
Addressing Scalability Issues of Blockchains with
Hypergraph Payment Networks
Arad Kotzer, Bence Ladóczki, János Tapolcai and Ori Rottenstreich

Abstract—Payment channels are auspicious candidates in
layer-2 solutions to reduce the number of on-chain transactions
on traditional blockchains and increase transaction throughput.
To construct payment channels, peers lock funds on 2-of-2
multisig addresses and opening channels between one another
to transact via instant peer-to-peer transactions. Transactions
between peers without a direct channel are made possible by
routing the payment over a series of adjacent channels. In certain
cases, this can lead to relatively low transaction success rates
and high transaction fees. In this work, we introduce pliability
to the construction of payment channels and graft edges with
more than two endpoints into the payment graph. We refer to
these constructions as hyperedges. We present hyperedge-based
topologies to form hypergraphs and compare them to Bitcoin’s
Lightning network and other state-of-the-art solutions. The
results demonstrate that hyperedge-based implementations can
both increase transaction success rate, in addition to decreasing
the network cost by more than 50% compared to that of the
Lightning Network.

Index Terms—Blockchain, Payment Channels, Network Algo-
rithms.

I. INTRODUCTION

Transaction throughput in classical blockchain networks is
severely limited by the fact that every participating node has to
learn about every single transaction that is being broadcast in
the network. On top of that, constant block time thwarts robust
scaling in distributed ledger systems. With an average time of
10 minutes between blocks in Bitcoin for example, it takes
roughly 1 hour for a transaction to be fully confirmed because
as a rule of thumb, 6 later blocks should be built upon a block
that contains the transaction for the recipient to be sure that
the transaction was not under double spend attacks [1]. Layer-
2 (L2) solutions have been proposed to improve upon the
transaction per second (tps) metric of traditional blockchains
(Table I). The general idea behind these proposals is to
take peer-to-peer payments off-chain. Upon initiation, each
participant locks some amount of cryptocurrency on the chain
to enter a channel. Then, by utilizing private ledger technology,
users can record state changes locally. Eventually, the final
state gets published back to the main chain at a certain point
in time. Scalability issues are present only in chains with large
transaction amounts. Representative examples are the two most
popular chains (Bitcoin and Ethereum). It is no surprise that

Arad Kotzer and Ori Rottenstreich are with the Technion - Israel Institute
of Technology, Haifa, Israel. Bence Ladóczki and János Tapolcai are with
at Department of Telecommunications and Artificial Intelligence, Faculty of
Electrical Engineering and Informatics, Budapest University of Technology
and Economics, Hungary and HUN-REN-BME Information Systems Research
Group. JT was partly supported by Project no. K 23 146347 of National
Research, Development and Innovation Fund of Hungary.

Table I: Average and maximum number of transactions per
second in popular blockchains in May 2023

Blockchain Transactions per Second
Average Maximum

Bitcoin 4.7 7
Ethereum 12.2 15

Binance Smart Chain (BSC) 48 100
Cardano 2.9 1000
Ripple 17.3 1500
Solana 4.2 65000

L2 solutions are widespread for these networks. On the other
hand, there is a significant difference between the two chains in
that while Ethereum implements a fully programmable Turing
machine, Bitcoin has limited scripting capabilities.

For Bitcoin, payment channels are the main L2 solution.
More specifically, participants are organized into a so-called
L2 Payment Channel Network (PCN). In PCNs, two users not
directly connected can still send money through a series of
channels. In June 2024, Lightning Network [2] (LN) is the de
facto PCN of Bitcoin with over 13000 nodes, 51000 channels
and 5000 BTC of TLV (total locked value). Raiden [3] has
come into the fold as a similar concept in Ethereum to
facilitate micropayments, instant token swaps and peer-to-
peer transactions. The advent of smart contracts on Ethereum
paved the way for more complex solutions, including Plasma
Chains [4] and Rollups, operating on the Ethereum blockchain.
Rollups are designed to help alleviate network congestion and
high transaction fees while maintaining security guarantees.
Rollups create and process transaction bundles off-chain and
then they write a summary of these on the chain using
cryptographic primitives. Peers that are in the same group can
transact with each other without referencing the L1 layer and
it is the operators’ responsibility to collect these transactions
into a batch, calculate a Merkle tree with its root and publish
the state change represented by the Merkle root along with a
proof to a smart contract on the L1 chain. Rollups necessitate
smart contract functionality written in a Turing complete
programming language (not yet supported in Bitcoin).

Traditional PCNs are built on two-party payment channels,
enabling more transactions between parties than the L1 layer.
As long as both cooperate honestly, no data is written on-
chain—balances update through exchanged messages. The
chain is referenced only for disputes or channel closures. The
two-endpoint nature ensures misbehavior, such as attempting
to finalize an outdated state, is detectable. If a party broadcasts
an invalid state, the other has a set time to appeal, enforcing
fairness via consensus rules. This requires constant chain

v1 v2

v3v4

v5

v6

v7

v8

v9

v10

v11

(a) Traditional PCN topology

e1

e2

e3

e4
e5

v1 v2

v3v4

v5

v6

v7

v8

v9

v10

v11

(b) A corresponding HPN topology

Figure 1: A traditional payment channel network (PCN) and
a hypergraph payment network (HPN) construction.

monitoring to prevent coin theft. PCNs remain fully decentral-
ized, preventing censorship or manipulation. However, since
the network relies solely on two-party channels, payments
between unconnected users require routing through multiple
channels—an ongoing research challenge [5], [6], [7], [8], [9].

Nevertheless, research is still far from being over and
the theory of optimal PCN structures is neither so ripe nor
so clean. Numerous studies have explored the concept of
Bitcoin multi-party payment channels, commonly referred to
as payment hubs or channel factories. These approaches often
demand excessive communication between end nodes, particu-
larly when implemented in a fully decentralized fashion. Given
this landscape, the question arises whether two-ended chan-
nels are really the ideal structure in the Lightning Network.
Our work finds answers to the following questions - What
advantage can one gain by using multi-endpoint channels
in the Lightning Network? Do 3-ended or 4-ended channels
bring about any improvement in the transaction metrics of the
payment network?

With this work we introduce and evaluate the concept of
a hypergraph payment network (HPN) topology. We review
existing multi-party implementations and use them as building
blocks for HPNs. We additionally present a cost model of an
HPN. We describe how to create two HPN topologies, NCH
(node cover hypergraph) and FHS (fixed hyperedge size), and
compare their performance with the original Lightning Net-
work and other state-of-the-art solutions. Finally, we conclude
the paper and suggest future research directions. To the best
of our knowledge, no heuristics has been given in scientific
literature to transform blockchain-based L2 payment networks
into hypergraphs. We supplement our theoretical algorithms
with actual implementations and evaluate the performance of
the proposed methodology. A summary of the contribution of
this work is given as follows:

• Hypergraph Payment Network. We provide an
overview of existing Layer-2 proposals and introduce a
generic framework to model them using the concepts of

hyperedges and hypergraphs.
• Clustering algorithms By analyzing the real-world LN

topology, algorithms to create hypergraphs are presented.
Edges in the LN topology are transformed into edges in
a hypergraph.

• Simulations using empirical data Several metrics of
performance are evaluated. We open source the imple-
mentation along with the used inputs and the synthetic
traffic data.

We structure the paper as follows. In Section II we expatiate
on L2 solutions, two-party and multi-party payment channel
implementations, and introduce related works. In Section III-A
we analyze the cost generated by multi-party channels. We
present the main contribution of this work in Section IV and
design multi-party topologies. In Section V the performance
of HPNs is evalutated using real data of from LN. Finally, we
conclude and present future directions in Section VII.

II. BACKGROUND

A. L2 Two-Party channels

To establish a payment channel, users utilize a message-
passing protocol to open and update channels. The funding
transaction of a channel is the initial transaction (performed
on-chain) generated between two users and it determines
the initial channel capacities. This transaction comes with a
timeout so that one of the users can publish the transaction
on the blockchain to recover funds. This way, users can
perform peer-to-peer transactions rapidly without updating the
blockchain for every transaction. In a refund transaction, both
users agree upon a new channel balance. A refund transaction
either directly invalidates previous refund transactions (Du-
plex Micropayment Channels [10]) or has a smaller timelock
value than the previous refund transaction (Eltoo [11] and
Lightning [12] channels), allowing users to publish it on the
blockchain earlier, making the previous refund transaction
unspendable. Refund transactions move the balance from
the channel capacity of one user towards that of the other.
Transfers are available as long as both capacities are greater
than zero. Creating a payment channel can be expensive as it
requires an on-chain transaction as well as locking money in
the channel. A user can establish a transaction with another
user even if they are not connected by a direct channel but
through a path of multiple channels involving other interme-
diary users. In these cases fees have to be paid by the user
establishing the transaction. Eventually – when users want to
close the channel – they publish the latest refund transaction
along with the capacity balance of each user.

1) Success Rate Issues: Although payment channels can
possibly increase tps and lead to reduced transaction fees there
are caveats to pay attention to. As shown in [13], even if a
payment network operates perfectly – no hardware ever fails,
every node has full information, transactions resolve instan-
taneously – no payment network can process every single
transaction. The authors of [13] argue that the transaction
success rate of a realistic PCN is much lower than 100%.
The main reason for an L2 transaction to fail can be the
lack of a path with sufficient capacity between transaction

2

endpoints. Even though in a large network such as LN there
might be paths between users, in many cases, there is no
available path due to channel unbalancing. When one side
of a bidirectional channel is utilized more than the other,
the channel becomes unbalanced. Should a transaction arrive
in the opposite direction, this unbalanced state gets slightly
mitigated [8]. Channel unbalancing can be an issue in Layer-
2 payment networks. Ways to alleviate this problem are being
investigated [14], [15], [16]. It has been demonstrated that
channel unbalancing can lead to increased fees [17], [18].
Although a higher capacity does not directly affect channel
unbalancing, a higher capacity locked on a channel increases
the chances of a transaction to succeed. According to a previ-
ous work [15] on the LN network nearly 63% of the channels
have depleted 80% of their capacity in one direction. The
simulation results in the same work have demonstrated that the
success rate in LN is approximately 65%. In Section V-B, our
simulation results on LN yields a similar success rate (68%).

2) Extension of Two-Party Channels: Virtual Channels can
be used to extend traditional two-party channels. These are
channels built upon existing payment channels and allow users
without a direct payment channel to perform payments. In
Perun [19], when two users (A and B) want to create a virtual
channel using a common intermediary (C) they both have a
channel with, A and B can lock funds to form channels with
C, and this creates a virtual channel. Once a virtual channel
is set up, A and B can perform transactions directly, without
any assistance from a third party.

B. Rollups

Rollups have shown explosive growth since their incep-
tion [20]. Various rollup solutions have been developed and
deployed on the Ethereum network. On certain days in 2022,
the TVL in optimistic and zk-rollups exceeded $4.5B (∼ 200
times the TVL of LN). Rollups, take on a completely different
approach when compared with payment channels by introduc-
ing the concept of rollup operators. They create a single giant
channel that all peers can join. To join this giant channel,
peers are requested to lock funds. This serves as an incentive
to follow the protocol. While zk-SNARK (zero-knowledge
Succinct Non-interactive Argument of Knowledge) [21], [22],
[23] based zk-rollups are computationally demanding, as they
publish a validity proof along with the state change optimistic
rollups skip this step and the state is assumed to be valid by
default and for a predefined amount of time the state change
can be challenged. zk-SNARKs are found to be computable in
a distributed manner [24] and further adoption is anticipated.

C. Multi-Party Channels

To improve upon the performance of two-party payment
channels, various studies have explored the potential of multi-
party payment channels. Here we list some of these solutions.

1) Channel Factories: In this framework, n participants
lock a shared amount of digital assets in a funding transac-
tion, enabling off-chain peer-to-peer transactions. Validating a
transaction requires signatures from ⌊n

2 ⌋+1 nodes. Originally
proposed by Burchert et al. [25], channel factories evolved

into Duplex Micropayment Channels [10]. Representative vari-
ations include Eltoo [11], which facilitates state updates by
invalidating prior transactions and Lightning Channels [2],
which incorporates additional mechanisms to deter fraudulent
activities. Pedrosa et al. [26] adopt these Lightning Channels
to design channel factories.

2) Sharding: Sharding as a scalability solution has recently
gained attention. Within this concept, transactions are split up
into distinct shards each of which is managed by appointed
group of nodes. Elastico [30] is a pioneering protocol that
addressed the problem of off-chain transaction processing
and the concept of intra-shard consensus was introduced.
Initially, the allocation of nodes to shards was achieved via
a pseudo-random process1 [31], [32]. Later, Monoxide [33]
introduced static sharding, in which the the allocation of
nodes to shards is fixed. A central challenge in sharding [33],
[34], [35], [30], [32] is effectively handling transactions that
involve nodes from different shards. These are commonly
refered to as cross-shard transactions. A promising approach
is to encourage nodes to participate in more than one shard,
acting as relay nodes or broker accounts for these cross-shard
transactions. Using our terminology, a cross-shard transaction
can be considered a two-hop path in a hypergraph, where each
shard constitutes a hyperedge.

3) Payment Hubs: These are also multiplexed payment
channels, using a centralized entity to enable transactions.
In NOCUST [27], an off-chain server serves as an n-party
hub through which users execute their transactions. This
architecture, however, presents a single point of failure due to
reliance on a third-party server. To mitigate issue, alternative
solutions like Gnocchi [28] employ a rotating supervisor S,
elected through consensus among hub members. This super-
visor validates and then broadcasts each transaction to all hub
participants. Similarly, Garou [29] designates a supervisor S
for each round to sequence transactions. Unlike NOCUST
and Garou (intra-hub transactions), Gnocchi enables inter-
hub transactions by managing active participants in multiple
hubs. A comparison of various payment hub architectures is
presented in Table II.

D. Multi-Party Channel Security

Given the critical importance of security in blockchain
systems, papers that present a multi-party solution address
the implementation’s security. Below, we briefly review the
security aspects of several of these solutions.

Gnocchi. In Gnocchi, all transactions are performed via
a leader. Assume Alice, Bob and Carol are part of a multi-
party channel, where Alice wants to move funds to Bob and
Carol is the leader. First, Alice and Bob sign the transaction
details and send it to Carol for approval. Once Carol approves
the transaction, she creates a new state representing the new
amount of funds Alice and Bob have, and both need to sign
on the new state. Only then, Carol can distribute the new
state to all channel participants. In Gnocchi, in case any of
the channel participants (including the leader) misbehave, any

1Nodes are required to solve a puzzle, and the resulting last few bits dictate
the shard assignment.

3

Table II: A comparison between different payment hub designs.

NOCUST [27] Gnocchi [28] Garou [29]
Topology Star Dynamic Star Dynamic Star

Third-Party Constant Operator Server Rotating Supervisor Rotating Supervisor
Who broadcasts the message Operator Server Supervisor Users

user can publish a Fraud-Proof and a penalty is enforced on
the malicious user [28].

This implementation guarantees several attributes. First, as
Alice and Bob sign the transaction and the new state with their
private keys, neither the leader nor any other user can publish
a state instead of them. Moreover, when a non-leader user is
disconnected (or refuses to cooperate), the only transactions
that may be affected are transactions performed directly with
this user (similar to two-party-channels). In case the leader
disconnects, transactions cannot be performed. Yet, as the
leader is not a permanent user rather it is a rotating role, leader
disconnecting affects users only for a small period of time.

Garou. In Garou, a rotating leader is used too, where each
leader remains the leader for a round (some time epoch).
In this implementation, transactions performed during some
round can be used only in a later round. Now, when Alice and
Bob want to transfer funds, they turn to Carol (the leader) to
get a unique transaction ID. This allows dealing with double
spending attempts. Using this ID, Alice and Bob create the
transaction and each user signs it with their private key. Carol
validates the transaction is valid, and signs the new transaction.
Now, the transaction which is signed by the private keys of
Alice, Bob and Carol can be distributed to users [29].

Similarly to Gnocchi, due to the use of private keys, no user
can send transactions instead of another user. Additionally,
when non-users disconnect, they affect only transactions they
are directly involved in, and if the leader disconnects it
affects only the current round. Finally, funds modified in a
transaction of some round cannot be used later in that round,
assuring all users have enough funds for the operations they
perform. Gnocchi additionally makes use of HTLCs for multi-
hop transactions, providing security in multi-hop transactions
similar to Lightning.

In this paper, we use multi-party channels to create an effi-
cient layer-2 network. Our algorithms and network designs do
not change the implementation of the channels, rather they deal
with the network structure and how to optimize it. Therefore,
we assume multi-party channel implementations provide the
needed security, and focus on the network topology, improving
transaction success rate and reducing fees.

E. Hypergraphs in Graph Theory

Traditionally, in a graph an edge connects two vertices. Such
graphs are also known as ordinary graphs. A hypergraph is
a generalization of a graph in which an edge can join any
number of vertices. Formally, a hypergraph is represented as
a pair (V,E) of vertices and hyperedges such that an edge
refers to a set of vertices of arbitrary size such that ∀e ∈ E it
holds that e ∈ V . We can refer to an edge as an ordered set of
vertices so that the hypergraph is directed. On the other hand,
in an undirected graph, we view an edge as an (unordered) set

of vertices. In d-regular hypergraphs, every vertex has degree
d and is included in d hyperedges.

Hypergraphs are often used to model relationships between
multiple entities. In network systems, hyperedges model multi-
cast or broadcast communication. In such a system, a message
is sent simultaneously from one entity to multiple entities. A
hyperedge can represent a single communication that involves
multiple recipients, making it easier to handle group commu-
nications [36]. Hypergraphs are widely used in blockchain
systems as well. For instance, [37] proposes a hypergraph-
based adaptive consortium blockchain (HARB) framework to
coordinate Distributed Energy Resources (DERs) in peer-to-
peer decentralized energy trading. Specifically, they use hyper-
graphs to represent complex relationships between resources
and end users. In [38], hypergraphs are used to organize
storage nodes in a hypergraph-based blockchain model for
Internet of Things (IoT)-enabled smart homes.

In this paper, we focus on undirected hypergraphs and often
consider d-regular for various d values such as 3, 20 and 50.
We use hypergraphs to present a payment channel between
multiple blockchain users, improving the network performance
and allowing the decrease of network fees.

F. Related Work

There have been several proposals in the scientific litera-
ture to improve upon the scalability properties of blockchain
networks. Flow in [39] for instance is trying to decouple the
consensus algorithm from the actual computation happening
onchain. PCNs are also promising solutions to the same issue,
and among them, LN has gained popularity in recent years
and these days even resource-constrained IoT devices [40]
can use the PCN. Since the advent of LN, some work has
been devoted to improving the protocol. Sprites [41] reduces
the cost incurred by escrowing funds in |E| channels for
wd time from O(|E| · wd) to O(|E| + wd). Teechain [42]
for example proposes to use trusted execution environments
(TEE) and committee chains to achieve asynchronous chain
access with improved transaction throughput. The issue of
channel rebalancing [43], [7] to improve user experience in the
network is also actively researched, and similarly, Flash [44]
and Spider [45] try to increase the transaction success rate by
mitigating the chances of the channels becoming unbalanced.
Efficient payment routing strategies in Layer-2 payment net-
works are also being investigated [8].

Some works were aimed at clarifying whether the L2
payment networks are truly decentralized. In [46] the authors
theorise about the Gini coefficient of the centrality measures
of the nodes and find that there are heavy centralization
trends in the network. To uncover other types of vulnerabilities
in the network there are works devoted to privacy-related
investigations. One of the main privacy issues [47] is the

4

visibility of channel balances [48]. A minute analysis of the
problem, for example is given in [49]. In [50] Nisslmueller
et al. define a probing attack to expose channel capacities
and a timing attack to uncover distances in the network that
would enable an attacker to analyze network states. Further
enumerating the potential vulnerabilities, the authors of [51]
find that a small fraction of the nodes can deny service
to a large fraction of the network by hijacking transaction
routes. Other works have shown that node isolation attacks
and channel exhaustion [52], [53] can also have devastating
consequences.

III. L2 CHANNELS AND FINANCES

Here we first review some of the latest scientific works
on the financial aspects of operating L2 payment channels
to motivate our cost model and to give some background to
our mathematical formalism based on previous investigations.
After this review, the mathematical model of the cost function
in an HPN is given.

A. Financial Incentives

The financial aspects of payment channels have also been
extensively researched. In [54], for example the authors pro-
pose the necessary algorithms to optimize routing rewards
when placing an LN node. Béres et al. in [55] estimate
such revenue from transaction fees and they supplement their
work with a traffic simulator for LN. Similar work has been
documented in [56] to uncover the peculiarities in the demand
market once LN grows substantially large and to elucidate
the effect of increased adoption in the network on the price
of the native token. Methods to optimize graph structures for
Payment Service Provider (PSP) for profit maximization are
proposed by Avarikioti et al. in [57] and DMC for PSPs
are proposed in [10]. Furthermore in [58] the authors give
a detailed overview of how Bitcoin transaction networks
including LN have evolved since the genesis block of the
Bitcoin blockchain intending to find the correlation between
the price of the chain’s native token and the network param-
eters. A thorough discussion with both analytic formulas and
simulation results in a similar topic is given in [12] to elucidate
the emergence of a connected component in the network.

B. HPN Cost Model

We now confine our attention to multiplexed payment
channel solutions and evaluate the concomitant operating cost.
Taking already existing implementation as a basis we create
hyperedge topologies (IV). To estimate the cost of an HPN a
generic cost function is defined as an admixture of 3 terms:
wc The fixed cost of a hyperedge (L1 transaction)
wd The interest paid to nodes on the escrowed funds
ws The signaling overhead for each transaction in the

hyperedges
The exact values of wc, wd and ws can be approximated by

analyzing the underlying blockchain technology, energy prices
and other economic factors. The total cost of running an HPN
for a given period of time in our model is:

wc · sc + wd · sd + ws · ss , (1)

where sc is the total cost of setting up the channels, sd
is the cumulative amount of deposits and ss is the total
cost of signaling and cryptographically signing messages of
transactions.

The total cost of setting up the channels is

sc =
∑
∀v∈V

|N(v)| , (2)

where |N(v)| is the number of hyperedges (clusters) node
v is adjacent in the HPN topology. In our model, the cost
of opening a channel is simply a transaction fee on the L1
chain. Signaling costs (ss) can be calculated from the set
of transactions T initiated in a certain time interval (1 year
in our case). Additionally, H(t) represents the number of
channels (path length) used when executing transaction t. For
each transaction t ∈ T the set of hyperedges traversed by the
transaction is denoted by Et. The signaling cost then becomes:

ss =
∑
∀t∈T

H(t) ·
∑

∀e∈Et

|e| , (3)

where |e| denotes the size (cardinality) of the hyperedge
e. Note that in the original LN implementation |e| = 2
(channels with 2 endpoints). For more users in the hyperedge
a distributed protocol is needed to track state changes. In
this case, hyperedge e with |e| parties incurs a signaling
overhead of ws · |e| for each transaction that has taken place
over the edge. Users operating nodes in the HPN should be
compensated for the opportunity cost of not earning interest
on their deposits. The interest rate (wd) multiplied by sd is the
amount hypothetically paid by the system to node operators.
Let cv,e denote the amount of cryptocurrency deposited by
node v in hyperedge e. Then

sd =
∑
v∈V

∑
e∈N(v)

dv,e , (4)

where e ∈ N(v) denotes the set of hyperedges containing
node v.

C. Evaluating coefficient costs

This section analyzes Bitcoin data to understand the costs
of creating and operating a multi-party-channel network. We
evaluated the construction costs which depend on the price
of executing layer-1 transactions, and the transaction costs
which depend on the fees used by the channels. Since Bitcoin
has an existing large PCN network, Lightning, while Raiden
(Ethereum’s PCN) is rarely used, we perform our cost analysis
on Bitcoin data. The evaluated values will be used later in
Section V.

1) Construction Fee: In Bitcoin, the transaction fee com-
prises the transaction size and the fee rate, such that Fee =
transaction size·fee rate. A Bitcoin transaction comprises
the following fields: version, inputs, outputs and locktime.
While the version and locktime are usually 4 bytes long, each
input and output is usually of size 100-150 bytes for SegWit
transactions (a storage-efficient transaction) and 150-200 bytes

5

0 1 10 10
0

10
00

>
10
00
0

0

20

40

Base Fee (SAT)

Pr
ec

en
ta

ge
(%

)

Figure 2: Lightning base fee histogram. The base fee of a
transaction is fixed regardless of the size of the payment.

0 1 10 10
0

10
00

>
10
00
0

0

10

20

30

Rate Fee (SAT)

Pr
ec

en
ta

ge
(%

)

Figure 3: Lightning rate fee histogram. The rate fee is multi-
plied by the transaction size when evaluating the total fee.

for non-SegWit transactions. This means that the more inputs
(and outputs) a transaction consists of, the larger it is, and ac-
cordingly the fee charged for publishing it increases. Ethereum
has a similar fee model, using Gas (unit of measurement for
the computational effort required to execute a transaction). The
transaction fee is evaluated based on the Gas used and the Gas
price (fee): Fee = Gas used ·Gas price.

Based on data gathered from Mempool2, a blockchain
explorer tool, the average and median transaction rate fees
were around 10 Satoshi (SAT) per byte. 1 SAT is one hundred
millionths of a bitcoin. For instance, as the average transaction
size was around 300 bytes, the fee for performing a Bitcoin
transaction is around 3000 SAT per transaction. Additionally,
adding an input or output to a transaction usually increases
the fee by 1000-2000 SAT.

2) Transaction Fee: When executing a PCN transaction,
intermediate nodes participating in the transaction transmis-
sion are rewarded with a fee. In Lightning, intermediate nodes
charge a fee of the form Fee = rate fee · tx size +
base fee [59]. In Raiden, the fee function additionally in-
cludes an imbalance fee that increases when the transaction
exhausts channel liquidity, trying to keep the channel bal-
anced [60]. We perform an analysis of Lightning’s state during
December 2022.

Fig. 2 presents the histogram of the base fees used in the
network. The majority of channels did not use any base fee
(46%), or used a base fee of 100 SAT (40%). Fig. 3 presents
the histogram of the rate fees used in the network. Most of
the channels used rate fees in the range of 1-100 SAT, with
34% of the channels using a rate fee of 1 SAT, 23% with
10 SAT and 29% using 100 SAT. Fig. 4 presents the CDF
(cumulative distribution function) of the total transaction fee

2https://mempool.space/

10−2 100 102 104 106 108 1010
0

0.2

0.4

0.6

0.8

1

Transaction Size (SAT)

C
D

F

103 SAT

104 SAT

105 SAT

106 SAT

Figure 4: Transaction fee CDF, for transactions of size 103,
104, 105 and 106 SAT.

for one channel, for transactions of size 103, 104, 105 and 106

SAT. For all four transaction sizes, 20% of the channels charge
a fee of 1 SAT or less. Additionally, no more than 1% of the
channels charge a fee higher than 6000 SAT. The average and
median fee charged by a channel depends on the transaction
size, though the majority of channels charge a fee between 1
and 100 SAT.

Finally, we evaluate the annual number of transactions.
A research report performed by River, a regulated financial
institution, estimated the number of lightning transactions
performed during August 2023 was around 6 million [61].
Hence, in the evaluation section, we simulate 108 transactions
per year.

IV. CREATING HYPEREDGES IN PCNS

In traditional PCNs peers open channels between one an-
other by escrowing digital assets into multisig addresses. This
structure can be greatly improved upon by not limiting the
constructions to 1-to-1 channels. One can design a structure
with more degrees of freedom by enabling n-to-n channels
in payment networks. A handful of proposals to implement
n-to-n channels in payment networks were enumerated in
Section II-C.

A hyperedge e comprises a set of nodes Ve and each node
v ∈ Ve has a capacity ce,v that is the amount of cryptocurrency
locked in the blockchain by node v when entering the channel
e. The capacity of hyperedge e is denoted by ce and we express
it as ce =

∑
v∈Ve

ce,v . Note that the capacity of the hyperedge
remains the same as long as the channel is open and not
updated. However, the values of ce,v (node capacities) change
after each transaction. Each node v involved in a hyperedge e
can initiate transactions as long as its capacity remains non-
negative, i.e. ce,v ≥ 0. The two extreme solutions are (1)
if every edge has two end nodes as in LN or (2) when the
network is composed of a single giant hyperedge with all
the nodes involved. We are also interested in the in-between
solutions for a given network with hyperedges of certain sizes.
We estimate the hypergraph topology by analyzing the LN
topology and replacing a set of edges with a hyperedge. The
edges of the LN topology are treated as relationships between
the parties which should then be inherited in the hypergraph
topology. The following rules of thumb are used to construct
a hypergraph from an LN topology. Our principal goal is to
have hyperedge e with a set of nodes Ve

• spanning a connected subgraph in the LN topology,

6

• with cardinality at most mmax,
• spanning a subgraph in the LN topology with a small

diameter,
• ideally, span a subgraph in the LN topology with high

connectivity (e.g., a clique).
We refer to this process as clustering the edges into hyper-

edges. Fig. 1 shows an example of this procedure, in which we
take the original LN topology G = (V,E) as a reference (Fig.
1 top), and replace the edges with hyperedges (Fig. 1 bottom)
to get 5 different, albeit overlapping hyperedges (e1, . . . , e5)
in hypergraph H = (V, E). For example, hyperedge e1 is
understood as covers by nodes {v7, v4, v3} composing LN
edges (v7, v4) and (v4, v3). Assuming the edge capacities were
2 BTC in LN and they were split equally between its end
nodes, the capacity of e1 is 4 BTC, where node v1 locked
ce1,v1 = 2 BTC and v7 and v3 locked 1 BTC when establishing
the channel.

A. HPN Topologies

Commencing from the original LN topology we develop
methods to restructure the network to improve performance.
In Section V we evaluate these topologies. Below we introduce
these topologies in great detail.

1) LN Original Topology: The original topology is taken as
a snapshot of LN. In this topology the majority of nodes were
connected in one major connected component. Only channels
with active status were used. While channel capacities are
known, directed capacities are unknown. In our calculations
we use equal capacities in both directions.

2) LNrollup: This is taken as a hypergraph composed of
a single hyperedge covering every node of the network.

3) SuperNode Topology (SN): Wu and Jiang in [62] pur-
sued a similar aim and proposed a PCN based on a handful of
main nodes (supernodes) holding most of the network capacity.
Each user is connected to one supernode and supernodes
with regular-node neighbors, form clusters. Regular nodes
are connected only to the supernode, and the supernodes are
connected to each other. This model is motivated by the fact
that users might lock large amounts of capacity in the network,
yet, since it is split between multiple channels, the capacity in
each channel is smaller and the channel becomes unbalanced
and unusable more frequently.

Here we redesign the LN topology based on the algorithms
of Wu and Jiang to create an SN network from the LN network.
Algorithm 1 is used for choosing supernodes. With the list of
supernodes we create clusters with 1 supernode per cluster.
In SN, each cluster represents a multi-party channel. Edges
of non-supernode nodes are removed, and edges between
supernodes are treated as bi-directional channels between
clusters.

Algorithm 1 works as follows. Each node u with a unique
id ID(u) is initialized as a supernode. The algorithm iterates
over all nodes to remove them from the set of supernodes. If
node u has two neighbors s, t such that there is an edge s− t
connecting them, we remove u from the list of supernodes.
u also holds a local 2-hop view (nodes of a distance of at
most 2 edges from u). For some nodes u some neighbors, s

and t might be connected using a path from the local 2-hop
view of u with x on the path ID(x) > ID(u). In this case,
we remove u from the list of supernodes. Upon termination,
every node is treated either as a supernode or as a neighbor
of a supernode.

Since the original LN topology can be computationally
challenging to handle we restricted paths to be of at most
4 edges when checking if node u should be removed when
running the algorithm. At the end of the algorithm, every
node u, that was not marked as a supernode is assigned to a
supernode (randomly chosen between u’s supernode neighbors
if there are more than one cluster for u). From this point, the
total capacity on u’s edges in the original graph is locked in the
multi-party channel of this cluster. For a supernode v, v is part
of the cluster that was constructed by adding its neighbors. The
capacity of v in edges connecting other clusters is the same
as in the original network. The capacity of v in a multi-party
channel represented by the cluster is calculated as the sum of
capacities locked on the corresponding edges in the original
network between v and the nodes in the respective cluster.

Lemma 1. The complexity of Algorithm. 1 is O(|V |3 · 2|V |).

Proof. The loop in line 2 is performed |V | times. Since
each node has at most |V | neighbors, the loop in line 4 is
executed at most |V | times. The loop in line 7 is iterated at
most |V |2 times. The if statement in line 11 requires going
over all possible paths between u and v, the complexity
of this operation is O(2|V |). Hence, the total complexity of
Algorithm. 1 is O(|V |3 · 2|V |).

Algorithm 1 Select supernodes
Input: network topology undirected graph G = (V,E)
Output: list of supernodes S
Complexity: O(|V |3 · 2|V |)

1: S = V ▷ initial list of supernodes
2: for n in V do
3: Vn = NG(n) ▷ list of nodes within 2 hops
4: for u in NG(n) do
5: Vn := Vn ∪NG(u)

6: En = {(u, v)|u, v ∈ Vn and (u, v) ∈ E}
7: for u, v in NG(n) do
8: if (u, v) ∈ E then
9: S := S \ {n}

10: else ▷ ID() is the unique id of the node
11: if ∃P = u− u2 − ...− ul−1 − v,
12: s.t ID(u2) > ID(u3) > ... > ID(ul−1)

and ∀ui ∈ P : (ui, ui+1) ∈ En then
13: S := S \ {n}
14: return S

4) Node Cover Hypergraph (NCH): A hyperedge graph is
composed of hyperedges instead of channels. Each hyperedge
represents a multi-party channel, where users have capacities
in the hyperedges they belong to. Direct payments are per-
formed via the multi-party channel (i.e. inside the hyperedge)
and multi-hop payments (payments between users located in
different hyperedge) are performed through users participating

7

in the two respective hyperedges. Given a PCN network topol-
ogy graph (e.g. LN), an NCH graph can be created as follows.
First, an approximated minimal vertex cover is computed.
Then, for each node in the vertex cover, all neighbors are
added to a group and a hyperedge is created. The total capacity
of each node in the original network is distributed evenly
between all hyperedges associated with the node. We note
that the intuition behind our approach is to set up hyperedges
between nodes that were adjacent in the original LN topology.
We assume that these edges were originally created due to
their advantages, meaning many payments passed through
them. When selecting the end nodes of the hyperedges, we
aim to preserve this property so that as many payments as
possible are direct transactions between users. NCH graphs
were created using Algorithm 2. Given a regular PCN network
G (e.g. the original LN topology), this algorithm computes
an approximated minimal vertex cover. using NetworkX’s
min_weighted_vertex_cover function [63]. Note that
every step of Algorithm 2 is deterministic, and assuming that
every participant is aware of the same topology, it can be run in
a decentralized network with no trust assumption whatsoever.

Lemma 2. The complexity of Algorithm 2 is O(|E| log |V |).

Proof. It may on the face of it seem impossible to compute an
ideal vertex cover (being NP-hard), but approximations can be
achieved at the cost of O(|E| + |V |) [64] or O(|E| log |V |)
[65]. Therefore line 2 can be run for either O(|E| + |V |)
or O(|E| log |V |). As VC ⊆ V , the loop in line 3 is per-
formed at most |V | times, and as each node has at most
|V | neighbors, the complexity of lines 3-5 is O(|V | log |V |).
Therefore, assuming |E| ≥ |V |, the complexity of Algorithm 2
is O(|E| log |V |).

Algorithm 2 Create NCH
Input: network topology graph G = (V,E)
Output: hypergraph H = (V, E)
Complexity: O(|E| log |V |)

1: Initialize a hypergraph H with node set V , and E = ∅
2: Compute G’s vertex cover: VC

3: for c in VC do
4: The neighbors of node c in G is Ve

5: Add a new hyperedge to nodes Ve to H

6: return H

5) Fixed Hyperedge Size (FHS): As in an NCH topology,
the hyperedges are not necessarily of the same size and the
algorithm imposes no restrictions on the allowed hyperedge
size. Given a PCN network G and a parameter indicating
the maximal hyperedge size mmax, Algorithm 3 presents an
algorithm transforming a regular PCN network to a hyperedge
network with a restriction on the maximal hyperedge size. At
each iteration, the algorithm finds the node with the highest
degree in G and its mmax closest neighbors. It then creates
a hyperedge from these nodes and removes inner-hyperedge
edges from G. It also removes nodes with degree 0. The
algorithm returns a hyperedge network with a constraint on

100 101 102 103 104 105
100

102

104

Hyperedge count

H
yp

er
ed

ge
si

ze

LN
LNrollup
SN
NCH
FHS-3
FHS-5
FHS-20
FHS-50
FHS-500
FHS-5000

Figure 5: Hyperedge Sizes Distribution.

the maximal hyperedge size mmax. This allows one to control
signaling costs.

Lemma 3. The complexity of Algorithm 3 is O(|E| · (|E| +
|V |)).

Proof. At each iteration, at least one edge is removed and
there are at most |E| iterations. Finding nodes with the highest
degree is performed in O(|V |) steps. Running the breadth first
search (BFS) algorithm at line 3 is performed in O(|E| +
mmax) steps. Lines 5-7 take (for all iterations) O(|E|+ |V |)
operations in total. mmax is the maximum number of nodes in
each hyperedge. As such, it must be smaller than |V |, therefore
the complexity of Algorithm 3 is O(|E| · (|E|+ |V |)).

Algorithm 3 Generate FHS
Input: network topology G, max hyperedge size mmax

Output: hypergraph H = (V, E)
Complexity: O(|E| · (|E|+ |V |))

1: Initialize a hypergraph H with node set V , and E = ∅
2: while G is not empty do
3: Find the node v with the highest degree
4: Run BFS visiting mmax nodes in G, denoted by Ve

5: Remove the edges between Ve ∈ G.
6: Remove the nodes which became isolated in G.
7: Add a new hyperedge among nodes Ve to H

8: return H

V. EVALUATION

In this section, we evaluate the performance of the topolo-
gies from Section IV:

1) original LN topology (LN),
2) LNrollup topology,

Table III: The parameters of the LN transaction generator [55]
used in our evaluations. for LN.

Node alias Capacity rank Channel rank Payment target ratio (%)
ln.nicehash.com [Nicehash] 8 5 9.64
CoinGate 39 4 6.15
1ML.com 191 3 4.23
Moon (paywithmoon.com) 27 21 3.62
Lightning.Watch 237 27 2.38
The Captain [Coincept.com] 83 71 1.90
Blixt Wallet 87 95 1.84
coinhodler04108 54 93 1.72
Narodowy Bank Polski 140 67 1.54
1sats.com 17 70 1.53

8

20 40 60 80 100

1

2

3

Locked Capacity %

A
ve

ra
ge

Pa
th

L
en

gt
h

LN

LNrollup

SN

NCH

FHS-3

FHS-5

FHS-20

FHS-50

FHS-500

FHS-5000

Figure 6: The percentage of the original capacity needed to be
locked to achieve a success rate will reach exactly 70%, and
the average path length in that case.

3) Supernode Topology (SN),
4) Node Cover Hypergraph (NCH),
5) Fixed Hyperedge Size (FHS-x), x is the number of nodes

of each hyperedge.
Fig. 5 shows a histogram of the edge sizes in these topolo-

gies. In the case of LN and SN we use bidirectional channels,
which are equivalent to hyperedges of size 2. For LNrollup
and FHS we use constant-sized hyperedges too and for the
NCH topology we use hyperedges of varying sizes, having the
majority of hyperedges containing less than 50 nodes. In the
case of the NCH topology we rely on a few large hyperedges
and the largest hyperedge contains 350 nodes.

We follow previous works [62], [66], [67] and use the
transaction success rate and the average hop size as our
evaluation metrics. The network evaluation is done by serv-
ing generated transactions (see Section V-A). Accordingly,
throughout the paper, we refer to transactions of size 60000
SAT. In Fig. 7a, though, we evaluate the topologies’ success
rate for various transaction sizes derived by multiplying their
original transaction size by factors of ×0.01, ×0.1, ×10, ×50.

A. Simulations with Empirical Data

Simulating real-life transactions in LN is no easy task as
currently there is no way to pry into the actual transaction
amounts on the edges between two parties. We surmount this
difficulty by running simulations and we approximate the cost
functions. To this end, we make use of the LN transaction
generator presented in [55], using an updated merchant list
for 2022 to select transaction endpoints. For reproducibility
(and for a more detailed explanation), we publish the traffic
traces and LN topology in a GitHub repository3 which will
be replaced with our original repository in the final version
of the paper. We proceed analogously as described in [55] to
utilize the 1ML LN Search and Analysis Engine4. By doing
so we found 302 merchant nodes also present in our LN
data. We sample 80% of payment target nodes using a biased

3https://github.com/iAradK/improving-Blockchain-Scalability-with-
Hypergraph-Payment-Networks

4https://1ml.com/directory

×0.1 ×1 ×10 ×50
0

25

50

75

100

relative transaction value

su
cc

es
s

ra
te

(%
)

(a) Success rate

×0.1 ×1 ×10 ×50

1

2

3

relative transaction value

pa
th

le
ng

th
(#

ch
an

ne
ls

)LN
LNrollup
SN
NCH
FHS-5
FHS-50
FHS-500
FHS-5000

(b) Average path length

Figure 7: A comparison of the success rate and the average
path length compared to the size of the transactions.

distribution skewed towards merchants. We use probabilities
proportional to their degree of importance to account for
the flow of payments in the network in the direction of
service providers. Payment sources and the remaining 20%
of target nodes are sampled uniformly at random for the
simulation. Table III shows the ten most frequently sampled
payment target nodes in our simulations. For faster evaluation,
we evaluated traces of 104 transactions and multiplied the
respective cost by 105 to obtain sd for 108 transactions.

B. Success Rate

Fig. 7 presents a comparison between the success rate,
average hop number and network performance for different
transaction sizes. From Fig. 7a, we conclude that LN performs
with the worst success rate (only 67.21%). The success
rates for transactions of size ×10 and ×50 were 20% and
3%, respectively, less than half of the success rate of NCH.
LNrollup (and similarly FHS-5000) yields the best success
rate (86%). When scaling the transaction amounts to ×10 the
success rate decreases to 58% and after scaling the transaction
to ×50 it drops to 36%. The SN topology performs with
a slightly lower success rate than the NCH topology, except
for the ×50 transactions for which it drops to 20%. Note
for comparison that the success rate of NCH drops to 10%.
The NCH topology produces similar results to the FHS-50
topology, except for the case of ×50 of the transaction amounts
for which the FHS-50 performs with a success rate of 22%
while NCH does the same with a success rate of 8.4%. Fig. 7b
presents the average path length of transactions for different
topologies. With increasing hyperedge sizes, one gets shorter

9

Table IV: Performance and cost (in USD) of each topology for running the L2 network of 108 transactions with cost parameters
ws = 10−4, wc = 3 and wd = 0.2 USD.

topology avg node hyper- avg path locked ca- construction transact. cost interest paid total cost
name degree edge size length H(t) pacity [%] cost (sc · 3) (ss ·H(t) · 10−6) (sd · 0.2) [USD]
LN 10.99 2 2.6 105 743 592 159 328 2 456 224 3 359 144
LNrollup 1 11 268 1 21 67 608 151 051 300 491 246 151 610 154
SN 1.25 2 3.41 75 84 528 279 961 1 754 444 2 118 933
NCH 9.61 27 1.54 30 649 836 1 590 604 701 776 2 942 216
FHS-3 8.36 3 2.53 30 565 320 269 343 701 776 1 536 439
FHS-5 7.06 5 2.42 30 477 180 336 283 701 776 1 515 239
FHS-20 6.38 20 2.21 30 429 828 1 314 419 701 776 2 446 023
FHS-50 6.7 50 1.97 30 452 340 2 729 474 701 776 3 883 590
FHS-500 3.64 497 1.65 25 246 000 19 437 198 584 814 20 268 012
FHS-5000 1.34 4 674 1.34 22 90 000 117 461 371 514 638 118 066 009

paths. The paths are the longest in LN and SN topologies, on
average ≈ 2.4 and 2.95 edges. For the LNrollup topology,
the average path length was 1 as each node had a direct path to
all other nodes. The average path length of the NCH topology
is ≈ 1.55, a bit shorter than in the FHS-500 topology.

C. Reducing Locked Capacity

Recall that changes in the success rate must be imputed to
the capacity locked by participants. More capacity allows the
execution of higher-value transactions for longer times, espe-
cially when the channel is not balanced. Yet, higher capacities
require users to lock more funds implying an opportunity cost
as users could have used the funds elsewhere. According to
Fig. 7, different topologies perform differently. Here, we were
interested in the percentage of the original capacity of each
node that has to be locked to achieve a success rate of 70%.
Fig. 6 presents the original capacity locked when modifying
the original capacity to achieve a success rate of 70% (x-axis)
and the proper average path length (y-axis) in that case. We
observe that LN requires the most amount of capacity locked,
105% of the original capacity, to reach a success rate of 70%.
The average path length in this case is 2.6. Next, in the SN
topology 75% of the original topology has to be locked, having
an average path length of 3.41. For FHS topologies, the higher
the hyperedge size is the less capacity is required. Observe
that paths are shorter in this case. While FHS-3 requires 30%
of the original capacity and has an average path length of
2.53, FHS-5000 requires only 22% of the original capacity and
has an average path length of 1.34. NCH performs similarly
to FHS topologies, requiring 30% of the original capacity
to be locked while having a path length of 1.54. Finally,
LNrollup requires the least capacity (21%) and it operates
with the shortest average hop length (1). The above results
underline the auspicious performance metrics of the proposed
approaches when using both the NCH and the FHS topologies.
These results are illuminating in a sense that in both cases
we achieved less amount of locked funds and we managed
to decrease average path lengths while maintaining the same
success rate as in the original LN topology.

D. Cost Evaluation of Topologies

After evaluating the performance of the different topologies,
we now discuss the cost of each topology, using the cost model

presented in Section III-A. We assume the higher the cost of
constructing and maintaining the network will be, the higher
the fees users will need to pay. Hence, though some topologies
(such as LNrollup) seem to appear very good, they might
be very costly and thus unrealistic in practice. Recall that the
exact ws, wc, wd values can only be obtained by knowing the
underlying blockchain technology, the energy prices and other
economic factors. As such, we use an approximate cost model
in our analysis.

Table IV summarizes our findings for the cost parameters
ws = 10−6, wc = 3 and wd = 0.2 USD, when evaluating the
costs on the evaluation performed in Section V-C. The cost
parameters were driven from the analysis in Section III-C,
showing the cost of constructing a payment channel increases
by 1000-2000 SAT for each user. Using a BTC/USD exchange
rate of 1 BTC = 63000 USD, the cost of a user per channel
is around a few dollars per user. Hence, we use wc = 3;
Similarly, the transaction cost is around 10 SAT per transac-
tion. Thus, we assume the transaction fee for using a payment
channel is on a scale of around ws = 10−4 USD per channel.
All topologies achieve a success rate of 70%, showing multiple
trends.

As LNrollup, SN and FHS−5000 have a low node degree,
each node appears in few hyperedges hence the construction
cost is very low. In contrast, all other topologies have a rel-
atively high construction cost. NCH and FHS topologies have
low interest-cost since they require low capacity locked, while
in the LN and SN topologies the interest-cost is very high.
Additionally, as LN, SN, NCH and FHS−3−20 are composed
of relatively small hyperedges, the transaction costs of these
topologies are relatively small. Note that, LNrollup and
FHS− 5000 come with enormous transaction fees. According
to our results, FHS − 3 and FHS − 5 achieved the lowest
total, having costs 50% lower than LN. Moreover, SN, NCH
and FHS − 20 had fees lower than LN.

E. Cost Parameter Sensitivity Test

Table IV shows our findings for the different topologies in
regards to cost parameters ws = 10−4, wc = 3 and wd = 0.2
USD. Though, when looking at the various cost components
each implementation had its advantages and disadvantages.
For instance, although the total cost of LN is higher than
small-hyperedge-topologies, it has the lowest transaction cost.

10

101 102 103 104
106

107

108

Avg. hyperedge size

an
nu

al
to

ta
l

co
st

($
) LN

LNrollup

SN

NCH

FHS-3

FHS-5

FHS-20

FHS-500

FHS-5000

(a) The annual total cost (ws = 10−6, wc = 3 and wd = 0.2 USD)

101 102 103 104

105

106

Avg. hyperedge size

co
ns

tr
uc

tio
n

co
st

(b) The cost of entering a multi-payment channel (wc = 3)

101 102 103 104
105

106

107

108

Avg. hyperedge size

tr
an

sa
ct

io
n

co
st

(c) The signaling overhead for each transaction (ws = 10−6)

101 102 103 104

106

Avg. hyperedge size

in
te

re
st

pa
id

(d) The interest paid to nodes on the escrowed funds (wd = 0.2 USD)

Figure 8: The cost of various payment networks vs. the hyperedge size after 108 transactions for a transaction success rate of
70%

This might imply that the optimality of an implementation
might rely on the cost parameters, as for a network with low
construction and interest fees with high transaction fees, LN
might be considered.

To illustrate these trends Fig. 8 shows the cost metrics of
the investigated topologies in Table IV. The average size of the
hyperedges is measured on the horizontal axis. Three factors
contribute to the cost: The construction cost sc, transaction
cost ss and interest paid sd. Two of these factors, the con-
struction cost and the interest paid, decrease as the hyperedge
size increases, while transaction costs increase with hyperedge
size. Fig. 8b displays construction costs (the cost of 2 on-
chain transactions) with respect to the hyperedge size. As the
construction cost is the sum of the sizes of all hyperedges,
it depends on the average node degree. In FHS, the general
tendency is for larger hyperedge sizes the average node degree
decreases: While for FHS − 3 the node degree is 8.36, for
FHS − 5000 the average node degree decreases to only 1.34
and the construction fees are 5.65·106 and 9·104, accordingly.
Moreover, LN and NCH have an average node degree of ∼ 10,
and SN has a very low average node degree, 1.25 (resulting in a
low construction cost of 8.4·104), since besides the supernodes
every node appears only in one cluster.

For small hyperedges, one is faced with a capacity frag-
mentation problem. More specifically, more funds have to be
locked in the channels to keep the same success rate, as seen
in Fig. 8d, leading to a higher interest paid. We see LN and
SN need to lock almost 3 times more capacity than the other
implementations.

On the other hand, for larger hyperedges, we have a higher
signaling overhead, as more nodes must be informed when
channel capacities change, as seen in Fig. 8d. We kept the
rest of the factors fixed, however, we are aware of the fact

Table V: Performance and the cost of running the L2 network
with 108 transactions for cost parameters with lower interest
paid fees: ws = 10−4, wc = 3 and wd = 0.1 USD.

topology construction transact. cost interest paid total cost
name (sc · 3) (ss · 10−4) (sd · 0.1) [%] [USD]
LN 743 592 159 328 1 228 112 2 131 032
LNrollup 67 608 151 051 300 245 624 151 364 532
SN 84 530 279 961 877 222 1 241 713
NCH 649 836 1 590 604 350 888 2 591 328
FHS-3 565 320 269 343 350 888 1 185 551
FHS-5 477 180 336 283 350 888 1 164 351
FHS-20 429 828 1 314 419 350 888 2 095 135
FHS-50 452 340 2 729 474 350 888 3 532 702
FHS-500 246 000 19 437 198 292 408 19 975 606
FHS-5000 90 000 117 461 371 257 320 117 808 691

Table VI: Performance and the cost of running the L2 network
with 108 transactions for cost parameters with high transaction
cost fees: ws = 10−4, wc = 6 and wd = 0.2 USD.

topology construction transact. cost interest paid total cost
name (sc · 6) (ss · 10−4) (sd · 0.2) [USD]
LN 1 487 184 159 328 2 456 224 4 102 736
LNrollup 135 216 151 051 300 491 246 151 677 762
SN 169 056 279 961 1 754 444 2 203 461
NCH 1 299 672 1 590 604 701 776 3 592 052
FHS-3 1 130 640 269 343 701 776 2 101 759
FHS-5 954 360 336 283 701 776 1 992 419
FHS-20 859 656 1 314 419 701 776 2 875 851
FHS-50 904 680 2 729 474 701 776 4 335 930
FHS-500 492 000 19 437 198 584 814 20 514 012
FHS-5000 180 000 117 461 371 514 638 118 156 009

that fluctuations in the exchange rate of the native coin can
influence our results.

Since the parameter set affects the total cost of the imple-
mentation, Table V presents the costs of each topology when
the interest paid is low, and Table VI presents the costs of each
topology when the construction cost is high. Table V shows
that when the interest is low, NCH becomes more expensive
than LN. FHS−3 and FHS−5 are still the cheapest. Similarly,

11

when the construction cost is as high as in Table VI, FHS− 3
and FHS−5 still performs the best, and NCH performs better
than SN.

To summarize our findings, FHS−3 and FHS−5, NCH and
SN can yield the same performance as LN for a much lower
cost. Although SN and LN deliver low transaction fees and
while FHS and NCH exhibit low interest paid as much less
capacity is locked by the participants, in non-extreme cases
FHS is still the most cost-efficient implementation.

VI. CHALLENGES AND FUTURE WORK

A. How to Add Nodes?

Previously in Section IV we described how NCH and FHS
can be created from an existing L2 network. However, PCN
networks must be dynamic as users join and leave the network.
For this, we introduce an algorithm that can be used when
new nodes want to join hypergraph-based payment networks
utilizing our constructions. New nodes have to let each other
know of their intents and once the number of new nodes
surpasses a certain threshold Algorithm 4 is executed. The

Algorithm 4 Add Nodes
Input: hypergraph H , list of nodes V , sequence number
i, hyperedge size m
Output: hypergraph H ′, sequence number i′, new nodes
L′

Complexity: O(|V | · log |V |)
1: Set H ′ = H,V ′ = V, i′ = i+ 1
2: For each node v ∈ V , calculate: hv = Hash(v, i)
3: Sort L’ by node hashes
4: while |L′| > m do
5: Create hyperedge h from nodes L′

1, ..., L
′
m

6: Add h to H ′

7: Remove L′
1, ..., L

′
m from L′

8: return H ′, i′ and L′

algorithm takes the old topology, a new list of nodes, the
sequence number i (number of executions of the algorithm
up to now) and the hyperedge size n as input. The sequence
number i is used to introduce randomness to the algorithm
so that the same nodes are not added to the same hyperedge
at every execution. First, the algorithm calculates the hash
of each node with the sequence number i. Then, the list of
nodes is sorted by the hash values and for every group of
n nodes the algorithm creates a hyperedge. The hyperedges
are then added to the network. Finally, the algorithm returns
the new hypergraph with the new hyperedges, the incremented
sequential number (for future use when running the algorithm
again) and a list of nodes that were not allocated to a
hyperedge at this execution. Note that they might be added
if the algorithm is executed again.

Lemma 4. The complexity of Algorithm 4 is O(|V | · log |V |).

Proof. Sorting |V | nodes can be performed in O(|V |·log |V |).
Line 4 of the algorithm is performed at most |V | times, and
every other operation of the algorithm is performed in O(1).
Thus the complexity of Algorithm 4 is O(|V | · log |V |).

This implementation uses a greedy approach, simply adding
new users to a new random hypergraph. Future work will
examine this approach and study other joining mechanisms
that might create more optimal hypergraph structures.

B. Multi-Party Channel Implementation on Ethereum and
Bitcoin

The presented hypergraph network structure can be applied
to both Bitcoin and Ethereum. As Ethereum is Turing complete
and supports smart contracts, multi-party channels such as
Gnocchi and Garou can be easily implemented in Ethereum.
Yet, to be suitable for Bitcoin, these protocols require some
adjustments. For instance, Gnocchi’s design relies on smart
contracts for the fraud-proof mechanism. Moreover, a recent
paper proposes a new mechanism to implement smart contracts
in Bitcoin [68]. In Garou, another issue arises, as the protocol
depends on a smart contract to determine the round leader.
However, this can be resolved by implementing a deterministic
offchain protocol run by the channel participants to determine
the leader in each round. For example, Algorand [69] uses a
verifiable random function to deterministically elect a leader
each time a new block is mined. Similarly, [70] uses a leader-
election mechanism that can be run on Bitcoin. In future work,
we intend to implement these mechanisms to allow HPNs to
be implemented on Bitcoin too. Additionally, we intend to
evaluate their performance and compare HPN topologies in
different networks.

C. Demand-aware HPN Topologies

The current approach to creating HPN networks uses ex-
isting layer-2 topologies to create HPN-structured topologies.
Yet, the network’s structure might not always reflect user
demand. Instead, other parameters such as the transaction
demand, may assist in creating a more efficient network.
Recent work [71] discusses using layer-2 transaction demands
to create more efficient 2-party payment channel networks.
The paper additionally presets several algorithms to create
efficient topologies based on the transaction demand. The
transaction demand helps understand transaction trends, which
can then be used to design efficient hypergraphs. For instance,
two users that communicate frequently with each other should
be placed in the the same hyperedge, while nodes that do
not communicate can be in distant hyperedges. In the future,
we aim to study and evaluate hypergraph networks that are
created not only from the topology of a network but based
on its transaction patterns. Such networks have the potential
to increase the success rate, decrease the signaling costs and
reduce the amount of funds required to be locked.

D. Routing Payments and Capacity Allocation

This work takes a simple approach for routing, selecting
for a payment a path as the shortest available path. Past works
on payment channel networks studied optimizing the routing
of payments, improving the channel capacity balancing [45]
[44]. Balancing the routing of payments allows keeping a
payment channel available for the routing of transactions in

12

all its directions. Intuitively, balancing a hypergraph channel
does not require similar payment values for each pair of nodes,
but over time, aggregated change of close to 0 to each of its
participating nodes. Similarly, another degree of optimizing
refers to the allocation of capacity [9]. A node often has
limited capacity that should be divided between the channels it
takes part in. Extending the shortest path approach for routing
that balances hypergraph payment channels and optimizing the
capacity allocation is an interesting task for future work.

VII. CONCLUSION

In this work, we studied the potential of improving L2
solutions using hypergraph payment networks (HPNs). Several
HPN topologies were suggested and their performance was
evaluated, comparing them to the original Lightning Net-
work and other state-of-the-art topologies, showing that HPN
topologies can improve performance and reduce fees. The use
of these topologies undoubtedly can have beneficial effects on
L2 blockchains and they can be used to address scaling-related
challenges. We see many potential avenues for future research
such as the evaluation of more realistic cost functions to find
ideal HPN topologies. Additionally, we aim at the evaluation
of HPNs built not only based on the original network topology
but also based on real-life transaction patterns. Finally, we set
forth new directions of research to study the security of the
proposed HPN solutions.

ACKNOWLEDGMENTS

The authors thank Ferenc Béres for his assistance with the
LN transaction generator.

REFERENCES

[1] C. Grunspan and R. Pérez-Marco, “Double spend races,” International
Journal of Theoretical and Applied Finance, 2018.

[2] J. Poon and T. Dryja, “The Bitcoin Lightning network: Scalable off-
chain instant payments,” 2016.

[3] “Raiden network,” http://raiden.network/, 2017.
[4] J. Poon, “Plasma : Scalable autonomous smart contracts,” in

White paper, 2017. [Online]. Available: https://api.semanticscholar.org/
CorpusID:13266881

[5] C. Grunspan, G. Lehéricy, and R. Pérez-Marco, “Ant routing scalability
for the Lightning network,” ArXiv, vol. 2002.01374, 2020.

[6] C. Grunspan and R. Perez-Marco, “Ant routing algorithm for the
Lightning network,” CoRR, vol. 1807.00151, 2018.

[7] R. Khalil and A. Gervais, “Revive: Rebalancing off-blockchain payment
networks,” in ACM SIGSAC Conference on Computer and Communica-
tions Security, 2017.

[8] B. Ladóczki and Z. Luo, “Routing fee adjustment strategies in payment
channels,” in Int. Conference on Blockchain Computing and Applications
(BCCA), 10 2023, p. 7.

[9] Y. Podiatchev, A. Orda, and O. Rottenstreich, “Survivable payment
channel networks,” IEEE Trans. Netw. Serv. Manag., vol. 21, no. 6,
pp. 6218–6232, 2024.

[10] C. Decker and R. Wattenhofer, “A fast and scalable payment network
with bitcoin duplex micropayment channels,” in Stabilization, Safety,
and Security of Distributed Systems, 2015.

[11] C. Decker, R. Russell, and O. Osuntokun, “Eltoo: A simple layer 2
protocol for bitcoin,” White paper: https://blockstream. com/eltoo. pdf,
2018.

[12] S. Bartolucci, F. Caccioli, and P. Vivo, “A percolation model for the
emergence of the bitcoin lightning network,” Scientific Reports, vol. 10,
p. 4488, 03 2020.

[13] A. Goel and G. Ramseyer, “Continuous credit networks and layer
2 blockchains: Monotonicity and sampling,” in ACM Conference on
Economics and Computation, 2020.

[14] S. S. Sahoo, M. M. Hosmane, and V. K. Chaurasiya, “A secure payment
channel rebalancing model for layer-2 blockchain,” Internet of Things,
vol. 22, p. 100822, 2023.

[15] M. Conoscenti, A. Vetro, and J. C. De Martin, “Hubs, rebalancing and
service providers in the lightning network,” IEEE Access, vol. 7, p.
132828, 2019.

[16] A. Gangwal, H. R. Gangavalli, and A. Thirupathi, “A survey of layer-two
blockchain protocols,” Journal of Network and Computer Applications,
vol. 209, p. 103539, 2023.

[17] A. Kotzer and O. Rottenstreich, “Braess paradox in layer-2 blockchain
payment networks,” in IEEE International Conference on Blockchain
and Cryptocurrency (ICBC), 2023.

[18] A. Goel and G. Ramseyer, “Continuous credit networks and layer
2 blockchains: Monotonicity and sampling,” in ACM Conference on
Economics and Computation, 2020.

[19] S. Dziembowski, L. Eckey, S. Faust, and D. Malinowski, “Perun: Virtual
payment hubs over cryptocurrencies,” in IEEE Symposium on Security
and Privacy (SP), 2019.

[20] A. Kotzer, D. Gandelman, and O. Rottenstreich, “SoK: Applications of
sketches and rollups in blockchain networks,” IEEE Trans. Netw. Serv.
Manag., vol. 21, no. 3, pp. 3194–3208, 2024.

[21] S. Micali, “Computationally sound proofs,” SIAM Journal on Comput-
ing, vol. 30, no. 4, p. 1253, 2000.

[22] C. Gentry and D. Wichs, “Separating succinct non-interactive arguments
from all falsifiable assumptions,” in ACM Symposium on Theory of
Computing (STOC), 2011.

[23] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer, “From extractable
collision resistance to succinct non-interactive arguments of knowledge,
and back again,” in Innovations in Theoretical Computer Science Con-
ference, 2012.

[24] H. Wu, W. Zheng, A. Chiesa, R. A. Popa, and I. Stoica, “DIZK: A
distributed zero knowledge proof system,” Cryptology ePrint Archive,
Paper 2018/691, 2018.

[25] C. Burchert, C. Decker, and R. Wattenhofer, “Scalable funding of bitcoin
micropayment channel networks,” Royal Society open science, vol. 5,
no. 8, p. 180089, 2018.

[26] A. R. Pedrosa, M. Potop-Butucaru, and S. Tucci-Piergiovanni, “Scalable
lightning factories for bitcoin,” in ACM/SIGAPP Symposium on Applied
Computing, 2019.

[27] R. A. Khalil and A. Gervais, “NOCUST - a non-custodial 2nd-layer
financial intermediary,” IACR Cryptol. ePrint Arch., vol. 642, 2018.

[28] C. Pan, S. Tang, Z. Ge, Z. Liu, Y. Long, Z. Liu, and D. Gu, “Gnocchi:
Multiplexed payment channels for cryptocurrencies,” in Network and
System Security, 2019.

[29] Y. Ye, Z. Ren, X. Luo, J. Zhang, and W. Wu, “Garou: An efficient and
secure off-blockchain multi-party payment hub,” IEEE Transactions on
Network and Service Management, vol. 18, no. 4, p. 4450, 2021.

[30] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,
“A secure sharding protocol for open blockchains,” in ACM Conf. on
Computer and Communications Security (SIGSAC), 2016.

[31] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling
blockchain via full sharding,” in ACM Conf. on Computer and Com-
munications Security (SIGSAC), 2018.

[32] H. Huang, X. Peng, J. Zhan, S. Zhang, Y. Lin, Z. Zheng, and S. Guo,
“Brokerchain: A cross-shard blockchain protocol for account/balance-
based state sharding,” in IEEE INFOCOM, 2022.

[33] J. Wang and H. Wang, “Monoxide: Scale out blockchains with asyn-
chronous consensus zones,” in USENIX symposium on networked sys-
tems design and implementation (NSDI), 2019.

[34] A. Sonnino, “Chainspace: A sharded smart contract platform,” in Net-
work and Distributed System Security Symposium (NDSS), 2018.

[35] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford, “OmniLedger: A secure, scale-out, decentralized ledger via
sharding,” in IEEE Symposium on Security and Privacy (SP), 2018.

[36] H. Zhang, L. Song, Z. Han, and Y. Zhang, Hypergraph theory in wireless
communication networks. Springer, 2018.

[37] S. Karumba, S. S. Kanhere, R. Jurdak, and S. Sethuvenkatraman,
“HARB: A hypergraph-based adaptive consortium blockchain for de-
centralized energy trading,” IEEE Internet of Things Journal, vol. 9,
no. 16, pp. 14 216–14 227, 2020.

[38] C. Qu, M. Tao, and R. Yuan, “A hypergraph-based blockchain model and
application in internet of things-enabled smart homes,” Sensors, vol. 18,
no. 9, p. 2784, 2018.

[39] A. Hentschel, D. Shirley, and L. Lafrance, “Flow: Separating consensus
and compute,” ArXiv, vol. 1909.05821, 2019.

13

[40] C. Hannon and D. Jin, “Bitcoin payment-channels for resource limited
iot devices,” in International Conference on Omni-Layer Intelligent
Systems, 2019.

[41] A. Miller, I. Bentov, S. Bakshi, R. Kumaresan, and P. McCorry, “Sprites
and state channels: Payment networks that go faster than Lightning,” in
Financial Cryptography and Data Security (FC), 2019.

[42] J. Lind, O. Naor, I. Eyal, F. Kelbert, E. G. Sirer, and P. Pietzuch,
“Teechain: A secure payment network with asynchronous blockchain
access,” in ACM Symp. on Operating Systems Principles (SOSP), 2019.

[43] R. Pickhardt and M. Nowostawski, “Imbalance measure and proactive
channel rebalancing algorithm for the Lightning network,” CoRR, vol.
1912.09555, 2019.

[44] P. Wang, H. Xu, X. Jin, and T. Wang, “Flash: Efficient dynamic routing
for offchain networks,” in ACM CoNEXT, 2019.

[45] V. Sivaraman, S. B. Venkatakrishnan, K. Ruan, P. Negi, L. Yang,
R. Mittal, G. Fanti, and M. Alizadeh, “High throughput cryptocurrency
routing in payment channel networks,” in USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2020.

[46] J.-H. Lin, K. Primicerio, T. Squartini, C. Decker, and C. Tessone,
“Lightning network: A second path towards centralisation of the bitcoin
economy,” New Journal of Physics, vol. 22, 2020.

[47] G. Kappos, H. Yousaf, A. M. Piotrowska, S. Kanjalkar, S. Delgado-
Segura, A. K. Miller, and S. Meiklejohn, “An empirical analysis of
privacy in the Lightning network,” in Financial Cryptography and Data
Security (FC), 2021.

[48] S. Tikhomirov, R. Pickhardt, A. Biryukov, and M. Nowostawski,
“Probing channel balances in the Lightning network,” arXiv preprint
arXiv:2004.00333, 2020.

[49] J. Herrera-Joancomartı́, G. Navarro-Arribas, A. Ranchal-Pedrosa,
C. Pérez-Solà, and J. Garcia-Alfaro, “On the difficulty of hiding the
balance of Lightning network channels,” in ACM Asia Conference on
Computer and Communications Security, 2019.

[50] U. Nisslmueller, K.-T. Foerster, S. Schmid, and C. Decker, “Toward
active and passive confidentiality attacks on cryptocurrency off-chain
networks,” arXiv preprint arXiv:2003.00003, 2020.

[51] S. Tochner, S. Schmid, and A. Zohar, “Hijacking routes in payment
channel networks: A predictability tradeoff,” ArXiv, vol. 1909.06890,
2019.

[52] E. Rohrer, J. Malliaris, and F. Tschorsch, “Discharged payment chan-
nels: Quantifying the Lightning network’s resilience to topology-based
attacks,” in IEEE European Symposium on Security and Privacy Work-
shops (EuroS&PW), 2019.

[53] A. Mizrahi, A. Zohar, and C. Diaz, “Congestion attacks in payment
channel networks,” in Financial Cryptography and Data Security (FC),
2021.

[54] O. Ersoy, S. Roos, and Z. Erkin, “How to profit from payments
channels,” in Financial Cryptography and Data Security (FC), 2020.

[55] F. Béres, I. A. Seres, and A. A. Benczúr, “A cryptoeconomic traffic
analysis of Bitcoin’s Lightning network,” Cryptoeconomic Systems,
2020.

[56] S. Brânzei, E. Segal-Halevi, and A. Zohar, “How to Charge Lightning:
The Economics of Bitcoin Transaction Channels,” arXiv e-prints, 2017.

[57] G. Avarikioti, G. Janssen, Y. Wang, and R. Wattenhofer, “Payment net-
work design with fees,” in Data Privacy Management, Cryptocurrencies
and Blockchain Technology, 2018.

[58] N. Vallarano, C. J. Tessone, and T. Squartini, “Bitcoin transaction
networks: An overview of recent results,” Frontiers in Physics, 2020.

[59] “Lightning RFC: Lightning network specifications,” 2021. [Online].
Available: https://github.com/lightningnetwork/lightning-rfc

[60] “Raiden network 3.0.1 documentation,” 2022. [Online]. Available:
https://raiden-network.readthedocs.io/en/stable/index.html

[61] River, “The lightning network grew by 1212% in 2 years,” River research
report, 2023.

[62] J. Wu and S. Jiang, “Local pooling of connected supernodes in Light-
ning networks for blockchains,” in IEEE International Conference on
Blockchain, 2020.

[63] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using networkx,” in Proc. Python in
Science Conference (SciPy), Pasadena, CA USA, Aug 2008, pp. 11–15.

[64] M. R. Garey and D. S. Johnson, Computers and intractability. freeman
San Francisco, 1979, vol. 174.

[65] R. Bar-Yehuda and S. Even, “A local-ratio theorem for approximating
the weighted vertex cover problem,” in North-Holland Mathematics
Studies. Elsevier, 1985, vol. 109, pp. 27–45.

[66] C. N. Cordi, “Simulating high-throughput cryptocurrency payment chan-
nel networks,” https://core.ac.uk/download/pdf/158324076.pdf, 2017.

[67] N. Papadis and L. Tassiulas, “Blockchain-based payment channel net-
works: challenges and recent advances,” IEEE Access, vol. 8, p. 227596,
2020.

[68] R. Linus, “BitVM: Compute anything on bitcoin,” URL: https://bitvm.
org/bitvm. pdf-(12.12. 2023), 2023.

[69] J. Chen and S. Micali, “Algorand,” arXiv preprint arXiv:1607.01341,
2016.

[70] M. F. I. Amin, Y. Watanobe, M. M. Rahman, and R. Kabir, “Watch-
tower selection in off-blockchain pcn using peterson leader-election
algorithm,” in New Trends in Intelligent Software Methodologies, Tools
and Techniques. IOS Press, 2022, pp. 193–202.

[71] J. Khamis, A. Kotzer, and O. Rottenstreich, “Topologies for blockchain
payment channel networks: Models and constructions,” IEEE/ACM
Trans. Netw., vol. 32, no. 6, pp. 4781–4797, 2024.

Arad Kotzer received the B.Sc. degree from the
Computer Science department of the Technion, Is-
rael. He is currently a graduate student at the
same department. He is interested in algorithms for
blockchain networks.

Bence Ladóczki is an assistant research fellow at
the Department of Telecommunications and Media
Department of Telecommunications and Artificial
Intelligence, BME University, Hungary. He is an
active contributor of the MRCC quantum chem-
istry package. In 2020 he received his PhD de-
gree in Kobe, Japan where he conducted research
on stochastic methods solving time dependent high
dimensional many body problems. These days he is
researching blockchains and related technologies.

János Tapolcai received the M.Sc. degree in tech-
nical informatics and the Ph.D. degree in computer
science from the Budapest University of Technology
and Economics (BME), Budapest, in 2000 and 2005,
respectively, and the D.Sc. degree in engineering
science from the Hungarian Academy of Sciences
(MTA) in 2013. He is currently a Full Professor
at BME. He is a winner of the MTA Lendület
Program in 2012. He is a TPC member of leading
conferences, e.g. IEEE INFOCOM 2012-2024, and
the general chair of ACM SIGCOMM 2018.

Ori Rottenstreich is an associate professor at the
department of Computer Science and the depart-
ment of Electrical and Computer Engineering of
the Technion, Haifa, Israel. In 2015-2017 he was
a Postdoctoral Research Fellow at Princeton uni-
versity. Earlier, he received the BSc in Computer
Engineering (summa cum laude), and PhD degree
from the Technion in 2008 and 2014, respectively.

14

