 log𝑇 1024

ΠbiasBit 2
𝑓 + 𝑓 1034 2 𝜆𝑓 1280

Π
(4
1
)

mux 8 log𝑇 + 4 36 2 4𝜆 512

ΠRRwithPrior log𝑇 (2𝑇 + 11) +𝑇 + 2𝑓 + 𝑓 + 4 1172 4 𝜆(3 log𝑇 + 𝑓 + 4) 3328

Table 2: Analytical costs of ΠRRwithPrior sub-protocols. The blue highlighted numbers indicate concrete costs for 𝑇 = 10, 𝜆 = 128

and 𝑓 = 10. All protocols require a single offline round (due to OT extension). The costs presented here do not include the cost
of “base OTs” as it is amortized away over large number of OT instances. The logarithm function log is w.r.t base 2.

save to this format. Note that this approach is highly modular as it

allows us to easily switch to a completely different neural network

without having to modify code.

• In our codebase, we include an efficient implementation of IKNP

OT extension [45], including the state-of-the-art optimizations [6,

41]. We precompute a large number of random 1-out-of-2 OTs in

the offline phase, and convert them into 1-out-of-𝑁 random OTs

in a straightforward way via log𝑁 1-out-of-2 random OTs. In the

online phase, we then construct 1-out-of-𝑁 chosen OTs from the

precomputed 1-out-of-𝑁 randomOTs with Beaver’s classic trick [8].

• Our system includes server/client code with network communi-

cation implemented using gRPC’s asynchronous APIs.

• Our implementation has end-to-end tests written in theGoogleTest

library [40].

• Finally, we use the Bazel build system [39].

Datasets. We run our experiments on 2 datasets. MNIST [25] con-

sists of 28 × 28 image inputs (i.e. 784 features) and 10 classes. The

training set contains 60, 000 examples; the testing set contains

10, 000. CIFAR-10 [50] consists of 32× 32 image inputs with 3 chan-

nels (i.e. 3072 features) and 10 classes. The training set contains

50, 000 examples; the testing set contains 10, 000.

NetworkArchitecture andTrainingConfiguration. ForMNIST,

we use a simple convolutional neural network (CNN) that starts

with two convolutional layers, each followed by max-pooling to

reduce the spatial dimensions of the feature maps. After flattening

the output, we use a dropout layer to reduce overfitting, and apply

a dense softmax layer to predict one of the 10 digit classes. We

compile the model using categorical cross-entropy loss and the

Adam optimizer. We train the model using 90% of the dataset, with

10% reserved for validation, over 15 epochs and a batch size of 128.

For CIFAR-10, we implement a ResNet-18 V2 architecture with data

augmentation and a custom learning rate scheduler. We start with

convolutional layers, followed by ResNet blocks that downsam-

ple the spatial dimensions while increasing filter counts, and we

conclude with global average pooling and a softmax output for clas-

sification. To improve generalization, we apply data augmentation

techniques such as random horizontal flips and width/height shifts.

We train the model using the SGD optimizer with a momentum

of 0.9 and an initial learning rate of 0.4, which decays over time

through a custom learning rate schedule. The learning rate ramps

up during the first 30 epochs before decaying in later stages. We

train the model for 35 epochs with a batch size of 512. For all exper-

iments, we use 2 LP-MST iterations and split the dataset equally

between these iterations.

Experimental setup. We run our MNIST experiments on two

Ubuntu 20.04 LTS compute-optimized c2-standard-8 Google Cloud

instances with 32 GB RAM and Intel Xeon CPU at 3.1 GHz clock

rate. For CIFAR-10, the machine that runs the deep learning training

and prior computation is replaced with an Ubuntu 20.04 LTS g2-

standard-32 Google Cloud instance with a single NVIDIA L4 GPU,

128GB RAM, and Intel Xeon CPU at 2.2GHz clock rate. In the LAN

setting, we deploy both instances in the us-central1 region, with

0.12ms mean network latency and ≈ 1.9GB/s bandwidth. In the

WAN setting, we deploy one instance in us-central1 and the other in

us-west1. The mean network latency is 31.30ms and the bandwidth

≈ 93MB/s. The client and the server execute their computation

simultaneously in each round. They proceed to the next round once

both parties have completed the computation and transferred the

messages to one another. As LP-MST is a randomized algorithm

(due to RRWithPrior and Keras model training), we take mean

averages over 10 runs for more consistent results.

Goal of our evaluation. [36] already demonstrates thatRRWithPrior
providesmore accurate results than vanilla RR (and other approaches)

while maintaining the same level of privacy. We do not repeat

their experiments. The goal of our evaluation is to show that

RRWithPrior, when replaced with our proposed secure version

ΠRRwithPrior, does not introduce significant runtime overhead or accu-
racy loss in the context of LP-MST training. In other words, given

a fixed model architecture, using ΠRRwithPrior to randomize the la-

bels (rather than randomizing them in cleartext using RRWithPrior)
does not significantly reduce the overall training accuracy or in-

crease the running time of LP-MST. Hence, we do not try to find

the most performant network architecture and training parameters

(which is purely an ML task). We also note that the running time

and communication cost of our ΠRRwithPrior is independent of the

model as ΠRRwithPrior is only used to randomize each label in the

dataset exactly once.

LP-MST accuracy experiments. We now show that ΠRRwithPrior
does not significantly degrade the accuracy of LP-MST w.r.t. plain-

text RRWithPrior. We can see from Table 3 that for all experiments

the accuracy differs by at most 1%. Note that a larger number of

fractional bits 𝑓 can decrease this difference at the expense of in-

creasing the runtime and communication cost (as we will discuss

next).
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MNIST (15 Keras epochs) CIFAR-10 (35 Keras epochs)

𝜖 = 1

Fixed point precision 𝑓 12 13

Accuracy 93.8% (93.7%) 52.6 % (53.0%)

Offline Online Total Offline Online Total
Communication 25.69 MB 237.00 MB 262.69 MB 22.18 MB 392.82 MB 415.00 MB

LAN

{
2PC Only

Full Training

19.12 sec 15.32 sec 34.44 sec 32.63 sec 30.06 sec 62.69 sec

— — 3.67 min — — 33.27 min

WAN

{
2PC Only

Full Training

19.70 sec 19.24 sec 38.94 sec 33.42 sec 42.36 sec 75.78 sec

— — 3.75 min — — 33.49 min

𝜖 = 3

Fixed point precision 𝑓 10 12

Accuracy 98.5% (98.6%) 88.1% (88.7%)

Offline Online Total Offline Online Total
Communication 23.86 MB 61.22 MB 85.08 MB 21.42 MB 197.50 MB 218.92 MB

LAN

{
2PC Only

Full Training

4.15 sec 4.76 sec 8.91 sec 16.09 sec 14.69 sec 30.78 sec

— — 3.25 min — — 32.74 min

WAN

{
2PC Only

Full Training

4.82 sec 6.64 sec 11.46 sec 16.82 sec 19.24 sec 36.06 sec

— — 3.29 min — — 32.83 min

𝜖 = 8

Fixed point precision 𝑓 8 10

Accuracy 99.1% (99.1%) 92.8% (93.5%)

Offline Online Total Offline Online Total
Communication 22.03 MB 17.26 MB 39.29 MB 19.89 MB 51.02 MB 70.91 MB

LAN

{
2PC Only

Full Training

1.18 sec 2.24 sec 3.42 sec 3.67 sec 4.62 sec 8.29 sec

— — 3.16 min — — 32.37 min

WAN

{
2PC Only

Full Training

1.77 sec 3.72 sec 5.49 sec 4.49 sec 7.02 sec 11.51 sec

— — 3.19 min — — 32.42 min

Table 3: We benchmark LP-MST for different 𝜖 (DP privacy budget) and 𝑓 (fixed point precision). We fix the number of LP-MST iterations
to 2. We compare test dataset accuracy of LP-MST with ΠRRwithPrior against LP-MST with plaintext RRWithPrior (in parentheses). We present
runtime (LAN and WAN) and communication for the offline phase, online phase, and total (offline + online). In all executions, offline phase
uses one round of interaction, while the online phase requires 8. All wall-clock times represent the maximum of the client and server; all
communication costs represent the sum of the client and server. “2PC Only” represents the running time overhead of only ΠRRwithPrior; “Full
Training” represents the total runtime of LP-MST including ΠRRwithPrior.

LP-MST runtime and communication experiments. As shown
in the ‘2PC Only’ rows of Table 2, the cost of ΠRRwithPrior during

full training in our most computationally intensive CIFAR-10 ex-

periment is less than 1.3 minutes, whereas the total training time

exceeds 30 minutes. Our 2PC requires 1 round of interaction to pre-

process OTs in the offline phase and 4 rounds per online iteration,

which is consistent with our analytical estimates in Table 2.

Scalability of our experiments. Note that the ML training hap-

pens outside 2PC on the server side on the noisy labels received

from each client. The only part executed inside 2PC is the prior-

based RR mechanism, which securely computes and releases the

noisy labels to the server. Beyond this one-shot 2PC interaction be-

tween each client and the server, the remaining computation on the

server side is identical to the traditional ML training on plaintext

(but DP perturbed) labels. This leads to the following conclusions:

i) Each client’s communication/computation cost is independent

of the total number of clients in the system. However, the server’s

communication/computation cost across all clients scales linearly

with the number of clients as expected. ii) Since the number of

clients is identical to the training set size (as each client is hold-

ing a single label), the cost dependency on the training set size is

identical to the cost dependency on the number of clients. iii) The

size/complexity of the ML model does not affect the 2PC communi-

cation/computation cost of the server. It only affects the running

time and memory consumption of the “non-2PC” part, which is
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Fixed-point precision (𝑓 ) 8 10 15 20

Comm Offline 384B 416B 496B 576B

Comm Online 349B 1.09KB 32.09KB 1MB

Comm Total 0.72KB 1.49KB 32.57KB 1MB

Rounds Offline 1 1 1 1

Rounds Online 4 4 4 4

LAN Online (ms) 2.11 2.21 4.54 88.80

WAN Online (ms) 315.08 320.66 365.97 661.62

Table 4: This table shows the cost of our system executing
ΠRRwithPrior for a single input with 8, 10, 15, & 20 fractional
bits, assuming 10 possible labels, between a client and a server.
The communication is across both parties (client and server)
combined.

ML training, in the same way that the model size would affect the

time/memory cost of vanilla ML training.

Microbenchmarking ΠRRwithPrior.We now show in Table 4 the

runtime and the communication cost (i.e. both client and server

combined) of executing ΠRRwithPrior on a single label between a

server and a client, for different values of the fixed-point precision

𝑓 . We assume the number of labels is 10. In our experiments, we

observe that LAN and WAN offline runtimes are extremely small.

For example, with 𝑓 = 8, the LAN and WAN runtimes are 0.02ms

and 0.07ms, respectively. As another data point, with 𝑓 = 10, the

LAN andWAN runtimes are 0.03ms and 0.08ms, respectively. There-

fore, for brevity, we do not include the offline runtimes in Table 4.

Table 4 shows that the communication and online runtime remain

less than a MB and a second, respectively, even for 𝑓 as high as

20. Thus, our protocol is suitable for execution on computationally

weak devices such as smart phones.

Impact of fixed-point arithmetic on DP. Recent works have
shown that implementations of differential privacy mechanisms re-

quire care to prevent against leakage due to imprecision of concrete

numerical implementations. Mironov [55] was the first to show

concrete attacks for mechanisms such as the Laplace distribution,

relying on concrete floating point implementations. Many other

works [7, 35, 43, 44, 47] have explored this space presenting both

attacks and mitigations.

We point out that our approaches are exempt from the attacks on

floating point implementations described above since theymake use

of Bernoulli sampling, namely flipping a coin with probability 𝑝 in

ΠbiasBit, or sampling at random from 𝑇 classes in Πrand. However,

even Bernoulli sampling can be subject to bias in a fixed-point

implementation. For Πrand we avoid this bias by having each party

sample a large random string (more than 40 bits longer than log(𝑇 ),
and taking it modulo 𝑇 . The result is 2−40-statistically-close to a

random sample modulo 𝑇 .

In ΠbiasBit we incur a small bias by our use of fixed-point pre-

cision of 20 in the representation of the probability 𝑝 . This bias

increases the effective epsilon by a small amount (less than 10
−3

for the 𝜖’s considered in the paper), because the probability in the

numerator in the DP expression may have increased by up to 2
−20

,

and that in the denominator reduced by 2
−20

. We consider this

small increase negligible. We note that it becomes more significant

for 𝜖 > 12, in which case we would need more than 20 bits.
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A Semi-Honest Secure Two-Party Computation
The following description of semi-honest two-party computation

is standard in the literature and is taken from [53].

Semi-honest adversary. The model that we consider in this work

is that of two-party computation in the presence of static semi-
honest adversaries. Such an adversary controls one of the parties

(statically, and so at the onset of the computation) and follows the

protocol specification exactly. However, it may try to learn more

information than allowed by looking at the transcript of messages

that it received and its internal state. A protocol that is secure in

the presence of semi-honest adversaries guarantees that there is no

inadvertent leakage of information. Semi-honest secure protocols

are often designed as the first step towards achieving the stronger

notions of malicious security.

Two-party computation (2PC). A two-party protocol problem

is cast by specifying a possibly random process that maps pairs of

inputs to pairs of outputs (one for each party).We refer to such a pro-

cess as a functionality and denote it 𝑓 : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ ×
{0, 1}∗, where 𝑓 = (𝑓1, 𝑓2). That is, for every pair of inputs 𝑥,𝑦 ∈
{0, 1}∗, the output-pair is a random variable (𝑓1 (𝑥,𝑦), 𝑓2 (𝑥,𝑦)) rang-
ing over pairs of strings. The first party (with input 𝑥) wishes to

obtain 𝑓1 (𝑥,𝑦) and the second party (with input 𝑦) wishes to obtain

𝑓2 (𝑥,𝑦).
Privacy by simulation.As expected, we wish to formalize the idea

that a protocol is secure if whatever can be computed by a party

participating in the protocol can be computed based on its input

and output only. This is formalized according to the simulation

paradigm by requiring the existence of a simulator who generates

the view of a party in the execution. However, since the parties

here have input and output, the simulator must be given a party’s

input and output in order to generate the view. Thus, security here

is formalized by saying that a party’s view in a protocol execution

be simulatable given its input and output. This formulation implies

that the parties learn nothing from the protocol execution beyond

what they can derive from their input and prescribed output.

One important point to note is that since the parties are semi-

honest, it is guaranteed that they use the actual inputs written on

their input tapes. This is important since it means that the output is

well-defined, and not dependent on the adversary. Specifically, for

inputs 𝑥,𝑦, the output is defined to be 𝑓 (𝑥,𝑦), and so the simulator

can be given this value.

Definition of security.We begin with the following notation:

• Let 𝑓 = (𝑓1, 𝑓2) be a probabilistic polynomial-time func-

tionality and let 𝜋 be a two-party protocol for computing

𝑓 . (Throughout, whenever we consider a functionality, we

always assume that it is polynomially-time computable.)

• The view of the 𝑖th party (𝑖 ∈ {1, 2}) during an execu-

tion of 𝜋 on (𝑥,𝑦) and security parameter 𝜆 is denoted

by view𝜋
𝑖
(𝑥,𝑦, 𝜆) and equals (𝑤, 𝑟𝑖 ;𝑚

𝑖
1
, . . . ,𝑚𝑖

𝑡 ), where𝑤 ∈
{𝑥,𝑦} (its input depending on the value of 𝑖), 𝑟𝑖 equals the

contents of the 𝑖th party’s internal random tape, and 𝑚𝑖
𝑗

represents the 𝑗 th message that it received.

• The output of the 𝑖th party during an execution of 𝜋 on

(𝑥,𝑦) and security parameter 𝜆 is denoted by output𝜋
𝑖
(𝑥,𝑦, 𝜆)

and can be computed from its own view of the execution.

We denote the joint output of both parties by output𝜋 (𝑥,𝑦, 𝜆) =
(output𝜋

1
(𝑥,𝑦, 𝜆), output𝜋

2
(𝑥,𝑦, 𝜆)).

Definition A.1 (Standalone security). Let 𝑓 = (𝑓1, 𝑓2) be a func-
tionality. We say that a protocol 𝜋 securely computes 𝑓 in the

presence of static semi-honest adversaries in the standalone model

if there exist probabilistic polynomial-time algorithms S1 and S2
such that {

(S1 (1𝜆, 𝑥, 𝑓1 (𝑥,𝑦)), 𝑓 (𝑥,𝑦))
}
𝑥,𝑦,𝜆

𝑐≡{
(view𝜋

1
(𝑥,𝑦, 𝜆), output𝜋 (𝑥,𝑦, 𝜆))

}
𝑥,𝑦,𝜆

, and {
(S2 (1𝜆, 𝑥, 𝑓2 (𝑥,𝑦)), 𝑓 (𝑥,𝑦))

}
𝑥,𝑦,𝜆

𝑐≡{
(view𝜋

2
(𝑥,𝑦, 𝜆), output𝜋 (𝑥,𝑦, 𝜆))

}
𝑥,𝑦,𝜆

where 𝑥,𝑦 ∈ {0, 1}∗ such that |𝑥 | = |𝑦 |, 𝜆 ∈ N, and 𝑐≡ denotes

computational indistinguishability of the ensembles for all large

enough values of 𝜆.

Remark A.1. We note that our protocols are: i) perfecty secure in
the standalone model (i.e. in a model where the protocol is executed
only once), ii) have straight-line black-box simulators, i.e., only assume
oracle access to the corrupt party and do not rewind. Kushilevitz et
al. [51] then implies security under general concurrent composition,
which is equivalent to Universal Composable (UC) security [19].

Remark A.2. We will sometimes prove that a protocol 𝜋 UC se-
curely realizes a functionality F in the G hybrid model. This means
that the functionality G is available to the parties in the real-world.
If 𝜙 is a protocol which UC securely realizes G, then it follows by the
UC composability theorem [19] that 𝜋 UC securely realizes F in a
world where calls to G are replaced by calls to 𝜙 .

B Differential Privacy and Label Differential
Privacy

B.1 Differential Privacy
Differential Privacy (DP) provides security guarantees, which are

orthogonal to the security guarantees provided by secure compu-

tation. At a high level, secure computation guarantees that the

computation process (i.e. transforming the encrypted/secret-shared

input 𝑥 to the output 𝑓 (𝑥)) leaks no additional information besides

𝑓 (𝑥). On the other hand, DP guarantees that the output 𝑓 (𝑥) it-
self leaks no “sensitive” information about 𝑥 . This is formalized in

Definition B.2.

Definition B.1 (Dataset and Adjacency relationship for standard
DP). Let X denote the universe of items. A dataset 𝐷 is simply

an ordered subset of X. We sometimes parse a size 𝑛 dataset 𝐷 as

{𝑥1, . . . , 𝑥𝑛}. We say that two datasets𝐷 and𝐷′ are adjacent if their
size is same i.e. |𝐷 | = |𝐷′ | = 𝑛 and they are identical except for a

difference in a single item at some arbitrary index i.e. there exists a

unique 𝑖∗ ∈ [𝑛] s.t. 𝑥𝑖∗ ∈ 𝐷 , 𝑥 ′𝑖∗ ∈ 𝐷
′
and 𝑥𝑖∗ ≠ 𝑥 ′

𝑖∗ .
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Definition B.2 (Differential Privacy [30]). Let 𝜖, 𝛿 ∈ R≥0. A ran-

domized algorithm A taking as input a dataset is said to be (𝜖, 𝛿)-
differentially private ((𝜖, 𝛿)-DP) if for any two adjacent datasets 𝐷

and 𝐷′ (Definition B.1), and for any subset 𝑆 of outputs of A, it

is the case that Pr[A(𝐷) ∈ 𝑆] ≤ 𝑒𝜖 · Pr[A(𝐷′) ∈ 𝑆] + 𝛿 . If 𝛿 = 0,

then A is said to be 𝜖-differentially private (𝜖-DP).

B.2 Label Differential Privacy
Label Differential Privacy (Label DP) is a relaxation of the standard

DP, tailored towards some machine learning tasks, where the pri-

vacy guarantee is only required w.r.t dataset labels whereas the

dataset features are considered non-sensitive. To formalize this, we

need to define the notion of a dataset and an adjacency relationship

between datasets.

Definition B.3 (Dataset and Adjacency relationship for Label DP).
LetX andY denote the feature and label set respectively. A dataset

𝐷 is simply an ordered subset of X ×Y. We sometimes parse a size

𝑛 dataset 𝐷 as {(𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)}. We say that two datasets 𝐷

and 𝐷′ are adjacent if their size is same i.e. |𝐷 | = |𝐷′ | = 𝑛 and

they are identical except for a difference in a single label at some

arbitrary index i.e. there exists a unique 𝑖∗ ∈ [𝑛] s.t. (𝑥𝑖∗ , 𝑦𝑖∗ ) ∈ 𝐷 ,
(𝑥𝑖∗ , 𝑦′𝑖∗ ) ∈ 𝐷

′
and 𝑦𝑖∗ ≠ 𝑦′

𝑖∗ .

Now that we defined the notion of a dataset and adjacency rela-

tionship, the Label DP notion is captured in Definition B.4.

Definition B.4 (Label Differential Privacy [36]). Let 𝜖, 𝛿 ∈ R≥0.
A randomized algorithm A taking as input a dataset is said to

be (𝜖, 𝛿)-label differentially private ((𝜖, 𝛿)-label DP) if for any two

adjacent training datasets 𝐷 and 𝐷′ (Definition B.3), and for any

subset 𝑆 of outputs of A, it is the case that Pr[A(𝐷) ∈ 𝑆] ≤ 𝑒𝜖 ·
Pr[A(𝐷′) ∈ 𝑆] + 𝛿 . If 𝛿 = 0, then A is said to be simply 𝜖-label

differentially private (𝜖-LabelDP).
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C Securely Computing RR on Bins
While the RRWithPrior protocol is aimed towards adding Label

DP guarantee for model training on classification tasks, Ghazi et.

al.[37] recently proposed a variant called Randomized Response

on Bins (RROnBins) which handles regression tasks. We describe

RROnBins in Algorithm 4 which makes black-box use of a func-

tion called ComputeOptimalPhi. Since the inner workings of the
function ComputeOptimalPhi will not be relevant to us, we refer

the readers to [37] for its full description. This function returns

a finite set
ˆY and a non-decreasing mapping 𝜙 : Y → ˆY for a

given label set Y, prior 𝑝 , privacy parameter 𝜖 and loss function

ℓ . At a high-level, the inverse mapping 𝜙−1 partitions the label

set Y into a set of finite bins (exactly | ˆY| many bins) and then

the RROnBins algorithm simply performs vanilla RR on these bins,

hence the name RROnBins. Ghazi et. al.[37] show that RROnBins
satisifies 𝜖-DP which is captured by the following theorem.

Theorem C.1 ([37]). For all 𝑦min ∈ R, 𝑦max ∈ R, distribution
𝑝 over Y = [𝑦min, 𝑦max), 𝜖 ∈ R≥0, loss function ℓ : R2 → R≥0,
RROnBins (Algorithm 4) is 𝜖-DP (Definition B.2).

Algorithm 4: RROnBins
Parameters: Minimum and maximum label value 𝑦min ∈ Z and
𝑦max ∈ Z respectively, label set Y = [𝑦min, 𝑦max ) ⊂ R, privacy
parameter 𝜖 ≥ 0, loss function ℓ : R2 → R≥0, prior probability
distribution 𝑝 over Y.

Inputs: Label 𝑦 ∈ Y.
Output: A perturbed label 𝑦 ∈ Y.

1 ( ˆY, 𝜙 ) := ComputeOptimalPhi(Y, 𝑝, 𝜖, ℓ ) , where
ˆY ⊆ [𝑦min, 𝑦max ) s.t. | ˆY| = 𝑘 is finite and 𝜙 : Y → ˆY s.t. 𝜙 is

non-decreasing.

2 Let P𝜙 = [𝑏0, 𝑏1 ), . . . , [𝑏𝑘−1, 𝑏𝑘 ) denote a partition of Y induced

by 𝜙−1 and ˆY = {𝑦̂0, . . . , 𝑦̂𝑘−1} s.t. 𝑏0 = 𝑦min, 𝑏𝑘 = 𝑦max, and 𝜙

is constant over each partition, i.e., for all 𝑖 ∈ [0, 𝑘 − 1],
𝑦′ ∈ [𝑏𝑖 , 𝑏𝑖+1 ) , we have 𝜙 (𝑦′ ) = 𝑦̂𝑖 .

3 Let 𝑧′ ∈ [0, 𝑘 − 1] indicate the partition index s.t. 𝑏𝑧′ ≤ 𝑦 < 𝑏𝑧′+1.

4 Define a random variable 𝑍 with values in [0, 𝑘 − 1] and let D be

the induced probability distribution s.t.

Pr[𝑍 = 𝑧 ] =
{

𝑒𝜖

𝑒𝜖+𝑘−1 𝑧 = 𝑧′

1

𝑒𝜖+𝑘−1 otherwise

5 Sample 𝑧̃ ← D and set 𝑦 = 𝑦̂𝑧 .

6 return 𝑦.

We start by noting that our approach for securely computing

RROnBins (Algorithm 4) will mirror the approach that we took in

Section 4 for securely computing RRWithPrior. Since the problem
formulation is same as before, we directly proceed to the next step

where we simplify the sampling step in RROnBins (Algorithm 4)

so that it amenable to secure computation.

Simplifying the computation. In Algorithm 5, we describe an

equivalent and simplified way of computing Steps 4-6 of Algorithm

4. At a high-level, this simplification basically represents the non-

uniform distribution induced on 𝑦 in Algorithm 4 as a composition

of uniform distribution and a biased bit (Bernoulli) distribution.

It is easy to see that the induced probability distribution on 𝑦 in

Functionality: FRRonBins

Public Parameters: Minimum and maximum label value 𝑦min ∈ Z
and 𝑦max ∈ Z respectively, label set Y = [𝑦min, 𝑦max ) ⊂ R,
privacy parameter 𝜖 ≥ 0, loss function ℓ : R2 → R≥0, fixed-point
precision 𝑓 ∈ N.
(1) Get a prior distribution 𝑝 over Y as input from P0.
(2) Get a label 𝑦 ∈ Y as input from P1.
(3) Compute ( ˆY, 𝜙 ) := ComputeOptimalPhi(Y, 𝑝, 𝜖, ℓ ) , where
ˆY ⊆ [𝑦min, 𝑦max ) s.t. | ˆY| = 𝑘 is finite and 𝜙 : Y → ˆY s.t. 𝜙 is

non-decreasing.

(4) Let P𝜙 = [𝑏0, 𝑏1 ), . . . , [𝑏𝑘−1, 𝑏𝑘 ) denote a partition of Y
induced by 𝜙−1 and

ˆY = {𝑦̂0, . . . , 𝑦̂𝑘−1} s.t. 𝑏0 = 𝑦min, 𝑏𝑘 =

𝑦max, and 𝜙 is constant over each partition, i.e., for all 𝑖 ∈ [𝑘 ],
𝑦′ ∈ [𝑏𝑖−1, 𝑏𝑖 ) , we have 𝜙 (𝑦′ ) = 𝑦̂𝑖 .

(5) Let P𝜙,fix = [𝑏
0,fix, 𝑏1,fix ), . . . , [𝑏𝑘−1,fix, 𝑏𝑘,fix ) where 𝑏𝑖,fix =⌊

𝑏𝑖 · 2𝑓
⌋
for all 𝑖 ∈ [0, 𝑘 ].

(6) Set 𝑞fix =
⌊

𝑒𝜖 −1
𝑒𝜖+𝑘−1 · 2

𝑓
⌋
.

(7) Set 𝑦fix =
⌊
𝑦 · 2𝑓

⌋
.

(8) Let 𝑧′ ∈ [0, 𝑘 − 1] indicate the partition index s.t. 𝑏𝑧′,fix ≤
𝑦fix < 𝑏𝑧′+1,fix.
(9) Sample 𝑏 ← Bernoulli(𝑞fix/2𝑓 )
(10) Sample 𝑧 ← [0, 𝑘 − 1]
(11) If 𝑏 = 1, set 𝑧̃ := 𝑧′ . Else set 𝑧̃ := 𝑧

(12) Set 𝑦 := 𝑦̂𝑧
(13) Send 𝑦 to P0

Figure 7: Ideal functionality for RROnBins

Algorithm 5 is identical to that of Algorithm 4. To show this, we will

calculate the probability distribution of the random variable 𝑧̃ in

Algorithm 5. First note that Pr[𝑧̃ = 𝑧′] = Pr[𝑏 = 1] +Pr[𝑏 = 0] · 1
𝑘
=

𝑞 + 1−𝑞
𝑘

= 𝑒𝜖

𝑒𝜖+𝑘−1 . Secondly, for any 𝑢 ≠ 𝑧′, we have Pr[𝑧̃ = 𝑢] =
Pr[𝑏 = 0] · 1

𝑘
= 1

𝑒𝜖+𝑘−1 . Hence, the probability distribution of 𝑧̃ (resp.
𝑦) in Algorithm 5 matches with that of 𝑧̃ (resp. 𝑦) in Algorithm 4.

Algorithm 5: Simplified sampling in RROnBins

1 Sample 𝑏 ← Bernoulli(𝑞) , where 𝑞 = 𝑒𝜖 −1
𝑒𝜖+𝑘−1 .

2 Sample 𝑧 ← [0, 𝑘 − 1]
3 If 𝑏 = 1, set 𝑧̃ := 𝑧′ . Else set 𝑧̃ := 𝑧.

4 Set 𝑦 := 𝑦̂𝑧

5 return 𝑦.

Defining the ideal functionality. Now we define an ideal func-

tionality FRRonBins in Figure 7 which captures RROnBins (Algo-
rithm 4) where we replace Steps 4-6 of Algorithm 4 with the sim-

plified steps in Algorithm 5. The security of a protocol ΠRRonBins
realizing FRRonBins is captured via the standard simulation based

security notion which is described in Appendix A.

Protocol construction.We first note that Steps 3-6 in FRRonBins
can be computed locally by P0 to derive the sets P𝜙 , ˆY since it only

depends on the prior 𝑝 and public parameters. Also, Step 7 can be

locally computed by P1 since it only depends on its private label 𝑦.
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The main challenge lies in computing Steps 8 - 13 which requires

the P0’s sets P𝜙 , ˆY, along with it’s size 𝑘 , to be kept private (in

addition to the keeping P1’s label 𝑦 private). Once again, we will

take a modular approach and design sub-protocols for individually

computing each step, from Steps 8 - 13, securely. Fortunately, wewill

be able to reuse most of the sub-protocols we described in Section

4.1 including ΠbiasBit, Πrand and Π
(4
1
)

mux (we will actually replace

Π
(4
1
)

mux with a simpler Π
(2
1
)

mux as we will need to select between two

values instead of four). The only new protocol that we will need

is Πinterval. Table 5 shows the mapping between the functionality

steps and their corresponding sub-protocol names. Since Step 12-13

have a trivial protocol where both parties do a public reconstruction

of 𝑧̃ (from Step 11) towards P0 and then P0 locally looks up 𝑦𝑧̃ in

its set
ˆY, we do not explicitly introduce a protocol for these steps.

Steps in FRRonBins Sub-protocols

8 Πinterval
9 ΠbiasBit
10 Πrand

11 Π
(2
1
)

mux
Table 5: Mapping between steps in FRRonBins and the corre-
sponding protocols.

Protocol: Πinterval

Public input: Public set 𝑆 = [0, 𝑅) ⊂ N where 𝑅 ∈ N
Private inputs: P0 holds a list of 𝑘 buckets/partitions P =

{ [𝑐0, 𝑐1 ), . . . , [𝑐𝑘−1, 𝑐𝑘 ) } where 𝑐0 = 0 and 𝑐𝑘 = 𝑅. P1 holds

a value 𝑑 ∈ 𝑆 .
Output: J𝑧′K where 𝑧′ ∈ [0, 𝑘 − 1] s.t. 𝑐𝑧′ ≤ 𝑑 < 𝑐𝑧′+1

(1) P0 samples 𝑟 ← Z𝑅 .

(2) P0 and P1 invoke a F
(𝑅
1
) ,Z𝑅

OT OT:

• P0 acts as the OT sender and sets the 𝑖th string (0 - indexed)

as 𝑠𝑖 := 𝑘𝑖 − 𝑟 (mod 𝑅) where 𝑘𝑖 is selected s.t. 𝑐𝑘𝑖 ≤ 𝑖 <

𝑐𝑘𝑖+1.
• P1 acts the OT receiver using 𝑑 as the choice index.

• P1 retrieves 𝑠𝑑 and outputs it.

(3) P0 outputs 𝑟 .

Figure 8: Protocol for secure interval finding.

Secure interval finding. In this protocol, we have a public set

𝑆 = [0, 𝑅) ⊂ N where 𝑅 ∈ N. Furthermore, P0 privately holds a list

of 𝑘 buckets/partitions P = {[𝑐0, 𝑐1), . . . , [𝑐𝑘−1, 𝑐𝑘 )} where 𝑐0 = 0

and 𝑐𝑘 = 𝑅 and P1 privately holds a value 𝑑 ∈ 𝑆 . Both parties would

like to securely compute (an additive sharing of) a partition index

𝑧′ ∈ [0, 𝑘 − 1] s.t. 𝑐𝑧′ ≤ 𝑑 < 𝑐𝑧′+1, while keeping the partition P,
along with its size 𝑘 , private w.r.t. P0 and value 𝑑 private w.r.t P1.
We describe the protocol in Figure 8. The idea behind this protocol

is simple: Both parties invoke F (
𝑅
1
),Z𝑅

OT where P0 acts as the OT

sender and sets up the sender strings in such a way that the 𝑖th

sender string encodes (a masked version of) the partition number

that 𝑖 will fall into. When P1, acting as the OT receiver, uses its

private value 𝑑 as the OT choice index, it will retrieve (a sharing

of) the partition number that 𝑑 falls into.

To formally prove the security of Πinterval, we define an ideal

functionality Finterval (Figure 17 in Appendix D.6) and then state

that Πinterval securely realizes Finterval in the F
(𝑅
1
),Z𝑅

OT hybrid model

(Theorem D.7 in Appendix D.6). In terms of efficiency, we note that

the protocol simply performs a single call to the OT functionality

F (
𝑅
1
),Z𝑅

OT which incurs 1 round and 𝜆 log𝑅 bits of communication

in the offline phase and 2 rounds and (𝑅 + 1) log𝑅 bits of commu-

nication (across both parties) in the online phase.

Protocol: ΠRRonBins

Public Parameters: Minimum and maximum label value 𝑦min ∈ Z
and 𝑦max ∈ Z respectively, label set Y = [𝑦min, 𝑦max ) ⊂ R,
privacy parameter 𝜖 ≥ 0, loss function ℓ : R2 → R≥0, fixed-point
precision 𝑓 ∈ N, fixed point range 𝑅 =

⌊
(𝑦max − 𝑦min ) · 2𝑓

⌋
Private inputs: P0 holds a prior distribution 𝑝 over Y. P1 holds a
label 𝑦 ∈ Y.
Output: P0 outputs a perturbed label 𝑦 ∈ Y.

(1) P0 computes ( ˆY, 𝜙 ) := ComputeOptimalPhi(Y, 𝑝, 𝜖, ℓ ) ,
where

ˆY ⊆ [𝑦min, 𝑦max ) s.t. | ˆY| = 𝑘 is finite and 𝜙 : Y → ˆY s.t.

𝜙 is non-decreasing.

(2) P0 sets P𝜙 = { [𝑏0, 𝑏1 ), . . . , [𝑏𝑘−1, 𝑏𝑘 ) } to denote a partition
of Y induced by 𝜙−1 and

ˆY = {𝑦̂0, . . . , 𝑦̂𝑘−1} s.t. 𝑏0 = 𝑦min,

𝑏𝑘 = 𝑦max, and 𝜙 is constant over each partition, i.e., for all

𝑖 ∈ [𝑘 ], 𝑦′ ∈ [𝑏𝑖−1, 𝑏𝑖 ) , we have 𝜙 (𝑦′ ) = 𝑦̂𝑖 .

(3) P0 sets P𝜙,fix = { [𝑏
0,fix, 𝑏1,fix ), . . . , [𝑏𝑘−1,fix, 𝑏𝑘,fix ) } where

𝑏𝑖,fix =
⌊
𝑏𝑖 · 2𝑓

⌋
for all 𝑖 ∈ [0, 𝑘 ]. P0 sets Q =

{ [𝑐0, 𝑐1 ), . . . , [𝑐𝑘−1, 𝑐𝑘 ) } where 𝑐𝑖 = 𝑏𝑖,fix − 𝑏
0,fix for all 𝑖 ∈

[0, 𝑘 ].
(4) P0 sets 𝑞fix =

⌊
𝑒𝜖 −1

𝑒𝜖+𝑘−1 · 2
𝑓
⌋
.

(5) P1 sets 𝑦fix =
⌊
𝑦 · 2𝑓

⌋
, 𝑦

min,fix =
⌊
𝑦min · 2𝑓

⌋
and 𝑑 = 𝑦fix −

𝑦
min,fix.

(6) P0 and P1 invoke FbiasBit, where P0 inputs 𝑞fix, and they re-

ceive shares J𝑏K0 and J𝑏K1 respectively.
(7) P0 and P1 invoke Finterval, with public parameter 𝑅, where P0
inputs Q and P1 inputs 𝑑 , and they receive shares J𝑧′K0 and J𝑧′K1
respectively.

(8) P0 and P1 invoke Frand, with public set {0, . . . , 𝑅 − 1}, where
P0 inputs {0, . . . , 𝑘 − 1} ⊆ {0, . . . , 𝑅 − 1}, and they receive shares
J𝑧K0 and J𝑧K1 respectively.

(9) P0 and P1 invoke F
(2
1
)

mux using selection shares J𝑏K and value

shares (J𝑧K, J𝑧′K) . They finally receive a sharing of J𝑧̃K over Z𝑅 ,
where 𝑧̃ = 𝑧 if 𝑏 = 0, and 𝑧′ otherwise.
(10) P1 sends J𝑧̃K1 to P0.
(11) P0 reconstructs 𝑧̃ = J𝑧̃K0 + J𝑧̃K1 (mod 𝑅) and outputs 𝑦 :=

𝑦̂𝑧 .

Figure 9: Protocol for secure RROnBins.
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Overall protocol. Figure 9 describes the overall protocolΠRRonBins
for realizing FRRonBins. To do so, we assume that parties have ac-

cess to functionalities F∗ corresponding to the subprotocols Π∗
where ∗ ∈ {rand, interval, biasBit,mux}. These functionalities are
described in Appendix D. The protocol ΠRRonBins is simple com-

bination of the modular sub-protocols as we described earlier in

Table 5 followed by a final reconstruction of the perturbed label

𝑦 in the last step towards P0. To formally prove the security of

ΠRRonBins, we state that ΠRRonBins securely realizes FRRonBins in
the FbiasBit, Finterval, Frand, F

(2
1
)

mux-hybrid model.

TheoremC.2. ΠRRonBins securely realizesFRRonBins in theFbiasBit,
Finterval, Frand, F

(2
1
)

mux-hybrid model, with respect to a semi-honest ad-
versary.

Proof. The proof follows directly by having the simulator control

the hybrid functionalities in the ideal world.
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D Functionalities and Security Proofs
We now describe the functionalities underlying the protocols that

we present in this work. Then we state and prove theorems stating

that our protocols securely realize these functionalities in the UC

model. For ease of exposition, we suppress the usage of session-ids

in our functionality descriptions. Also, we will use S to denote the

simulator (aka ideal-world adversary) in the functionalities.

D.1 Secure Membership Test
In Figure 10, we describe the ideal functionality for the secure

membership test described in Section 4.1.

Functionality: Fmembership

Public Parameters: Set Y = {0, . . . ,𝑇 − 1}, where𝑇 ∈ N.
(1) Get Y𝑇 ∗ ⊆ Y as input from P0 where𝑇 ∗ = |Y𝑇 ∗ | .
(2) Get 𝑦 ∈ Y as input from P1.
(3) Compute a bit 𝑏 := 1{𝑦 ∈ Y𝑇 ∗ }.
(4) If P0 is corrupt, get a bit J𝑏K0 from P0. Else sample J𝑏K0 ←
{0, 1} and send it to P0
(5) Set J𝑏K1 := 𝑏 ⊕ J𝑏K0. Send J𝑏K1 to P1

Figure 10: Functionality for secure membership test

TheoremD.1. Πmembership (Figure 5) securely realizesFmembership

(Figure 10) in the F (
𝑇
1
),Z2

OT -hybrid model, with respect to a semi-honest
adversary.

Proof. We first describe the simulator S for corrupt P0. In this

case, S simply sends corrupt P0’s inputY𝑇 ∗ as input to Fmembership

. Additionally, it internally executes F (
𝑇
1
),Z2

OT and receives the sender

messages from corrupt P0. Finally, it sends the output 𝑧 of corrupt
P0 to Fmembership as the value J𝑏K0. This simulated distribution is

identical to the real world distribution.

We now describe the simulator S for corrupt P1. In this case,

S first sends corrupt P1’s input 𝑦 as input to Fmembership . On

receiving an output J𝑏K1 from Fmembership , S internally executes

F (
𝑇
1
),Z2

OT and receives P1 s input 𝑦 and responds with the value J𝑏K1.
This simulated distribution is identical to the real world distribution.

D.2 Secure Sampling from a Private Set
In Figure 11, we describe the ideal functionality for the secure

membership test described in Section 4.1.

Theorem D.2. Πrand (Figure 3) securely realizes Frand (Figure 11)

in the F (
𝑇
1
),Z𝑇

OT -hybrid model, with respect to passive corruption.

We first show a simulator for corrupt P0.
S0:
(1) Send Y𝑇 ∗ to Frand.
(2) Invoke Πrand with P0 where P1 is simulated as per the

protocol description (with null input as P1 does not have
any input in the protocol). Let 𝑧′ ∈ Z𝑇 be the output of P0.

Functionality: Frand

Public parameters: Set Y = {0, . . . ,𝑇 − 1} and arithmetic sharing

domain Z𝑇 , where𝑇 ∈ N.
(1) Get Y𝑇 ∗ ⊆ Y𝑇 as input from P0.

(2) Sample 𝑦 ← Y𝑇 ∗ .
(3) If P0 is corrupt, get J𝑦K0 ∈ Z𝑇 from P0. Else sample J𝑦K0 ←
Z𝑇 and send it to P0.
(4) Set J𝑦K1 := 𝑦 − J𝑦K0 (mod 𝑇 ) . Send J𝑦K1 to P1.

Figure 11: Functionality for secure sampling from a private
set.

(3) Send 𝑧′ to Frand.
This simulated distribution is identical to the real world distri-

bution. We now show a simulator for corrupt P1.
S1:
(1) Receive a share J𝑦K1 from Frand.
(2) Internally execute F (

𝑇
1
),Z𝑇

OT and receive OT sender strings

from P1.

(3) Internally execute F (
𝑇
1
),Z𝑇

OT and receive OT receiver choice

index from P1. Send J𝑦K1 to P1.
We now define a series of hybrid experiments, with changes

from one hybrid to another highlighted in blue.

• Hyb
0
: Real world

• Hyb
1
: Same as Hyb

0
except the following change: In the

second OT interaction, set the sender strings in the fol-

lowing way. ∀𝑖 ≠ J𝑣K1, 𝑢𝑖 := 0. For 𝑖 = J𝑣K1, 𝑢𝑖 := 𝑑𝑖 − 𝑧′
(mod 𝑁 ) where 𝑑𝑖 := (J𝑣K0 + 𝑖 (mod 𝑇 ))th label.

• Hyb
2
: Same as Hyb

1
except the following change: In the

second OT interaction, set the sender strings in the fol-

lowing way. ∀𝑖 ≠ J𝑣K1, 𝑢𝑖 := 0. For 𝑖 = J𝑣K1, 𝑢𝑖 := 𝑑𝑖 − 𝑧′
(mod 𝑁 ) where 𝑑𝑖 ← Y𝑇 ∗ .

• Hyb
3
: Same as Hyb

2
except the following change. Get J𝑦K1

from Frand. In the second OT interaction, set the sender

strings in the following way. ∀𝑖 ≠ J𝑣K1, 𝑢𝑖 := 0. For 𝑖 =

J𝑣K1, 𝑢𝑖 := J𝑦K1.
• Hyb

4
: Same as Hyb

3
except the following change: In the

first OT interaction, use 0 as the choice index.

We note that the last hybrid Hyb
4
is trivially identical to the sim-

ulated distribution. We will now show that each pair of consecutive

hybrids have an identical distribution.

• Hyb
0
≡ Hyb

1
: These hybrids are perfectly indistinguish-

able as the joint distribution of OT receiver output 𝑢J𝑣K1
from the second OT and output 𝑧′ of honest P0 is identical
between Hyb

1
and Hyb

0
. In both cases, (𝑢J𝑣K1 , 𝑧

′) form a

random arithmetic sharing of 𝑑J𝑣K1 , where 𝑣 = 𝑠𝑇 ∗−1 and

𝑑J𝑣K1 is the 𝑣
th
element in Ỹ𝑇 ∗ .

• Hyb
1
≡ Hyb

2
: These hybrids are perfectly indistinguish-

able as the joint distribution of OT receiver output 𝑢J𝑣K1
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from the second OT and output 𝑧′ of honest P0 is identical
between Hyb

2
and Hyb

1
. In Hyb

1
, (𝑢J𝑣K1 , 𝑧

′) form a ran-

dom arithmetic sharing of 𝑑J𝑣K1 , where 𝑣 = 𝑠𝑇 ∗−1 and 𝑑J𝑣K1
is the 𝑣 th element in Ỹ𝑇 ∗ . In Hyb

2
, (𝑢J𝑣K1 , 𝑧

′) form a ran-

dom arithmetic sharing of 𝑑J𝑣K1 , where 𝑑J𝑣K1 is a random

element from Y𝑇 ∗ . Note that this indistinguishability hold

crucially due to the fact that Ỹ𝑇 ∗ is a randomly permuted

version of Y𝑇 ∗ .
• Hyb

2
≡ Hyb

3
: These hybrids are perfectly indistinguish-

able as the joint distribution of OT receiver output 𝑢J𝑣K1
from the second OT and output of honest P0 (which is 𝑧′

in Hyb
2
and J𝑦K0 in Hyb

3
) is identical between Hyb

3
and

Hyb
2
. In Hyb

2
, (𝑢J𝑣K1 , 𝑧

′) form a random arithmetic shar-

ing of 𝑑J𝑣K1 , where 𝑑J𝑣K1 is a random element from Y𝑇 ∗ . In
Hyb

3
, (𝑢J𝑣K1 = J𝑦K1, J𝑦K0) form a random arithmetic shar-

ing of 𝑦, where 𝑦 is a random element from Y𝑇 ∗ sampled

by Frand.
• Hyb

3
≡ Hyb

4
: These hybrids are perfectly indistinguish-

able as the joint distribution of the view of corrupt P1 and
the output of honest parties P0 is unmodified.

D.3 Secure Bit Sampling with Private Bias
In Figure 12, we describe the ideal functionality for the secure biased

bit sampling with private bias described in Section 4.1.

Theorem D.3. ΠbiasBit securely realizes FbiasBit in the F (
2
𝑓

1
),Z2

OT -
hybrid model, with respect to passive corruption.

Functionality: FbiasBit

Public parameter: Fixed point precision 𝑓 ∈ N.

(1) Get 𝑞
fix
∈ [0, 2𝑓 ) as input from P0.

(2) Sample 𝑏 ← Bernoulli( 𝑞fix
2
𝑓 ) .

(3) If P0 is corrupt, get J𝑏K0 from P0. Else sample J𝑏K0 ← {0, 1}
and send it to P0
(4) Set J𝑏K1 := 𝑏 ⊕ J𝑏K0. Send J𝑏K1 to P1

Figure 12: Functionality for secure biased bit sampling with
private bias.

Proof. We first describe the simulator S for corrupt P0. In this

case, S sends P0’s input 𝑞fix to FbiasBit. Then, it internally executes

F (
2
𝑓

1
),Z2

OT and receives the sender messages from corrupt P0. Finally,
it sends the output 𝑧 of corrupt P0 to FbiasBit as the value J𝑏K0. This
simulated distribution is identical to the real world distribution.

We now describe the simulator for corrupt P1. In this case,S first

receives J𝑏K1 from FbiasBit. Then S internally executes F (
2
𝑓

1
),Z2

OT
where it receives corrupt P1’s choice index 𝑟 ∈ [0, 2𝑓 ) and responds
with the value J𝑏K1. This simulated distribution is identical to the

real world distribution.

D.4 Secure Multiplexer
4 choose 1 mux. In Figure 13, we describe the ideal functional-

ity for 4-choose-1 secure multiplexer introduced in Section 4.1.4.

Figure 14 describes the corresponding protocol Π
(4
1
)

mux for realizing

the functionality F (
4

1
)

mux. At a high-level, Π
(4
1
)

mux performs two calls to

F (
4

1
),Z𝑇

OT where the first (resp. second) OT is used to generate a shar-

ing of J𝑥𝑐,𝑑K0 (resp. J𝑥𝑐,𝑑K1) across both parties. Once parties have

a sharing of J𝑥𝑐,𝑑K0 and J𝑥𝑐,𝑑K1, they can add the shares locally

(due to linearity of the sharing scheme) to derive a sharing of 𝑥𝑐,𝑑 .

We now explain the working of first OT; the second OT works in a

similar way but with the sender and receiver roles reversed. In the

first OT, P0 acts as the OT sender and sets up the sender strings in

such a way that when P1, acting as the OT receiver, uses (⟨𝑐⟩1, ⟨𝑑⟩1)
as the choice index, then it should retrieve (a masked version of)

J𝑥𝑐,𝑑K0. P0 can set up the OT sender strings in this desired fashion

simply by enumerating over possible values of (⟨𝑐⟩1, ⟨𝑑⟩1) (there
are 4 possible values).

Functionality: F (
4

1
)

mux

Public parameter: Arithmetic sharing domain Z𝑇 , where𝑇 ∈ N.
(1) Get J𝑥0,0K0, J𝑥0,1K0, J𝑥1,0K0, J𝑥1,1K0, ⟨𝑐 ⟩0, ⟨𝑑 ⟩0 from P0
(2) Get J𝑥0,0K1, J𝑥0,1K1, J𝑥1,0K1, J𝑥1,1K1, ⟨𝑐 ⟩1, ⟨𝑑 ⟩1 from P1
(3) For all 𝑖, 𝑗 ∈ {0, 1} × {0, 1}, reconstruct 𝑥𝑖,𝑗 := J𝑥𝑖,𝑗 K0 +
J𝑥𝑖,𝑗 K1 (mod 𝑇 ) .
(4) Compute 𝑐 := ⟨𝑐 ⟩0 ⊕ ⟨𝑐 ⟩1 and 𝑑 := ⟨𝑑 ⟩0 ⊕ ⟨𝑑 ⟩1.
(5) Set 𝑦 := 𝑥𝑐,𝑑 .

(6) Sample J𝑦K0 ← Z𝑇 .
(7) Set J𝑦K1 := 𝑦 − J𝑦K0 (mod Z𝑇 ) .
(8) Send J𝑦K0 to P0 and J𝑦K1 to P1.

Figure 13: Functionality for 4-choose-1 secure multiplexer.

Theorem D.4. Π
(4
1
)

mux securely realizes F
(4
1
)

mux in the F
(4
1
),Z𝑇

OT -hybrid
model, with respect to passive corruption.

2 choose 1 mux. In Figure 15, we describe the ideal functionality

for 2-choose-1 secure multiplexer. Figure 16 describes the corre-

sponding protocol Π
(2
1
)

mux for realizing the functionality F
(2
1
)

mux.

Theorem D.5. Π
(2
1
)

mux securely realizes F
(2
1
)

mux in the F
(2
1
),Z𝑇

OT -hybrid
model, with respect to passive corruption.

D.5 Secure RRWithPrior
The security ofΠRRwithPrior is formally captured using the following

theorem.

TheoremD.6. ΠRRwithPrior (Figure 6) securely realizesFRRwithPrior
(Figure 2) in the Fmembership, FbiasBit, F

(4
1
)

mux, Frand hybrid model, with
respect to passive corruption.
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Protocol: Π(
4

1
)

mux

Public input: Arithmetic sharing domain Z𝑇 , where𝑇 ∈ N.
Private input: J𝑥0,0K, J𝑥0,1K, J𝑥1,0K, J𝑥1,1K, ⟨𝑐 ⟩, ⟨𝑑 ⟩.
Output: J𝑦K where 𝑦 = 𝑥𝑐,𝑑 .

(1) P0 samples 𝑟0 ← Z𝑇 and P1 samples 𝑟1 ← Z𝑇 .
(2) P0 and P1 invoke a F

(4
1
) ,Z𝑇

OT :

• P0 acts as the OT sender using strings:

(𝑠0, 𝑠1, 𝑠2, 𝑠3 ) = (J𝑥 ⟨𝑐⟩0,⟨𝑑⟩0K0 − 𝑟0,

J𝑥 ⟨𝑐⟩0,¬⟨𝑑⟩0K0 − 𝑟0,

J𝑥¬⟨𝑐⟩0,⟨𝑑⟩0K0 − 𝑟0,

J𝑥¬⟨𝑐⟩0,¬⟨𝑑⟩0K0 − 𝑟0 )
• P1 acts as the OT receiver using ⟨𝑐 ⟩1, ⟨𝑑 ⟩1 as the choice bit.
• P1 retrieves 𝑦1 := 𝑠

2⟨𝑐⟩1+⟨𝑑⟩1 .

(3) P1 and P0 invoke a F
(4
1
) ,Z𝑇

OT :

• P1 acts as the OT sender using strings:

(𝑠′
0
, 𝑠′

1
, 𝑠′

2
, 𝑠′

3
) = (J𝑥 ⟨𝑐⟩1,⟨𝑑⟩1K1 − 𝑟1,

J𝑥 ⟨𝑐⟩1,¬⟨𝑑⟩1K1 − 𝑟1,

J𝑥¬⟨𝑐⟩1,⟨𝑑⟩1K1 − 𝑟1,

J𝑥¬⟨𝑐⟩1,¬⟨𝑑⟩1K1 − 𝑟1 )
• P0 acts as the OT receiver using ⟨𝑐 ⟩0, ⟨𝑑 ⟩0 as the choice bit.
• P0 retrieves 𝑦0 := 𝑠′

2⟨𝑐⟩0+⟨𝑑⟩0
.

(4) For 𝑏 ∈ {0, 1}, P𝑏 outputs 𝑦𝑏 + 𝑟𝑏 .

Figure 14: Protocol for 4-choose-1 secure multiplexer.

Functionality: F (
2

1
)

mux

Public parameter: Arithmetic sharing domain Z𝑇 , where𝑇 ∈ N.
(1) Get J𝑥0K0, J𝑥1K0, ⟨𝑐 ⟩0 from P0
(2) Get J𝑥0K1, J𝑥1K1, ⟨𝑐 ⟩1 from P1
(3) For all 𝑖 ∈ {0, 1}, reconstruct 𝑥𝑖 := J𝑥𝑖K0 + J𝑥𝑖K1 (mod 𝑇 ) .
(4) Compute 𝑐 := ⟨𝑐 ⟩0 ⊕ ⟨𝑐 ⟩1.
(5) Set 𝑦 := 𝑥𝑐 .

(6) Sample J𝑦K0 ← Z𝑇 .

(7) Set J𝑦K1 := 𝑦 − J𝑦K0 (mod Z𝑇 ) .
(8) Send J𝑦K0 to P0 and J𝑦K1 to P1.

Figure 15: Functionality for 2-choose-1 secure multiplexer.

Protocol: Π(
2

1
)

mux

Public input: Arithmetic sharing domain Z𝑇 , where𝑇 ∈ N.
Private input: J𝑥0K, J𝑥1K, ⟨𝑐 ⟩.
Output: J𝑦K where 𝑦 = 𝑥𝑐 .

(1) P0 samples 𝑟0 ← Z𝑇 and P1 samples 𝑟1 ← Z𝑇 .
(2) P0 and P1 invoke a F

(2
1
) ,Z𝑇

OT :

• P0 acts as the OT sender using strings (𝑠0, 𝑠1 ) = (J𝑥 ⟨𝑐⟩0K0 −
𝑟0, J𝑥¬⟨𝑐⟩0K0 − 𝑟0 )

• P1 acts as the OT receiver using ⟨𝑐 ⟩1 as the choice bit.
• P1 retrieves 𝑦1 := 𝑠⟨𝑐⟩1 .

(3) P1 and P0 invoke a F
(2
1
) ,Z𝑇

OT :

• P1 acts as the OT sender using strings (𝑠′
0
, 𝑠′

1
) = (J𝑥 ⟨𝑐⟩1K1 −

𝑟1, J𝑥¬⟨𝑐⟩1K1 − 𝑟1 )
• P0 acts as the OT receiver using ⟨𝑐 ⟩0 as the choice bit.

• P0 retrieves 𝑦0 := 𝑠′⟨𝑐⟩0
.

(4) For 𝑏 ∈ {0, 1}, P𝑏 outputs 𝑦𝑏 + 𝑟𝑏 (mod 𝑇 ) .

Figure 16: Protocol for 2-choose-1 secure multiplexer.

Proof. We first describe the simulator S for corrupt P0. Note
that since the honest P1 does not have any output, we just need

to ensure that the view of corrupted P0 in the simulated distri-

bution is indistinguishable from its view in the real protocol. S
starts by sending P0’s input ®𝑝 to FRRwithPrior and receives 𝑦 from

FRRwithPrior. It then internally executes FbiasBit, Fmembership, Frand
where it receives (𝑞fix, J𝑏1K0), (Y𝑇 ∗ , J𝑏2K0), (Y𝑇 ∗ , J𝑧K0) respectively
from P0. It then internally executes F (

4

1
)

mux where it receives selec-

tion (J𝑏1K0, J𝑏2K0) and value shares (J𝑧K0, J𝑧K0, J𝑧K0, J𝑦K0) from P0.
Finally, it sends J𝑦K1 := 𝑦 − J𝑦K0 (mod 𝑇 ) to P0. This simulated

view is identical to the real world distribution.

We now describe the simulator S for corrupt P1. S sends P1’s in-
put 𝑦 to FRRwithPrior. Then it internally executes FbiasBit and Frand
where it receives nothing from P1 and sends random J𝑏1K1 and

J𝑧K1 respectively to P1. S internally executes Fmembership where it

receives𝑦 as input from P1 and sends a random J𝑏2K1 to P1. S inter-

nally executes F (
4

1
)

mux where it receives selection (J𝑏1K1, J𝑏2K1) and
value shares (J𝑧K1, J𝑧K1, J𝑧K1, J𝑦K1) from P1. . Finally, it receives
J𝑦K1 from P1. This simulated view is identical to the real world

distribution.

D.6 Secure Interval Finding
In Figure 17, we present the ideal functionality for the secure inter-

val finding described in Section C.
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Functionality: Finterval

Public parameter: Set 𝑆 = [0, 𝑅) ⊂ N, where 𝑅 ∈ N
(1) Get a list of 𝑘 buckets/partitions P = { [𝑐0, 𝑐1 ), . . . ,
[𝑐𝑘−1, 𝑐𝑘 ) } where each 𝑐𝑖 ∈ [0, 𝑅) , 𝑐0 = 0 and 𝑐𝑘 = 𝑅 as in-

put from P0.
(2) Get a value 𝑑 ∈ [0, 𝑅) as input from P1.
(3) Let 𝑧′ ∈ [0, 𝑘 − 1] indicate the partition index s.t. 𝑐𝑧′ ≤ 𝑑 <

𝑐𝑧′ .

(4) If P0 is corrupt, get J𝑧′K0 ∈ Z𝑅 as input from S. Else sample

J𝑧′K0 ← Z𝑅 and send it to P0.
(5) Compute J𝑧′K1 := 𝑧′ − J𝑧′K0 (mod 𝑅) . Send J𝑧′K1 to P1.

Figure 17: Functionality for secure interval finding.

Theorem D.7. Πinterval securely realizes Finterval in the F (
𝑅
1
),Z𝑅

OT -
hybrid model, with respect to passive corruption.

Proof. The proof follows directly having the simulator emulate

F (
𝑅
1
),Z𝑅

OT in the ideal world.
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