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Abstract. Homomorphic Encryption (HE) is a privacy-enhancing tech-
nology that enables computation over encrypted data without the need
for decryption. A primary application of HE is in the construction of
communication-efficient Two-Party Computation (2PC) protocols be-
tween a client and a server, serving as the key owner and the evaluator,
respectively. However, the 2PC protocol built on an HE scheme is not
necessarily secure, as the standard IND-CPA security of HE does not
guarantee the privacy of the evaluation circuit. Several enhanced secu-
rity notions for HE, such as circuit privacy and sanitization, have been
proposed to address this issue, but they require significant overhead in
terms of parameter size or time complexity.
In this work, we introduce a novel security notion for HE, called cipher-
text simulatability, which precisely captures the security requirements of
HE in the construction of 2PC. Then, we provide a concrete construc-
tion of ciphertext-simulatable HE from the BFV scheme by modifying
its evaluation algorithm. We provide theoretical analysis and demon-
strate experimental results to ensure that our solution has insignificant
overhead in terms of parameter size and error growth. As a matter of
independent interest, we demonstrate how our approach of designing
ciphertext-simulatable BFV can be further extended to satisfy stronger
security notions such as sanitization.

Keywords: Homomorphic Encryption, Circuit Privacy, Ciphertext Sim-
ulatability

1 Introduction

Homomorphic Encryption (HE) is a cryptographic scheme that supports com-
putations over encrypted data. A typical application of HE is a communication-
efficient Two-Party Computation (2PC) protocol between a client and a server.
In such a protocol, the client generates a key pair consisting of a secret key and
an evaluation key, and shares the evaluation key and the encryptions of private
data with the server. Upon receiving the evaluation key and ciphertexts from the
client, the server evaluates a circuit over the ciphertexts and sends the resulting
ciphertexts back to the client. Finally, the client decrypts the output cipher-
text to obtain the computation result, while the server learns nothing from the
protocol. This approach has been applied to numerous 2PC protocols, such as
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Private Information Retrieval [29], Private Set Intersection [14], and Privacy-
Preserving Machine Learning [26]. Moreover, this 2PC framework also leads to
constructions of numerous cryptographic primitives based on HE, such as Obliv-
ious PRF [1] and Non-Interactive Blind Signatures [6], particularly due to its
round-optimality.

Unfortunately, one cannot blindly guarantee the privacy of the aforemen-
tioned 2PC framework built on top of HE, even if the underlying HE is IND-
CPA secure. To be precise, while the server’s view can be simulatable from the
IND-CPA security of HE, simulating the client’s view is generally not feasible.
This is because the output ciphertext may contain non-trivial information about
the server’s private input beyond the desired output of the computation.

To address this intrinsic issue in HE, two stronger security notions have been
primarily studied in the literature. Gentry [20] introduced circuit privacy, which
ensures that the output ciphertext from a circuit evaluation reveals no informa-
tion about the circuit beyond the result. On the other hand, Ducas and Stehlé
[16] proposed the sanitization of ciphertexts, which is a public operation that
rerandomizes any two ciphertexts that encrypt the same message so that they
are indistinguishable. Note that sanitization implies circuit privacy, as one can
build a circuit-private evaluation algorithm by sanitizing the output ciphertext.

Two generic approaches were proposed to achieve circuit privacy/sanitization.
The first method is noise flooding [20,4], which randomizes the ciphertext by
adding an encryption of zero with an exponentially larger error, drowning the
information about the existing error in the ciphertext. The second is the soak-
spin-repeat method [16], which instead repeats a cycle of adding a moderate
amount of error and bootstrapping until the ciphertext is sufficiently random-
ized.

However, these approaches have significant disadvantages in terms of per-
formance: they either require exponentially larger parameters or multiple boot-
strappings. In particular, these limitations are critical for 2PC protocols eval-
uating small circuits using BFV/BGV-style leveled HE schemes, as they are
often instantiated with compact parameters to reduce performance and commu-
nication costs. Even with bootstrappable parameters, bootstrapping in leveled
schemes is order of magnitudes slower than other operations and requires several
GBs of public keys, often making even a single bootstrapping infeasible in prac-
tice. While there are works that overcome these problems for GSW/AP-style HE
schemes [8,9,25], their approach is generally not applicable to leveled schemes.
This is mainly because they usually only focus on single operations, such as
external product, while leveled schemes consist of a mix of much more complex
operations.

These overheads are partially derived from the robustness of circuit privacy
and sanitization. Their main functionality is to remove any remaining informa-
tion about the server’s private input, or even the evaluated circuit, from the
output ciphertext. While this naturally leads to a secure 2PC protocol, it may
be overkill in some situations, including the case when the circuit is publicly
known to both the client and the server.
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Γ (Π,C)

Client Server

Input: x = (x1, · · · , xℓ) Input: y = (y1, · · · , yk)
(sk, evk)← KeyGen

evk

for 1 ≤ i ≤ ℓ :

ci ← Enc(sk, xi)

(c1, · · · , cℓ)

cout ← Eval(evk, C, (c1, · · · , cℓ),y)

cout

z ← Dec(sk, cout)

Output: z = C(x,y) Output: ⊥

Fig. 1. A two-party protocol Γ computing a circuit C from Π.

1.1 Our Contributions

In this work, we define a new security notion for HE, called ciphertext simu-
latability, which effectively captures the security requirements for simulation-
based 2PC protocols built upon it. We then present a concrete construction of
ciphertext-simulatable HE based on the BFV scheme, which demonstrates that
this relaxed notion can be achieved at a minimal cost compared to previously
proposed security notions such as circuit privacy and sanitization.

In many practical scenarios where multiple parties participate, the evaluated
circuit C is publicly known to all parties, while the inputs of each party remain
private. However, existing HE security notions may be overkill for scenarios
where the circuit is known. Therefore, we aim to capture the essence of this
scenario with ciphertext simulatability. In a nutshell, an HE scheme is said to
be ciphertext-simulatable for a circuit C if the output ciphertext derived from
the evaluation of C can be simulated by an efficient algorithm that has no
access to the server’s private input. Here, the simulator receives the secret and
evaluation keys, input ciphertexts, output message, and the circuit. Our notion
of ciphertext simulatability can be viewed as a relaxation of circuit privacy in two
aspects. Firstly, the evaluation algorithm does not have to hide any information
about C, such as its depth or structure, as long as the client cannot extract
useful information about the server’s input from the output ciphertext. Secondly,
the secret key is given to the ciphertext simulator. These two assumptions are
reasonable in 2PC scenarios, where the circuit is public to both parties and
the client’s view includes the secret key. Therefore, even with these relaxations,
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we can naturally extend the ciphertext simulatability of an HE scheme to the
simulation-based security of the 2PC protocol built on top of it.

Then, we provide a concrete construction of a ciphertext-simulatable HE
from the BFV scheme. Specifically, we introduce another security notion called
error simulatability, where the simulator is asked to simulate only the error
of the output ciphertext of a circuit C, given the secret and evaluation keys,
errors of the input ciphertexts, and the circuit. We prove that there exists an
efficient reduction from error simulatability to ciphertext simulatability for the
BFV scheme.

Finally, we construct an error-simulatable variant of the BFV scheme. We
first construct a randomized variant for each of the basic operations of the BFV
scheme. Then by composing the modified evaluation algorithms, we can evaluate
a circuit in an error-simulatable way. Our modified BFV scheme achieves near-
optimal error growth, comparable to that of the usual BFV scheme.

To experimentally verify our claim, we provide benchmark results using the
proof-of-concept implementation of the standard BFV scheme and our ciphertext-
simulatable BFV scheme written in Julia. For real-world examples, we implement
a subprotocol of SANNS [12], a k-Nearest Neighbors Search protocol, which con-
sists of computing L2 distance between two vectors. Compared to the traditional
approach of noise flooding, our ciphertext-simulatable BFV scheme shows up to
7.20 times speedup. Also, it is only 30% slower than the standard BFV scheme
with the same parameters.

As a side contribution, we also show that there exists a reduction from our
error-simulatable BFV scheme to stronger security notions, such as sanitization.
We also consider strong ciphertext simulatability, where the simulator is defined
in the same way as ciphertext simulatability but is not given the secret key.
We stress that these stronger security notions are overkill for constructing semi-
honest 2PC protocols, as we mentioned earlier. Nonetheless, we believe that it
may be of independent interest, as these reductions may show the usefulness of
our new notion and construction.

1.2 Technical Overview

In this subsection, we give a technical overview of our construction of a ciphertext-
simulatable HE scheme based on BFV.

Randomization Techniques.We introduce two ciphertext randomization tech-
niques that serve as the main building blocks of our constructions. First, for
multiplicative operations such as plaintext multiplication or ciphertext multipli-
cation, we adapt the randomized lifting trick from [3]. To be more specific, when
computing µ · a, we first randomize and lift µ to a Gaussian random variable
µ̂ over some coset µ+ Λ. Then, we add a sufficiently large smoothing Gaussian
random variable e. The convolution property of Gaussian distributions guaran-
tees that the output µ̂a+ e also follows some Gaussian distribution independent
of µ.

Second, for randomizing masking, we use a specially crafted public key en-
cryption of zero called ciphertext randomizer, borrowing the idea from [9]. In
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particular, the masking of ciphertext randomizers is uniformly random, inde-
pendent of the secret key. Therefore, we can always rerandomize the masking
of a ciphertext by simply creating a ciphertext randomizer and adding it to the
ciphertext.

Randomized Evaluation. The first step of our construction is to randomize
each operation of the BFV scheme using the randomization techniques men-
tioned above. Our goal is to make the error of the output ciphertext independent
of its input except for the error of the ciphertext, so that the error of the output
ciphertext is simulatable only using the error of the input ciphertexts. We note
that since we allow the leakage of the information about operations, some op-
erations do not need randomization at all. For instance, in plaintext-ciphertext
or ciphertext-ciphertext additions, the error of the output ciphertext does not
interfere with other components of the input ciphertexts other than the errors,
so we perform them as usual.

In case of plaintext-ciphertext multiplication, we adapt the oblivious linear
evaluation algorithm from [11]. For a plaintext µ and a ciphertext c with error
e, instead of computing µ · c we compute µ̂ · c+ (ẽ, 0), where µ̂ is the Gaussian
lifting of µ and ẽ is a smoothing Gaussian random variable. Then, the error of
the output ciphertext becomes µ̂ ·e+ ẽ, which can be shown to be independent of
µ by the aforementioned property of randomized lifting. Although our algorithm
is similar to that of [11] in hindsight, the previous work only covered the case
where c is a fresh public-key encryption. In this work, we expand their proofs to
support arbitrary ciphertexts.

For ciphertext-ciphertext multiplication, we use a trick similar to Beaver’s
Triple [7] to circumvent expensive randomizations. To be specific, for input ci-
phertexts c, c′ encrypting m,m′ respectively, we rerandomize them by adding
a ciphertext randomizer and uniformly random plaintext u, u′. In this way, ev-
ery component of the ciphertexts, including the masking, message, and error,
becomes a known constant or random variable following known distributions.
Therefore, we can simply multiply two ciphertexts in the usual way and ob-
tain a simulatable ciphertext error. However, the output ciphertext encrypts
(m + u)(m′ + u′) instead of mm′. To correct this, we subtract an encryption
of um′ + u′m+ uu′ from the resulting ciphertext, which can be generated with
randomized plaintext-ciphertext multiplications described above.

For independent interest, we give an alternative construction based on di-
rect randomization of the suboperations of ciphertext-ciphertext multiplication.
While this approach has higher error growth and slower performance compared
to the aforementioned approach, it has an interesting property that the distri-
bution of the error of the output ciphertext is Gaussian.

Finally, for automorphisms, the main issue is that the information about the
masking of the input ciphertext is added to the error of the output ciphertext
after key-switching. As a similar issue arises in computing the external product in
GSW/AP-style HE schemes, prior works that achieved circuit privacy in those
schemes [8,9,25] used randomized gadget decomposition. However, they were
highly inefficient due to the excessive amount of Gaussian sampling. In this
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work, we propose a much simpler solution: we just add a ciphertext randomizer
before key-switching, so that the mask is rerandomized to a uniform distribution.

Once every operation is randomized, we can chain them to construct a ran-
domized evaluation algorithm for any circuit. A crucial detail is that the Gaus-
sian parameters involved in randomizations of each operation are dependent on
the evaluation order. Concretely, they depend on the error bound of their input
ciphertexts. Therefore, before evaluation, we compute the optimal parameters
for each operation.

Ciphertext-Simulatable BFV. Using our randomized evaluation algorithm
for BFV, we finally reduce it to ciphertext-simulatable BFV. Recall that the
error of the output ciphertext is simulatable only with the errors of the input
ciphertext, which the simulator knows since it has access to the secret key and
the input ciphertexts. Moreover, the message of the output ciphertext is known
to the simulator. Therefore, to satisfy ciphertext simulatability, we only need to
transform the evaluation algorithm so that the masking of the output ciphertext
is simulatable. This can be efficiently done by adding a ciphertext randomizer
at the end of the evaluation. This concludes our construction of ciphertext-
simulatable BFV.

1.3 Related Works

Relaxed Circuit Privacy. Relaxation of circuit privacy by allowing partial
leakage of the circuit has also been considered in previous works. For example,
Gentry [20] defined circuit privacy with a known circuit level, and Bourse et
al. [8] presented a variant of the GSW scheme that is circuit-private for branching
programs with a known branching length. In the context of [20,8], revealing only
the depth of the circuit was sufficient as they considered evaluation algorithms
with a single operation. However, since BFV circuits are usually composed of
multiple types of gates, we expand on these works to allow leakage of the circuit’s
structure.

There are also more general security notions that capture the leakage of the
circuit. In [15], the authors defined Φ-circuit privacy, in which the simulator
knows the leakage Φ(C) of the circuit C. Even further, the authors defined
input privacy, where the simulator has access to the entire circuit in [30]. These
definitions are closely related to ciphertext simulatability, and we will discuss
more about them in Section 6.

Malicious Circuit Privacy. There is another line of work [30,15] that studies
malicious circuit privacy, where the ciphertexts and the evaluation keys can be
generated maliciously. We note that [30] gives a generic transformation from
the circuit-private HE scheme to the maliciously circuit-private one. Using our
reduction from ciphertext-simulatable BFV to circuit-private BFV in Section 6,
we can also construct maliciously circuit-private BFV using their results. Note
that it is also possible to consider ciphertext simulatability in malicious settings,
which we discuss in Section 6.
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2 Preliminaries

For additional preliminaries, we refer to Appendix A.

2.1 Notation

Let n be a power of two and q be an integer. We denote the 2n-th cyclotomic ring
R = Z[X]/(Xn+1), and similarly Rq = Zq[X]/(Xn+1). We use Z∩ (−q/2, q/2]
as a representative set of Zq, and denote [a]q as reduction of a modulo q.

We denote column vectors by lowercase bold letters, and matrices by up-
percase bold letters. For a ring element a = a0 + a1X + · · · + an−1X

n−1 ∈ R,
we will often identify it with its coefficient vector or negacyclic matrix, defined
respectively as

a = (a0, . . . , an−1), A =


a0 −an−1 · · · −a1
a1 a0 · · · −a2
...

...
. . .

...
an−1 an−2 · · · a0

 .
Note that for any a, b ∈ R, the coefficient vector and negacyclic matrix of ab can
be written as Ab and AB, respectively.

2.2 Homomorphic Encryption

Definition 1 (Homomorphic Encryption). A Homomorphic Encryption
scheme Π is a tuple of PPT algorithms Setup, KeyGen, Enc, Dec and Eval,
described as follows:

– Setup(1λ): Given a security parameter λ, output a public parameter pp.
– KeyGen(pp): Given a public parameter pp, output a secret key sk and an

evaluation key evk.
– Enc(sk, x): Given a secret key sk and a plaintext m, output a ciphertext c.
– Dec(sk, c): Given a secret key sk and a ciphertext c, output a plaintext x.
– Eval(evk, C, (c1, . . . , cℓ), (y1, . . . , yk)): Given a evaluation key evk, a circuit
C on (ℓ+k) variables, ciphertexts c1, . . . , cℓ, and plaintexts y1, . . . , yk, output
a ciphertext cout.

Π is said to be correct for a class of circuits C if for any x1, . . . , xℓ, y1, . . . , yk,
the following holds with an overwhelming probability:

Dec(sk,Eval(evk, C, (c1, . . . , cℓ), (y1, . . . , yk))) = C(x1, . . . , xℓ, y1, . . . , yk)

where (sk, evk) ← KeyGen(pp) and ci ← Enc(sk, xi) for 1 ≤ i ≤ ℓ. Π is said to
be compact if ciphertexts are of polynomial size.

Below, we summarize some of the security notions for HE.
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Definition 2 (IND-CPA Security). A homomorphic encryption scheme Π =
(Setup,KeyGen,Enc,Dec,Eval) is (IND-CPA) secure if for any PPT adversary
A, ∣∣∣∣∣∣∣Pr

b = b′

∣∣∣∣∣∣∣
(sk, evk)← KeyGen(pp),

(m0,m1)← A(evk),
b

$←− {0, 1},
b′ ← A(evk,Enc(sk,mb))

− 1

2

∣∣∣∣∣∣∣ ≤ negl(λ).

Definition 3 (Circuit Privacy [9]). A homomorphic encryption scheme Π =
(Setup,KeyGen,Enc,Dec,Eval) is circuit private for a class of circuits C if there
exists a PPT algorithm Sim such that for any x = (x1, . . . , xℓ) ∈Mℓ and C ∈ C,
the following distributions are computationally indistinguishable:

{(sk, evk, (c1, . . . , cℓ), cout) | cout ← Eval(evk, C, (c1, . . . , cℓ))},
{(sk, evk, (c1, . . . , cℓ), cout) | z := C(x), cout ← Sim(evk, (c1, . . . , cℓ), z)}

where (sk, evk)← KeyGen(pp) and ci ← Enc(sk, xi) for 1 ≤ i ≤ ℓ.

Definition 4 (Sanitization [16]). Let Π = (Setup,KeyGen,Enc,Dec,Eval) be
a homomorphic encryption scheme. A PPT algorithm Sanitize is said (compu-
tationally) sanitizing if for (sk, evk)← KeyGen(pp) and any ciphertexts c and c′

such that Dec(sk, c) = Dec(sk, c′), the following distributions are computationally
indistinguishable:

{sk, evk,Sanitize(evk, c)}, {sk, evk,Sanitize(evk, c′)}.

Moreover, Sanitize is called message-preserving if for any c,

Dec(sk,Sanitize(evk, c)) = Dec(sk, c)

with an overwhelming probability.

2.3 Useful Lemmas

Definition 5 ([27, Smoothing Parameter]). For a n-dimensional lattice Λ
and ε > 0, the smoothing parameter ηε(Λ) is defined as the smallest s such that
ρ1/s(Λ

∗ \ {0}) ≤ ε.

Definition 6 ([27, Definition 3.2]). Let Σ be a positive definite matrix. We

say ηε(Λ) ≤
√
Σ if ηε(

√
Σ
−1
Λ) ≤ 1.

Lemma 1 ([27, Lemma 3.3]). For a n-dimensional lattice Λ and ε > 0,

ηε(Λ) ≤ λn(Λ) ·
√

ln(2n(1 + 1/ε))

π

where λn(Λ) is the n-th successive minimum of Λ.
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Lemma 2 ([19, Lemma 2.3, Theorem 3.1]). For 0 ≤ ε < 1, a positive
definite matrix Σ ∈ Rn×n, a lattice coset a+Λ ⊂ Rn, and a matrix T such that
ker(T) is a Λ-subspace and ηε(ker(T) ∩ Λ) ≤

√
Σ, then

∆ML(TDa+Λ,
√
Σ,DTa+TΛ,T

√
Σ) ≤ log

1 + ε

1− ε
.

When T is injective on a+Λ, the two distributions are identical without condi-
tions, i.e. TDa+Λ,

√
Σ ≡ DTa+TΛ,T

√
Σ.

Lemma 3 ([19, Simplified Theorem 4.5]). Let Σ1,Σ2 be positive definite
matrices, and let Σ−1 := Σ−11 +Σ−12 . If ηε(Zn) ≤

√
Σ for 0 < ε < 1, then for

any c1, c2 ∈ Rn,

∆ML(DZn,c1,
√
Σ1

+DZn,c2,
√
Σ2
,DZn,c1+c2,

√
Σ1+Σ2

) ≤ 2 log
1 + ε

1− ε
.

3 Ciphertext Simulatability

We begin by recalling a well-known limitation of homomorphic encryption (HE)
in the context of multi-party protocols: the standard IND-CPA security notion
of HE does not always imply the simulation-based security of multi-party proto-
cols built on top of it. Specifically, consider an HE-based two-party computation
(Fig. 1), where the client and the server act as the encryptor and evaluator,
respectively, to compute a circuit C on their private inputs x and y. In this
scenario, the privacy of the client’s data x = (x1, . . . , xℓ) is directly guaranteed
by the security of the underlying HE scheme. However, the server’s private input
y = (y1, . . . , yk) is not fully protected against the client, as the resulting cipher-
text cout may reveal additional information about y beyond the desired output
z = C(x,y).

To solve this problem, we introduce a new security notion for HE, called
ciphertext simulatability. Roughly, an HE scheme is called ciphertext-simulatable
when the ciphertext cout obtained by evaluating a circuit C can be simulated
from the input ciphertexts generated by the client and the output z = C(x,y) of
the computation. This security notion is generally applicable to any HE scheme
for constructing secure 2PC protocols.

Definition 7 (Ciphertext Simulatability). A homomorphic encryption scheme
Π = (Setup,KeyGen,Enc,Dec,Eval) over a message spaceM is ciphertext-simulatable
for a circuit C : Mℓ ×Mk → M if there exists a PPT algorithm SimC such
that for any x = (x1, . . . , xℓ) ∈ Mℓ and y = (y1, . . . , yk) ∈ Mk, the following
distributions are computationally indistinguishable:

{(sk, evk, (c1, . . . , cℓ), cout) | cout ← Eval(evk, C, (c1, . . . , cℓ), (y1, . . . , yk))},
{(sk, evk, (c1, . . . , cℓ), cout) | z = C(x,y), cout ← SimC(sk, evk, (c1, . . . , cℓ), z)}

where (sk, evk)← KeyGen(pp) and ci ← Enc(sk, xi) for 1 ≤ i ≤ ℓ.
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Ciphertext simulatability precisely captures the aforementioned security issue
of HE. If an HE scheme is ciphertext-simulatable for a circuit C, then the output
ciphertext of homomorphic evaluation of C on inputs c1, . . . , cℓ and y1, . . . , yk is
(computationally) indistinguishable from a simulated ciphertext from c1, . . . , cℓ
and z = C(x,y), which obviously leaks no information about the evaluator’s in-
put y1, . . . , yk beyond the computing result z = C(x,y) to the client. Therefore,
it is possible to simulate the client’s view only using its input and output, thus
prove the security of 2PC. We formally describe this reduction in the following
theorem.

Theorem 1. Let Π be a homomorphic encryption scheme, and Γ (Π,C) be the
2PC protocol as defined in Fig. 1 for a circuit C. If Π is IND-CPA secure and
ciphertext-simulatable for C, then Γ securely computes C in the presence of
semi-honest adversaries.

Proof. Let Sim be a ciphertext simulator for a circuit C. We build two simulators,
SimClient and SimServer, each simulating the view of the client and the server as
follows.

SimClient(x, z)

(sk, evk)← KeyGen

for 1 ≤ i ≤ ℓ

ci ← Enc(sk, xi)

cout ← Sim(evk, (c1, . . . , cℓ), z)

return (x, (sk, evk, c1, . . . , cℓ), cout)

SimServer(y)

(sk, evk)← KeyGen

for 1 ≤ i ≤ ℓ

ci ← Enc(sk, 0)

cout ← Eval(evk, C, (c1, . . . , cℓ),y)

return (y, cout, (evk, (c1, . . . , cℓ)))

The output of SimClient differs from the view of the client only in the genera-
tion of cout: In the client’s view, it is generated with Eval, while in the simulator’s
output, it is generated with Sim. However, since Π is ciphertext-simulatable for
C, the distribution of those two are computationally indistinguishable. There-
fore, SimClient correctly simulates the view of the client.

On the other hand, the output of SimServer differs from the view of the server
only in the generation of ci: In the server’s view, they are encryptions of xi,
while in the simulator’s output, they are encryptions of zero. However, since
sk is not included in the view and Π is IND-CPA secure, the distributions of
these two are computationally indistinguishable. Therefore, SimServer correctly
simulates the view of the server. We conclude that Γ securely computes C under
the presence of semi-honest adversaries. ⊓⊔

While circuit privacy (Definition 3) gives similar security guarantees, our
definition can be viewed as a relaxation of circuit privacy in two ways. First,
the ciphertext simulator in our definition gets the secret key as an input. This
is natural in most HE-based 2PC scenarios, as the client typically generates the
secret key. Second, we do not consider the circuit as private information. This is
implicitly captured in our definition, as in ciphertext simulatability the simulator
must simulate the output of a specific circuit, while in circuit privacy it must
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simulate the output of arbitrary circuits. This allows us to build a simulator
using the internal structure of a given circuit.

Although the concept of ciphertext simulatability stems from 2PC, we be-
lieve that our definition can be applied in a more generic way, replacing circuit
privacy in both practical and theoretical applications. For example, consider a
recent construction of Non-Interactive Blind Signatures (NIBS) based on HE by
Baldimtsi et al. [6]. In their construction, the signer computes the signature of
FK(r) homomorphically, where F is a PRF, K is a PRF key (given as a cipher-
text), and r is some randomness sampled by the signer. Since the information
about the signing key must not leak in the final ciphertext, they require that the
underlying HE is circuit-private. However, since F and the signature scheme is
both a public algorithm, we can simply replace the circuit privacy requirement
with ciphertext simulatability without any hassle.

4 Error Simulatability of BFV

Ciphertext simulatability is a general security concept applicable to arbitrary
HE schemes. However, we will now focus specifically on the BFV scheme [10,17]
and outline a concrete approach to achieve this security notion. It is important
to note that the standard BFV scheme does not inherently provide ciphertext
simulatability. Therefore, we will construct variants of BFV with alternative
evaluation algorithms that satisfy specific properties necessary for achieving ad-
vanced security goals. We will continue to refer to these modified constructions as
‘BFV’, while explicitly describing the security guarantee that each construction
can achieve.

As a first step, we introduce the notion of error simulatability in this section,
which is a security concept for HE schemes where the error of a ciphertext can
be defined explicitly. We then build a reduction from error simulatability to
ciphertext simulatability for BFV, simplifying our goal in the following section.

4.1 The BFV Scheme

We provide a description of the standard RLWE-based BFV scheme below.

• Setup(1λ): For a security parameter λ, generate a public parameter as follows:
– Choose a power-of-two integer n, a ciphertext modulus q, and a plaintext

modulus t.
– Choose a secret key distribution χs and an error distribution χe over R.
– Choose a gadget vector g ∈ Rd

q and a gadget decomposition h : Rq → Rd.
Output pp = (n, q, t, χs, χe,g, h).

We set χs as the uniform distribution over the set of polynomials in R whose
coefficients are in the set {0,±1}, and χe as the discrete Gaussian distribution
DZn,σerr where σerr = 3.2

√
2π.

In this work, we require that the plaintext modulus t divides the ciphertext
modulus q and denote the scaling factor as ∆ := q/t ∈ Z. While this condition

11



is not essential for the BFV scheme in general, it is necessary in our solution to
formally define the notion of ciphertext error.

• KeyGen(pp, J): Generate a secret key, a public key, a relinearization key, and
automorphism keys as follows. The generation of automorphism keys is optional,
and each automorphism key is associated with an element j ∈ Z×2n of the index
set J ⊆ Z×2n chosen by the key owner.

– Sample s← χs and set the secret key as sk = s.

– Sample p1
$←− Rq and epk ← χe, and let p0 = −p1s + epk (mod q). Set the

public key as pk = (p0, p1) ∈ R2
q .

– Sample u1
$←− Rd

q and erlk ← χd
e , and let U = (u0,u1) ∈ Rd×2

q where
u0 = −u1s+ gs2 + erlk (mod q). Set the relinearization key as rlk = U.

– For each j ∈ J , sample eatk,j ← χd
e and vj,1

$←− Rd
q . Let vj,0 = −vj,1s +

gψj(s) + eatk,j (mod q) and Vj = (vj,0,vj,1) ∈ Rd×2
q where ψj : X 7→ Xj is

the automorphism of index j ∈ Z×2n. Set the automorphism key as atkj = Vj

and atk = {atkj : j ∈ J}.

Output (sk, evk), where evk = (pk, rlk, atk) denotes the evaluation key.

• Enc(sk,m): Given a plaintext m ∈ Rt and a secret key sk = s ∈ R, sample
c1 ← Rq and e ← χe. Compute c0 = −c1s + ∆m + e (mod q) and return
c = (c0, c1) ∈ R2

q .

• Dec(sk, c): Given a ciphertext c = (c0, c1) ∈ R2
q and a secret sk = s ∈ R,

output m = ⌊(t/q) · (c0 + c1s)⌉ (mod t) ∈ Rt.

We only describe the symmetric-key encryption, as the public-key encryption
is not necessary for this work.

• PAdd(c, µ): Given a ciphertext c = (c0, c1) and a plaintext µ ∈ Rt, output
cpadd = (c0 +∆µ, c1) (mod q).

• Add(c, c′): Given two ciphertexts c, c′ ∈ R2
q , output cadd = c+ c′ (mod q).

• PMult(c, µ): Given a ciphertext c ∈ R2
q and a plaintext µ ∈ Rt, output cpmul =

[µ]t · c (mod q).

• Mult(rlk, c, c′): Given two ciphertexts c = (c0, c1), c
′ = (c′0, c

′
1) ∈ R2

q and a

relinearization key rlk ∈ Rd×2
q , do the following:

– Let ĉi = [ci]q and ĉ′i = [c′i]q for i = 0, 1. Compute d̂0 = ĉ0ĉ
′
0 (mod ∆q),

d̂1 = ĉ0ĉ
′
1 + ĉ′0ĉ1 (mod ∆q), and d̂2 = ĉ1ĉ

′
1 (mod ∆q)1.

– Compute di = ⌊d̂i/∆⌉ (mod q) for i = 0, 1, 2.
– Output cmult = (d0, d1) + d2 ⊡ rlk (mod q).

1 In the existing works, the notation [·]q is often opted out when describing ĉi’s. This is
an abuse of notation, and we need to use [ci]q rather than directly use ci to perform
operations modulo ∆q. This fact will play an important rule in our construction in
later sections.
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• Aut(atkj , c, j): Given a ciphertext c = (c0, c1) ∈ R2
q , an automorphism index

j ∈ Z×2n, and an automorphism key atkj ∈ Rd×2
q , do the following:

– Compute d0 = ψj(c0) and d1 = ψj(c1).
– Output caut = (d0, 0) + d1 ⊡ atkj (mod q).

4.2 Error Simulatability for BFV

In this subsection, we present a method to achieve ciphertext simulatability for
the BFV scheme. In general, a BFV encryption of m is of the form c = (c0 =
−c1s + ∆m + e, c1) ∈ R2

q for some c1 ∈ Rq and e ∈ R. We call c1 ∈ Rq the
masking, and e ∈ R the error of c, respectively. We will formally define and
denote the error of a ciphertext c as Errsk(c) := [c0 + c1s]∆ ∈ R. Then, a BFV
ciphertext can be fully identified by its masking component c1, error e, and
message m. Among the three components of a ciphertext, analyzing the error is
the most challenging part in the construction of a ciphertext simulator. In this
context, we define a relaxed security notion of ciphertext simulatability for BFV,
called error simulatability below.

Definition 8 (Error Simulatability). Let EvalE be an evaluation algorithm
for the BFV scheme. We say that BFVE := (Setup, . . . ,EvalE), the BFV scheme
associated with the evaluation algorithm EvalE, is error-simulatable for a cir-
cuit C : Rℓ

t × Rk
t → Rt if there exists a PPT algorithm SimE such that for

any x1, . . . , xℓ, y1, . . . , yk ∈ Rt, the following distributions are computationally
indistinguishable:{

(sk, evk, (e1, . . . , eℓ), eout)

∣∣∣∣ cout ← Eval(evk, C, (c1, . . . , cℓ), (y1, . . . , yk))
eout ← Errsk(cout)

}
,

{(sk, evk, (e1, . . . , eℓ), eout) | eout ← SimE(sk, evk, (e1, . . . , eℓ))}

where (sk, evk)← KeyGen(pp), ci ← Enc(sk, xi) and ei ← Errsk(ci) for 1 ≤ i ≤ ℓ.

Roughly speaking, a BFV scheme is considered error-simulatable for a circuit
C if the error of the resulting ciphertext from homomorphic evaluation can be
efficiently simulated using only the errors of the input ciphertexts. Not surpris-
ingly, the standard BFV scheme is not error-simulatable in general, as the error
of a ciphertext from homomorphic evaluation depends not only on the errors of
the input ciphertext but many other factors such as the maskings of the input
ciphertexts and the input plaintexts. In the next section, we will show that we
can replace the usual homomorphic evaluation algorithm with a new randomized
one to build an error-simulatable variant of the BFV scheme.

Before that, we demonstrate in the rest of this section that if a BFV scheme
is error-simulatable for a circuit, then it is also possible to achieve ciphertext
simulatability by combining a simple post-processing step with the evaluation
algorithm with insignificant overheads in terms of computational complexity and
noise growth. Technically, we construct a reduction from error simulatability to
ciphertext simulatability for BFV using the following algorithm, generating a
random encryption of zero:

13



• Randσ,τ (pk): Given a public key pk = (p0, p1) ∈ R2
q , sample e1, e2 ← DZn,σ

and e0 ← ⌊DRn,τ⌉. Return the ciphertext crand = e2 · (p0, p1)+ (e0, e1) (mod q).

Below we analyze the distribution of crand ← Randσ,τ (pk) and show that its
masking is computationally indistinguishable from a uniformly random variable
over Rq and also independent from the error Errsk(crand). This explains why
we do not define masking simulatability as a separate notion, as we can always
achieve it by adding Randσ,τ (pk) to the ciphertext. We note that a similar result
was presented in [9]. However, we adapt their result to the rounded Gaussian
case, which improves the efficiency of sampling random variables.

Lemma 4 (Ciphertext Randomizer). For σ, τ > 0, let κ > 0 be such that

1

κ2
=

1

σ2
+
n2(1 +K2σ2

err)

τ2
.

If κ ≥ 2ηε(Z2n) for some negligible ε > 0 and RLWE1,n,q,κ/
√
2 is hard, then the

following holds:

{(sk, evk, crand) | crand ← Randσ,τ (pk)} ≈c

{
(sk, evk, (−us+ e, u)) | u $←− Rq, e← Dσ,τ

rand

}
where (sk, evk)← KeyGen(pp), and

Dσ,τ
rand(sk, pk) :=

⌊
D

Rn,
√

σ2(SS⊤+EpkE⊤
pk)+τ2I

⌉
for sk = s, pk = (−p1s+epk, p1) and S, Epk, the negacyclic matrices correspond-
ing to s and epk, respectively. Moreover, e← Dσ,τ

rand is bounded by

∥e∥∞ ≤ Bσ,τ
rand = K

√
σ2(n+K2nσ2

err) + τ2

with an overwhelming probability.

Proof. See Appendix B. ⊓⊔

Finally, based on the ciphertext randomizer, we provide a generic transfor-
mation from an error-simulatable BFV into a ciphertext-simulatable variant.

Theorem 2 (From Error Simulatability to Ciphertext Simulatability).
Suppose BFVE = (Setup, . . . ,EvalE) is error-simulatable for a circuit C. Then,
there exists an efficient evaluation algorithm EvalC for the BFV scheme such
that BFVC = (Setup, . . . ,EvalC) is ciphertext-simulatable for C, and the output
error bound after evaluating C is at most Bσ,τ

rand greater than that of EvalE for
σ, τ satisfying the conditions in Lemma 4.

Proof (Sketch). Let SimE be an error simulator for EvalE and a circuit C :Mℓ×
Mk → M. We construct a ciphertext-simulatable evaluation algorithm EvalC

for C, and the corresponding ciphertext simulator SimC from EvalE and SimE as
follows:
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EvalC(evk, C, (c1, . . . , cℓ),y)

cout ← EvalE(evk, C, (c1, . . . , cℓ),y)

crand ← Randσ,τ (pk)

c′out ← cout + crand (mod q)

return c′out

SimC(sk, evk, (c1, . . . , cℓ), z)

(e1, . . . , eℓ)← (Errsk(c1), . . . ,Errsk(cℓ))

eout ← SimE(sk, evk, (e1, . . . , eℓ))

crand ← Randσ,τ (pk)

c′out ← (∆z + eout, 0) + crand (mod q)

return c′out

We claim that for any x = (x1, . . . , xℓ) ∈ Mℓ and y = (y1, . . . , yk) ∈ Mk,
EvalC(evk, C, (c1, . . . , cℓ),y) and SimC(sk, evk, (c1, . . . , cℓ), z) produce computa-
tionally indistinguishable distributions where ci ← Encsk(xi) for 1 ≤ i ≤ ℓ and
z = C(x,y). For the full proof, we refer to Appendix B. ⊓⊔

5 Constructing Error-simulatable BFV

In this section, we construct a variant of the BFV scheme that is error-simulatable
for general circuits. More specifically, we randomize the evaluation algorithm of
the original BFV scheme while keeping the other algorithms unchanged. In the
following sections, we will introduce randomized variants of individual BFV op-
erations, prove their correctness, and provide error analysis to construct error
simulators and select optimal parameters.

5.1 Description of New Evaluation Algorithms

Our goal in this section is to redesign the basic operations of the BFV scheme to
meet the necessary condition of error simulatability. Specifically, the distribution
of the output ciphertext error must depend only on the errors of the input
ciphertexts or evaluation keys, while being independent of input plaintexts and
other components of the input ciphertexts such as maskings. As we achieve this
property with careful randomizations, most of our algorithms accept additional
Gaussian parameters such as σ, τ . We note that they must be chosen based on
the evaluated circuit, or dynamically during computation, based on the error
bound of an input ciphertext.

Additions. There is no need to modify the previous addition operations of BFV
described below, as they already satisfy the desired property.

• PAdd(c, µ): Given a ciphertext c = (c0, c1) and a plaintext x ∈ Rt, output
cpadd = (c0 +∆µ, c1) (mod q).

• Add(c, c′): Given two ciphertexts c, c′ ∈ R2
q , output cadd = c+ c′ (mod q).

Plaintext Multiplication. Our plaintext multiplication algorithm is based on
the ideas presented in [11], which involve sampling a lifting2 of µ from a discrete
Gaussian distribution. While [11] used a similar technique to construct OLE

2 An element µ̂ of R is called a lifting of µ ∈ Rt if µ̂ = µ (mod t).
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protocol, their security proof only covered fresh, public-key encryptions. In this
paper, we expand their work to cover arbitrary ciphertexts.

• PMultEσ,τ (c, µ): Given a ciphertext c ∈ R2
q and a plaintext µ ∈ Rt, sample

µ̂← Dµ+tZn,σ and ẽ← ⌊DRn,τ⌉. Output cpmult = µ̂ · c+ (ẽ, 0) (mod q).

Randomization. In Section 4.2, we introduced a public-key encryption algo-
rithm and utilized it as a major building block in our reduction from error
simulatability to ciphertext simulatability for BFV. We again employ this al-
gorithm as a subroutine of our new ciphertext-ciphertext multiplication and
automorphism operations to randomize the underlying key-switching process.

• Randσr,τr (pk): Given a public key pk = (p0, p1) ∈ R2
q , sample e1, e2 ← DZn,σr

and e0 ← ⌊DRn,τr⌉. Return the ciphertext crand = e2 · (p0, p1)+(e0, e1) (mod q).

We will fix the parameter (σr, τr) during the setup phase to satisfy the cor-
rectness and security conditions, and include it as part of the public parameters.
Hence, we will simply write Rand = Randσr,τr when there is no confusion in the
context.

Ciphertext-ciphertext Multiplication. For ciphertext-ciphertext multipli-
cation, we use a randomization trick similar to Beaver’s triple [7]. Given an
input ciphertext c, c′ encrypting m,m′ respectively, we first rerandomize them
as ĉ ← c + r + (∆u, 0) and ĉ′ ← c′ + r′ + (∆u′, 0), where r, r′ ← Rand(pk)

and u, u′
$←− Rt. Then, the masking and the message of ĉ, ĉ′ become uniformly

random over Rq and Rt, respectively. Since the error simulator knows the error
of c, c′ and the secret key, this implies that it can fully simulate ĉ, ĉ′. As a result,
the error of deterministic multiplication Mult(rlk, ĉ, ĉ′) also becomes simulatable.

However, the output ciphertext is an encryption of (m+u)(m′+u′) = mm′+
um′+u′m+uu′, instead of the desiredmm′. To solve this problem, we correct the
output by subtracting an encryption of um′+u′m+uu, which can be computed
as PMultE(c, u′) + PMultE(c′, u) + (∆uu′, 0). Note that PMult operation should
be error-simulatable, since otherwise the information about u, u′ would leak on
the error, causing m+ u and m′ + u′ to be nonuniform to the distinguisher.

As a result, our randomized ciphertext-ciphertext multiplication only requires
two more PMultE and Rand operations compared to the standard ciphertext-
ciphertext multiplication, yielding comparable performance and only additive
error growth compared to the deterministic counterpart. We summarize our mul-
tiplication algorithm as follows.

• MultEσ1,τ1,σ2,τ2(pk, rlk, c, c
′): Given two ciphertexts c, c′ ∈ R2

q , a public key

pk ∈ R2
q , and a relinearization key rlk ∈ Rd×2

q , sample u, u′
$←− Rt, and r, r′ ←

Rand(pk). Compute ĉ← c+r+(∆u, 0) (mod q), ĉ′ ← c′+r′+(∆u′, 0) (mod q).
Output cmult = Mult(rlk, ĉ, ĉ′)−PMultEσ1,τ1(c, u

′)−PMultEσ2,τ2(c
′, u)− (∆uu′, 0)

(mod q).

Alternative Construction of Ciphertext-ciphertext Multiplication. We
also give an alternative construction of ciphertext-ciphertext multiplication based
on direct Gaussian lifting, denoted as MultGE. While MultGE has worse error
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growth and performance compared to MultE, it has an interesting property that
the distribution of the error of the output ciphertext follows a Gaussian distri-
bution, which may be of independent theoretical interest.

1. Tensor Product: the usual BFV multiplication algorithm starts with lifting
the ciphertext components, i.e., ci 7→ ĉi = [ci]q ∈ R. Instead, we offer a
randomized lifting that samples each ĉi from a discrete Gaussian distribution
defined over the coset ci+qZn while still satisfying the correctness condition.
We also add an extra Gaussian error for smoothing the error distribution.

2. Modulus Switching: in the following step, we replace the deterministic rounding-
off operation d̂i 7→ di = ⌊d̂i/∆⌉ with a sampling from a Gaussian distribu-

tion centered at d̂i/∆. Additionally, we introduce an extra Gaussian error to
smooth the distribution.

3. Relinearization: the last step can be viewed as a key-switching procedure
from s2 to s acting on the ciphertext component d2. Consequently, d2 also af-
fects the error induced by the gadget product with rlk. To solve this problem
and simultaneously make the output error Gaussian, we adapt the random-
ized gadget decomposition technique from [8,9,25]. We remark that there is
a much more efficient way to randomized key-switching if the output error
need not to be Gaussian, which we explain in detail below.

We summarize our multiplication algorithm as follows.

• MultGE
σ1,τ1,σ2,τ2,σ3,τ3(pk, rlk, c, c

′): Given two ciphertexts c, c′ ∈ R2
q and a re-

linearization key rlk ∈ Rd×2
q , do the following:

– TensorEσ1,τ1(c, c
′): Sample ĉi ← Dci+qZn,σ1

and ĉ′i ← Dc′i+qZn,σ1
for i = 0, 1.

Sample ê ← ⌊DRn,τ1⌉∆ ≡ ∆
⌊
DRn,τ1/∆

⌉
. Compute d̂0 = ĉ0ĉ

′
0 + ê (mod ∆q),

d̂1 = ĉ0ĉ
′
1 + ĉ′0ĉ1 (mod ∆q) and d̂2 = ĉ1ĉ

′
1 (mod ∆q). Output (d̂0, d̂1, d̂2).

– ModSwitchEσ2,τ2(d̂0, d̂1, d̂2): Sample d′i ← DZn, 1
∆ d̂i,σ2

for i = 0, 1, 2. Sample

ẽ ← ⌊DRn,τ2⌉. Compute d0 = d′0 + ẽ, and set di = d′i for i = 1, 2. Output
(d0, d1, d2) (mod q).

– RelinEσ3,τ3(rlk, (d0, d1, d2)): Sample hrand(d2)← Dh(d2)+Λ⊥
q (g⊗In),σ3

, e← ⌊DRn,τ3⌉.
Output cmult = (d0, d1 + r0) + ⟨hrand, rlk⟩+ (e, 0) (mod q).

Automorphism. Similar to relinearization, the automorphism operation can be
understood as a key-switching operation from ψj(s) to s. While we can use the

randomized gadget decomposition just as RelinE, it suffers a significant perfor-
mance overhead in practice. This is because randomized decomposition requires
nd Gaussian samples, which are significantly higher than other operations. In-
stead, we propose a much simpler and more efficient way: we simply add a
ciphertext randomizer before key-switching. Then, the distribution of ψj(c1) is
rerandomized to a uniform distribution over Rq, independent of other ciphertext
components. Finally, we can perform the deterministic gadget product between
ψj(c1) and atkj .
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• AutE(pk, atkj , c, j): Given a ciphertext c = (c0, c1) ∈ R2
q , a public key pk ∈ R2

q ,

an index j ∈ Z×2n and a corresponding automorphism key atkj ∈ Rd×2
q , sample

(r0, r1)← Rand(pk) and compute d0 = ψj(c0+r0) (mod q) and d1 = ψj(c1+r1)
(mod q). Output caut = (d0, 0) + d1 ⊡ atkj (mod q).

5.2 Correctness and Error Analysis

In this section, we precisely analyze the new BFV operations to elaborate on
parameter requirements, provide correctness proofs, and establish error distri-
butions along with their bounds. Note that all proofs are deferred to Appendix B.

We begin by introducing two useful lemmas which will be used repeatedly in
our proofs.

Lemma 5 (Gaussian Convolution). Let E ∈ Rm×n a matrix and σ, τ > 0
be reals. Let c ∈ Rn, c′ ∈ Rm and a + Λ ⊂ Rn be a full-rank lattice coset such
that E(a+ Λ) ⊆ Zm. If σ−2 + τ−2∥E∥22 ≤ ηε(Λ)−2 for some 0 < ε < 1, then

∆ML

(
EDa+Λ,c,σ + ⌊DRm,c′,τ⌉,

⌊
DRm,Ec+c′,

√
σ2EE⊤+τ2I

⌉)
≤ log

1 + ε

1− ε
.

Lemma 6 (Rounded Gaussian Bound). Let Σ ∈ Rn×n be a positive definite
matrix. Then for any k > 0,

Pr
x←⌊DRn,

√
Σ⌉

[∥x∥∞ > k · max
1≤i≤n

√
Σi,i] ≤ 2ne−π(k−

1
2 )

2

.

Notations. We use K > 0 to denote a global constant such that the probability

in Lemma 6 is negligible. For example, when K = 6, 2ne−π(K−
1
2 )

2

≤ 2−100 for
practical n used in the BFV scheme. We also write Bprod := KBgdnσerr, which
is an upper bound of the gadget product error with fresh gadget ciphertexts.
Finally, for elements of R (e.g., s, e, e′), we will use lowercase bold letters (e.g.
s, e, e′) to denote the corresponding coefficient vectors, uppercase bold letters
(e.g., S,E,E′) to denote the corresponding negacyclic matrices.

Lemma 7 (Addition). Let c, c′ ∈ R2
q be BFV encryption of m,m′ ∈ Rt,

respectively, with e = Errsk(c), e
′ = Errsk(c

′). Then, cpadd ← PAdd(c, µ) is a
BFV encryption of m+µ with Errsk(cpadd) = e, and cadd ← Add(c, c′) is a BFV
encryption of m+m′ with Errsk(cadd) = e+ e′.

Proof. The reason is obvious from the definition. ⊓⊔

Lemma 8 (Plaintext Multiplication). Let c ∈ R2
q be a BFV encryption

of m ∈ Rt with e = Errsk(c) such that ∥e∥∞ ≤ B. If σ, τ > 0 satisfy σ−2 +
n2B2τ−2 ≤ (tηε(Zn))−2 for some negligible ε > 0, then cpmult ← PMultEσ,τ (c, µ)
is a BFV encryption of µm where the distribution of epmult := Errsk(cpmult) is
within max-log distance ε̂ = log 1+ε

1−ε from

Dσ,τ
pmult(e) :=

⌊
DRn,

√
σ2EE⊤+τ2I

⌉
.
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Moreover, ∥epmult∥∞ is bounded by Bσ,τ
pmult(B) := K

√
nσ2B2 + τ2 with over-

whelming probability.

Lemma 9 (Multiplication). Let c, c′ ∈ R2
q be BFV encryptions of m,m′ ∈

Rt, respectively, with e = Errsk(c), e
′ = Errsk(c

′) such that ∥e∥∞ ≤ B and
∥e∥∞ ≤ B′. If σ1, τ1, σ2, τ2 > 0 satisfy the conditions of Lemma 8, respectively,
then cmult ← MultEσ1,τ1,σ2,τ2(pk, rlk, c, c

′) is a BFV encryption of mm′ where the
distribution of emult := Errsk(cmult) is computationally indistinguishable from

Dσ1,τ1,σ2,τ2
mult (s, pk, rlk, e, e′) :=

e0 + e1 + e2

∣∣∣∣∣∣∣∣
ĉ← Dmultr(s, pk, e)

ĉ′ ← Dmultr(s, pk, e
′)

e0 ← Errsk(Mult(rlk, ĉ, ĉ′))
e1 ← Dpmult(e)
e2 ← Dpmult(e

′)

 .

where Dmultr(s, pk, e) := {(−as +∆u + e + erand, a) | a
$←− Rq, u

$←− Rt, erand ←
Drand(s, pk)}.

Moreover, this distribution is bounded by Bσ1,τ1,σ2,τ2
mult (B,B′) := Bmultd(B +

Brand, B
′+Brand)+B

σ1,τ1
pmult(B)+Bσ2,τ2

pmult(B
′) with overwhelming probability, where

Bmultd(B1, B2) is the error bound for Mult(rlk, c1, c2) with ∥Errsk(c1)∥∞ ≤ B1

and ∥Errsk(c2)∥∞ ≤ B2.

Corollary 1 (Multiplication (Alternative)). Let c, c′ ∈ R2
q be BFV en-

cryptions of m,m′ ∈ Rt, respectively, with e = Errsk(c), e
′ = Errsk(c

′) such
that ∥e∥∞ ≤ B and ∥e∥∞ ≤ B′. If σ1, τ1, σ2, τ2, σ3, τ3 > 0 satisfy the con-
ditions of Lemma 13, Lemma 14 and Lemma 15, respectively, then cmult ←
MultGE

σ1,τ1,σ2,τ2,σ3,τ3(pk, rlk, c, c
′) is a BFV encryption of mm′ where the distri-

bution of emult := Errsk(cmult) is computationally indistinguishable from

Dσ1,τ1,σ2,τ2
multg (s, pk, rlk, e, e′) :=

{
e3

∣∣∣∣∣ e1 ← Dσ1,τ1
tensor(s, e, e

′)
e2 ← Dσ2,τ2

scale (s, e1)
e3 ← Dσ3,τ3

relin (s, rlk, e2)

}
.

Moreover, this distribution is bounded by Bσ1,τ1,σ2,τ2,σ3,τ3
multg (B,B′) := Brelin ◦

Bσ2,τ2
switch ◦B

σ1,τ1
tensor(B,B

′) with an overwhelming probability.

Lemma 10 (Automorphism). Let c ∈ R2
q be a BFV encryption of m ∈ Rt

with e = Errsk(c) such that ∥e∥∞ ≤ B. Then, caut ← AutE(pk, atkj , c, j) is
a BFV encryption of ψj(m), where the distribution of eaut := Errsk(caut) is
computationally indistinguishable from

Daut(s, pk, atkj , e) := {(ψj(e+erand)+⟨h(u), eatkj ⟩) | erand ← Drand(s, pk), u
$←− Rq},

which is bounded by Baut(B) := Bprod+Brand+B with overwhelming probability.

5.3 Optimal Parameters for Error-Simulatable BFV operations

In this subsection, we discuss how to select optimal Gaussian parameters in our
evaluation algorithms. Our goal is to minimize the error bound while satisfy-
ing the necessary conditions in our lemmas. We first note that this parameter
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selection problem can be formulated as follows for some S, T, η > 0:

Find the minimum of
√
Sx2 + y2, given the condition

1

x2
+
ST

y2
≤ 1

η2
.

For instance, to find the optimal parameters for randomized plaintext multiplica-
tion in Lemma 8, we can set S = nB2, T = n, and η = tηε(Zn). It is easy to show

using the Cauchy–Schwarz inequality that the minimum value of
√
Sx2 + y2 is

√
S(1 +

√
T )η when x =

(√
1 +
√
T
)
η and y =

(√
ST + S

√
T
)
η. Based on

this formula, we provide the optimal parameters and the best error bound for
each of the BFV operations in Table 1.

Rand

σr σerr

√
2
√
n+ 2

τr σerr

√
2(n+

√
n)(1 +K2σ2

err)

Brand Kσerr(n+
√
n)
√
2 + 2K2σ2

err

PMultE

σ tη
√√

n+ 1

τ Btη
√

n2 + n
√
n

Bpmult(B) KBtη(n+
√
n)

MultE

σ1 tη
√√

n+ 1

τ1 Btη
√

n2 + n
√
n

σ2 tη
√√

n+ 1

τ2 B′tη
√

n2 + n
√
n

Bmult(B,B′)

1
2
(1 + n+ n2) + 1

∆
n(B +Brand)(B

′ +Brand)
+ 1

2
tn(n+ 4)(B +B′ + 2Brand)

+Bprod +Ktη(n+
√
n)(B +B′)

AutE Baut(B) Bprod +Brand +B

Table 1. Optimal parameters and corresponding output error bounds for each evalu-
ation algorithm. η denotes ηε(Zn) for some negligible ε > 0. We take the error bound
for Mult from [23].

5.4 Proving Error Simulatability of BFV for Arbitrary Circuits

In this section, we combine our basic BFV operations to describe a new evalua-
tion algorithm EvalE (Fig. 3) which is error-simulatable for general circuits. One
distinctive feature of our evaluation algorithm is that the parameter set of each
gate is chosen dynamically depending on the structure of a given circuit.

The parameter selection algorithm SetParams (Fig. 2) aims to assign an er-
ror bound to each wire that a ciphertext passes through and to determine the
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SetParams(C)

Let G1, . . . , GL be the gates of C, sorted in topological order.

For each ciphertext input wire w, set the error bound as Bw = Kσerr.

for 1 ≤ i ≤ L:

Use Table 1 and the error bound(s) Bwin of ciphertext input wire(s) win to compute
the public parameter ppEi for Gi and the error bound wout for the output wire.

Output {ppEi | 1 ≤ i ≤ L}.

Fig. 2. Parameter selection algorithm for a given circuit C.

parameters for individual unit gates. More specifically, it begins with initializ-
ing the error bounds of input ciphertext wires as the upper bound of freshly
encrypted ciphertexts. Then, following the topological order of the circuit, it de-
termines the parameters of each gate and assigns an error bound to the output
wire iteratively based on the predetermined error bound(s) of input ciphertext
wire(s) using Table 1. This procedure is applied to all gates and wires, thus cre-
ating an optimal chain of parameters. We also note that this operation is entirely
deterministic and does not depend on actual input plaintexts or ciphertexts of
the circuit.

We remark that our construction of EvalE is focused on theoretical simplicity
rather than practicality. In other words, we may construct a much more efficient
evaluation algorithm by using the structure of the circuit more effectively. For
instance, we may change the representation of the circuit to have fewer ran-
domized operations, or compute a part of the circuit in a deterministic manner
if no private inputs are involved. We give an example of such optimization in
Section 7.

Theorem 3. For a circuit C, let Bout be the error bound of the output wire of
C, where the bound is computed as SetParams(C). If Bout ≤ ∆/2, then BFVE =
(Setup, . . . ,EvalE) is error-simulatable for C.

Proof. Let G1, . . . , GL be the gates of C, topologically ordered from the input
wire. For 0 < j < L, we define hybrid games Hybj(sk, evk, C, (c1, . . . , cℓ),y) as

follows. First, Hybj computes gates G1, . . . , Gj in the same way as EvalE. Then,
it replaces each ciphertext on any wire in C with its error e. Then, it evaluates the
rest of the gates Gj+1 . . . , GL in the same way as SimE. We also define Hyb0 :=

SimE(sk, evk, e1, . . . , eℓ) and HybL := Errsk(Eval
E(evk, C, (c1, . . . , cℓ),y)) where

ei ← Errsk(ci).
Now we show that Hyb0 and HybL are computationally indistinguishable

using hybrid argument. To prove our claim by contradiction, we suppose that
there exists an efficient adversary A which can distinguish Hybj and Hybj+1

with a non-negligible advantage for some 0 ≤ j < L. Since the only difference
between Hybj and Hybj+1 is in the evaluation of the gate Gj+1, the adversary
should be able to distinguish the output distributions of Gj+1 in two hybrid
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EvalE(evk, C, (c1, · · · cℓ), (y1, . . . , yk))

Let G1, . . . , GL be the gates of C,

sorted in topological order.

Let {ppEi }1≤i≤L ← SetParams(C).

for 1 ≤ i ≤ L:

if Gi is PAdd with inputs c, µ:

Output cpadd ← PAdd(c, µ).

if Gi is Add with inputs c, c′:

Output cadd ← Add(c, c′).

if Gi is PMult with inputs c, µ

and ppEi = (σ, τ):

Output cpmult ← PMultEσ,τ (c, µ).

if Gi is Mult with inputs rlk, c, c′

and ppEi = (σ1, τ1, σ2, τ2):

Output cmult ← MultEσ1,τ1,σ2,τ2(pk, rlk, c, c
′)

if Gi is Aut with inputs atkj , c, j:

Output caut ← AutE(pk, atkj , c, j).

SimE(sk, evk, (e1, . . . , eℓ))

Let G1, . . . , GL be the gates of C,

sorted in topological order.

Let {ppEi }1≤i≤L ← SetParams(C).

for 1 ≤ i ≤ L:

if Gi is PAdd with input e:

Output epadd = e.

if Gi is Add with inputs e, e′:

Output eadd = e+ e′.

if Gi is PMult with inputs e, µ

and ppEi = (σ, τ):

Output epmult ← Dσ,τ
pmult(e).

if Gi is Mult with inputs rlk, e, e′

and ppEi = (σ1, τ1, σ2, τ2):

Output emult ← Dσ1,τ1,σ2,τ2
mult (sk, pk, rlk, e, e′).

if Gi is Aut with inputs atkj , e, j:

Output eaut ← Daut(sk, pk, atkj , e).

Fig. 3. Error-simulatable evaluation algorithm EvalE for a circuit C, and the corre-
sponding error simulator SimE.

games. In other words, the adversary can distinguish with a non-negligible prob-
ability whether the error of the output wire of Gj+1 is obtained by homomor-
phically evaluating Gj+1 on input ciphertext(s) and extracting the error of an
output ciphertext, or it is simulated using the corresponding error distribution
determined by the error(s) of input ciphertext(s). However, this contradicts to
Lemmas 7 to 10. ⊓⊔

Theorem 4. For a circuit C, let Bout be the error bound of the output wire
of C, where the bound is computed as SetParams(C). Moreover, let EvalC be an
evaluation algorithm for the BFV scheme where EvalC(evk, C, (c1, · · · , cℓ),y) =
(EvalE(evk, C, (c1, · · · , cℓ),y), 0)+Rand(pk). If Bout+Brand ≤ ∆/2, then BFVC =
(Setup, . . . ,EvalC) is ciphertext-simulatable for C.

Proof. Obvious from Theorems 2 and 3. ⊓⊔

5.5 Asymptotic Comparison

We now present a comparison of the asymptotic overhead which the randomized
operations of our ciphertext-simulatable variant have, in contrast to the conven-
tional BFV scheme. Additionally, we outline the asymptotic complexity of our
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approach to achieve circuit privacy, comparing it with generic methods like noise
flooding or the soak-spin-repeat technique [16].

We start by examining the noise overhead of our approach in comparison to
the standard BFV scheme. Recall that we do not add any randomness to the ad-
ditive operations, hence our focus is solely on assessing the overhead introduced
by multiplication operations and the automorphism operation. For concrete noise
bounds, we refer to Table 1.

In case of plaintext multiplication, in our randomized operation, the error
grows by a factor of Ktη(n +

√
n), while in the standard scheme it grows by a

factor of tn. Hence, the overhead is Ktη(n +
√
n)/tn = Kη(1 + 1/

√
n) ≈ Kη.

While K and η are O(poly λ), in practice we can consider them as constants.
Concretely, we can set K = η = 6, which implies that Kη ≈ 25.

Our ciphertext multiplication consists of a deterministic multiplication of two
randomized ciphertexts and two randomized plaintext multiplications. First, no-
tice that the dominating factor in the error bound of standard ciphertext mul-
tiplication is 1

2 tn(n + 4)(B + B′), which solely depends on the error bounds B
and B′ of the input ciphertexts. Since B,B′ ⪆ Brand, the noise growth from
the standard ciphertext multiplication remains almost the same, and the addi-
tional error only comes from two randomized plaintext multiplications, which is
bounded by Ktη(n+

√
n)(B+B′). As this is almost negligible compared to the

error growth from the ciphertext multiplication, the overhead of our randomized
ciphertext multiplication is near 1.

Similarly, in the automorphism operation, our randomized automorphism
introduces an additive error denoted as Brand. Since Bprod + B ⪆ Brand, the
error growth in our automorphism operation is nearly equivalent to that of the
deterministic automorphism, with an overhead close to 1.

In Table 2, we provide a summary of these discussions. As shown above,
our scheme maintains a nearly constant overhead relative to the standard BFV
scheme, which is close to being optimal. In contrast, the noise flooding method [20]
requires parameters to be exponentially large to support at least λ-bits of over-
head. Meanwhile, the soak-spin-repeat method [16] necessitates parameters that
enable bootstrapping. Therefore, for circuits with a shallower depth compared
to the bootstrapping circuit, our scheme is asymptotically better than soak-spin-
repeat, as it sustains a nearly constant overhead. Additionally, it is important
to note that in practice, the soak-spin-repeat method could result in substantial
communication costs because the bootstrapping keys for BFV can be several
hundred GBs in size.

6 Stronger Security Notions

This work primarily focused on the notion of ciphertext simulatability and how to
achieve it from the BFV scheme. As a matter of independent interest, we demon-
strate how our approach of designing error-simulatable (and thus ciphertext-
simulatable) BFV can be further extended to satisfy stronger security notions
in this section.
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Operation Standard Ours Overhead

PAdd B B 1

Add B +B′ B +B′ 1

PMult Btn KBtη(n+
√
n) ≈ Kη

Mult

1
2
(1 + n+ n2) + 1

∆
nBB′

+ 1
2
tn(n+ 4)(B +B′)

+Bprod

1
2
(1 + n+ n2)

+ 1
∆
n(B +Brand)(B

′ +Brand)
+ 1

2
tn(n+ 4)(B +B′ + 2Brand)

+Bprod +Ktη(n+
√
n)(B +B′)

≈ 1

Aut Bprod +B Bprod +Brand +B ≈ 1

Table 2. Comparison of error growth of each operations on standard BFV scheme and
our ciphertext-simulatable BFV scheme. ‘Overhead’ denotes the ratio between the error
growth of our scheme and the standard scheme. Error bound of the input ciphertext(s)
are denoted as B,B′, and ηε(Zn) is denoted as η for some negelible ε > 0. We take the
error bound for standard BFV scheme from [23].

6.1 Strong Ciphertext Simulatability

Below we introduce a stronger security notion of ciphertext simulatability, called
strong ciphertext simulatability. A primary difference in strong ciphertext sim-
ulatability is that the simulator does not have access to the secret key of the
HE scheme, whereas a simulator for the standard ciphertext simulatability does.
Therefore, it is more challenging to build a valid simulator for strong cipher-
text simulatability as it must simulate the output ciphertext using only input
ciphertexts and the computational result, while a simulator for ciphertext simu-
latability can decrypt input ciphertexts and observe their errors as shown in the
proof of Theorem 2.

Definition 9 (Strong Ciphertext Simulatability). A homomorphic en-
cryption scheme Π = (Setup,KeyGen,Enc,Dec,Eval) over a message space M
is strongly ciphertext-simulatable for a circuit C : Mℓ × Mk → M if there
exists a PPT algorithm SimSC such that for any x = (x1, . . . , xℓ) ∈ Mℓ, y =
(y1, . . . , yk) ∈Mk, the following distributions are computationally indistinguish-
able:

{(sk, evk, (c1, . . . , cℓ), cout) | cout ← Eval(evk, C, (c1, . . . , cℓ), (y1, . . . , yk))},
{(sk, evk, (c1, . . . , cℓ), cout) | z = C(x,y), cout ← SimSC(evk, (c1, . . . , cℓ), z)}

where (sk, evk)← KeyGen(pp) and ci ← Enc(sk, xi) for 1 ≤ i ≤ ℓ.

We note that a similar concept, referred to as input privacy, was introduced
in [30] within a different context where the authors considered non-compact
HE schemes, such as constructions based on garbled circuits. It is also worth
noting that a HE scheme is strongly ciphertext-simulatable for a circuit C :
Mℓ ×Mk →M if and only if the scheme is computationally circuit-private for
a class of circuits F := {Fy :Mℓ →M | Fy(x) = C(x,y)}.
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Now, we show that there also exists a generic reduction from error-simulatable
BFV scheme to a strongly ciphertext-simulatable one. Our reduction is slightly
looser than the reduction from error simulatability to ciphertext simulatability
presented in Theorem 2, but the overhead is still minimal.

Notice that the direct translation of the reduction does not work, as it requires
the secret key to compute the error of the input ciphertexts. To address this issue,
we directly use the error-simulatable BFV evaluation algorithm EvalE, instead
of the ciphertext simulator SimE, in the simulator. Since a strong ciphertext
simulator receives only the final output z = C(x,y) and is not given the private
input y = (y1, . . . , yk), our simulator simply executes the evaluation algorithm on
the trivial input y = 0. Note that to ensure correctness, we require an additional
PMult gate after the evaluation of C, causing additional overhead compared to
the reduction of Theorem 2.

Theorem 5 (Reduction from Error to Strong Ciphertext Simulatabil-
ity). Suppose that EvalE is an evaluation algorithm for the BFV scheme. If
EvalE is error-simulatable for a circuit C, then there exists an efficient strongly
ciphertext-simulatable evaluation algorithm EvalSC for the same circuit whose er-
ror bound is at most Brand +Bσ,τ

pmult(Bout), where Bout is the error bound of the
output wire of C computed as SetParams(C) and σ, τ satisfies the conditions in
Lemma 8 for input error bound Bout.

Proof. See Appendix B. ⊓⊔

6.2 Sanitization

The output distributions of a message-preserving sanitization algorithm are in-
distinguishable for any input ciphertexts c and c′ with the same message. In
this subsection, we show that BFV ciphertexts can be sanitized by a single ran-
domized bootstrapping, without noise flooding. Compared to the soak-and-spin
method [16], which performs an iterative bootstrapping with moderate noise
flooding, our construction only requires a single bootstrapping and therefore
enjoys a comparably small computational overhead.

Below, we describe how our ciphertext-simulatable BFV evaluation algorithm
can be combined with known bootstrapping methods [21,13,18]. For the boot-
strapping, we set t′ = pr

′
and t = pr for some prime p and positive integers

r′ > r such that t′ | q. Also, we assume that the baseline BFV scheme sup-
ports the packing for the point-wise arithmetic of integer vectors. Then, the
BFV bootstrapping consists of four steps, namely Modulus Switching, Coeffs-
to-Slots, Digit Extraction, and Slots-to-Coeffs.

• Modulus Switching : For the input encryption (b, a) ∈ R2
q of m ∈ Rt, the

following value is homomorphically computed:[
⌊ t

′

q
b⌉+ ⌊ t

′

q
a⌉ · s

]
t′
=

t′

t
·m+ e ∈ Rpr

for some e ∈ R. This can be easily computed with a linear combination, given
the (trivial) encryption (0, q

t′ ) of the secret s. To be specific, we compute and
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output the ciphertext
(
q
t′ b,

q
t′ a
)
∈ R2

q . Then, it is indeed an error-free encryption

of t′

t ·m+ e since q
t′ b+

q
t′ a · s =

q
t′ (b+ as) = q

t′ ·
(

t′

t ·m+ e
)

(mod q).

• Coeffs2Slots : In this step, we homomorphically perform a linear transformation
to generate a ciphertext encrypting the coefficient vector of the original plaintext
in plaintext slots. In other words, we obtain a ciphertext encrypting the plaintext
µ ∈ Rt′ , which encodes a coefficient vector(

t′

t
m0 + e0, . . . ,

t′

t
mn−1 + en−1

)
∈ Zt′

of the polynomial t′

t ·m+e ∈ Rt′ in its slots. To compute this homomorphically,
a linear sum of automorphisms with publicly known coefficients is evaluated over
the input ciphertext. Note that we may have several ciphertexts when the slot
size and the ring degree do not match.

• DigitExtract : In this step, the scaled rounding function ⌊t/t′ ·x⌉ is homomorphi-

cally computed on the erroneous coefficients { t
′

t mi+ei}0≤i<n, using polynomial
evaluations and yet another homomorphic operation called the ‘homomorphic
division’. The homomorphic division by p is a special operation which homo-
morphically divides the plaintext p ·m ∈ Rpi+1 by p, obtaining the new plaintext
m ∈ Rpi in the new plaintext space, for some i ≥ 1. This can be realized with
a simple change of plaintext modulus, without any alteration on the ciphertext
or the noise, since b+ as = p ·m · q

pi+1 + e = m · q
pi + e (mod q).

During the homomorphic rounding, this homomorphic division operation is
performed between the polynomial evaluations. Recall that we set t = pr and t′ =
pr

′
, evaluating the scaled rounding function

⌊
t
t′x
⌉
is implemented by iteratively

removing the lower r′−r digits of x in base p representation. More precisely, given
the input x = xr′−1 . . . x0 ∈ Zpr′ in base-p representation, we first extract the last
digit x0 = [x]p ∈ Zpr′ with polynomial evaluation. Then, by homomorphically
dividing x− x0 by p as it is a multiple of p, we obtain xr′−1 . . . x1 ∈ Zpr′−1 . By
repeating this procedure r′− r times, we can obtain a ciphertext encrypting the
coefficients m0, . . . ,mn−1 in plaintext slots. It should be noted that this method
is more depth-optimized in practice [13,18], but the main strategy remains the
same.

• Slots2Coeffs : In this step, the plaintext is homomorphically unpacked. In other
words, the encoded values in the slot are moved to the coefficients. In other words,
we obtain an encryption of m =

∑n−1
i=0 miX

i ∈ Rt. As with Coeffs-to-Slots, its
homomorphic computation is instantiated by the linear transformation, which
is essentially a linear sum of automorphisms with publicly known constants.

Note that the ciphertext after the modulus switching is an error-free encryp-
tion of [b+ as]t′ , the whole bootstrapping process is error simulatable as long as
the following steps after the modulus switching are error simulatable, as the sim-
ulator can simply set the coefficient matrix for the initial error to zero. Indeed,
the Coeffs-to-Slots and Slots-to-Coeffs step can be simply randomized as a linear
sum of randomized automorphisms with publicly known coefficients. Also, Digit
Extraction is also error-simulatable, since the division by p operation does not
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affect the error distribution at all, and the polynomial evaluation can be instan-
tiated with the randomized ciphertext and plaintext multiplications. Hence, we
obtain the error simulatability, and consequently ciphertext simulatability for
the whole bootstrapping process. Then, this randomized bootstrapping satisfies
sanitization, as the output ciphertext distributions for the input ciphertexts with
the same message are indistinguishable.

6.3 Malicious Ciphertext Simulatability

Some works [30,15] consider malicious circuit privacy, which requires the circuit-
private property to hold even if keys and ciphertexts are maliciously generated.
We can define malicious ciphertext simulatability in a similar manner.

The most simple way to achieve malicious ciphertext simulatability is using
Non-Interactive Zero Knowledge Proofs of Knowledge (NIZKPoK) of keys and
ciphertexts. Note that our construction (Fig. 3) assumes two things: the well-
formedness of ciphertext and keys, and the infinite norm bound of the secret
key and the errors. In particular, whether the secret key and the errors follow
a specific distribution is not important. Therefore, we can adapt NIZKPoK for
HE ciphertexts and keys that provide such proofs, such as [22], to upgrade our
construction to the malicious setting.

7 Experimental Results

In this section, we present benchmark results of our ciphertext-simulatable BFV
scheme, and compare it to the standard BFV scheme, with and without noise
flooding. Since randomized operations rely on Gaussian distribution with pa-
rameters depending on the circuit, it is hard to provide a general performance
analysis. In this section, we give an example of SANNS [12], a 2PC protocol
for k-Nearest Neighbors Search. In particular, we implement a subprotocol of
SANNS, which computes the L2 distance between two vectors of length d. The
evaluation of the circuit and the corresponding ciphertext-simulatable evaluation
is given as follows.

Eval(evk, Cℓ2 , c, y)

1 : csub ← PAdd(c,−y)
2 : cout ← Mult(rlk, csub, csub)

3 : for i ∈ 1, . . . , log d

4 : crot ← Aut(atkn/2i , cout, n/2
i)

5 : cout ← Add(cout, crot)

6 : return cout

EvalC(evk, Cℓ2 , c, y)

1 : csub ← PAdd(c,−y)

2 : cout ← MultE(rlk, csub, csub)

3 : for i ∈ 1, . . . , log d

4 : crot ← AutE(atkn/2i , cout, n/2
i)

5 : cout ← Add(cout, crot)

6 : cout ← cout + Rand(pk)

7 : return cout

Note that the last for loop, which is for computing the summation of the slots
homomorphically, is not present in SANNS. Instead, the client performs on the
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plain after decryption. However, for the sake of comparison, we include it in our
circuit to accommodate a wider range of operations.

7.1 Parameter Selection

In this subsection, we describe the parameter choices of our implementation. Our
base parameters for the standard and randomized BFV scheme are summarized
in Table 3. First, we set t = 223, following the scenario presented in [12]. This
allows us to compute the distance between 8-bit vectors of length at most 128.
The parameters with ring degree n = 212 are used for our scheme, and the
standard BFV without noise flooding. For the standard BFV with noise flooding,
we set the flooding noise to achieve 2−80 statistical distance. However, we could
not find a suitable parameter for noise flooding when n = 212, so we increase the
ring degree to n = 213 and increase q accordingly. Such restrictions are common
among protocols using BFV, such as in [5].

The parameters we selected achieve 128-bit security according to lattice-
estimator [2], with the key distribution χs as a uniform distribution over poly-
nomials in Rq with coefficients {0,±1}, and χe as Dσerr where σerr = 3.2

√
2π.

For efficient computation using RNS representation, the ciphertext modulus is
set with a multiple of a few word-size integers. Consequently, the RNS gadget
decomposition is employed for the key-switching.

Finally, following Table 1, we select the Gaussian parameters for Rand and
MultE.

n log t log q

212

23
54× 2

213 47× 4

Rand MultE

σr τr σ1 = σ2 τ1 = τ2

26.51 212.85 228.60 244.18

Table 3. Parameters for the standard and ciphertext-simulatable BFV scheme.

Using the n = 212 parameters for the base BFV scheme and the Gaussian
parameters from Table 3, the estimated error bound for the output ciphertext of
our ciphertext-simulatable BFV scheme is ≈ 280.76, which gives a sufficiently low
decryption failure rate. We also note that for the standard evaluation using the
same n = 212 parameters results in the error bound of ≈ 280.58, which is nearly
identical to the randomized counterpart. In other words, randomized operations
have negligible overhead on the error growth. On the other hand, the standard
BFV evaluation with n = 213 parameters results in the error bound of ≈ 275.58.
Thus, around 80 bits of noise flooding is possible.

7.2 Performance Analysis

In this subsection, we analyze the performance of our randomized BFV scheme
and compare it to the standard BFV scheme, with and without the noise flood-
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ing. We implemented the standard BFV scheme, as well as our ciphertext-
simulatable variant, in Julia. All experiments were performed in a single thread
on a machine with an Intel Xeon Platinum 8268 CPU running at 2.90GHz. Our
source code is available at https://github.com/SNUCP/simct.

Operation Standard Ours Noise Flooding

Add 0.02ms 0.02ms 0.12ms

PMult 0.29ms 1.05ms 0.95ms

Mult 4.13ms 9.56ms 20.59ms

Aut 0.66ms 1.95ms 4.61ms

Rand - 1.24ms -

Table 4. Elapsed time for the standard BFV scheme with and without the noise
flooding, our ciphertext-simulatable BFV scheme. Columns ‘Standard’ and ‘Ours’ used
n = 212, and ‘Noise Flooding’ used n = 213.

The elapsed time for each operation of our scheme, standard BFV scheme
with and without noise flooding is presented in Table 4. The operations PMultE,MultE

and AutE are 3.62, 2.31 and 2.95 times slower than PMult,Mult and Aut with
the same base parameters, respectively. On the other hand, MultE and AutE are
2.17 and 2.36 times faster than PMult and Aut with noise flooding parameters,
while PMultE and PMult are nearly identical.

7.3 Optimized Circuit Representation

Before presenting the benchmark results for the full circuit evaluation, we explore
methods to reduce the latency of randomized evaluation by selecting optimal
circuit representation. In a nutshell, we carefully identify operations that do not
need randomization and compute them in a deterministic way.

For example, when computing a sequence of operations without any plain-
text or ciphertext multiplications (e.g. lines 3–5 of Cℓ2), it is unnecessary to
randomize them. This is because plaintext and ciphertext multiplication is the
only operation where the message or server’s private inputs get entangled with
other ciphertext components. Therefore, we can simply add a ciphertext ran-
domizer and compute them in a deterministic way. Then, the input ciphertexts
of this subcircuit become simulatable except for the message, and the simulator
can simply run the operations with the simulated ciphertexts and extract the
error.

Moreover, we can find an alternative circuit representation that contains less
randomized plaintext or ciphertext multiplications. In the initial lines (1–2) of
Cℓ2 , the server calculates (x − y)2 using the client’s input x. When computed
directly, this requires a randomized ciphertext-ciphertext multiplication, which
consists of two Rand and PMultE operations, because x− y includes information
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from the server. However, evaluating (x− y)2 as x2 − 2xy+ y2 allows us to per-
form a single plaintext-ciphertext multiplication and a deterministic ciphertext-
ciphertext multiplication instead. In other words, it is evident that these two
evaluation paths lead to ciphertexts encrypting identical messages:

Mult(Add(c,−y),Add(c,−y)), PAdd(Add(Mult(c, c),PMult(c,−2y)), y2).

Given that the simulator has knowledge of c and sk, it can independently calcu-
late the error in Mult(c, c). Thus, only a single PMultE operation is needed, and
we can reduce the computation by 2 Rand and 1 PMultE operations. In conclu-
sion, we are able to develop a ciphertext-simulatable evaluation algorithm that
replicates the functionality of Cℓ2 , together with its corresponding ciphertext
simulator, as follows.

EvalC(evk, C ′ℓ2 , c, y)

cpmult ← PMultEσ,τ (c,−2y)
cmult ← Mult(rlk, c, c)

cout ← Add(cmult, cpmult)

cout ← PAdd(cout, y
2)

cout ← cout + Rand(pk)

for i ∈ 1, . . . , log d

crot ← Aut(atkn/2i , cout, n/2
i)

cout ← Add(cout, crot)

return cout

SimC(sk, evk, c, z)

e← Errsk(c)

epmult ← Dσ,τ
pmult(e)

emult ← Errsk(Mult(rlk, c, c))

eout ← emult + epmult

cout ← (eout, 0) + Rand(pk)

for i ∈ 1, . . . , log d

crot ← Aut(atkn/2i , cout, n/2
i)

cout ← Add(cout, crot)

return cout + (∆z, 0)

Table 5 presents a summary of the benchmark results for the full circuit.
The ciphertext-simulatable BFV scheme using a näıve evaluation method takes
24.47 ms, making it 2.52 times slower than the standard BFV scheme, yet still
2.86 times quicker than noise flooding. In contrast, the optimized ciphertext-
simulatable evaluation requires only 12.90 ms, almost twice as fast as the näıve
method. This optimized approach is just 1.32 times slower than the standard
scheme and is 7.20 times faster than noise flooding.

Standard Ours (Optimized) Ours Noise Flooding

Total 9.72ms 12.90ms 24.47ms 70.01ms

Table 5. Elapsed time for the standard BFV scheme with and without the noise
flooding, our ciphertext-simulatable BFV scheme.
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A Additional Preliminaries

A.1 Probability Distributions

For a probability distribution X , we denote sampling x from X as x← X . When

x is sampled from a uniform distribution over a set S, we denote x
$←− S.

For any two distributions X1 and X2 with the same support Ω, we define
the max-log distance [28] as ∆ML(X1,X2) = supx∈Ω |logX1(x)− logX2(x)|, and
the statistical distance as ∆SD(X1,X2) = 1

2

∑
x∈Ω |X1(x) − X2(x)|. Note that

the max-log distance is a stronger metric than the statistical distance, that is,
∆ML(X1,X2) ≤ log(1 + ε) implies ∆SD(X1,X2) ≤ ε/2 [19]. Therefore, we will
exclusively use the max-log distance, as one can translate our results to statistical
distance using this relationship.

We denote X1
ε
≈ X2 when ∆SD(X1,X2) ≤ ε. If ε is negligible, we say X1 and

X2 are statistically indistinguishable. When there is no PPT algorithm that can
distinguish X1 and X2 with non-negligible probability, we say X1 and X2 are
computationally indistinguishable, and we write as X1 ≈c X2.

For a vector c ∈ Rn and a positive definite matrix Σ ∈ Rn×n, we define
the Gaussian function as ρc,

√
Σ = exp(−π(x − c)⊤Σ−1(x − c)). We also define

(discrete) Gaussian distribution over a+Λ and continuous Gaussian distribution
with center c and parameter

√
Σ as

Da+Λ,c,
√
Σ(x) =

ρc,
√
Σ(x)∑

v∈a+Λ ρc,
√
Σ(v)

, DRn,c,
√
Σ(x) =

ρc,
√
Σ(x)√

detΣ

respectively. When writing Gaussian functions and distributions, if Σ = σ2I, we
simply write σ instead of

√
Σ, and if c = 0, we omit the center.

A.2 Linear Algebra

A symmetric matrix M ∈ Rn×n is called positive definite and denoted as M ≻ 0
if x⊤Mx > 0 for all x ∈ Rn \ {0}. A square root of M is a matrix A such that
AA⊤ = M. Note that such A always exists, but may not be unique. We write
A =

√
M when the specific choice of square root is unimportant.

Similarly, a symmetric matrix M is positive semidefinite if x⊤Mx ≥ 0 for all
x ∈ Rn\{0}, and we denote it as M ⪰ 0. We write B ≥ A when BB⊤−AA⊤ ⪰
0.

For any vector x = (x1, . . . , xn) ∈ Rn, we define the p-norm of x as

∥x∥p =

(
n∑

i=1

|xi|p
) 1

p

, ∥x∥∞ = max
i
|xi|.

We also define the p-norm of a ring element a as the p-norm of its coefficient
vector. Similarly, for any matrix M ∈ Rm×n, we define the p-norm of M as

∥M∥p = max
x∈Rn\{0}

∥Mx∥p
∥x∥p

, ∥M∥∞ = max
i

n∑
j=1

|Mij |.
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A.3 Ring Learning with Errors

Definition 10 (Ring-LWE). Let m,n, q be positive integers such that N is a
power of two. Let χs, χe be a distribution over R. Then, the Ring-LWE(RLWE)
problem RLWEm,n,q,χs,χe

is to distinguish the following two distributions:

{(a,as+ e) | a $←− Rm
q , s← χs, e← χm

e }, {(a,u) | a,u
$←− Rm

q }.

When χs = χe = DZn,σ, we simply write RLWEm,n,q,σ.

A.4 Gadget Decomposition

Definition 11 (Gadget Decomposition). For a positive integer q, a func-
tion h : Rq → Rd is called a gadget decomposition with respect to a gadget vector
g ∈ Rd

q and a bound Bg > 0, if for every a ∈ Rq, the following holds:

⟨h(a),g⟩ = a (mod q) and ∥h(a)∥∞ ≤ Bg.

We also call h(a) the gadget decomposition of a.

Definition 12 (Gadget Product). For a ∈ Rq and (u0,u1) ∈ Rd×2
q , the

gadget product ⊡ : Rq ×Rd×2
q → R2

q between a and (u0,u1) is defined as

a⊡ (u0,u1) = (⟨h(a),u0⟩, ⟨h(a),u1⟩) (mod q).

In the BFV scheme, the gadget product is primarily used for the key-switching
procedure. If (u0,u1) ∈ Rd×2

q satisfies u0 + u1s = gs′ + e (mod q) for some

s, s′ ∈ R and small e ∈ Rd, then the gadget product (c0, c1) ← a ⊡ (u0,u1)
satisfies c0 + c1s = ⟨h(a),u0 + u1s⟩ = as′ + ⟨h(a), e⟩ (mod q). Here the error
e′ = ⟨h(a), e⟩ is bounded by ∥e′∥∞ ≤ ndBg∥e∥∞.

B Missing Proofs

B.1 Proof of Lemma 4

Lemma 11 ([24, Adapted from Lemma 7]). For E ∈ Rm×n and reals
σ, τ > 0, consider the distribution

{(r, z) | r← DZn,σ,y = DRm,τ , z = Er+ y}.

Then, the conditional distribution of r given any z equals DZn,τ−2ΣE⊤z,
√
Σ where

Σ−1 := σ−2I+ τ−2E⊤E.

Proof. Suppose z is fixed. By simple computation, we have

Pr
r←DZn,σ

y←DRm,τ

[r = v | Er+ y = z] = DZn,σ(v) · DRm,τ (z−Ev)
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∝ exp

[
−π
(

1

σ2
v⊤v +

1

τ2
(z−Ev)⊤(z−Ev)

)]
∝ exp

[
−π(v − τ−2ΣE⊤z)⊤Σ−1(v − τ−2ΣE⊤z)

]
∝ ρ√Σ(v − τ

−2ΣE⊤z).

Therefore, the conditional distribution of r follows DZn,τ−2ΣE⊤z,
√
Σ. ⊓⊔

Proof. Since

crand = e2 ·pk+(e0, e1) = (−(p1e2+e1)s+epke2+se1+e0, p1e2+e1) (mod q),

a sample (sk, evk, crand) is equivalent to (s, p1, epk, p1e2 + e1, epke2 + se1 + e0).
Now, we claim that{

(p1,
[
I P1

]
ê,Γê+ e′0)

∣∣∣∣∣ p1
$←− Rq

ê← DZ2n,σ

e′0 ← DRn,τ

}
≈c

{
(p1, u,Γê+ e′0)

∣∣∣∣∣ p1, u
$←− Rq

ê← DZ2n,σ

e′0 ← DRn,τ

}

for ê = (e1, e2) and Γ =
[
S Epk

]
, where e′0, e1, e2 are coefficient vectors of

e′0, e1, e2 and P1,S,Epk are negacyclic matrix corresponding to p1, s, epk respec-
tively. By Lemma 11,{
(p1,

[
I P1

]
ê,Γê+ e′0)

∣∣∣∣∣ p1
$←− Rq

ê← DZ2n,σ

e′0 ← DRn,τ

}
≡

(p1,
[
I P1

]
ê′,Γê+ e′0)

∣∣∣∣∣∣∣
p1

$←− Rq

ê← DZ2n,σ

e′0 ← DRn,τ

ê′ ← DZ2n,c,
√
Σ′


where Σ′−1 := σ−2I+τ−2Γ⊤Γ and c = τ−2Σ′Γ⊤(Γê+e′0). For further analysis,
we decompose the distribution of ê′ using Lemma 3, as

DZ2n,c,
√
Σ′

ε̂
≈ DZ2n, κ√

2
+D

Z2n,c,

√
Σ′−κ2

2 I

where ε̂ = log 1+ε
1−ε . Note that

Σ′−1 ⪯ ∥Σ′−1∥2I ⪯ (σ−2 + τ−2∥Γ∥22)I ⪯ κ−2I

soΣ′ ⪰ κ2I. Hence,Σ′−κ2

2 I is positive definite, and

√(
κ2

2

)−1
I+ (Σ′ − κ2

2 I)−1
−1

≥ κ
2 ≥ ηε(Z

2n), which implies that this decomposition is valid. We conclude that(p1,
[
I P1

]
ê′,Γê+ e′0)

∣∣∣∣∣∣ p1
$←− Rq

ê← DZ2n,σ, e
′
0 ← DRn,τ

ê′ ← DZ2n,c,
√
Σ′


ε̂
≈

(p1,
[
I P1

]
(ê′1 + ê′2),Γê+ e′0)

∣∣∣∣∣∣
p1

$←− Rq

ê← DZ2n,σ, e
′
0 ← DRn,τ

ê′1 ← DZ2n, κ√
2
, ê′2 ← DZ2n,c,

√
Σ′−κ2

2 I


≈c

(p1,u+
[
I P1

]
ê′2,Γê+ e′0)

∣∣∣∣∣∣
p1

$←− Rq,u
$←− Zn

q

ê← DZ2n,σ, e0 ← DRn,τ

ê′2 ← DZ2n,c,

√
Σ′−κ2

2 I


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≡
{
(p1, u,Γê+ e′0)

∣∣∣∣ p1, u
$←− Rq

ê← DZ2n,σ, e
′
0 ← DRn,τ

}
where the last computational indistinguishability comes from the hardness of
RLWE1,n,q,κ/

√
2. The lemma follows by rounding Γê+e′0 from both distributions.

Finally, notice that ∥Γ∥22 ≤ n2 + ∥epk∥22 ≤ n2 +K2n2σ2
err by Lemma 6, and

1

σ2
+
n2 +K2n2σ2

err

τ2
≤ 1

4ηε(Z2n)2
≤ 1

ηε(Zn)2
.

Therefore, by Lemma 5,

Γê+ e0 ∼ ΓDZ2n,σ + ⌊DRn,τ⌉
ε̂
≈ ⌊DRn,

√
σ2ΓΓ⊤+τ2I

⌉ ≡ ⌊DRn,
√
Σ⌉

where Σ = σ2(SS⊤ +EpkE
⊤
pk) + τ2I.

Moreover, since σerr = 3.2
√
2π ≥ ηε(Zn), by Lemma 6, ∥epk∥2 ≤

√
n∥epk∥∞ ≤

K
√
nσerr with overwhelming probability. Then, since every diagonal entry of

Σ = σ2(EpkE
⊤
pk + SS⊤) + τ2I satisfies

Σi,i = σ2(∥epk∥22 + ∥s∥22) + τ2 ≤ σ2(n+K2nσ2
err) + τ2,

the bound follows from Lemma 6. ⊓⊔

B.2 Proof of Theorem 2

Proof. We proceed by the hybrid argument, where Hyb0 is the distribution of
EvalC.

Hyb1. In this hybrid, we sample crand = (crand,0, crand,1) as crand,1
$←− Rq,

crand,0 ← −crand,1s+erand, where erand ← Dσ,τ
rand. cout, c

′
out is sampled identically

as Hyb0. By Lemma 4, Hyb0 and Hyb1 are computationally indistinguishable.

Hyb2. In this hybrid, we sample c′out = (c′out,0, c
′
out,1) as c

′
out,1

$←− Rq, c
′
out,0 ←

−c′out,1s + ∆z + erand + eout where erand ← Dσ,τ
rand, eout ← Errsk(cout). cout is

sampled identically as Hyb1, and crand is removed. Notice that in Hyb1,

c′out = cout + crand

= (−(cout,1 + crand,1)s+∆z + erand + eout, cout,1 + crand,1) (mod q)

where crand,1 follows a uniform distribution over Rq. Therefore, cout,1 + crand,1
also follows a uniform distribution over Rq, which is exactly the distribution of
c′out,1 in Hyb2. Therefore, Hyb1 and Hyb2 are identical.

Hyb3. In this hybrid, we sample eout ← SimE(sk, evk, (e1, . . . , eℓ)) where ei =
Errsk(ci) for 1 ≤ i ≤ ℓ. erand, c

′
out is sampled identically as Hyb2, and cout is

removed. By the error simulatability of EvalE, Hyb2 and Hyb3 are computa-
tionally indistinguishable.
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Hyb4. In this hybrid, we sample crand = (crand,0, crand,1) as crand,1
$←− Rq,

crand,0 ← −crand,1s + erand, and sample c′out ← (∆z + eout) + crand. erand, eout
is sampled identically as Hyb3. This hybrid is only a syntactic change, hence
Hyb3 and Hyb4 are identical.

Hyb5. In this hybrid, we sample crand ← Randσ,τ (pk). c
′
out is sampled identically

as Hyb4, and erand is removed. This hybrid is simply a reverse of Hyb1, hence
Hyb4 and Hyb5 are computationally indistinguishable.

Finally, since Hyb5 is identical to the distribution of SimC, we conclude that
EvalC is ciphertext-simulatable for C. ⊓⊔

B.3 Proof of Lemma 5

Lemma 12 (Gaussian Convolution). Let E ∈ Rm×n a matrix and σ, τ > 0
be reals. Let c1 ∈ Rn, c2 ∈ Rm and a1+Λ1 ⊂ Rn,a2+Λ2 ⊂ Rm be full-rank lattice
cosets such that EΛ1 ⊆ Λ2. If σ

−2 + τ−2∥E∥22 ≤ ηε(Λ1)
−2 for some 0 < ε < 1,

then

∆ML

(
EDa1+Λ1,c1,σ +Da2+Λ2,c2,τ ,D(Ea1+a2)+Λ2,Ec1+c2,

√
σ2EE⊤+τ2I

)
≤ log

1 + ε

1− ε
.

Proof. Let Ê =
[
E Im

]
, â = (a1,a2), Λ̂ = Λ1 × Λ2, ĉ = (c0, c1), and Σ̂ =[

σ1In
σ2Im

]
. Then, we have

EDa1+Λ1,c1,
√
Σ1

+Da2+Λ2,c2,
√
Σ2
≡ ÊD

â+Λ̂,ĉ,
√

Σ̂

ε̂
≈ D

Êâ+ÊΛ̂,Êĉ,Ê
√

Σ̂

≡ D
(Ea1+a2)+Λ2,Ec1+c2,

√
σ2
1EE⊤+σ2

2I

by Lemma 2 where ε̂ = log 1+ε
1−ε . This completes the proof under the condition

that ker(Ê) is a Λ̂-subspace and ηε(ker(Ê) ∩ Λ̂) ≤
√
Σ̂.

For the first condition, notice that ker(Ê) =

[
In
−E

]
Rn. Therefore,

span(ker(Ê) ∩ Λ̂) = span

([
In
−E

]
Λ1

)
=

[
In
−E

]
span(Λ1) =

[
In
−E

]
Rn

since Λ1 is full-rank. This implies that ker(Ê) = span(ker(Ê)∩ Λ̂), hence ker(Ê)
is a Λ̂-subspace as desired.

For the second condition, we need to show that ηε(ker(Ê)∩Λ̂) = ηε

([
In
−E

]
Λ1

)
≤√

Σ̂, or equivalently ηε

(√
Σ̂
−1
[
In
−E

]
Λ1

)
≤ 1. Let Σ = (σ−21 I + σ−22 E⊤E)−1.

For any x ∈ Λ1, we have∥∥∥∥√Σ̂
−1 [ In
−E

]
x

∥∥∥∥2
2

= x⊤
[
In −E⊤

] [σ2
1In

σ2
2Im

] [
In
−E

]
x
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= x⊤(σ−21 I+ σ−22 E⊤E)x

= ∥
√
Σ
−1

x∥22.

Hence,
√
Σ̂
−1
[
In
−E

]
Λ1 isometric to (more precisely, a rotation of)

√
Σ
−1
Λ1.

Since the smoothing parameter is invariant under rotation, we conclude that

ηε

(√
Σ̂
−1 [ In
−E

]
Λ1

)
= ηε

(√
Σ
−1
Λ1

)
≤ 1

where the last inequality comes from ηε(Λ1) ≤
√
σ−21 + σ−22 ∥E∥22

−1
I ≤
√
Σ. ⊓⊔

Proof. For any p > 0, we have

EDa+Λ,c,σ + ⌊D 1
pZm,c′,τ⌉ ≡ ⌊EDa+Λ,c,σ +D 1

pZm,c′,τ⌉
ε̂
≈
⌊
D 1

pZm,Ec1+c2,
√

σ2
1EE⊤+σ2

2I

⌉
by Lemma 12. The result follows by taking p→∞. ⊓⊔

B.4 Proof of Lemma 6

Proof. Recall that by the Chernoff bound of continuous Gaussian distribution,
we have

Pr
x←DR,σ

[|x| > k] ≤ 2e−π
k2

σ2

for any k > 0. This implies that when σ ≥ 1,

Pr
x←DR,σ

[
|x| > kσ − 1

2

]
≤ 2e−π

(kσ− 1
2 )

2

σ2 ≤ 2e−π(k−
1
2 )

2

since
(
kσ − 1

2

)2 ≥ (k − 1
2

)2
σ2. Now, suppose x = (x1, . . . , xn) ∼ DRn,

√
Σ. Then,

xi ∼ DR,
√

Σi,i
, and by the union bound, we get

Pr
x←DRn,

√
Σ

[
∥x∥∞ > kmax

i

√
Σi,i −

1

2

]
≤ Pr

x←DRn,
√

Σ

[⋃
i

(
|xi| > k

√
Σi,i −

1

2

)]
≤ 2ne−π(k−

1
2 )

2

.

We conclude that

Pr
x←⌊DRn,

√
Σ⌉

[∥x∥∞ > kmax
i

√
Σi,i] ≤ Pr

x←DRn,
√

Σ

[
∥x∥∞ > kmax

i

√
Σi,i −

1

2

]
≤ 2ne−π(k−

1
2 )

2

.

⊓⊔
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B.5 Proof of Lemma 8

Proof. Let cpmult = (cpmult,0, cpmult,1). Since µ̂ ∈ µ+ tZn, we have

cpmult,0 + cpmult,1s = µ̂(∆m+ e) + ẽ = ∆µm+ (µ̂e+ ẽ) (mod q).

Moreover, since µ̂ ∼ Dµ+tZn,σ, ẽ ∼ ⌊DRn,τ⌉ and ∥E∥22 ≤ ∥E∥2∞ ≤ n2B2, the
distribution of epmult = µ̂e+ ẽ follows

EDµ+tZn,σ + ⌊DRn,τ⌉
ε̂
≈
⌊
DRn,

√
σ2EE⊤+τ2I

⌉
from Lemma 5. Finally, every diagonal entry of Σ = σ2EE⊤ + τ2I satisfies

Σi,i = σ2∥e∥22 + τ2 ≤ nσ2B2 + τ2,

so the bound is obtained from Lemma 6. ⊓⊔

B.6 Proof of Lemma 9

Proof. Note that the correctness is obvious from the definition. To analyze the
error distribution, first notice that emult := Errsk(MultEσ1,τ1,σ2,τ2(pk, rlk, ĉ, ĉ

′)) =
Errsk(Mult(rlk, ĉ, ĉ′))+Errsk(PMult(u, c′))+Errsk(PMult(u′, c)). Then, by Lemma 8,
the distribution of emult is computationally indistinguishable from the distribu-
tion of Errsk(Mult(rlk, ĉ, ĉ′)) + e1 + e2, where e1 ← Dσ1,τ1

ptmul(e), e2 ← D
σ2,τ2
ptmul(e

′).
Note that we can apply Lemma 8 even if ĉ, ĉ′ has dependency with u, u′ respec-
tively, as Lemma 8 holds true for arbitrary plaintexts over Rt.

Now, we analyze the distribution of e0 := Errsk(Mult(rlk, ĉ, ĉ′)). First, the
distribution of ĉ follows

{(c+ r+ (∆u, 0) | r← Rand(pk), u
$←− Rt}

≈c {(−âs+∆m+ e+ erand, â) + (∆u, 0) | â $←− Rq, erand ← Drand(s, pk), u
$←− Rt}

≡ {(âs+∆u+ e+ erand) | â
$←− Rq, erand ← Drand(s, pk), u

$←− Rt}
≡ Dmultr(s, pk, e)

by Lemma 4 and the fact that t|q. Similarly, the distribution of ĉ′ is computa-
tionally indistinguishable from Dmultr(s, pk, e

′). Therefore, the distribution of e0
is computationally indistinguishable from

{Errsk(Mult(rlk, ĉ, ĉ′)) | ĉ← Dmultr(s, pk, e), ĉ
′ ← Dmultr(s, pk, e

′)}

as desired. Finally, the error bound is obtained from the definition and Lemma 8.

⊓⊔
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B.7 Proof of Corollary 1

Lemma 13 (Tensor Product). Let c, c′ ∈ R2
q be BFV encryptions of m,m′ ∈

Rt respectively, with e = Errsk(c), e
′ = Errsk(c

′) such that ∥e∥∞ ≤ B, ∥e′∥∞ ≤
B′. If σ, τ > 0 satisfy σ−2 + (n4 + n2)(B2 + B′2)τ−2 ≤ (qηε(Z4n))−2 for some

negligible ε > 0, then (d̂0, d̂1, d̂2) ← TensorEσ,τ (c, c
′) satisfies d̂0 + d̂1s + d̂2s

2 =
∆2mm′ + etensor (mod ∆q) for some etensor ∈ R, and the distribution of etensor
is within max-log distance ε̂ = log 1+ε

1−ε from

Dσ,τ
tensor(s, e, e

′) := ee′ +∆
⌊
DRn,− 2

∆ ee′,
√
Σ

⌉
where Σ = 1

∆2 (σ
2ÊÊ⊤ + τ2I) and Ê =

[
E ES E′ E′S

]
. Moreover, ∥etensor∥∞

is bounded by Bσ,τ
tensor(B,B

′) := K
√
σ2(n3 + n)(B2 +B′2) + τ2 + nBB′ with

overwhelming probability.

Proof. By simple computation, we have

d̂0 + d̂1s+ d̂2s
2 = ∆2mm′ + e(ĉ′0 + ĉ′1s) + e′(ĉ0 + ĉ1s) + ẽ− ee′

= ∆2mm′ + (eĉ′0 + esĉ′1 + e′ĉ0 + e′sĉ1 + ẽ− ee′) (mod ∆q).

Since ∥Ê∥22 ≤ ∥E∥22 + ∥ES∥22 + ∥E′∥22 + ∥E′S∥22 ≤ (n4 + n2)(B4 + B2), the
distribution of etensor = eĉ′0 + esĉ′1 + e′ĉ0 + e′sĉ1 + ẽ− ee′ follows

EDc′0+qZn,σ +ESDc′1+qZn,σ +E′Dc0+qZn,σ +E′SDc1+qZn,σ + ⌊DRn,τ⌉∆ − ee
′

≡ ÊDĉ+qZ4n,σ +∆
⌊
DRn, 1

∆ τ

⌉
− ee′

≡ [Êĉ]∆ +∆
(
ÊD 1

∆ (ĉ−Ê−1[Êĉ]∆)+tZn,− 1
∆ Ê−1[Êĉ]∆, 1

∆σ +
⌊
DRn, 1

∆ τ

⌉)
− ee′

ε̂
≈ 2ee′ +∆

⌊
DRn,− 2

∆ ee′,
√
Σ

⌉
− ee′

≡ ee′ +∆
⌊
DRn,− 2

∆ ee′,
√
Σ

⌉
from Lemma 5, where ĉ = (c′0, c

′
1, c0, c1) and Ê−1 is the right inverse of Ê. We

note that our use of Lemma 5 is valid, since Ê · 1
∆ (ĉ − Ê−1[Êĉ]∆) = 1

∆ (Êĉ −
[Êĉ]∆) ∈ Zn. Finally, every diagonal entry of Σ satisfies

Σi,i =
1

∆2
(σ2(∥e∥22+∥es∥22+∥e′∥22+∥e′s∥22)+τ2) ≤

1

∆2
(σ2(n3+n)(B2+B′2)+τ2),

so the bound is obtained from Lemma 6. ⊓⊔

Lemma 14 (Modulus Switching). Suppose that (d̂0, d̂1, d̂2) ∈ R3
∆q satisfies

d̂0+d̂1s+d̂2s
2 = ∆2m+e (mod ∆q) for some m ∈ Rt and e ∈ R with ∥e∥∞ ≤ B.

If σ, τ > 0 satisfy σ−2 + (n4 + n2 + 1)τ−2 ≤ ηε(Z3n)−2 for some negligible

ε > 0, then (d0, d1, d2) ← ModSwitchEσ,τ ((d̂0, d̂1, d̂2)) satisfies d0 + d1s+ d2s
2 =
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∆m+ eswitch (mod q) for some eswitch ∈ R whose distribution is within max-log
distance ε̂ = log 1+ε

1−ε from

Dσ,τ
scale(s, e) :=

⌊
1

∆
e+DRn,

√
σ2(S2S2⊤+SS⊤+I)+τ2I

⌉
.

Moreover, ∥eswitch∥∞ is bounded by Bσ,τ
switch(B) := K

√
σ2(n3 + n+ 1) + τ2+ 1

∆B
with overwhelming probability.

Proof. We can write d′i =
1
∆ d̂i+ ki where ki ∼ D− 1

∆ d̂i+Zn,σ for i = 0, 1, 2. Then,

we have

d0 + d1s+ d2s
2 = ẽ+ d′0 + d′1s+ d′2s

2

=
1

∆
(d̂0 + d̂1s+ d̂2s

2) + (k0 + k1s+ k2s
2) + ẽ

= ∆m+
1

∆
e+ (k0 + k1s+ k2s

2) + ẽ (mod q).

From Lemma 5, the distribution of escale = ∆−1e+ (k0 + k1s+ k2s
2) + ẽ follows

escale ∼
1

∆
e+D− 1

∆ d̂0+Zn,τ + SD− 1
∆ d̂1+Zn,σ + S2D− 1

∆ d̂2+Zn,σ + ⌊DRn,τ⌉

≡ 1

∆
e+

[
I S S2

]
D− 1

∆ (d̂0,d̂1,d̂2)+Z3n,σ + ⌊DRn,τ⌉

≡
⌊
1

∆
e+

[
I S S2

]
D− 1

∆ (d̂0,d̂1,d̂2)+Z3n,σ +DRn,τ

⌉
ε̂
≈
⌊
1

∆
e+DRn,

√
σ2(S2S2⊤+SS⊤+I)+τ2I

⌉
since ∥

[
I S S2

]
∥22 ≤ ∥I∥22∥S∥22 + ∥S2∥22 ≤ 1 + n2 + n4 and eswitch are integral.

Finally, every diagonal entry of Σ = σ2(S2S2⊤ + SS⊤ + I) + τ2I satisfies

Σi,i = σ2(∥s2∥22 + ∥s∥22 + 1) + τ2 ≤ σ2(n3 + n+ 1) + τ2,

so the bound directly follows from Lemma 6. ⊓⊔

Lemma 15 (Relinearization). Suppose that (d0, d1, d2) ∈ R3
q satisfies d0 +

d1s + d2s
2 = ∆m + e (mod q) for some m ∈ Rt and e ∈ R with ∥e∥∞ ≤ B. If

σ3, τ3 > 0 satisfy σ−23 + dn2K2σ2
errτ
−2
3 ≤ ηε(Λ

⊥
q (g ⊗ I))−2 for some negligible

ε > 0, then cmult ← RelinE(rlk, (d0, d1, d2)) is a BFV encryption of m where the
distribution of error erelin := Errsk(cmult) is computationally indistinguishable
from

Dσ3,τ3
relin (s, rlk, e) := e+

⌊
DRn,

√
σ2
3ErlkE⊤

rlk+τ2
3 I

⌉
where Erlk :=

[
Erlk,1 · · · Erlk,d

]
. Moreover, ∥erelin∥∞ bounded by Brelin(B) :=

K
√
dnσ2

3K
2σ2

err + τ23 with an overwhelming probability.
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Proof. Since hrand(d2) ∈ h(d2) + Λ⊥q (g ⊗ I), ⟨hrand(d2),g⟩ = ⟨h(d2),g⟩ = d2
(mod q). Therefore, from (cprod,0, cprod,1 ← ⟨hrand(d2), rlk⟩, we have cprod,0 +
cprod,1s = d2s

2 + ⟨hrand(d2), erlk⟩ (mod q). Hence, cmult := (cmult,0, cmult,1) sat-
isfies

cmult,0 + cmult,1s = d0 + d1s+ e+ cprod,0 + cprod,1s

= d0 + d1s+ d2s
2 + ⟨hrand(d2), erlk⟩+ e

= ∆m+ e+ ⟨hrand(d2), erlk⟩+ e (mod q).

Moreover, the distribution of ⟨hrand(d2), erlk⟩+ e follows

d∑
i=1

Erlk,iDh(d2)i+Λ⊥
q (g),σ3

+ ⌊DRn,τ3⌉ ≡ ErlkDh(d2)+Λ⊥
q (g⊗I),σ3

+ ⌊DRn,τ3⌉

ε̂
≈
⌊
DRn,

√
σ2
3ErlkE⊤

rlk+τ2
3 I

⌉
by Lemma 5, as ∥Erlk∥22 ≤

∑d
i=1∥Erlk,i∥22 ≤ dn2K2σ2

err. Therefore, emult follows

e+
⌊
DRn,

√
σ2
3ErlkE⊤

rlk+τ2
3 I

⌉
, as desired.

Finally, every diagonal entry of Σ = σ2
3ErlkE

⊤
rlk + τ23 I satisfies

Σi,i =

d∑
j=1

σ2
3∥erlk,j∥22 + τ23 ≤ dnσ2

3K
2σ2

err + τ23 ,

the bound follows from Lemma 6. ⊓⊔

B.8 Proof of Lemma 10

Proof. Let erand = r0 + r1s (mod q). Then,

d0 + d1ψj(s) = ψj(c0 + c1s) + ψj(r0 + r1s) = ∆ψj(m) + (ψj(e+ erand)) (mod q).

From (cprod,0, cprod,1) ← d1 ⊡ atkj , we have cprod,0 + cprod,1s = d1ψj(s) +
⟨h(d1), eatkj ⟩ (mod q). Hence, caut = (caut,0, caut,1) satisfies

caut,0 + caut,1s = d0 + cprod,0 + cprod,1s = d0 + d1ψj(s) + ⟨h(d1), eatkj ⟩
= ∆m+ (ψj(e+ erand) + ⟨h(d1), eatkj ⟩) (mod q).

To analyze the distribution of eaut = ψj(e+ erand)+ ⟨h(d1), eAutj ⟩, we first claim
that d1 is computationally indistinguishable from a uniformly random variable
over Rq. From Lemma 4, we have

{(sk, evk, (d0, d1))} ≡ {(sk, evk, (ψj(c0 + r0, ψj(c1 + r1)) | (r0, r1)← Rand(pk)}

≈c {(sk, evk, (−uψj(s) +∆ψj(m) + ψj(e+ erand), u)) | u
$←− Rq, erand ← Drand}.
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Therefore, the distribution of eaut follows{
(ψj(e+ erand) + ⟨h(d1), eatkj ⟩)

∣∣∣∣∣ (r0, r1)← Rand(pk)
erand = Errsk((r0, r1)

d1 = ψj(c1 + r1)

}
≈c {(ψj(e+ erand) + ⟨h(u), eatkj ⟩) | u

$←− Rq, e← Drand}.

Finally, the bound is directly obtained from the definition of Daut. ⊓⊔

B.9 Proof of Theorem 5

Proof. Let SimE be an error simulator for EvalE and a circuit C :Mℓ×Mk →M.
We construct a strongly ciphertext-simulatable evaluation algorithm EvalSC for
C, and the corresponding strong ciphertext simulator SimSC from EvalE and SimE

as follows:

EvalSC(evk, C, (c1, . . . , cℓ),y)

cout ← PMultE(EvalE(evk, C, (c1, . . . , cℓ),y), 1)

crand ← Rand(pk)

c′out ← cout + crand (mod q)

return c′out

SimSC(evk, (c1, . . . , cℓ), z)

cout ← PMultE(EvalE(evk, C, (c1, . . . , cℓ),0), 0)

crand ← Rand(pk)

c′out ← cout + (∆z, 0) + crand (mod q)

return c′out

We claim that for any x = (x1, . . . , xℓ) ∈ Mℓ and y = (y1, . . . , yk) ∈ Mk,
EvalSC(evk, C, (c1, . . . , cℓ),y) and SimSC(evk, (c1, . . . , cℓ), z) produce computa-
tionally indistinguishable distributions where ci ← Encsk(xi) for 1 ≤ i ≤ ℓ
and z = C(x,y). We proceed by the hybrid argument, where Hyb0 is the dis-
tribution of EvalSC.

Hyb1. In this hybrid, we sample crand = (crand,0, crand,1) as crand,1
$←− Rq, crand,0 ←

−crand,1s+erand, where erand ← Dσ,τ
rand. cout, c

′
out is sampled identically as Hyb0.

By Lemma 4, Hyb0 and Hyb1 are computationally indistinguishable.

Hyb2. In this hybrid, we sample c′out = (c′out,0, c
′
out,1) as c′out,1

$←− Rq, c
′
out,0 ←

−c′out,1s+∆z+erand+eout where erand ← Drand, eout ← Errsk(cout). cout is sam-
pled identically as Hyb1, and crand is removed. Notice that PMult(C(x,y), 1) =
C(x,y) = z, so we can write cout = (−cout,1s + ∆z + eout, cout,1). Hence, in
Hyb1,

c′out = cout + crand

= (−(cout,1 + crand,1)s+∆z + erand + êout, cout,1 + crand,1) (mod q)

where crand,1 follows a uniform distribution over Rq. Therefore, cout,1 + crand,1
also follows a uniform distribution over Rq, which is exactly the distribution of
c′out,1 in Hyb2. Therefore, Hyb1 and Hyb2 are identical.

Hyb3. In this hybrid, we sample eout ← Dσ,τ
pmult(êout), where ĉout ← EvalE(evk, C,

(c1, . . . , cℓ),y), êout ← Errsk(ĉout). erand, c
′
out is sampled identically asHyb2, and
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cout is removed. By Lemma 8, Hyb2 and Hyb3 are computationally indistin-
guishable.

Hyb4. In this hybrid, we sample êout ← SimE(sk, evk, (e1, . . . , eℓ)) where ei =
Errsk(ci) for 1 ≤ i ≤ ℓ and SimE is the error simulator for EvalE and C.
eout, erand, c

′
out is sampled identically as Hyb2, and ĉout is removed. By the error

simulatability of EvalE, Hyb4 and Hyb4 are computationally indistinguishable.

Hyb5. In this hybrid, we sample ĉout ← EvalE(evk, C, (c1, . . . , cℓ),0) and eout ←
Errsk(ĉout). eout, erand, c

′
out is sampled identically as Hyb4. This hybrid is simply

a reverse of Hyb4, so by the error simulatability of EvalE, Hyb4 and Hyb5 are
computationally indistinguishable.

Hyb6. In this hybrid, we sample cout ← PMultEσ,τ (ĉout) and eout ← Errsk(cout).
erand, c

′
out is sampled identically as Hyb5, and êout is removed. This hybrid is

simply a reverse of Hyb3, so by Lemma 8, Hyb5 and Hyb6 are computationally
indistinguishable.

Hyb7. In this hybrid, we sample crand = (crand,0, crand,1) as crand,1
$←− Rq, crand,0 ←

−crand,1s+erand, and sample c′out ← cout+(∆z, 0)+crand. cout is sampled identi-
cally as Hyb4, and eout is removed. Notice that PMult(C(x,y), 0) = 0·C(x,y) =
0, so we can write cout + (∆z, 0) = (−cout,1s+∆z+ eout, cout,1). Therefore, this
hybrid is simply a reverse of Hyb2, so Hyb4 and Hyb5 are identical.

Hyb8. In this hybrid, we sample crand ← Randσ,τ (pk). cout, crand is sampled
identically as Hyb5, and erand is removed. This hybrid is simply a reverse of
Hyb1, hence Hyb7 and Hyb8 are identical.

Finally, since Hyb8 is identical to the distribution of SimSC, we conclude that
EvalSC is strongly ciphertext-simulatable for C. ⊓⊔
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