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Abstract. Deniable Authentication is a highly desirable guarantee for
secure messaging: it allows Alice to authentically send a message m to a
designated receiver Bob in a Plausibly Deniable manner. Concretely, while
Bob is guaranteed Alice sent m, he cannot convince a judge Judy that Al-
ice really sent this message—even if he gives Judy his secret keys—because
Judy knows Bob can make things up. This paper models the security
of Multi-Designated Verifier Signatures (MDVS) and Multi-Designated
Receiver Signed Public Key Encryption (MDRS-PKE)—two (related)
types of schemes that provide such guarantees—in the Constructive
Cryptography (CC) framework (Maurer and Renner, ICS ’11).
The only work modeling dishonest parties’ ability of “making things up”
was by Maurer et al. (ASIACRYPT ’21), who modeled the security of
MDVS, also in CC. Their security model has two fundamental limitations:
1. deniability is not guaranteed when honest receivers read;
2. it relies on the CC-specific concept of specifications.

We solve both problems. We give a standard simulator-based model that
guarantees deniability when honest receivers read. Interestingly, our com-
posable treatment allowed to identify a new property, Forgery Invalidity,
without which we do not know how to prove the deniability of neither
MDVS nor MDRS-PKE when honest receivers read. Finally, we prove
that Chakraborty et al.’s MDVS (EUROCRYPT ’23) has this property,
and that Maurer et al.’s MDRS-PKE (EUROCRYPT ’22) preserves it
from the underlying MDVS.

1 Introduction

Messaging apps allow for asynchronous conversations between users who are
apart. Naturally, it is desirable these apps provide the same security guarantees
of in-person conversations.

Authenticity and plausible deniability. When Alice and Bob have an in-
person conversation authenticity is naturally guaranteed because they know each
other and can both identify their voices and who speaks. For example when Alice

https://orcid.org/0000-0002-0349-3838
https://orcid.org/0000-0002-0080-8670
mailto:chendaliu@gmail.com
chendaliu@gmail.com
mailto:cp@concordium.com
cp@concordium.com
mailto:guilherme.teixeirarito@rub.de
guilherme.teixeirarito@rub.de


says “Hello!”, Bob knows it was Alice because he could see her talking. Although
in some cases Alice and Bob may want their communication to be authentic in a
publicly verifiable manner—e.g. by signing a contract that can later be verified by
a judge in case of dispute—the authenticity of in-person conversations is of the
exact opposite nature: it is exclusive to the parties having the conversation. This
exclusiveness of authenticity—commonly referred to as deniable authentication or
off-the-record in the cryptographic literature [2,6,9,11–14,25–27]—is particularly
useful for protecting the privacy of personal communication. In the case above, it
gives Alice plausible deniability : even if Bob later tries to convince Charlie—who
did not participate in the conversation—that Alice came up to him to say “Hello”,
Charlie has no reason to believe Bob4 because Charlie knows Bob could be making
it up. (This deniability can become particularly challenging in messaging apps
because users often keep their conversations stored in their devices.)

Group conversations. Now suppose Alice, Bob and Charlie participate in
a three-party group chat. A natural guarantee they want is that every party
gets the same messages (consistency). For example even if Alice wants to create
confusion among Bob and Charlie, she cannot send malformed ciphertexts so
Bob and Charlie obtain different messages.

MDVS. When translating these three guarantees into a cryptographic scheme
one obtains so-called Multi-Designated Verifier Signature (MDVS). These schemes
were introduced in [9], and have received significant attention for their security
guarantees [4, 6, 18]; they allow Alice to select a set of designated receivers, say
Bob and Charlie, and sign a message that only they can verify. Receivers are
guaranteed consistency: if honest Bob successfully validates that Alice signed
some message m to him and Charlie, then Bob is guaranteed that Charlie can
also successfully validate the same signature if he is honest. These schemes also
provide the type of authenticity of in-person conversations: if Alice and Bob
are honest then Bob can only (successfully) validate messages sent by Alice; in
particular, even if Charlie is dishonest, Charlie cannot fool Bob into believe Alice
sent a message to him (Bob) and Charlie, unless she actually did.

Confidentiality and anonymity. Another natural guarantee from in-person
conversations is confidentiality : if Alice wants to tell Bob and Charlie a secret,
she can whisper so only they hear; of course that is only possible if both agree to
keep the secret. Finally, Alice, Bob and Charlie may also want to hide whether
they even had a conversation; indeed one often does not want third parties to
know with whom one communicates.

MDRS-PKE. Introduced in [18], Multi-Designated Receiver Signed Public
Key Encryption (MDRS-PKE) schemes provide all the guarantees of MDVS plus
confidentiality and anonymity. These schemes were essentially tailor-made for
so-called “Off-the-record” messaging ([18, Section 1.4]) and work similarly to

4 Other than her trust in Bob.
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MDVS schemes: the main difference is that decryption does not require receivers
to a priori know the sender, the set of designated receivers or the message; instead
they obtain this information via the decryption algorithm, which only takes as
input the ciphertext to decrypt and the receiver’s secret key. (In contrast, the
verification of an MDVS signature requires knowledge of who the sender is, who
the set of verifiers is, of the message to verify, and of the sender’s and verifiers’
public keys.)

Recent progress. A recent interest in these schemes has provided us with

– a better conceptual understanding of their guarantees via game-based no-
tions capturing 1. stronger authenticity [27]; 2. stronger plausible deniability
(Any-Subset Off-The-Record [6]); and 3. consistency [6] guarantees;

– the first application semantics that capture dishonest parties’ ability of
making things up (the composable treatment of MDVS from [17]);

– new abstractions that allow for conceptually simple constructions of these
primitives—e.g. Provably-Simulatable Designated Verifier Signatures [6] and
Public Key Encryption for Broadcast schemes [18];

– efficient constructions from building blocks that are known to have instantia-
tions with tight security reductions to standard assumptions [4, 18];

– stronger deniability guarantees to capture scenarios where a judge could
obtain the secret keys of honest senders5 and respective schemes providing
these guarantees [4].

State of affairs. Despite this progress some important questions remain unan-
swered, in particular regarding to their application-level guarantees:

No Application Semantics for MDRS-PKE. It is not know whether the existing
game-based security models for MDRS-PKE [4, 18] imply the natural ap-
plication semantics one would expect from these schemes. This means, in
particular, that we do not know if the existing constructions can be used
for the applications that motivated their introduction. Furthermore, while
these schemes are similar MDVS, their game-based security notions are more
involved due to the additional anonymity guarantees and different decryption
syntax. (More involved notions typically increase the chance of not identifying
important security properties and ending up with schemes that cannot be
used for the applications they were developed for.) Concretely, the MDVS
game-based notions [4,6,17,18] provide adversaries with access to a signature
verification oracle that requires a sender and a set of receivers to be specified
(by means the oracle’s input), but the (analogous) decryption oracle provided
by MDRS-PKE game-based security notions from [4,18] is not provided with
that information.

Limited Deniability Guarantees I. The only existing composable treatment of
MDVS schemes [17] provides surprisingly weak deniability guarantees: the

5 Some countries may legally require citizens who are under investigation to provide
authorities with their passwords/secret keys.
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application semantics only give a sender plausible deniability on messages
that are not read by honest receivers. This contrasts with the game-based
models for MDVS and MDRS-PKE schemes which provide deniability when
honest receivers read—this is reflected on the Off-The-Record game-based
notions which provide adversaries with an oracle to verify signatures (for the
case of MDVS) or to decrypt ciphertexts (for the case of MDRS-PKE).

Limited Deniability Guarantees II. [17]’s MDVS composable treatment only con-
siders the weaker setting where the secret keys of honest senders do not leak.
This means, in particular, that the MDVS and MDRS-PKE constructions
from [4] are not actually known to allow for the application that motivated
their introduction.

CC-Specific Security Model. The MDVS application semantics from [17] are de-
fined using the concept of specifications—a concept which, to the best of
our knowledge, only exists in the Constructive Cryptography (CC) frame-
work [16, 20]. This is the only work capturing that dishonest parties must
have a capability—in their case of forging MDVS signatures, which is crucial
for plausible deniability.

Limited Unforgeability Guarantees. Replay protection is desirable for messaging
apps: dishonest outsiders should not be able to come up with valid replays of
previously sent messages. However, existing MDVS and MDRS-PKE security
models [4, 6, 17,18] (both game-based and composable ones) do not provide
protection against replay attacks: [17]’s application semantics explicitly defines
a copy operation that dishonest parties can use to replay previously sent
messages; at a high level, the unforgeability notions from [4,6,18] only require
the infeasibility of forging valid signatures on previously unsigned messages,
but do not require the infeasibility of coming up with new signatures on
previously signed messages.

Our contribution. We give a comprehensive composable treatment of MDVS
and MDRS-PKE schemes in CC that addresses each of these limitations:

Stronger Deniability Guarantees. Senders are guaranteed plausible deniability
on messages that have already been read by honest receivers even if they are
forced to give away their secret keys.

Standard Simulator-Based Model. Our composable treatment is more easily di-
gestible by readers unfamiliar with CC and gets closer to being translatable
into other composable frameworks like UC [3].

Replay-Unforgeability. Our application semantics disallow replay attacks.

Our composable treatment of MDVS and MDRS-PKE schemes unveiled issues
in their current game-based security models. (This paper fixes every issue we
identified.) Concretely, we identified the following problems:

Forgery Invalidity. We identified a new property, Forgery Invalidity, that went
unnoticed in prior work and which is crucial to our composable treatment
of these schemes. Roughly, it captures that forged MDVS signatures (or
ciphertexts, for the case of MDRS-PKE) must be invalid, i.e. their verification
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by honest receivers fails (respectively, their decryption by honest receivers
fails, for the case of MDRS-PKE). (This is not captured by the standard
unforgeability notion because the adversary is given the sender’s secret key—
which it cannot obtain when playing the unforgeability game.) This property
is key in our composable treatment because we do not know how to prove
that neither existing MDVS nor MDRS-PKE game-based security models
imply the application semantics we define if we do not assume the underlying
scheme provides this extra guarantee.

Stronger confidentiality and anonymity. We define {IND, IK}-CCAS : a stronger
MDRS-PKE game-based notion without which we do not know how to
prove the composable security of MDRS-PKE schemes in the weaker setting
where the secret keys of honest senders do not leak. Our difficulty with the
weaker IND-CCA and IK-CCA notions from [18] is that a reduction 1. cannot
obtain honest senders’ secret keys via oracle OSK ; and 2. cannot issue
challenge queries OE((Ai,0, V⃗0,m0), (Ai,1, V⃗1,m1)) if one of the receivers is

dishonest (i.e. for which there is a query ORK(Bj ∈ Set(V⃗0) ∪ Set(V⃗1))) even

if (Ai,0, V⃗0,m0) = (Ai,1, V⃗1,m1). For these reasons we do not know how a
reduction can generate encryptions of messages from honest senders to vectors
of receivers that include dishonest ones without accessing honest senders’
secret keys.

We also introduce game-based notions that capture replay unforgeability; our
notions are just sEUF-CMA type of notions for MDVS and MDRS-PKE.

Finally, we prove that Chakraborty et al.’s MDVS [4] and Maurer et al.’s
MDRS-PKE [4,18] satisfy our composable notions—by showing their construc-
tions satisfy the game-based notions we assume in our composable treatments of
these schemes. (For the case of {IND, IK}-CCAS and replay unforgeability, the
same arguments used to prove the security of these schemes with respect to the
corresponding weaker notions also imply security with respect to the stronger
notions we introduce.).

We illustrate (part of) our contributions in Figure 1.

2 Preliminaries

For a set/alphabet S, we denote the set of non-empty vectors/strings over S
by S+. We denote the arity of a vector x⃗ by |x⃗| and its i-th element by xi. We
write Set(x⃗) to denote the set induced by x⃗: Set(x⃗) := {xi | xi ∈ x⃗}. For a vector

of parties V⃗ , we denote by v⃗ the corresponding vector of public keys, and for
i ∈ {1, . . . , |V⃗ |}, vi is party Vi’s public key. We will denote the set of all parties by

P . For any subset of parties S ⊆ P , we denote by SH and SH the partitions of S
corresponding to honest and dishonest parties, respectively (with S = SH ⊎ SH).

Throughout the paper, for an event-based security notion X (e.g. Unforgeabil-
ity) we define an adversaryA’s advantage as its probability of winning the security
game defined by X: AdvX(A) := Pr[AGX = win]. For a distinguishing-type of
notion Y (e.g. IND-CCA) defining games GY

0 and GY
1 we define an adversary A’s

advantage as AdvY(A) :=
∣∣Pr[AGY

0 = win] + Pr[AGY
1 = win]− 1

∣∣.
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Fig. 1: Illustration of contributions. In blue are the new security notions, con-
structions and results.

2.1 (Simplified) Constructive Cryptography

Our paper’s statements are phrased in a (rather) simplified version of the Construc-
tive Cryptography (CC) framework [16,20] which allows for standard simulator-
based type of composable notions and requires little to no familiarity with CC.
All construction statements trivially carry to CC.

CC views cryptography as a resource theory: protocols construct new resources
from existing (assumed) ones. The notion of resource construction is inherently
composable: if a protocol π1 constructs S from R and π2 constructs T from S,
then running both protocols (π2 · π1) constructs T from R.
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Resources. Resources are interactive systems akin to functionalities in UC [3].
Similarly to a function f : X → Y , a resource also has input and output domains;
if a resource R has input domain X and output (co-)domain Y, we say R is an
(X ,Y) resource. One interacts with a (X ,Y) resource by providing an input x ∈ X
and receiving an output y ∈ Y. Formally, resources are random systems [21,22];
in turn, a random system is defined as a sequence of conditional probability
distributions [22, Definition 2]. If two (X ,Y)-resources R and S are the same
sequence of conditional probability distributions, we say they are equivalent
and write R ≡ S [22, Definition 3]. For simplicity, we describe resources by
pseudo-code.

We often attach resources together; for (compatible) resources R and S, we
denote by R · S the resource resulting from attaching R and S. (Resources R
and S can only be attached together if their composition results in a well-defined
sequence of conditional probability distributions—see, e.g. [15, Definition 7]; this
is not the case for all pairs of resources.) For n resources {Ri}ni=1, where each
Ri is an (Xi,Yi)-resource, if for all distinct i, j ∈ [n], both Xi and Yi are disjoint
from Yj , then we denote the combined resource—corresponding to attaching
R1, . . . ,Rn together—by R := [R1, . . . ,Rn], and call R the parallel composition
of {Ri}ni=1.

Interfaces. For an (X ,Y)-resource R, an interface I = (IX , IY) is a pair of subsets
of R’s input and output domains, i.e. IX ⊆ X and IY ⊆ Y; we call IX and IY
input and output interfaces of R, respectively. For two interfaces I1 = (I1,X , I1,Y)
and I2 = (I2,X , I2,Y), we say that I1 is a subset of I2—or write I1 ⊆ I2—to mean
I1,X ⊆ I2,X and I1,Y ⊆ I2,Y . Similarly, we say I1 and I2 are disjoint—or write
I1 ∩ I2 = ∅—to mean I1,X ∩ I2,X = ∅ and I1,Y ∩ I2,Y = ∅. We define the union of
interfaces I1 and I2 as I1 ∪ I2 := (I1,X ∪ I2,X , I1,Y ∪ I2,Y).

A set of interfaces I of an (X ,Y)-resource R is one such that any distinct
interfaces I1, I2 ∈ I are disjoint, and the union of all interfaces in I is R’s input
and output domains, i.e. (X ,Y) =

⋃
I∈I I.

When considering (simulator-based) security notions it is often helpful to have
the notion of a party. For a set of n parties P := (P1, . . . , Pn), one considers a set
of interfaces I where for each party P ∈ P there is an interface IP = (IP,X :=
({P} × XP ), IP,Y := ({P} × YP )). We say that IP,X and IP,Y are P ’s input and
output interfaces for R, respectively.

Converters. A converter is an (X ,Y)-resource that is executed either locally by
a single party or cooperatively by multiple parties. The inside interface connects
to (a subset of those parties’ interfaces of) the available resources, resulting in
a new resource. For instance, connecting a converter α to Alice’s interface A
of a resource R results in a new resource denoted αAR; we denote the inside
interface of α by α.in. The outside interface of α, denoted α.out, is the new
A-interface of αAR. This means resource R’s A interface is no longer present
in the new resource αAR: it is covered by converter α. Converters applied at
different interfaces commute [10, Proposition 1]: βBαAR ≡ αAβBR.
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A protocol is given by a tuple of converters π = (πPi
)Pi∈P , one for each

party Pi ∈ P. Simulators are also given by converters. For a party set S, πSR
denotes (πPi)Pi∈SR. When clear from context, we omit the interfaces π connects
to, writing simply πR.

Distinguishers. Analogous to a UC environment [3], a distinguisher is an interac-
tive system D which interacts with a resource at all its interfaces and outputs a
bit 0 or 1. The distinguishing advantage for distinguisher D is defined as

∆D(R,S) := |Pr [DS = 1]− Pr [DR = 1]|

where DR and DS are the probability distributions induced by D’s output when
it interacts with R and S, respectively.

Reductions. Typically one proves that the ability to distinguish between two
resources is bounded by some function of the distinguisher, e.g. for any D,

∆D(R,S) ≤ |ε(D)|

where ε(D) might be the probability that D can win a game or solves some
problem believed to be hard.

Security Statements. We now have all the elements needed to define a crypto-
graphic construction.

Definition 1 (Simulation-based construction). Let R and S be two resources
with a free interface IF , and π a protocol for R. We say π ε-constructs S from R if
there is a simulator sim such that for any distinguisher D, ∆D(πR, simS) ≤ ε(D)
and the interfaces of sim, of π and IF are all pairwise disjoint.

2.2 Modeling Access Control via Repositories

Similarly to [17], we model access control via repositories. A repository contains
a set of registers and a corresponding set of register identifiers IdSet; a register
is a pair reg = (id,m), where m is a message and id is the register’s identifier,
which uniquely identifies it among all repositories. We consider two types of
repository access rights: read access and write access. (This is in contrast to [17],
which additionally considers copy access.) We denote by W and R the sets of
parties with write and read access to a repository rep, respectively; to make
the access permissions explicit we write repWR , but otherwise simply write rep.
For example, consider a three party setting with a sender Alice, a receiver Bob
and a dishonest third-party Eve—so P = {A,B,E}. An insecure repository—
which allows everyone to read and write—is given by INSPP ; a (replay-protected)

authentic repository from Alice to Bob is given by AUT
{A}
{B,E}. The semantics of

atomic repositories is defined in Algorithm 1.6

6 As needed to capture the Off-The-Record guarantee, the repository semantics capture
sender anonymity: for a repository repW

R , readers do not learn who wrote (among
the parties in W) each of the repository’s messages.
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Algorithm 1 Atomic repository repWR .

⋄ Initialization
IdSet← ∅

▷ (P ∈ W)-Write(m)
id ← NewRegister(m)
IdSet← IdSet ∪ {id}
Output(id)

▷ (P ∈ R)-Read
list← ∅
for id ∈ IdSet :

list← list ∪ {(id,GetMessage(id))}
Output(list)

Algorithm 2 Repository REP = [rep1
W1

R1
, . . . , repn

Wn

Rn
].

▷ (P ∈ P)-Write(repi
Wi
Ri

,m)

Require: (P ∈ Wi)
Output(repi-Write(m))

▷ (P ∈ P)-Read
list ← ∅
for repi ∈ REP with P ∈ Ri :

for (id,m) ∈ repi-Read :
list← list ∪ (id, (repi,m))

Output(list)

Following [17], to model that parties may have access to multiple repositories—
say rep1

W1

R1
, . . . , repn

Wn

Rn
—we define a new type of repository denoted REP =

[rep1
W1

R1
, . . . , repn

Wn

Rn
], which is essentially a parallel composition of atomic repos-

itories equipped with a single read operation that allows parties to (efficiently)
read all their incoming messages at once (instead of having to read from each
atomic repository repi they have access to). The exact semantics of REP is
defined in Algorithm 2.

2.2.1 Modeling an Asynchronous Network To model an asynchronous
network we define a network converter Net (in Algorithm 3), which provides an
interface for message delivery and ensures honest receivers only read delivered
messages.

Algorithm 3 Semantics of Net for a repository REP = [rep1, . . . , repn].

⋄ Initialization
for Pi ∈ P :

Received[Pi]← ∅

▷ (P ∈ PH)-Read
list ← ∅
for (id, (repi,m)) ∈ Read :

if id ∈ Received[P ] :
list← list ∪ (id, (repi,m))

Output(list)

▷ (P ∈ P)-Write(repi,m)
Output(Write(repi,m))

▷ (P ∈ PH)-Read
Output(Read)

▷ Deliver(P ∈ PH , id)
Received[P ]← Received[P ] ∪ {id}

9



2.3 Multi-Designated Verifier Signatures

Following [4], an MDVS scheme Π for a message spaceM is a 6-tuple of PPTs
Π = (S,GS ,GV ,Sig,Vfy,Forge), where:

S(1k): generates public parameters pp;

GS(pp): generates a signer key-pair (spk, ssk);

GV (pp): generates a verifier key-pair (vpk, vsk);

Sig(pp, ssk, v⃗,m): generates a signature σ, where ssk is the signer’s secret key,
v⃗ is the vector of public verifier keys of the designated verifiers and m ∈M
is the message;

Vfy(pp, spk, vsk, v⃗,m, σ): outputs a bit indicating whether σ is a valid signature
on message m with respect to signer’s public key spk and vector of verifier
public keys v⃗, where vsk is a verifier’s secret key;

Forge(pp, spk, v⃗,m, s⃗): generates a forged signature σ, where spk, v⃗ and m are as
before, and s⃗ is a vector of designated verifiers’ secret keys—with |s⃗| = |v⃗| and
where for i ∈ {1, . . . , |v⃗|}, either si = ⊥ or si is the secret key corresponding
to the i-th public key of v⃗, i.e. vi.

2.3.1 Security Notions The security games below have an implicitly defined
security parameter k and provide adversaries with access to a set of oracles which,
for an MDVS scheme Π = (S,GS ,GV ,Sig,Vfy,Forge) are defined as follows:

OPP : On the first query, compute pp← S(1k); output pp.

OSK(Ai): On the first query OSK(Ai), compute (spki, sski)← GS(pp); output
(spki, sski).

OV K(Bj): Analogous to OSK(Ai).

OSPK(Ai): for (spki, sski)← OSK(Ai); output spki.

OV PK(Bj): Analogous to OSPK(Ai).

OS(Ai, V⃗ ,m): for (spki, sski) ← OSK(Ai), v⃗ = (OV PK(V1), . . . ,OV PK(V|V⃗ |)),

output σ ← Sigpp(sski, v⃗,m).

OV (Ai, Bj ∈ Set(V⃗ ), V⃗ ,m, σ): for spki, v⃗ as above, output Vfypp(spki, vskj , v⃗,
m, σ).

The notions ahead—Correctness, Consistency, Unforgeability, Off-The-Record
and Message-Bound Validity—give adversaries access to all the oracles above
(for Off-The-Record, oracles OS and OV behave differently, as we will explain).
For conciseness, we simply omit the oracles in these notions’ definitions.

Definition 2 (Correctness: GCorr). An adversary A wins if there are two

queries qS and qV to OS and OV , respectively, where qS has input (Ai, V⃗ ,m) and

qV has input (Ai
′, Bj , V⃗

′,m′, σ), satisfying (Ai, V⃗ ,m) = (Ai
′, V⃗ ′,m′), Bj ∈ V⃗ ,

the input σ in qV is the output of the oracle OS on query qS, and the output of
the oracle OV on the query qV is 0.
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Definition 3 (Consistency: GCons). An adversary A wins if it makes two

queries OV (Ai, Bj , V⃗ ,m, σ) and OV (Ai
′, Bj

′, V⃗ ′,m′, σ′) such that (Ai, V⃗ ,m, σ) =

(Ai
′, V⃗ ′,m′, σ′), {Bj , Bj

′} ⊆ V⃗ , the outputs of the two queries differ, and there is

no query OV K(Bj) prior to query OV (Ai, Bj , V⃗ ,m, σ), and no query OV K(Bj
′)

prior to query OV (Ai
′, Bj

′, V⃗ ′,m′, σ′).

Definition 4 (Unforgeability: GUnforg). An adversary A wins if it makes a

query OV (Ai
∗, Bj

∗, V⃗ ∗,m∗, σ∗) with Bj
∗ ∈ V⃗ ∗ that outputs 1, for every query

OS(Ai
′, V⃗ ′,m′), (Ai

∗, V⃗ ∗,m∗) ̸= (Ai
′, V⃗ ′,m′) and there is no OSK query on Ai

∗

nor OV K query on Bj
∗.

The games defined by the Off-The-Record notion give adversaries access to
the oracles from before as well as to (modified) oracles OS and OV . For b ∈ {0, 1},
game GOTR

b ’s these oracles behave as follows:

OS(type ∈ {sig, sim}, Ai, V⃗ ,m, C ⊆ Set(V⃗ )): 1. (spki, sski)← OSK(Ai);

2. Let v⃗ = (v1, . . . , v|V⃗ |) and s⃗ = (s1, . . . , s|V⃗ |) where for i ∈ [|V⃗ |]:

– (vi, si) =

 OV K(Vi) if Vi ∈ C

(OV PK(Vi),⊥) otherwise;

3. (σ0, σ1)← (Π.Sigpp(sski, v⃗,m), Π.Forgepp(spki, v⃗,m, s⃗));
4. If b = 0, output σ0 if type = sig and σ1 if type = sim; otherwise, if

b = 1, output σ1.
OV (Ai, Bj ∈ Set(V⃗ ), V⃗ ,m, σ): 1. If σ was output by a query to OS on an input

(·, Ai
′, V⃗ ′,m′, C) such that (Ai

′, V⃗ ′,m′) = (Ai, V⃗ ,m) and with Bj ∈ V⃗ ,
output test;

2. Otherwise, compute b← Vfypp(spki, vskj , v⃗,m, σ); output b.

Definition 5 (Off-The-Record: GOTR
0 and GOTR

1 ). An adversary A wins if

it outputs a guess bit b′ = b, and for every query OS(type, Ai, V⃗ ,m, C) there is

no query OV K(Bj) with Bj ∈ Set(V⃗ ) \ C.

Definition 6 (Message-Bound Validity: GBound-Val). An adversary A wins
if there are two queries qS and qV to OS and OV , respectively, where qS has input
(Ai, V⃗ ,m) and qV has input (Ai

′, Bj , V⃗
′,m′, σ), satisfying 1. (Ai, V⃗ ) = (Ai

′, V⃗ ′);

2. Bj ∈ V⃗ ; 3. m ̸= m′; 4. the input σ in qV is OS’s output on query qS; and
5. the output of OV on query qV is 1.

2.4 Multi-Designated Receiver Signed Public Key Encryption

Introduced in [18], an MDRS-PKE scheme Π for a message space M is a 6-
tuple of PPTs Π = (S,GS ,GR,E,D,Forge), where S, GS , GR, E and Forge are
analogous to an MDVS’s S, GS , GV , Sig and Forge PPTs, respectively (for an
MDRS-PKE, E and Forge output ciphertexts instead of signatures), and

D(pp, rskj , c): outputs a triple (spk, v⃗,m)—where spk is a sender’s public key,
v⃗ a vector of receiver public keys, and m a message—or ⊥ if decryption fails.
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2.4.1 Security Notions [4, 18] Let Π = (S,GS ,GR,E,D,Forge) be an
MDRS-PKE scheme with message space M. The games defined by the no-
tions below give adversaries access to oracles OPP , OSK , OSPK , ORK , ORPK

and OE that are analogous to MDVS’s oracles OPP , OSK , OSPK , OV K , OV PK

and OS , respectively, plus to the following oracle:

OD(Bj , c): 1. (·, rskj)← ORK(Bj);
2. (spki, v⃗,m)← Dpp(rskj , c);
3. if, for each party Ai previously input to either OSK , OSPK or OE ,

spki ̸= OSPK(Ai), then output ⊥;
4. if, for some l ∈ {1, . . . , |V⃗ |}, there is no party Bj that was previously

input to either ORK , ORPK , OE or OD such that vl = ORPK(Vl), then
output ⊥;

5. output (spk, v⃗,m).

As for MDVS, the notions ahead give adversaries access to all oracles above, so
for succinctness we omit them in these notions’ definitions. Below, we define the
Correctness, Consistency and Off-The-Record notions for MDRS-PKE schemes;
we do not introduce unforgeability and CCA notions here because we do not know
how to prove that the notions considered in the literature imply our composable
notions; we will define strengthenings of these notions later in the paper.

Definition 7 (Correctness: GCorr). An adversary A wins the game if there is

a query qE to OE and a later query qD to OD such that qE has input (Ai, V⃗ ,m)

and qD has input (Bj , c) with Bj ∈ V⃗ and c being the output of qE, the output of
qD is (spki

′, v⃗′,m′) with (spki
′, v⃗′,m′) ̸= (spki, v⃗,m)—where spki is Ai’s public

key and v⃗ is the vector of public keys corresponding to V⃗ .

The Consistency notion below slightly differs from the one given in [4]: it
additionally captures the (natural) property that if the decryption of a ciphertext
c by a party Bj outputs some valid triple (spk, v⃗,m) ̸= ⊥, then Bj ’s public key
rpkj must be part of the vector v⃗ output by decryption (i.e. rpkj ∈ v⃗).7 As we
will see, this is useful because it eliminates the need that a receivers’ protocol
makes this additional check.

Definition 8 (Consistency: GCons). An adversary A wins if (at least) one of
the following events (ξ1 or ξ2) occurs:

Event ξ1: there is a query OD(Bi, c) that outputs some triple (spk, v⃗,m) with
(spk, v⃗,m) ̸= ⊥ and pki /∈ v⃗, where pki is Bi’s public key;

Event ξ2: there are two OD queries, say qDi and qDj, on inputs, respectively,
(Bi, c) and (Bj , c

′) with c = c′ such that: 1. the outputs of qDi and qDj differ;
2. either the receiver public key rpkj of Bj is part of the vector of receiver
public keys output by qDi, or the receiver public key rpki of Bi is part of

7 Maurer et al.’s MDRS-PKE construction [18] satisfies this modified notion as decryp-
tion checks if the public key of the receiver decrypting the ciphertext is part of the
public key vector to be output.
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the vector of public keys output by qDj; 3. there is no query ORK(Bi) (resp.
ORK(Bj)) prior to qDi (resp. qDj); and 4. there is no sender A (resp. no
receiver B) which had not been input to a query OSPK , OSK or OE (resp.
ORPK , ORK or OE) prior to both qDi and qDj and whose public key is
output by one of these queries.

For b ∈ {0, 1}, the OE and OD oracles that game G
{IND, IK}-CCA
b provides to

an adversary are as follows:

OE

(
(Ai,0, V⃗0,m0), (Ai,1, V⃗1,m1)

)
: output c← Π.Epp(sski,b, v⃗b,mb).

OD(Bj , c): If c was output by an OE query, output test; otherwise proceed as
in the default OD oracle.

Definition 9 ({IND, IK}-CCA Security [4]: G
{IND, IK}-CCA
0 and G

{IND, IK}-CCA
1 ).

An adversary A wins if it outputs a guess bit b′ with b′ = b and for every query
OE

(
(Ai,0, V⃗0,m0), (Ai,1, V⃗1,m1)

)
: 1. |m0| = |m1|; 2. |V⃗0| = |V⃗1|; and 3. there is

no query to ORK on any Bj ∈ Set(V⃗0) ∪ Set(V⃗1).

Off-The-Record defines games GOTR
0 and GOTR

1 which give adversaries access
to the oracles from before and to modified OE and OD oracles. Oracle OE is
defined analogously to MDVS’ OTR games’ oracle OS , whereas OD is as follows:

OD(Bj , c): 1. If c was the output of some query to OE , output test; 2. Otherwise,
proceed as in the original OD oracle.

Definition 10 (Off-The-Record [4]: GOTR
0 and GOTR

1 ). Adversary A wins if

it outputs a guess bit b′ with b′ = b and for every query OE(type, Ai, V⃗ ,m, C)
and every query OV K(Bj), we have Bj /∈ Set(V⃗ ) \ C.

3 New and Stronger Game-Based Notions for MDVS

In this section we introduce a stronger unforgeability notion—which captures
security against replay attacks—plus Forgery Invalidity: a new guarantee that we
identified thanks to our composable treatment of MDVS schemes. We introduce
them because we assume them in our composable treatment of MDVS schemes
(and do not know how to prove the existing MDVS game-based notions imply our
composable notions without requiring them). Lastly, we prove that Chakraborty
et al.’s MDVS [4] satisfies all these notions.

3.1 (New) Security Notions

The security definitions given in Section 2.3 do not give any guarantee on whether
a signature forgery on messages picked by an adversary who can access the secret
key of the sender may not verify as valid by honest receivers; this is not captured
by Unforgeability (Definition 4) because the adversary could choose messages to
be forged depending on the signer’s secret key (which it does not have access
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to in the Unforgeability game). Forgery Invalidity captures this guarantee: that
forged signatures are not valid even when messages are picked by adversaries
who know senders’ secret keys.

In addition to the oracles from Section 2.3.1 (which, as before, for simplicity
we omit in notions below), game GForge-Invalid also gives adversaries access to the
following new oracle:

OForge(Ai, V⃗ ,m, C ⊆ Set(V⃗ )): let spki ← OSPK(Ai), and for i ∈ [|V⃗ |], let
(vi, si) = OV K(Vi) for Vi ∈ C, and (vi, si) = (OV PK(Vi),⊥) for Vi /∈ C; output
Π.Forgepp(spki, v⃗,m, s⃗), where v⃗ = (v1, . . . , v|V⃗ |) and s⃗ = (s1, . . . , s|V⃗ |).

Definition 11 (Forgery Invalidity: GForge-Invalid). An adversary A wins the
game if there are two queries qForge and qV to OForge and OV , respectively, where

qForge has input (Ai, V⃗ ,m, C) and qV has input (Ai
′, Bj , V⃗

′,m′, σ), satisfying

1. (Ai, V⃗ ,m) = (Ai
′, V⃗ ′,m′); 2. Bj ∈ V⃗ ; 3. Bj ̸∈ C; 4. the input σ in qV is the

output of OForge on query qForge; and 5. the output of the oracle OV on the query
qV is 1.

An adversary A (ε, t)-breaks the (nS , nV , dS , dF , qS , qV , qF )-Forgery Invalidity
of Π if A runs in time at most t, queries OSK , OSPK , OS , OV and OForge on
at most nS different signers, OV K , OV PK , OS , OV and OForge on at most nV

different verifiers, makes at most qS , qV and qF queries to OS , OV and OForge,
respectively, with the sum of the verifier vectors’ lengths input to OS and OForge

being at most dS and dF , respectively, and satisfies AdvForge-Invalid(A) ≥ ε.

Definition 12 (Unforgeability against Replays: GR-Unforg). An adversary

A wins if it makes a query OV (Ai
∗, Bj

∗, V⃗ ∗,m∗, σ∗) with Bj
∗ ∈ V⃗ ∗ that outputs

1, for every query OS(Ai
′, V⃗ ′,m′), (Ai

∗, V⃗ ∗,m∗, σ∗) ̸= (Ai
′, V⃗ ′,m′, σ′)—σ′ being

the output of query OS(Ai
′, V⃗ ′,m′)—and there is no OSK query on Ai

∗ nor OV K

query on Bj
∗.

We use the notion below to prove Maurer et al.’s MDRS-PKE construction
satisfies an analogous MDRS-PKE notion, which in turn significantly simplifies
our composable treatment of MDRS-PKE schemes. (Concretely, this trivial
property allows keeping our composable proofs much simpler because by assuming
it we avoid having to prove it does hold in the composable proofs—which would
require dealing with extra artifacts inherent from composable security notions.)

Definition 13 (Public-Key Collision Resistance). An MDVS scheme Π =
(S,GS ,GV ,Sig,Vfy,Forge) is (n, ℓ)-Party ε-Public-Key Collision Resistant if

Pr


∣∣{spk1, . . . , spkn,

vpk1, . . . , vpkℓ}
∣∣

< n+ ℓ

∣∣∣∣∣∣∣∣∣
pp← S(1k),

(spki, ·)← GS(pp), i ∈ [n]

(vpkj , ·)← GV (pp), j ∈ [ℓ]

 ≤ ε.
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3.2 Security of Chakraborty et al.’s MDVS [4]

We prove the security of Chakraborty et al.’s MDVS construction [4]—denoted

Πadap
MDVS and defined in Algorithm 11—with respect to the new security notions.

Its building blocks are a Public Key Encryption scheme ΠPKE, a One Way
Function ΠOWF and a Non Interactive Zero Knowledge ΠNIZK; the informal
theorem below summarizes our results regarding Πadap

MDVS’s additional security
guarantees. (Regarding replay unforgeability, we the original argument from [4],
establishing the unforgeability of their construction, also implies the stronger
notion we consider [5, Proof of Theorem 6].)

Theorem 1 (Informal). If 1. ΠPKE is correct and tightly multi-user and mul-
ti-challenge IND-CPA secure under non-adaptive corruptions; 2. ΠNIZK is tightly
multi-statement adaptive zero-knowledge and tightly multi-statement simulation–
sound; and 3. ΠOWF is tightly multi-instance secure under non-adaptive cor-
ruptions, then Πadap

MDVS is tightly Forgery Invalidity secure (Theorem 6), tightly
Unforgeability against Replays ( [4, Theorem 6], Theorem 5 8) and is Public-Key
Collision Resistant (Corollary 1).

Remark 1. We note that our Forgery Invalidity proof of Chakraborty et al.’s
MDVS does not require any additional guarantees from its underlying building
blocks and our reductions to prove the Forgery Invalidity security of their scheme
are also tight. Overall, this means their construction can still be instantiated
from building blocks that are known to have (compatible) structure preserving
instantiations with tight security reductions to standard assumptions [4].

4 New and Stronger Game-Based Notions for MDRS-PKE

In this section we introduce a stronger unforgeability notion for MDRS-PKE
schemes—analogous to the one we introduced for MDVS schemes—and a new
Forgery Invalidity notion—also analogous to the one we introduced for MDVS.
As for the stronger MDVS notions, we introduce these notions because our
composable treatment of MDVS assumes them, and furthermore we do not
know how to prove the MDRS-PKE composable semantics (from Section 6)
are implied by the MDRS-PKE game-based notions without relying on the
stronger notions we now present. For completeness, we also present a stronger
MDRS-PKE {IND, IK}-CCA notion: without this notion we do not know how to
prove the composable semantics of the MDRS-PKE game-based in the setting
where senders secret keys do not leak. (The original notion from [18]—where
honest senders’ secret keys cannot be obtained via oracle OSK—does not allow for
challenge queries OE((Ai,0, V⃗0,m0), (Ai,1, V⃗1,m1)) for which there may be some

query ORK(Bj ∈ Set(V⃗0) ∪ Set(V⃗1)); we do not know how to make a reduction
to that weaker notion because it is not clear to us how to generate encryptions of
messages from honest senders to vectors of receivers that include dishonest ones

8 The proof of [4, Theorem 6] already implies replay unforgeability of their construction.
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without having access to honest senders’ secret keys.) Finally, we show Maurer et
al.’s MDRS-PKE [18, 19] satisfies all these new notions (our Forgery Invalidity
reduction assumes the analogous guarantee from the underlying MDVS). Put
together with Theorem 1 this means Chakraborty et al.’s construction can be
used as the MDVS underlying Maurer et al.’s MDRS-PKE.

4.1 (New) Security Notions

Game GForge-Invalid defined by the Forgery Invalidity notion provides adversaries
with access to the oracles from above plus oracle OForge below:

OForge(Ai, V⃗ ,m, C ⊆ Set(V⃗ )): 1. spki ← OSPK(Ai); 2. for i = 1, . . . , |V⃗ |, if
Vi ∈ C let (vi, si) = ORK(Vi), and otherwise let (vi, si) = (ORPK(Vi),⊥);
3. output Π.Forgepp(spki, v⃗,m, s⃗), where v⃗ = (v1, . . . , v|V⃗ |), s⃗ = (s1, . . . , s|V⃗ |).

Definition 14 (Forgery Invalidity: GForge-Invalid). An adversary A wins if there

is a query OForge(Ai, V⃗ ,m, C) and a later query OD(Bj , c) such that: 1. Bj ∈ V⃗ ;
2. Bj ̸∈ C; 3. the input c to OD is the output of OForge; and 4. the output of OD

is not ⊥.

Definition 15 (Replay Unforgeability: GR-Unforg). An adversary A wins if
it makes a query OD(Bj , c) that outputs (spki, v⃗,m) ̸= ⊥, there is a sender

Ai and a vector of receivers V⃗ such that spki is Ai’s sender public key (i.e.

OSPK(Ai) = spki) and v⃗ is the vector of receiver public keys corresponding to V⃗

(i.e. |V⃗ | = |v⃗| and for each l ∈ {1, . . . , |v⃗|}, ORPK(Vl) = vl), there was no query

OE(Ai
′, V⃗ ′,m′) with (Ai, V⃗ ,m) = (Ai

′, V⃗ ′,m′) that output the same ciphertext c
that was input to OD, and neither OSK was queried on input Ai nor ORK was
queried on input Bj.

Definition 16 (Public-Key Collision Resistance). MDRS-PKE Π = (S,
GS ,GR,E,D,Forge) is (n, ℓ)-Party ε-Public-Key Collision Resistant if

Pr


∣∣{spk1, . . . , spkn,

rpk1, . . . , rpkℓ}
∣∣

< n+ ℓ

∣∣∣∣∣∣∣∣∣
pp← S(1k),

(spki, ·)← GS(pp), i ∈ [n]

(rpkj , ·)← GR(pp), j ∈ [ℓ]

 ≤ ε.

For b ∈ {0, 1}, the OE and OD oracles that game G
{IND, IK}-CCAS

b provides to
an adversary are as follows:

OE

(
(Ai,0, V⃗0,m0), (Ai,1, V⃗1,m1)

)
: output c← Π.Epp(sski,b, v⃗b,mb).

OD(Bj , c): If c was output by an OE query, output test; otherwise proceed as
in the default OD oracle.

Definition 17 ({IND, IK}-CCAS Security: G
{IND, IK}-CCAS

0 and G
{IND, IK}-CCAS

1 ).
An adversary A wins if it outputs guess bit b′ = b and for every oracle OE

query OE

(
(Ai,0, V⃗0,m0), (Ai,1, V⃗1,m1)

)
: 1. (|m0|, |V⃗0|) = (|m1|, |V⃗1|); and 2. if

(Ai,0, V⃗0,m0) ̸= (Ai,1, V⃗1,m1), there is no query OSK(A ∈ {Ai,0, Ai,1}) nor

ORK(Bj ∈ Set(V⃗0) ∪ Set(V⃗1)).
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4.2 Security of Maurer et al.’s MDRS-PKE Construction [18]

As already mentioned, the building blocks for Maurer et al.’s MDRS-PKE con-
struction are an MDVS scheme ΠMDVS, a Public Key Encryption for Broadcast
scheme ΠPKEBC and a Digital Signature Scheme ΠDSS [18,19]. The informal the-
orem below gives an overview of our results regarding the additional guarantees
given by Maurer et al.’s MDRS-PKE construction ΠMDRS-PKE [18, 19]:

Theorem 2 (Informal). If 1.ΠPKEBC is tightly correct, robust, consistent and
{IND, IK}-CCA secure under adaptive corruptions; 2. ΠMDVS is tightly consis-
tent, unforgeable, message-bound validity and forgery invalidity secure (all under
adaptive corruptions) and is public-key collision resistant; and 3.ΠDSS is tightly
1-sEUF-CMA secure then ΠMDRS-PKE is tightly:

1. consistent under adaptive corruptions ([18, Theorem 7], Theorem 7);
2. replay unforgeable under adaptive corruptions (Theorem 8);
3. {IND, IK}-CCAS secure under adaptive corruptions ([4, Theorem 13], Theo-

rem 9 9);
4. forgery invalidity secure (Theorem 10); and
5. public-key collision resistant (Corollary 2).

It follows from Theorems 1 and 2 that a remark analogous to Remark 1 also
applies for MDRS-PKE [4].

5 Strong Application Semantics for MDVS

In this section we introduce a new security model (i.e. composable notions)
for MDVS, and prove that the existing game-based notions (Section 2.3 [4, 6])
together with our new notions (Section 3.1) imply these new composable notions.
Our new model gives significantly stronger guarantees than [17].

Throughout this section, S = {A1, . . . , Al} is the set of senders, R =

{B1, . . . , Bn} the set of receivers, and F := S ∪R; we assume RH , RH , SH and

SH are non-empty. We also consider a judge J(-udy) who is not a sender nor a
receiver. The set of parties is P = {A1, . . . , Al, B1, . . . , Bn, J}.

5.1 The Real World: Assumed Resources and Protocol

A composable security notion involves defining a set of assumed resources (the
building blocks), a protocol (which in our case specifies how the MDVS is used)
and an ideal resource that captures the application semantics one is trying to
model (e.g. the semantics one expects from an MDVS scheme). The set of assumed
resources together with the protocol form the so-called real-world resource.

For the case of MDVS we use the same assumed resources and protocol (i.e.
converter tuple) as [17]. Apart from the differences arising from considering an
asynchronous network setting—which, as explained in Section 2.2.1 is modeled

9 Our proof is essentially the same as [4, Proof of Theorem 13].
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via converter Net (Algorithm 3) that allows controlling message delivery—a
simple but crucial difference from [17] is that we duplicate certain dishonest party
interfaces. This duplication is key to our composable notions: it allows having
dishonest parties run the signature forgery protocol while preserving their access
to the assumed resources. (Recall, from Section 2.1, that when a converter α is
attached to an interface I = (IX , IY) of a resource R, the resulting resource αIR
no longer includes interface I because it becomes covered by α.) This means, e.g.,
they still retain access to parties’ public keys and dishonest senders’ and receivers’
secret keys, which is crucial to capture a strong Off-The-Record guarantee.

Algorithm 4 The KGA resource for MDVS Π = (S,GS ,GV ,Sig,Vfy,Forge).

⋄ Initialization
pp← Π.S(1k)
for Ai ∈ S: (spki, sski)← Π.GS(pp)

for Bj ∈ R: (vpkj , vskj)← Π.GV (pp)

▷ (P ∈ P)-PublicParameters
Output(pp)

▷ (Ai ∈ SH)-SenderKeyPair
Output(spki, sski)

▷ (J)-SenderKeyPair(Ai ∈ SH)
Output(spki, sski)

▷ (P ∈ PH)-SenderKeyPair(Ai ∈ SH)
Output(spki, sski)

▷ (P ∈ P)-SenderPublicKey(Ai ∈ S)
Output(spki)

▷ (Bj ∈ RH)-ReceiverKeyPair
Output(vpkj , vskj)

▷ (P ∈ PH)-ReceiverKeyPair(Bj ∈ RH)
Output(vpkj , vskj)

▷ (P ∈ P)-ReceiverPublicKey(Bj ∈ R)
Output(vpkj)

Assumed Resources. Parties have access to an asynchronous and anonymous
insecure repository Net·INS—to which everyone can write to and read from—and
to a Key Generation Authority (KGA) resource [17], which generates and stores
parties’ key pairs (Algorithm 4). The KGA guarantees not only that dishonest
receivers’ key-pairs are “well-formed” but also that the dishonest receivers actually
have access to their secret keys—which allows them to come up with forged
ciphertexts; being able to come up with forged ciphertexts that look like real ones
is necessary for the Off-The-Record guarantee [6, 7, 17]. Since we are considering
the setting introduced in [4]—where judge J(-udy) has access to the secret keys of
honest senders—the KGA gives Judy access to the secret keys of honest senders.
The KGA resource—which is implicitly parameterized by a security parameter
k—runs setup algorithm S to obtain the MDVS’s public parameters.Then, it
generates key-pairs for all senders and receivers—using GS and GV , respectively.
Every honest party can query their own key-pair, the public parameters and
everyone’s public keys at their own interface. Dishonest parties can additionally
obtain the key-pairs of any dishonest senders or receivers; finally, the judge J
can additionally obtain the secret keys of honest senders.

Protocol. Each honest sender Ai ∈ SH and each honest receiver Bj ∈ RH

locally runs a converter Snd and Rcv, respectively (see Algorithm 5); both these
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Algorithm 5 Converters Snd, Rcv and Forge for MDVS Π =
(S,GS ,GV ,Sig,Vfy,Forge).

▷ (Ai ∈ SH)-Write(⟨Ai → V⃗ ⟩,m) // Conv. Snd
pp←PublicParameters
(spki, sski)←SenderKeyPair

for l ∈ [|V⃗ |] :
vpkl ←ReceiverPublicKey(Vl)

v⃗ := (vpk1, . . . , vpk|V⃗ |)

σ ← Π.Sigpp(sski, v⃗,m)

Output(Write(m,σ, (Ai, V⃗ )))

▷ (Bj ∈ RH)-Read // Conv. Rcv
(vpkj , vskj)←ReceiverKeyPair
pp←PublicParameters
list, readSet← ∅
for (id, tup := (m,σ, (Ai, V⃗ ))) ∈ Read with

(tup /∈ readSet) ∧ (Bj ∈ Set(V⃗ )) :
readSet← readSet ∪ {tup}
spki ←SenderPublicKey(Ai)

for l ∈ [|V⃗ |] :
vpkl ←ReceiverPublicKey(Vl)

v⃗ := (vpk1, . . . , vpk|V⃗ |)

if Π.Vfypp(spki, vskj , v⃗,m, σ) :

list← list ∪ {(⟨Ai → V⃗ ⟩, id,m)}
Output(list)

▷ (P ∈ F)-Write(⟨[Forge]Ai → V⃗ ⟩,m)
// Conv. Forge
pp←PublicParameters
spki ←SenderPublicKey(Ai)

for l ∈ [|V⃗ |] with Vl ∈ RH :
vpkl ← ReceiverPublicKey(Vl)
vskl ← ⊥

for l ∈ [|V⃗ |] with Vl ∈ RH :
(vpkl, vskl)←ReceiverKeyPair(Vl)

v⃗ := (vpk1, . . . , vpk|V⃗ |)

s⃗ := (vsk1, . . . , vsk|V⃗ |)

σ ← Π.Forgepp(spki, v⃗,m, s⃗)

Output(Write(m,σ, (Ai, V⃗ )))

converters connect to the KGA and Net · INS; they provide the same outer
interfaces as a repository for a party who is a writer (Snd) and a reader (Rcv),
respectively. A party Ai’s Snd converter provides a procedure Write which takes
as input a label ⟨Ai → V⃗ ⟩ (defining the vector of receivers V⃗ = (V1, . . . , V|V⃗ |))

and a message m; upon such input, Snd signs the input message, writes tuple
(m,σ, (Ai, V⃗ )) to Net · INS—where σ is the resulting signature—and outputs
the id output by writing to Net · INS. A party Bj ’s Rcv converter reads all
(received) tuples from Net · INS—filtering out duplicates—and verifies the ones
for which Bj is part of the receivers; if verification succeeds, it adds a triple with
the sender/receiver-vector label, id and message to the output set.

In addition to converters Snd and Rcv, every party in F := S ∪R—including
dishonest ones—runs a converter Forge (Algorithm 5) that allows to forge mes-
sages, mimicking (honest) senders’ Write operations towards dishonest parties.
Each party’s Forge converter connects to the KGA and INS resources—but,
crucially, is not given access to senders’ secret keys. Having dishonest parties run
converter Forge is what captures their ability of forging real-looking ciphertexts
(i.e. which gives the sender plausible deniability). However, simply attaching a
converter to dishonest parties’ interfaces eliminates their access to the KGA and
INS resources (Section 2.1)—i.e. dishonest parties cannot access parties’ public
keys, dishonest parties’ secret keys, nor Read and Write from/to the INS
repository—resulting in a rather weak Off-The-Record guarantee (illustrated
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in Figure 2).10 To ensure that running Forge does not restrict dishonest parties’
capabilities, we duplicate some of the KGA and INS interfaces and have con-
verter Forge connect only to these redundant interfaces. Concretely, we extend the
KGA resource with additional interfaces that allows a party’s Forge converter
to obtain the public and secret keys necessary to forge signatures (Algorithm 6),
and extend the INS repository to provide these converters with write access, so
they can write forged signatures to INS. This is achieved by defining INS as

INS
P∪(F×{Forge})
P .

KGA

INS

Ai Snd

B1

B2

B3

B4

Rcv

Forge

Forge

Forge

J

Fig. 2: A real world resource that captures weak deniability guarantees. The
only sender depicted is Ai, who is honest. From the four receivers depicted—B1

through B4—only B1 is honest. Judge J is dishonest.

Algorithm 6 Additional KGA interfaces for the Forge converters.

▷ (P ∈F, Forge)-PublicParameters
Output(pp, rpkpp)

▷ (P ∈F, Forge)-SenderPublicKey(Ai∈S)
Output(spki)

▷ (P ∈ F, Forge)-ReceiverPublicKey(Bj ∈
RH)

Output(vpkj)

▷ (P ∈F, Forge)-ReceiverKeyPair(Bj ∈RH)
Output(vpkj , vskj)

10 In fact, for such notion one would need to redefine the set F of parties running the
Forge converter to include only dishonest ones.
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KGA

INS

Ai Snd

B1

B2

B3

B4

Rcv

Forge

Forge

Forge

Forge

J

⊥

(a) Real world resource when judge J is honest.

KGA

INS

Ai Snd

B1

B2

B3

B4

Rcv

Forge

Forge

Forge

Forge

J

(b) Real world resource for dishonest judge J .

Fig. 3: In both (sub-)figures: Ai is the only sender depicted, and is honest; four
receivers are depicted—B1 through B4—among whom only B1 is honest; B1 runs
two converters—Rcv and Forge—which are agglomerated into the same box.
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Real World System. One of the guarantees one expects from an MDVS (and
from an MDRS-PKE) is authenticity. However, since judge J has access to the
secret keys of honest senders it is not possible to guarantee authenticity if J is
dishonest. We then consider two cases: honest J and dishonest J . The real world
resource for the first case (illustrated in Figure 3b) is given by

SndS
H

RcvR
H

Forge(F×{Forge}) [KGA,Net · INS]. (5.1)

For the case of honest J , it is instead given by

SndS
H

RcvR
H

Forge(F×{Forge})⊥J [KGA,Net · INS]. (5.2)

where ⊥ is a (dummy) converter that covers all of J ’s interfaces and provides no
outside interface (see Figure 3b).

5.2 Application Semantics

The guarantees one expects from an MDVS scheme depend on the honesty of the
judge J(-udy): if she is dishonest, we expect consistency and plausible deniability
(i.e. Off-The-Record); if she is honest, we additionally expect authenticity. The
ideal resources we now define give stronger guarantees than [17].

5.2.1 Dishonest Judy For each sender Ai ∈ S and receiver-vector V⃗ ∈ R+,
the ideal system includes a repository ⟨Ai → V⃗ ⟩ to which Ai and any dishonest

party can write to, and from which dishonest parties and the ones in V⃗ can read,
i.e.

⟨Ai → V⃗ ⟩ := ⟨Ai → V⃗ ⟩
{Ai}∪PH

Set(V⃗ )∪PH .

These repositories naturally capture consistency: for each atomic repository
⟨Ai → V⃗ ⟩, either there is a register with identifier id—in which case all hon-

est receivers Bj ∈ V⃗ to whom id was delivered get the same unique tuple

(id, (⟨Ai → V⃗ ⟩,m)) as part of the output of a Read operation—or there is not—

in which case no honest receiver Bj ∈ V⃗ gets a tuple with a matching identifier
id (as part of the output of a Read operation).

To capture Off-The-Record, for each sender Ai and vector of designated
receivers V⃗ we consider an additional repository to which “fake” messages are
written: ⟨[Forge]Ai → V⃗ ⟩. The Write interface of this new repository matches
the joint Write interfaces of the Forge converters, i.e. F ; on the other hand,
while dishonest parties should not be able to tell apart “real” messages from
“fake” ones, honest parties should, which means repository ⟨[Forge]Ai → V⃗ ⟩’s set
of readers is PH ; i.e. ⟨[Forge]Ai → V⃗ ⟩ := ⟨[Forge]Ai → V⃗ ⟩

F
PH . The ideal system

includes a repository with all these (atomic) repositories put together with the
Net converter attached (see Equation 5.3). Net ·

[
⟨Ai → V⃗ ⟩

{Ai}∪PH

Set(V⃗ )∪PH

]
Ai∈S,V⃗ ∈R+[

⟨[Forge]Ai → V⃗ ⟩
F
PH

]
Ai∈S,V⃗ ∈R+

 . (5.3)
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(Converter Net need not be attached to ⟨[Forge]Ai → V⃗ ⟩: Net only controls mes-

sage delivery to honest parties, and all readers of ⟨[Forge]Ai → V⃗ ⟩ are dishonest.)

Algorithm 7 Converter Otr.

▷ (P ∈ PH)-Read
list← ∅
for (id, (repi,m)) ∈ Read :

if repi = ⟨[Forge]Ai → V⃗ ⟩ :
list← list ∪ {(id, (⟨Ai → V⃗ ⟩,m))}

else // repi = ⟨Ai → V⃗ ⟩.
list← list ∪ {(id, (repi,m))}

Output(list)

The repositories in Equation 5.3 do not capture Off-The-Record, and we do not
know how to model these only using the repository resources from before: Read
operations leak the atomic repository from which each of the tuples output was
read from, and so a party can distinguish real messages—which would be paired
with repositories labels of the form ⟨Ai → V⃗ ⟩—from forged ones—which would

be paired with labels of the form ⟨[Forge]Ai → V⃗ ⟩. We model Off-The-Record
via a converter Otr that is attached to dishonest parties’ Read interfaces and
limits their (reading) capabilities. Otr—formally defined in Algorithm 7—captures
Off-The-Record because it ensures (dishonest) parties do not know whether they

are reading real messages—written to ⟨Ai → V⃗ ⟩—or forged ones—written to

⟨[Forge]Ai → V⃗ ⟩. The resulting ideal resource S is then

S := OtrP
H ·

 Net ·
[
⟨Ai → V⃗ ⟩

{Ai}∪PH

Set(V⃗ )∪PH

]
Ai∈S,V⃗ ∈R+[

⟨[Forge]Ai → V⃗ ⟩
F
PH

]
Ai∈S,V⃗ ∈R+

. (5.4)

Figure 4a illustrates a simpler variant of S—corresponding to the case where J
is honest (so honest receivers cannot be impersonated).

5.2.2 Honest Judy When Judy is honest we also expect authenticity; a
natural way to capture this is having the ideal resource include, for each honest
sender Ai ∈ SH , an atomic repository ⟨Ai → V⃗ ⟩ to which only Ai can write:[

⟨Ai → V⃗ ⟩
{Ai}
Set(V⃗ )∪PH

]
Ai∈SH ,V⃗ ∈R+

.

This is the same we did for modeling Off-The-Record: we are restricting dis-
honest parties’ writing capabilities by eliminating their Write sub-interfaces
on input labels ⟨Ai → V⃗ ⟩ such that Ai ∈ SH . Denoting these (sub-)interfaces

by Auth-Intf := PH -Write(⟨SH → R+⟩, ·), we can equivalently connect the
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(dummy) converter ⊥ so it disables these Write interfaces, i.e.

⊥Auth-Intf ·
[
⟨Ai → V⃗ ⟩

{Ai}∪PH

Set(V⃗ )∪PH

]
Ai∈SH ,V⃗ ∈R+

≡
[
⟨Ai → V⃗ ⟩

{Ai}
Set(V⃗ )∪PH

]
Ai∈SH ,V⃗ ∈R+

.

(5.5)

We can then define the ideal resource T as:

T := OtrP
H ·

 Net · ⊥Auth-Intf ·
[
⟨Ai → V⃗ ⟩

{Ai}∪PH

Set(V⃗ )∪PH

]
Ai∈S,V⃗ ∈R+[

⟨[Forge]Ai → V⃗ ⟩
F
PH

]
Ai∈S,V⃗ ∈R+

 . (5.6)
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⟨[Real]Ai → V⃗ ⟩
{Ai}
Set(V⃗ )∪PH

⟨[Forge]Ai → V⃗ ⟩
F
PH

OtrP
H

simPH

Ai

B1

B2

B3

B4

(a) Ideal MDVS resource.

⟨[Real]Ai → V⃗ ⟩
{Ai}
Set(V⃗ )∪PH

⟨[Forge]Ai → V⃗ ⟩
F
PH

OtrP
H

ConfAnonP
H

simPH

Ai

B1

B2

B3

B4

(b) Ideal MDRS-PKE resource.

Fig. 4: Only honest sender Ai is depicted. From the four depicted receivers—B1

through B4—only B1 is honest. Judge J is honest. In the figure we use arrows to
make clear that dishonest parties can only write to repositories ⟨[Forge]Ai → V⃗ ⟩,
but not read.
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5.3 Application Semantics of Game-Based Notions

The informal theorem below establishes the composable semantics of MDVS’s
game-based notions (Section 2.3 [4, 6], Section 3.1). For the formal theorem
statements and respective full proofs, see Section E.

Theorem 3 (Informal). Suppose an MDVS scheme Π is correct, consistent,
replay-unforgeable, Off-The-Record and satisfies forgery invalidity. If Π is used as
the MDVS scheme underlying the real world systems defined in Section 5.1 then
there are poly-time simulators simS and simT and there are negligible functions
εS and εT such that, for any (suitable) poly-time distinguishers DS,DT, the two
statements below hold:
∆DT

(
SndS

H

RcvR
H

ForgeF⊥J [KGA,Net · INS], simT ·T
)
≤ εT (Theorem 13);

∆DS

(
SndS

H

RcvR
H

ForgeF [KGA,Net · INS], simS · S
)
≤ εS (Theorem 14).

Remark 2. The proof of Theorem 13—which corresponds to the weaker setting
where honest senders’ secret keys do not leak—also assumes the underlying
MDVS to satisfy Forgery Invalidity.

6 Application Semantics for MDRS-PKE Schemes

In this section we introduce the first composable security notions for MDRS-PKE
schemes; as we will see, these notions are surprisingly similar to the ones for
MDVS. Finally, we prove that the existing game-based notions (Section 2.4 [4,6])
together with our new notions (Section 4.1) do imply these new composable
notions.

As before, S are the senders, R the receivers, and F := S ∪ R; we assume
RH , RH , SH and SH are non-empty. Together with the judge J(-udy), the set
of parties is then is P = S ∪R ∪ {J}.

6.1 The Real World: Assumed Resources and Protocols

Assumed Resources. The assumed resources for our MDRS-PKE composable no-
tions are essentially the same as the ones for our MDVS notions: an asynchronous
and anonymous insecure repository Net · INS and a KGA (Algorithm 8). The
KGA resource is implicitly parameterized by a security parameter k; it first runs
setup algorithm S and then samples an MDRS-PKE receiver public key rpkpp
which it attaches to the public parameters. (The additional public key allows for
simpler reductions, as one can rely on the corresponding secret key for decryption,
and eliminates the need for the MDRS-PKE scheme to satisfy a robustness type
of notion.) It then generates key-pairs for all senders and receivers—using GS

and GR, respectively. For simplicity, the MDRS-PKE KGA resource supports an
additional helper operation, GetLabel, which given an sender’s public key and
a vector of receiver public keys outputs the unique corresponding label ⟨Ai → V⃗ ⟩,
or ⊥ if the label either does not exist or is not unique.
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Algorithm 8 The KGA resource for MDRS-PKE Π = (S,GS ,GR,E,D,Forge).
Below we only show the differences relative to Algorithm 4, i.e. the KGA resource
defined for the MDVS composable notions.

⋄ Initialization
pp← Π.S(1k)
(rpkpp, ·)← Π.GR(pp)

for Ai ∈ S: (spki, sski)← Π.GS(pp)

for Bj ∈ R: (rpkj , rskj)← Π.GR(pp)

▷ (P ∈ P)-PublicParameters
Output(pp, rpkpp)

▷ (Ai ∈ SH)-SenderKeyPair

▷ (J)-SenderKeyPair(Ai ∈ SH)

▷ (P ∈ PH)-SenderKeyPair(Ai ∈ SH)

▷ (P ∈ P)-SenderPublicKey(Ai ∈ S)
▷ (Bj ∈ RH)-ReceiverKeyPair

▷ (P ∈ PH)-ReceiverKeyPair(Bj ∈ RH)

▷ (P ∈ P)-ReceiverPublicKey(Bj ∈ R)

▷ (Bj ∈ RH)-GetLabel(spk, v⃗′)
Sspk :={Ai | spk = spki}
if |Sspk| ̸= 1 ∨ v1

′ ̸= rpkpp :

Output(⊥)
for l ∈ {2, . . . , |v⃗′|} :
Rvl

′ :={Bk | vl′ = rpkk}
if |Rvl

′ | ̸= 1 :

Output(⊥)
else

Let Bk be the element of Rvl
′

Vl−1 = Bk

Let Ai be the element of Sspk
Let V⃗ := (V1, . . . , V|v⃗′|−1)

Output(⟨Ai → V⃗ ⟩)

Protocol. As for MDVS, honest senders receivers locally run converter Snd and
Rcv, respectively (see Algorithm 9), which are attached to KGA and Net · INS.
These converters are mostly analogous to their MDVS counterparts, the main
differences being:

1. Converter Snd no longer writes the sender’s and vector of receivers’ identities
nor the input message to INS (as required to guarantee anonymity and
confidentiality);

2. The first recipient of (valid) ciphertexts is the public parameters public key;
3. For each ciphertext that decrypts correctly, Rcv uses the KGA’s GetLabel

operation to obtain a label—i.e. looks up the sender/vector of receivers with
public keys matching the ones obtained from decryption—and then outputs
a set of triples, each triple corresponding to a ciphertext that decrypted
correctly and for which the GetLabel operation returned a valid label (i.e.
not ⊥);

4. The Forge converter—which connects to extended KGA and Net · INS
similarly to the analogous MDVS converter—on inputs (⟨[Forge]Ai → V⃗ ⟩,m)

such that V⃗ ∈ RH+
forges messages differently (see Algorithm 9 for details).

The real world resource is defined similarly to the MDVS real world resource—
the only difference being the different (but analogous) KGA and converters.

6.2 MDRS-PKE Application Semantics

Apart from the additional anonymity and confidentiality guarantees—for messages
sent by honest senders to vectors of all-honest receivers—the properties we expect
from an MDRS-PKE are the same we expect from an MDVS.
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Algorithm 9 Converters Snd, Rcv and Forge.

▷ (Ai ∈ SH)-Write(⟨Ai → V⃗ ⟩,m)
// Conv. Snd
(pp, rpkpp)←PublicParameters

(spki, sski)←SenderKeyPair

for l ∈ {1, . . . , |V⃗ |} :
rpkl ←ReceiverPublicKey(Vl)

v⃗′ := (rpkpp, rpk1, . . . , rpk|V⃗ |)

c← Π.Epp(sski, v⃗
′,m)

Output(Write(c))

▷ (Bj ∈ RH)-Read // Conv. Rcv
(rpkj , rskj)←ReceiverKeyPair

(pp, ·)←PublicParameters
list, ctxtSet← ∅
for (id, c) ∈ Read with c ̸∈ ctxtSet :

ctxtSet← ctxtSet ∪ {c}
(spki, v⃗

′,m)← Π.Dpp(rskj , c)
if (spki, v⃗

′,m) ̸= ⊥ :

⟨Ai → V⃗ ⟩ ←GetLabel(spki, v⃗
′)

if ⟨Ai → V⃗ ⟩ ̸= ⊥ :

list← list ∪ {(id, (⟨Ai → V⃗ ⟩,m))}
Output(list)

▷ (P ∈ F)-Write(⟨[Forge]Ai → V⃗ ⟩,m) // Conv. Forge
(pp, rpkpp)←PublicParameters

if V⃗ ∈ RH+
:

spk1 ←SenderPublicKey(A1)

c← Π.Forgepp(spk1, rpkpp
|V⃗ |+1, 0|m|,⊥|V⃗ |+1)

else
spki ←SenderPublicKey(Ai)

for l ∈ {1, . . . , |V⃗ |} :

if Vl ∈ RH :
(rpkl, rskl)← (ReceiverPublicKey(Vl),⊥)

else // Vl ∈ RH

(rpkl, rskl)←ReceiverKeyPair(Vl)

(v⃗′, s⃗) :=
(
(rpkpp, rpk1, . . . , rpk|V⃗ |), (⊥, rsk1, . . . , rsk|V⃗ |)

)
Output(Write(c← Π.Forgepp(spki, v⃗

′,m, s⃗)))

6.2.1 Dishonest Judy The ideal MDVS resource S defined in Equation 5.4
captures all the guarantees we expect from an MDRS-PKE, except for anonymity
and confidentiality.

Algorithm 10 Converter ConfAnon.

▷ (P ∈ PH)-Read
list← ∅
for (id, (⟨Ai → V⃗ ⟩,m)) ∈ Read :

if (Ai, V⃗ ) ∈ SH × (RH)+ :

list← list ∪ {(id, (|V⃗ |, |m|))}
else

list← list ∪ {(id, (⟨Ai → V⃗ ⟩,m))}
Output(list)

As for Off-The-Record, it is not clear how to capture these additional guar-
antees from the repository resources alone: Read operations output the atomic
repository ⟨Ai → V⃗ ⟩—which identifies the sender and vector of receivers—associated
with each tuple that is output; regarding confidentiality, either a party has read
access to an atomic repository—in which case Read operations output all of the
repository’s messages in plain—or the party has no read access to the atomic
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repository—in which case the party does not learn anything about the messages
written in that repository: not their length nor how many there are. Fortunately,
we can follow the same idea we used to model Off-The-Record: by defining an
appropriate converter—ConfAnon, Algorithm 10—that is attached to dishonest
parties’ Read interfaces and limits their (reading) capabilities: if an honest sender

Ai ∈ SH sends a message m to a vector of receivers V⃗ all of whom are honest (i.e.

V⃗ ∈ RH+
), then ConfAnon only leaks |V⃗ | and |m| to dishonest parties, instead

of ⟨Ai → V⃗ ⟩ and m. The resulting ideal resource is then

S :=
(
ConfAnonP

H · OtrPH
)
·

 Net ·
[
⟨Ai → V⃗ ⟩

{Ai}∪PH

Set(V⃗ )∪PH

]
Ai∈S,V⃗ ∈R+[

⟨[Forge]Ai → V⃗ ⟩
F
PH

]
Ai∈S,V⃗ ∈R+

. (6.1)

6.2.2 Honest Judy This case is analogous; the ideal resource T is defined as:

T :=

 ConfAnonP
H

·OtrPH

 ·
 Net · ⊥Auth-Intf ·

[
⟨Ai → V⃗ ⟩

{Ai}∪PH

Set(V⃗ )∪PH

]
Ai∈S,V⃗ ∈R+[

⟨[Forge]Ai → V⃗ ⟩
F
PH

]
Ai∈S,V⃗ ∈R+

 .

(6.2)

6.3 Application Semantics of Game-Based Notions

The informal theorem below summarizes our claims regarding the application
semantics of the MDRS-PKE security notions we introduced in this section. For
the formal theorem statements and respective full proofs, see Section D.

Theorem 4 (Informal). Suppose an MDRS-PKE scheme Π is correct, consis-
tent, replay-unforgeable, {IND, IK}-CCA secure, Off-The-Record, satisfies forgery
invalidity and is public-key collision resistant. If Π is used as the MDRS-PKE
scheme underlying the real world systems defined in Section 6.1 then there are
poly-time simulators simS and simT and there are negligible functions εS and εT
such that, for any (suitable) poly-time distinguishers DS,DT, the two statements
below hold:
∆DS

(
SndS

H

RcvR
H

ForgeF [KGA,Net · INS], simS · S
)
≤ εS (Theorem 12);

∆DT

(
SndS

H

RcvR
H

ForgeF⊥J [KGA,Net · INS], simT ·T
)
≤ εT (Theorem 11).

Remark 3. As already mentioned, for the setting where honest sender secret
keys do not leak to the judge one needs the MDRS-PKE to satisfy {IND, IK}-
CCAS (Definition 17). While this notion is implied by the {IND, IK}-CCA notion
(Definition 9) [4], it is not (known to be) implied by the {IND, IK}-CCA notion
introduced in [18].

A remark analogous to Remark 2 also applies for the case of MDRS-PKE.
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Appendix

A Game-Based Security Definitions

In this section we introduce game-based notions that we use to prove the security
of Maurer et al.’s MDRS-PKE construction [18]. We only introduce notions that
are strictly necessary for such security proofs.

A.1 One Way Function

A One Way Function (OWF) is a pair Π = (S,F), where S is a PPT and F a PT.
Consider an OWF Π = (S,F); the game system of Definition 18 has (an

implicitly defined) security parameter k and provides adversaries with access to
oracles OY and OS defined below:

OY (i ∈ N): 1. On the first call on index i ∈ N, compute x← S(1k) and store
(i, x, y := F(x)); output y;

2. On subsequent calls, simply output y.
OS(i ∈ N, x): 1. On the first call on i (to either this oracle or to OY ), compute

x← S(1k) and store (i, x, y := F(x)); the oracle does not give any output;
2. On subsequent calls, the oracle simply does not perform any action nor

give any output.

Definition 18. Game GOWF gives an adversary A access to oracles OY and
OS. A wins if it makes a query OS(i, x) such that F(x) = OY (i).

An adversary A (ε, t)-breaks the (n)-One-Wayness of OWF Π if it runs in
time t, queries oracles OY and OS on at most n different indices i ∈ N, and
satisfies AdvOWF(A) ≥ ε.

A.2 Public Key Encryption

A Public Key Encryption (PKE) scheme Π with message spaceM is a triple of
PPTs Π = (G,E,D). Below we state the multi-user multi-challenge variants of
Correctness (from [5]) and IND-CPA security for PKE schemes (first introduced
in [8]).

Let Π = (G,E,D) be a PKE scheme with message spaceM; as before, we
assume the game system of the following definition has (an implicitly defined)
security parameter k. Definition 19 provides adversaries with access to the
following oracles:

OSK(Bj): 1. On the first call on Bj , compute and store (pkj , skj) ← G(1k);
output (pkj , skj); 2. On subsequent calls, simply output (pkj , skj).

OPK(Bj): 1. (pkj , skj)← OSK(Bj); 2. Output pkj .
OE(Bj ,m; r): 1. If r is given as input, encrypt m under pkj (Bj ’s public key, as

generated by OPK) using r as random tape; if r is not given as input create
a fresh encryption of m under pkj ; 2. Output the resulting ciphertext back
to the adversary.
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OD(Bj , c): 1. Decrypt c using skj (Bj ’s secret key, as generated by OPK);
2. Output the resulting plaintext back to the adversary (or ⊥ if decryption
failed).

Definition 19 (Correctness: GCorr). Game GCorr provides an adversary A
with access to oracles OSK , OPK , OE and OD. A wins the game if there are
two queries qE and qD to OE and OD, respectively, where qE has input (Bj ,m; r)
and qD has input (Bj

′, c), the input c in qD is the output of qE, Bj = Bj
′, and

the output of qD is not m.

A (computationally unbounded) adversary A (ε)-breaks the (n)-Correctness
of a PKE scheme Π if A queries OSK , OE and OD on at most n different parties
and satisfies AdvCorr(A) ≥ ε.

The IND-CPA game systems provide adversaries with access to oracle OPK

described above, and to an additional oracle OE which behaves as follows:

OE(Bj ,m0,m1): 1. For game system GIND-CPA
b , the oracle encrypts mb under

Bj ’s public key, pkj , creating a fresh ciphertext c; 2. The oracle outputs the
resulting ciphertext c back to the adversary.

Definition 20. For b ∈ {0, 1}, game GIND-CPA
b gives an adversary A access to

oracles OPK and OE. A wins if b′ = b and for every query OE(Bj ,m0,m1),
|m0| = |m1|.

We say A (ε, t)-breaks the (n, qE)-IND-CPA security of a PKE scheme Π if A
runs in time at most t, queries the oracles it has access to on at most n different
parties, makes at most qE queries to oracle OE , and satisfies Adv IND-CPA(A) ≥ ε.
Finally, Π is (εCorr, εIND-CPA, t, n, qE)-secure if no adversary A (εIND-CPA, t)-breaks
the (n, qE)-IND-CPA security of Π and no (possibly computationally unbounded)
adversary (εCorr)-breaks the (n)-Correctness of Π.

A.3 Digital Signature Scheme

A Digital Signature Scheme (DSS) for a message space M is a triple Π =
(G,Sig,Vfy) of PPTs. Below we state the definition of (One-Time) Strong Ex-
istential Unforgeability for DSS. The notion has an implicitly defined security
parameter k and makes use of oracles OV K , OS and OV , which, for a DSS
Π = (G,Sig,Vfy), are defined as:

OV K(i ∈ N): 1. On the first query on i, compute and store (vki, ski)← G(1k);

2. Output vki.

OS(i,m): 1. Compute σ ← Sigski(m), where ski is the signing key associated
with i; output σ.

OV (i,m, σ): 1. Compute d ← Vfyvki(m,σ), where vki is the verification key
associated with i; output d.
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Definition 21. Game G1-sEUF-CMA provides an adversary with access to oracles
OV K , OS and OV . A wins the game if there is a query to OV on some input
(i∗,m∗, σ∗) that outputs 1, there is no query to OS on input (i∗,m∗) that output
σ∗, and for each i ∈ N there is only at most one query to OS with input i.

A’s winning advantage is Adv1-sEUF-CMA(A) := Pr[AG1-sEUF-CMA = win].

An adversary A (ε1-sEUF-CMA, t)-breaks the (n, qS , qV )-1-sEUF-CMA security
of Π if A runs in time at most t, queries OV K , OS and OV on at most n different
indices, makes at most qS and qV queries to, respectively, OS and OV , and
satisfies Adv1-sEUF-CMA(A) ≥ ε1-sEUF-CMA.

A.4 Non Interactive Zero Knowledge

For a binary relation R, let LR be the language LR := {x | ∃w, (x,w) ∈ R}
induced by R. A Non Interactive Proof System (NIPS) for LR is a triple of PPT
algorithms Π = (G,P,V) where:

– G(1k): given security parameter 1k, outputs a common reference string crs;
– Pcrs(x,w): given a common reference string crs and a statement-witness

pair (x,w) ∈ R, outputs a proof p;
– Vcrs(x, p): given a common reference string crs, a statement x and a proof p,

either accepts, outputting valid (= 1) or rejects, outputting invalid (= 0).

A NIZK scheme Π = (G,P,V,S = (SG,SP )) for a relation R consists of a NIPS
scheme Π ′ = (G,P,V) for R and a simulator S = (SG,SP ), where:

– SG(1
k): given security parameter 1k, outputs a pair (crs, τ);

– SP (crs,τ)(x): given a pair (crs, τ) and a statement x, outputs a proof p.

Consider a NIZK scheme Π = (G,P,V,S = (SG,SP )). The following security
notion, which defines game systems GZK

0 and GZK
1 , provides adversaries with

access to two oracles, OS and OP , whose behavior depends on the underlying
game system. For GZK

b (with b ∈ {0, 1}):

OS: On the first call, compute and store crs← G(1k) if b = 0 , and (crs, τ)←
SG(1

k) if b = 1; output crs.
OP (x,w): If b = 0, output π ← Pcrs(x,w); if b = 1, output π ← SP (crs,τ)(x).

Definition 22 (Zero-Knowledge: GZK
0 and GZK

1 ). For b ∈ {0, 1}, game GZK
b

gives an adversary A access to oracles OS and OP . A wins the game if b′ = b
and every query OP (x,w) satisfies (x,w) ∈ R.

We say that an adversary A (εZK, t)-breaks the (qP )-ZK security of a NIZK
scheme Π if it makes at most qP queries to OP and satisfies AdvZK(A) ≥ εZK.

We now introduce Simulation Soundness for NIZK [23]. The game system
defined by this notion provides adversaries with access to oracles OS , OP and
OV defined as:

OS on the first call sample (crs, τ)← SG(1
k); output crs.
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OP (x): Output SP (crs,τ)(x).
OV (x, p): Output Vcrs(x, p).

Definition 23 (Simulation Soundness: GSS). Game GSS gives an adversary
A access to oracles OS, OP and OV . A wins if it makes a query OV (x, p) with
x ̸∈ LR that outputs valid and no query OP (x) output p.

An adversary A (εSS, t)-breaks the (qP , qV )-Simulation Soundness of a NIZK
scheme Π if it makes at most qP and qV queries to OP and OV , respec-
tively, and satisfies AdvSS(A) ≥ εSS. Finally, we say that a NIZK scheme Π
is (εZK, εSS, t, qP , qV )-secure if no adversary A (εZK, t)-breaks the (qP )-Zero-
Knowledge of Π or (εSS, t)-breaks the (qP , qV )-Simulation Soundness of Π.

A.5 Public Key Encryption for Broadcast

A Public Key Encryption for Broadcast (PKEBC) scheme Π with message space
M is a quadruple Π = (S,G,E,D) of PPTs. Below we state the Correctness,
Robustness, Consistency and {IND, IK}-CCA security notions from [5].

Consider a PKEBC Π = (S,G,E,D) with message space M. The game
systems defined by the security notions ahead have an implicitly defined security
parameter k and provide adversaries with access to the following oracles:

OPP : 1. On the first call, compute and store pp ← S(1k); output pp; 2. On
subsequent calls, output the previously generated pp.

OSK(Bj): 1. If OSK was queried on Bj before, simply look up and return the
previously generated key for Bj ; 2. Otherwise, store (pkj , skj)← G(pp) as
Bj ’s key-pair, and output (pkj , skj).

OPK(Bj): 1. (pkj , skj)← OSK(Bj); 2. Output pkj .

OE(V⃗ ,m): 1. v⃗ ← (OPK(V1), . . . ,OPK(V|V⃗ |)); 2. Create and output a fresh

encryption c← Epp,v⃗(m).
OD(Bj , c): 1. Query OSK(Bj) to obtain the corresponding secret-key skj ; 2. De-

crypt c using skj , (v⃗,m)← Dpp,skj (c), and then output the resulting receiver-
s-message pair (v⃗,m), or ⊥ (if (v⃗,m) = ⊥, i.e. the ciphertext is not valid
with respect to Bj ’s secret key).

Definition 24 (Correctness). Game GCorr provides an adversary A with access
to oracles OPP , OSK , OE and OD. A wins the game if there are two queries qE
and qD to OE and OD, respectively, where qE has input (V⃗ ,m) and qD has input

(Bj , c), satisfying Bj ∈ V⃗ , the input c in qD is the output of qE, and the output
of qD is either ⊥ or (v⃗′,m′) with (v⃗,m) ̸= (v⃗′,m′).

The advantage of A in winning the Correctness game is the probability that
A wins game GCorr as described above, and is denoted AdvCorr(A).

Definition 25 (Robustness). Game GRob provides an adversary A with access
to oracles OPP , OSK , OPK , OE and OD. A wins the game if there are two
queries qE and qD to OE and OD, respectively, where qE has input (V⃗ ,m) and

qD has input (Bj , c), satisfying Bj ̸∈ V⃗ , the input c in qD is the output of qE, and
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the output of qD is (v⃗′,m′) with (v⃗′,m′) ̸= ⊥. The advantage of A in winning the
Robustness game is the probability that A wins game GRob as described above,
and is denoted AdvRob(A).

Definition 26 (Consistency). GCons provides an adversary A with access to
oracles OPP , OSK , OE and OD. A wins the game if there are two queries
OD(Bi, c) and OD(Bj , c) for some Bi and Bj (possibly with Bi = Bj) on the
same ciphertext c such that query OD(Bi, c) outputs some pair (v⃗,m) ̸= ⊥ with
pkj ∈ v⃗ (where pkj is Bj’s public key), and query OD(Bj , c) does not output
(v⃗,m).

A’s advantage in winning the Consistency game is denoted AdvCons(A) and
corresponds to the probability that A wins game GCons.

Below we present the definition of {IND, IK}-CCA security from [4]. The games
defined by this definition provide adversaries with access to the oracles OPP ,
OSK and OPK defined above, as well as to the following modified OE and OD

oracles:

OE

(
(V⃗0,m0), (V⃗1,m1)

)
: 1. For game system G

{IND, IK}-CCA
b , encrypt mb under

v⃗b, the vector of public keys corresponding to V⃗b; output c.
OD(Bj , c): 1. If c was the output of some query to OE , output test;

2. Otherwise, compute and output (v⃗,m) ← Dpp,skj (c), where skj is Bj ’s
secret key.

Definition 27 ({IND, IK}-CCA Security). For b ∈ {0, 1}, game system G
{IND, IK}-CCA
b

provides an adversary A with access to oracles OPP , OSK , OPK , OE and OD.
A wins the game if it outputs a guess bit b′ satisfying b′ = b and for every query
OE

(
(V⃗0,m0), (V⃗1,m1)

)
: 1. |V⃗0| = |V⃗1|; 2. |m0| = |m1|; and 3. there is no query

to OSK on any Bj ∈ Set(V⃗0) ∪ Set(V⃗1) at any point during the game. We define
the advantage of A in winning the {IND, IK}-CCA game as

Adv{IND, IK}-CCA(A) :=∣∣∣Pr[AG
{IND, IK}-CCA
0 = win] + Pr[AG

{IND, IK}-CCA
1 = win]− 1

∣∣∣.
We say an adversary A (ε, t)-breaks the (n, dE , qE , qD)-Correctness (resp.

-Robustness, -Consistency, -{IND, IK}-CCA security) of a PKEBC scheme Π if
A runs in time at most t, queries OSK , OE and OD on at most n different
parties, makes at most qE and qD queries to OE and OD, respectively, with the
sum of lengths of the party vectors input to OE being at most dE , and satisfies
AdvCorr(A) ≥ ε (resp. AdvRob(A) ≥ ε, AdvCons(A) ≥ ε, Adv{IND, IK}-CCA(A) ≥ ε).

B Security of Chakraborty et al.’s MDVS [4]

We now prove Chakraborty et al.’s MDVS construction (defined in Algorithm 11)
satisfies Forgery Invalidity.
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B.1 Unforgeability against Replays

Theorem 5. If ΠPKE is

(εPKE-Corr, εPKE-IND-CPA, tPKE, nPKE, qEPKE)-secure, (B.1)

with nPKE ≥ 1, ΠNIZK is

(εNIZK-ZK, εNIZK-SS, tNIZK, qPNIZK, qV NIZK)-secure, (B.2)

and ΠOWF is

(εOWF, tOWF, nOWF)-secure, (B.3)

with tOWF ⪆ nOWF · (tS+ tF)—where tS and tF are, respectively, the times to run
ΠOWF.S and ΠOWF.F—and with nOWF ≥ 1, then no adversary A (ε, t)-breaks
Π’s

(nS := max(nOWF − nV , 0), nV := min(nPKE,max(nOWF − nS , 0)),

qS := min(qPNIZK, qEPKE), qV := qV NIZK)-Unforgeability against Replays,

with ε > (3 · εPKE-Corr + εPKE-IND-CPA) + εNIZK-ZK + εNIZK-SS + 4 · εOWF, with
tPKE, tOWF ≈ t + tR-Unforg + qS · tSSim

+ tSCRS
and with tNIZK ≈ t + tR-Unforg,

where tR-Unforg is the time to run Π’s GR-Unforg game and tSSim
and tSCRS

are,
respectively, the runtime of ΠNIZK’s SSim and SCRS algorithms.

The original proof from [4] establishing the unforgeability of their MDVS
construction also implies this stronger result (see [5, Proof of Theorem 6]).

B.2 Forgery Invalidity

Theorem 6. If no adversary A (εPKE)-breaks the (nPKE)-Correctness of ΠPKE

then no (computationally unbounded) adversary (ε)-breaks Πadap
MDVS’s

(nV := nPKE)-Forgery Invalidity,

with ε > 2 · εPKE.

Proof. This proof proceeds in a sequence of games [1, 24].

GForge-Invalid ⇝ G1: G1 is just like the original game GForge-Invalid, except that in
G1 the ΠPKE key-pair (pk0, sk0) sampled for each party Bj is assumed to be
correct.

One can reduce distinguishing these two games to breaking ΠPKE’s correctness
because the reduction holds all secret keys (and so it can handle any oracle queries).
If an adversary A only queries for the verifier keys of up to nV ≤ nPKE parties,
and given the reduction only has to use ΠPKE-OSK oracle to generate at most one
key-pair per party—namely, (pk0, sk0)—since by assumption no computationally
unbounded adversary (εPKE)-breaks the (nPKE)-Correctness of ΠPKE, it follows∣∣∣Pr[AG1 = win]− Pr[AGForge-Invalid = win]

∣∣∣ ≤ εPKE.
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G1 ⇝ G2. This game hop is just like the previous one (i.e. GForge-Invalid ⇝ G1),
the only difference being that the key-pair which is assumed to be a correct one
is now (pk1, sk1). It follows∣∣∣Pr[AG2 = win]− Pr[AG1 = win]

∣∣∣ ≤ εPKE.

To finish the proof we now prove the following claim:

Claim. For any adversary A

Pr[AG2 = win] = 0.

Proof. Recall that an adversary can only win game G2 if it makes a query to OV

on some input (Ai, Bj , V⃗ ,m, σ := (p, c⃗, cpp)) such that σ was output by a query

to OForge on input (Ai, V⃗ ,m, C) satisfying Bj ∈ V⃗ , Bj ̸∈ C, and OV outputs 1.
First, note that, by the definition of OForge, this means that Bj ’s secret verifier
key is not given as input when the oracle is forging the signature using algorithm
Forge of Πadap

MDVS. Furthermore, by the definition of Πadap
MDVS’s Forge algorithm

(Algorithm 11), it follows that for every l ∈ {1, . . . , |V⃗ |} such that Vl = Bj ,
the two ciphertexts in cl (i.e. cl,0 and cl,1) are encryptions of 0. Finally, by the
assumption that the two PKE key-pairs of Bj—i.e. (pk0, sk0) and (pk1, sk1)—are
correct, the decryption of either cl,0 or cl,1 will result in 0 being output, and so
the signature will not verify as valid by OV . ⊓⊔

⊓⊔

B.3 Public-Key Collision Resistance

Definition 28 (n-Instance ε-Image Collision Resistance [5]). A OWF
Π = (S,F) is n-Instance ε-Image Collision Resistant if

Pr

∣∣{Π.F(x1), . . . ,Π.F(xn)}
∣∣ < n

∣∣∣∣∣∣∣∣∣
x1 ← Π.S(1k)

. . .

xn ← Π.S(1k)

 ≤ ε.

Lemma 1 ( [5, Lemma 1]). If no adversary (ε, t)-breaks the (n)-One-Wayness
of a OWF Π = (S,F), with t ⪆ n · (tS + tF)—where tS and tF are, respectively,
the times to run S and F—then Π is n-Instance ε′-Image Collision-Resistant,
with ε′ ≤ 2 · ε.
Corollary 1. If no adversary (εOWF, tOWF)-breaks the (nOWF)-One-Wayness of
ΠOWF = (S,F), with tOWF ⪆ nOWF · (tS+ tF)—where tS and tF are, respectively,

the times to run ΠOWF.S and ΠOWF.F—then Πadap
MDVS is

(n := max(nOWF − nV , 0), ℓ := max(nOWF − nS , 0))-Party

ε-Public-Key Collision-Resistant

with ε ≥ 2 · εOWF.

Proof. Follows from the definition of Πadap
MDVS (Algorithm 11), from Lemma 1 and

from the assumption on ΠOWF. ⊓⊔
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C Security of Maurer et al.’s MDRS-PKE [18]

In this section we prove the security of Maurer et al.’s MDRS-PKE construc-
tion [18] (see Algorithm 12) with respect to our new security notions (see Sec-
tion 4.1).

C.1 Consistency

Theorem 7. If no adversary (εPKEBC, tPKEBC)-breaks the (nPKEBC, dEPKEBC,
qEPKEBC, qDPKEBC)-Consistency of ΠPKEBC, no adversary (εMDVS, tMDVS)-
breaks the (nSMDVS, nV MDVS, dSMDVS, dFMDVS, qSMDVS, qV MDVS, qFMDVS)-
Consistency of ΠMDVS and ΠDSS.Vfy is a deterministic algorithm, then no
adversary (ε, t)-breaks ΠMDRS-PKE’s

(nS := nSMDVS, nR := min(nPKEBC, nV MDVS),

dE := min(dEPKEBC, dSMDVS), qE := min(qEPKEBC, qSMDVS),

qD := min(qDPKEBC, qV MDVS))-Consistency,

with ε > εPKEBC+εMDVS, and tPKEBC, tMDVS ≈ t+ tCons, where tCons is the time
to run ΠMDRS-PKE’s GCons game.

Proof. Follows from the proof of [18, Theorem 7] and the definition ofΠMDRS-PKE’s
decryption (see Algorithm 12). ⊓⊔

C.2 Replay Unforgeability

Theorem 8. If no adversary (εMDVS, tMDVS)-breaks the (nSMDVS, nV MDVS,
dSMDVS, qSMDVS, qV MDVS)-Unforgeability of ΠMDVS and no adversary (εDSS, tDSS)-
breaks the (nDSS, qSDSS, qV DSS)-1-sEUF-CMA security of ΠDSS, then no adversary
A (ε, t)-breaks ΠMDRS-PKE’s

(nS := nSMDVS, nR := nV MDVS,

dE := dSMDVS, qE := min(qSMDVS, nDSS, qSDSS),

qD := min(qV MDVS, qV DSS))-Replay Unforgeability,

with ε > εDSS + εMDVS, and tDSS, tMDVS ≈ t + tR-Unforg, where tR-Unforg is the
time to run ΠMDRS-PKE’s GR-Unforg game.

Proof. This proof proceeds via a sequence of games.

GR-Unforg ⇝ G1: The difference between G1 and GR-Unforg is that in G1, when
OD is queried on an input (Bj , c := (vk, σ′, c′)) such that there is a query

OE(Ai, V⃗ ,m) that output c∗ := (vk∗, σ′
∗
, c′
∗
) with c ̸= c∗ and vk = vk∗, OD

simply outputs ⊥.
One can reduce distinguishing the two games to breaking the 1-sEUF-CMA

security of ΠDSS: the reduction holds all MDVS and PKEBC secret keys and
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can sign ciphertexts using the OS oracle from ΠDSS’s G1-sEUF-CMA game so it
can handle any oracle queries. If A only makes at most qE ≤ min(nDSS, qSDSS)
and qD ≤ qV DSS queries to OE and OD, respectively, since by assumption no
adversary (tDSS, εDSS)-breaks the

(nDSS, qSDSS, qV DSS)-1-sEUF-CMA

of ΠDSS, it follows∣∣∣Pr[AG1 = win]− Pr[AGR-Unforg = win]
∣∣∣ ≤ εDSS.

We can now directly reduce to the Unforgeability game of ΠMDVS. To see why,
note that G1 already outputs ⊥ for any query OD(Bj , c := (vk, σ′, c′)) such that

there was a query OE(Ai, V⃗ ,m) that output c∗ := (vk∗, σ′
∗
, c′
∗
) with c ̸= c∗ and

vk = vk∗. This then means that we only have to make sure that no decryption
query OD(Bj , c := (vk, σ′, c′)) such that there was no query OE(Ai, V⃗ ,m) that
output c∗ := (vk∗, σ′

∗
, c′
∗
) with c ≠ c∗ and vk = vk∗ allows the adversary to win

the game. On one hand, if c = c∗ then the adversary does not win the game (see
Definition 15); on the other hand, if some query OD(Bj , c := (vk, σ′, c′)) (where
vk was not output as part of any challenge ciphertext) outputs something other
than ⊥, then the MDVS signature encrypted by c′ actually verified as being a
valid signature on a triple (v⃗PKEBC,m, vk) which was never signed (since vk was
not output as part of any OE ciphertext).

Since by assumption no adversary (εMDVS, tMDVS)-breaks the

(nSMDVS, nV MDVS, dSMDVS, qSMDVS, qV MDVS)-Unforgeability

of ΠMDVS, if A only queries for at most nS ≤ nSMDVS (resp. nR ≤ nV MDVS)
different sender keys (resp. different receiver keys), makes up to qE ≤ qSMDVS

queries to OE and up to qD ≤ qV MDVS queries to OD, and the sum of lengths of
the party vectors input to OE is at most dE ≤ dSMDVS, it follows

Pr[AG1 = win] ≤ εMDVS.

⊓⊔

C.3 {IND, IK}-CCAS Security

Theorem 9. If no adversary (εMDVS, tMDVS)-breaks the (nSMDVS, nV MDVS,
dSMDVS, qSMDVS, qV MDVS)-Message-Bound Validity of ΠMDVS, no adversary
(εDSS, tDSS)-breaks the (nDSS, qSDSS, qV DSS)-1-sEUF-CMA security of ΠDSS, no
adversary (εPKEBC, tPKEBC)-breaks the (nPKEBC, dEPKEBC, qEPKEBC, qDPKEBC)-
Robustness of ΠPKEBC, and no adversary (εPKEBC, tPKEBC)-breaks the (nPKEBC,
dEPKEBC, qEPKEBC, qDPKEBC)-{IND, IK}-CCAS security of ΠPKEBC, then no
adversary A (ε, t)-breaks ΠMDRS-PKE’s(

nS := nSMDVS, nR := min(nPKEBC, nV MDVS), dE := min(dEPKEBC, dSMDVS),

qE := min(qEPKEBC, qSMDVS, nDSS, qSDSS),

qD := min(qDPKEBC, qV MDVS, qV DSS)
)
-{IND, IK}-CCAS security,
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with

ε > 2 · (εDSS-1-EUF-CMA + εMDVS-Bound-Val + εPKEBC-Rob)

+ 4 · εPKEBC-Corr + εPKEBC-{IND,IK}-CCA,

and with tDSS, tMDVS, tPKEBC ≈ t+t{IND,IK}-CCAS
, where t{IND,IK}-CCAS

is the time

to run Π’s G{IND, IK}-CCAS games.

Proof. One can prove Theorem 9 by following the same sequence of hybrids (and
the same arguments) from [4, Proof of Theorem 13], with only minor differences.
Below we only explain the differences from [4, Proof of Theorem 13], i.e. we

explain how to handle queries OE

(
(Ai,0, V⃗0,m0), (Ai,1, V⃗1,m1)

)
for the case where

(Ai,0, V⃗0,m0) = (Ai,1, V⃗1,m1)—which are not considered in the {IND, IK}-CCA
notion from [4] for the case where either not all receivers in V⃗0 and V⃗1 are honest

(i.e. the adversary may query for secret keys), vectors V⃗0 and V⃗1 are of different
lengths, or m0 and m1 have different sizes.

First, note that regardless of whether an adversary is interacting with game

G
{IND,IK}-CCAS

0 or G
{IND,IK}-CCAS

1 , the ciphertexts generated by the oracle in such
queries have exactly the same distribution, and therefore we only need to ensure
the reductions have everything needed to produce such ciphertexts.

For β ∈ {0, 1}, [4, Proof of Theorem 13] proceeds via a sequence of hybrids

G
{IND,IK}-CCA
β ⇝ G1

β , G
1
β ⇝ G2

β , G
2
β ⇝ G3

β , G
3
β ⇝ G4

β and G4
β ⇝ G5

β , and gives
reductions from distinguishing each of these pairs to breaking a security property
of one of the underlying building blocks. Concretely, [4, Proof of Theorem 13]
reduces distinguishing

S.1 G
{IND,IK}-CCA
β and G1

β to breaking the 1-sEUF-CMA security of the underlying
ΠDSS;

S.2 G1
β and G2

β to breaking the robustness of the underlying ΠPKEBC;

S.3 G2
β and G3

β to breaking the correctness of the underlying ΠPKEBC;

S.4 G3
β and G4

β to breaking the message-bound validity of the underlying ΠMDVS;

S.5 G4
β and G5

β to breaking the correctness of the underlying ΠPKEBC; and

S.6 G5
0 andG5

1 to breaking the {IND, IK}-CCA security of the underlyingΠPKEBC.

The reductions corresponding to S.2, S.3, S.5 and S.6 are to PKEBC notions
and therefore have access to all the DSS and MDVS secret keys; since only public
keys are needed to generate PKEBC ciphertexts, and the reductions have access
to these, they can handle the additional queries. (Note that, for the {IND, IK}-CCA
reduction, since the reduction generates the additional ciphertexts without relying
on the OE oracle provided by games, it can then still use the OD oracle provided
by the games to handle decryption queries even if the PKEBC component of
such ciphertexts is left unchanged by the adversary).

The reduction corresponding to S.4 is to MDVS message-bound validity,
which does allow adversaries to query for MDVS secret keys of senders. Since the
reduction is to an MDVS notion, it has access to all PKEBC and DSS secret keys;
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as it also has access to the secret keys of senders, it can generate any ciphertexts
for the additional queries too.11

The reduction corresponding to S.1 is to the 1-sEUF-CMA security of ΠDSS

and therefore has access to all the PKEBC and MDVS secret keys. Noting
that the MDRS-PKE encryption algorithm samples a fresh ΠDSS key-pair for
encryption, for these additional queries one can have the reduction simply sample
the ΠDSS key-pair itself, and therefore can generate the ciphertext as intended.
(Alternatively, one could rely on the 1-sEUF-CMA game of ΠDSS to sample the
key-pairs, and then use the OS oracle provided by the game to generate the
signatures, but this is not necessary for this reduction.) ⊓⊔

C.4 Forgery Invalidity

Theorem 10. If no adversary (εPKEBC, tPKEBC)-breaks the (nPKEBC, dEPKEBC,
qEPKEBC, qDPKEBC)-Correctness of ΠPKEBC and no adversary (εMDVS, tMDVS)-
breaks the (nS, nV , dS , dF , qS , qV , qF )-Forgery Invalidity of ΠMDVS then no
adversary (ε, t)-breaks ΠMDRS-PKE’s

(nS := nSMDVS,

nR := min(nPKEBC, nV MDVS),

dF := min(dEPKEBC, dSMDVS),

qF := min(qEPKEBC, qFMDVS),

qD := min(qDPKEBC, qV MDVS))-Forgery Invalidity,

with ε > εPKEBC+ εMDVS and tPKEBC, tMDVS ≈ t+ tForge-Invalid, where tForge-Invalid
is the time to run ΠMDRS-PKE’s GForge-Invalid game.

Proof. We prove this result via game hopping.

GForge-Invalid ⇝ G1: The only difference between games GForge-Invalid and G1 is
that in G1 some decryption queries are handled differently. More concretely,
when OD is queried on an input (Bj , c := (vk, σ′, c′)) where c was output by a

query OForge(Ai, V⃗ ,m, C) such that Bj ∈ Set(V⃗ ) \ C, oracle OD works as follows:
let (spki, v⃗MDVS,m, σ) be the plaintext that was encrypted by ΠPKEBC.E under
v⃗PKEBC (which resulted in ciphertext c′), where spki is Ai’s public key,

v⃗MDVS := (vpkMDVS1, . . . , vpkMDVS|v⃗|), and

v⃗PKEBC := (pkPKEBC1, . . . , pkPKEBC|v⃗|)

11 We note that one can also adapt the analogous reduction to the unforgeability of
ΠMDVS of [18,19, Proof of Theorem 10]—which captures the setting where the secret
keys of honest senders do not leak—to handle the additional encryption queries,
because the MDVS unforgeability game provides a signing oracle which the reduction
could use to generate the necessary MDVS signatures.
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are, respectively, the vectors of public MDVS verifier keys and public PKEBC
receiver keys corresponding to V⃗ , and where

σ ← ΠMDVS.ForgeppMDVS
(spkMDVSi, v⃗MDVS, (v⃗PKEBC,m, vk), s⃗MDVS),

is a forged MDVS signature on (v⃗PKEBC,m, vk) using vector of secret keys s⃗MDVS

(as defined by oracle OForge), and vk being the DSS verification key in c; oracle
OD no longer decrypts c′ using ΠPKEBC.D with Bj ’s PKEBC secret key, and
instead simply assumes decryption outputs (v⃗PKEBC, (spki, v⃗MDVS,m, σ)).

It is easy to see that one can reduce distinguishing the two games to breaking
the correctness of ΠPKEBC: since the reduction holds all secret keys, it can handle
any oracle queries. If A only queries for at most nR ≤ nPKEBC different receivers,
the sum of lengths of the vectors input to OForge is at most dF ≤ dEPKEBC, and
makes at most qF ≤ qEPKEBC and qD ≤ qDPKEBC queries to oracles OForge and
OD, respectively, since by assumption no adversary (tPKEBC, εPKEBC)-breaks the

(nPKEBC, dEPKEBC, qEPKEBC, qDPKEBC)-Correctness

of ΠPKEBC, it follows∣∣∣Pr[AG1 = win]− Pr[AGForge-Invalid = win]
∣∣∣ ≤ εPKEBC.

G1 ⇝ G2: Game G2 is just like G1, except that once again some decryption
queries are handled differently. In contrast to the previous hop—where G1

differed from GForge-Invalid in that it assumed the ciphertext c′ in each ciphertext
c := (vk, σ′, c′) output by a query OForge(Ai, V⃗ ,m, C) decrypted correctly when

OD was queried on (Bj , c), with Bj ∈ Set(V⃗ ) \ C—game G2 differs from G1 in
that it now assumes that each MDVS signature σ generated by OForge using
ΠMDVS.Forge does not verify as being valid when OD is queried on a matching
input. To be more precise, for a query OForge(Ai, V⃗ ,m, C): let (v⃗PKEBC,m, vk)
be the plaintext on which an MDVS signature was forged with respect to spki
and v⃗MDVS using ΠMDVS.Forge, where spki is Ai’s public key,

v⃗MDVS := (vpkMDVS1, . . . , vpkMDVS|v⃗|), and

v⃗PKEBC := (pkPKEBC1, . . . , pkPKEBC|v⃗|)

are, respectively, the vectors of public MDVS verifier keys and public PKEBC
receiver keys corresponding to V⃗ ; let σ be the resulting forged signature

σ ← ΠMDVS.ForgeppMDVS
(spkMDVSi, v⃗MDVS, (v⃗PKEBC,m, vk), s⃗MDVS),

where s⃗MDVS is as defined by OForge; and let c be the ciphertext output by the

OForge query. Then, when queried on input (Bj , c) such that Bj ∈ Set(V⃗ ) \ C,
OD no longer verifies if σ is valid by running

ΠMDVS.Vfy(pp, spki, vskj , v⃗MDVS, (v⃗PKEBC,m, vk))
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and instead simply assumes the MDVS signature verification outputs 0—implying
OD outputs ⊥.

It is easy to see that one can reduce distinguishing G1 and G2 to breaking
the Forgery Invalidity of ΠMDVS: since the reduction holds all secret keys, it can
handle any oracle queries. If A only queries for at most nS ≤ nSMDVS different
senders and nR ≤ nV MDVS different receivers, the sum of lengths of the vectors
input to OForge is at most dF ≤ dFMDVS, and makes at most qF ≤ qFMDVS

and qD ≤ qDMDVS queries to oracles OForge and OD, respectively, since by
assumption no adversary (tMDVS, εMDVS)-breaks ΠMDVS’s

(nSMDVS, nV MDVS, dSMDVS, dFMDVS, qSMDVS, qV MDVS, qFMDVS)-

Forgery Invalidity, it follows∣∣∣Pr[AG2 = win]− Pr[AG1 = win]
∣∣∣ ≤ εMDVS.

To conclude the proof note that no adversary can win G2, implying

Pr[AG2 = win] = 0.

⊓⊔

C.5 Public-Key Collision Resistance

Corollary 2. If ΠMDVS is (nMDVS, ℓMDVS)-Party ε-Public-Key Collision Resis-
tant then ΠMDRS-PKE is

(n := nMDVS, ℓ := ℓMDVS)-Party

ε-Public-Key Collision-Resistant.

Proof. Follows from the definition of ΠMDRS-PKE (Algorithm 12) and the as-
sumption on ΠMDVS. ⊓⊔

D Application Semantics of MDRS-PKE Game Notions

As in Section 6, we consider a set of parties F consisting of all senders and
receivers, i.e. F := S ∪R. The theorems below establish composable semantics
for the MDRS-PKE game-based notions we introduced in Section 4 together
with the ones from [4,18].

Theorem 11. Consider simulator sim defined in Algorithms 13 and 16, reduc-
tions CPK-Coll-Res, CCons-H, CCons, CCorr, CForge-Invalid, CR-Unforg, CCCA and COTR

(defined, respectively, in Algorithms 14, 15 and 17, Algorithms 14, 15 and 18,
Algorithms 14, 15 and 19, Algorithms 14, 15 and 20, Algorithms 14, 15 and 21,
Algorithms 14, 15 and 22, Algorithms 14, 15 and 23, and Algorithms 14, 15
and 24), and reductions ⊥J ·COTR-ξ1 , ⊥J ·CCorr-ξ1 , ⊥J ·CForge-Invalid-ξ1 , ⊥J ·COTR-ξ2 ,
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⊥J · CCons-0-ξ2 , ⊥J · CCons-1-ξ2 , ⊥J · CCorr-ξ2 and ⊥J · CForge-Invalid-ξ2 (where
COTR-ξ1 , CCorr-ξ1 , CForge-Invalid-ξ1 , COTR-ξ2 , CCons-0-ξ2 , CCons-1-ξ2 , CCorr-ξ2 and
CForge-Invalid-ξ2 are defined, respectively, in Algorithms 14 and 26, Algorithms 14
and 27, Algorithms 14 and 28, Algorithms 14 and 29, Algorithms 14 and 30,
Algorithms 14 and 31, Algorithms 14 and 32, and Algorithms 14 and 33). If the
MDRS-PKE scheme is (m,n)-Party ε-Public Key Collision Resistant, then for
any distinguisher D,

∆D

(
SndS

H

RcvR
H

ForgeF⊥J [KGA,Net · INS],

simP
H · ConfAnonPH · OtrPH · Net · ⊥Auth-Intf ·

[
⟨Ai → V⃗ ⟩

{Ai}∪PH

Set(V⃗ )∪PH

]
Ai∈S
V⃗ ∈R+[

⟨[Forge]Ai → V⃗ ⟩
F
PH

]
Ai∈S,V⃗ ∈R+


)

≤ ε+ 4 ·
(
AdvOTR(D⊥JCOTR-ξ1) +AdvCorr(D⊥JCCorr-ξ1)

+AdvForge-Invalid(D⊥JCForge-Invalid-ξ1)
)

+AdvOTR(D⊥JCOTR-ξ2) +AdvCons(D⊥JCCons-0-ξ2)

+AdvCons(D⊥JCCons-1-ξ2) +AdvCorr(D⊥JCCorr-ξ2)

+AdvForge-Invalid(D⊥JCForge-Invalid-ξ2) +AdvCons(DCCons)

+AdvCorr(DCCorr) +AdvForge-Invalid(DCForge-Invalid) +AdvR-Unforg(DCR-Unforg)

+Adv{IND, IK}-CCA(DCCCA) +AdvOTR(DCOTR).

Theorem 12. Consider simulator sim defined in Algorithms 13 and 25, reduc-
tions CPK-Coll-Res, CCons-H, CCons, CCorr, CForge-Invalid, CCCA and COTR (analogous
to Theorem 12’s reductions), and reductions COTR-ξ1 , CCorr-ξ1 , CForge-Invalid-ξ1 ,
COTR-ξ2 , CCons-0-ξ2 , CCons-1-ξ2 , CCorr-ξ2 and CForge-Invalid-ξ2 (i.e. the reductions
from Lemmata 2 and 3). If the MDRS-PKE scheme is (m,n)-Party ε-Public Key
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Collision Resistant, then for any distinguisher D,

∆D(SndS
H

RcvR
H

ForgeF [KGA,Net · INS],

simP
H · ConfAnonPH · OtrPH ·

 Net ·
[
⟨Ai → V⃗ ⟩

PH

Set(V⃗ )∪PH

]
Ai∈S,V⃗ ∈R+[

⟨[Forge]Ai → V⃗ ⟩
F
PH

]
Ai∈S,V⃗ ∈R+

)
≤ ε+ 4 ·

(
AdvOTR(DCOTR-ξ1) +AdvCorr(DCCorr-ξ1)

+AdvForge-Invalid(DCForge-Invalid-ξ1)
)

+AdvOTR(DCOTR-ξ2) +AdvCons(DCCons-0-ξ2) +AdvCons(DCCons-1-ξ2)

+AdvCorr(DCCorr-ξ2) +AdvForge-Invalid(DCForge-Invalid-ξ2)

+AdvCons(DCCons) +AdvCorr(DCCorr) +AdvForge-Invalid(DCForge-Invalid)

+Adv{IND, IK}-CCA(DCCCA) +AdvOTR(DCOTR).

D.1 Proofs

For simplicity, in Algorithm 13 we describe the behavior of the simulators we will
consider in the proofs of Theorems 11 and 12 for the (sub-)interfaces of dishonest
parties that correspond to an interface of the KGA resource in the real world
system. Similarly, in Algorithm 14 we describe the behavior of the reductions we
will consider in these proofs for the same (sub-)interfaces.

D.1.1 Helper Claims Below we state two useful results that help in simplify-
ing the proofs of Theorems 11 and 12. (See Sections D.1.4 and D.1.5 for their
proofs.) Consider the following events:

Event ξ1 There are two Write queries at the interface of an honest party
Ai ∈ SH that output id and id′ with id ̸= id′, such that the contents of the
registers with these identifiers (i.e. id and id′) are the same.

Event ξ2 There is a Write query at a dishonest party’s interface with input
ciphertext c that outputs a register identifier id and there is a later Write
query at the interface of an honest party Ai ∈ SH that outputs a register
identifier id′ such that the contents of the registers with identifiers id and
id′ are the same.

At a high level, Lemmata 2 and 3 bound the probability of events ξ1 and ξ2
to occur. The reason why these results are necessary is that in the real world
duplicate ciphertexts are filtered out (to protect against replay attacks), and so
if either event would occur one would be able to distinguish the real and ideal
worlds. In the following R is defined as in Section 6.1, i.e.

R := SndS
H

RcvR
H

Forge(F×{Forge}) [KGA,Net · INS]. (D.1)
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Lemma 2. For any distinguisher D, the probability that event ξ1 occurs when it
interacts with the real world system R (Equation D.1) is upper bounded by

4 ·
(
AdvOTR(DCOTR-ξ1) +AdvCorr(DCCorr-ξ1)

+AdvForge-Invalid(DCForge-Invalid-ξ1)
)
.

where COTR-ξ1 , CCorr-ξ1 and CForge-Invalid-ξ1 are the reductions given in Algo-
rithms 14 and 26, Algorithms 14 and 27, and Algorithms 14 and 28.

A proof of Lemma 2 is given in Section D.1.4.

Lemma 3. For any distinguisher D, the probability that event ξ2 occurs when it
interacts with the real world system R (Equation D.1) is upper bounded by

AdvOTR(DCOTR-ξ2) +AdvCons(DCCons-0-ξ2) +AdvCons(DCCons-1-ξ2)

+AdvCorr(DCCorr-ξ2) +AdvForge-Invalid(DCForge-Invalid-ξ2).

where COTR-ξ2 , CCons-0-ξ2 , CCons-1-ξ2 , CCorr-ξ2 and CForge-Invalid-ξ2 are the reduc-
tions given in Algorithms 14 and 29, Algorithms 14 and 30, Algorithms 14 and 31,
Algorithms 14 and 32, and Algorithms 14 and 33.

A proof of Lemma 3 is given in Section D.1.5.

Remark 4. Lemmata 2 and 3 rely on the Forgery Invalidity of the MDRS-PKE
scheme. One can alternatively rely on the Unforgeability against Replays if the
secret keys of honest senders do not leak.

D.1.2 Proof of Theorem 11
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Algorithm 11 MDVS construction Πadap
MDVS from [4]. The building blocks are

a PKE scheme ΠPKE = (G,E,D), a One Way Function ΠOWF = (S,F), and a
Non Interactive Zero Knowledge scheme ΠNIZK = (G,P,V,S := (SG,SP )).

S(1k)

(pk, sk)← ΠPKE.G(1k)

return pp := (1k, crs← ΠNIZK.G(1k), pk)

GS(pp)

(x0, x1)← (ΠOWF.S(1
k), ΠOWF.S(1

k))
(y0, y1)← (ΠOWF.F(x0), ΠOWF.F(x1))
b← RandomCoin
return (spk := (y0, y1), ssk := (spk, x := xb))

GV (pp)

((pk0, sk0), (pk1, sk1))← (ΠPKE.G(1k), ΠPKE.G(1k))

(x0, x1)← (ΠOWF.S(1
k), ΠOWF.S(1

k))
(y0, y1)← (ΠOWF.F(x0), ΠOWF.F(x1))
b← RandomCoin
return (vpk := (pk0, y0, pk1, y1), vsk := (vpk, b, sk := skb, x := xb))

Sigpp(ssk, v⃗ := (vpk1, . . . , vpk|v⃗|),m)

for i ∈ {1, . . . , |v⃗|} :
(ci,0, ci,1)← (ΠPKE.Evpki.pk0

(1; ri,0), ΠPKE.Evpki.pk1
(1; ri,1))

(c⃗, r⃗)← (((c1,0, c1,1), . . . , (c|v⃗|,0, c|v⃗|,1)), ((r1,0, r1,1), . . . , (r|v⃗|,0, r|v⃗|,1)))
α⃗← (α1 := (1, ssk.x), . . . , α|v⃗| := (1, ssk.x))
cpp ← ΠPKE.Epp.pk((m, 1, α⃗); rpp)

p← ΠNIZK.Pcrs

(
(pp.pk, spk, v⃗,m, c⃗, cpp) ∈ L

MDVSadap , (α⃗, r⃗, rpp, 1)
)

return σ := (p, c⃗, cpp)

Vfypp(spk, vsk, v⃗,m, σ := (p, c⃗, cpp))

if ΠNIZK.Vcrs

(
(pp.pk, spk, v⃗,m, c⃗, cpp) ∈ L

MDVSadap , p
)
= 1 :

for i = 1, . . . , |v⃗| do
if vsk.vpk = vi :

return ΠPKE.Dvsk.sk(ci,vsk.b)

return 0

Forgepp(spk, v⃗ := (vpk1, . . . , vpk|v⃗|),m, s⃗ := (vsk1, . . . , vsk|s⃗|)) // Assumed: |v⃗| = |s⃗|
for i ∈ {1, . . . , |v⃗|} :

if si ̸= ⊥ :
(ci,0, ci,1)← (ΠPKE.Evpki.pk0

(1; ri,0), ΠPKE.Evpki.pk1
(1; ri,1))

αi := (1, vski.x)
else

(ci,0, ci,1)← (ΠPKE.Evpki.pk0
(0; ri,0), ΠPKE.Evpki.pk1

(0; ri,1))
αi := (0, 0)

(c⃗, r⃗)← (((c1,0, c1,1), . . . , (c|v⃗|,0, c|v⃗|,1)), ((r1,0, r1,1), . . . , (r|v⃗|,0, r|v⃗|,1)))
α⃗← (α1, . . . , α|v⃗|)
cpp ← ΠPKE.Epp.pk((m, 0, α⃗); rpp)

p← ΠNIZK.Pcrs

(
(pp.pk, spk, v⃗,m, c⃗, cpp) ∈ L

MDVSadap , (α⃗, r⃗, rpp, 0)
)

return σ := (p, c⃗, cpp)
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Algorithm 12 MDRS-PKE construction ΠMDRS-PKE from [18]. The building
blocks are a PKEBC scheme ΠPKEBC = (S,G,E,D), an MDVS scheme ΠMDVS =
(S,GS ,GV ,Sig,Vfy,Forge) and a DSS ΠDSS = (G,Sig,Vfy).

S(1k)

ppMDVS ← ΠMDVS.S(1
k)

ppPKEBC ← ΠPKEBC.S(1k)

return pp := (ppMDVS, ppPKEBC, 1k)

GS(pp)
(spkMDVS, sskMDVS)← ΠMDVS.GS(ppMDVS)
return (spk := spkMDVS, ssk := (spk, sskMDVS))

GR(pp)
(vpkMDVS, vskMDVS)← ΠMDVS.GV (ppMDVS)
(pkPKEBC, skPKEBC)← ΠPKEBC.G(ppPKEBC)

return (rpk := (vpkMDVS, pkPKEBC), rsk :=
(
rpk, (vskMDVS, skPKEBC)

)
)

Epp(ssk, v⃗ := (rpk1, . . . , rpk|v⃗|),m)

v⃗PKEBC := (rpk1.pkPKEBC, . . . , rpk|v⃗|.pkPKEBC)

v⃗MDVS := (rpk1.vpkMDVS, . . . , rpk|v⃗|.vpkMDVS)

(vk, sk)← ΠDSS.G(pp.1k)
σ ← ΠMDVS.SigppMDVS

(sskMDVS, v⃗MDVS, (v⃗PKEBC,m, vk))

c← ΠPKEBC.EppPKEBC

(
v⃗PKEBC, (spkMDVS, v⃗MDVS,m, σ)

)
σ′ ← ΠDSS.Sigsk(c)
return (vk, σ′, c)

Dpp(rsk, c := (vk, σ′, c′))
if ΠDSS.Vfyvk(c

′, σ′) = 0 :
return ⊥(

v⃗PKEBC, (spk := spkMDVS, v⃗MDVS,m, σ)
)
← ΠPKEBC.DppPKEBC

(rsk.skPKEBC, c′)

if
(
v⃗PKEBC, (spk, v⃗MDVS,m, σ)

)
= ⊥ ∨ |v⃗PKEBC| ̸= |v⃗MDVS| :

return ⊥
v⃗ :=

(
(vMDVS1, vPKEBC1), . . . , (vMDVS|v⃗PKEBC|, vPKEBC|v⃗PKEBC|)

)
if rsk.rpk ̸∈ v⃗ :

return ⊥
if ΠMDVS.VfyppMDVS

(spk, vskMDVS, v⃗MDVS, (v⃗PKEBC,m, vk), σ) ̸= valid :

return ⊥
return (spk, v⃗,m)

Forgepp(spk, v⃗ := (rpk1, . . . , rpk|v⃗|),m, s⃗ := (rsk1, . . . , rsk|s⃗|))

v⃗PKEBC := (rpk1.pkPKEBC, . . . , rpk|v⃗|.pkPKEBC)

v⃗MDVS := (rpk1.vpkMDVS, . . . , rpk|v⃗|.vpkMDVS)

s⃗MDVS := (rsk1.vskMDVS, . . . , rsk|s⃗|.vskMDVS)

(vk, sk)← ΠDSS.G(pp.1k)
σ ← ΠMDVS.ForgeppMDVS

(spkMDVS, v⃗MDVS, (v⃗PKEBC,m, vk), s⃗MDVS)

c← ΠPKEBC.EppPKEBC

(
v⃗PKEBC, (spkMDVS, v⃗MDVS,m, σ)

)
σ′ ← ΠDSS.Sigsk(c)
return (vk, σ′, c)
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Algorithm 13 Description of (part of) the simulators considered in the proofs of
Theorems 11 and 12 for the (sub-)interfaces of (dishonest) parties that correspond
to an interface of the KGA resource in the real world system. In the following,
k ∈ N is the (implicitly defined) security parameter.

⋄ Initialization
INS-Initialization
(Ctxts,CtxtSet) ← (∅, ∅)
pp← Π.S(1k)
(rpkpp, rskpp)← Π.GR(pp)

for Ai ∈ S : (spki, sski)← Π.GS(pp)

for Bj ∈ R : (rpkj , rskj)← Π.GR(pp)

if
∣∣{spki}Ai∈S ∪ {rpkj}Bj∈R

∣∣ ̸= |S|+ |R| :
Abort

⋄ GetLabel(spk, v⃗′) // Local procedure.
Sspk :={Ai | spk = spki}
if |Sspk| ̸= 1 ∨ v1

′ ̸= rpkpp : return ⊥
for l ∈ {2, . . . , |v⃗′|} :
Rvl

′ :={Bk | vl′ = rpkk}
if |Rvl

′ | ̸= 1 : return ⊥
else

Let Bk be the element of Rvl
′

Vl−1 = Bk

Let Ai be the element of Sspk
Let V⃗ := (V1, . . . , V|v⃗′|−1)

return ⟨Ai → V⃗ ⟩

▷ (P ∈ PH)-PublicParameters
Output(pp, rpkpp)

▷ (P ∈ PH)-SenderKeyPair(Ai ∈ SH)
Output(spki, sski)

▷ (P ∈ PH)-SenderPublicKey(Ai ∈ S)
Output(spki)

▷ (P ∈ PH)-ReceiverKeyPair(Bj ∈ RH)
Output(rpkj , rskj)

▷ (P ∈ PH)-ReceiverPublicKey(Bj ∈ R)
Output(rpkj)
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Algorithm 14 Description of the reductions considered in the proofs of Lem-
mata 2 and 3 and Theorems 11 and 12 for the (sub-)interfaces of (dishonest)
parties that correspond to KGA interface in the real world system, plus the
Deliver interface.

⋄ Initialization
INS-Initialization
CtxtDec ← ∅
Dec← ∅ // Used in reductions for Lemmata 2

and 3.
(CtxtHon,CtxtForge,CtxtDis) ← (∅, ∅, ∅)
(pp, rpkpp)← (OPP ,ORPK(Bpp))

for Ai ∈ S : OSPK(Ai)

for Bj ∈ R : ORPK(Bj)

for Bj ∈ R : Received[Bj ]← ∅
if

∣∣{OSPK(Ai)}Ai∈S∪{ORPK(Bj)}Bj∈R
∣∣ ̸=

|S|+ |R| :
Abort

⋄ GetLabel(spk, v⃗′) // Local procedure.
Sspk :={Ai | spk = spki}
if |Sspk| ̸= 1 ∨ v1

′ ̸= rpkpp : return ⊥
for l ∈ {2, . . . , |v⃗′|} :
Rvl

′ :={Bk | vl′ = rpkk}
if |Rvl

′ | ̸= 1 : return ⊥
else

Let Bk be the element of Rvl
′

Vl−1 = Bk

Let Ai be the element of Sspk
Let V⃗ := (V1, . . . , V|v⃗′|−1)

return ⟨Ai → V⃗ ⟩

▷ (P ∈ PH)-PublicParameters
Output(pp, rpkpp)

▷ (P ∈ PH)-SenderKeyPair(Ai ∈ SH)
Output(OSK(Ai))

▷ (P ∈ PH)-SenderPublicKey(Ai ∈ S)
Output(OSPK(Ai))

▷ (P ∈ PH)-ReceiverKeyPair(Bj ∈ RH)
Output(ORK(Bj))

▷ (P ∈ PH)-ReceiverPublicKey(Bj ∈ R)
Output(ORPK(Bj))

▷ Deliver(P, id)
Received[P ]← Received[P ] ∪ {id}

Algorithm 15 Helper functions used in the reductions considered in the proofs
of Lemmata 2 and 3 and Theorems 11 and 12.

⋄ Decryption(B, c) // Local procedure.
(spk, v⃗′,m)← OD(B, c)
if (spk, v⃗′,m) ̸= ⊥ :

⟨Ai → V⃗ ⟩ ← GetLabel(spk, v⃗′)

if ⟨Ai → V⃗ ⟩ ̸= ⊥ :

return (⟨Ai → V⃗ ⟩,m)

return ⊥

⋄ GetDelivered(P, list) // Local procedure.
filteredList← ∅
for (id, x) ∈ list with id ∈ Received[P ] :

filteredList← filteredList ∪ {(id, x)}
return filteredList

⋄ Forge(Ai, V⃗ ,m, C) // Local procedure.

if V⃗ ∈ (RH)+ :

return Π.Forgepp(spk1, rpkpp
|V⃗ |+1, 0|m|,⊥|V⃗ |+1)

v⃗′ := (rpkpp, v1, . . . , v|V⃗ |)

s⃗ := (⊥ , rsk1, . . . , rsk|V⃗ |) // For each Vl: if Vl ∈ C, sl+1 is Vl’s secret key; else it is ⊥.
return Π.Forgepp(spki, v⃗

′,m, s⃗)

51



Algorithm 16 Description of the behavior of the simulator considered in the
proof of Theorem 11 for the (sub-)interfaces of dishonest parties that correspond
to an interface of Net · INS in the real world system. In the following, T is as
defined in Equations 6.2 and D.2.

▷ (P ∈ PH)-Write(c)
if c /∈ CtxtSet :

CtxtSet← CtxtSet ∪ {c}
(spk, v⃗′,m)← Π.Dpp(rskpp, c)
if (spk, v⃗′,m) ̸= ⊥ :

⟨Ai → V⃗ ⟩ ← GetLabel(spk, v⃗′)

if ⟨Ai → V⃗ ⟩ ̸= ⊥ ∧ Ai ∈ SH :

id← T-Write(⟨Ai → V⃗ ⟩,m)
Ctxts[id]← c // Add entry to map Ctxts.
Output(id)

Output(INS-Write(c))

▷ (P ∈ PH)-Read
outputList ← ∅
for (⟨Ai → V⃗ ⟩, id,m) ∈ T-Read :

if id /∈ Ctxts : // Check existence of entry with given key in map Ctxts.

s⃗ := (⊥, rsk1, . . . , rsk|V⃗ |) // For each Vl: if Vl ∈ RH , sl+1 is Vl’s secret key; else ⊥.
c← Π.Forgepp(spki, v⃗

′ := (rpkpp, v1, . . . , v|v⃗|),m, s⃗)

if c ∈ CtxtSet : Abort
CtxtSet← CtxtSet ∪ {c}
Ctxts[id]← c // Add entry to map Ctxts.

outputList← outputList ∪ {(id,Ctxts[id])} // Fetch value of entry from map Ctxts.

for (l ∈ N, id, l′ ∈ N) ∈ T-Read :
if id /∈ Ctxts :

c← Π.Forgepp(spk1, rpkpp
l+1, 0l

′
,⊥l+1)

if c ∈ CtxtSet : Abort
CtxtSet← CtxtSet ∪ {c}
Ctxts[id]← c

outputList← outputList ∪ {(id,Ctxts[id])}
Output(outputList ∪ INS-Read)
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Algorithm 17 Reduction CPK-Coll-Res for Theorem 11.

▷ (Ai ∈ SH)-Write(⟨Ai → V⃗ ⟩,m)

c← OE

(
Ai, V⃗

′ := (Bpp, V1, . . . , V|V⃗ |),m
)

id←Write(c)
CtxtDec[id]← Decryption(Bpp, c)
Output(id)

▷ (P ∈ PH)-Write(c)
id←Write(c)
CtxtDec[id]← Decryption(Bpp, c)
Output(id)

▷ (P ∈ F)-Write(⟨[Forge]Ai → V⃗ ⟩,m)

c← Forge
(
Ai, V⃗ ,m, Set(V⃗ ) ∩ PH

)
id←Write(c)
CtxtDec[id]← Decryption(Bpp, c)
Output(id)

▷ (P ∈ PH)-Read
Output(Read)

▷ (Bj ∈ RH)-Read
outputList ← ∅
ciphertextSet← ∅
for (id, c) ∈ Read with c ̸∈ ciphertextSet :

ciphertextSet← ciphertextSet ∪ {c}
(⟨Ai → V⃗ ⟩,m)← Decryption(Bj , c)

if (⟨Ai → V⃗ ⟩,m) ̸= ⊥ :

outputList ← outputList ∪ {(id, (⟨Ai → V⃗ ⟩,m))}
Output(GetDelivered(Bj , outputList))

Algorithm 18 Reduction CCons-H for Theorem 11. Below we only show the
differences (highlighted) relative to CPK-Coll-Res.

▷ (Ai ∈ SH)-Write(⟨Ai → V⃗ ⟩,m)

c← OE

(
Ai, V⃗

′ := (Bpp, V1, . . . , V|V⃗ |),m
)

if c ∈ CtxtHon : Abort // Event ξ1 : Ciphertext Already Exists

CtxtHon← CtxtHon ∪ {c}
id←Write(c)
CtxtDec[id]← Decryption(Bpp, c)
Output(id)

▷ (P ∈ F)-Write(⟨[Forge]Ai → V⃗ ⟩,m)

c← Forge
(
Ai, V⃗ ,m, Set(V⃗ ) ∩ PH

)
CtxtForge← CtxtForge ∪ {c}
id←Write(c)
CtxtDec[id]← Decryption(Bpp, c)
Output(id)

▷ (P ∈ PH)-Write(c)
id←Write(c)
if c /∈ CtxtHon ∪ CtxtForge :

if c /∈ CtxtDis :
CtxtDec[id]← Decryption(Bpp, c)

CtxtDis← CtxtDis ∪ {c}
Output(id)

Proof. Let R be the real world system

R := SndS
H

RcvR
H

ForgeF⊥J [KGA,Net · INS],

T be the ideal repository defined in Equation 6.2, i.e.

T :=

 ConfAnonP
H

·OtrPH

 ·
 Net · ⊥Auth-Intf ·

[
⟨Ai → V⃗ ⟩

{Ai}∪PH

Set(V⃗ )∪PH

]
Ai∈S
V⃗ ∈R+[

⟨[Forge]Ai → V⃗ ⟩
F
PH

]
Ai∈S,V⃗ ∈R+

 , (D.2)
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Algorithm 19 Reduction CCons for Theorem 11. We only show the differences
(highlighted) relative to CCons-H.

▷ (Ai ∈ SH)-Write(⟨Ai → V⃗ ⟩,m)

c← OE

(
Ai, V⃗

′ := (Bpp, V1, . . . , V|V⃗ |),m
)

if c ∈ CtxtHon ∪ CtxtDis : Abort // Event ξ1 ∨ ξ2 : Ciphertext Already Exists

CtxtHon← CtxtHon ∪ {c}
id←Write(c)
CtxtDec[id]← Decryption(Bpp, c)
Output(id)

Algorithm 20 Reduction CCorr for Theorem 11. We only show the differences
(highlighted) relative to CCons.

▷ (Bj ∈ RH)-Read
outputList ← ∅
ciphertextSet← ∅
for (id, c) ∈ Read with c ̸∈ ciphertextSet :

ciphertextSet← ciphertextSet ∪ {c}
(⟨Ai → V⃗ ⟩,m)← CtxtDec[id]

if (⟨Ai → V⃗ ⟩,m) ̸= ⊥ ∧ Bj ∈ V⃗ :

outputList ← outputList ∪ {(id, (⟨Ai → V⃗ ⟩,m))}
Output(GetDelivered(Bj , outputList))

Algorithm 21 Reduction CForge-Invalid for Theorem 11. We only show the differ-
ences (highlighted) relative to CCorr.

▷ (Ai ∈ SH)-Write(⟨Ai → V⃗ ⟩,m)

c← OE

(
Ai, V⃗

′ := (Bpp, V1, . . . , V|V⃗ |),m
)

if c ∈ CtxtHon ∪ CtxtDis : Abort // Event ξ1 ∨ ξ2: Ciphertext Already Exists

CtxtHon← CtxtHon ∪ {c}
id←Write(c)

CtxtDec[id]← (⟨Ai → V⃗ ⟩,m)
Output(id)

▷ (P ∈ F)-Write(⟨[Forge]Ai → V⃗ ⟩,m)

c← ForgeRed
(
Ai, V⃗ ,m, Set(V⃗ ) ∩ PH

)
CtxtForge← CtxtForge ∪ {c}
id←Write(c)
CtxtDec[id]← Decryption(Bpp, c)
Output(id)

// Local procedure.

⋄ ForgeRed(Ai, V⃗ ,m, C)
if V⃗ ∈ (RH

)
+

:

return OForge(A1, Bpp
|V⃗ |+1

, 0
|m|

, ∅)
return OForge(Ai, V⃗

′ := (Bpp, V1, . . . , V|V⃗ |),m, Set(V⃗ ) ∩ PH)

Algorithm 22 Reduction CR-Unforg for Theorem 11. We only show the differences
(highlighted) relative to CForge-Invalid.

▷ (P ∈ F)-Write(⟨[Forge]Ai → V⃗ ⟩,m)

c← Forge
(
Ai, V⃗ ,m, Set(V⃗ ) ∩ PH

)
CtxtForge← CtxtForge ∪ {c}
id←Write(c)
CtxtDec[id]← ⊥
Output(id)
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Algorithm 23 Reduction CCCA for Theorem 11. We only show the differences
(highlighted) relative to CR-Unforg.

▷ (Ai ∈ SH)-Write(⟨Ai → V⃗ ⟩,m)

α0 := (Ai, V⃗
′ := (Bpp, V1, . . . , V|V⃗ |),m), α1 := (A1,

|V⃗ |+1 times︷ ︸︸ ︷
(Bpp, . . . , Bpp), 0

|m|
)

if V⃗ /∈ (RH
)
+

: // This allows for a reduction to {IND, IK}-CCAS .
α1 := α0

c← OE(α0, α1)
if c ∈ CtxtHon ∪ CtxtDis : Abort // Event ξ1 ∨ ξ2: Ciphertext Already Exists

CtxtHon← CtxtHon ∪ {c}
id←Write(c)

CtxtDec[id]← (⟨Ai → V⃗ ⟩,m)
Output(id)

▷ (P ∈ PH)-Write(c)
id←Write(c)
if c /∈ CtxtHon ∪ CtxtForge :

if c /∈ CtxtDis :
(⟨Ai → V⃗ ⟩,m)← Decryption(Bpp, c)

if Ai ∈ SH
: Abort // Valid Ciphertext Forgery

CtxtDec[id]← (⟨Ai → V⃗ ⟩,m)

CtxtDis← CtxtDis ∪ {c}
Output(id)

Algorithm 24 Reduction COTR for Theorem 11. We only show the differences
(highlighted) relative to CCCA.

▷ (Ai ∈ SH)-Write(⟨Ai → V⃗ ⟩,m)

if V⃗ ∈ (RH
)
+

:

c← OE(sig, A1,

|V⃗ |+1 times︷ ︸︸ ︷
(Bpp, . . . , Bpp), 0

|m|
, ∅)

else
c← OE(sig, Ai, V⃗

′ :=
(
Bpp, V1, . . . , V|V⃗ |

)
,m, Set(V⃗ ) ∩ PH)

if c ∈ CtxtHon ∪ CtxtDis : Abort // Event ξ1 ∨ ξ2: Ciphertext Already Exists

CtxtHon← CtxtHon ∪ {c}
id←Write(c)

CtxtDec[id]← (⟨Ai → V⃗ ⟩,m)
Output(id)
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and let sim be the simulator specified in Algorithms 13 and 16. The remainder of

the proof bounds ∆D(R, simP
H

T) by proceeding in a sequence of hybrids. In the
following, we consider the reduction systems defined in the lemma’s statement.

R⇝ CPK-Coll-ResGCons: It is easy to see that R and CPK-Coll-ResGCons are the same
sequence of conditional probability distributions—conditioned on the event that
all parties public keys are distinct—by considering, on one hand, the definition
of R—i.e. the definitions of converters Snd, Rcv and Forge (Algorithm 9), the
definition of the KGA resource (Algorithm 8), and the definitions of INS
(Algorithm 1) and of Net (Algorithm 3)—and, on the other hand, the definition
of CPK-Coll-ResGCons—i.e. the definition of GCons and its oracles (Definition 8 and
Section 4.1) and the definition of CPK-Coll-Res (Algorithms 14, 15 and 17). Since
by assumption the MDRS-PKE scheme is (m,n)-Party ε-Public Key Collision
Resistant and there are m senders and n receivers, it follows

∆D(R,CPK-Coll-ResGCons) ≤ ε.

CPK-Coll-ResGCons ⇝ CCons-HGCons: It is easy to see that CPK-Coll-ResGCons and
CCons-HGCons are the same sequence of conditional probability distributions
conditioned on event ξ1 not occurring (see Section D.1.1). By Lemma 2, it follows

∆D(CPK-Coll-ResGCons,CCons-HGCons) ≤ 4 ·
(
AdvOTR(D⊥JCOTR-ξ1)

+AdvCorr(D⊥JCCorr-ξ1)

+AdvForge-Invalid(D⊥JCForge-Invalid-ξ1)
)
.

CCons-HGCons ⇝ CConsGCons: As for the previous step CPK-Coll-ResGCons ⇝
CCons-HGCons, it is easy to see that the two systems are the exact same sequence
of conditional probability distributions conditioned on event ξ2 not occurring
(see Section D.1.1). It then follows by Lemma 3

∆D(CCons-HGCons,CConsGCons) ≤ AdvOTR(D⊥JCOTR-ξ2)

+AdvCons(D⊥JCCons-0-ξ2) +AdvCons(D⊥JCCons-1-ξ2)

+AdvCorr(D⊥JCCorr-ξ2) +AdvForge-Invalid(D⊥JCForge-Invalid-ξ2).

CConsGCons ⇝ CCorrGCorr: The only difference betweenCCorrGCorr andCConsGCons

is that in CCorrGCorr each ciphertext that is either generated by a Write op-
eration at the interface of an honest sender Ai ∈ SH or input to a Write
operation at the interface of a dishonest party P ∈ PH is decrypted only once,
and decryption uses the secret key rskpp corresponding to the public parameters
public key rpkpp. (For more details see Algorithms 19 and 20). Given CCons does

not query for the secret key of any receiver Bj ∈ RH nor for the secret key of Bpp,
the advantage of a distinguisher D in distinguishing CConsGCons and CCorrGCorr

is bounded by the advantage of adversary DCCons in winning the consistency
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game GCons (note that CCons makes a query to OD on party Bpp when queried for
any Write operation, and when queried for a Read operation at the interface
of a receiver Bj ∈ RH makes a query to OD for each (id, c) in the reduction’s
internal repository INS) implying

∆D(CConsGCons,CCorrGCorr) ≤ AdvCons(DCCons).

CCorrGCorr ⇝ CForge-InvalidGForge-Invalid: System CForge-InvalidGForge-Invalid differs
from CCorrGCorr in that ciphertexts generated by Write operations issued at the
interface of honest senders are no longer decrypted by a query to OD on party
Bpp, and instead the result of their decryption is simply assumed to be the cor-
rect label-message pair. (Note that using procedure Forge or using RedForge
is perfectly indistinguishable, in an information-theoretic sense.) Since we are
already assuming no two parties have the same public key, D’s advantage in
distinguishing CCorrGCorr and CForge-InvalidGForge-Invalid is upper bounded by the
advantage of DCCorr in winning the correctness game GCorr, implying

∆D(CCorrGCorr,CForge-InvalidGForge-Invalid) ≤ AdvCorr(DCCorr).

CForge-InvalidGForge-Invalid ⇝ CR-UnforgGR-Unforg: In CForge-InvalidGForge-Invalid, cipher-
texts generated on queries Write(⟨[Forge]Ai → V⃗ ⟩,m) are no longer decrypted
by a query to OD on party Bpp, and instead the result of their decryption
is assumed to fail (i.e. resulting in ⊥). D’s distinguishing advantage between
CForge-InvalidGForge-Invalid and CR-UnforgGR-Unforg is upper bounded by the advantage
of DCForge-Invalid in winning the forgery invalidity game GForge-Invalid, implying

∆D(CForge-InvalidGForge-Invalid,CR-UnforgGR-Unforg) ≤ AdvForge-Invalid(DCForge-Invalid).

CR-UnforgGR-Unforg ⇝ CCCAG
{IND,IK}-CCA
0 : The main things to note for this step

are that 1. D has no access to the secret key corresponding to rpkpp (i.e. the public
parameters public key); 2. since J has a converter ⊥ attached to her interface,
D also has no access to the secret key of any honest sender Ai ∈ SH ; and

3. the only case in which CR-UnforgGR-Unforg may differ from CCCAG
{IND,IK}-CCA
0

is if D makes a query for a Write operation at the interface of a dishonest
party P ∈ SH ∪RH with input ciphertext c whose decryption results in a label
⟨Ai → V⃗ ⟩ where Ai ∈ SH and yet there was no Write operation at the interface
of Ai that resulted in ciphertext c. This allows us to bound the advantage of D

in distinguishing CR-UnforgGR-Unforg and CCCAG
{IND,IK}-CCA
0 by the advantage of

DCR-Unforg in winning GR-Unforg, implying

∆D(CR-UnforgGR-Unforg,CCCAG
{IND,IK}-CCA
0 ) ≤ AdvR-Unforg(DCR-Unforg).

CCCAG
{IND,IK}-CCA
1 ⇝ COTRGOTR

0 : Systems CCCAG
{IND,IK}-CCA
1 and COTRGOTR

0

are perfectly indistinguishable. It follows

∆D(CCCAG
{IND,IK}-CCA
1 ,COTRGOTR

0 ) = 0.
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COTRGOTR
1 ⇝ simP

H

T: It is easy to see, by considering the definitions of
COTRGOTR

1 —i.e. of COTR, Algorithms 14, 15 and 24, and of GOTR
1 and its oracles,

Definition 10 and Section 2.4—and simP
H

T—i.e. of simulator sim, Algorithms 13
and 16, and of T, Equation D.2—that these are perfectly indistinguishable; it
follows

∆D(COTRGOTR
1 , simP

H

T) = 0.

To conclude the proof we use triangle inequality:

∆D(R, simP
H

T) ≤ ∆D(R,CPK-Coll-ResGCons)

+∆D(CPK-Coll-ResGCons,CCons-HGCons)

+∆D(CCons-HGCons,CConsGCons)

+∆D(CConsGCons,CCorrGCorr)

+∆D(CCorrGCorr,CForge-InvalidGForge-Invalid)

+∆D(CForge-InvalidGForge-Invalid,CR-UnforgGR-Unforg)

+∆D(CR-UnforgGR-Unforg,CCCAG
{IND,IK}-CCA
0 )

+∆D(CCCAG
{IND,IK}-CCA
0 ,CCCAG

{IND,IK}-CCA
1 )

+∆D(CCCAG
{IND,IK}-CCA
1 ,COTRGOTR

0 )

+∆D(COTRGOTR
0 ,COTRGOTR

1 )

+∆D(COTRGOTR
1 , simP

H

T)

≤ ε+ 4 ·
(
AdvOTR(D⊥JCOTR-ξ1) +AdvCorr(D⊥JCCorr-ξ1)

+AdvForge-Invalid(D⊥JCForge-Invalid-ξ1)
)

+AdvOTR(D⊥JCOTR-ξ2) +AdvCons(D⊥JCCons-0-ξ2)

+AdvCons(D⊥JCCons-1-ξ2) +AdvCorr(D⊥JCCorr-ξ2)

+AdvForge-Invalid(D⊥JCForge-Invalid-ξ2) +AdvCons(DCCons)

+AdvCorr(DCCorr) +AdvForge-Invalid(DCForge-Invalid) +AdvR-Unforg(DCR-Unforg)

+Adv{IND, IK}-CCA(DCCCA) +AdvOTR(DCOTR).

⊓⊔

D.1.3 Proof of Theorem 12

Proof. This proof is similar to the one from Theorem 11. We present it for
completeness.

Let R be the real world system

R := SndS
H

RcvR
H

ForgeF [KGA,Net · INS],
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Algorithm 25 Description of the behavior of the simulator considered in the
proof of Theorem 12 for the (sub-)interfaces of dishonest parties in PH that
correspond to an interface of Net · INS in the real world system. In the following
S is as defined in Equation 6.1 and Equation D.3.

▷ (J)-SenderKeyPair(Ai ∈ SH)
Output(spki, sski)

▷ (P ∈ PH)-Write(c)
if c /∈ CtxtSet :

CtxtSet← CtxtSet ∪ {c}
(spk, v⃗′,m)← Π.Dpp(rskpp, c)
if (spk, v⃗′,m) ̸= ⊥ :

⟨Ai → V⃗ ⟩ ← GetLabel(spk, v⃗′)

if ⟨Ai → V⃗ ⟩ ̸= ⊥ :

id← S-Write(⟨Ai → V⃗ ⟩,m)
Ctxts[id]← c // Add entry to map Ctxts.
Output(id)

Output(INS-Write(c))

▷ (P ∈ PH)-Read
outputList ← ∅
for (⟨Ai → V⃗ ⟩, id,m) ∈ S-Read :

if id /∈ Ctxts : // Ai ∈ SH

s⃗ := (⊥, rsk1, . . . , rsk|V⃗ |) // For each Vl: if Vl ∈ RH , sl+1 is Vl’s secret key; else ⊥.
c← Π.Forgepp(spki, v⃗

′ := (rpkpp, v1, . . . , v|v⃗|),m, s⃗)

if c ∈ CtxtSet : Abort // Event ξ1 ∨ ξ2.

CtxtSet← CtxtSet ∪ {c}
Ctxts[id]← c

outputList← outputList ∪ {(id,Ctxts[id])}
for (l ∈ N, id, l′ ∈ N) ∈ S-Read :

if id /∈ Ctxts : // Ai ∈ SH

c← Π.Forgepp(spk1, rpkpp
l+1, 0l

′
,⊥l+1)

if c ∈ CtxtSet : Abort // Event ξ1 ∨ ξ2.

CtxtSet← CtxtSet ∪ {c}
Ctxts[id]← c

outputList← outputList ∪ {(id,Ctxts[id])}
Output(outputList ∪ INS-Read)

59



S be the ideal world’s repository from Equation 6.1

S := ConfAnonP
H · OtrPH ·

 Net ·
[
⟨Ai → V⃗ ⟩

PH

Set(V⃗ )∪PH

]
Ai∈S,V⃗ ∈R+[

⟨[Forge]Ai → V⃗ ⟩
F
PH

]
Ai∈S,V⃗ ∈R+

 ,

(D.3)
and let sim be the simulator specified in Algorithms 13 and 25. One can bound

∆D(R, simP
H

S) by proceeding in a sequence of hybrids that is essentially the
same as the one given in the proof of Theorem 11; the only differences are:

– each reduction provides an additional interface to allow for queries for honest
senders’ secret keys;

– there is no reduction to unforgeability.

As before, the main thing to note in the reductions is that the distinguisher
is not given access to the secret keys of any honest receivers nor to the secret
key of Bpp, which is necessary to ensure we can use the adversary to win the
underlying security games. The following sequence of hybrids is essentially the
same as in Theorem 11 (with the change explained above, that the reduction can
query for honest senders’ secret keys).

R⇝ CPK-Coll-ResGCons

⇝ CCons-HGCons

⇝ CConsGCons

⇝ CCorrGCorr

⇝ CForge-InvalidGForge-Invalid

CForge-InvalidGForge-Invalid ⇝ CCCAG
{IND,IK}-CCA
0 : Analogous to proof of Theo-

rem 11’s step CForge-InvalidGForge-Invalid ⇝ CR-UnforgGR-Unforg.

Finally, note the following hops, with the changes explained above, are also
analogous:

CCCAG
{IND,IK}-CCA
1 ⇝ COTRGOTR

0

COTRGOTR
1 ⇝ simP

H

S.

60



It then follows by triangle inequality:

∆D(R, simP
H

S) ≤ ∆D(R,CPK-Coll-ResGCons)

+∆D(CPK-Coll-ResGCons,CCons-HGCons)

+∆D(CCons-HGCons,CConsGCons)

+∆D(CConsGCons,CCorrGCorr)

+∆D(CCorrGCorr,CForge-InvalidGForge-Invalid)

+∆D(CForge-InvalidGForge-Invalid,CCCAG
{IND,IK}-CCA
0 )

+∆D(CCCAG
{IND,IK}-CCA
0 ,CCCAG

{IND,IK}-CCA
1 )

+∆D(CCCAG
{IND,IK}-CCA
1 ,COTRGOTR

0 )

+∆D(COTRGOTR
0 ,COTRGOTR

1 )

+∆D(COTRGOTR
1 , simP

H

S)

≤ ε+ 4 ·
(
AdvOTR(DCOTR-ξ1) +AdvCorr(DCCorr-ξ1)

+AdvForge-Invalid(DCForge-Invalid-ξ1)
)

+AdvOTR(DCOTR-ξ2) +AdvCons(DCCons-0-ξ2) +AdvCons(DCCons-1-ξ2)

+AdvCorr(DCCorr-ξ2) +AdvForge-Invalid(DCForge-Invalid-ξ2) +AdvCons(DCCons)

+AdvCorr(DCCorr) +AdvForge-Invalid(DCForge-Invalid)

+Adv{IND, IK}-CCA(DCCCA) +AdvOTR(DCOTR).

⊓⊔

D.1.4 Proof of Helper Claim: Lemma 2 Consider adversary DCOTR-ξ1

interacting with GOTR
0 : if event ξ1

′ occurs12 DCOTR-ξ1 wins the game; if ξ1
′

does not occur, DCOTR-ξ1 wins the game with probability 1/2. Now, suppose
DCOTR-ξ1 interacts with GOTR

1 : if ξ1
′ does not occur DCOTR-ξ1 wins the game

with probability 1/2. If event ξ1
′ occurs then DCOTR-ξ1 does not win GOTR

1 ;
however, one can bound the probability of event ξ1

′ occurring (when DCOTR-ξ1

is interacting with GOTR
1 ) by the probability that DCCorr-ξ1 wins the correctness

game plus the probability that DCForge-Invalid-ξ1 wins the Forgery Invalidity game.
It follows

Pr[DCOTR-ξ1GOTR
1 ̸= win] ≤ 1

2
+ Pr[DCCorr-ξ1GCorr = win]

+ Pr[DCForge-Invalid-ξ1GForge-Invalid = win].

12 See Algorithm 26 for a definition of event ξ1
′.
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By Definition 10,

AdvOTR(DCOTR-ξ1) :=
∣∣∣Pr[DCOTR-ξ1GOTR

0 = win] + Pr[DCOTR-ξ1GOTR
1 = win]− 1

∣∣∣
=
∣∣∣Pr[DCOTR-ξ1GOTR

0 = win | ξ1′] · Pr[DCOTR-ξ1GOTR
0 ⇒ ξ1

′]

+Pr[DCOTR-ξ1GOTR
0 = win | ¬ξ1′] · Pr[DCOTR-ξ1GOTR

0 ⇒ ¬ξ1′]

+ Pr[DCOTR-ξ1GOTR
1 = win]− 1

∣∣∣
=
∣∣∣Pr[DCOTR-ξ1GOTR

0 ⇒ ξ1
′] +

1

2
· Pr[DCOTR-ξ1GOTR

0 ⇒ ¬ξ1′]

+ Pr[DCOTR-ξ1GOTR
1 = win]− 1

∣∣∣
=
∣∣∣Pr[DCOTR-ξ1GOTR

0 ⇒ ξ1
′] · 1

2
− 1

2
+ Pr[DCOTR-ξ1GOTR

1 = win]
∣∣∣.

We consider the two possible cases:

AdvOTR(DCOTR-ξ1) = Pr[DCOTR-ξ1GOTR
0 ⇒ ξ1

′] · 1
2
− 1

2
+ Pr[DCOTR-ξ1GOTR

1 = win],

and

AdvOTR(DCOTR-ξ1) =
1

2
− Pr[DCOTR-ξ1GOTR

0 ⇒ ξ1
′] · 1

2
− Pr[DCOTR-ξ1GOTR

1 = win].

For the first case, we have

AdvOTR(DCOTR-ξ1) = Pr[DCOTR-ξ1GOTR
0 ⇒ ξ1

′] · 1
2
− 1

2
+Pr[DCOTR-ξ1GOTR

1 = win]

⇔

AdvOTR(DCOTR-ξ1) +
1

2
− Pr[DCOTR-ξ1GOTR

1 = win] =
1

2
·Pr[DCOTR-ξ1GOTR

0 ⇒ ξ1
′]

⇒

AdvOTR(DCOTR-ξ1) +
1

2
−
(
1

2
−
(
Pr[DCCorr-ξ1GCorr = win]+

Pr[DCForge-Invalid-ξ1GForge-Invalid = win]
))
≥ 1

2
· Pr[DCOTR-ξ1GOTR

0 ⇒ ξ1
′]

⇔
AdvOTR(DCOTR-ξ1) + Pr[DCCorr-ξ1GCorr = win]

+Pr[DCForge-Invalid-ξ1GForge-Invalid = win] ≥ 1

2
· Pr[DCOTR-ξ1GOTR

0 ⇒ ξ1
′].
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For the second, we have

AdvOTR(DCOTR-ξ1) =
1

2
− Pr[DCOTR-ξ1GOTR

0 ⇒ ξ1
′] · 1

2
−Pr[DCOTR-ξ1GOTR

1 = win]

⇔
1

2
· Pr[DCOTR-ξ1GOTR

0 ⇒ ξ1
′] =

1

2
−AdvOTR(DCOTR-ξ1)− Pr[DCOTR-ξ1GOTR

1 = win]

⇒
1

2
· Pr[DCOTR-ξ1GOTR

0 ⇒ ξ1
′] ≤ 1

2
+AdvOTR(DCOTR-ξ1)− Pr[DCOTR-ξ1GOTR

1 = win]

⇒
1

2
· Pr[DCOTR-ξ1GOTR

0 ⇒ ξ1
′] ≤ AdvOTR(DCOTR-ξ1) + Pr[DCCorr-ξ1GCorr = win]

+Pr[DCForge-Invalid-ξ1GForge-Invalid =win].

Putting things together one can then upper bound the probability that ξ1
′

occurs by

2 ·
(
AdvOTR(DCOTR-ξ1) + Pr[DCCorr-ξ1GCorr = win]

+ Pr[DCForge-Invalid-ξ1GForge-Invalid = win]
)

= 2 ·
(
AdvOTR(DCOTR-ξ1) +AdvCorr(DCCorr-ξ1)

+AdvForge-Invalid(DCForge-Invalid-ξ1)
)
.

To conclude, note that the probability for event ξ1
′ to occur is half of the

probability that event ξ1 occurs. ⊓⊔

D.1.5 Proof of Helper Claim: Lemma 3 The proof of this result follows
similar lines to the proof of Lemma 2; in the following, events ξ2,0 and ξ2,1 are
as defined in Algorithm 29.

Interacting with GOTR
0 : First, consider adversary DCOTR-ξ2 interacting with

GOTR
0 : if ξ2,0 occurs DCOTR-ξ2 wins the game; if ξ2,1 occurs, it does not win the

game; and otherwise it wins the game with probability 1/2. We can bound the
probability that DCOTR-ξ2 does not win GOTR

0 due to event ξ2,1 occurring by
reducing to winning either the consistency or the correctness games. Concretely,
we bound the probability of ξ2,1 occurring when DCOTR-ξ2 is interacting with
GOTR

0 by
AdvCons(DCCons-0-ξ2) +AdvCorr(DCCorr-ξ2).

Interacting with GOTR
1 : Conversely, consider DCOTR-ξ2 is now interacting with

GOTR
1 : if ξ2,0 occurs DCOTR-ξ2 does not win; if ξ2,1 occurs, it wins the game,

and otherwise it wins the game with probability 1/2. As before we bound the
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Algorithm 26 Reduction COTR-ξ1 for Lemma 2.

⋄ Initialization
CtxtChall ← ∅ // Additional Initialization.
CtxtNonChall ← ∅

▷ (Ai ∈ SH)-Write(⟨Ai → V⃗ ⟩,m)
b← ${0, 1} // Sample bit b uniformly at random.
if b = 0 :

c← OE

(
sig, Ai, V⃗

′ := (Bpp, V1, . . . , V|V⃗ |),m, Set(V⃗ ) ∩ PH
)

CtxtChall← CtxtChall ∪ {c}
else

c← Π.Epp(sski, v⃗
′ := (rpkpp, v1, . . . , v|v⃗|),m)

CtxtNonChall← CtxtNonChall ∪ {c}
Define event ξ1

′ as: ξ1
′ := CtxtChall ∩ CtxtNonChall ̸= ∅

if ξ1
′ :

Guess(0) // Makes reduction output 0 as its guess.

Output(Write(c))

▷ (P ∈ F)-Write(⟨[Forge]Ai → V⃗ ⟩,m)

Output(Write(Forge
(
Ai, V⃗ ,m, Set(V⃗ ) ∩ PH

)
))

▷ (Bj ∈ RH)-Read
outputList ← ∅
ciphertextSet← ∅
for (id, c) ∈ Read with c ̸∈ ciphertextSet :

ciphertextSet← ciphertextSet ∪ {c}
(⟨Ai → V⃗ ⟩,m)← Decryption(Bj , c)

if (⟨Ai → V⃗ ⟩,m) ̸= ⊥ :

outputList ← outputList ∪ {(id, (⟨Ai → V⃗ ⟩,m))}
Output(GetDelivered(Bj , outputList))

▷ (J)-SenderKeyPair(Ai ∈ S)
Output(OSK(Ai))

▷ (P ∈ PH)-Write(c)
Output(Write(c))

▷ (P ∈ PH)-Read
Output(Read)

⋄ Termination
b← ${0, 1}
Guess(b) // Makes reduction output b as its guess.

Algorithm 27 Reduction CCorr-ξ1 for Lemma 2. Below, we only specify the
reduction for operations for which it differs from COTR-ξ1 .

▷ (Ai ∈ SH)-Write(⟨Ai → V⃗ ⟩,m)
b← ${0, 1} // Sample bit b uniformly at random.
if b = 0 :

v⃗′ := (rpkpp, v1, . . . , v|V⃗ |)

s⃗ := (⊥, rsk1, . . . , rsk|V⃗ |) // For each Vl: if Vl ∈ PH , sl+1 is Vl’s secret key; else is ⊥.
c← Π.Forgepp(spki, v⃗

′,m, s⃗)
else

c← OE

(
Ai, V⃗

′ := (Bpp, V1, . . . , V|V⃗ |),m
)

OD(Bpp, c) // Allows winning the correctness and forgery invalidity games.
Output(Write(c))

▷ (P ∈ PH)-Write(c)
Output(Write(c))
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Algorithm 28 Reduction CForge-Invalid-ξ1 for Lemma 2. As for Algorithm 27, we
only specify the reduction for operations for which it differs from COTR-ξ1 .

▷ (Ai ∈ SH)-Write(⟨Ai → V⃗ ⟩,m)
b← ${0, 1} // Sample bit b uniformly at random.
if b = 0 :

c← OForge

(
Ai, V⃗

′ := (Bpp, V1, . . . , V|V⃗ |),m, Set(V⃗ ) ∩ PH
)

else
c← Π.Epp(sski, v⃗

′ := (rpkpp, v1, . . . , v|v⃗|),m)

OD(Bpp, c) // Allows winning the correctness and forgery invalidity games.
Output(Write(c))

▷ (P ∈ PH)-Write(c)
Output(Write(c))

probability that DCOTR-ξ2 does not win GOTR
1 due to event ξ2,0 occurring by

reducing to winning either the consistency or the forgery invalidity games. This
means the probability of ξ2,0 occurring when DCOTR-ξ2 is interacting with GOTR

1

is bounded by

AdvCons(DCCons-1-ξ2) +AdvForge-Invalid(DCForge-Invalid-ξ2).

Obtaining the final bound: Putting these facts together then allows to upper
bound the probability of event ξ2 occurring:

AdvOTR(DCOTR-ξ2) +AdvCons(DCCons-0-ξ2) +AdvCons(DCCons-1-ξ2)

+AdvCorr(DCCorr-ξ2) +AdvForge-Invalid(DCForge-Invalid-ξ2).

⊓⊔

E Application Semantics of MDVS Game Notions

Recall F := S ∪ R. We now establish composable semantics for the MDVS
game-based notions.

Theorem 13. Consider simulator sim defined in Algorithms 34 and 37, re-
ductions C0, CCons-H, CCons, CCorr, CForge-Invalid, CR-Unforg and COTR (defined,
respectively, in Algorithms 35, 36 and 38, Algorithms 35, 36 and 39, Algorithms 35,
36 and 40, Algorithms 35, 36 and 41, Algorithms 35, 36 and 42, Algorithms 35, 36
and 43 and Algorithms 35, 36 and 44), and reductions ⊥J ·COTR-ξ1 , ⊥J ·CCorr-ξ1 ,
⊥J ·CForge-Invalid-ξ1 , ⊥J ·COTR-ξ2 , ⊥J ·CCons-0-ξ2 , ⊥J ·CCons-1-ξ2 , ⊥J ·CCorr-ξ2 and
⊥J ·CForge-Invalid-ξ2 (where COTR-ξ1 , CCorr-ξ1 , CForge-Invalid-ξ1 , COTR-ξ2 , CCons-0-ξ2 ,
CCons-1-ξ2 , CCorr-ξ2 and CForge-Invalid-ξ2 are the reductions from Lemmata 4 and 5).
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Algorithm 29 Reduction COTR-ξ2 for Lemma 3.

▷ (Ai ∈ SH)-Write(⟨Ai → V⃗ ⟩,m)

c← OE

(
sig, Ai, V⃗

′ := (Bpp, V1, . . . , V|V⃗ |),m, Set(V⃗ ) ∩ PH
)

if c ∈ Dec : // Event ξ2
Define event ξ2,0 := (Dec[c] ̸= ⊥)
Define event ξ2,1 := (Dec[c] = ⊥)
if ξ2,0 :

Guess(0) // Makes reduction output guess 0.
else // Event ξ2,1 occurred

Guess(1) // Reduction outputs guess 1.

Output(Write(c))

▷ (P ∈ F)-Write(⟨[Forge]Ai → V⃗ ⟩,m)

Output(Write(Forge
(
Ai, V⃗ ,m, Set(V⃗ ) ∩ PH

)
))

▷ (Bj ∈ RH)-Read
outputList ← ∅
ciphertextSet← ∅
for (id, c) ∈ Read with c ̸∈ ciphertextSet :

ciphertextSet← ciphertextSet ∪ {c}
(⟨Ai → V⃗ ⟩,m)← Decryption(Bj , c)

if (⟨Ai → V⃗ ⟩,m) ̸= ⊥ :

outputList ← outputList ∪ {(id, (⟨Ai → V⃗ ⟩,m))}
Output(GetDelivered(Bj , outputList))

▷ (J)-SenderKeyPair(Ai ∈ S)
Output(OSK(Ai))

▷ (P ∈ PH)-Write(c)
α← OD(Bpp, c)

if α ̸= test : // c not written before by Write operation at some interface Ai ∈ SH .
Dec[c]← α

Output(Write(c))

▷ (P ∈ PH)-Read
Output(Read)

⋄ Termination
b← ${0, 1}
Guess(b) // Makes reduction output b as its guess.

Algorithm 30 Reduction CCons-0-ξ2 for Lemma 3. We only specify the reduction
for operations for which it differs from COTR-ξ2 .

⋄ Initialization
CtxtChall ← ∅ // Additional Initialization.

▷ (Ai ∈ SH)-Write(⟨Ai → V⃗ ⟩,m)

c← OE

(
Ai, V⃗

′ := (Bpp, V1, . . . , V|V⃗ |),m
)

CtxtChall← CtxtChall ∪ {c}
if c ∈ Dec :
OD(Bpp, c)

Output(Write(c))

▷ (P ∈ PH)-Write(c)
if c /∈ CtxtChall :

Dec[c]← OD(Bpp, c)

Output(Write(c))
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Algorithm 31 Reduction CCons-1-ξ2 for Lemma 3. As for Algorithm 30, we only
specify the reduction for operations for which it differs from COTR-ξ2 .

⋄ Initialization
CtxtChall ← ∅ // Additional Initialization.

▷ (Ai ∈ SH)-Write(⟨Ai → V⃗ ⟩,m)
v⃗′ := (rpkpp, v1, . . . , v|V⃗ |)

s⃗ := (⊥, rsk1, . . . , rsk|V⃗ |) // For each Vl: if Vl ∈ PH , sl+1 is Vl’s secret key; else is ⊥.
c← Π.Forgepp(spki, v⃗

′,m, s⃗)

CtxtChall← CtxtChall ∪ {c}
if c ∈ Dec :
OD(Bpp, c)

Output(Write(c))

▷ (P ∈ PH)-Write(c)
if c /∈ CtxtChall :

Dec[c]← OD(Bpp, c)

Output(Write(c))

Algorithm 32 Reduction CCorr-ξ2 for Lemma 3. We only present this reduction
for completeness (note that it is the same reduction as CCons-0-ξ2).

⋄ Initialization
CtxtChall ← ∅ // Additional Initialization.

▷ (Ai ∈ SH)-Write(⟨Ai → V⃗ ⟩,m)

c← OE

(
Ai, V⃗

′ := (Bpp, V1, . . . , V|V⃗ |),m
)

CtxtChall← CtxtChall ∪ {c}
if c ∈ Dec :
OD(Bpp, c)

Output(Write(c))

▷ (P ∈ PH)-Write(c)
if c /∈ CtxtChall :

Dec[c]← OD(Bpp, c)

Output(Write(c))

Algorithm 33 Reduction CForge-Invalid-ξ2 for Lemma 3. As before, we only specify
the reduction for operations for which it differs from COTR-ξ2 .

⋄ Initialization
CtxtChall ← ∅ // Additional Initialization.

▷ (Ai ∈ SH)-Write(⟨Ai → V⃗ ⟩,m ∈ M)

c← OForge

(
Ai, V⃗

′ := (Bpp, V1, . . . , V|V⃗ |),m, Set(V⃗ ) ∩ PH
)

CtxtChall← CtxtChall ∪ {c}
if c ∈ Dec :
OD(Bpp, c)

Output(Write(c))

▷ (P ∈ PH)-Write(c)
if c /∈ CtxtChall :

Dec[c]← OD(Bpp, c)

Output(Write(c))
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For any distinguisher D,

∆D

(
SndS

H

RcvR
H

ForgeF⊥J [KGA,Net · INS],

simP
H · OtrPH ·

 Net · ⊥Auth-Intf ·
[
⟨Ai → V⃗ ⟩

{Ai}∪PH

Set(V⃗ )∪PH

]
Ai∈S,V⃗ ∈R+[

⟨[Forge]Ai → V⃗ ⟩
F
PH

]
Ai∈S,V⃗ ∈R+

)

≤ 4 ·
(
AdvOTR(D⊥JCOTR-ξ1) +AdvCorr(D⊥JCCorr-ξ1)

+AdvForge-Invalid(D⊥JCForge-Invalid-ξ1)
)

+AdvOTR(D⊥JCOTR-ξ2) +AdvCons(D⊥JCCons-0-ξ2)

+AdvCons(D⊥JCCons-1-ξ2) +AdvCorr(D⊥JCCorr-ξ2)

+AdvForge-Invalid(D⊥JCForge-Invalid-ξ2) +AdvCons(DCCons)

+AdvCorr(DCCorr) +AdvForge-Invalid(DCForge-Invalid) +AdvR-Unforg(DCR-Unforg)

+AdvOTR(DCOTR).

Theorem 14. Consider simulator sim (analogous to the one from Theorem 13),13

reductions C0, CCons-H, CCons, CCorr, CForge-Invalid and COTR (analogous to the
ones given for Theorem 13), and reductions COTR-ξ1 , CCorr-ξ1 , CForge-Invalid-ξ1 ,
COTR-ξ2 , CCons-0-ξ2 , CCons-1-ξ2 , CCorr-ξ2 and CForge-Invalid-ξ2 (i.e. the reductions
from Lemmata 4 and 5). For any distinguisher D,

∆D(SndS
H

RcvR
H

ForgeF [KGA,Net · INS],

simP
H · ConfAnonPH · OtrPH ·

 Net ·
[
⟨Ai → V⃗ ⟩

PH

Set(V⃗ )∪PH

]
Ai∈S,V⃗ ∈R+[

⟨[Forge]Ai → V⃗ ⟩
F
PH

]
Ai∈S,V⃗ ∈R+

)
≤ 4 ·

(
AdvOTR(DCOTR-ξ1) +AdvCorr(DCCorr-ξ1)

+AdvForge-Invalid(DCForge-Invalid-ξ1)
)

+AdvOTR(DCOTR-ξ2) +AdvCons(DCCons-0-ξ2) +AdvCons(DCCons-1-ξ2)

+AdvCorr(DCCorr-ξ2) +AdvForge-Invalid(DCForge-Invalid-ξ2)

+AdvCons(DCCons) +AdvCorr(DCCorr) +AdvForge-Invalid(DCForge-Invalid)

+AdvOTR(DCOTR).

13 The only difference between the simulators is that the one for this theorem does not
abort when input a valid signature by an honest sender: in this case the simulator
proceeds as if the sender were dishonest.
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E.1 Proofs

For simplicity, in Algorithm 34 we describe the behavior of the simulators we will
consider in the proofs of Theorems 13 and 14 for the (sub-)interfaces of dishonest
parties that correspond to an interface of the KGA resource in the real world
system. Similarly, in Algorithm 35 we describe the behavior of the reductions we
will consider in these proofs for the same (sub-)interfaces.

Algorithm 34 Description of (part of) the simulators considered in the proofs of
Theorems 13 and 14 for the (sub-)interfaces of (dishonest) parties that correspond
to an interface of the KGA resource in the real world system. In the following,
k ∈ N is the (implicitly defined) security parameter.

⋄ Initialization
INS-Initialization
Sigs ← ∅
pp← Π.S(1k)
for Ai ∈ S : (spki, sski)← Π.GS(pp)

for Bj ∈ R : (vpkj , vskj)← Π.GV (pp)

▷ (P ∈ PH)-PublicParameters
Output(pp)

▷ (P ∈ PH)-SenderKeyPair(Ai ∈ SH)
Output(spki, sski)

▷ (P ∈ PH)-SenderPublicKey(Ai ∈ S)
Output(spki)

▷ (P ∈ PH)-ReceiverKeyPair(Bj ∈ RH)
Output(vpkj , vskj)

▷ (P ∈ PH)-ReceiverPublicKey(Bj ∈ R)
Output(vpkj)

Algorithm 35 Description of the reductions considered in the proofs of Lem-
mata 4 and 5 and Theorems 13 and 14 for the (sub-)interfaces of (dishonest)
parties that correspond to KGA interface in the real world system, plus the
Deliver interface.

⋄ Initialization
INS-Initialization
SigVal ← ∅
(SigHon,SigForge,SigDis) ← (∅, ∅, ∅)
for Ai ∈ S : OSPK(Ai)

for Bj ∈ R : OV PK(Bj)

for Bj ∈ R : Received[Bj ]← ∅

▷ (P ∈ PH)-PublicParameters
Output(OPP )

▷ Deliver(P, id)
Received[P ]← Received[P ] ∪ {id}

▷ (P ∈ PH)-SenderKeyPair(Ai ∈ SH)
Output(OSK(Ai))

▷ (P ∈ PH)-SenderPublicKey(Ai ∈ S)
Output(OSPK(Ai))

▷ (P ∈ PH)-ReceiverKeyPair(Bj ∈ RH)
Output(OV K(Bj))

▷ (P ∈ PH)-ReceiverPublicKey(Bj ∈ R)
Output(OV PK(Bj))

E.1.1 Helper Claims We now state two results analogous to Lemmata 2
and 3 that help in simplifying the proofs of Theorems 13 and 14. Consider the
following events:
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Algorithm 36 Helper functions used in the reductions considered in the proofs
of Theorems 13 and 14.
⋄ GetDelivered(P, list) // Local procedure.
filteredList← ∅
for (id, x) ∈ list with id ∈ Received[P ] :

filteredList← filteredList ∪ {(id, x)}
return filteredList

⋄ Forge(Ai, V⃗ ,m, C) // Local procedure.
v⃗ := (v1, . . . , v|V⃗ |)

s⃗ := (vsk1, . . . , vsk|V⃗ |) // For each Vl: if Vl ∈ C, sl+1 is Vl’s secret key; else it is ⊥.
return Π.Forgepp(spki, v⃗,m, s⃗)

Event ξ1 There are two Write queries at the interface of an honest party
Ai ∈ SH that output id and id′ with id ̸= id′, such that the contents of the
registers with these identifiers (i.e. id and id′) are the same.

Event ξ2 There is a Write query at a dishonest party’s interface with input
quadruple (m,σ, (Ai, V⃗ )) that outputs a register identifier id and there is a
later Write query at the interface of an honest party Ai ∈ SH that outputs
a register identifier id′ such that the contents of the registers with identifiers
id and id′ are the same.

Lemma 4. For any distinguisher D, the probability that event ξ1 occurs when it
interacts with the real world system R (Equation 5.1) is upper bounded by

4 ·
(
AdvOTR(DCOTR-ξ1) +AdvCorr(DCCorr-ξ1)

+AdvForge-Invalid(DCForge-Invalid-ξ1)
)
.

where COTR-ξ1 , CCorr-ξ1 and CForge-Invalid-ξ1 are the MDVS analogous of reductions
Algorithms 14 and 26, Algorithms 14 and 27, and Algorithms 14 and 28.

Lemma 5. For any distinguisher D, the probability that event ξ2 occurs when it
interacts with the real world system R (Equation 5.1) is upper bounded by

AdvOTR(DCOTR-ξ2) +AdvCons(DCCons-0-ξ2) +AdvCons(DCCons-1-ξ2)

+AdvCorr(DCCorr-ξ2) +AdvForge-Invalid(DCForge-Invalid-ξ2).

where COTR-ξ2 , CCons-0-ξ2 , CCons-1-ξ2 , CCorr-ξ2 and CForge-Invalid-ξ2 are the MDVS
analogous of reductions Algorithms 14 and 29, Algorithms 14 and 30, Algo-
rithms 14 and 31, Algorithms 14 and 32, and Algorithms 14 and 33.

The proofs follow from arguments that are analogous to their MDRS-PKE
counterparts (see Lemmata 2 and 3).

E.1.2 Proof of Theorem 13
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Algorithm 37 Description of the behavior of the simulator considered in the
proof of Theorem 13 for the (sub-)interfaces of dishonest parties that correspond
to an interface of Net · INS in the real world system. In the following, T is as
defined in Equations 5.6 and E.1.

▷ (P ∈ PH)-Write(m,σ, (Ai, V⃗ ))

if V⃗ ∈ RH
+

: Output(INS-Write(m,σ, (Ai, V⃗ )))

Consider least l ∈ {1, . . . , |V⃗ |} with Vl ∈ PH

if ¬Π.Vfypp(spki, vskl, v⃗,m, σ) : Output(INS-Write(m,σ, (Ai, V⃗ )))

if Ai ∈ SH : Abort // Signature forged.

id′ ← Srep-Write(⟨Ai → V⃗ ⟩,m)

Sigs[id′]← (m,σ, (Ai, V⃗ ))
Output(id′)

▷ (P ∈ PH)-Read

for (⟨Ai → V⃗ ⟩, id,m) ∈ P -Srep-Read with id /∈ Sigs :
σ ← Π.Sigpp(sski, v⃗,m)

Sigs[id]← (m,σ, (Ai, V⃗ ))

Output(Sigs ∪ INS-Read)

Algorithm 38 Reduction C0 for Theorem 13. This is a “dummy” reduction:
when connected to the MDVS oracles defined in Section 2.3, it has exactly the
same behavior as the real world resource.

▷ (Ai ∈ SH)-Write(⟨Ai → V⃗ ⟩,m)

σ ← OS

(
Ai, V⃗ ,m

)
id←Write(m,σ, (Ai, V⃗ ))
Output(id)

▷ (P ∈ F)-Write(⟨[Forge]Ai → V⃗ ⟩,m)

σ ← Forge
(
Ai, V⃗ ,m, Set(V⃗ ) ∩ PH

)
id←Write(m,σ, (Ai, V⃗ ))
Output(id)

▷ (Bj ∈ RH)-Read
(list, sigSet)← (∅, ∅)
for (id, (m,σ, (Ai, V⃗ ))) ∈ Read with (Bj ∈ Set(V⃗ )) ∧ ((m,σ, (Ai, V⃗ )) /∈ sigSet) :

sigSet← sigSet ∪ {(m,σ, (Ai, V⃗ ))}
if OV (Ai, Bj , V⃗ ,m, σ) : list ← list ∪ {(id, (⟨Ai → V⃗ ⟩,m))}

Output(GetDelivered(Bj , list))

▷ (P ∈ PH)-Write(m,σ, (Ai, V⃗ ))

id←Write(m,σ, (Ai, V⃗ ))
Output(id)

▷ (P ∈ PH)-Read
Output(Read)
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Algorithm 39 Reduction CCons-H for Theorem 13. Below we only show the
differences (highlighted) relative to C0.

▷ (Ai ∈ SH)-Write(⟨Ai → V⃗ ⟩,m)

σ ← OS

(
Ai, V⃗ ,m

)
if (m,σ, (Ai, V⃗ )) ∈ SigHon : Abort // Event ξ1: Signature Already Exists

SigHon← SigHon ∪ {(m,σ, (Ai, V⃗ ))}
id←Write(m,σ, (Ai, V⃗ ))
Output(id)

▷ (P ∈ F)-Write(⟨[Forge]Ai → V⃗ ⟩,m)

σ ← Forge
(
Ai, V⃗ ,m, Set(V⃗ ) ∩ PH

)
SigForge← SigForge ∪ {(m,σ, (Ai, V⃗ ))}
id←Write(m,σ, (Ai, V⃗ ))
Output(id)

▷ (P ∈ PH)-Write(m,σ, (Ai, V⃗ ))

id←Write(m,σ, (Ai, V⃗ ))

if (m,σ, (Ai, V⃗ )) /∈ SigHon ∪ SigForge :

SigDis← SigDis ∪ {(m,σ, (Ai, V⃗ ))}
Output(id)

Algorithm 40 Reduction CCons for Theorem 13. Below we only show the
differences (highlighted) relative to CCons-H.

▷ (Ai ∈ SH)-Write(⟨Ai → V⃗ ⟩,m)

σ ← OS

(
Ai, V⃗ ,m

)
if (m,σ, (Ai, V⃗ )) ∈ SigHon ∪ SigDis : Abort // Event ξ1 ∨ ξ2: Signature Already Exists

SigHon← SigHon ∪ {(m,σ, (Ai, V⃗ ))}
id←Write(m,σ, (Ai, V⃗ ))

if V⃗ /∈ RH
+

: SigVal[id]← OV (Ai, Vl, V⃗ ,m, σ), for least l ∈ [|V⃗ |] with Vl ∈ PH

Output(id)

▷ (P ∈ F)-Write(⟨[Forge]Ai → V⃗ ⟩,m)

σ ← Forge
(
Ai, V⃗ ,m, Set(V⃗ ) ∩ PH

)
SigForge← SigForge ∪ {(m,σ, (Ai, V⃗ ))}
id←Write((m,σ, (Ai, V⃗ )))

if V⃗ /∈ RH
+

: SigVal[id]← OV (Ai, Vl, V⃗ ,m, σ), for least l ∈ [|V⃗ |] with Vl ∈ PH

Output(id)

▷ (P ∈ PH)-Write(m,σ, (Ai, V⃗ ))

id←Write(m,σ, (Ai, V⃗ ))

if (m,σ, (Ai, V⃗ )) /∈ SigHon ∪ SigForge :

if (m,σ, (Ai, V⃗ )) /∈ SigDis :

if V⃗ /∈ RH
+

: SigVal[id]← OV (Ai, Vl, V⃗ ,m, σ), for least l ∈ [|V⃗ |] with Vl ∈ PH

SigDis← SigDis ∪ {(m,σ, (Ai, V⃗ ))}
Output(id)

72



Algorithm 41 Reduction CCorr for Theorem 13. Below we only show the differ-
ences (highlighted) relative to CCons.

▷ (Bj ∈ RH)-Read
(list, sigSet)← (∅, ∅)
for (id, (m,σ, (Ai, V⃗ ))) ∈ Read with (Bj ∈ Set(V⃗ )) ∧ ((m,σ, (Ai, V⃗ )) /∈ sigSet) :

sigSet← sigSet ∪ {(m,σ, (Ai, V⃗ ))}
if SigVal[id] : list← list ∪ {(id, (⟨Ai → V⃗ ⟩,m))}

Output(GetDelivered(Bj , list))

Algorithm 42 Reduction CForge-Invalid for Theorem 13. Below we only show the
differences (highlighted) relative to CCorr.

▷ (Ai ∈ SH)-Write(⟨Ai → V⃗ ⟩,m)

σ ← OS

(
Ai, V⃗ ,m

)
if (m,σ, (Ai, V⃗ )) ∈ SigHon ∪ SigDis : Abort // Event ξ1 ∨ ξ2: Signature Already Exists

SigHon← SigHon ∪ {(m,σ, (Ai, V⃗ ))}
id←Write(m,σ, (Ai, V⃗ ))
SigVal[id]← 1
Output(id)

▷ (P ∈ F)-Write(⟨[Forge]Ai → V⃗ ⟩,m)

σ ← ForgeRed
(
Ai, V⃗ ,m, Set(V⃗ ) ∩ PH

)
SigForge← SigForge ∪ {(m,σ, (Ai, V⃗ ))}
id←Write(m,σ, (Ai, V⃗ ))

if V⃗ /∈ RH
+

: SigVal[id]← OV (Ai, Vl, V⃗ ,m, σ), for least l ∈ [|V⃗ |] with Vl ∈ PH

Output(id)

// Local procedure.

⋄ ForgeRed(Ai, V⃗ ,m, C)
return OForge(Ai, V⃗ ,m, Set(V⃗ ) ∩ PH)

Algorithm 43 Reduction CR-Unforg for Theorem 13. Below we only show the
differences (highlighted) relative to CForge-Invalid.

▷ (P ∈ F)-Write(⟨[Forge]Ai → V⃗ ⟩,m)

σ ← Forge
(
Ai, V⃗ ,m, Set(V⃗ ) ∩ PH

)
SigForge← SigForge ∪ {(m,σ, (Ai, V⃗ ))}
id←Write((m,σ, (Ai, V⃗ )))
SigVal[id]← 0
Output(id)
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Algorithm 44 Reduction COTR for Theorem 13. Below we only show the
differences (highlighted) relative to CR-Unforg.

▷ (Ai ∈ SH)-Write(⟨Ai → V⃗ ⟩,m)

σ ← OS(sig, Ai, V⃗ ,m, Set(V⃗ ) ∩ PH)

if (m,σ, (Ai, V⃗ )) ∈ SigHon ∪ SigDis : Abort // Event ξ1 ∨ ξ2: Signature Already Exists

SigHon← SigHon ∪ {(m,σ, (Ai, V⃗ ))}
id←Write(m,σ, (Ai, V⃗ ))
SigVal[id]← 1
Output(id)

▷ (P ∈ PH)-Write(m,σ, (Ai, V⃗ ))

id←Write(m,σ, (Ai, V⃗ ))

if (m,σ, (Ai, V⃗ )) /∈ SigHon ∪ SigForge :

if (m,σ, (Ai, V⃗ )) /∈ SigDis :

if (Ai ∈ SH
) : SigVal[id]← 0

else if V⃗ /∈ RH
+

: SigVal[id]← OV (Ai, Vl, V⃗ ,m, σ), for least l ∈ [|V⃗ |] with Vl ∈ PH

SigDis← SigDis ∪ {(m,σ, (Ai, V⃗ ))}
Output(id)

Proof. Let R be the real world system

R := SndS
H

RcvR
H

ForgeF⊥J [KGA,Net · INS],

T be the ideal repository defined in Equation 5.6, i.e.

T := OtrP
H ·

 Net · ⊥Auth-Intf ·
[
⟨Ai → V⃗ ⟩

{Ai}∪PH

Set(V⃗ )∪PH

]
Ai∈S,V⃗ ∈R+[

⟨[Forge]Ai → V⃗ ⟩
F
PH

]
Ai∈S,V⃗ ∈R+

 , (E.1)

and let sim be the simulator specified in Algorithms 34 and 37. The remainder of

the proof bounds ∆D(R, simP
H

T) by proceeding in a sequence of hybrids. In the
following, we consider the reduction systems defined in the lemma’s statement.

R⇝ C0GCons: It is easy to see that R and C0GCons are the same sequence of
conditional probability distributions by considering, on one hand, the definition
of R—i.e. the definitions of converters Snd, Rcv and Forge (Algorithm 5), the
definition of the KGA resource (Algorithms 4 and 6), and the definitions of INS
(Algorithm 1) and of Net (Algorithm 3)—and, on the other hand, the definition of
C0GCons—i.e. the definition of GCons and its oracles (Definition 3 and Section 3.1)
and the definition of C0 (Algorithms 35, 36 and 38). It follows

∆D(R,C0GCons) = 0.

C0GCons ⇝ CCons-HGCons: It is easy to see that C0GCons and CCons-HGCons are
the same sequence of conditional probability distributions conditioned on event
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ξ1 not occurring (see Section E.1.1). By Lemma 4, it follows

∆D(C0GCons,CCons-HGCons) ≤ 4 ·
(
AdvOTR(D⊥JCOTR-ξ1)

+AdvCorr(D⊥JCCorr-ξ1)

+AdvForge-Invalid(D⊥JCForge-Invalid-ξ1)
)
.

CCons-HGCons ⇝ CConsGCons: As for the previous step C0GCons ⇝ CCons-HGCons,
it is easy to see that the two systems are the exact same sequence of conditional
probability distributions conditioned on event ξ2 not occurring (see Section E.1.1).
It then follows by Lemma 5

∆D(CCons-HGCons,CConsGCons) ≤ AdvOTR(D⊥JCOTR-ξ2)

+AdvCons(D⊥JCCons-0-ξ2) +AdvCons(D⊥JCCons-1-ξ2)

+AdvCorr(D⊥JCCorr-ξ2) +AdvForge-Invalid(D⊥JCForge-Invalid-ξ2).

CConsGCons ⇝ CCorrGCorr: The only difference betweenCCorrGCorr andCConsGCons

is that in CCorrGCorr the validity of each quadruple q := (m,σ, (Ai, V⃗ )) where

V⃗ contains at least one honest receiver, such that q was either generated by a
Write operation at the interface of an honest sender Ai ∈ SH or input to a
Write operation at the interface of a dishonest party P ∈ PH is only verified
once, and this verification is made for the first party in vector V⃗ who is honest
(as described in the reduction; for more details see Algorithms 40 and 41). Given
CCons does not query for the secret key of any receiver Bj ∈ RH , the advantage of
a distinguisher D in distinguishing CConsGCons and CCorrGCorr is bounded by the
advantage of adversary DCCons in winning the consistency game GCons: note that
CCons makes a query to OV with the first honest verifier appearing in vector V⃗
when queried for any Write operation, and when queried for a Read operation
at the interface of a receiver Bj ∈ RH makes verification queries to OV for each

(id, (m,σ, (Ai, V⃗ ))) in the reduction’s internal repository INS. This implies

∆D(CConsGCons,CCorrGCorr) ≤ AdvCons(DCCons).

CCorrGCorr ⇝ CForge-InvalidGForge-Invalid: System CForge-InvalidGForge-Invalid differs
from CCorrGCorr in that signatures generated by Write operations—whose vec-
tor V⃗ contains at least one honest receiver—issued at the interface of honest
senders are no longer verified by a query to OV and instead the result of their
verification is simply assumed to be 1. D’s advantage in distinguishing CCorrGCorr

and CForge-InvalidGForge-Invalid is upper bounded by the advantage of DCCorr in
winning the correctness game GCorr, implying

∆D(CCorrGCorr,CForge-InvalidGForge-Invalid) ≤ AdvCorr(DCCorr).
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CForge-InvalidGForge-Invalid ⇝ CR-UnforgGR-Unforg: In CForge-InvalidGForge-Invalid, signa-
tures generated on queries Write(⟨[Forge]Ai → V⃗ ⟩,m) are assumed to be invalid.
Distinguisher D’s distinguishing advantage between CForge-InvalidGForge-Invalid and
CR-UnforgGR-Unforg is upper bounded by the advantage of DCForge-Invalid in winning
the forgery invalidity game GForge-Invalid, implying

∆D(CForge-InvalidGForge-Invalid,CR-UnforgGR-Unforg) ≤ AdvForge-Invalid(DCForge-Invalid).

CR-UnforgGR-Unforg ⇝ COTRGOTR
0 : The main things to note for this step are that

1. D has no access to the secret key of any honest receiver Bj ∈ RH ; 2. since J
has a converter ⊥ attached to her interface, D has no access to the secret key
of any honest sender Ai ∈ SH ; and 3. the only case in which CR-UnforgGR-Unforg

may differ from COTRGOTR
0 is if D makes a query for a Write operation at the

interface of a dishonest party P ∈ SH ∪RH with input quadruple (m,σ, (Ai, V⃗ ))

where Ai ∈ SH and V⃗ contains at least one honest receiver, and the verification
of σ by the first honest receiver in V⃗ with respect to sender Ai, vector V⃗ and
message m is 1, and yet there was no matching Write operation at the interface
of Ai that resulted in the same quadruple (in particular with the same signature).
This allows us to bound the advantage of D in distinguishing CR-UnforgGR-Unforg

and COTRGOTR
0 by the advantage of DCR-Unforg in winning GR-Unforg, implying

∆D(CR-UnforgGR-Unforg,COTRGOTR
0 ) ≤ AdvR-Unforg(DCR-Unforg).

COTRGOTR
1 ⇝ simP

H

T: It is easy to see, by considering the definitions of
COTRGOTR

1 —i.e. of COTR, Algorithms 35, 36 and 44, and of GOTR
1 and its oracles,

Definition 5 and Section 3.1—and simP
H

T—i.e. of simulator sim, Algorithms 34
and 37, and of T, Equation E.1—that these are perfectly indistinguishable; it
follows

∆D(COTRGOTR
1 , simP

H

T) = 0.
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To conclude the proof we use triangle inequality:

∆D(R, simP
H

T) ≤ ∆D(R,C0GCons)

+∆D(C0GCons,CCons-HGCons)

+∆D(CCons-HGCons,CConsGCons)

+∆D(CConsGCons,CCorrGCorr)

+∆D(CCorrGCorr,CR-UnforgGR-Unforg)

+∆D(CCorrGCorr,CForge-InvalidGForge-Invalid)

+∆D(CForge-InvalidGForge-Invalid,CR-UnforgGR-Unforg)

+∆D(CR-UnforgGR-Unforg,COTRGOTR
0 )

+∆D(COTRGOTR
0 ,COTRGOTR

1 )

+∆D(COTRGOTR
1 , simP

H

T)

≤ 4 ·
(
AdvOTR(D⊥JCOTR-ξ1) +AdvCorr(D⊥JCCorr-ξ1)

+AdvForge-Invalid(D⊥JCForge-Invalid-ξ1)
)

+AdvOTR(D⊥JCOTR-ξ2) +AdvCons(D⊥JCCons-0-ξ2)

+AdvCons(D⊥JCCons-1-ξ2) +AdvCorr(D⊥JCCorr-ξ2)

+AdvForge-Invalid(D⊥JCForge-Invalid-ξ2) +AdvCons(DCCons)

+AdvCorr(DCCorr) +AdvForge-Invalid(DCForge-Invalid)

+AdvR-Unforg(DCR-Unforg) +AdvOTR(DCOTR).

⊓⊔

E.1.3 Proof of Theorem 14

Proof. A proof can be obtained by applying modifications to the proof of Theo-
rem 13 that are analogous to the changes made in the proof of Theorem 12 (from
the proof of Theorem 11). ⊓⊔
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