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Abstract
This work proposes an encrypted hybrid database framework
that combines vectorized data search and relational data query
over quantized fully homomorphic encryption (FHE). We ob-
serve that, due to the lack of efficient encrypted data ordering
capabilities, most existing encrypted database (EDB) frame-
works do not support hybrid queries involving both vectorized
and relational data. To further enrich query expressiveness
while retaining evaluation efficiency, we propose Engorgio,
a hybrid EDB framework based on quantized data ordering
techniques over FHE. Specifically, we design a new quan-
tized data encoding scheme along with a set of novel com-
parison and permutation algorithms to accurately generate
and apply orders between large-precision data items. Further-
more, we optimize specific query types, including full table
scan, batched query, and Top-k query to enhance the practical
performance of the proposed framework. In the experiment,
we show that, compared to the state-of-the-art EDB frame-
works, Engorgio is up to 28×–854× faster in homomorphic
comparison, 65×–687× faster in homomorphic sorting and
15×–1,640× faster over a variety of end-to-end relational,
vectorized, and hybrid SQL benchmarks. Using Engorgio, the
amortized runtime for executing a relational and hybrid query
on a 48-core processor is under 3 and 75 seconds, respectively,
over a 10K-row hybrid database.

1 Introduction

Hybrid databases (DBs) supporting complex queries that com-
bine high-dimensional vector searching and relational data
filtering emerge as a powerful tool in establishing advanced
big data applications such as recommendation systems [85],
fraud detection [84], retrieval-augmented generation (RAG)
systems [48, 61], and many more [91, 93, 96]. In such ap-
plications, it is often the case that the data owner and the
storage provider are of different geological locations, where
the DBs are stored and queried in an outsourced form [99].

While data outsourcing addresses the demands of low-cost
and flexible data management [4, 5, 31, 69, 87, 98], images
and high-dimensional data stored in the hybrid DBs can be
highly sensitive, causing substantial security concerns over
data breaching [19, 86].

Facing the security challenges against data outsourcing,
we see recent literature that explore the use of fully homo-
morphic encryption (FHE) in constructing encrypted data
management systems. Notably, FHE are utilized to establish
encrypted databases (EDBs) [10,44,56,79,97] and encrypted
vector searching (EVS) systems [33,49,81,99,101]. For exam-
ple, [10] and [97] propose multi-scheme FHE infrastructures
capable of implementing a wide range of common SQL query
statements to establish end-to-end EDBs. Similarly, existing
works also propose designs of EVS functionalities based FHE,
such as encrypted sorting [20, 49] and encrypted k-nearest
neighbors [22, 33, 83, 101].

Motivation: Despite the substantial progresses, the cur-
rent designs of EDB and EVS face two key challenges when
handling queries over encrypted data with both relational and
vectorized properties: data precision and execution efficiency.
First, data items in hybrid DB can vary significantly in for-
mats, ranging from multi-precision integers to gigabyte files,
and losing even a single bit in data precision can result in
completely incorrect system response. For example, due to
insufficient data precision, some existing methods [33, 97]
can only sort around 500 to 1,000 data items. Second, the
number of data items can be extremely large in DB systems,
easily exceeding millions of records. Although some construc-
tions [10, 49, 95] do support various hybrid SQL statements
over relatively large number of items, the execution time of
such queries can be prohibitive over large-size DBs. For in-
stance, it takes HE3DB [10] nearly 2 days to complete an
ORDER BY query over 4,096 data items. As a result, the main
motivation for this work is to develop a unified hybrid EDB
framework that executes SQL queries over arbitrary-precision
data with unbounded DB size.



Table 1: Qualitative Comparison of Existing FHE-Based Data Management Systems

VPIR Kortekaas Antonio HEDA HE3DB ArcEDB TFHE-rs PEGASUS Zuber Hong Cong Ours[70] [56] et al. [43] [79] [10] [97] [95] [65] et al. [101] et al. [49] et al. [33]

Data Types Scalar Scalar Scalar Scalar Scalar Scalar Scalar Hybrid Vector Vector Vector Hybrid
Sorting ∗

Column Sync. + + + + +

Top-k
Query Precision† Medium Arbitrary Arbitrary Low Medium Arbitrary Medium Medium Low Medium Low Arbitrary

Ordering Precision† Low Low Medium Low Low Medium Low Arbitrary
Unbounded-Size
Conversion Free

∗ Do not support sorting sequences with duplicated elements. + The computational complexity of synchronization is equivalent to sorting.
† Low precision is less than 16 bits; Medium precision is less than 32 bits, or can be improved with the larger parameters, which lead to a decrease in efficiency.

1.1 Our Contribution
To tackle the challenge, in this work, we propose Engorgio, an
encrypted database framework tailored for processing hybrid
queries over data at scale. We observe that most existing FHE-
based encrypted data processing platforms lack the native
support for hybrid queries, primarily due to the difficulty in
designing highly usable data ordering algorithms. To address
such issues, we propose a new set of single-instruction-multi-
data (SIMD) FHE operators over quantized ciphertexts to
effectively solve the trilemma between query efficiency, data
accuracy and operator expressiveness. The key design prin-
ciple here is to separate the processes of order generation
(i.e., comparisons between data items) and order application
(i.e., permuting data items), such that an expressive set hy-
brid SQL statements can be efficiently supported. The main
contributions of this work are summarized as follows.

• A New FHE Infrastructure for Hybrid EDB: To the
best of our knowledge, Engorgio is the first FHE-based
EDB framework that is capable of efficiently execut-
ing hybrid queries over encrypted data. We propose a
quantized FHE scheme equipped with new data ordering
operators to accurately handle hybrid SQL queries over
large-volume DBs.

• Homomorphic SIMD Data Ordering: Based on the
quantized FHE scheme, we introduce a new homomor-
phic comparison operator that can compare arbitrary-
precision data in a SIMD fashion. Furthermore, we
propose a symmetric sparsity encoding technique to
speedup the homomorphic permutation process accord-
ing to the comparison results, where the permutation
complexity can be amortized to O(1).

• Optimizing Hybrid Query Toolkit: We develop and
optimize a comprehensive list of SQL statements to
support various types of hybrid queries over Engor-
gio. We support most relational statements in the
TPC-H benchmark (e.g., GROUP BY, SELECT, JOIN), as
well as advanced vectorized statements (e.g., Distance,

ORDER BY, Limit k). We also propose a separate design
of the sorting (i.e., HomSort) and the synchronizing (i.e.,
HomSync) operators, which is crucial for fast evaluation
of hybrid queries.

• Thorough Experiments: We show that Engorgio
achieves 28×–854× faster homomorphic comparison,
65×–687× faster homomorphic sorting, 42×–4,595×
faster homomorphic synchronization, and 4×–58×
faster homomorphic Top-k over the state-of-the-art
(SOTA) solutions. For end-to-end query evaluation, En-
gorgio runs 15×–621× faster on relational queries, 30×–
388× faster on vectorized queries, and 68×–1,640×
faster on hybrid queries when comparing to the SOTA
FHE-based EDB frameworks.

1.2 Related Works

1.2.1 Encrypted Databases

The study of EDB attracts research interests from across the
fields, where numerous protocols and systems are proposed
to effectively perform SQL query execution on encrypted
data [9,10,34,38,39,42,44,44,52,56,63,72,74–77,79,88,90,
92, 97]. Here, we classify existing EDB works into two main
categories: secure multi-party EDB and outsourced EDB.

Multi-Party EDB: A number of secure multi-party EDB
protocols [9, 34, 38, 39, 52, 63, 75, 88, 90, 92] are designed
specifically for evaluating queries [1, 34, 38, 92] and carry out
data analysis [9, 63, 75] based on private information that is
distributed among mutually distrustful parties. Nevertheless,
as noted in [10, 38, 97], due to the inherent complexity of
designing multi-party protocols, operators proposed in secure
multi-party EDBs are often incompatible with one another,
posing significant challenges in integrating different EDB
operators into a unified database framework for evaluating
sophisticated SQL queries. Furthermore, distributing secrets
among participating parties in MPC-based techniques gen-
erally leads to substantial requirements in communication
bandwidth and interaction complexity [3, 15, 16, 38].



Outsourced EDB: Outsourced EDBs [10, 44, 56, 72, 74,
76, 79, 97] mainly focus on securely outsourcing the storage
of and computation over private data to an untrusted cloud
server. Most outsourced EDBs are constructed over multi-
ple cryptographic primitives, such as searchable encryption
(SE) [44, 72, 74], order-preserving encryption (OPE) [64, 76],
oblivious RAM (ORAM) [23, 40, 42], partially homomorphic
encryption (PHE) [44, 72, 74, 76], and fully homomorphic
encryption [10, 79, 97]. However, as mentioned in [10, 97],
earlier EDB constructions face challenges in terms of secu-
rity (e.g., leakage-abuse attacks), efficiency (e.g., extensive
communication complexity), and usability (e.g., limited query
expressiveness and data analysis capability). For FHE-based
outsourced EDB solutions, we provide a more detailed analy-
sis in Section 1.2.3.

1.2.2 Encrypted Vector Searching Systems

In a vector searching system, a server holds a database con-
sisting of high-dimensional feature vectors. To query the
database, the client sends a query vector to the server to obtain
the collection of feature vectors (also known as neighbors)
which are “similar” to the submitted query vector. To pro-
tect data confidentiality in such vector searching systems,
various EVS systems are proposed [12, 22, 33, 36, 41, 48,
49, 62, 81, 83, 89, 94, 101]. Essentially, the core of an EVS
system is the privacy-preserving vector similarity search algo-
rithm, which can be used to establish EVS query statements
such as Distance, Top-k, etc. To build the vector similarity
search algorithm, a variety of primitives including locality-
sensitive hashing (LSH) [12, 81], OPE [89], Garbled Circuits
(GC) [22], ORAM [23], and PHE [36, 41] are are employed.
However, similar to outsourced EDBs, existing EVS systems
also face the difficult trade-off between security and efficiency.
Namely, while LSH and OPE based solutions are fast, such
EVS systems do leak access patterns. In comparison, GC and
ORAM guarantee provable security to the encrypted search-
ing schemes at the cost of large communication overheads.

1.2.3 FHE-Based EDB and EVS

More recently, fast developments in FHE-based cryptographic
primitives give rise to new designs of EDBs and EVSs. In
Table 1, we summarize the main characteristics of exist-
ing FHE-based EDB and EVS frameworks. We first point
out that most existing frameworks (such as HE3DB [10],
ArcEDB [97], and Cong et al. [33]) are either designed
solely as an EDB or an EVS, but not both. Furthermore,
the inherent noises residing in FHE ciphertexts pose an
even bigger challenge against a usable hybrid EDB construc-
tion, as such noises can severely damage data precision dur-
ing hybrid queries. As illustrated in Table 1, many existing
works [10, 33, 43, 49, 56, 65, 70, 79, 95, 97, 101] suffer from
inadequate data precision when performing non-linear FHE

operations, such as homomorphic comparisons and cipher-
text format conversions. Likewise, for queries that have deep
multiplicative depth (e.g., sorting and logic aggregation func-
tions), can only accomplish such tasks over a small number of
items (i.e., bounded-size) due to the severe loss of precision
after a large number of consecutive FHE multiplications.

1.2.4 Quantization for FHE

Quantization is a common technique in the field of machine
learning [24, 25, 37, 55, 57, 58, 66, 100] to approximate high-
precision floating-point operations using integer arithmetic.
Such quantization methods are primarily used to enhance
computation efficiency at the cost of reduced data precision, as
low-precision integers are much easier to compute than large-
precision real numbers. However, when used as an encoding
step in FHE-based hybrid DBs, the loss of precision induced
by data quantization can be catastrophic. Therefore, one of
the main goals of this work is to devise an accuracy-aware
quantization framework with rigorous error analysis, such
that arbitrary-precision data can be correctly processed by
expressive hybrid queries.

2 Cryptographic Preliminaries

In this section, we introduce the main concepts of the RNS-
CKKS scheme and the associated FHE operators in Sec-
tion 2.1 and Section 2.2, respectively.

Throughout this paper, we use bold lowercase letters (e.g.,
a) for vectors, tilde lowercase letters (e.g., ã) for polynomi-
als, and bold uppercase letters (e.g., A) for matrices. We use
a≪ k to denote a k-step cyclic left rotation of the elements
in a vector a. We use ◦ to represent the Hadamard product
(i.e., element-wise product) between vectors and polynomi-
als. diag(A), diag+k(A), and diag−k(A) depicts the extracted
vector formed by the elements on the main diagonal, the k-th
super-diagonal, and the k-th sub-diagonal, respectively. We
use λ to denote the security parameter, P the plaintext mod-
ulus, Q the ciphertext modulus, and N the lattice dimension.
Let ZQ be the set of integers modulo Q, we define R, RQ, RQ,
and RR to denote Z(X)/(XN + 1), Z(X)/(XN + 1) mod Q,
Q(X)/(XN + 1), and R(X)/(XN + 1), respectively, where
S(X) is the univariate polynomial in X whose coefficients
are from the set S.

2.1 RNS-CKKS

Different from prior EDBs [10, 79, 97], Engorgio is built ex-
clusively upon the RNS-CKKS [26] scheme along with the
series of subsequent optimizations [13, 27, 45–47, 60].

In RNS-CKKS, the ciphertexts are constructed exclusively
over the ring learning with errors (RLWE) hardness assump-
tion [67, 78], where the encryption of a vector of plaintext



messages m̃ ∈ RQ under a secret key s̃ ∈ RQ is given as:

RLWEN,Q
s̃ (m̃) = (b̃, ã) = (−ã · s̃+∆m̃+ ẽ, ã).

where ã ∈ RQ is chosen uniformly at random, the noise ẽ is
sampled from some distribution χnoise, and ∆ is a scaling fac-
tor to protect the least significant bits of the message from the
noises. Note that, the ciphertext modulus Q can be one of a
sequence of positive integers Q0 < Q1 < · · ·< QL−1, where
the i-th modulus step Qi corresponds to the i-th multiplication
level. In the classic RNS-CKKS scheme, after each ciphertext
multiplication, the ciphertext modulus is decremented by one
level (i.e., from Qi to Qi−1), When the ciphertext modulus
reaches Q0, no more multiplications can be further performed.
To increase the multiplication level back to L−1, the boot-
strapping [7,27,60] operator is executed, where the ciphertext
modulus is restored from Q0 to QL−1.

2.2 Homomorphic Operators

2.2.1 Basic Homomorphic Operators

We primarily use the following basic homomorphic operators
to evaluate linear functions (e.g., polynomials) over RLWE
ciphertexts.
• + , − and ·: Ciphertext addition, subtraction and mul-

tiplication. In this work, we consider an RLWE ciphertext
to be a tuple of polynomials, where additions (+) and mul-
tiplications (·) are executed in a component-wise manner
between ciphertexts. For example, given two RLWE cipher-
texts RLWE0 = (b̃0, ã0) and RLWE1 = (b̃1, ã1). The addi-
tion between the two ciphertexts is defined as RLWE(m̃0 +
m̃1) = RLWE(m̃0)+RLWE(m̃1) = (b̃0 + b̃1, ã0 + ã1). Simi-
larly, one can define the homomorphic subtraction between
two RLWE ciphertexts. Lastly, given two RLWE cipher-
texts RLWE(m̃0) and RLWE(m̃1) which encrypt the plain-
text polynomials m̃0 and m̃1, the homomorphic multiplication
RLWE(m̃0) ·RLWE(m̃1) results in RLWE(m̃0 · m̃1). More de-
tails on ciphertext multiplication process can be found in [17].
• Rotate(RLWE(m̃),RK,k): The homomorphic rotation

operator. Given a ciphertext ct = RLWE(m̃), the rotation
key RK, and an integer k ∈ N, Rotate outputs a ciphertext
RLWE(m̃≪ k).
• Polyρ(RLWE(m̃)): Polynomial evaluation over cipher-

text. For some uni-variate polynomial ρ, Polyρ(RLWE(m̃))
denotes the homomorphic evaluation of ρ on the input ci-
phertext RLWE(m̃). In other words, after applying Polyρ, the
output ciphertext RLWE(ρ(m̃)) = Polyρ(RLWE(m̃)) can be
decrypted to obtain ρ(m̃).
• HomGate(RLWE(m̃0),RLWE(m̃1),OP): Logic gate eval-

uation over the input ciphertexts. Given two cipher-
texts RLWE(m̃0) and RLWE(m̃1) encrypting Boolean poly-
nomials m̃0 and m̃1, and a two-input logic gate OP,
HomGate(RLWE(m̃0),RLWE(m̃1),OP) outputs RLWE(m̃OP)
where m̃OP[i] = OP(m̃0[i], m̃1[i]) and m̃[i] represents the i-th

coefficient of the polynomial m̃. The evaluation of HomGate
can be accomplished using the homomorphic multiplication
and addition operators. Taking NAND as an example, we have
that RLWE(m̃OP) = (0,1)−RLWE(m̃0) ·RLWE(m̃1). Here, 0
and 1 depict a plaintext vector whose elements are all 0’s
and 1’s, respectively. In this way, we can evaluate arbitrary
two-input logic functions such as AND, OR, XOR, NOT, etc.

2.2.2 Approximate Homomorphic Comparison

As previously noted, the RNS-CKKS scheme supports the
efficient evaluation of arithmetic operations, such as addi-
tions and multiplications, between ciphertexts. However, per-
forming logical operations, e.g., comparisons, presents to
be much more challenging. To tackle this issue, approxi-
mated homomorphic comparison operators based on poly-
nomial approximations are proposed [28,29,50,59]. Here, we
use a high-degree polynomial ρsgn designed to approximate
the sgn function, specified as: sgn(x) = 1 if x > 0, 0 if x =
0, and− 1 if x < 0. We follow the definition in [28] and de-
scribe the precision to which the polynomial ρsgn approxi-
mates the sign function as (Θ,α):

|ρsgn(x)−sgn(x)|< 2−α f or x ∈ [−1,−Θ]∪0∪ [Θ,1],
(1)

where Θ and α decide the output and input precision of the
sign function, and thereby the output and input precision of the
comparison operator. Therefore, we say that the following two
notations are equivalent: ρsgn(x) and sgn(Θ,α). Equation (1)
implies that due to the discontinuous nature of sgn(x), x ∈
[−Θ,0)∪ (0,Θ] is not taken into account when measuring the
accuracy between sgn(Θ,α) and sgn(x), because the error in
this interval will exceed 2−α. Thus, we derive the construction
of the approximate homomorphic comparison for two inputs
RLWE(x̃),RLWE(ỹ) with precision (Θ,α) as:

RLWE(r̃x̃,ỹ) = ApprHomComp(Θ,α)(RLWE(x̃),RLWE(ỹ))

=
sgn(Θ,α)(RLWE(x̃)−RLWE(ỹ))+1

2
, (2)

where r̃x̃,ỹ is the comparison result:

r̃x̃,ỹ[i] =


1±2−α, if x̃[i]> ỹ[i]
1/2±2−α, if x̃[i] = ỹ[i]
0±2−α, if x̃[i]< ỹ[i].

(3)

There are many works exploring how to optimize the degree
of approximate polynomials and find better ways to com-
posite polynomials [28, 29, 50, 59]. In this paper, since we
treat ApprHomComp as a black box component, in order to
maintain generality, we employ the Chebyshev approxima-
tion [18,21,68,80], which is one of the most basic and widely
used polynomial approximation techniques, to evaluate a sign
function on a ciphertext. As [71] suggests, we use polynomi-
als of orders 59-1007 for tasks of varying precision.



SELECT ID, Price, Feature FROM Flowers
WHERE Color = “pink”
AND Price < 100
ORDER BY DISTANCE(Feature, Query_Feature)
LIMIT K

ID Color Price Feature

1 pink 95

2 purple 80

3 pink 96

… … … …
n pink 90

DISTANCE(Query_Feature, Feature)

1
0
1
…
1

① Relational Data Filtering (Sec 4.1)

Price < 100
ArbQuant
HomComp

Color = “pink” AND

ArbQuant
HomComp

1
1
1
…
1

HomGate
(AND)

1
0
1
…
1

② Distance Computation (Sec 3.3)

…

HomDist

34
530
14
…
12

Encrypted Table

Encrypted Query

④ Hybird Data Query (Sec 5)

Quant HomSort & HomSync

⨂

SELECT ID, Price, Feature 
ORDER BY DISTANCE

Prefer
Pink

Affordable 
Price

Find K items
Look like

Result
ID Price Feature
n 90
4 96
2 95
… … …
0 0 0

[22, 4, …, 1272]

[353, 4, …, 223]

[6, 7, …, 1963]

[7, 9, …, 1943]

[6, 8, …, 1983]

[6, 8, …, 1983]

[6, 8, …, 1983]

[6, 8, …, 1983]

[6, 7, …, 1963]

[22, 4, …,1272]
[7, 9, …, 1943]

34
0
14
…
12

n

LIMIT K

K

⨂Encrypted FeatureEncrypted Attribute Encrypted Distance Homomorphic Operator Ciphertext Multiplication Result Volume

③ Hybird Data Ordering(Sec 4)

ID Price Feature
n 90
4 96
2 95
… … …
0 0 0

[6, 7, …, 1963]

[22, 4, …,1272]
[7, 9, …, 1943]

n

Figure 1: An example of processing a hybrid query over Engorgio. Here, we demonstrate how to run a Top-k query that combines
attribute filtering with vector searching.

3 Framework Overview

In this section, we first formulate the main challenges for En-
gorgio in Section 3.1. Then, we provide a high-level workflow
of Engorgio in Section 3.2. We then discuss the concrete con-
structions of the quantized FHE scheme in Section 3.3. Next,
we summarize how to implement key SQL statements for the
hybrid data ordering process in Section 3.4. Lastly, we present
our threat model and the security analysis in Section 3.5.

3.1 Motivation and Observation

We identify two key challenges that motivate the design of
Engorgio, namely, accuracy and efficiency. First, data records
in hybrid EDBs can have extremely large data precision (e.g.,
millions of bits for image files). Thus, the underlying homo-
morphic comparison and sorting algorithms need to be able
to handle data with arbitrarily-large precision. Second, hy-
brid EDBs naturally have large DB sizes. As a result, the
constructed homomorphic algorithms also have to be fast,
such that large-size DBs can be efficiently evaluated within a
reasonable amount of time. In what follows, we explain the
concrete technical challenges and observations.

Challenge and Observation 1: When comparing between
ciphertexts, existing comparison methods face the fundamen-
tal trade-off between data accuracy and efficiency. For in-
stance, the accuracy for both TFHE- and CKKS-based homo-
morphic comparison functions [10, 29, 59, 97] become insuffi-
cient in sorting more than 5,000 data items under a reasonably
efficient parameter range. To resolve such accuracy-efficiency
dilemma, we devise a new quantization framework to split
large-precision data into lower-precision data segments, and
execute SIMD-compatible homomorphic comparison opera-

tor over such segments to produce binary comparison outputs.
Challenge and Observation 2: Even with a sufficiently

accurate comparison operator, querying a large amount of
hybrid data items appears to be yet challenging due to the
lack of efficient sorting algorithms. In specific, most existing
sorting algorithms rely on tightly coupled comparison and
permutation functions to sort data items. However, such con-
structions can be inefficient to sort multiple data columns. For
example, in [33], applying a set of generated orders to a new
data column (i.e., the order synchronization process) is as
slow as re-sorting the data column. Consequently, especially
when facing large hybrid DB with high cross-column synchro-
nization needs, most existing FHE-based EDB infrastructures
struggles to achieve a reasonable level of query performnace.
To tackle such challenge, we propose a matrix-multiplication-
based homomorphic permutation technique to accelerate the
process of order synchronization, which drastically enhance
the overall sorting performance over large-size hybrid EDBs.

3.2 Engorgio Workflow

Similar to prior FHE-based data management platforms [10,
79, 97], the process of running queries on Engorgio involves
three main phases: client data encryption, client query en-
cryption, and server query evaluation. Below, we provide a
concise overview of the main operations involved in each
phase, which are also depicted in Figure 1.
• Client data encryption: For every relational data table

T ∈D, each column ti in T is divided into J = ⌈|T |row/N⌉
pieces of size-N column chunks, and is encrypted via the
TableEncrypt function as [T ]. Meanwhile, for each vec-
tor feature table V T ∈ D, each column vti is divided into
V J = ⌈|V T |row/N⌉ pieces of vector column chunks, where



each vector column chunk vci, j is of size N. Then, we further
divide each of the vector column chunks vci, j into D element
blocks, assuming that the longest vector is of length D. Con-
sequently, we have V J ·D pieces of size-N data blocks, which
can finally be encrypted by the standard TableEncrypt func-
tion. The resulting encrypted vector feature table is denoted
as [V T ]. Combining the relational data tables and the vector
feature tables, we obtain the encrypted hybrid database [D]
as a concatenation of vector feature table [V T ] and relational
data table [T ]. Along with the associated keys (i.e., RK and
BK), [D] is sent to the server for cloud storage.
• Client query encryption: During the client query en-

cryption phase, the client encrypts the private data in the query
through the QueryEncrypt function. Engorgio allows users
to express a hybrid query as a standard SQL format through
a typical SELECT statement. A standard SELECT SQL query
in Engorgio follows the form Q = (PA ,P V ,Agg,AttrAgg),
where PA = (P0,P1, ...,P|PA |−1,CG0,CG1, ...,CG |PA |−2),
where Pi represents a collection of attribute predicates over
the relational DB, and CG i are the logical gate functions
to concatenate different predicates. In contrast to relational
queries, the vector query P V = (Feat,V ,OP ) is made up of
a public feature label Feat, a private feature vector V , and
a public vector operator OP (e.g., Top-k). Agg represents
the aggregation function applied to the aggregation attribute
AttrAgg. To encrypt Q , we execute QueryEncrypt on each of
the condition values in the private predicate Pi, as well as all
elements in the private vector V . Subsequently, we obtain the
encrypted relational predicates and encrypted vector features
[PA ] = ([P ]0, [P ]1, . . . , [P ]|PA |−1,CG0,CG1, . . . ,CG |PA |−2)

and [P V ] = (Feat, [V ],OP ), respectively. The encrypted
query is then formatted as [Q ] = ([PA ], [P V ],Agg,AttrAgg).
• Server query evaluation: In the query evaluation phase,

the server carries out the evaluation of the encrypted hybrid
query [Q ] over the encrypted hybrid database [D]. The core
steps involved in the homomorphic evaluation of the hybrid
query are ① relational data filtering, ② vector distance cal-
culation, ③ hybrid data ordering, and ④ hybrid data query.
Note that, the first two steps are interchangeable depending
on the exact query format. For the relational data filtering step,
each encrypted attribute predicate [P ]i is evaluated over the
corresponding encrypted attribute table [T ] ∈D using the ho-
momorphic comparison and HomGate functions. The filtered
result is a series of ciphertexts encrypting true (a value of 1)
or false (a value of 0). At the same time, HomDist is used to
calculate the encrypted distances between the querying vector
[V ] with label Feat and the associated vector column in [V T ]
with the same attribute label. Following the relational data
filtering and distance calculation, we apply a homomorphic
multiplication operator to combine the filtered results with the
encrypted distances, yielding a set of encrypted distances that
satisfy the filtering conditions. Then the encrypted distance is
ordered using HomOrder functions such as HomTopK, and the
HomSync is employed to synchronize other columns.

3.3 Quantized FHE
In what follows, we introduce the quantized FHE scheme
developed based on the RNS-CKKS scheme to effectively
solve the accuracy obstacle against hybrid EDB.

3.3.1 Data Quantization and Encoding

Here, we outline the set of quantized encoding and decod-
ing operators proposed to concretely characterize the errors
homomorphically added to the plaintext messages.
• m̃ζ← QuantEncode(m̃,ζ,Bg): For a polynomial of real-

valued messages m̃(X) = ∑
N−1
i=0 miX i where mi ∈ R, given

the precision parameter ζ and a quantized radix base Bg,
QuantEncode first maps each mi ∈ R into a rational value
mζ

i ∈Q with precision ζ ∈ Z as

mζ

i = QuantEncode(mi)R−→Q = argmin
pi,qi

∣∣∣∣mi−
pi

qi

∣∣∣∣ , (4)

where pi
qi

is the best rational approximation to the real number
mi up to a precision of ζ . Thus we obtain polynomial of
rational-valued messages m̃ζ = ∑

N−1
i=0 mζ

i X i, where mζ

i ∈ Q.
After embedding mi into the rational number mζ

i with up to ζ

bits of errors, we map mζ

i into a P-bit integer mζ

i as

m
ζ

i = QuantEncode(mζ

i )Q−→ZP = mζ

i 2ℓqi mod P, (5)

where P = Bg
⌈ ζ

logBg
⌉. By conducting such mapping for each

mζ

i , we say that m̃ζ(X) = ∑
N−1
i=0 m

ζ

i X i ∈ RP is a quantized
message polynomial with a precision of ζ.
• ˆ̃m← QuantSegment(m̃ζ,Bg): Note that, to encrypt data

with arbitrary precision, the above approach results in an
infinitely large P. Hence, for practical purposes, we apply seg-
mentation function QuantSegment to m̃ζ to further split the
quantized message polynomial, such that each segment can fit
into a fixed-precision plaintext space RP. For some quantized
message polynomial m̃ζ = ∑

N−1
i=0 m

ζ

i ·X i ∈ RP with precision
ζ (which can potentially extremely large such as a file), let
m

ζ

i = ∑
w−1
j=0 msegi, jBg

i, we obtain w segmented polynomials

QuantSegment( ˆ̃mζ) = ˆ̃m= {m̃ζ

0,m̃
ζ

1, · · · ,m̃
ζ

w−1}, (6)

where m̃
ζ

i = ∑
N−1
j=0 mseg j,iX

j ∈ RBg , and w = ⌈ ζ

logBg
⌉.

• Q̂RLWE
ζ

s̃ ( ˆ̃m) ← QuantEnc( ˆ̃m, s̃): Based on the quan-
tized segmented polynomial representation, we define the
quantized version an RLWE encryption as

Q̂RLWE
ζ

s̃ ( ˆ̃m) = (RLWEs̃(m̃
ζ

0), · · · ,RLWEs̃(m̃
ζ

w−1)).

In other words, the quantized encryption of ˆ̃m under Q̂RLWE

is simply the respective encryption of m̃ζ

i under the RLWE



ciphertexts. We use Q̂RLWE
ζ

[i] to denote the i-th chunk

RLWEs̃(m̃
ζ

i ) ciphertext in Q̂RLWE
ζ

s̃ ( ˆ̃m).

• ˆ̃m← QuantDec(Q̂RLWE
ζ

s̃ ( ˆ̃m), s̃): The decryption of a
quantized RLWE ciphertext simply applies the CKKS decryp-

tion operator to each of the RLWE chunks Q̂RLWE
ζ

[i] to get
ˆ̃m. Note that, applying decryption does not fully recover the
original plaintext message m̃ζ.
• m̃ζ ← QuantMerge( ˆ̃m): After obtaining the quan-

tized chunks {m̃ζ

i }, we can combine the chunks using the
QuantMerge function and get

m̃ζ = QuantMerge( ˆ̃m) =
w−1

∑
i=0

m̃
ζ

i Bg
i ∈ RP. (7)

Essentially, QuantMerge is the inverse of QuantSegment, re-
combining the segmented polynomials to derive the m̃ζ.
• m̃ζ← QuantDecode(m̃ζ): To further recover the original

data format, we apply QuantDecode, the inverse function of
QuantEncode, mapping m̃ζ from RP back to RQ:

m̃ζ = QuantDecodeZP→Q(m̃
ζ) =

N−1

∑
i=0

m
ζ

i

2ℓqi
X i ∈ RQ. (8)

3.4 Key Operators in Hybrid Database

In what follows, we describe the set of key homomorphic
SQL operators that can be used to construct advanced SQL
statements.
• [T ], [V T ]← TableEncrypt(T ,V T ): TableEncrypt

is constructed over the QuantEncode, QuantSegment, and
QueryEncrypt operators to encrypt the database tables T
and V T as Q̂RLWE ciphertexts. TableEncrypt produces
the encrypted tables [T ] and [V T ] corresponding to T and
V T , respectively.
• [Q ]← QueryEncrypt(Q ): QueryEncrypt encrypts a

hybrid SQL query Q = (PA ,P V ,Agg,AttrAgg) as Q̂RLWE
ciphertexts. The result is an encrypted hybrid query [Q ] =
([PA ], [P V ],Agg,AttrAgg).
• [F ] ← HomFilter([PA ], [T ]): HomFilter filters the

encrypted table [T ] with an encrypted attribute predicate
[PA ] and outputs a set of Q̂RLWE ciphertexts [F ] as re-
sults. The quantized homomorphic comparison operators
ArbQuantComp (detailed in Section 4.1) and the HomGate
operator mentioned in Section 2.2 are used by HomFilter to
enhance the filtering accuracy and operator expressiveness.
• [D]← HomDist([V ], [V T ]): HomDist homomorphically

calculates the squared Euclidean distance between the query-
ing feature vector [V ] and vectors stored in the encrypted
vector table [V T ] by performing element-wise homomor-
phic multiplication and addition in a SIMD manner. HomDist
outputs |V T |row encrypted distances [D].

• [O] ← HomOrder([F ], [D], [T ], [V T ],OP ): HomOrder
sorts and synchronizes the encrypted hybrid data in [T ] and
[V T ] based on the encrypted distance [D] and attribute fil-
tering results [F ]. The output is an encrypted ordered table
[O] produced according to the ordering operation specified
in OP (e.g., Top-k, Sort, MIN). HomOrder contains two ba-
sic operators, HomSort and HomSync, which are described in
Section 4.2.
• [R ] ← HomAgg(Agg,AttrAgg, [T ], [O]): HomAgg aggre-

gates the column AttrAgg with the aggregation function Agg
on the encrypted table [T ] and the encrypted ordered result
[O]. HomAgg outputs the encrypted aggregation result [R ].
• [R ]i ← HomGROUP([Q ], [T ],AttrGroup): HomGROUP per-

forms GROUP BY on the encrypted table [T ] with the group
attribute AttrGroup. Similar to [10, 79, 97], we issue mul-
tiple copies of [Q ] with equality tests (also based on
ArbQuantComp proposed in Section 4.1) for the group at-
tribute, and produce the grouped result [R ]i.

3.5 Threat Model and Security
Our security goal is to protect the outsourced hybrid database
D owned by the client C from the semi-honest server S . The
concrete public and private data inside the server’s scope is
summarized as follows.
Public Data:
• |D|: The size of the database, i.e., the number of data

(including vector) tables in D .
• |T |row, |T |col, |V T |row, |V T |col: The number of rows

as well as the number of columns in some table T ∈ D (or
V T ∈D).
• |Q |: The number of filtering predicates in a SQL query.
• CG : The logic connection (e.g., AND, OR) between the

filtering predicates in a SQL query.
• Attr, |Attr|,wAttr: The attribute label (e.g., gender, date),

the range of the attribute (e.g., |Month|= 12), and the number
of quantized segments for this attribute.
• Feat, |Feat|,wFeat : The feature label (e.g., picture), the

length of vectors under the particular feature label (e.g.,
|picture|= 1024 for a 32×32-pixel picture vector), and the
number of quantized segments for this feature.
• OP : The data ordering operators and the associate pa-

rameters, including Top-k, Sort, MIN, and MAX.
• The aggregation functions (e.g., SUM, COUNT) in a query.

Private Data:
• Ti, j, for i ∈ |T |row, j ∈ |T |col: Exact values of the rela-

tional data items in all T ∈D .
• V T i, j, for i ∈ |V T |row, j ∈ |V T |col: Exact values of the

vector feature items in all V T ∈D .
• Pi ∈ PA , Vi ∈ P V , for i ∈ |Q |: The attribute and vector

predicate values in the SQL query.
Security of Engorgio: Similar to that in previous

works [10, 32, 44, 56, 76, 79, 97], the private data owned by
the client are all encrypted using FHE. Hence, the security



of Engorgio can be directly reduced to that of the underly-
ing FHE scheme. However, one subtle difference here is
that, without executing data ordering operators, data queries
with vectorized predicates (e.g., Distance(Feat) < 50) are
susceptible to volume leakage attacks [54], as the volume
of querying result is dependent on the predicate conditions.
Hence, in Engorgio, we force all vectorized queries to include
a data ordering operator (e.g., min, max or Top-k). Using such
an approach, the amount of exposed information from a vec-
torized query is strictly limited to the public parameters. In
other words, in our setup, existing volume leakage attacks
cannot learn any additional knowledge beyond what can al-
ready be inferred from public information. We formalize the
end-to-end security guarantees of Engorgio as follows:

Theorem 1. Given some ideal functionality F, Engorgio se-
curely evaluates F when instantiated with a semantically-
secure homomorphic encryption scheme against semi-honest
adversaries with a computational security parameter of λ.

Here, we use the ideal functionality F to capture the behav-
ior of an ideal system while satisfying the security properties
mentioned above. Due to space limitation, the formal defini-
tion of F can be found in Appendix B.

4 Quantized Homomorphic Data Ordering

In this section, we discuss details on the key cryptographic
techniques to efficiently perform arbitrary-precision en-
crypted data ordering in Engorgio. Our approach contains
two core components: the quantized homomorphic compari-
son algorithm ArbQuantComp (Section 4.1), and the quantized
homomorphic sorting algorithm HomSort (Section 4.2).

4.1 Quantized Homomorphic Comparison

4.1.1 Binarized Homomorphic Comparison

To solve the performance-usability dilemma discussed in Sec-
tion 3.1, we propose a new binarized homomorphic compari-
son operator BHomComp capable of generating Boolean logic
values for a various of comparison functions, such as >, <,
==, ≤, and ≥. Our construction is based on the approxi-
mate sign function described by Equation (3) in Section 2.2.2,
where the comparison result is ternary. To binarize Equa-
tion (3), the key idea of BHomComp is to construct a set of
linear transformations over the approximate comparison re-
sults to extract the hidden equality relation.

The detailed algorithm for BHomComp is provided in Al-
gorithm 1, given two ciphertexts ctx̃ and ctỹ, encrypting x̃
and ỹ respectively. Let cmp be the comparison function, e.g.,
>, <, ==, ≤, or ≥, and β be the comparison precision pa-
rameter such that β < α. BHomComp outputs an RLWE ci-
phertext ctr̃ encrypting the polynomial of comparison re-
sults r̃, where r̃[i] = 1± 2−β if the predicate x̃[i] cmp ỹ[i] is

Algorithm 1: Binarized Homomorphic Comparison
BHomComp

Input :Two RLWE ciphertexts ctx̃ and ctỹ,
comparison operator cmp, and precision
parameter (Θ,α).

Output :An RLWE ciphertext ctr̃cmp = RLWE(r̃cmp),
where r̃cmp[i] = 1±2−β if x̃[i] cmp ỹ[i] is
True, else r̃cmp[i] = 0±2−β and β < α.

1 ct1← ApprHomComp(Θ,α)(ctx̃,ctỹ)
2 ct2← (0,1)− ct1
3 ct3← 4ct1 · ct2
4 switch cmp do
5 case ≥ do ctr̃cmp ← ct1 + 1

2 ct3;
6 case > do ctr̃cmp ← ct1− 1

2 ct3;
7 case ≤ do ctr̃cmp ← ct2 + 1

2 ct3;
8 case < do ctr̃cmp ← ct2− 1

2 ct3;
9 case == do ctr̃cmp ← ct3;

10 case ̸= do ctr̃cmp ← (0,1)− ct3;
Return :ctr̃cmp

true, and r̃[i] = 0± 2−β if the predicate is false. We take
> as an example to walk through the procedure of Algo-
rithm 1. On Line 1–2, we compute the approximate com-
parison results ct1 = ApprHomComp(Θ,α)(ctx̃,ctỹ) and ct2 =
ApprHomComp(Θ,α)(ctỹ,ctx̃) = 1− ct1. Next, on Line 3, we
compute the equality result ct3 = 4ct1 · ct2. Lastly, on Line
6, we eliminate non-binary values and output the binarized
comparison result as ctr̃> = ct1− 1

2 ct3.

While BHomComp can carry out different kinds of compari-
son functions, the output ciphertexts are constrained by the
limited precision parameter β, which is smaller than the input
precision α. To increase β, we need to adopt significantly
larger encryption parameters as well as higher degree approx-
imation polynomials, resulting in much slower computations.
To address the above issue, we design a rectification poly-
nomial ρRectify(x) to correct the accumulated noises in and
produce accurate results. Given a pre-defined precision param-
eter α and an interval [1−2−β,1+2−β]∪ [0−2−β,0+2−β],
we want to generate a polynomial ρRectify(x) such that

∀x ∈ [1−2−β,1+2−β]∪ [0−2−β,0+2−β] (9)

|ρRectify(x)−⌈x⌋ |< 2−α.

Based on the equioscillation theorem [68], we are able to
find the approximation polynomial of the rectify function.
Through quantized encoding and the rectify function, we get
the quantization layer. By inserting the above quantization
layer after the BHomComp, the noise can be continuously con-
trolled to be lower than 2−α, which facilitates the design of
the arbitrary-precision quantized homomorphic comparison.



Algorithm 2: Arbitrary-Precision Quantized Homo-
morphic Comparison ArbQuantComp

Input :Two QRLWE ciphertexts ctx̃ζ , ctỹζ .
Input :Comparison operator cmp and precision

parameter (Θ,α).
Output :An RLWE ciphertext ctr̃cmp = RLWE(r̃cmp),

where r̃cmp[i] = 1±2−α if x̃ζ[i] cmp ỹζ[i] is
True, else r̃cmp[i] = 0±2−α.

1 for i = 0 to w−1 do
2 ctr̃cmp,i ← BHomComp(ctx̃ζ [i],ctỹζ [i],cmp,(Θ,α))

3 ctr̃cmp,i ← ρRectify(ctcmp,i)
4 ctr̃==,i ← BHomComp(ctx̃ζ [i],ctỹζ [i],==,(Θ,α))

5 ctr̃==,i ← ρRectify(ct==,i)

6 ctr̃0 ← ctr̃cmp,0
7 for j = 1 to w−1 do
8 ctr̃ j ← BatchHomMux(ctr̃ j−1 ,ctr̃cmp, j ,ctr̃==, j)

9 ctr̃cmp ← ctr̃w−1

Return :ctr̃cmp

4.1.2 Arbitrary-Precision Comparison

To achieve arbitrary-precision comparison without incurring
heavy computational burdens, we extend the BHomComp op-
erator from RLWE to Q̂RLWE. We derive a new divide-
and-conquer strategy to construct the arbitrary-precision ho-
momorphic comparison operator ArbQuantComp over the
Q̂RLWE ciphertexts as defined in Section 3.3.1.

In Algorithm 2, we provide the concrete algorithmic con-
struction of ArbQuantComp. Given two ciphertexts ctx̃ζ and
ctỹζ encrypting ˆ̃x and ˆ̃y as inputs, where ˆ̃x and ˆ̃y contains w

quantized segmentations of x̃ζ and ỹζ. cmp is the comparison
function. ArbQuantComp outputs an RLWE ciphertext ctr̃cmp
encrypting the batched comparison result polynomial r̃, where
for each of the i-th slot in r̃, r̃[i] = 1± 2−α if the predicate
x̃ζ[i] cmp ỹζ[i] holds true, and r̃[i] = 0± 2−α otherwise. We
use the strictly larger than function > as an example to ex-
plain Algorithm 2 step-by-step. First, by definition, each of
ctx̃ζ and ctỹζ consists w RLWE ciphertexts. Hence, to carry out
the large comparison between ctx̃ζ and ctỹζ , we first perform
comparisons over each of the RLWE chunk in ctx̃ζ and ctỹζ

via the BHomComp operator. To implement such comparison,
on Line 1–5 in Algorithm 2, we apply the BHomComp to the
individual RLWE ciphertexts in ctx̃ζ [i] and ctỹζ [i] along with
the precision-rectifying polynomial ρRectify. Next, upon ob-
taining the w result polynomials {ctr̃>,0 ,ctr̃>,1 , . . . ,ctr̃>,w−1},
we merge the individual comparison results to produce a
single RLWE ciphertext representing the final comparison
outcome ctr̃> . Hence, on Line 6–9, we merge the compari-
son results ctr̃>,i = RLWE(r̃>,i) with the equality test results
ctr̃==,i = RLWE(r̃==,i). In the merging process, we make
use of a batched homomorphic multiplexer (MUX) opera-
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Figure 2: Examples of (a) a 4-element bitonic sorting network
and (b) the associated matrix-based permutation process.

tor BatchHomMux, which perform the following computation

ctr̃ j = BatchHomMux(ctr̃ j−1 ,ctr̃>, j ,ctr̃==, j)

= ctr̃>, j + ctr̃==, j · (ctr̃ j−1 − ctr̃>, j). (10)

Here, ctr̃ j encrypts a polynomial r̃ j where r̃ j[i] equals
r̃ j−1[i] when r̃==, j[i] == 1 and r̃>, j[i] otherwise, i.e., r̃ j[i] =
(r̃==, j[i] == 1) ? r̃ j−1[i] : r̃>, j[i]. Essentially, BatchHomMux
homomorphically selects between ctr̃ j−1 and ctr̃>, j based on
the value of ctr̃==, j in a SIMD manner. Line 6–9 in Al-
gorithm 2 is simply iterating over each of the segmented
comparison result ctr̃>, j from small to large, and check if
the comparison between the j-th data chunks determines
the final comparison result. In other words, considering the
case w = 2, the comparison x̃ζ > ỹζ can be computed as
(ˆ̃x[1] == ˆ̃y[1]) ? (ˆ̃x[0] > ˆ̃y[0]) : (ˆ̃x[1] > ˆ̃y[1]), where ˆ̃x[1] and
ˆ̃y[1] encrypt the most significant bits of x̃ and ỹ, respectively.

Note that, as specified in Equation (6), the data precision for
each of the segmented plaintext chunk in the input QRLWE
ciphertexts is Bg. In contrast, the precision of the resulting
RLWE ciphertext from ArbQuantComp is α. Hence, we set
α > 2Bg to ensure that the ArbQuantComp operator generates
outputs with the same precision level as the inputs.

4.2 Quantized Homomorphic Sorting

4.2.1 The Basic Sorting Scheme

Based on the quantized comparison operators, we propose
a new two-stage sorting framework to efficiently execute
the bitonic sorting algorithm [8] over FHE ciphertexts. Our
HomSort operator construction follows the bitonic algo-
rithm [8], where the sorting process proceeds in terms of
parts and stages. As shown in Figure 2a, each stage in the
bitonic sorting network contains multiple parts. For a table
with a row size of |T |row, each part performs |T |row/2 sets
of comparisons and data swaps. Completing all the parts in
the i-th stage in the sorting network produces |T |row/2i+1

partially sorted subsequences, each of length 2i+1. Based on
the architecture of the bitonic network, we divide our sorting
procedure into two steps: the order generation (i.e., the com-
parison) step and the order application (i.e., the permutation)



Algorithm 3: Order Generation HomOrdGen

Input :A QRLWE ciphertext ctx̃, rotate key RK,
precision parameter (Θ,α), table size |T |row,
stage s and part p.

Output :An RLWE ciphertext ctcmps,p , which encrypts
the comparison result of stage s, part p.

1 for i = 0 to |T |row step 2s+2 do
2 Mask[i : i+2s+1]← 1
3 Mask[i+2s+1:i+2s+2−1]←−1
4 for i = 0 to |T |row step 2s−p+1 do
5 Eli[i : i+2s−p]← 1
6 Eli[i+2s−p:i+2s−p+1−1]← 0
7 for i = 0 to w−1 do
8 ctmask[i]← ctx̃[i] ·Mask
9 ctrot[i]← Rotate(ctmask[i],RK,2s−p)

10 ctcmps,p←ArbQuantComp(ctmask,ctrot,>,(Θ,α)) ·Eli
Return :ctcmps,p

Algorithm 4: Order Application HomOrdApp

Input :A QRLWE ciphertext ctx̃, an encoded
permutation matrix Ms,p, table size |T |row,
stage s, part p, and rotate key RK.

Output :A QRLWE ciphertext ctres, which encrypts
the sort result of stage s, part p.

1 for i = 0 to w−1 do
2 ctsup[i]← Rotate(ctx̃[i],RK, |T |row−2s−p)
3 ctsub[i]← Rotate(ctx̃[i],RK,2s−p)
4 ctres[i]←

ctsup[i] ·Ms,p[0]+ctx̃[i] ·Ms,p[1]+ctsub[i] ·Ms,p[2]
Return :ctres

Algorithm 5: Homomorphic Sort HomSort
Input :An unsorted QRLWE ciphertext ctx̃, rotate

key RK, stage s, part p, table size |T |row,
and precision parameter (Θ,α).

Output :A QRLWE ciphertext ctres, which encrypts a
sorted column.

1 ctres ← ctx̃
2 for s = 0 to log2(|T |row) do
3 for p = 0 to s do
4 ctcmps,p ←

HomOrdGen(ctres,RK,(Θ,α), |T |row,s, p)
5 Ms,p← MEncode(ctcmps,p ,RK, |T |row,s, p)
6 ctres ←

HomOrdApp(ctres,Ms,p, |T |row,s, p,RK)
Return :ctres

step. Here, we consider the case where |T |row ≤ N, while the
extension for |T |row > N will be discussed in Section 5.1. In
what follows, we take Figure 2 as an example to explain the

overall sorting procedure.
• Order Generation Step: Taking an unsorted array

x = [a,b,c,d] as example, according to the bitonic sorting
network illustrated in Figure 2a, we need to compute a > b
and d > c in the zeroth part of the zeroth stage (part0, stage0).
Hence, suppose that x is encrypted as ctx̃, we derive the
HomOrdGen operator depicted in Algorithm 3. As specified
on Line 1–6 of Algorithm 3, we first initialize the mask
and elimination vectors Mask and Eli. Then, on Line 8,
we multiply ctx̃ by the mask vector Mask = [1,1,−1,−1]
and get ctx̃Mask , which encrypts [a,b,−c,−d]. Next, we com-
pute Rotate(ctx̃[i] ·Mask,RK,1) to obtain ctx̃rot ,which en-
crypts [b,−c,−d,a] (Line 9). Lastly on Line 10, we con-
duct the > comparison between ctx̃mask and ctx̃rot , followed
by a coefficient-wise multiplication by an elimination vector
Eli = [1,0,1,0]. After the multiplication, we obtain the com-
parison result ctcmps,p that encrypts [a > b,0,d > c,0]. Note
that the comparison result cmps,p is essentially a sequence of
relative orders between a,b,c and d. Hence, we refer to this
step as the order generation step.
• Order Application Step: After order generation, we

need to apply the orders over the input vector via element-
wise permutation. Unlike prior works [10, 33, 65, 97], we
use homomorphic vector-matrix multiplication to homomor-
phically permute the plaintext elements in the ciphertexts.
In Figure 2b, we show an example of our matrix-based per-
mutation technique. To begin with, we encode the compar-
ison results into the corresponding positions of the permu-
tation matrix using the MEncode operator (the concrete en-
coding procedures are detailed in Appendix C.1). Then, we
only need to perform a simple inner product between an
unsorted input vector and the permutation matrix, i.e., the
HomOrdApp operator, to swap the elements in the input vec-
tor and produce the sorted output. The detailed algorithm
for HomSort is provided in Algorithm 5. Given an unsorted
QRLWE ciphertext ctx̃, HomSort iterate through the each of
the log2(|T |row)(log2(|T |row)+1)/2 parts of the bitonic al-
gorithm (Line 2–3). The main loop body calls HomOrdGen,
MEncode, and HomOrdApp on Line 4–6 repetitively, result-
ing in the sorted QRLWE ciphertext ctres. After sorting one
specific column, we can also synchronize the orders (or inter-
mediate orders) of the sorted column to other data columns.
In particular, we can extract all the permutation matrices
[M0,0,M1,0, · · · ,Mlog2(|T |row)−1,log2(|T |row)−1] during the sort-
ing process, and execute HomOrdApp on the target columns
to synchronize the data orders. The exact synchronization
algorithm is detailed in Appendix C.2.

Remark: The advantage of using vector-matrix multiplica-
tion for order application is that once the permutation matrix
is obtained, we can directly use the permutation matrix to syn-
chronize the order to other data columns through HomSync.
However, the homomorphic vector-matrix multiplication has
complexity O(|T |2row) for permuting |T |row items, which can
be slow. Therefore, in the following section, we introduce
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Figure 3: Demonstrations of (a) the symmetric sparsity matrix
encoding and (b) the matrix-based permutation process.

a new matrix encoding method to reduce the permutation
complexity from O(|T |2row) to O(|T |row).

4.2.2 Matrix-Based Fast Permutation

We note that, when permuting the to-be-sorted vectors, the
permutation matrix has the following two properties as shown
in Figure 3: i) symmetric along the diagonal, and ii) only
the main diagonal, one sub-diagonal, and one super-diagonal
contain valid order information.

Based on the above observations, we propose a fast per-
mutation algorithm HomOrdApp to homomorphically per-
mute a vector based on the symmetric sparsity matrix en-
coding. Figure 3 illustrates the permutation matrix M0,0 of
(stage0, part0) where the input vector v0,0 has a length of
eight. We can see that, only the elements on the main diago-
nal and the dotted lines parallel to the diagonal contain the
actual comparison results, while the rest of the positions are
all zeroes. Subsequently, we encode the elements on these
three lines as vdiag = diag(M0,0), vsub = [diag−1(M0,0),0],
and vsup = [0,diag+1(M0,0)]. Then, the permutation of v0,0
based on M0,0 is given by

v0,0 ·M0,0 = v0,0 ◦vdiag +(v0,0≪ 1)◦vsub +(v0,0≪ 7)◦vsup.

More concretely, as shown in Algorithm 4, to permute
a QRLWE ciphertext cts,p containing w RLWE ciphertexts
of length |T |row based on an encoded permutation matrix
Ms,p, we invoke 2w homomorphic rotations on Line 1-3 and
3w homomorphic multiplications on Line 4 to carry out the
homomorphic permutation.

4.2.3 Complexity Analysis

Here, we compare the concrete SQL operation costs of En-
gorgio against HE3DB [10] and ArcEDB [97]. As shown
in Table 2, for most SQL statements, Engorgio can reduce
the computation costs by a factor of N due to the use of
SIMD packing. As a result of both SIMD packing and sparse
matrix encoding, when all data items can be packed into a
single ciphertext, the number of ciphertext multiplications re-
mains constant (i.e., O(1)) with respect to the number of data

items in Engorgio. Furthermore, by solely relying on the RNS-
CKKS scheme, Engorgio does not need to apply the costly
ciphertext conversion operations as in [10, 97], significantly
improving the performance of most filter-aggregation queries.
In Section 6.2, we quantitatively assess the performance gain
of Engorgio against [10, 97].

5 Hybrid Data Querying Optimization

In this section, we propose several optimization techniques
when applying the sorting operator presented in Section 4 in
hybrid data querying.

5.1 Full Table Scan Query
When executing hybrid queries over data tables T whose row
size exceed the number of SIMD slots in the FHE encryp-
tion scheme (i.e., |T |row > N), existing works face challenges
either in terms of limited precision [10, 33] or incompatible
operator design [49, 97]. To address both issues, we devise an
extension to our matrix-based homomorphic sorting scheme
proposed in Section 4.2 to act over multiple ciphertexts. Given
a set of QRLWE ciphertexts {ct0,ct1, · · · ,ctl} that encrypt one
long unsorted array of length (padded to) N · l, the idea is to
break the size-N · l permutation into smaller N-size permuta-
tions through matrix decomposition. Since the size-(N · l)2

permutation matrix Ms,p can be easily decomposed into l size-
N permutation matrices {M0,M1, · · · ,Ml} along its main
diagonal. For example, if l = 2, we have

[ct0,ct1] ·Ms,p = [ct0,ct1] · [diag(M0),diag(M1)]+

[ct0,ct1]≪ (2s−p) · [0,diag−2s−p(M0),diag−2s−p(M1)]+

[ct0,ct1]≪ (N−2s−p) · [diag2s−p(M0),diag2s−p(M1),0].

Due to space limitations, more details on the unbounded-
size sorting algorithms are outlined in Appendix C.3.

5.2 Batched Query
In contrast to the case where |T |row > N as discussed above,
we also see real-world databases with table sizes much less
than the number of SIMD slots, i.e., |T |row ≪ N. In such
case we can batch multiple queries into a single ciphertext
to enhance the overall efficiency. For example, suppose that
we wish to execute t queries on a table of d rows where
d≪ N. We can batch the t queries (either relational or vec-
torized) into a single query as long as d · t < N. Although
batched filtering and distance computations are relatively easy
to achieve, batched sorting can be more challenging due to
the need of early termination in the bitonic sorting network.
Specifically, to batch sorting d sets of filtered results, we need
to first encode the i-th hybrid filter result into the i× d-th
position of the batched input vector. Then, we perform the



Table 2: Operation costs comparison for each homomorphic SQL statements.

SQL+ Method # Comparison # Gate # Conversion # Multiplication # Rotate

SELECT
ArcEDB [97] |T |row · |Q | |T |row · (|Q |−1) log(P)|T |row · |Q |∗ None None
HE3DB [10] |T |row · |Q | |T |row · (|Q |−1) None None None
This Work |T |row · |Q |/N |T |row · (|Q |−1)/N None None None

MIN/MAX
ArcEDB [97] log(P)(|T |row−1) None log(P)(2|T |row−1) log(P)(2|T |row−1) None
HE3DB [10] |T |row−1 None 2|T |row−1 2|T |row−1 None
This Work (|T |row−1)/N (|T |row−1)/N None 4(|T |row−1)/N 3(|T |row−1)/N

GROUP BY
ArcEDB [97] |T |row · |AttrGroup| None |T |row · |AttrGroup| None None
HE3DB [10] |T |row · |AttrGroup| None None None None
This Work |T |row · |AttrGroup|/N None None None None

ORDER BY
ArcEDB [97] log(P)(|T |2row−|T |row)/2 2log(P)|T |row log(P)|T |row |T |2row−|T |row |T |row−1
HE3DB [10] |T |row log2 |T |row None |T |row(log2 |T |row +1) |T |row(log2 |T |row +1) None
This Work |T |row log2(|T |row)/N |T |row log2(|T |row)/N None 4|T |row log2(|T |row)/N 3|T |row log2(|T |row)/N

|Q |, |T |row, |AttrGroup|, log(P) are publicly known to the server. ∗ Required when the SELECT condition involves inner table data or aggregated results.
+ The complexities of SUM, COUNT and AVG operators are not listed because they are consistent in HE3DB, ArcEDB and this work.
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Figure 4: The conceptual illustrations of (a) a full 8-element
sorting network and (b) the pruned Top-1 network.

aforementioned HomSort algorithm on the batched input vec-
tor but early terminate the sorting process after completing
the (log2(d)− 1)-th stage. Due to the inherent property of
the bitonic algorithm, after log2(d)− 1 stages, the batched
input vector is partially sorted at every d intervals, which
is precisely the desired sorted result. We provide a detailed
BatchedSort algorithm in Appendix C.4.

5.3 Top-k Query
As mentioned in [51], it is generally the case that database
clients only care about the most relevant k results (i.e., Top-k)
to a particular query. Thus, we propose an optimization for
implementing the Top-k query statement over the HomSort
operator inspired by [82].

As mentioned in Section 5.2, due to the inherent prop-
erty of the bitonic algorithm, the intermediate ciphertexts at
the log2(d)-th stage contain |T |row/2d partially ordered se-
quences of length d. Therefore, we can cut off certain parts in
the sorting network to improve the performance of the Top-k
statement. In Figure 4b, we show an example of selecting the
Top-1 out of 8 input elements. The observation here is that,
we can prune the 8-input sorting network in Figure 4a to only

sort the elements that have the potential to become the Top-1
element. Roughly speaking, to select the Top-k from |T |row
elements, we first perform the log2(k) complete storing stages
over all the |T |row elements. Then, we get |T |row/2k sorted
blocks, each of length 2k. Next, we execute the log2(k)-th
stage for log2(|T |row) − log2(k)− 1 times. During t-th ex-
ecution of the log2(k)-th stage, we adjust the rotation step
of part0 to 2log2(k) + (2t+1 − 1) · 2k. Subsequently, we get
the top k out of the |T |row elements. We observe that the
complexity of the above homomorphic Top-k algorithm is
O(|T |row log2 k) for an input sequence of |T |row elements.
Note that, since it is generally the case that k≪ |T |row, we
obtain a complexity reduction of nearly log2 |T |row when
compared to the unmodified bitonic algorithm (which has
a complexity of O(|T |row log2 |T |row)). The concrete homo-
morphic Top-k algorithm is explained in Appendix C.5.

6 Evaluation

In evaluating Engorgio, we wish to answer the following two
main research questions (RQs).
•RQ1: How efficient are the individual components of

Engorgio compared to state-of-the-art (SOTA) methods?
•RQ2: How does Engorgio perform in relational, vector,

and hybrid SQL queries?

6.1 Experiment Setup
We implement Engorgio based on OpenFHE [6] using C++17
and compiled with GCC 10.2.0. We set the lattice dimen-
sion D = 217, the ciphertext slot size N = D/2 = 216, and the
largest ciphertext modulus QL to be a 3,516-bit integer. The
secret keys are drawn from a ternary distribution as specified
in [30]. The above parameters provide 128-bit of security
level according to [2, 14]. The experiments are carried out on
an Intel Xeon Gold 6226R processor with 512 GB of RAM in
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Figure 5: Microbenchmark results for homomorphic compari-
son, sorting, synchronization, and Top-k.

Table 3: Benchmark results for SQL statements over 1K rows.

SQL HE3DB [10] (s) ArcEDB [97] (s) Engorgio (s)

SELECT 276.2 1× 9.9 28× 1.2 230×
MIN/MAX 1,219.4 10× 12,501.5 1× 79.9 156×
GROUP BY 377.9 2.1× 807.9 1× 2.3 349×
ORDER BY 26,613.1 15× 394,724.9 1× 574.3 687×

a single-thread environment. The relational part of our hybrid
database is made up of the TPC-H benchmarks [35] and the
vector part is made up of the data in SIFT1M dataset [53].

6.2 Microbenchmarks

To answer RQ1, we perform a comprehensive set of mi-
crobenchmarks to test the efficiency for each of the basic
homomorphic operators in Engorgio, including data filtering,
data ordering, order synchronization, and Top-k selection.

Table 4: Ciphertext size analysis of 1M rows records with
different precision.

Precision Methods Ciphertext Size

16-bit
ArcEDB [97] 4GB 512×
HE3DB [10] 2GB 256×
This Work 8MB 1×

32-bit
ArcEDB [97] 8GB 512×
HE3DB [10] 2GB 128×
This Work 16MB 1×

64-bit
ArcEDB [97] 16GB 512×
HE3DB [10] — —
This Work 32MB 1×

− means the method does not support such level of precision.

• Filtering: Here, we compare the proposed
ArbQuantComp operator against the best-performing
existing solutions [10, 49, 59, 65, 95, 97]. As shown in
Figure 5a and Figure 5b, many existing works cannot perform
homomorphic comparisons with 64-bit precision. Note that,
ArcEDB [97] is categorized into online and offline phase,
with details provided in Appendix D.1. Notably, Engorgio is
28×–854× faster than the SOTA homomorphic comparison
methods for a precision level of 32-bit or above.
• Sorting: We compare HomSort to existing solutions that

support homomorphic sort [10, 49, 65, 95, 97]. We vary the
unsorted vector length from 23 to 217 with 16-bit precision.
As shown in Figure 5c, due to the large noise growth, most
existing methods [49, 97] are limited by the number of el-
ements that can be sorted (i.e., the length of the unsorted
vector). Meanwhile, HE3DB [10] can only sort vectors with
8-bit precision elements due to the noise growth from cipher-
text conversion. In contrast, Engorgio can sort vectors with
length beyond 216 while demonstrating 65×–687× speedup
against the SOTA sorting algorithms.
• Synchronization and Top-k: We test the performance

of order synchronization and Top-k query. As shown in Fig-
ure 5d, Engorgio is 42×–4,595× faster than leading meth-
ods [23, 97] when the synchronizing sequence length ranges
from 23 to 215. Similarly, for Top-k, as depicted in Figure 5e,
Engorgio is 4×–58× faster than the SOTA solutions [33, 95].
• SQL Operation: Through Table 3, we illustrate that, to

echo with the theoretical complexity analysis in Section 4.2.3,
Engorgio can indeed accelerate the evaluation speeds of vari-
ous homomorphic SQL statements by 8×–687×, when com-
pared to those in [10] and [97].

6.3 SQL Benchmarks

To answer the RQ2, we evaluated the performance of Engor-
gio on various end-to-end SQL queries, including relational
queries, vectorized queries, and hybrid queries.
• Relational Query: For the relational query, we com-

pare our results with the most recent FHE-based frame-
works [10, 97]. We use queries in TPC-H benchmarks [35] to
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Figure 7: Relational, vectorized, and hybrid end-to-end SQL
query performance comparisons with varying sizes of |T |row.

test the performance of Engorgio under varying row sizes. As
shown in Figure 7a, Engorgio is 15×–20× faster than [97]
and 329×–353× faster than [10] over 16-bit TPC-H Q1. As
illustrated in Figure 7b, for queries like TPC-H Q12 that in-
volve inner-table comparisons, Engorgio can be 242×–251×
faster than [10] and 616×–621× faster than [97]. In terms of
memory performance, as illustrated in Table 4, we can reduce
the peak memory consumption by up to 512×.
• Vectorized Query: We construct two vectorized queries

VQ1 and VQ2, which consist of vector searching, Top-k, and

synchronization statements (detailed in Appendix D.2). We
compare our results with the most relevant frameworks [33,
95]. As shown in Figure 7c, Engorgio is 43×–55× (resp. 30×–
38×) faster than [33] and 241×–388× (resp. 202×–317×)
faster than [95] over VQ1 (resp. VQ2).
• Hybrid Query: We construct two hybrid queries HQ1

and HQ2 (detailed in Appendix D.2). Since there is no pub-
licly available work that support hybrid queries over EDBs,
we estimate the performance of existing works [10, 95, 97]
based on the supported operators. As shown in Figure 7e,
Engorgio runs 68×–80× faster than [10], 80×–120× faster
than TFHE-rs [95], and 142×–1,640× faster than [97] under
various row sizes for HQ1 and HQ2.
• Communication Costs: We compare the query and re-

sponse sizes with respect to different numbers of concurrently
issued TPC-H Q6 queries as a measure of communication
costs. As shown in Figure 6, when compared to [10] and [97],
Engorgio can reduce the query and response sizes by up to
1,014× and 976×, respectively.

Lastly, when all the 48 processor cores are utilized, the
amortized runtime of Engorgio can be under 3 and 75 seconds
for TPC-H Q1 and HQ2, respectively, over a 10K-row EDB.

Remark: Although Engorgio provides substantial latency
reductions for the queries over hybrid EDBs, we still identify
the homomorphic comparison function as the fundamental
challenge against FHE-based EDBs. In particular, the current
approximation polynomials in implementing the homomor-
phic comparison function yet face the limited precision and
high multiplicative depth problems. Thus, finding better poly-
nomials to approximate the comparison function is one of the
key future research directions.

7 Conclusions

In this work, we present Engorgio, an FHE-based encrypted
hybrid database framework that evaluates arbitrary-precision
hybrid SQL statements on large-size databases. By designing
a set of new data ordering and querying primitives, we are
able to efficiently apply both relational and vectorized queries
over arbitrary-precision data. In the experiments, we show
that Engorgio can outperform the SOTA FHE-based EDB
frameworks across a comprehensive set of SQL benchmarks.
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Ethics Considerations And Compliance With
The Open Science Policy

This section outlines the ethical considerations and compli-
ance with the open science policy of this work.

Ethics Considerations
This work proposes an encrypted hybrid database framework,
which mainly focuses on the protection of sensitive data in
hybrid databases. Importantly, the experimental portion of
this research does not involve live systems but is conducted in
a controlled environment. Below, we discuss the ethical impli-
cations of the research, adherence to open science principles,
and our compliance with the relevant guidelines.
• Beneficence: The main objective of our research is to pro-

tect data security, which aligns with the idea of beneficence.
By developing and evaluating Engorgio, we seek to enhance
data security and prevent unauthorized access, thereby protect-
ing users from potential harms associated with data breaches.
Based on our database outsourcing research background, we
have conducted a thorough risk assessment and ensured that
our methodologies will not produce potential negative out-
comes. The experimental setup is contained within a secure
and isolated environment to avoid any negative impacts on
public systems or individuals.
• Respect For Persons: Respect for the individual is one

of the core principles of this work. This is because the original
intention of this work is to protect the security of personal
sensitive data in an outsourced environment while ensuring
the security of sensitive data in query statements. We main-
tain high standards of integrity in all aspects of the research
process. All data used in the experiments are anonymized and
securely managed to ensure privacy and confidentiality.
• Justice: The principle of justice requires a fair distribu-

tion of the benefits and burdens of research. In our work, we
ensure that users of the outsourced database benefit from the
server’s high computational resources while maintaining data
security. We also make sure that the server does not result
in data breaches or other issues, thus enhancing service qual-
ity and ensuring that both parties involved benefit from the
research. Additionally, our research does not use sensitive
or personal data from public systems, avoiding any unfair
negative impacts on individuals or groups.
• Respect for Law and Public Interest: Our work follows

all pertinent laws and guidelines on data security and crypto-
graphic research. We have also looked over our procedures to
make sure Engorgio follows public interest criteria and does
not support any illegal behavior or unethical activity.

Open Science Policy
Following the open science policy, we are dedicated to guar-
anteeing that our work is transparent and easily available. The

following actions are in place:
• Reproducibility: To facilitate reproducibility and inde-

pendent validation of our work, we will provide detailed de-
scriptions of our experimental setup and results. Additionally,
all relevant research artifacts will be submitted for the artifact
evaluation process. This submission will ensure the availabil-
ity, functionality, and reproducibility of our work, allowing
for thorough assessment by the committee.
• Open Access: Our source code and materials

for replicating experiments are publicly available at
https://zenodo.org/records/14730651.
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A FULL NOTATIONS

We summarize the notations and operators used in this work
in Table A1.

B SECURITY PROOF

Proof of Theorem 1. We assume that the client performs the
encryption function over the hybrid database D and the query
Q locally. From the encryption procedures mentioned in Sec-
tion 2.1, we know that the client holds the private key s̃. We
safely hold it true that the original RNS-CKKS cryptosys-
tem [26] attains indistinguishability under chosen-plaintext

https://www.mongodb.com/use-cases/analytics
https://www.mongodb.com/use-cases/analytics
https://github.com/zama-ai/tfhe-rs


Appendix Table A1: Summary of Notations

Notation Description

D The database
T ,V T The relational or feature data table

|T |row, |V T |row The number of rows in table T or V T
|T |col, |V T |col The number of columns in table T or V T

Q The SQL query
|Q | The number of predicates in query Q

PA ,P V The attribute and vector query
P ,V The attribute and vector predicate values
|T |row The size of the unsorted sequence

CG The logic connection
OP The data ordering operators
Attr The attribute label
Agg The aggregation function
Feat The feature label
[D] The encrypted database
[F ] The encrypted filter result
[D] The encrypted distance
[O] The encrypted ordered table
[R ] The encrypted query result

λ The security parameter
P The plaintext modulus
Q The ciphertext modulus for RLWE
N The lattice dimension for an RLWE
ZQ The set of n-vectors over ZQ
R The cyclotomic ring Z[X ]/(XN +1)

RQ The cyclotomic ring ZQ[X ]/(XN +1)
χ The noise distribution
∆ The scaling factor
a An element in vector domain

a[i] The i-th element of a
ã An element in polynomial ring

ã[i] The i-th coefficient of ã
A An element in matrix domain
ζ The quantization precision
w The number of quantized segments
Bg The quantized radix base
m̃ The quantized polynomial
ˆ̃m A collection of segmented polynomials

RLWEN,Q
s̃ (m̃)

An RLWE ciphertexts encrypting m̃
with parameters (N,Q) and secret s̃

Q̂RLWE
ζ

s̃ ( ˆ̃m)
A QRLWE ciphertexts encrypting ˆ̃m
with precision ζ and secret s̃

diag,diag±k

The extracted vector formed by the
elements on the main diagonal, the k-th
super-diagonal or the k-th sub-diagonal

≪ Circular left shift
◦ The Hadamard product

+,−, · Addition, subtraction and multiplication

attack (i.e., achieves IND-CPA security). In addition, we as-
sume that the adversary A (the server) is semi-honest, i.e., the
adversary follows the workflow honestly but wishes to learn
as much information as possible from the client. Recall that
the IND-CPA security of the RNS-CKKS cryptosystem [26]
relies on the hardness of the decision ring learning with errors
(R-LWE) problem, formulated as follows.

Definition 1. Let R∨ be the dual fractional ideal of R. For

security parameter λ, let Q = Q(λ)≥ 2 be a positive integer
modulus, χ = χ(λ) be a distribution over R, and s ∈ R∨q be
a random element, we denote AN,Q,χ(s) as the RLWE distri-
bution obtained by sampling a← Rq uniformly at random,
e← χ and returning (a,a · s+ e) ∈ Rq×R∨q . The decision
ring learning with errors is defined as Decision-R-LWEN,Q,χ

is to distinguish between the distribution AN,Q,χ(s) and the
uniform distribution U(Rq×R∨q ).

In addition, we employ the following corollary from [73].

Corollary 1. (Corollary 6.3 in [73]) Let K be any number
field of degree N, and R = OK . Let α = α(N) ∈ (0,1), and
let Q = Q(N)≥ 2 be an integer such that αQ≥ ω(1). There
is a polynomial-time quantum reduction from K-SIV Pγ to
(average-case, decision) R-LWEN,Q,χ for any

γ≤max{ω(
√

N logN/α,
√

2N)}. (A1)

It is assumed that solving K-SIV P, which is the shortest
independent vector problem limited to the ideal lattices in the
number field K, is NP-hard [11, 73]. Together with Defini-
tion 2, Corollary 1 from [73] essentially shows that the deci-
sion R-LWE problem is difficult independent of the choice of
the number field K and modulus Q.

Here, we prove Engorgio’s security guarantees under the
simulation paradigm by defining two worlds: the real world
and the ideal world. In the real world, the actual protocol
is run by honest parties. In contrast, in the ideal world, an
ideal functionality F takes inputs from the parties and directly
outputs the result to the relevant party. We construct a simple
simulator S that simulates the view of the semi-honest server
A on our system.

Ideal Functionality F. We first define our ideal functional-
ity F which stores the current hybrid database and responds
to queries in the following way:

1) TableEncrypt(T ,V T ): F runs table encryption, and
produces the encrypted tables [T ] and [V T ] corresponding
to T and V T , respectively.

2) QueryEncrypt(Q ): F runs query encryption for a given
query Q = (PA ,P V ,Agg,AttrAgg), and results in an en-
crypted query [Q ] = ([PA ], [P V ],Agg,AttrAgg), where Agg
represents the aggregation function applied to the aggregation
attribute AttrAgg.

3) HomFilter([PA ], [T ]): F filters the table [T ] with an
encrypted attribute predicate [PA ] and outputs the filtering
result [F ].

4) HomDist([V ], [V T ]): F calculates the squared Eu-
clidean distance between the querying feature vector [V ]
and vectors stored in the encrypted vector table [V T ], and
produces encrypted distances [D].

5) HomOrder([F ], [D], [T ], [V T ],OP ): F sorts and syn-
chronizes the encrypted hybrid data in [T ] and [V T ] based
on the encrypted distance [D] and attribute filtering results



[F ]. The output is an encrypted ordered table [O] produced
according to the ordering operation specified in OP (e.g.,
Top-k, Sort, MIN).

6) HomAgg(Agg,AttrAgg, [T ], [O]): F aggregates the col-
umn AttrAgg with the aggregation function Agg on the en-
crypted table [T ] and the encrypted ordered result [O], result-
ing in the encrypted aggregation result [R ].

7) HomGROUP([Q ], [T ],AttrGroup): F performs GROUP BY
on the encrypted table [T ] with the group attribute AttrGroup

and produce the grouped result [R ]i.
We allow F to leak Leak(F) = (structQ,schemeP),

where structQ refer to the public data defined in Section 3.5
and schemeP refer to the public data about the encryption
scheme, including the security parameter λ, lattice dimension
N, the ciphertext modulus Q, the associated keys (i.e., RK
and BK).

Definition 2. Let π represent the protocol for an encrypted
hybrid database, which takes query Q from the client as in-
put. F simulates the functionality offered by π as a trusted
entity. Let A be an adversary who observes the view of a semi-
honest server during the protocol run and gets the final output.
Let ViewReal

π denote the view of A in the real world experi-
ment, while ViewIdeal

π,Leak(F(Q)) refers to the simulated view of A ,
which is generated by a simulator S in the ideal world given
only the leakage of F. Then, ∃ a probabilistic polynomial time
(PPT) algorithm S for all non-uniform algorithms A PPT in
λ, s.t.

Pr[Q← A(λ); i R←{0,1};A(Viewi,Q) = i]≤ 1
2
+negl(λ),

where View0 = ViewReal
π and View1 = ViewIdeal

π,Leak(F(Q)).

We begin by first providing a construction for our simulator
S for the ideal world.

Simulator Construction. The simulator S is constructed
as follows:

1) On receiving (TableEncrypt) from F: S stores it locally
and forwards it to the adversary A .

2) On receiving (QueryEncrypt) from F: The
simulator S samples a random query Q rand =
(PA rand,P V rand,Agg rand,Attr

Agg
rand) satisfying the query

structure and generates an encryption of random query
[Q rand] = ([PA rand], [P V rand],Agg rand,Attr

Agg
rand) using the

key generation and encryption steps.
3) On receiving (HomFilter) from F: The simulator S

outputs the filtering result [F rand] by performing the homo-
morphic filtering using PA rand and [T ] as the input. S then
sends the [F rand] to A .

4) On receiving (HomDist) from F: The simulator S out-
puts the encrypted distance result [D rand] by calculating the
distance using [V rand] and [V T ] as the input. S then sends
the [D rand] to A .

5) On receiving (HomOrder) from F: The simulator S out-
puts an encrypted ordered table [O rand] by ordering the en-
crypted hybrid data in [T ] and [V T ] using the encrypted
distance [D rand] and attribute filtering results [F rand]. S then
sends the [O rand] to A .

6) On receiving (HomAgg) from F: The simulator S outputs
the encrypted aggregation result [R rand] by aggregating the
column AttrAgg with the aggregation function Agg on the
encrypted table [T ] and the encrypted ordered result [O rand].
S then sends the [R rand] to A .

7) On receiving (HomGROUP) from F: The simulator S
outputs produce the grouped result [R rand]i by performing
GROUP BY on the encrypted table [T ] with the group attribute
AttrGroup. S then sends the [R rand]i to A .

Right now, it is sufficient to demonstrate that the view of
any adversary interacting with Engorgio is indistinguishable
from their view of the original RNS-CKKS cryptosystem, as
detailed in Section 2.1. Recall that in the Engorgio protocol,
the server carries out the homomorphic query evaluation over
the encrypted hybrid database [D] using the encrypted query
[Q ]. This process yields the encrypted query result [R ] along
with certain intermediate results (e.g., [F ], [D], [O]). While
querying operations in Engorgio (i.e., HomFilter, HomDist,
HomOrder, HomAgg, and HomGROUP) can be expressed as the
combination of basic homomorphic operations (i.e., multipli-
cation, addition, rotation, etc.), we collectively refer to these
homomorphic query operations as HQO and the plain query
operations as PQO. Without loss of generality, we assume
that the client encrypts a query Q ∈U(Rq×R∨q ), while the
server executes the homomorphic query operator HQO over
the ciphertext [Q ]. Due to the homomorphic property, the
relationship HQO([Q ]) = [PQO(Q )] holds. We first prove the
security of the homomorphic query operation in the following
lemma:

Lemma 1. The homomorphic query operation HQO against
semi-honest adversaries with a computational security pa-
rameter of λ.

Proof. Basically, S simulates the behavior of the client within
the homomorphic query evaluation protocol π, all while re-
maining unaware of any input. Here, the real view of the
semi-honest server on the client is

Viewπ(N,P,Q,χ,Q ) = HQO([Q ]) = [PQO(Q )]. (A2)

Meanwhile, the output of the simulator is

S(N,P,Q,χ) = HQO([Q rand]) = [PQO(Q rand)]. (A3)

From Definition 2 and Corollary 1, it follows that the deci-
sion R-LWE problem is hard for any number field with any
modulus. In other words, no efficient distinguisher can differ-
entiate R-LWE samples from uniformly random polynomials
U(Rq×R∨q ) for any input Q , i.e.,

[PQO(Q )]
c≡U(Rq×R∨q ), (A4)



where
c≡ indicates that the left and right sides are computa-

tionally indistinguishable. Since [PQO(Q rand)] is a valid en-
cryption of a vector of PQO(Q rand), we can conclude that

[PQO(Q )]
c≡U(Rq×R∨q )

c≡ [PQO(Q rand)], (A5)

for any input Q . In other words, assuming the hardness of
the decision R-LWE problem, a semi-honest server cannot
distinguish between a valid encryption process and the output
of a simulator. Consequently, the semantic security of proto-
col π can be directly reduced to the hardness of the decision
R-LWE problem. Specifically, any efficient semi-honest ad-
versary capable of breaking the security of π would also be
able to efficiently solve the decision R-LWE problem and the
K-SIV P problem.

Previously, we demonstrated the security of HQO. Since the
evaluation of a query is composed of multiple HQOs, we now
prove the security of the combination of multiple HQOs.

Lemma 2. The combination of HQOs against semi-honest
adversaries with a computational security parameter of λ.

Proof. Since there exists neither interaction nor decryption
process between the client and the server during the compu-
tation process of multiple concatenated HQOs, all the inter-
mediate results are valid FHE ciphertexts. In other words,
no efficient distinguisher can differentiate the intermediate
R-LWE samples from uniformly random polynomials, i.e.,

[F ]
c≡U(Rq×R∨q )

c≡ [F rand] (A6)

[D]
c≡U(Rq×R∨q )

c≡ [D rand] (A7)

[O]
c≡U(Rq×R∨q )

c≡ [O rand] (A8)

[R ]
c≡U(Rq×R∨q )

c≡ [R rand] (A9)

[R ]i
c≡U(Rq×R∨q )

c≡ [R rand]i, (A10)

where [HomOrder(F ,D)] = [O], [HomAgg(O)] = [R ], and
[HomGROUP(R )] = [R ]i.

Since the Engorgio protocol is a single-round protocol,
there is only one round of interaction during the query pro-
cess: the user sends the encrypted query, and the server sends
back the encrypted query result. No additional communica-
tion or decryption operations occur in between, ensuring that
the protocol does not leak any information under the security
parameter of λ. Combining Lemma 1 and Lemma 2, we con-
clude that Engorgio securely evaluates the ideal functionality
F when instantiated with semantically secure homomorphic
encryption, and is secure against semi-honest adversaries with
a computational security parameter of λ.

Algorithm 6: Matrix Encoding MEncode

Input :Comparison result ctcmps,p , rotate key RK.
Input :Table size |T |row, stage s, part p.
Output :Encoded permutation Matrix Ms,p.

1 ctcmpdiag ←
ctcmps,p +Rotate(ctcmps,p ,RK,|T |row−2s−p)

2 ctcmpsub ← HomGate(ctcmps,p ,NOT)

3 ctcmpsup ← Rotate(ctcmpsub ,RK,|T |row−2s−p)
Return :Ms,p = [ctcmpsup ,ctcmpdiag ,ctcmpsub ]

Algorithm 7: Homomorphic Synchronization
HomSync

Input :An unsorted QRLWE ciphertext ct0,0. Sorting
matrices [M0,0,M1,0, · · · ,Mlog2 N−1,log2 N ],
rotate key RK, and precision parameter
(Θ,α).

Output :A QRLWE ciphertext ctres, which encrypts a
synchronized column.

1 ctres ← ct0,0
2 for s = 0 to log2 |T |row do
3 for p = 0 to s do
4 HomOrdApp(ctres,Ms,p,|T |row,s, p,RK,(Θ,α))

Return :ctres

C DETAIL ALGORITHMS

C.1 Permutation Matrix Encoding
As shown in Algorithm 6, given the comparison result ctcmps,p ,
MEncode apply Rotate to ctcmps,p and add the rotate re-
sult with ctcmps,p to obtain the ctcmpdiag on Line 1. Then on
Line 2-3 apply HomGate and Rotate to obtain ctcmpsup and
ctcmpsub , thus the permutation matrix is encoded as Ms,p =
[ctcmpsup ,ctcmpdiag ,ctcmpsub ].

C.2 Homomorphic Synchronization
As detailed in Algorithm 7, given an unsorted QRLWE ci-
phertext, and sorting matrices, we synchronize this ciphertext
base on the sorting matrices by performing HomOrdApp on
Line 4. Therefore output a QRLWE ciphertext ctres, which
encrypts a synchronized column.

C.3 Unbounded-Size Sorting
The core idea of unbounded-size sorting is to treat multiple ci-
phertexts that need to be sorted as a whole ciphertext, arrange
the multiple permutation matrices along the diagonal into a
large permutation matrix, and then execute the sorting algo-
rithm. We first propose CrossRot to perform homomorphic
rotation over multiple ciphertexts. As detailed in Algorithm 8,
for a QRLWE ciphertext vector CT and rotate step T , we



Algorithm 8: Cross-Ciphertext Rotation CrossRot

Input :A RLWE ciphertext vector CT, which
contains l RLWE ciphertexts, encrypts Nl
values, rotate key RK and rotate step T .

Output :A RLWE ciphertext vector CTrot, which
contains l RLWE ciphertexts after cyclic left
shift T position.

1 giant ←
⌊ T

N

⌋
2 for i = 0 to l−1 do
3 CTprerot[i]← CT[(i+giant) mod l]
4 baby← T mod N
5 Mask0[0 : N−baby]←{1}N−baby

6 Mask0[N−baby : N]← {0}baby

7 Mask1 ← {1}N−Mask0
8 for j = 0 to l−2 do
9 CTrot[ j]←

Rotate(CTprerot[ j],RK,baby) ·Mask0 +
Rotate(CTprerot[ j+1],RK,baby) ·Mask1

10 CTrot [l−1]← Rotate(CTprerot[l],RK,baby) ·
Mask0 +Rotate(CTprerot[0],RK,baby) ·Mask1

Return :CTrot

divide the rotation into two parts, the giant part
⌊ T

N

⌋
and the

baby part T mod N. For the giant part, we rearrange the po-
sitions of each QRLWE ciphertext (Line 1-3). For the baby
part, we rotate the adjacent ciphertexts, multiply them by
the mask vectors corresponding to the adjacent ciphertexts,
and merge them together (Line 5-11). We use CrossRot to
replace Rotate in Algorithm 3, MEncode, and Algorithm 4,
resulting in UHomOrdGen, UMatEncode, and UHomOrdApp for
unbounded-size sorting algorithm Algorithm 9. The Algo-
rithm 9 first initialize mask vector and the eliminate vector
similar to Algorithm 3, but here the vector length is Nl (Line
1-9). Then we use CrossRot and ArbQuantComp to carry
out pairwise comparisons of different positions in ciphertext
vector according to the sorting network (Line 10-13). Then
we invoke UMatEncode to encode the permutation matrix
(Line 14). Finally, we invoke 2 CrossRot and 3l homomor-
phic multiplications for each ciphertext segment to perform
permutation (Line 15-20).

C.4 Batched Sorting

As detailed in Algorithm 10, given an unsorted QRLWE ci-
phertext ct0,0, which encrypts N/|T |row unsorted columns,
table size |T |row (padding to a power of two), rotate key
RK, and precision parameter (Θ,α). BatchedSort out-
puts QRLWE ciphertext ctres, which encrypts N/|T |row
sorted columns. We iteratively perform the aforementioned
HomOrdGen, MEncode, and HomOrdApp on Line 1-6, but termi-
nate the sorting process early in stage s = log2 |T |rowto obtain
the N/|T |row sorted columns. For simplicity, we assume that

Algorithm 9: Unbounded Homomorphic Sort
UnboundedSort

Input :An unsorted QRLWE ciphertext vector
CT0,0, which contains l QRLWE ciphertexts,
each ciphertext encrypts a plaintext with
length N.

Input :Table size Nl and rotate key RK.
Output :A QRLWE ciphertext vector CTres, which

encrypts a sorted vector result.
1 CTres ← CT0,0
2 for s = 0 to log2(Nl)−1 do
3 for p = 0 to s do
4 for i = 0 to Nl step 2s+2 do
5 Mask[i : i+2s+1]← 1
6 Mask[i+2s+1 : i+2s+2−1]←−1
7 for i = 0 to Nl step 2s−p+1 do
8 Eli[i : i+2s−p]← 1
9 Eli[i+2s−p : i+2s−p+1−1]← 0

10 for i = 0 to w−1 do
11 CTrot[i]← CrossRot(CTs,p[i] ·

Mask,RK,2s−p) ·Eli
12 CTmask[i]← CTs,p[i] ·Mask ·Eli
13 CTcmps,p [i]←ArbQuantComp(CTmask[i],CTrot[i],>

,(Θ,α))
14 Ms,p← MEncode(ctcmps,p ,RK,N,s, p)
15 for i = 0 to w do
16 CTsup[i]←

CrossRot(CTs,p[i],RK,N−2s−p)
17 CTsub[i]← CrossRot(CTs,p[i],RK,2s−p)

18 for i = 0 to w−1 do
19 for j = 0 to l−1 do
20 CTres[i][ j]←

CTsup[i][ j] ·Ms,p[0][i]+CTs,p[i][ j] ·
Ms,p[1][i]+CTsub[i][ j] ·Ms,p[2][i]

Return :CTres

there is only one ciphertext after packing, that is, x|T |row
N = 1.

When x|T |row
N > 1, we use unbounded-sort proposed in Sec-

tion 5.1 to execute the above steps.

C.5 Homomorphic Top-k
As detailed in Algorithm 11, given an unsorted QRLWE
ciphertext ct0,0, rotate key RK, precision parameter (Θ,α),
and Top-k parameter k, We first perform the first log2(k)
stages of the sorting algorithm on Line 1-6, and then ex-
ecute the log2(k)-th stage for log2(N)− log2(k)− 1 times
on Line 7-11. During t-th execution of the log2(k)-th stage,
we perform part0 on Line 7-22 by adjusting the rotation
step of part0 in MEncode, HomOrdGen, and HomOrdApp to
2log2(k)+(2t+1− 1) · 2k. Finally, HomTopK outputs QRLWE
ciphertext ctres, where the first k elements are the top-k results.



Algorithm 10: Batched Sort BatchedSort
Input :An unsorted QRLWE ciphertext ct0,0, which

encrypts N/|T |row unsorted columns.
Input :Column length |T |row, rotate key RK, and

precision parameter (Θ,α).
Output :A QRLWE ciphertext ctres, which encrypts

encrypts N/|T |row sorted columns.
1 ctres ← ct0,0
2 for s = 0 to log2(|T |row) do
3 for p = 0 to s do
4 ctcmps,p ←

HomOrdGen(ctres,|T |row,s, p,RK,(Θ,α))
5 Ms,p← MEncode(ctcmps,p ,RK,N,s, p)
6 ctres ←

HomOrdApp(ctres,Ms,p,|T |row,s, p,RK)
Return :ctres

SELECT id,
AVG(price) AS avg_price, COUNT(*) AS id_count,
SUM(sales) AS sum_sales, SUM(quantity) AS sum_ quant,
DISTANCE(Table_3.feature, hq1_feature) AS dist

FROM T_3
WHERE T_3.price < 100 

AND (T_3.color = 'red' OR T_3.color = 'blue’) 
AND T_3.shipdate >= '2024-01-01’

GROUP BY id
ORDER BY dist;

SELECT id, name, color, price FROM
(SELECT *, DISTANCE(T_1.feature, 
vq2_feature) AS dist FROM T_1)

AS subquery
ORDER BY dist DESC
LIMIT 16;

SELECT * FROM
(SELECT *, DISTANCE(T_1.feature,     
vq1_feature) AS dist FROM T_1) 

AS subquery
ORDER BY dist ASC
LIMIT 4;

SELECT id,
SUM(price*(1-discount)) AS revenue, 
COUNT(*) AS id_count, SUM(sales) AS sum_sales,
AVG(discount) AS avg_discount,
DISTANCE(Table_3.feature, hq2_feature) AS dist

FROM T_3
WHERE T_3.discount > 0.25 AND T_3.quantity >= 2

AND (T_3.sales > 100 AND T_3.sales < 500)
GROUP BY id
ORDER BY dist
LIMIT 4;

(a) VQ1.
SELECT id,

AVG(price) AS avg_price, COUNT(*) AS id_count,
SUM(sales) AS sum_sales, SUM(quantity) AS sum_ quant,
DISTANCE(Table_3.feature, hq1_feature) AS dist

FROM T_3
WHERE T_3.price < 100 

AND (T_3.color = 'red' OR T_3.color = 'blue’) 
AND T_3.shipdate >= '2024-01-01’

GROUP BY id
ORDER BY dist;

SELECT id, name, color, price FROM
(SELECT *, DISTANCE(T_1.feature, 
vq2_feature) AS dist FROM T_1)

AS subquery
ORDER BY dist DESC
LIMIT 16;

SELECT * FROM
(SELECT *, DISTANCE(T_1.feature,     
vq1_feature) AS dist FROM T_1) 

AS subquery
ORDER BY dist ASC
LIMIT 4;

SELECT id,
SUM(price*(1-discount)) AS revenue, 
COUNT(*) AS id_count, SUM(sales) AS sum_sales,
AVG(discount) AS avg_discount,
DISTANCE(Table_3.feature, hq2_feature) AS dist

FROM T_3
WHERE T_3.discount > 0.25 AND T_3.quantity >= 2

AND (T_3.sales > 100 AND T_3.sales < 500)
GROUP BY id
ORDER BY dist
LIMIT 4;

(b) VQ2.
SELECT id,

AVG(price) AS avg_price, COUNT(*) AS id_count,
SUM(sales) AS sum_sales, SUM(quantity) AS sum_ quant,
DISTANCE(Table_3.feature, hq1_feature) AS dist

FROM T_3
WHERE T_3.price < 100 

AND (T_3.color = 'red' OR T_3.color = 'blue’) 
AND T_3.shipdate >= '2024-01-01’

GROUP BY id
ORDER BY dist;

SELECT id, name, color, price FROM
(SELECT *, DISTANCE(T_1.feature, 
vq2_feature) AS dist FROM T_1)

AS subquery
ORDER BY dist DESC
LIMIT 16;

SELECT * FROM
(SELECT *, DISTANCE(T_1.feature,     
vq1_feature) AS dist FROM T_1) 

AS subquery
ORDER BY dist ASC
LIMIT 4;

SELECT id,
SUM(price*(1-discount)) AS revenue, 
COUNT(*) AS id_count, SUM(sales) AS sum_sales,
AVG(discount) AS avg_discount,
DISTANCE(Table_3.feature, hq2_feature) AS dist

FROM T_3
WHERE T_3.discount > 0.25 AND T_3.quantity >= 2

AND (T_3.sales > 100 AND T_3.sales < 500)
GROUP BY id
ORDER BY dist
LIMIT 4;

(c) HQ1.

SELECT id,
AVG(price) AS avg_price, COUNT(*) AS id_count,
SUM(sales) AS sum_sales, SUM(quantity) AS sum_ quant,
DISTANCE(Table_3.feature, hq1_feature) AS dist

FROM T_3
WHERE T_3.price < 100 

AND (T_3.color = 'red' OR T_3.color = 'blue’) 
AND T_3.shipdate >= '2024-01-01’

GROUP BY id
ORDER BY dist;

SELECT id, name, color, price FROM
(SELECT *, DISTANCE(T_1.feature, 
vq2_feature) AS dist FROM T_1)

AS subquery
ORDER BY dist DESC
LIMIT 16;

SELECT * FROM
(SELECT *, DISTANCE(T_1.feature,     
vq1_feature) AS dist FROM T_1) 

AS subquery
ORDER BY dist ASC
LIMIT 4;

SELECT id,
SUM(price*(1-discount)) AS revenue, 
COUNT(*) AS id_count, SUM(sales) AS sum_sales,
AVG(discount) AS avg_discount,
DISTANCE(Table_3.feature, hq2_feature) AS dist

FROM T_3
WHERE T_3.discount > 0.25 AND T_3.quantity >= 2

AND (T_3.sales > 100 AND T_3.sales < 500)
GROUP BY id
ORDER BY dist
LIMIT 4;

(d) HQ2.

Appendix Figure C1: The detail vectorized query and hybrid
query benchmarks in Section 6.3.

D EXPERIMENT DETAILS

D.1 Microbenchmark Details

In the filtering test, we divide ArcEDB [97] comparison into
the offline phase and the online phase. This is because the
comparison algorithm of [97] requires an RLWE ciphertext
and an RGSW ciphertext as input. The offline phase involves
the direct comparison of RGSW ciphertexts generated by
the user. In contrast, the online phase is required for more
complex operations, such as inner table comparisons or com-
parisons after filtering or aggregation. These operations ne-
cessitate a sophisticated ciphertext conversion algorithm to
transform RLWE ciphertexts into RGSW ciphertexts. For
the synchronization benchmark, since both [97] and [23] re-
quire RGSW ciphertext as input, we add ciphertext conversion
in their test to complete the synchronization. For the Top-k
benchmark, we set the input length to 256 and the values of k
to 1, 4, 8, and 16, respectively.

Algorithm 11: Homomorphic Top-k HomTopK

Input :An unsorted QRLWE ciphertext ct0,0, rotate
key RK, precision parameter (Θ,α), and k.

Output :A QRLWE ciphertext ctres, where the first k
elements are the Top-k results.

1 ctres ← ct0,0
2 for s = 0 to log2 k do
3 for p = 0 to s do
4 ctcmps,p ←

HomOrdGen(ctres,N,s, p,RK,(Θ,α))
5 Ms,p← MEncode(ctcmps,p ,N,s, p,RK)

6 ctres ← HomOrdApp(ctres,Ms,p,N,s, p,RK)

7 for i = 0 to log2(N)− log2(k)−1 do
8 s←log2(k)
9 Step←2s +(2i+1−1) ·2k

10 for i = 0 to N step 2s+2 do
11 Mask[i : i+2s+1]← 1
12 Mask[i+2s+1:i+2s+2−1]←−1
13 for i = 0 to N step 2s+1 do
14 Eli[i : i+2s]← 1
15 Eli[i+2s:i+2s+1−1]← 0
16 for i = 0 to w−1 do
17 ctmask[i]← ctx̃[i] ·Mask
18 ctrot[i]← Rotate(ctmask[i],RK,Step)
19 ctcmps,0←ArbQuantComp(ctmask,ctrot,>

,(Θ,α)) ·Eli
20 ctcmpdiag ← ctcmps,0 +Rotate(ctcmps,0 ,RK,−Step)
21 ctcmpsub ← HomGate(ctcmps,0 ,NOT)

22 ctcmpsup ← Rotate(ctcmpsub ,RK,N−Step)
23 for i = 0 to w−1 do
24 ctsup[i]← Rotate(ctres[i],RK,N−Step)
25 ctsub[i]← Rotate(ctres[i],RK,Step)
26 ctres[i]← ctsup[i] ·Ms,0[0]+ ctres[i] ·Ms,0[1]+

ctsub[i] ·Ms,0[2]
27 for p = 1 to log2 k do
28 ctcmplog2 k,p ←

HomOrdGen(ctres,N, log2 k, p,RK,(Θ,α))
29 Mlog2 k,p← MEncode(ctcmps,p ,N,s, p,RK)

30 ctres ←
HomOrdApp(ctres,Mlog2 k,p,N, log2 k, p,RK)

Return :ctres

D.2 SQL Benchmark Details
For TPC-H benchmark [35], we remove the JOIN conditions
to be consistent with [10] and [97]. We give the vectorized
query benchmarks VQ1 and VQ2 in Figure C1a and Fig-
ure C1b, as well as the hybrid query benchmarks HQ1 and
HQ2 in Figure C1c and Figure C1d. For hybrid query tests,
since [10] and [97] do not support vector distance calculation,
we remove the Distance operator for fair comparison.
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