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Abstract
This paper introduces practical schemes for keyword Private
Information Retrieval (keyword PIR), enabling private queries
on public databases using keywords. Unlike standard index-
based PIR, keyword PIR presents greater challenges, since
the query’s position within the database is unknown and the
domain of keywords is vast. Our key insight is to construct an
efficient and compact key-to-index mapping, thereby reducing
the keyword PIR problem to standard PIR. To achieve this,
we propose three constructions incorporating several new
techniques. The high-level approach involves (1) encoding
the server’s key-value database into an indexable database
with a key-to-index mapping and (2) invoking standard PIR
on the encoded database to retrieve specific positions based
on the mapping. We conduct comprehensive experiments,
with results showing substantial improvements over the state-
of-the-art keyword PIR, ChalametPIR (CCS’24), i.e., a 15∼
178× reduction in communication and 1.1 ∼ 2.4× runtime
improvement, depending on database size and entry length.
Our constructions are practical, executing keyword PIR in
just 47 ms for a database containing 1 million 32-byte entries.

1 Introduction

Private Information Retrieval (PIR) [12] enables a client to
retrieve entries from a public indexed database hosted by a
server, without revealing any information about which entry is
being retrieved. Over the last decade, there has been a signifi-
cant amount of works on PIR [5, 6, 13, 25, 27, 29–33, 45, 46].
Due to its strong privacy guarantees, PIR is an important
building block in many real-world applications, including cer-
tificate transparency auditing [23], web search [22], password
checkup [5], and anonymous communication [4]. Despite
these security and application advantages, standard PIR un-
realistically assumes that the client knows the query’s index
within the database. However, in most practical applications,
database entries are instead indexed by keywords from a much
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larger domain and their indices are not immediately avail-
able [10, 11, 36].

To address this problem, Chor et al. [11] introduced the con-
cept of keyword PIR, where each database entry is represented
as a key-value pair. In keyword PIR, the client aims to pri-
vately retrieve the value v associated with a query key k from
a key-value database D := {(k1,v1), . . . ,(kn,vn)}. A naive ap-
proach would involve downloading the entire mapping from
keys to indices and then using a standard PIR scheme to
retrieve the desired entry after identifying the index of the
query key. However, this method incurs a communication cost
that scales linearly with the database size. Chor et al. [11]
proposed a more efficient approach based on binary tree struc-
tures, which requires O(logn) invocations of standard PIR.
As shown in Section 1.3, recent advancements [5, 10, 28, 36]
have further improved this by demonstrating that keyword
PIR can be reduced to a constant number of standard PIR
invocations, significantly enhancing efficiency.

However, current state-of-the-art keyword PIR construc-
tions [5, 10, 28, 36] either involve complex operations using
fully homomorphic encryption that result in prohibitively high
computation overheads or incur substantial communication
costs. For instance, the most efficient existing construction,
ChalametPIR [10], still involves communication costs that
scale linearly with the database size. In this paper, we system-
atically address the inefficiencies associated with keyword
PIR. We identify that the primary challenge stems from the un-
availability of the index for the query key within the database.
Motivated by this, our key insight is to encode the key-value
database into an indexable format and develop a compact map-
ping between keywords and their positions in the database.
This approach allows us to construct a keyword PIR scheme
with communication and computation costs nearly equivalent
to those of standard PIR.

1.1 Our Contributions

This paper presents three concretely efficient keyword PIR
constructions based on different key-to-index mapping strate-



gies. Our contributions are summarized as follows.

Keyword PIR from Sparse Key-Value Store. Our first con-
struction KPIRkvs introduces a novel key-value store (KVS)
termed sparse KVS. Using this sparse KVS, we achieve key-
word PIR by encoding the key-value database into a vector of
comparable size to the original database and then performing
a constant number of standard PIR operations on this vector.

Keyword PIR from Hashing-to-Bins. Our second construc-
tion KPIRhash employs hashing-to-bins techniques, similar
to MulPIR [5], to retrieve an entire bin based on the query
key. To this end, we utilize the row retrieval capability of
Kushilevitz-Ostrovsky PIR (KOPIR) [24], where the database
is represented as a matrix and a row of this matrix is privately
retrieved. We abstract PIR with this property as Row-KOPIR
and instantiate it from pre-processing-based SimplePIR [23].
KPIRhash requires a single invocation of Row-KOPIR on a
slightly expanded encoded database.

Keyword PIR from Approximate Key-to-Index Mapping.
Our most efficient construction KPIRindex introduces a novel
approximate key-to-index mapping that produces a mapping
between keys and their positions with an error ε. We han-
dle this error by utilizing a repetition-based matrix encoding
combined with Row-KOPIR. KPIRindex requires a single invo-
cation of Row-KOPIR on an encoded database that is almost
the same size as the original.

Extensive Evaluations. We implement our three construc-
tions alongside the state-of-the-art scheme ChalametPIR in
a unified platform. Extensive experiments demonstrate that
our three constructions achieve a 15 ∼ 178× reduction in
communication and 1.1 ∼ 2.4× runtime improvement, de-
pending on database size and entry length. Figure 1 gives a
quick comparison with ChalametPIR. Our constructions are
practical, executing keyword PIR in just 47 ms for a database
containing 1 million 32-byte entries.

1.2 Overview of Our Techniques
We present the key techniques of our keyword PIR construc-
tions. The high-level idea is to (1) encode the server’s key-
value database into an indexable database with a compact
key-to-index mapping and (2) invoke standard PIR on the
encoded database to retrieve specific positions according to
the mapping. For clarity, we denote the original key-value
database as D of size n and the new encoded database as D′ of
size m, where m≥ n. Therefore, two main efficiency metrics
are the size m of the encoded matrix D′ and the number α

of standard PIR invocations on D′. As we will illustrate, our
first two constructions achieve favorable values for m and α,
respectively, while the final construction combines the best
of both worlds, with m≈ n and α = 1. It is worth emphasiz-
ing that, as shown in Figure 1, all of our three constructions
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Figure 1: Communication and runtime comparisons between
our constructions (KPIRkvs, KPIRhash, KPIRindex) and the
state-of-the-art scheme, ChalametPIR [10], for a database
size 220 with 32-byte entries in the online phase. Similar to
ChalametPIR,KPIRindex requires the client additionally stores
three hash functions. KPIRhash additionally stores one hash
function in the client’s memory. In KPIRindex, the client addi-
tionally stores a key-to-index mapping of size 324 KB. Both
axes are in log-scale.

outperform the state-of-the-art work [10], especially for the
communication cost.

Keyword PIR from Sparse Key-Value Store. Our first con-
struction called KPIRkvs is a generic transformation from
keyword PIR to any standard PIR using sparse Key-Value
Stores (KVS). A KVS [18] consists of two algorithms, namely
Encode and Decode. For a key-value database D of size n,
the Encode algorithm takes the database D as input and pro-
duces an indexable vector D′ of dimension m. The Decode
algorithm takes D′ and any key k as input and accesses some
positions of D′, providing an output that corresponds to vi
if k matches some ki used to generate D′. With such a KVS,
keyword PIR on D appears to reduce to standard PIR on D′,
which privately executes the Decode algorithm on any query.
However, the main challenge is that the decoding of existing
KVS schemes [8, 18, 41, 44] requires to access multiple posi-
tions of the encoded vector D′. This introduces a large number
of standard PIR invocations, resulting in high computation
and communication costs. For example, the recently proposed
near-optimal KVS, random-band KVS [8], accesses about one
hundred positions from D′ during decoding.

To address the above challenge, we present a new KVS
notion, called α-sparse KVS, particularly designed for effi-
cient decoding. A key difference from prior KVS schemes
[8, 18, 41] lies in that the Decode algorithm exclusively ac-
cesses a small constant number α of entries from the encoded
vector D′. After thorough investigation, we found that Binary
Fuse Filters (BFF) [20] satisfy the α-sparse KVS abstraction.
Exploiting the sparsity property of α-sparse KVS, we can



achieve keyword PIR by executing α standard PIR invoca-
tions on the encoded vector D′ of size m. In our instantiation,
we set α to 3, and the size m of D′ is less than 1.15n. As a
result, this keyword PIR strategy takes 3 invocations of any
standard PIR on the encoded database with an expansion rate
of less than 1.15. Note that while ChalametPIR [10] also em-
ploys BFF, it does not utilize BFF’s sparsity property and
rather involves an inner product between BFF output and
query vector for decoding, which involves a single invocation
of linear-communication FrodoPIR [14].

Keyword PIR from Hashing-to-Bins. To address the prob-
lem of multiple standard PIR invocations in the first construc-
tion, we present a keyword PIR construction called KPIRhash

using hashing-to-bins techniques. Similar to MulPIR [5], we
use a public hash function to assign the server’s key-value
pairs of the database D of size n into a hash table and then
let the client privately retrieve an entire bin corresponding to
the query. However, there are two critical efficiency issues:
(1) If we set the number of bins as large as n, the maximum
bin size of the resulting hash table is O(logn) [39], which
leads to the size of the hash table (i.e., the encoded database
D′) becoming O(n · logn). (2) If we utilize a small number
of bins, as also noted in MulPIR [5], each bin thus contains a
large number of entries of D, resulting in a prohibitively high
standard PIR overhead.

We address this problem by utilizing the row retrieval capa-
bility of Kushilevitz-Ostrovsky PIR (KOPIR) [24], in which
the database is represented as a matrix and then a row of the
matrix database is privately retrieved each time. We abstract
PIR with this property as Row-KOPIR and instantiate it with
SimplePIR [23], the state-of-the-art pre-processing-based PIR.
By utilizing this row retrieval capability, the server inserts the
entries of the database D of size n into a hash table with

√
n

bins and combines these bins as rows into a matrix database
D′. We empirically evaluate that the maximum number of
entries in each bin is less than 1.87

√
n and the size m of D′

does not exceed 1.87n. Therefore, KPIRhash takes a single
invocation of Row-KOPIR on the encoded database, with an
expansion rate of less than 1.87.

Keyword PIR from Approximate Key-to-Index Mapping.
We present the most efficient construction called KPIRindex

from a novel approximate key-to-index mapping. An ideal
approach for keyword PIR is to construct a key-to-index map-
ping that directly associates keys with their exact positions
in the key-value pairs. By sharing this mapping in advance,
keyword PIR is reduced to standard PIR almost without ad-
ditional costs. Essentially, this key-to-index mapping serves
as a KVS, where the key-coordinate corresponds to the keys
of the database D, and the value-coordinate corresponds to
the positions of those keys within D. However, existing KVS
schemes [8, 18, 41] require the mapping size scale linearly
with the size of D. This leads to undesirable linear communi-
cation costs in keyword PIR constructions.

To address this problem, we formalize an approximate
key-to-index mapping with a theoretical error bound ε while
achieving sublinear communication relative to the size of the
key set K. That is, for any k ∈ K, this mapping outputs an
approximate position ik such that ik ∈ [pos(k)−ε,pos(k)+ε],
where pos(k) is the exact position of k within K. We instan-
tiate this mapping using the Piece-wise Linear Approxima-
tion (PLA) algorithm [17], which ensures sublinear mapping
size with carefully chosen parameters. Nevertheless, this ap-
proximate solution introduces a new challenge, i.e., how to
privately obtain the value of the exact position only given an
approximate position. We address this challenge by utilizing
Row-KOPIR to retrieve all entries indexed by ik− ε, . . . , ik + ε

in the same row. In more detail, we sort the key-value entries
of the database D of size n and then transform D into a square
matrix of size

√
n×
√

n in a row-wise manner. We require
that for each entry Dik , all adjacent entries Dik−ε, . . . ,Dik+ε

should be included in the same row. This is achieved by re-
peatedly appending Di−ε, . . . ,Di−1 before the first entry Di
and D j+1, . . . ,D j+ε after the last entry D j in each row. This
ensures that for each query k, the consecutive 2ε positions
centered on ik are in one row. It results in the encoded matrix
D′ of size

√
n× (
√

n+ 2ε). In our evaluation, we set ε to 4
and also achieve a very small size of the mapping. Therefore,
KPIRindex takes a single invocation of Row-KOPIR on the en-
coded database with an expansion rate between 1.03∼ 1.36.

1.3 Related Works

We elaborate on existing keyword PIR schemes and further
discuss the essential differences between these works and our
constructions.

Keyword PIR, also known as PIR on sparse databases, was
first introduced in the pioneering work by Chor et al. [11].
Unlike standard PIR, which assumes that the client knows the
physical index of the desired entry, keyword PIR considers
a more practical scenario where databases are organized by
keywords, and each entry is represented as a key-value pair.
A naive solution to keyword PIR is to download all keys and
invoke standard PIR after finding the corresponding index of
the query key. Unfortunately, this approach results in linear
communication. Chor et al. [11] proposed an alternative solu-
tion that builds a binary level-logn search tree over the entries
from a database of size n, thereby reducing the computation
to standard PIR. However, the main issue is that it requires
O(logn) PIR queries with O(logn) communication rounds.

To address the above issues, recent keyword PIR schemes
focused on achieving constant overheads. Ali et al. [5] pre-
sented two constructions based on hashing schemes. Similar
to our scheme KPIRhash, their first construction is based on
simple hashing, where database entries are assigned to buck-
ets using a public hash function. The client then privately
retrieves the whole bucket corresponding to the query uti-
lizing a single invocation of standard PIR. However, their



protocols result in large computation costs, because the size
of the buckets is quite large and standard PIR is unfriendly
to large entries. For example, for a database with one million
entries, their protocol runs in 3.7 seconds, which is at least
14× slower than our KPIRhash construction. Moreover, we
also analyze parameter settings in detail to optimize the over-
head. Their second construction leverages Cuckoo hashing to
assign database entries to buckets, ensuring that each bucket
includes at most one database entry. The client then retrieves
multiple positions (e.g., 3 in their evaluation) from the buckets
according to the query and the used hash functions. However,
this solution causes both multiple invocations of standard PIR
and expanded (e.g., 1.5× larger) size of the buckets than that
of the original database. Both limitations are inherent due to
the usage of Cuckoo hashing.

To further improve the efficiency, several keyword PIR
works [28, 36] designed novel protocols that only require a
single invocation of standard PIR. Mahdavi and Kerschbaum
[28] built keyword PIR using constant-weight equality oper-
ators. The core idea is that the server first executes equality
testing between the encoded query and the database’s keys
in ciphertext and then derives the output by evaluating the
inner product between the database and the encrypted equality
results. Although their protocols are general for both standard
and keyword PIR, the underlying complicated homomorphic
operations incur significantly higher computation and com-
munication costs than existing standard PIR [30, 32], as illus-
trated by recent studies [10,36]. Subsequently, Patel et al. [36]
proposed SparsePIR to optimize the communication and com-
putational overhead of the above works. SparsePIR breaks
down the database into smaller partitions and encodes each
partition as linear combinations. This encoding is compati-
ble with advanced standard PIR schemes [30, 32], which em-
ploy recursion and batching techniques. Despite the improved
costs, the recent work [10] also shows that there is still an
order of magnitude in the performance deprecation between
SparsePIR and state-of-the-art PIR schemes [14, 26, 34].

The state-of-the-art keyword PIR is proposed by Celi and
Davidson [10], called ChalametPIR. ChalametPIR first trans-
forms a key-value database D of size n into a vector D′ of size
m := O(n) via KVS. In their work, KVS is also instantiated
with Binary Fuse Filters [20]. In contrast to our construc-
tions, they do not leverage the sparsity property defined in our
sparse KVS to improve efficiency. Then, the client invokes a
variant of FrodoPIR [14], where the client sends an encrypted
vector ct of size m computed according to the query key and
the server evaluates the inner-product ct ·D′. However, al-
though their FrodoPIR-based keyword PIR is able to push
most computation into the pre-processing phase, the online
communication (from sending ct) is still linear to the database
size. This becomes a key bottleneck for practical applications
and significantly affects scalability. As shown in our evalua-
tion, we achieve up to two orders of magnitude improvement
in communication, while ensuring comparable and even better

computation costs.
ChalametPIR also estimates the communication overhead

if the underlying FrodoPIR is replaced with SimplePIR. Un-
fortunately, the ChalametPIR framework is incompatible with
a single invocation of SimplePIR. It currently lacks a theo-
retically analyzed or empirically validated SimplePIR-based
construction. We give a detailed explanation in Appendix
A. It is worth noting that our KPIRkvs invokes three times
SimplePIR to avoid this issue. Despite multiple sublinear-
communication index PIR invocations, we still offer signifi-
cant communication advantages over linear-communication
FrodoPIR-instantiated ChalametPIR.

2 Preliminaries

2.1 Notations
We use κ and λ to denote the computational and statistical
security parameters, respectively. We use [n] to denote the
set {1,2, . . . ,n}. For a vector d, d[i] denotes the i-th element.
For a matrix D, D[i, ·] and D[·, j] represent the i-th row and
j-th column of D, respectively. By a← A, we denote that a
is sampled from the set A uniformly at random. a← A(x)
denotes that a is the output of the randomized algorithm A
on input x, and a := b denotes that a is assigned by b. we
use negl to denote a negligible function. ⟨x,y⟩ denotes the
inner product of x and y. For two distributions X and Y , we
write X ≈c Y and X ≈s Y if X and Y are computationally and
statistically indistinguishable, respectively.

2.2 Keyword Private Information Retrieval
Similar to recent works [14,23,26], we consider keyword PIR
with a query-independent setup phase, in which the server can
pre-process the database and send hints to the client.

Definition 1. A keyword Private Information Retrieval (key-
word PIR) scheme, over key space K , value space V and
database size n, consists of the following four routines, all
taking the computational security parameter κ as an implicit
input.

• Setup(D) → (hintS,hintC): On input a database
D := {(k1,v1), . . . ,(kn,vn)} ∈ (K × V )n, output pre-
processed hints hintS,hintC for the server and the client,
respectively.

• Query(k)→ (st,qu): On input a query k ∈K , output a
secret client’s state st and a query qu.

• Answer(qu,hintS)→ ans: On input the query qu and
the hint hintS, output an answer ans.

• Recover(st,hintC,ans)→ v: On input the state st, the
hint hintC and the answer ans, output a value v ∈ V .



A keyword PIR scheme should satisfy the following cor-
rectness and security properties.
Correctness. A keyword PIR scheme is correct if for any
database D := {(k1,v1), . . . ,(kn,vn)} and all queries ki for
i ∈ [n], it holds that

Recover(st,hintC,Answer(qu,hintS)) = vi, (1)

where (hintS,hintC)← Setup(D) and (st,qu)← Query(ki).
For k that is not in the key set of D, the output of Recover is
⊥ with probability of 1−negl(λ).
Security. A keyword PIR scheme is (T,ε)-secure if, for all
adversaries A running in time T and for all ki,k j ∈K , it holds

|Pr[A(qu) = 1 | (st,qu)← Query(ki)]

−Pr[A(qu) = 1 | (st,qu)← Query(k j)]| ≤ ε.
(2)

2.3 Learning With Errors
The security of our keyword PIR schemes relies on the de-
cision version of the Learning With Errors (LWE) assump-
tion [42].

Definition 2. Given the LWE secret dimension N, the num-
ber of samples M, the ciphertext modulus q, and the error
distribution χ, the (N,M,q,χ)-LWE problem is (T,ε)-hard
if all adversaries running in time T have advantage at most
ε in distinguishing the two distributions of (A,s ·A+ e) and
(A,r), where the matrix A← ZN×M

q , the secret s← ZN
q , an

error vector e← χM , and the random vector r← ZM
q .

Additively Homomorphic Encryption from LWE. Regev
[42] gives a secret-key additive-homomorphic encryption
scheme that is secure under the LWE assumption. With LWE
parameters (N,M,q,χ) and a plaintext modulus p, the secret
key is s← ZN

q . The encryption of a message µ ∈ ZM
p is

(A,b) := (A,s ·A+ e+µ) ∈ ZN×M
q ×ZM

q , (3)

where A← ZN×M
q and e← χM . With the secret key s and the

scalar ∆ := ⌊q/p⌋, the decryption of a ciphertext (A,b) is

µ := Round∆(b− s ·A mod q) ∈ ZM
p , (4)

where Round∆(·) rounds the input to the nearest multiple of
∆ and then divides it by ∆. Decryption succeeds as long as the
absolute value of the error sampled from χ is smaller than ∆/2.
Additive homomorphism means that given two ciphertexts
(A1,b1) and (A2,b2), their sum (A1 +A2,b1 +b2) decrypts
to the sum of the plaintexts, provided again that the error
remains sufficiently small.

3 Review of Kushilevitz-Ostrovsky PIR

In this section, we review the row retrieval ability of
Kushilevitz-Ostrovsky PIR (KOPIR) [24], which will be used
in our keyword PIR constructions.

Protocol Row-KOPIR

Parameters: A database represented as a matrix in Zr×c
p ,

LWE parameters (N,r,q,χ), a random LWE matrix A ∈
ZN×r

q , and a scalar ∆ := ⌊q/p⌋.
Protocol execution:
Setup(D ∈ Zr×c

p )→ hint:

• Compute and return hint := A ·D ∈ ZN×c
q .

Query(i ∈ [r])→ (st,qu):

• Sample s← ZN
q ,e← χr and define st := s.

• Compute qu := s ·A+ e+∆ ·ui ∈ Zr
q, where ui is

the unit vector with a single 1 at index i.

• Return (st,qu).

Answer(qu ∈ Zr
q,D ∈ Zr×c

p )→ ans:

• Compute and return ans := qu ·D ∈ Zc
q.

Recover(st ∈ ZN
q ,hint ∈ ZN×c

q ,ans ∈ Zc
q)→ vec:

• Compute and return vec := Round∆(ans − st ·
hint mod q) ∈ Zc

p.

Figure 2: The construction of Row-KOPIR from SimplePIR
[23]

3.1 Definition of Row-KOPIR

We observe that in the basic scheme of KOPIR [24], the
database is represented as a matrix, and then a row of the ma-
trix database, instead of a single element, is privately retrieved
each time. We abstract PIR with the row retrieval property as
Row-KOPIR, which facilitates our constructions of KPIRhash

and KPIRindex. Similar to recent PIR works [14, 23, 26, 31],
we allow the server to pre-process the database before a client
makes its query and to output a hint to each client. This pre-
processing pushes most of the server’s computation into a
setup phase [14, 23]. It is worth noting that the hint should
have a sublinear size relative to the database and be used by all
clients for all of their queries. Below, we give formal syntax
and security definitions of Row-KOPIR with pre-processing.
For simplicity, we use Row-KOPIR to refer to Row-KOPIR
with pre-processing in the subsequent sections.

Definition 3 (Row-KOPIR [24]). Row-KOPIR with pre-
processing consists of four routines, which all take the security
parameter κ as an implicit input.

• Setup(D)→ hint: On input a matrix database D, output
a pre-processed hint to the client.
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• Query(i)→ (st,qu): On input an index i, output a secret
client’s state st and a query qu.

• Answer(D,qu)→ ans: On input the matrix database D
and the query qu, output an answer ans.

• Recover(st,hint,ans)→ vec: On input the state st, the
hint hint and the answer ans, output a vector vec.

A Row-KOPIR scheme should satisfy the following correct-
ness and security properties.

Correctness. A Row-KOPIR scheme is correct if for any ma-
trix database D of size r× c and all i ∈ [r], it holds that

Recover(st,hint,Answer(D,qu)) = D[i, ·], (5)

where (st,qu)← Query(i) and hint← Setup(D).

Security. The client’s query should reveal no information
about its desired vector of the matrix database. Formally, a
Row-KOPIR scheme is (T,ε)-secure if, for all adversaries A
running in time T , on matrix database size r× c, and for all
i, j ∈ [r], it holds that

Pr[A(qu) = 1 | (st,qu)← Query(i)]

−Pr[A(qu) = 1 | (st,qu)← Query( j)]≤ ε.
(6)

For Row-KOPIR schemes to be non-trivial, the total com-
munication between the client and server should be much
smaller than the size of the matrix database. That is |hint|+
|qu|+ |ans| = o(|D|). It thus excludes trivial constructions,
e.g., the client directly downloads the whole public database.

3.2 Instantiation from SimplePIR

Figure 2 shows an efficient instantiation of Row-KOPIR with
pre-processing from SimplePIR [23]. The construction of
SimplePIR is that the server arranges the database as a square
matrix D of size r× c, where r ≈ c. To retrieve i-th element,
(1) the client parses i as (irow, icol), which corresponds to
the position in the matrix D. The client sends to the server
ciphertext ct := (A,b := s ·A+ e+∆ · ui), where plaintext
ui is the dimension-r unit vector that has a single 1 at index

irow. (2) The server performs homomorphic evaluation on
ct to compute1 ct′ := (A′ := A ·D,b′ := b ·D) and returns
ct′ to the client. (3) The client decrypts ct′ to the vector
vec := Round∆(b′− s ·A′), which corresponds to the irow row
of matrix D, and then extracts vec[icol]. Therefore, without the
last extraction, SimplePIR is already an efficient construction
of Row-KOPIR. We provide additional details and security
proof in Appendix B.

4 Keyword PIR from Sparse Key-Value Stores

4.1 Sparse Key-Value Store
A Key-Value Store (KVS) [18, 37] is a data structure that
maps a set of keys to the corresponding values. Below, we
present a new notion, called sparse KVS.

Definition 4. An α-sparse Key-Value Store (α-sparse KVS)
is parameterized by a key space K , a value space V , input
length n and output length m, and consists of two algorithms:

• Encode(L)→ (D,H): On input a set of key-value pairs
L := {(ki,vi)}i∈[n] ∈ (K ×V )n, output a vector D and a
set of hash functions H := {hi}i∈[α].

• Decode(H,k,D[H(k)])→ v: On input a set of hash func-
tions H := {hi}i∈[α], a key k ∈K and entries D[H(k)] :=
{D[hi(k)]}i∈[α], output a value v ∈ V ∪{⊥}.

The α-sparse property allows Decode to access only a
constant number α of elements in the vector D. Below, we
show the correctness for inclusion and non-inclusion.

Correctness of inclusion. An α-sparse KVS is correct for
inclusion if, for all L ∈ (K ×V )n with distinct keys, it holds
that for any (k,v) ∈ L, Decode(H,k,D[H(k)]) = v with prob-
ability 1, where (D,H)← Encode(L).

Correctness of non-inclusion. An α-sparse KVS is cor-
rect for non-inclusion if, for all L := (K,V ) ∈ (K ×
V )n with distinct keys, it holds that for any k /∈ K,

1SimplePIR further pushes the dominant part, i.e., evaluating and sending
A ·D, into the pre-processing phase.



Decode(H,k,D[H(k)]) =⊥ with overwhelming probability,
where (D,H)← Encode(L).

Instantiation from Binary Fuse Filters. In Appendix C, we
instantiate α-sparse KVS using Binary Fuse Filters (BFF)
[20], which constructs the vector D with α := 3 hash func-
tions. Therefore, the decoding only accesses 3 positions of
the encoding D. In our evaluated settings, m does not exceed
1.156n, resulting in a small expansion. This property will be
leveraged in our keyword PIR construction.

We emphasize the differences between our α-sparse KVS
and sparse-OKVS used in circuit-based private set intersec-
tion [21] and private set union [43]. Our α-sparse KVS
has a smaller encoding size, more efficient decoding, and
a more succinct definition. Specifically, the encoding out-
put D of sparse-OKVS is structured as D := D0∥D1 with
|D0|= ω(|D1|). The decoding requires access to a constant
number of elements in large D0 and a large number of ele-
ments in small D1. In contrast, the encoding of our α-sparse
KVS only comprises a single structure D with a similar size
as D0 of sparse-OKVS, and the decoding only accesses a con-
stant number of elements on D. In addition to the efficiency
advantages, our definition is more succinct and clear. These
improvements mainly come from that sparse-OKVS is used in
private set operations and requires the obliviousness property
to protect the privacy of set elements. However, the input of
α-sparse KVS is key-value pairs of a public database, which
leads to fewer limitations for KVS constructions. Therefore,
we explicitly consider the set of hash functions H as encod-
ing output, which could depend on the input key-value pairs,
while in sparse-OKVS, H must be independent of the input.

4.2 Construction KPIRkvs

We present the construction KPIRkvs, which is a generic trans-
formation from standard PIR to keyword PIR using sparse
KVS. We note that although both KPIRkvs and Chalamet-
PIR use Binary Fuse Filters, ChalametPIR involves a single
invocation of linear-communication FrodoPIR as shown in
Appendix A. Our key idea is to utilize its sparsity property to
invoke a constant number of sublinear-communication index
PIR, offering significant communication advantages.

We present the construction as follows. Figure 3 graphi-
cally shows the database encoding of KPIRkvs and Figure 4
presents the detailed construction. Specifically, the server first
exploits sparse KVS to encode the database D of size n into a
vector D′ of size m := (1+ ε) ·n. We utilize the BFF scheme
as our sparse KVS instantiation such that for each (k,v) ∈ D,
v = ∑i∈[α] D′[hi(k)], where hi : {0,1}∗ → [m] is a random
hash function. Then, for each query k, the client employs
a standard PIR to secretly retrieve the entries in the positions
{h1(k), . . . ,hα(k)} from the encoded database D′. Finally, the
client decodes the output by computing ∑i∈[α] D′[hi(k)]. Due
to the sparsity, it only involves a constant number of standard
PIR on a slightly expanded database. We note that KPIRkvs

Protocol KPIRkvs

Parameters: A database size n. An α-sparse KVS
(Encode,Decode) with output size m. A Row-KOPIR
scheme (Setup,Query,Answer,Recover).

Protocol execution:
Setup(D ∈ (K ×V )n)→ hintC,hintS:

• Compute (D′,H)← KVS.Encode(D) ∈ Zm
p , where

H := {hi : {0,1}∗→ [m]}i∈[α].

• Compute hint←Row-KOPIR.Setup(D′), where D′

is represented as a matrix in Z
√

m×
√

m
p .

• Return (hintC := (H,hint),hintS := D′).

Query(k ∈K ,hintC)→ (st,qu):

• Parse hintC = (H,hint). For i ∈ [α], compute
hi(k) written as a pair (rowi,coli), and (sti,qui)←
Row-KOPIR.Query(rowi).

• Return st := (k,{sti,coli}i∈[α]),qu := ({qui}i∈[α]).

Answer(qu,hintS)→ ans:

• Parse qu = (qu1, . . . ,quα). For i ∈ [α], compute
ansi← Row-KOPIR.Answer(qui,hintS).

• Return ans := ({ansi}i∈[α]).

Recover(st,hintC,ans)→ v:

• Parse st = (k,{sti,coli}i∈[α]), hintC = (H,hint).
and ans = ({ansi}i∈[α]). For i ∈ [α], compute
veci← Row-KOPIR.Recover(sti,hint,ansi).

• Reture v := KVS.Decode(H,k,{veci[coli]}i∈[α]).

Figure 4: Keyword PIR construction KPIRkvs

can be constructed from any index PIR, because it retrieves
the entry of interest, instead of the whole row from the matrix
database. To achieve high throughput and maintain construc-
tions’ consistency, we still use SimplePIR-based Row-KOPIR
and then extract the entry of interest from the retrieved row.
Essentially, KPIRkvs uses the default SimplePIR.

Computation and communication costs. The primary cost
is dominated by a constant number α of invocations of
Row-KOPIR. The database size is r×c with r :=

√
(1+ ε) ·n

and c :=
√

(1+ ε) ·n, where n is the number of key-value
pairs. In our evaluation, the parameter α is set to 3 and the
parameter ε is a small constant between 0.125∼ 0.156.

Supporting databases with larger key-value sizes. Our pro-
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tocol supports key-value pairs of arbitrary lengths. (1) For
large keys, we can utilize a collision-resistant hashing func-
tion to reduce the length of keys. Specifically, given a hash
function h(·) : {0,1}∗ → {0,1}µ, we can compress a large
key into a new smaller key of µ bits. The correctness requires
that the hashing outputs for different keys are different except
with negligible probability. Therefore, µ should be sufficiently
long such that these collisions do not occur in practice. (2) To
choose efficient parameters for underlying homomorphic en-
cryption schemes, recent efficient PIR constructions [14, 23]
usually support a database in which each entry is within a
single element of the plaintext space Zp, e.g., 8-10 bits in the
parameter settings of SimplePIR. To handle large key-value
pairs, we encode each key-value pair as multiple elements of
Zp, and store these elements consecutively in the same row of
the encoded matrix. After reconstructing the corresponding
row of elements, the client recovers any record of its choosing.

Theorem 1. Assuming the underlying Row-KOPIR protocol
(Setup,Query,Answer,Recover) provides correctness and
security and KVS satisfies the correctness for inclusion and
non-inclusion, the construction KPIRhash in Figure 6 achieves
correctness and security.

Proof. There are two cases for the correctness analysis. In
the case of k ∈ {k1,k2, . . . ,kn} and k = k j, according to the
inclusion correctness of sparse KVS and the correctness
of Row-KOPIR, v = KVS.Decode(H,k,{veci[coli]}i∈[α]) =
KVS.Decode(H,k j,{veci[coli]}i∈[α]) = v j. Hence, the output
v= v j. In the case of k /∈ {k1,k2, . . . ,kn}, according to the non-
inclusion correctness of sparse KVS and the correctness of
Row-KOPIR, KVS.Decode(H,k,{veci[coli]}i∈[α]) = ⊥ with
overwhelming probability. The security is straightforwardly
guaranteed by the security of Row-KOPIR and the security
of a constant number α of Row-KOPIR invocations through
standard hybrid argument.

5 Keyword PIR from Hashing-to-Bins

We present a keyword PIR construction called KPIRhash using
hashing-to-bins techniques. Similar to MulPIR [5], the main

idea is that the server uses hashing to map key-value pairs into
a hash table, in which each bin is viewed as a single element,
and with the same hashing function, the client then retrieves
an entire bin using standard PIR. Different from MulPIR, we
instantiate PIR with SimplePIR-based Row-KOPIR and pro-
vide parameter analysis in our construction to ensure practical
efficiency.

Figure 5 graphically shows the database encoding of
KPIRhash and Figure 6 presents the construction. Specifically,
the two parties agree on a publicly known random hash func-
tion h in advance. Besides, an empty hash table with r bins
is initialized, where r is set as

√
n for database size n. The

setting is to minimize the overhead of Row-KOPIR, which
has better communication costs for a square matrix. For each
key-value pair (k,v), the server first inserts k∥v into the h(k)-
th bin. These inserted bins will be combined into a matrix,
where each row corresponds to the corresponding bin of the
hash table. Note that due to the randomness of hashing, the
bins have different numbers of entries. To set all bins to be of
the same size, we compute the size of the most populated bin
and pad dummy entries in bins that are not fully occupied. Fi-
nally, the two parties invoke the Row-KOPIR protocol, which
enables efficient retrieval of the h(k)-th bin corresponding to
the client’s query k. If the query is in the server’s key-value
pairs, both parties map it to the same bin and hence the client
only needs to lookup the corresponding value from this bin.

Computation and communication costs. The primary cost
is dominated by a single invocation of Row-KOPIR. The size
of the matrix database for Row-KOPIR is r× c with r :=

√
n

and c := (1+ε) ·
√

n, where ε is a small constant that depends
on the relation between the number of bins and the size of the
database [19, 40]. In the evaluation, ε is set to 1.142∼ 1.873
for our experimental settings. We note that we can use the
same solution as the construction from KVS in Section 4 to
handle large key-value pairs.

Optimization from permutation-based hashing. We can
employ the permutation-based hashing techniques [7, 38] to
reduce the bit-length of the stored items in each bin. Specif-
ically, given an element x and the number r of bins, we par-
tition x into two segments: x1 and x2, where x1 comprises



Protocol KPIRhash

Parameters: A database size n and r :=
√

n. A hash
function h : {0,1}∗ → [r]. A Row-KOPIR scheme
(Setup,Query,Answer,Recover).

Protocol execution:
Setup(D ∈ (K ×V )n)→ hintC,hintS:

• Initialize r empty bins B1, . . . ,Br.

• For each (k,v) ∈ D, compute i := h(k) ∈ [r] and
append k∥v into Bi.

• Combine B1, . . . ,Br as rows into a matrix D′ of size
r× c, where c :=maxi∈[r]{|Bi|}.

• Compute hintC← Row-KOPIR.Setup(D′).

• Return (hintC,hintS := D′).

Query(k ∈K )→ (st,qu):

• Compute (st′,qu)← Row-KOPIR.Query(i), where
i := h(k) ∈ [r].

• Return (st := (k,st′),qu)

Answer(qu,hintS)→ ans:

• Compute ans← Row-KOPIR.Answer(qu,hintS).

• Return ans.

Recover(st,hintC,ans)→ v:

• Parse st := (k,st′). Compute {k∗1∥v∗1, . . . ,k∗c∥v∗c}←
Row-KOPIR.Recover(st′,hintC,ans).

• Return v := v∗i if k = k∗i exists for i ∈ [c], v :=⊥
otherwise.

Figure 6: Keyword PIR construction KPIRhash

the first logr bits of x and x2 comprises the remaining bits of
x. Subsequently, we map the element x2 to a bin indexed by
x1⊕h(x2). Notably, the value stored in the bin, namely x2, is
logr bits shorter than the original element x, thereby leading
to a reduction in the overhead of Row-KOPIR.

Theorem 2. Assuming the underlying Row-KOPIR protocol
(Setup,Query,Answer,Recover) provides correctness and
security, the construction KPIRhash in Figure 6 achieves cor-
rectness and security.

Proof. There are two cases for the correctness analysis. In
the case of k ∈ {k1,k2, . . . ,kn} and k = k j, according to the
correctness of Row-KOPIR, {k∗1∥v∗1, . . . ,k∗c∥v∗c} is equal to the

bin Bh(k j) and k j∥v j ∈ Bh(k j). Therefore, the output v = v j. In
the case of k /∈ {k1,k2, . . . ,kn}, there does not exist k∗i = k
for each k∗i ∈ {k∗1∥v∗1, . . . ,k∗c∥v∗c}. Therefore, v =⊥. Note that
{k∗1∥v∗1, . . . ,k∗c∥v∗c} includes dummy points. We set these as
rare values to avoid colliding with k. The security is straight-
forwardly guaranteed by the security of Row-KOPIR.

6 Keyword PIR from Approximate Key-to-
Index Mapping

We formalize approximate key-to-index mappings, which is a
critical building block of the following keyword PIR construc-
tion. Approximate key-to-index mappings are widely used in
the database field [17], and to the best of our knowledge, this
is the first time using them in the cryptographic field.

6.1 Approximate Key-to-Index Mapping
An approximate key-to-index mapping is a data structure
parametric in an integer ε. Given a sorted key set K ⊂K as
input, it outputs a mapping between keys from K and their
approximate positions in the set K with error ε.

Definition 5. An approximate key-to-index mapping is pa-
rameterized by an error ε, key space K , input set size n, and
consists of two algorithms:

• Mapε(K ⊂K )→map: On input a sorted set K ⊂K of
size n, output a structure map.

• Extractε(k ∈ K ,map)→ ik: On input a key k ∈ K and
the structure map, output a position ik ∈ [n].

Approximate key-to-index mappings should satisfy the fol-
lowing correctness.

Correctness. An ε-approximate key-to-index mapping is cor-
rect if, for any set K ⊂ K and every key k ∈ K, the Extract
output ik satisfies ik ∈ [Pos(k)− ε,Pos(k)+ ε], where Pos(k)
is the correct position of k within K.

Instantiation from Piece-wise Linear Approximation.
Paolo Ferragina and Giorgio Vinciguerra [17] proposed an
efficient construction of approximate key-to-index mapping,
called Piece-wise Linear Approximation (PLA). Specifically,
given a sorted set K of size n, PLA outputs a piece-wise lin-
ear approximation function. It includes d segments, where
each segment consists of a triple S := (t,a,b). Here, t denotes
the initial position of this segment, and (a,b) defines a linear
function fS(x) = a ·x+b. Building on earlier works [35], their
method reduces the ε-approximate PLA problem to construct-
ing the convex hull of a set of points (ki,Pos(ki)) for i ∈ [n].
We give a high-level overview of their method and refer to
the works [17, 35] for more details. The procedure involves
the following steps:

1. Compute the convex hull for the current set of points.
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2. While the hull remains within a (potentially rotated)
rectangle with height no greater than 2ε, increment the
index i and add the next point to the set.

3. If the enclosing rectangle exceeds the height threshold
of 2ε, terminate the extension. At this stage, define a
segment of the PLA model by choosing a line that bisects
the rectangle.

4. Clear the set of processed points and continue processing
the remaining points from the input.

As demonstrated below, PLA formally establishes the fea-
sibility of this construction and the relationship between the
error parameter ε and the resulting number of segments d.

Lemma 1 (PLA [17, 35]). Given a sorted set K ⊂K of n en-
tries that are ascending, there exists a linear-time and linear-
space algorithm to compute a PLA mapping with error ε and
the number of segments d, such that d ≤ n/2ε.

This work focuses on the setting where the number of
segments d is sublinear with the key size n, because in our
keyword PIR construction, the output of PLA will be down-
loaded by the client. With appropriate parameters, d could be
sublinear with n. For example, we can set ε :=

√
n, and hence

d is less than
√

n. We will give more practical parameter
settings in the following keyword PIR construction.

6.2 Construction KPIRindex

We present an efficient keyword PIR construction called
KPIRindex using approximate key-to-index mappings. This re-
quires only a single invocation of Row-KOPIR on an encoded
database with almost the same size as the input database. The
main idea is to construct an approximate key-to-index map-
ping with error ε and then retrieve all 2ε entries around the ap-
proximate position of the query key, by utilizing a repetition-
based matrix encoding combined with Row-KOPIR.

We present the construction as follows. Figure 7 graphi-
cally shows the database encoding of KPIRindex and Figure 8
presents the detailed construction. Specifically, our solution is

first to compute an approximate key-to-index mapping map
with error ε by invoking the PLA method [17]. This means
that for any key k, the mapping map returns a position ik,
which is at most ε away from the correct one pos(k) in the
input database, namely ik ∈ [pos(k)− ε,pos(k)+ ε]. There-
fore, for each query, we need to retrieve continuous 2ε entries
around ik. To achieve a single invocation of Row-KOPIR, we
propose a repetition-based matrix encoding method with the
following steps. (1) We sort the key-value database D of size
n according to the keys and represent the sorted database as
a square matrix D′ of size

√
n×
√

n in a row-wise manner.
(2) To enable retrieving continuous 2ε entries in one row, we
repeatedly append ε entries at the beginning and ε entries at
the end of the row in the matrix, resulting the encoded matrix
D′ of size

√
n×(
√

n+2ε). (3) For each query, the client deter-
mines the row position of its query and invokes Row-KOPIR
to obtain an entire row and extract the final result. We note
that larger ε reduces the size of the key-to-index mapping (i.e.,
the client’s memory) but increases the size of the encoded
matrix (i.e., the server’s memory), causing higher PIR costs.

Computation and communication costs. Similar to the con-
struction for hashing-to-bins, the primary cost is dominated
by a single invocation of Row-KOPIR. The database size is
r× c with r :=

√
n and c :=

√
n+2ε, where n is the number

of key-value pairs. We note that we can use the same solution
as the construction from KVS in Section 4 to handle large
key-value pairs.

Improved parameters for approximate key-to-index map-
pings. As shown in Lemma 1, to achieve the mapping size d is
sublinear (e.g., square root) to the database size n, it requires
setting large ε (e.g.,

√
n), which results in large encoded ma-

trix D′ and high overhead of Row-KOPIR. We propose practi-
cal parameter settings, namely ε is set to a small constant, e.g.,
2 in our evaluation. To address the large size of the mapping,
we hash the input keys into uniformly random values. Such a
nearly uniform distribution makes it easy to learn a piecewise
linear approximation function with only a small number of
segments. Note that using hashing functions is compatible
with our constructions because hashing is inherently used to
compress the size of keys. Although the number of segments



Protocol KPIRindex

Parameters: A database size n. A Row-KOPIR scheme
(Setup,Query,Answer,Recover). An approximate key-
to-index mapping AKIM (Mapε,Extractε) with error ε.

Protocol execution:
Setup(D ∈ (K ×V )n)→ hintC,hintS:

• Compute {(k′1∥v′1), . . . ,(k′n∥v′n)} by sorting D in as-
cending order based on the keys.

• Compute map← AKIM.Mapε(k′1, . . . ,k
′
n).

• Define a matrix D′ of size r× (c+ 2ε) with r :=√
n and c :=

√
n, where the i-th row of D′ includes

{k′(i−1)·c−ε+1∥v
′
(i−1)·c−ε+1, . . . ,k

′
i·c+ε
∥v′i·c+ε

}.

• Compute hint← Row-KOPIR.Setup(D′).

• Return (hintC := (map,hint),hintS := D′).

Query(k ∈K ,hintC)→ (st,qu):

• Parse hintC = (map,hint) and compute pos ←
AKIM.Extractε(map,k) ∈ [m].

• Compute i := ⌈pos/c⌉ and (st′,qu) ←
Row-KOPIR.Query(i).

• Return (st := (k,st′),qu)

Answer(qu,hintS)→ ans:

• Compute ans← Row-KOPIR.Answer(qu,hintS).

• Return ans.

Recover(st,hintC,ans)→ v:

• Parse hintC = (map,hint), st := (k,st′).
Compute {(k∗1,v∗1), . . . ,(k∗c+2ε

,v∗c+2ε
)} ←

Row-KOPIR.Recover(st′,hint,ans).

• Return v := v∗i if k = k∗i exists for i ∈ [c], v :=⊥
otherwise.

Figure 8: Keyword PIR construction KPIRindex

is theoretically linear with the size of the database, the actual
number of segments is only about 1% of the database size in
our evaluation. We give detailed results in Appendix D.

Theorem 3. Assuming the underlying Row-KOPIR protocol
(Setup,Query,Answer,Recover) provides correctness and
security, the construction KPIRindex in Figure 8 achieves cor-
rectness and security.

Proof. There are two cases for the correctness analysis. In
the case of k ∈ {k1,k2, . . . ,kn} and k = k j, according to the
correctness of Row-KOPIR and approximate key-to-index
map- pings, {(k∗1,v∗1), . . . ,(k∗c+2ε

,v∗c+2ε
)} is equal to the bin

B⌈pos/c⌉ and k j∥v j ∈ B⌈pos/c⌉. Therefore, the output v = v j.
In the case of k /∈ {k1,k2, . . . ,kn}, it does not exist k∗i in
{(k∗1,v∗1), . . . ,(k∗c+2ε

,v∗c+2ε
)} that is equal to k. Therefore,

v =⊥ in this case. The security is straightforwardly guar-
anteed by the security of Row-KOPIR.

7 Implementation and Evaluation

We implement our protocols in Java and conduct all ex-
periments on two machines, each equipped with an Intel
Core i9-9900K processor running at 3.6 GHz and 128 GB
of memory. All evaluations are performed using a single
thread. These machines simulate the client and server, re-
spectively, and are connected via network cards, forming a
realistic LAN network with a bandwidth of 2.5 Gbps and
an RTT latency of 0.4 ms. Our source code is available at
https://github.com/alibaba-edu/mpc4j.

7.1 Implementation Details
For comprehensive and fair comparisons, we conduct a uni-
fied platform to implement both our proposed constructions
and the state-of-the-art keyword PIR, ChalametPIR [10]. We
introduce the implementation details below.

Implementation details of our protocols. We set the compu-
tational security parameter κ := 128 and the statistical security
parameter λ := 40. Our three protocols are built on SimplePIR.
We implement SimplePIR in our platform and adhere to their
original parameter settings. Specifically, we set the LWE di-
mension to N := 210, the ciphertext modulus q := 232, and
the error distribution χ to the discrete Gaussian distribution
with standard deviation σ := 6.4. In addition, we set plaintext
modulus p := 28. With such parameters, plaintexts and cipher-
texts are supported and operated by native data types, byte
and int, respectively. This also simplifies the conversions be-
tween Zp and Zq since they only involve shifting operations,
instead of division and modular. Besides, we also set larger
LWE parameters with N := 1408 as recommended by Hint-
lessPIR [26] and provide experimental results in Appendix D
for completeness. We note that larger N slightly increases the
communication and computation overhead, but the additional
overhead is marginal.

We use Binary Fuse Filters (BFF) [20] to instantiate our
sparse KVS in the KPIRkvs construction. Following the
open-source implementation [1, 20], we set the number of
hash functions to k := 3 and the expansion rate 1 + ε :=
max

(⌊(
0.875+0.25 ·max

(
1, log(106)

log(n)

))
·n
⌋
,⌊1.125n⌋

)
,

where n is the database size. Empirically, ε is set to
1.125 ∼ 1.156 in our evaluation. We change the operations

https://github.com/alibaba-edu/mpc4j


Table 1: Communication and runtime comparison of our protocols with the state-of-the-art ChalametPIR [10]. The best result is
marked in green, and the second best result is marked in blue.

Parameter Protocol Setup Phase Online Phase
DB Size Entry Len. Comm (MB) Time (s) Comm (MB) Time (ms)

218

32B

ChalametPIR [10] 0.27 47.78 1.16 39.41
KPIRkvs 13.75 6.03 0.08 26.86
KPIRhash 19.22 7.71 0.03 19.08
KPIRindex 14.46 6.78 0.03 14.32

64B

ChalametPIR [10] 0.49 56.61 1.16 44.15
KPIRkvs 18.28 12.19 0.11 41.82
KPIRhash 24.47 13.28 0.04 28.94
KPIRindex 20.33 13.01 0.04 25.66

128B

ChalametPIR [10] 0.92 80.50 1.16 53.61
KPIRkvs 25.50 21.21 0.15 78.16
KPIRhash 37.19 28.84 0.06 54.50
KPIRindex 29.30 23.57 0.05 48.51

256B

ChalametPIR [10] 1.79 126.06 1.16 81.31
KPIRkvs 35.06 42.10 0.21 139.93
KPIRhash 56.72 64.58 0.09 117.51
KPIRindex 44.42 51.04 0.08 98.43

220

32B

ChalametPIR [10] 0.27 188.58 4.50 116.52
KPIRkvs 26.88 24.95 0.16 93.44
KPIRhash 33.59 29.04 0.06 60.34
KPIRindex 27.35 23.97 0.05 46.97

64B

ChalametPIR [10] 0.49 217.76 4.50 117.52
KPIRkvs 36.00 46.38 0.21 159.16
KPIRhash 46.97 55.22 0.08 106.43
KPIRindex 37.44 43.53 0.07 79.28

128B

ChalametPIR [10] 0.92 317.15 4.50 188.37
KPIRkvs 49.94 85.50 0.29 264.49
KPIRhash 67.47 113.08 0.11 170.54
KPIRindex 52.91 89.50 0.10 122.98

256B

ChalametPIR [10] 1.79 473.13 4.50 256.43
KPIRkvs 69.09 162.05 0.40 474.74
KPIRhash 99.00 224.45 0.16 292.48
KPIRindex 77.66 171.92 0.14 262.66

222

32B

ChalametPIR [10] 0.27 741.23 18.00 306.47
KPIRkvs 53.75 103.05 0.31 303.34
KPIRhash 60.94 109.33 0.11 173.86
KPIRindex 53.61 97.22 0.10 156.48

64B

ChalametPIR [10] 0.49 876.66 18.00 371.49
KPIRkvs 72.00 187.17 0.42 519.98
KPIRhash 85.22 213.15 0.15 290.46
KPIRindex 72.42 177.96 0.14 259.71

128B

ChalametPIR [10] 0.92 1226.85 18.00 587.21
KPIRkvs 99.34 371.80 0.58 975.03
KPIRhash 120.06 429.84 0.21 528.97
KPIRindex 100.61 341.82 0.19 449.16

256B

ChalametPIR [10] 1.79 1875.72 18.00 939.90
KPIRkvs 138.19 739.71 0.81 1940.87
KPIRhash 176.34 901.53 0.30 1031.57
KPIRindex 143.58 702.99 0.27 844.02

of BFF from XOR to modular addition in the LWE plaintext
space for ensuring compatibility with SimplePIR. We use the
PLA method [17] to instantiate our approximate key-to-index

mapping in the KPIRindex construction. We implement
the PLA scheme in our platform, following the reference
implementation [3]. We set the error ε := 4 and the number



Table 2: Performance of KPIRindex on difference approximation error ε. ‘Client-Map Size’ means the size of the client’s key-to-
index mapping and ‘Server-DB Exp. Rate’ means the expansion rate between the server’s original and encoded databases. The
best result is marked in green.

Parameter Setup Phase Online Phase Memory
Entry Len. Epsilon ε Comm (MB) Time (s) Comm (MB) Time (ms) Client-Map Size (KB) Server-DB Exp. Rate

32B

4 27.35 23.97 0.05 46.97 324.22 1.069
8 28.37 24.72 0.05 83.61 94.95 1.118

16 30.81 27.33 0.05 79.45 25.59 1.217
32 35.79 30.88 0.06 104.24 7.05 1.415

64B

4 37.44 43.53 0.07 79.28 324.22 1.094
8 39.47 47.50 0.07 109.38 94.95 1.160

16 43.90 51.76 0.08 107.47 25.59 1.293
32 52.88 63.45 0.08 132.05 7.05 1.558

128B

4 52.91 89.50 0.10 122.98 324.22 1.127
8 56.94 95.97 0.10 181.46 94.95 1.219

16 65.37 112.20 0.11 203.70 25.59 1.401
32 82.35 138.99 0.13 241.96 7.05 1.765

256B

4 77.66 171.92 0.14 262.66 324.22 1.190
8 85.69 189.22 0.15 291.12 94.95 1.317

16 102.12 246.84 0.16 326.87 25.59 1.571
32 135.10 334.75 0.20 450.40 7.05 2.079

of segments is 0.013n for our settings, where n is the input
database size. In Appendix D, we also show the detailed
parameters of our three constructions in Tables 3, 4, and
5, including the size of the encoded matrix database and
expansion rate.

Implementation details of ChalametPIR [10]. For a fair
comparison, we implement ChalametPIR in our platform, fol-
lowing the parameter settings of their source code [2]. We
compare with FrodoPIR-based ChalametPIR because (1) their
open-source code supports only FrodoPIR and (2) as shown
in Appendix A, ChalametPIR lacks a theoretically analyzed or
empirically validated SimplePIR-based construction. Specif-
ically, ChalametPIR sets the LWE dimension to N := 1774,
ciphertext modulus q := 232, and the error distribution χ to
the uniformly random ternary distribution. In addition, they
use KVS and instantiate it with BFF. For the BFF implementa-
tion, we use the same parameters as our KPIRkvs construction,
which is also in line with their implementation.

7.2 Evaluation Results

We evaluate our three constructions, i.e., KPIRkvs, KPIRhash,
and KPIRindex, and compare with the state-of-the-art keyword
PIR, ChalametPIR [10]. We show the overheads of the setup
and online phases. It is worth noting that the setup phase is
only executed once by the server and hence the communica-
tion and computational costs can be amortized over multiple
clients for multiple queries. Therefore, we mainly focus on
the online costs below.

Performance of our constructions. Table 1 shows the run-
time and communication costs of our three constructions.
All of these constructions achieve practical overheads. For

example, for a database containing 1 million 256-byte en-
tries, the runtime of all our schemes is less than 0.5 seconds
and the communication is less than 0.4 MB. Among three
constructions, KPIRindex is the most efficient because it only
invokes Row-KOPIR once on an encoded database with al-
most the same size as the original database. The performance
of KPIRhash is slightly worse than that of KPIRindex. The rea-
son is that KPIRindex expands the original database. KPIRkvs

requires more communication and computational costs, since
it requires three invocations of Row-KOPIR. In addition, our
three keyword PIR schemes introduce small additional mem-
ory costs. In particular, the server’s memory is caused by stor-
ing the encoded database. As shown in Tables 3, 4, 5, KPIRkvs,
KPIRhash and KPIRindex increase at most 1.156×, 1.873×,
and 1.365×memory costs, respectively. Moreover, except for
storing the hint of underlying index PIR, the additional client
memory from key-to-index mappings is still small, e.g., three
and one hash functions in KPIRkvs and KPIRhash, respectively.
The memory of KPIRindex is given in detail below.

In Table 2, we further report detailed performance of
KPIRindex for different values of ε, i.e., error of approximate
key-to-index mapping. We observe that as ε increases, the
online computation and communication overhead will corre-
spondingly increase. Similarly, larger ε will increase the size
of the encoded database, which is the server’s memory cost.
However, larger ε will decrease the size of the approximate
key-to-index mapping, which is the client’s memory cost. As
shown in Table 2, the key-to-index mapping size is small even
when ε := 4, particularly 324 KB. Therefore, in our following
evaluation, we set ε := 4 for comparisons.

Communication comparison with ChalametPIR. We show
the communication comparison in Table 1. All our three con-
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Figure 9: Online communication and runtime comparisons on
different database sizes. We fix the value length as 128 bytes.
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Figure 10: Online communication and runtime comparisons
on different value lengths. We fix the database size as 220.

structions achieve 15∼ 178× online communication improve-
ment over ChalametPIR. The reason is that our online com-
munication is sublinear to the database size, rather than linear
correlation in ChalametPIR. A drawback of our constructions
is large setup communication, which is caused by sending
hints in the invocation of SimplePIR. However, this commu-
nication can be amortized over multiple queries, since the
hint is only downloaded by the client once and for all. We
also show the online communication comparisons between
ChalametPIR and the most efficient construction KPIRindex

in Figures 9(a) and 10(a). We observe that as the database
size increases, the communication of ChalametPIR increases
linearly, but KPIRindex introduces a slight increase and hence
has better advantages. They are in line with the theoretical
analysis. Moreover, value lengths have small effects on the
communication costs for both schemes.

Runtime comparison with ChalametPIR. We show the
runtime comparison in Table 1. Our constructions achieve
1.1∼ 2.4× runtime improvement, depending on database size
and entry length. For example, for a database containing 1
million 32-byte entries,KPIRindex only requires 47 ms, outper-
forming ChalametPIR by 2.4×. Essentially, both our schemes
and ChalametPIR are efficient, because they only invoke
lightweight LWE-based homomorphic encryption without
heavy operations. We also show the online runtime compar-
isons between ChalametPIR and the most efficient KPIRindex

in Figures 9(b) and 10(b). We observe that as the database
size increases, we have larger advantages of online runtime.
In addition, KPIRindex has runtime advantages when the value
length is smaller than 256 bytes, while ChalametPIR shows
slightly better performance for large value lengths.

8 Conclusion

In this work, we introduce three practical keyword PIR con-
structions. Our core insight lies in constructing a key-to-index
mapping and reducing the keyword PIR problem to standard
PIR. To this end, we encode the server’s key-value database
into an indexable database along with three different key-to-
index mappings. After that, we can achieve keyword PIR by
invoking standard PIR on the encoded database to retrieve
specific positions according to the mappings. We fully im-
plement our constructions and state-of-the-art keyword PIR
scheme ChalametPIR in a unified platform for fair compar-
isons. We evaluate the efficiency of our constructions and the
results show that our scheme achieves 15∼ 178× communi-
cation improvement and 1.1 ∼ 2.4× runtime improvement,
depending on database size and entry length.

An interesting research direction is to support database
updates and authentication. For database updates, when only
database values change, using the update method of Sim-
plePIR, KPIRhash modifies the hash table’s bins that have
value updates. Therefore, the overhead is only proportional
to the number of changed bins. Nevertheless, modifying both
keys and values remains challenging. Moreover, KPIRkvs and
KPIRindex still require re-executing the whole setup. We leave
efficient database updates as future work. On the other hand,
extending our keyword PIR to authenticated variants may
leverage VeriSimplePIR [15]. VeriSimplePIR produces a prov-
able digest as the database commitment and verifies responses
for consistency with the commitment. However, unlike index
PIR, our keyword PIR framework introduces two challenges:
(1) verifying the encoded database D′ is correctly derived
from the committed D; (2) ensuring consistency between D′

used in PIR and the encoding output. Designing authenticated
keyword PIR is also an interesting future work.
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A Incompatibility of ChalametPIR and Sim-
plePIR

In this section, we illustrate the incompatibility of Chalamet-
PIR and SimplePIR.
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Figure 11: An illustrative example of failure retrieval using SimplePIR-instantiated ChalametPIR. The client retrieves the
value corresponding to k. Following the decoding of Binary Fuse Filters, it requires the entries D′1,D

′
m,D

′
c+2 at the positions

h0(k),h1(k),h2(k), respectively. However, these three entries are not in the same row with the matrix encoding of SimplePIR.
With a single invocation of SimplePIR, it can not obtain the sum of D′1,D

′
m,D

′
c+2.

ChalametPIR encodes the key-value database D of size
n into a vector D′ of size m := O(n) via Binary Fuse Fil-
ters [20] with α functions {hi : {0,1}∗ → [m]}i∈[α]. To re-
trieve the corresponding value of the query k, it constructs
a size-m vector qu with all zeros except that qu[hi(k)] := 1
satisfying v = qu⊤ ·D′ if (k,v) ∈D. ChalametPIR instantiates
this functionality by utilizing a single invocation of a modified
FrodoPIR [14]. Specifically, the client homomorphically en-
crypts the vector qu, rather than one-hot vectors as in original
FrodoPIR, and sends the ciphertext ct of size O(m) and the
server evaluates the inner-product qu⊤ ·D′ in ciphertext.

However, this framework is incompatible with SimplePIR,
where the encoded vector D′ is transformed into a matrix
of size

√
m×
√

m. Specifically, to successfully retrieve the
corresponding value of k, all D′[hi(k)] for i ∈ [α] should be
in the same row, such that a FrodoPIR-analogical variant of
SimplePIR with encrypted multi-one query is invoked. Un-
fortunately, due to the randomness of hash functions, it is
challenging to construct Binary Fuse Filters satisfying the
above requirements. These additional constraints will cause a
high failure probability during the encoding process. There-
fore, it requires theoretically analyzed or empirically validated
Binary Fuse Filters satisfying the above requirements. In Fig-
ure 11, we show a failure retrieval when simply replacing
FrodoPIR with SimplePIR in the original ChalametPIR frame-
work.

B Details and Security of Row-KOPIR

In this section, we provide additional details and security
proof of Row-KOPIR in Figure 2.

Concrete costs. We give concrete computational and com-
munication costs with no hidden constants. In the one-time
setup phase, Row-KOPIR requires (1) the server to execute
N · r · c multiplications in Zq and (2) the client to download
N · c elements in Zq. Then, for each query, Row-KOPIR re-
quires (1) the client to execute (N + c+1) · r multiplications

in Zq, upload r elements in Zq, and download c elements in
Zq, and (2) the server to execute r · c multiplications in Zq.
Therefore, the one-time setup communication is N ·c, and the
online communication is c+ r for each query. Therefore, to
minimize the online communication, given a database con-
taining n elements, the encoded matrix should have rows and
columns of similar sizes, namely

√
n×
√

n. This achieves
2
√

n communication cost, which is sublinear to the database
size n. In our keyword PIR schemes, we will follow this prin-
ciple to set the rows and columns of the encoded matrix to
optimize the communication cost.

Reducing communication overhead. Recent works [22, 26]
proposed solutions to reduce the total communication over-
head of SimplePIR at the expense of increased computation.
These optimizations can be directly employed in Row-KOPIR.
We explain the high-level idea. Specifically, the communica-
tion is dominated by the one-time communication of A ·D
in the setup phase. As observed in these works, A ·D is only
used for the client in the decryption to compute s ·A ·D. There-
fore, to avoid sending A ·D, an alternative solution is to send
encrypted s and perform vector-matrix multiplication on the
server side by using using Ring-LWE-based homomorphic
encryption such as BFV [9, 16]. This makes the communica-
tion cost independent of the total size of D ·A. However, this
approach increases the online computation overhead. In our
implementation, we do not apply this optimization to maintain
high throughput.

Security. Below, we prove the security based on the hardness
of the LWE problem.

Theorem 4. Assume (N,r,q,χ) be LWE parameters, and A ∈
ZN×r

q be the random LWE matrix used in Row-KOPIR. If the
(N,r,q,χ)-LWE problem is (T,ε)-hard, then the Row-KOPIR
in Figure 2 is (T −O(r),2ε)-secure.

Proof. We reduce the security of Row-KOPIR to the hardness
of LWE. For any i ∈ [r], we define the distribution

Q := {(A,qu) : (st,qu)← Query(i)}.



Let ui be the unit vector with a single 1 at index i. We define
the following distributions:

• D1 = {(A,s ·A+ e) : s← ZN
q ,e← χr}

• D2 = {(A,γ) : γ← Zr
q}

Now, consider the simulator S that, given as input (A,v) ∈
ZN×r

q ×Zr
q, computes and outputs (A,v+∆ ·ui). We have

• when (A,v) is sampled from D1, the distribution of sim-
ulator’s output is identical to Q.

• when (A,v) is sampled from D2, the distribution of sim-
ulator’s output is identical to D2.

Since the (N,r,q,χ)-LWE problem is (T,ε)-hard, any al-
gorithm running in time T has advantage at most ε in dis-
tinguishing between D1 and D2. Note that the simulator S
runs in time O(r), we know that any algorithm distinguishing
between Q and D2 in time at most T −O(r) can have success
probability at most ε. By the triangle inequality, we have

|Pr[A(qu)=1 |(st,qu)←Query(i)]

−Pr[A(qu)=1 |(st,qu)←Query( j)]|
≤|Pr[A(qu)=1 |(st,qu)←Query(i)]−Pr[A(γ)=1 |γ←Zr

q]|
+|Pr[A(γ)=1 |γ←Zr

q]−Pr[A(qu)=1 |(st,qu)←Query( j)]|
≤2ε.

C Instantiation of α-sparse KVS

In this section, we instantiate α-sparse KVS using Binary
Fuse Filters (BFF) [20] with α := 3. The Encode and Decode
algorithms are presented in Algorithms 1 and 2, respectively.
The correctness of inclusion follows immediately given the
construction of Binary Fuse Filters. Below, we analyze the cor-
rectness of non-inclusion. Given (D,H)← Encode(L) with
L := (K,V ) and a key k /∈ K, the decode output is kh∥v←
Decode(H,k,D[H(k)]). We consider two possible cases. (1)
There exists some k∗ ∈ K such that H(k∗) = H(k), namely
{h1(k∗),h2(k∗),h3(k∗)} = {h1(k),h2(k),h3(k)}. According
to the collision-resistant property of hash : {0,1}∗→{0,1}2λ,
the probability of hash(k∗) = hash(k) is 2−λ. (2) For any k∗ ∈
K, it holds H(k∗) ̸= H(k), namely {h1(k∗),h2(k∗),h3(k∗)} ̸=
{h1(k),h2(k),h3(k)}. The decoding procedure inputs three
independent and uniform entries of D and outputs their sum
kh∥v, where kh is a uniform element in {0,1}2λ. The probabil-
ity of kh = hash(k) is at most 2−λ. Therefore, for any k /∈ K,
the decoding output is ⊥ except with the probability negl(λ).

Algorithm 1 Encode of Binary Fused Filters [20]
Parameter: A collision-resistant hash function hash :
{0,1}∗→{0,1}2λ. Range of encoded vector D .
Input: A set of key-value pairs L := {(ki,vi)}i∈[n] ∈ (K ×
V )n with distinct keys.

1: repeat
2: Sample hash functions h1,h2,h3 : K → [m].
3: Initialize empty vector C of size m.
4: For i ∈ [n] and j ∈ [3], push ki to C[h j(ki)].
5: Initialize empty stack Q.
6: For i ∈ [m], push i into Q if |C[i]|= 1.
7: Initialize empty stack P.
8: while |Q|> 0 do
9: Pop i from Q.

10: if |C[i]|= 1 then
11: Set k :=C[i] and push (k, i) to P.
12: For j ∈ [3], remove k from C[h j(k)] .
13: For j ∈ [3], push h j(k) into Q if |C[h j(k)]|= 1.
14: end if
15: end while
16: until |P|= n
17: Initialize empty vector D of size m.
18: while |P|> 0 do
19: Pop (k, i) from P and set H := {h j(k)} j∈[3] \{i}.
20: For x ∈ H, sample D[x]←D if D[x] is empty.
21: Set D[i] := hash(k)∥v−∑x∈H D[x], where (k,v) ∈ L.
22: end while
23: For i ∈ [m], sample D[i]←D if D[i] is empty.
24: return D and h1,h2,h3.

Algorithm 2 Decode of Binary Fused Filters [20]
Parameter: A collision-resistant hash function hash :
{0,1}∗→{0,1}2λ. Range of encoded vector D .
Input: A set of hash functions h1,h2,h3, a key k, and entries
D[h1(k)],D[h2(k)],D[h3(k)].

1: Set kh∥v := D[h1(k)]+D[h2(k)]+D[h3(k)] ∈D .
2: return v if kh = hash(k), or ⊥ otherwise.

D Additional Experiments

In this section, we present additional experimental settings
and results for completeness.

In Tables 3, 4, and 5, we provide detailed parameters of
our three constructions, including the size of the encoded
matrix database and the expansion rate (i.e., the rate of the
encoded database size and the original database size) for
different database sizes and entry lengths. For clarity, we
show the number of rows and columns of the encoded matrix
database. These results are in line with theoretical analysis in
our constructions.

We evaluate our constructions on larger LWE parameters



with N := 1408 as recommended by HintlessPIR [26]. We
provide the experimental results in Table 6, showing the run-
time and communication costs of our three constructions and
comparisons with ChalametPIR. We observe that larger N
slightly increases the communication and computation over-
head, but the additional overhead is marginal. Compared to
ChalametPIR, we also maintain a significant advantage on
communication costs with a comparable and even better com-
putational costs, depending on database size and entry length.

Table 3: Parameters of the matrix database in KPIRkvs

DB Size Entry Len. # Row # Column Exp. Rate

218

32 3,445 3,520 1.156
64 4,664 4,680 1.156
128 6,315 6,528 1.156
256 8,915 8,976 1.156

220

32 6,859 6,880 1.125
64 9,216 9,216 1.125
128 12,550 12,784 1.125
256 17,607 17,688 1.125

222

32 13,717 13,760 1.125
64 18,432 18,432 1.125
128 25,234 25,432 1.125
256 35,214 35,376 1.125

Table 4: Parameters of the matrix database in KPIRhash

DB Size Entry Len. # Row # Column Exp. Rate

218

32 3,239 5,600 1.730
64 4,345 6,408 1.475
128 5,971 9,673 1.620
256 8,320 15,576 1.873

220

32 6,477 9,240 1.427
64 8,689 10,152 1.168
128 11,942 19,176 1.606
256 16,639 23,760 1.428

222

32 12,953 16,040 1.238
64 17,378 20,304 1.170
128 23,884 31,960 1.338
256 33,277 38,016 1.142

Table 5: Parameters of the matrix database in KPIRindex

DB Size Entry Len. # Row # Column Exp. Rate

218

32 3,239 3,680 1.137
64 4,345 5,184 1.193
128 5,971 7,480 1.253
256 8,320 11,352 1.365

220

32 6,477 6,920 1.069
64 8,689 9,504 1.094
128 11,942 13,464 1.127
256 16,639 19,800 1.190

222

32 12,953 13,400 1.035
64 17,378 18,216 1.048
128 23,884 25,432 1.065
256 33,277 36,432 1.095



Table 6: Communication and runtime comparison of our protocols with the state-of-the-art ChalametPIR [10] with LWE secret
key dimension N := 1408. The best result is marked in green, and the second-best result is marked in blue.

Parameter Protocol Setup Phase Online Phase
DB Size Entry Size Comm (MB) Time (s) Comm (MB) Time (ms)

218

32B

ChalametPIR [10] 0.27 47.78 1.16 39.41
KPIRkvs 18.91 8.07 0.08 26.77
KPIRhash 24.49 11.04 0.03 16.92
KPIRindex 19.85 16.14 0.04 25.86

64B

ChalametPIR [10] 0.49 56.61 1.16 44.15
KPIRkvs 25.14 14.76 0.11 40.66
KPIRhash 34.81 20.37 0.04 29.37
KPIRindex 27.92 14.83 0.04 25.05

128B

ChalametPIR [10] 0.92 80.50 1.16 53.61
KPIRkvs 35.06 28.41 0.15 75.60
KPIRhash 50.40 39.11 0.06 55.30
KPIRindex 40.26 30.86 0.05 52.83

256B

ChalametPIR [10] 1.79 126.06 1.16 81.31
KPIRkvs 48.21 55.64 0.21 138.17
KPIRhash 73.73 79.50 0.08 105.85
KPIRindex 61.05 66.70 0.08 104.29

220

32B

ChalametPIR [10] 0.27 188.58 4.50 116.52
KPIRkvs 36.95 33.71 0.16 93.80
KPIRhash 44.04 36.88 0.06 54.08
KPIRindex 37.49 34.53 0.05 52.55

64B

ChalametPIR [10] 0.49 217.76 4.50 117.52
KPIRkvs 49.50 60.79 0.21 156.94
KPIRhash 65.36 73.48 0.08 105.80
KPIRindex 51.36 57.90 0.07 86.60

128B

ChalametPIR [10] 0.92 317.15 4.50 188.37
KPIRkvs 68.66 115.71 0.29 259.25
KPIRhash 92.04 145.40 0.11 166.61
KPIRindex 72.63 115.89 0.10 142.56

256B

ChalametPIR [10] 1.79 473.13 4.50 256.43
KPIRkvs 95.00 227.76 0.40 468.22
KPIRhash 138.96 311.68 0.16 308.56
KPIRindex 106.67 240.41 0.14 257.93

222

32B

ChalametPIR [10] 0.27 741.23 18.00 306.47
KPIRkvs 73.91 134.84 0.31 310.28
KPIRhash 84.43 150.74 0.11 193.94
KPIRindex 73.24 129.69 0.10 159.59

64B

ChalametPIR [10] 0.49 876.66 18.00 371.49
KPIRkvs 99.00 236.67 0.42 515.49
KPIRhash 120.27 274.83 0.15 285.28
KPIRindex 99.10 234.00 0.14 251.92

128B

ChalametPIR [10] 0.92 1226.85 18.00 587.21
KPIRkvs 136.60 444.62 0.58 972.58
KPIRhash 167.28 547.84 0.21 541.51
KPIRindex 137.86 443.20 0.19 438.43

256B

ChalametPIR [10] 1.79 1875.72 18.00 939.90
KPIRkvs 190.01 935.83 0.81 1913.79
KPIRhash 252.40 1143.17 0.31 1101.73
KPIRindex 196.94 890.47 0.27 827.82
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