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Abstract. Quantummoney is the cryptographic application of the quan-
tum no-cloning theorem. It has recently been instantiated by Mont-
gomery and Sharif (Asiacrypt ’24) from class group actions on elliptic
curves. In this work, we propose a novel method to forge a quantum
banknote by leveraging the efficiency of evaluating division polynomials
with the coordinates of rational points, offering a more efficient alter-
native to brute-force attack. Since our attack still requires exponential
time, it remains impractical to forge a quantum banknote. Interestingly,
due to the inherent properties of quantum money, our attack method also
results in a more efficient verification procedure. Our algorithm leverages
the properties of quadratic twists to utilize rational points in verifying
the cardinality of the superposition of elliptic curves. We expect this ap-
proach to contribute to future research on elliptic-curve-based quantum
cryptography.

1 Introduction

Extensive research has been carried out to harness quantum advantage. Using
a quantum computer, it is well known that the discrete logarithm problem on
which many modern cryptosystems are based is easily breakable. Most of the
research on quantum algorithms focuses on their efficiency in solving a classically
intractable problem. Recently, there has been a growing interest in utilizing
quantum computers for security purposes, notably through quantum money.
Quantum money was first proposed by Wiesner in [17]. No-cloning theorem
of a quantum state keeps adversaries from counterfeiting the money. However,
Wiesner’s scheme was privately verifiable, which means that only the issuing
authority (the mint) can verify the money. In [1], the publicly verifiable quantum
money scheme was devised where anyone can verify the money.

The first instantiation of publicly verifiable quantum money was [2], but it
was later broken by [9] and [6]. Zhandry subsequently proposed a construction of
quantum money/lightning based on the assumption of indistinguishability ob-
fuscation in [18], which was later broken by Roberts [12]. More recently, Liu,
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Montgomery and Zhandry devised a construction of quantum money which is
called walkable invariant money in [8]. This walkable invariant money was con-
cretely instantiated in [10] using class group actions on elliptic curves.

The instantiation of [10] uses the cardinality of elliptic curves as the serial
number of banknotes. We propose a new way to forge a quantum banknote from
the serial number given, more optimal than brute-force attack. We leverage the
fact that computing division polynomials with rational points is more efficient
than the point-counting algorithm. For an elliptic curve E defined over Fp, a
division polynomial ψℓ(X,Y ) ∈ Fp[X,Y ] is a polynomial whose roots are the ℓ-
torsion points (x, y) ∈ E[ℓ]. Using the recurrence relation of division polynomials,
we can compute ψℓ(x, y) in O(log ℓ) multiplications in Fp, which is significantly
faster than the point-counting algorithm when p is a large prime.

1.1 Contributions

In this work, we analyze the unforgeability of the quantum money scheme pro-
posed in [10] in a concrete manner. We identify two potential approaches to forge
a quantum banknote in this scheme.

The first approach involves constructing a uniform superposition of elliptic
curves with the given cardinality using the quantum isogeny walk. However, this
method is inefficient due to the reliance on the SEA isogeny algorithm, which
constitutes the bottleneck of the verification process, as noted in [10, Proposition
8.3].

The second approach leverages quantum search techniques to sample elliptic
curves of the required cardinality. A straightforward yet computationally expen-
sive method would be to employ the point-counting algorithm as a search oracle.
Instead, we propose a more efficient alternative that takes advantage of the fact
that verifying the order of rational points is significantly faster than counting
rational points.

Furthermore, we address the intrinsic connection between forging a quantum
banknote and the verification process. By exploiting this relationship, we outline
how our proposed optimization can be applied not only to an attack strategy but
also to an improved verification method. Our main contributions are summarized
as follows:

– Optimized Forgery Attack : We propose a novel attack strategy that
efficiently searches for a quantum banknote with a given serial number, out-
performing direct brute-force approaches.

– Concrete Security Estimation : As our approach is significantly simpler
than implementing the point-counting algorithm, we can provide a more pre-
cise estimation of the quantum resources required to forge quantum money.
We offer a detailed analysis of the quantum resources.

– Improved Verification : We demonstrate how our insights can improve
the efficiency of the verification of a given serial number.

– Utilization of Rational Points : We show that rational points can be
used to verify the cardinality based on the properties of the quadratic twists
of elliptic curves. We expect that our method inspires future research.
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1.2 Organization of The Paper

In Section 2, we introduce the background on elliptic curves and the notions of
quantum money and quantum lightning. We also briefly present the quantum
lightning scheme proposed in [10]. Section 3 illustrates our quantum search al-
gorithm and its oracle. In Section 4, we show that the lower and upper bound
of class numbers that leads to the number of iterations in the quantum search
algorithm. In Section 5, our concrete quantum oracle is described and we ana-
lyzed its space and time complexity. In Section 6, we apply our attack method
to the verification algorithm. Finally, we conclude our work in Section 7.

2 Preliminaries

2.1 Class Group Actions on Elliptic Curves

Elliptic Curves For a large prime p, an elliptic curve E/Fp is defined as follows
in Weierstrass form:

E : y2 = x3 +Ax+B

where A,B ∈ Fp. The isomorphism class of elliptic curves can be represented as

its j-invariant j(E) = 1728 4a3

4a3+27b2 . Two elliptic curves E1, E2 are isomorphic

over the algebraically closed field F̄p if and only if j(E1) = j(E2), which means
that j-invariant uniquely represents the F̄p-isomorphism classes of elliptic curves.
When we consider Fp-isomorphism classes of elliptic curves, we need additional
information to uniquely identify the classes. We introduce the representation
used in [10]. The Fp-isomorphism classes of elliptic curves can be represented by
pairs (j, b) ∈ Fp × Z where b ∈ {0, 1} except in the following cases:

– If j ≡ 1728 mod p and p ≡ 1 mod 4, then 0 ≤ b ≤ 3.
– If j ≡ 0 mod p and p ≡ 1 mod 3, then 0 ≤ b ≤ 5.

For a quadratic non-residue α2 ∈ Fp, we can recover the Weierstrass pair
(A,B) ∈ Fp from the given pair (j, b) as follows:
If j ̸≡ 1728, 0 mod p,

y2 = x3 +
3jα2b

2

1728− j x+
2jα3b

2

1728− j

If j ≡ 1728 mod p, the elliptic curve is given by

y2 = x3 + αb
4x

where α4 is a quartic non-residue if p ≡ 1 mod 4, a quadratic non-residue
otherwise.
If j ≡ 0 mod p,

y2 = x3 + αb
6
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where α6 is a sextic non-residue if p ≡ 1 mod 3, a quadratic non-residue other-
wise.

By [15, Cor. X.5.4.1], there is one-to-one correspondence between pairs (j, b)
and Fp-isomorphism classes of elliptic curves. While the (j, b) representation is
used in the quantum money scheme [10], we mainly use the Weierstrass rep-
resentation (A,B) in this paper. Unlike j-invariant form, Weierstrass pairs are
directly adaptable to the quantum search algorithm. Throughout Sections 3 and
5, we change the j-invariant form into the Weierstrass form. Algorithm 1 demon-
strates the corresponding quantum algorithm. Algorithm 1 requires just a few
multiplications in Fp.

Algorithm 1 Algorithm GetWeierstrassPairp
Input: A prime p and a quantum state |j⟩ |b⟩ where (j, b) ∈ Fp×Z and 0 ≤ b ≤ 5.
Output: A quantum state |A⟩ |B⟩.

1: if p ≡ 1 mod 12 then
2: Set α2, α4 and α6 as quadratic, quartic and sextic non-residue respectively.
3: else if p ≡ 1 mod 4 and p ̸≡ 1 mod 3 then
4: Set α2 and α6 as quadratic non-residues and α4 as a quartic non-residue.
5: else if p ≡ 1 mod 3 and p ̸≡ 1 mod 4 then
6: Set α2 and α4 as quadratic non-residues and α6 as a sextic non-residue.
7: else
8: Set all α2, α4 and α6 as quadratic non-residues.
9: end if
10: Compute |A⟩ ← |(j ≡ 1728)× αb

4 + (j ̸≡ 0, 1728)×
(

3jα2b
2

1728−j

)
mod p⟩.

11: Compute |B⟩ ← |(j ≡ 0)× αb
6 + (j ̸≡ 0, 1728)×

(
2jα3b

2
1728−j

)
mod p⟩.

12: return |A⟩ |B⟩.

We also note that the group structure of an elliptic curve defined over Fp is
Z/mZ× Z/mkZ.

Theorem 1. For a prime p, the cardinality of an elliptic curve defined over Fp

is isomorphic to
Z/mZ× Z/mkZ

where m, k ∈ Z+ and m|(p− 1).

Proof. We refer to the proof in [13].

We address that the number of points of elliptic curves is bounded by well-
known Theorem 2. We use this property in Section 5 to prove the correctness
and the soundness of our algorithm.

Theorem 2 (Hasse’s theorem). Let E be an elliptic curve defined over a
finite field Fp. Then

|#E(Fp)− p− 1| ≤ 2
√
p

Proof. We refer to the proof in [15, Theorem 1.1].
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Quadratic Twist of Elliptic Curves Given an elliptic curve E : y2 = x3 +
Ax + B defined over Fp, a quadratic twist of E is defined as Et : y2 = x3 +
α−2Ax+α−3B where α is a quadratic non-residue in Fp. There is an isomorphism
ϕ : E → Et defined over Fp2 such that ϕ(x, y) = (α−1x, α−3/2y). Note that E
and Et are not isomorphic over Fp.

Theorem 3. Given an elliptic curve E : y2 = x3 + Ax + B over Fp and its
quadratic twist Et of E, they satisfy the following equation.

#E(Fp) + #Et(Fp) = 2p+ 2.

Proof. For an x ∈ Fp, if x
3+Ax+B is a quadratic residue over Fp, there exist ±y

such that y2 = x3+Ax+B, which means (x,±y) ∈ E(Fp). Otherwise, there exist
±y such that αy2 = x3 + Ax + B for a quadratic non-residue α, which means
(α−1x,±α−1y) ∈ Et(Fp). When y = 0, (x, 0) ∈ E(Fp) and (x, 0) ∈ Et(Fp).
It says that the sum of the sizes of two groups E(Fp) and Et(Fp) equals to
2(|Fp|+ 1) = 2p+ 2 considering the point at infinity 0E and 0Et .

Class Group Actions For an elliptic curve E, we say that E has complex mul-
tiplication by O if End(E) ∼= O where O is an order of an imaginary quadratic
number field K.

According to Deuring correspondence, an element α ∈ O corresponds to an
endomorphism θα ∈ End(E) and an integral ideal I ⊂ O corresponds to an
isogeny ϕI : E → EI := E/E[I] where E[I] = {∩ ker(θα) : α ∈ I}.

Theorem 4. Let E be an elliptic curve over Fp with complex multiplication O,
and let l ⊂ O be a prime ideal of norm ℓ, where ℓ is a rational prime. Then
there is a classical algorithm which computes the isogeny φl in time complexity
O(ℓM(p) log ℓ log log ℓ log p).

We refer to [7] and [10] for the proof and the concrete implementation as
quantum algorithm.

2.2 Quantum Money and Quantum Lightning

In this section, we define public key quantum money and quantum lightning.
Both quantum money and quantum lightning consist of two functions Gen and
Ver as follows:

– Gen(1λ). Takes as input a security paramter λ and generate a quantum
money state |ψ⟩ and the associated serial number σ.

– Ver(σ, |ψ⟩). Takes as input a pair of a serial number σ and a supposed quan-
tum money |ψ⟩, verify them.

Definition 1 (Quantum Money Unforgeability). (Gen,Ver) is secure quan-
tum money if, for all quantum polynomial-time adversary A, it is negligible prob-
ability that A wins the following game :
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– The challenger runs (σ, |ψ⟩)← Gen(1λ) and give σ, |ψ⟩ to A.
– A produces and sends to the challenger two supposed quantum money |ψ1⟩

and |ψ2⟩.
– The challenger runs b1 ← Ver(σ, |ψ1⟩) and b2 ← Ver(σ, |ψ2⟩). If b1 = b2 = 1,
A wins.

Definition 2 (Quantum Lightning Unforgeability). (Gen,Ver) is secure
quantum lightning if, for all quantum polynomial-time adversary A, it is negli-
gible probability that A wins the following game :

– A, on input 1λ, produces and sends to the challenger a serial number σ and
supposed quantum money |ψ1⟩ and |ψ2⟩.

– The challenger runs b1 ← Ver(σ, |ψ1⟩) and b2 ← Ver(σ, |ψ2⟩). If b1 = b2 = 1,
A wins.

2.3 Quantum Money from Class Group Actions

In this section, we briefly introduce the construction of quantum lightning us-
ing class group actions on elliptic curves, which is proposed in [10]. Gen uses
ECSupGen as a subroutine which makes a uniform superposition of elliptic curves
over Fp. Ver uses ECSupVer as a subroutine which verify the given serial num-
ber and uniformity of the superposition of the supposed quantum money. The
isogeny computation uses SEA isogeny algorithm in Theorem 4.

Algorithm 2 Algorithm ECSupGen
Input: p a prime
Output: |E⟩ a quantum state

Let S be a register that can store a pair (j, b), where j ∈ Fp and 0 ≤ b ≤ 5.
Generate a uniform superposition |ψ⟩ ∈ S over all pairs (j, b), where
– If j ̸≡ 0, 1728 mod p, then b = 0 or 1.
– If j ≡ 1728 and p ≡ 1 mod 4, then 0 ≤ b ≤ 3. If p ≡ 3 mod 4, then b = 0 or 1.
– If j ≡ 0 and p ≡ 1 mod 3, then 0 ≤ b ≤ 5. If p ≡ 2 mod 3, then b = 0 or 1.

In this scheme, a quantum banknote |ψ⟩ is a uniform superposition of the set
of elliptic curves such that all curves have the same cardinality σ. The cardinality
σ is used as the serial number of a quantum banknote. In Algorithm 3, it counts
the number of rational points of each elliptic curves in the quantum state. The
point-counting algorithm is Schoof’s algorithm in [14].
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Algorithm 3 Algorithm Gen
Input: p a prime
Output: |ψ⟩ a quantum state and an associated serial number σ ∈ Z.

1: Compute a superposition
∑
|j, b⟩ over all elliptic curves over Fp using Algorithm

2.
2: Use Schoof’s point-counting algorithm to compute the cardinality in

∑
|j, b⟩ in

superposition and obtain
∑
|j, b⟩ |#Ej,b⟩

3: Measure the last register and obtain σ. Compute ∆Fr(E) = 4p−(σ−p−1)2 and set
a third register to be 1 if ∆Fr(E) is square-free and ∆Fr(E) > 3p, and 0 otherwise.
Measure the third register; if the result is 0, start over at step 1.

4: return The quantum state
∑

#Ej,b=σ |j, b⟩ and the associated serial number σ.

In Algorithm 4, it also uses Schoof’s point-counting algorithm to compute the
associated serial number. The uniformity of the quantum money is verified by
applying all the possible isogenies and checking if the quantum state is still the
same. In order to compute an isogeny with the superposition of elliptic curves,
we need to use SEA isogeny algorithm, specifically Elkies steps (Algorithm 3
and 4) in [7, p. 12].

Algorithm 4 Algorithm ECSupVer

Input: a prime p, integers N and τ , and a quantum state |ψ⟩ stored in a register
S

Output: a bit 0 or 1, then ECSupVer alters |ψ⟩ to a state |ψ′⟩ which it then
outputs.

1: Check that |ψ⟩ is properly formatted. If not output 0
2: Use Schoof’s algorithm to compute the cardinality of the elliptic curve in a new

register.
3: Measure the value in the new register. If it is not N , output 0. Otherwise, compute

the list of group actions BK and discard the new register.
4: Let r = #BK . Using a new register, create the state |φ⟩ := |12r⟩ ⊗ |ψ⟩.
5: Repeat the following τ times:

1. Apply the unitary U to |φ⟩.
2. Apply the projection-valued measurement corresponding to |12r⟩ ⟨12r| to the

resulting state. If the measurement fails output 0
6: return 0

– |1n⟩ := 1√
n

∑n
i=0 |i⟩.

– U :=
∑r

i=1 |i⟩ ⟨i| ⊗ σi +
∑2r

i=r+1 |i⟩ ⟨i| ⊗ Ik where r = #BK , k = #IN , σi is
a group action in BK and IN is the set of elliptic curves with N points.

– The group action σi can be efficiently evaluated by Theorem 4.
– BK is Bach Generating Set generated by [10, Algorithm 4.1], which is the

set of ideal classes of unramified primes l of a ring of integers OK of an
imaginary quadratic field K with N(l) < 6(logDisc(K))2.
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By [10, Proposition 8.3], Algorithm 5 runs in

max(O(log8 p), O(τ(log5 p)(log log2 p)(log log log2 p)))

where τ = 33r3λ for r = #BK . The second term corresponds to the running
time of the SEA isogeny algorithm, which dominates or is at least comparable to
the complexity of the point-counting algorithm when λ = O(log p) and #BK =
O(log p).

Algorithm 5 Algorithm Ver

Input: a quantum state |ψ⟩ and a serial number σ ∈ Fp.
Output: 0, ⊥ or 1, |ψ′⟩.

1: Run Algorithm 4 and receive an output tuple (|ψ′⟩ , b).
2: If b = 0 then return 0 and ⊥ and discard |ψ′⟩.
3: return 1 and |ψ′⟩.

3 General Search Algorithm To Forge Quantum Money

In order to find a quantum banknote associated to the given serial number σ,
we use Grover search algorithm. Grover search algorithm consists of the ora-
cle Op,σ, n-bit Walsh-Hadamard gate Wn and the phase rotation gate O0 =
−2 |0n+3⟩ ⟨0n+3|+ I. The search algorithm requires O(1/

√
r) queries to Op,σ to

obtain a uniform superposition of the target set T when the ratio of the target
among the given set X is r = |T |/|X|. Figure 1 represents the general Grover
search algorithm.

j : |0n⟩ Wn

Op,σ

Wn

O0

Wn measure
cardinality

b : |03⟩ W3 W3 W3

repeat O(1/
√
r) times

σ

Fig. 1. Grover search algorithm to forge a quantum money

The general oracle Op,σ runs as follows:

– The oracle is classically initialized by a positive integer σ satisfying 0 <
|σ − p − 1| ≤ 2

√
p which represents the cardinality of the elliptic curves to

be sampled.
– It takes as input a pair of elliptic curve coefficient (j, b) ∈ Fp × Z and the

size of the pair of the quantum registers is ⌈log p⌉+ 3.
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– Oracle flips the phase of the quantum state if the Weierstrass curve Ej,b has
cardinality σ.

The direct approach to get the desired quantum banknote is to search with
the minting algorithm illustrated in Algorithm 3. Since the minting algorithm
uses Schoof’s point-counting algorithm, search oracle Op,σ is to count the number
of rational points and check if it is the same with the given σ. Because the point-
counting algorithm requires to compute arithmetics on a polynomial ring of a
large degree over a finite field, it requires O(log8 p) bit operations in total as
mentioned in [14]. In Section 5, we show that we can construct a more optimal
oracle than using the point-counting algorithm.

To predict the overall time complexity of the search algorithm, we need to
compute the ratio of solutions that pass through the oracle Op,σ. The more
accurately we compute the ratio of the solutions, the more efficiently the search
algorithm can be executed. In our case, the size of the target set T equals to
the class number of a imaginary quadratic field K such that the endomorphism
ring of the elliptic curves are isomorphic to the maximal order OK of K since
the quantum state generated by Algorithm 3 satisfies that ∆Fr(E) is square-free
and Z[Fr] = End(E) ∼= OK .

Computing the class number of a given number field requires sub-exponential
time in a classical setting [5, Section 5.4]. However, a polynomial-time quantum
algorithm has been developed to compute the class number [3]. This result is
based on a quantum reduction from the class group problem (CGP) to the
continuous hidden subgroup problem (CHSP), which can be efficiently solved in
a quantum setting. The cost of solving CHSP has been tightly estimated in [4].

Although we do not delve into the quantum algorithm for CHSP in this
paper, the class number is crucial to determine the number of search iterations.
We provide the lower and upper bound of class numbers, which leads to the
bound of the number of search iterations.

4 Lower and Upper Bound of Class Numbers

For the elliptic curves generated by Algorithm 3, the number of Fp-isomorphism
classes of elliptic curves of cardinality σ is equal to the class number h(d), where
d is the discriminant of an imaginary quadratic order OK isomorphic to End(E).
In [10], the lower bound of the class number was provided. The lower bound is
calculated from the Dirichlet class number formula and the bound of the Dirichlet
series L(1, χ).

By Dirichlet class number formula, given an integer d < −4, the class number
h(d) of the imaginary quadratic field of discriminant d satisfies the following
equation.

h(d) =

√
|d|
π

L(1, χ)

where L(1, χ) is Dirichlet L-function and χ(m) =
(

d
m

)
is Kronecker symbol.
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Theorem 5. For a negative integer d, let 0 < ϵ < 1
2 , |d| ≥ max(e1/ϵ, e11.2) and

χ(m) =
(

d
m

)
. Then

L(1, χ) > 0.655
ϵ

|d|ϵ

Proof. We refer to the proof in [16, Theorem 2].

For a large prime p, when ϵ = 1/ ln p and |d| > max(p, e11.2) = p, this theorem
leads directly to the lower bound of the class number.

h(d) =

√
|d|
π

L(1, χ) > 0.11

√
p

log p
.

Using research on number fields, we can also derive the upper bound of class
numbers. Next, we show that the upper bound of class numbers can be approx-
imated based on Pólya-Vinogradov inequality.

Theorem 6 (Pólya-Vinogradov Inequality). Let d be a positive integer and
χ(k) is a Dirichlet character modulus d. Then

∀m,n ∈ N,
m∑

k=n

χ(k) = O(
√
d log d).

Pólya-Vinogradov Inequality is improved in [11]. They suggest a more explicit
version of inequality for the sum of values of a Dirichlet character on an interval.

Theorem 7 (Theorem 1, [11]). Let d be a positive integer and χ(k) is a
primitive Dirichlet character modulus d. Then

∀m,n ∈ N,
m∑

k=n

χ(k) ≤
{
d1/2

(
2
π2 ln d+

4
π2 ln ln d+

3
2

)
if χ is even.

d1/2
(

1
2π ln d+ 1

π ln ln d+ 1
)

if χ is odd.
.

Proof. The proof is in [11, Theorem 1].

Theorem 8. For a negative integer d and a Dirichlet character χ(m) =
(

d
m

)
modulus |d|,

L(1, χ) ≤
(
1

2
+

1

2π

)
ln |d|+ 1

π
ln ln |d|+ 1

Proof. This can be proved as follows.

L(1, χ) =
∑
n≥1

χ(n)n−1 =
∑
n≥1

(
χ(n)

∫ ∞

n

x−2dx

)

=

∫ ∞

1

∑
n≤x

χ(n)

x−2dx
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Since d is negative, χ(−1) = −1 which is odd Dirichlet character. By Theorem 7,

≤
∫ √|d|

1

x · x−2dx+

∫ ∞
√

|d|

(
1

2π
|d|1/2 ln |d|+ 1

π
|d|1/2 ln ln |d|+ |d|1/2

)
· x−2dx

=

(
1

2
+

1

2π

)
ln |d|+ 1

π
ln ln |d|+ 1

Theorem 8 leads directly to the upper bound of the class number. As |d| =
|4p− t2| ≤ 4p,

h(d) =

√
|d|
π

L(1, χ) ≤
(
1 + π

π2

)√
p ln (4p) +

2

π2

√
p ln ln (4p) +

2

π

√
p. (1)

We can see that the result of the calculating class number h(d) using [3] is
bounded by the above inequality (1), which means the number of iterations in
Grover search algorithm of Figure 1 is bounded as follows:

√
2πp1/4√

(π + 1) ln (4p) + 2 ln ln (4p) + 2π
≤

√
2p

h(d)
≤ 4.251p1/4

√
log p.

The lower bound is approximately 2.622 p1/4√
log p+Θ(log log p)

.

5 Implementation of Our Attack

5.1 Division Polynomials and Recurrence Relation

Given a prime p and a positive integer ℓ, one can calculate a division polynomial
ψℓ(x, y) ∈ Fp[x, y] such that ψℓ(x, y) = 0 if and only if (x, y) ∈ E[ℓ]. For a given
Weierstrass form E : y2 = x3 +Ax+B where A,B ∈ Fp, we define the division
polynomials as follows :

ψ−1 = −1,
ψ0 = 0,

ψ1 = 1,

ψ2 = 2y,

ψ3 = 3x4 + 6Ax2 + 12Bx−A2

ψ4 = 2y(2x6 + 10Ax4 + 40Bx3 − 10A2x2 − 8ABx− 2A3 − 16B2),

ψ2n+1 = ψn+2ψ
3
n − ψn−1ψ

3
n+1 = g1(ψn−1, ψn, ψn+1, ψn+2) for n ≤ 2

ψ2n =
ψ2
n−1ψnψn+2 − ψn−2ψnψ

2
n+1

ψ2
= g2(ψn−2, ψn−1, ψn, ψn+1, ψn+2) for n ≤ 3
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In order to calculate the division polynomial, we require y which involves
calculating a square root in Fp. When p ≡ 1 mod 4, this can be done using the
Tonelli-Shanks algorithm which requires O(log2 p) multiplications in Fp, which
is quite expensive. If we compute a division polynomial in the polynomial ring
Fp[y] with the defining relation y2 = x3 +Ax+B ∈ Fp, we can avoid explicitly
computing the square root. Notably, this approach remains valid even when such
a y does not exist in Fp.

Given a tuple (ψk, ..., ψk+9) ∈ Fp[y]
10, we obtain (ψ2k+4, ..., ψ2k+15) using

the above recurrence relation. Defining Ψk := (ψk, ..., ψk+9) ∈ Fp[y]
10, we can

determine Ψ2k+4, Ψ2k+5 and Ψ2k+6 given Ψk. For m > 5, Ψm can be computed as
follows:

Ψm =

{
f1(Ψ(m−4)/2) if m is even

f2(Ψ(m−5)/2) if m is odd

where

f1(Ψk)[i] =

{
g2(Ψk[i/2], . . . , Ψk[i/2 + 4]) if i is even

g1(Ψk[(i− 1)/2], . . . , Ψk[(i− 1)/2 + 4]) if i is odd
(2)

f2(Ψk)[i] =

{
g2(Ψk[i/2 + 1], . . . , Ψk[i/2 + 5]) if i is even

g1(Ψk[(i− 1)/2 + 1], . . . , Ψk[(i− 1)/2 + 5]) if i is odd

for 0 ≤ i < 10 and Ψk[i] denotes the i-th element ψk+i in the tuple Ψk. Algorithm
6 is the quantum algorithm that computes division polynomials.

Algorithm 6 Algorithm DivisionPolynomialp,σ
Input: A prime p, a cardinality σ ∈ N and a quantum state |A⟩ |B⟩ |x⟩ where

A,B, x ∈ Fp

Output: A quantum state |ψσ(A,B, x)⟩.
1: Set n← ⌈log p⌉.
2: Compute |Ψσr ⟩ from |A⟩ |B⟩ |x⟩.
3: for 0 ≤ i < r do
4: Compute |Ψσr−i−1⟩ ← |fbi(Ψσr−i)⟩.
5: end for
6: for r − 1 > i ≥ 0 do
7: Uncompute |Ψσr−i−1⟩ ← |f

−1
bi

(Ψσr−i)⟩ and discard |Ψσr−i−1⟩.
8: end for
9: Uncompute |Ψσr ⟩ from |A⟩ |B⟩ |x⟩.
10: return |ψσ(A,B, x)⟩.
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In Algorithm 6, f1 and f2 are the functions in Equation (2) and σi’s and bi’s
are precomputed as follows:

σ0 = σ and σr ≤ 5

σi+1 =


(σi − 4)/2 if σi is even and σi > 5

(σi − 5)/2 if σi is odd and σi > 5

σi if σi ≤ 5

br−i−1 =

{
1 if σi is even

2 if σi is odd

where r is the smallest positive integer such that σr = σr+1 and 0 ≤ i < r.
Through this approach, we can deduce that computing ψℓ requires O(log ℓ)

multiplication in Fp[y] which translates to O(log2 p log ℓ) bit operations. This
process could be further optimized in future research.

5.2 Search Oracle Op,σ With Rational Points

In this section, we describe our quantum search oracle used to forge a quantum
banknote. The oracle Op,σ consists of the evaluation of division polynomials and
the phase rotation via the n-controlled-Z gate Zn. In order to filter out all but
the target curves, we verify that all rational points are annihilated by σ, while
all rational points on its quadratic twist are annihilated by 2p + 2 − σ. Given
x ∈ Fp, we determine the appropriate case by checking whether x3 + Ax + B
is a quadratic residue. If it is, we verify annihilation by σ; otherwise, we verify
annihilation by 2p + 2 − σ. We then define Gp,σ as a function that calculates
the division polynomial with respect to the original curve and its twist. Instead
of directly applying scalar multiplications, we compute division polynomials to
verify annihilation, as this approach is computationally more efficient.

For elliptic curves EA,B such that #EA,B ̸= σ, some rational points may still
be annihilated by σ. The set of such points forms a subgroup S ⊂ EA,B(Fp).
If S is a proper subgroup, its complement EA,B \ S consists of the union of all
other cosets of S, ensuring that |EA,B \ S| ≥ |S|. Consequently, if at least one
rational point is not annihilated by σ, then at least half of the rational points
remain unannihilated. We exploit this fact to distinguish the target curve from
the others by computing Fp,σ,τ .

For a positive integer τ , given a rational point x ∈ Fp, Fp,σ,τ (A,B, x) is
defined as follows:

Gp,σ(A,B, x) =

{
ψσ(A,B, x) if (x3 +Ax+B)

p−1
2 ≡ 1 mod p

ψ2p+2−σ(A,B, x) otherwise

Fp,σ,τ (A,B, x) =

τ−1∑
i=0

Gp,σ(A,B, x+ i)

The function Fp,σ,τ corresponds to Algorithm 7. DivisionPolynomialp,σ refers to
Algorithm 6.
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Algorithm 7 Algorithm Fp,σ,τ

Input: A prime p, a cardinality σ ∈ N and a quantum state |A⟩ |B⟩ |x⟩ where
A,B, x ∈ Fp and 0 < |σ − p− 1| ≤ 2

√
p.

Output: A quantum state |Fp,σ,τ (A,B, x)⟩.
1: for 0 ≤ i < τ do

2: Compute Euler’s criteria |t⟩ ← |(x3 +Ax+B)
p−1
2 mod p⟩.

3: Compute the division polynomials |ri,1⟩ ← DivisionPolynomialp,σ(|A⟩ |B⟩ |x⟩)
and |ri,2⟩ ← DivisionPolynomialp,2p+2−σ(|A⟩ |B⟩ |x⟩).

4: Compute |r⟩ ← |r + (t ≡ 1)× ri,1 + (t ̸≡ 1)× ri,2⟩.
5: Uncompute |t⟩ and discard it.
6: |x⟩ ← |x+ 1⟩.
7: end for
8: for τ > i ≥ 0 do
9: |x⟩ ← |x− 1⟩.
10: Compute Euler’s criteria |t⟩ ← |(x3 +Ax+B)

p−1
2 mod p⟩.

11: Uncompute the division polynomials |ri,1⟩ ← DivisionPolynomial−1
p,σ(|A⟩ |B⟩ |x⟩)

and |ri,2⟩ ← DivisionPolynomial−1
p,2p+2−σ(|A⟩ |B⟩ |x⟩) and discard |ri,1⟩ and |ri,2⟩.

12: Uncompute |t⟩ and discard it.
13: end for
14: return |r⟩

Theorem 9. Given a large prime p > 220 and an positive integer σ such that
0 < |σ − p− 1| ≤ 2

√
p, there is no elliptic curve EA,B defined over Fp such that

[σ]P = 0E for all rational points P ∈ EA,B(Fp), [2p + 2 − σ]Q = 0Et for all
rational points Q ∈ Et

A,B(Fp) and the cardinality of EA,B differs from σ, where

Et is a quadratic twist of E.

Proof. Suppose that a curve EA,B satisfies the condition. According to Theorem
1, let’s say that m1, k1,m2, k2 are positive integers such that

EA,B
∼= Z/m1Z× Z/m1k1Z

Et
A,B
∼= Z/m2Z× Z/m2k2Z

where Et
A,B is a quadratic twist of EA,B and m1,m2|(p − 1). Let’s denote the

cardinality #EA,B as σ′. Since m2
1k1 = σ′ and m2

2k2 = 2p+ 2− σ′ by Theorem
3, we get

gcd(m2
1k1,m

2
2k2) = gcd(σ′, 2p+ 2− σ′) (3)

= gcd(σ′, 2p+ 2)

According to the condition, all elements in Z/m1k1Z are annihilated by both σ
and σ′. Thus m1k1|(σ − σ′) and likewise, we deduce that m2k2|(2p + 2 − σ −
2p− 2 + σ′) = (σ′ − σ). By Hasse’s theorem, we obtain

m1k1 ×m2k2
gcd(m1k1,m2k2)

∣∣∣∣|σ − σ′| ≤ 4
√
p (4)
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Since m2
1k

2
1 ≥ m2

1k1 = #EA,B(Fp) ≥ p + 1 − 2
√
p, we get m1k1 ≥ √p − 1.

Likewise, m2k2 ≥ √p− 1 on the twist. As σ − σ′ ̸= 0,

gcd(m1k1,m2k2) ≥
m1k1 ×m2k2

4
√
p

≥ (
√
p− 1)2

4
√
p

>

√
p

4
− 1

As m1,m2|(p− 1), we get gcd(p+ 1,mi) ≤ 2 and by (3),

gcd(m1k1,m2k2) = 2 gcd(k1, k2) or gcd(k1, k2)

⇒k1, k2 >
√
p

8
− 1

2

Again by Hasse’s theorem, m2
1k1 = #EA,B(Fp) ≤ p+ 1 + 2

√
p and

m1 ≤
√
p+ 1√
k1

< 2
√
2

√
p+ 1√√
p− 4

< 3p1/4

⇒ m1k1 =
#EA,B(Fp)

m1
≥ p+ 1− 2

√
p

m1
>
p3/4√
10

Likewise, we can deduce that m2k2 >
p3/4

√
10
. This again leads to (4) and we get

gcd(m1k1,m2k2) >
m1k1 ×m2k2

4
√
p

>
p

40

⇒ p

40
< gcd(m2

1k1,m
2
2k2) ≤ 2 gcd(p+ 1, σ′)

If σ′ ̸= p + 1, then gcd(p + 1, σ′) ≤ |σ′ − p − 1| ≤ 2
√
p which leads to

a contradiction. Otherwise, we have σ′ = p + 1. It follows that m1 = 2 or 1,
implying that p+1

2 |σ. This is impossible since σ ̸= p+ 1.

Based on Theorem 9, Fp,σ,τ can be used to filter out all but the target curve
of cardinality σ. We conclude by Corollary 1.

Corollary 1. If #EA,B(Fp) = σ, then Fp,σ,τ (A,B, x) = 0 for all x ∈ Fp, other-

wise, the probability that Fp,σ,τ (A,B, x) = 0 for x ∈ Fp is at most
(

3
4 +Θ

(
1√
p

))τ

.

Proof. It is trivial when the target curve is given. Let EA,B has different cardi-
nality from σ. By Theorem 9, there is at least one rational point which is not
annihilated among all rational points of EA,B and its twist Et

A,B . Without loss
of generality, let’s assume that we can find one in EA,B . The set of all ratio-
nal points in EA,B annihilated by σ is a proper subgroup S of EA,B(Fp). Then
|EA,B(Fp) \ S| > |S|, since EA,B(Fp) \ S contains at least one coset of S. When
the all rational points on the quadratic twist satisfy the condition, the ratio of

S among EA,B(Fp) ∪ Et
A,B(Fp) is at most

p+1+2
√
p

4p+4 = 1
4 +Θ

(
1√
p

)
.

Since there is no known algebraic relation between x and x + i from the
perspective of the elliptic curve group, we assume that adding the integer i acts
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like a random sampling of rational points on the elliptic curve. From the set
of {x, x + 1, ..., x + τ − 1}, the probability that Gp,σ(A,B, x + i) = 0 for all

i ∈ [0, τ) is less than
(
1− 1

4 +Θ
(

1√
p

))τ

, which leads to that the probability

Fp,σ,τ (A,B, x) = 0 is less than
(

3
4 +Θ

(
1√
p

))τ

.

Using Algorithm 7 as a building block, we replace the search oracle Op,σ in
Figure 1 by Algorithm 8. Zn is the n-controlled Pauli-Z gate combined with
n-bit NOT gates, which flips the phase only if it takes as input |0n⟩.

Algorithm 8 Algorithm OurOracle Op,σ

Input: A prime p, a cardinality σ ∈ N and a quantum state |j⟩ |b⟩ where (j, b) ∈
Fp × Z and 0 ≤ b ≤ 5.

Output: A quantum state − |j⟩ |b⟩ if the cardinality of Ej,b equals to σ, outputs
|j⟩ |b⟩ otherwise.
1: Set n← ⌈log p⌉ and τ ← 3⌈log p⌉.
2: Compute |A⟩ |B⟩ ← GetWeierstrassPairp(|j⟩ |b⟩)
3: Set |x⟩ ← |0n⟩.
4: Compute |r⟩ ← Fp,σ,τ (|A⟩ |B⟩ |x⟩).
5: Compute |r⟩ ← Zn(|r⟩). ▷ Flip the phase only if r = 0n

6: Uncompute |r⟩ ← F−1
p,σ,τ (|A⟩ |B⟩ |x⟩) and discard |x⟩ and |r⟩.

7: Uncompute |A⟩ |B⟩ ← GetWeierstrassPair−1
p (|j⟩ |b⟩) and discard |A⟩ |B⟩.

8: return |j⟩ |b⟩.

j :

GWPp GWP−1
p

b :

A : |0n⟩

Fp,σ,τ F−1
p,σ,τ

B : |0n⟩
x : |0n⟩

r : |0n⟩ Zn

Fig. 2. The quantum circuit of OurOracle Op,σ. GWPp gate represents the
GetWeierstrassPairp algorithm and Zn flips the phase only if r = |0n⟩.

Theorem 10. Algorithm 8 runs correctly for a large prime p > 220 and a pos-
itive integer σ such that 0 < |σ − p − 1| ≤ 2

√
p, i.e. it flips only the phase of

target elliptic curves of cardinality σ.
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Proof. The phase is flipped if and only if Fp,σ,τ (A,B, 0
n) = 0. Given a curve

EA,B of cardinality different from σ, by Corollary 1, the probability that x ∈ Fp

satisfies Fp,σ,τ (A,B, x) = 0 is at most(
3

4
+Θ

(
1√
p

))3⌈log p⌉
<

1

p2

Since there are less than 3p pairs of (j, b) ∈ Fp × Z, the expected number of
curves EA,B such that Fp,σ,τ (A,B, 0

n) = 0 is significantly less than 1.

5.3 Quantum Resource Estimation

Given a serial number σ such that 0 < |σ − p− 1| ≤ 2
√
p, Algorithm 6 requires

fewer than 320 log p field multiplications in Fp, assuming that g1 and g2 are
computed naively using 8 multiplications in Fp[y]. Algorithm 7 invokes running
Algorithm 6 4τ times and calculates Euler’s criteria 4τ times. When τ = 3 log p,
this results in fewer than 3852 log2 p multiplications in Fp. Consequently, Al-
gorithm 8, which executes Algorithm 7 twice, requires fewer than 7704 log2 p
multiplications in Fp.

attack method oracle Op,σ num of iterations space complexity

brute-force O(log6 p) Fp-Mul
√

2p/h(d) O(log3 p)

our method < 7704 log2 p Fp-Mul
√

2p/h(d) < 22⌈log p⌉2

Table 1. The comparison between the brute-force attack and our method. h(d) is the
class number corresponding to the given serial number σ. The boundary of the number
of iterations

√
2p/h(d) is calculated in Section 4.

From the perspective of the number of qubits, our algorithm also consumes
less number of qubits. Each Ψσi

accounts for 20⌈log p⌉ qubits. Thus, 20⌈log p⌉2
qubits are needed in total. Algorithm 7 stores ri,1 and ri,2 every τ iterations,
which requires 2⌈log p⌉2 additional qubits. On the other hand, in Schoof’s point
counting algorithm [14], the ring element in Fp[X,Y ]/(ψℓ(X), Y 2−X3−AX−B)
has size ⌈log p⌉3.

In total, by combining the upper and lower bound on the class numbers from
Section 4, the process of forging a quantum banknote using our method requires

at least 20201 p1/4 log4 p√
log p+Θ(log log p)

= O(p1/4 log7/2 p) and at most 32752p1/4 log9/2 p =

O(p1/4 log9/2 p) bit operations. The exact time complexity varies depending on
the specific class number.

6 Faster Verification of Quantum Money

In the quantum money scheme [10], the verification process is inherently related
to the forgery attack. The verification consists of two processes : 1. checking the



18 H. Kim et al.

serial number and 2. checking the uniformity of the quantum state. Each of the
two phases are related to two different types of forgery attacks : 1. searching by
the serial number and 2. making a superposition by a isogeny walk. Since our
attack is the prior case, our method can be applied to checking the validity of
the serial number. We can perform a faster verification using rational points.

Algorithm 9 Algorithm CheckSerialNumber

Input: A prime p, a serial number σ ∈ N and a quantum state |j⟩ |b⟩ whre (j, b) ∈
Fp × Z

Output: Outputs 1 if the serial number is valid, outputs 0 otherwise.

1: Set n← ⌈log p⌉ and τ ← 3⌈log p⌉.
2: Compute |A⟩ |B⟩ ← GetWeierstrassPairp(|j⟩ |b⟩).
3: Set |x⟩ ← |0n⟩.
4: Compute |r⟩ ← Fp,σ,τ (|A⟩ |B⟩ |x⟩).
5: Uncompute |A⟩ |B⟩ ← GetWeierstrassPair−1

p (|j⟩ |b⟩)
6: Measure |r⟩. If it is 0n, output 1. Otherwise, output 0.

Our method only applied to checking the validity of the serial number σ and
verifying the uniformity of the given quantum money is same as the previous
method in [10]. Our verification algorithm is directly derived from Algorithm
7. The algorithm GetWeierstrassPairp converts the j-invariant form (j, b) into
the Weierstrass pair (A,B) using the method illustrated in Algorithm 1. Our
verification algorithm is O(log4 p) times faster than using the point-counting
algorithm. According to Theorem 10, the probability that Algorithm 9 outputs
false positive is negligible when p is a large prime.

7 Conclusion

In this work, we propose an attack method to forge quantum money in the
isogeny-based quantum money scheme presented in [10] and introduce a more
efficient verification algorithm. We employ the fact that checking the exponent of
an elliptic curve group with rational points is more efficient than directly comput-
ing its cardinality. Compared to the brute-force attack using the point-counting
algorithm, our method achieves a speedup of O(log4 p). More concretely, we
estimate that forging quantum money using our approach requires fewer than
7704 log2 p multiplications in Fp for each search iteration and requires approxi-
mately 22⌈log p⌉2 qubits.

Our key insight is to utilize rational points on elliptic curves EA,B for the
efficient computation of division polynomials. Specifically, our method exploits
the property of the group structure of quadratic twists of elliptic curves. As our
approach leverages the properties of quadratic twists to utilize rational points,
we expect it to contribute to future research on quantum algorithms for elliptic-
curve-based quantum cryptography.
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