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Abstract. Masking is one of the main countermeasures against side-channel analysis
since it relies on provable security. In this context, “provable” means that a security
bound can be exhibited for the masked implementation through a theoretical analysis
in a given threat model. The main goal in this line of research is therefore to provide
the tightest security bound, in the most realistic model, in the most generic way.
Yet, all of these objectives cannot be reached together. That is why the masking
literature has introduced a large spectrum of threat models and reductions between
them, depending on the desired trade-off with respect to these three goals. In this
paper, we focus on three threat models, namely the noisy-leakage model (realistic
yet hard to work with), the random probing (unrealistic yet easy to work with), and
more particularly a third intermediate model called average random probing. Average
random probing has been introduced by Dziembowski et al. at Eurocrypt 2015, in
order to exhibit a tight reduction between noisy-leakage and random probing models,
recently proven by Brian et al. at Eurocrypt 2024. This milestone has strong
practical consequences, since otherwise the reduction from the noisy leakage model
to the random probing model introduces a prohibitively high constant factor in the
security bound, preventing security evaluators to use it in practice. However, we
exhibit a gap between the average random probing definitions of Dziembowski et al.
(denoted hereafter by DFS-ARP) and Brian et al. (simply denoted by ARP). Whereas
any noisy leakage can be tightly reduced to DFS-ARP, we show in this paper that
it cannot be tightly reduced to ARP, unless requiring extra assumptions, e.g., if the
noisy leakage is deterministic. Our proof techniques do not involve more tools than
the one used so far in such reductions, namely basic probability facts, and known
properties of the total variation distance. As a consequence, the reduction from the
noisy leakage to the random probing — without high constant factor — remains
unproven. This stresses the need to clarify the practical relevance of analyzing the
security of masking in the random probing model since most of the current efforts
towards improving the constructions and their security proofs in the random probing
model might be hindered by potentially unavoidable loss in the reduction from more
realistic but currently less investigated leakage models.
Keywords: Masking · Noisy leakage · Random Probing · Average Random Probing
· Reduction · Leakage Model

1 Introduction
Context. In the quest of provably secure implementations against side-channel analysis,
the works of Duc, Dziembowski and Faust [DDF14] marked an important milestone,
bridging the gap between two different visions of proving the security of the masking
countermeasure [GP99].

†The authors would like to thank Gianluca Brian, Stefan Dziembowski, Sebastian Faust, Elena Micheli,
Maximilian Orlt, and François-Xavier Standaert for the fruitful discussions on this topic. This work
received funding from the France 2030 program, managed by the French National Research Agency under
grant agreement No. ANR-22-PETQ-0008 PQ-TLS.

mailto:julien.beguinot@telecom-paris.fr
mailto:loic.masure@lirmm.fr


2 On the Average Random Probing Model

On the one hand, the vision of Ishai, Sahai and Wagner (ISW) relies on the probing
security of a logical or arithmetical circuit [ISW03]. That is, in a circuit implemented
according to ISW, any set of at most (d−1) intermediate computations remains independent
of any secret fed as a d-secret sharing to the input of the circuit. This security notion,
while depicting an unrealistic adversary able to exactly probe a limited amount of wires in
the circuit, has the merits to be easy to verify [BMRT22], interpret [BDF+17], and even
compose to some extent [BBD+16]. However, this approach cannot prove the ineffectiveness
of all attacks, such as horizontal attacks [BCPZ16]. Even worse, some masking schemes
such as table re-computation are even provably secure in the probing model [Cor14], while
exposing critical vulnerability in practice [BS21]. Therefore, researchers have looked for
another way to characterize the soundness of masking.

On the other hand, the seminal approach triggered by Chari et al. [CJRR99], and
later more formalized by Prouff and Rivain [PR13], establishes information-theoretic
security bounds — thereby making masking a universal countermeasure — in a much
more realistic leakage model. Here, the leakage is said δ-noisy, if each wire independently
reveals some leakage to the adversary such that the statistical bias between the wire and
its corresponding leakage is bounded by a scalar parameter δ ∈ [0, 1].1 This requires,
however, much more tedious proof strategies, requiring strong assumptions on some leak-
free computations, too unrealistic to faithfully depict the actual security of some masking
schemes [CPRR14].

Duc et al.’s unification came timely to bridge the gap between these two visions, by
means of an intermediate leakage model, called random probing (RP). In this model, each
wire is revealed to the adversary with probability ϵRP ∈ [0, 1]. Duc et al. proved first
that the δ-noisy leakage model can be perfectly simulated by the ϵRP-random probing
model, provided that ϵRP = δ · |X |, where X is the set of all values that any wire may take
in the circuit, e.g., the field size in an arithmetical circuit.2 Secondly, they proved that
the ϵRP-random probing model can in turn be simulated by the (d − 1)-probing model
with some error bounded by (ϵRP · O (d))d in the case of the ISW construction [Man23,
Lemma 14]. Overall, this shows that a side-channel adversary has no more advantage than
ξ = (δ · O (d) · |X |)d compared to a blind-guess adversary.

This result justifies that masking a cryptographic implementation is sound from a
theoretic point of view. However, to the best of our knowledge the security bound ξ in
itself has never been used by security evaluators or designers to claim a given security level,
since the product (O (d) · |X |)d is prohibitively high. In typical applications, d = 2, 3, 4,
whereas |X | = 28 for the AES, ≈ 212 for Kyber, ≈ 223 for Dilithium, or even ≈ 249 for the
masking-friendly lattice-based signature Raccoon. A recent line of research, conducted
by Belaïd et al. endeavoured to substitute the O (d)d factor in the security bound ξ with
O (1)d, by means of an alternative masking construction based on the so-called expansion
strategy, directly proven secure in the random probing model [BCP+20, BRT21].

However, getting rid of the |X |d factor remains the main challenge towards making the
security bound practical. Hereupon, much less attempts have been made in the literature.
To date, two approaches have been proposed. The first one consists in changing the way in
which the noisy-leakage parameter δ is measured, as proposed by Prest et al. [PGMP19]
and later optimally improved by Béguinot et al. [BCGR24]. But this requires using more
conservative metrics that potentially hide the reduction loss factor inside the metric [MS23].
Moreover, in practice such metrics are less convenient to compute, since they require to
estimate the extrema of the leakage distribution based on empirical data, whereas Duc et
al.’s noise parameter only requires estimating averages.

The second explored approach consists in using the Average Random Probing model,

1Such a δ parameter can be efficiently measured by a side-channel security evaluator, when characterizing
the target device.

2We provide concrete examples in the next paragraph.
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introduced by Dziembowski, Faust and Skorski [DFS15b], as a surrogate to the random
probing (RP). In this model, each wire is revealed to the adversary with probability ϵx,
now allowed to depend on the underlying value x carried by the wire. Dziembowski et al.
have shown that this relaxed version of the RP and the noisy leakage model are essentially
equivalent, in the sense that ϵDFS = E

x
[ϵx] ≤ δ — hence the “average” terminology. In other

words, this avoids the reduction loss induced by the direct reduction from the noisy leakage
to the RP. The average random probing model did not get much attention since then, until
Brian et al. recently exhibited a reduction from this model to the RP, thereby tightening the
chain of reductions from the noisy leakage (NL) to the probing model [BDF24]. Concretely,
it would allow to remove the |X |d factor, at the cost of doubling the number of shares, by
transforming any random-probing secure circuit according to a circuit compiler designed
by Brian et al. This ground-breaking result underlines the relevance of the average random
probing, as a corner-stone of masking security proofs.

The Issue. The starting point of this paper is however to point out at a slight gap between
the definitions of the average random probing provided by Dziembowski et al. [DFS15b]
on the one hand (denoted hereafter by DFS-ARP), and the average random probing model
defined by Brian et al. [BDF24] (simply denoted by ARP hereafter) on the other hand.3 In
a nutshell, Dziembowski et al. tweaked the ARP oracle revealing each wire to the adversary
with probability ϵx, so that it also reveals some internal randomness used to stochastically
decide whether each wire must be revealed or not. Surprisingly, this internal randomness
turns out to carry a lot of information on the secret value of the wire, which would not be
provided to an ARP adversary. This observation, counter-intuitive at first glance, results
from the fact that this internal randomness, once drawn offline, is compared to a sensitive
value during a rejection sampling before being passed to the simulator. This creates a bias
between the internal randomness returned along with a revealed wire and that returned
alone. Unfortunately, this bias turns out to depend on the underlying wire value — we
elaborate more on that in Subsection 4.2.

Concretely, this extra information is so critical that the simulator used by Dziembowski
et al. to prove the tight reduction from NL to DFS-ARP no longer applies when considering
the ARP model nowadays. This initial observation therefore triggers a natural question:

Is it still possible to simulate any noisy leakage from some ARP leakage? And
if so, at what cost in the reduction?

Our Contribution. We address this question with a three-fold answer: (1) contrary to
the RP, any non-injective leakage function is indeed reducible to the ARP in a non-trivial
manner; (2) the reduction is not tight generally speaking, as we exhibit a counterexample
where the reduction to ARP requires ϵARP = Ω (δ · |X |); (3) still, for particular cases such
as deterministic leakage models, we prove that the reduction is tight, whereas such noisy
leakage models cannot even be simulated in the random probing model.

To obtain our results, we revisit the proof of the core technical result of Duc et
al. [DDF14], namely the lemma reducing the noisy leakage to the random probing, in light
of the relaxed definition of ARP. We derive a new necessary and sufficient condition for
simulation in the ARP. This grounds the stage for exhibiting the so-called catastrophic
channel as an exemplary leakage function to disprove the tightness between the noisy
leakage and the ARP, and for proving the tight reduction in two particular use-cases. Our
proofs do not involve more tools and techniques than the one used by Duc et al. [DDF14],
namely basic probability facts, and functional properties of the statistical bias.

3We take the convention to consider the definition of Brian et al. as the most natural.
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Figure 1: The leakage models, and their relationships established in the literature. Blue:
[DDF14]. Green: [DFS15b]. Brown: [BDF24]. The dotted curve corresponds to the
incorrect claim of [BDF24, Thm. 3]. Red: our contribution.

Impact & Perspectives. Even though our works do not disprove any of the theoretical
results of Dziembowski et al. [DFS15b] nor the main theorem of Brian et al. [BDF24],
they invalidate the essential interest of their combination, as stated in [BDF24, Cor. 9]. In
other words, the tight reduction from the noisy leakage to the random probing remains
unproven, except in the particular cases where we exhibited a tight reduction from the
noisy leakage model to the ARP — see Section 6. We summarize the whole picture in
Figure 1.

Overall, this denotes the need to clarify the practical relevance of analyzing the security
of masking in the random probing model [DFZ19, BCP+20, CFOS21, BRT21, BRTV21,
BFO23, JMB24, WJSW24]. The impossible tightness between the noisy leakage model
and the ARP does not necessarily invalidate the hope for a tight reduction to the random
probing model. We even believe that some ideas in Brian et al.’s techniques [BDF24] could
be leveraged to this end, and we elaborate more on that in Section 7. Yet, this suggests
at least that the side-channel and provably-secure masking research community should
pay more attention to this current elephant in the room, since most of the current efforts
towards improving the constructions and their security proofs in the random probing model
might be hindered by potentially unavoidable loss in the reduction from more realistic —
but currently less investigated — leakage models.

Organization of the Paper. We first provide some background and recall some definitions
of the different leakage models in Section 2 and Section 3. We then introduce the (different
flavors of the) average random probing model in Section 4, and emphasize the issue of the
model as defined by Dziembowski et al. We then make a thorough characterization of the
average random probing model, as defined by Brian et al. in Section 5, in order to derive
our negative results. Then we exhibit in Section 6 two use-cases where the reduction from
noisy leakage to ARP remains tight. We conclude on some discussions and perspectives in
Section 7.
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2 Preliminaries
Let X,Y be two random variables. We note X d= Y if their probability distributions are
equal, i.e., Pr (X) = Pr (Y). In this paper, we manipulate the total variation distance,
which measures the dissimilarity between two probability mass functions (pmfs).

Definition 1 (Total Variation Distance). Let p,m be two pmfs over a finite set L. The
total variation distance between p and m, denoted by TV (p; m), is defined as follows:

TV (p; m) = 1
2

∑
l∈L

|p(l) − m(l)| .

In the literature, the total variation distance is also known as the statistical distance.
Likewise, we define the statistical bias induced by some random variable on another.

Definition 2 (Statistical Bias). The statistical bias between two random variables X,L is
defined by the following equality:

∆ (X; L) = TV (Pr (L,X) ; Pr (L) ⊗ Pr (X)) ,

where ⊗ denotes the Cartesian product: (Pr (L) ⊗ Pr (X)) (l, x) = Pr (L = l) · Pr (X = x).

The statistical bias is used in this paper to characterize the amount of leakage from
each wire of the circuit, as formalized hereafter.

Definition 3 (Noisy Leakage). A (possibly randomized) leakage function L : X → L is
said to be δ-noisy if ∆ (X; L) ≤ δ.

We provide hereafter a few other identities verified by the metrics.

Proposition 1. The total variation and the statistical bias may be equivalently be expressed
as follows:4

TV (p; m) =
∑
l∈L

max{0, p(l) − m(l)} = 1 −
∑
l∈L

min{p(l),m(l)} = max
T ⊆L

|p(T ) − m(T )| ,

∆ (X; L) = E
x

[TV (Pr (L | X = x) ; Pr (L))] = E
l

[TV (Pr (X | L = l) ; Pr (X))] .

Data-processing inequality: Let L′,S be two functions such that X L′

→ Y S→ L:
∆ (X; S ◦L′(X)) ≤ ∆ (X; L′(X)) .

3 Warm-Up: the Random Probing Model
Before diving into the details of the average random probing, let us recall the reduction
from the noisy leakage model to the random probing model. Later in this paper, we rely
on some parts of the proof of the reduction to discuss the reduction to the average random
probing, as they share many points.

We start with the definition of the simulation in the random probing model.

Definition 4 (Random Probing). A noisy function L : X → L is said to be simulatable in
the ϵ-random probing model if there exists a randomized function S — the simulator —
such that for every x ∈ X , we have

L(x) d= S (φ(x)) ,

4The interested reader may refer to Reyzin’s lecture notes.

https://www.cs.bu.edu/~reyzin/teaching/s11cs937/notes-leo-1.pdf
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where φ : X → X ∪ {⊥} is the ϵ-identity function, i.e.:

φ(x) =
{
x, with probability ϵ ∈ [0, 1],
⊥, otherwise

.

We say that L is RP-simulatable if there exists some ϵ ∈ [0, 1) for which L is simulatable in
the ϵ-random probing.5

Next, we recall the key result of Duc, Dziembowski and Faust. The statement of Theorem 1
slightly differs from the one of Duc et al., as we emphasize that the constraint on ϵ is the
best that can be obtained.

Theorem 1 ([DDF14, Lemma 2, restated]). Let L : X → L be a (possibly randomized)
leakage function. Then, L is simulatable in the ϵ-random probing model if and only if

ϵ ≥ 1 −
∑

l

min
x

Pr (L(x) = l) .

For self-completeness, we revisit the proof of Theorem 1 in order to show how the
construction of the simulator naturally emerges from its constraints.

Proof. We proceed by analysis-synthesis. Assume first that such a simulator S exists,
we need to specify for all x ∈ X and for all l ∈ L the probabilities Pr (S (x) = l), and
Pr (S (⊥) = l), verifying the following constraints:

1. For all input x ∈ X , the mapping l 7→ Pr (S (x) = l) should be a pmf, i.e.,

(a) For all l ∈ L, 0 ≤ Pr (S (x) = l)
(b)

∑
l Pr (S (x) = l) = 1.

2. For the input ⊥, the mapping l 7→ Pr (S (⊥) = l) should be a pmf, i.e.

(a) For all l ∈ L, 0 ≤ Pr (S (⊥) = l)
(b)

∑
l Pr (S (⊥) = l) = 1.

(c) The pmf Pr (S (⊥)) should not depend on any x.

3. For any x, l, Pr (S (φ(x)) = l) = Pr (L(x) = l)

Let us start from the last constraint item 3. By using the total probability formula, and
by definition of the ϵ-identity function, we have that for any x and any l:

Pr (L(x) = l) = Pr (S (φ(x)) = l)
= Pr (φ(x) = x) · Pr (S (x) = l) + Pr (φ(x) = ⊥) · Pr (S (⊥) = l)
= ϵ · Pr (S (x) = l) + (1 − ϵ) · Pr (S (⊥) = l) .

If ϵ = 1, then the simulator is trivial: S (x) samples l according to Pr (L(x)), and we do
not need to specify Pr (S (⊥)), as “⊥” is never received by the simulator. Now assume for
the rest of the proof that ϵ < 1. We may rephrase the pmf of the simulator, upon receiving
“⊥”, as follows:

Pr (S (⊥) = l) = Pr (L(x) = l) − ϵ · Pr (S (x) = l)
1 − ϵ

(1)

Note that according to item 2c, the right-hand side of Equation 1 should not depend on
any x. Since 1 − ϵ is also independent of x, it implies that the quantity

π(l) = Pr (L(x) = l) − ϵ · Pr (S (x) = l) (2)
5We exclude the case ϵ = 1 as the simulation would be trivial.
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should be independent of x. Moreover, by summing Equation 2 over L, it turns out that∑
l∈L π(l) = 1 − ϵ. Hence, assuming ϵ < 1 — the simulation is trivial otherwise — we may

rephrase every pmf of the simulator as functions of the pmf Pr (L(x)) — which is known —
and the quantities π(l):

Pr (S (⊥) = l) = π(l)∑
l′∈L π(l′) , (3)

Pr (S (x) = l) = Pr (L(x) = l) − π(l)
1 −

∑
l′∈L π(l′) . (4)

We now need to find constraints on π(l). To verify item 2a, one must have Pr (S (⊥) = l) ≥
0, i.e., all the π(l) must have the same sign. Given that

∑
l∈L π(l) = 1 − ϵ ∈]0, 1], we get

the first constraint that
0 ≤ π(l).

Moreover, to fulfill item 1a, one must have Pr (S (x) = l) ≥ 0 for all input x, i.e., π(l) ≤
Pr (L(x) = l). Since π(l) is independent of x, this implies that

π(l) ≤ min
x∈X

Pr (L(x) = l) .

It therefore remains to verify item 1b and item 2b. item 2b is trivially verified by virtue of
Equation 3. As per item 1b, it is verified by virtue of Equation 4, and leveraging the fact
that

∑
l Pr (L(x) = l) = 1 for all input x, as Pr (L(x)) is a pmf.

As a result, since none of the implications developed so far are contradicting with
each other, any randomized function S defined by Equation 3 and Equation 4, where
0 ≤ π(l) ≤ minx∈X Pr (L(x) = l) for any leakage value l, will result in a perfect simulation
of L by S ◦φ, where φ is an ϵ-identity and ϵ = 1 −

∑
l∈L π(l).

Remark 1. From a security analysis point of view, one would like to build a simula-
tor for the smallest ϵ value as possible, denoted thereafter by ϵRP, i.e., ϵRP = 1 −∑

l∈L minx∈X Pr (L(x) = l). This can be done by choosing the greatest possible value
for π(l), i.e., minx∈X Pr (L(x) = l).

The following lemma, proven as part of the proof of [DDF14, Lemma 2], links the
smallest ϵRP such that a leakage function is simulatable in the ϵRP-random probing model,
to the statistical bias δ and the input set size.

Lemma 1 ([DDF14]). Let L : X → L, be a δ-noisy function. Then, ϵRP ≤ δ · |X | .

The dependency on the field size is at the core of the looseness of the reduction from
the noisy leakage to the (region) probing model. Unfortunately, Dziembowski, Faust and
Skorski have shown that the field-size factor is unavoidable in general [DFS15b, p. 170].
That is why several ad hoc surrogate metrics to the statistical bias have been proposed in
the literature.

Proposition 2. Let ϵRP = 1 −
∑

l∈L minx∈X Pr (L(x) = l) be the optimal parameter of
the random probing oracle, for a given noisy leakage L. Then,

ϵ = CDC(X; L) ≤ ARE(X; L) ,

where CDC(X; L) = E
l

[
maxx∈X

(
1 − Pr(X=x | L=l)

Pr(X=x)

)]
is the Complementary Doeblin Coef-

ficient (CDC) [BCGR24, Def. 9], and ARE(X; L) = E
l

[
maxx∈X

∣∣∣1 − Pr(X=x | L=l)
Pr(X=x)

∣∣∣] is the
Average Relative Error [PGMP19, Def. 3].
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Proof. Observe that the probability Pr (L(x) = l) can be rephrased as the conditional
distribution Pr (L = l|X = x). Let Pr (X) be any marginal distribution over the random
variable X. By applying Bayes’ theorem, we have6

ε = 1 −
∑

l

min
x

Pr (L(x) = l) = 1 −
∑

l

min
x

Pr (L = l | X = x)

= 1 −
∑

l

Pr (L = l) min
x

Pr (X = x | L = l)
Pr (X = x) .

One recognizes the expectation over the leakage of the quantity minx∈X
Pr(X=x | L=l)

Pr(X=x) .
Including the constant term “1” into the expectation gives the first equality. The second
equality holds by definition of the absolute value.

4 The Average Random Probing
To circumvent the issue of simulating from the random probing model, a surrogate leakage
model called average random probing (ARP) has been introduced in the literature. The core
idea is to relax the definition of the ϵ-identity function, by allowing a different probability
of returning “⊥” for each input x, provided that on average, the ϵ-identity does not return
“⊥” with probability more than ϵ. The hope is hence to decrease ϵ enough to get rid of the
field-size dependency. We give hereafter a more formal definition. In the remaining of this
paper, (ϵx)X denotes a |X |-dimensional vector in [0, 1]|X |.

Definition 5 (Average Random Probing). A noisy function L : X → L is said to be
simulatable in the (ϵx)x-average random probing model if there exists a randomized function
S : X ∪ {⊥} → L — the simulator — such that for every x ∈ X , we have

L(x) d= S (ψ(x)) ,

where ψ : X → X ∪ {⊥} — the oracle — is such that

ψ(x) =
{
x, with probability ϵx ∈ [0, 1],
⊥, otherwise

. (5)

We say that L is ϵ-ARP-simulatable if there exists a tuple (ϵx)X with E
x

[ϵx] = ϵ,7 for
which L is simulatable in the (ϵx)X -average random probing. Likewise, we say that L is
ARP-simulatable if there exists (ϵx)X with at least two entries strictly lower than 1,8 for
which L is simulatable in the {ϵx}x-average random probing model.

Definition 5 is the definition on which Brian et al. rely [BDF24]. Contrary to a simulator
in the random probing model, where the φ function is fixed, one (e.g., an adversary) may
specify the desired probabilities ϵx to define the ψ function when building a corresponding
simulator. Hereafter, we provide the definition of Dziembowski et al. [DFS15b].

Definition 6 (DFS-Average Random Probing). A noisy function L : X → L is said to be
simulatable in the (ϵx)X -DFS-average random probing model if there exists a randomized
function S : X ∪ {⊥} × R → L — the simulator — such that for every x ∈ X , we have

L(x) d= S (ψ(x,R),R) ,

6Notice that the quantity minx
Pr(X=x|L=l)

Pr(X=x) is upper bounded by one. Indeed, if there is one value
x such that Pr (X = x | L = l) > Pr (X = x) then there is necessarily another value x′ such that
Pr (X = x′ | L = l) > Pr (X = x′), otherwise the PMF Pr (X | L = l) cannot sum to one.

7Here x is assumed to be uniform over F .
8If not, the function ψ is injective (see Definition 7) and the simulation becomes trivial.
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where ψ : X × R → X ∪ {⊥} — the oracle — verifies Equation 5. Here, R is any set over
which some internal randomness R may be drawn.

The only difference between Definition 5 and Definition 6 is that an adversary in the
DFS-ARP model has access to some extra information, namely the internal randomness
R used by the oracle to return ψ(x,R). As a result, it is trivial to simulate the view of
an adversary in the ARP model from the view of an adversary in the DFS-ARP model,
while keeping the (ϵx)X parameters unchanged. This implies the following bound on the
statistical bias of the ARP.

Lemma 2. The statistical bias of the ARP model is upper bounded by δARP = 2ϵARP.

Proof. The ARP is trivially simulatable by the DFS-ARP, and since the statistical bias
verifies the data processing inequality (Proposition 1), we have δARP ≤ δDFS-ARP. Dziem-
bowski et al. have shown that δDFS-ARP ≤ 2ϵDFS-ARP [DFS15b, Lemma 8]. We conclude by
observing that in the simulation, ϵDFS-ARP = ϵARP.

4.1 The DFS Simulator
Hereupon, Dziembowski et al. have shown that any δ-noisy leakage function is δ-DFS-
ARP-simulatable. We transcript hereafter their simulator (denoted DFS thereafter), such
as it is described in their paper — up to some change of notation for consistency.

• First, the simulator samples “offline (i.e., independently of the ‘real’ x) a value l
according to the distribution of L(X)” [DFS15b, p. 172].

• Second, ψ(x, l) returns “⊥” to the simulator S with probability min
{

1, Pr(L(x)=l)
Pr(L(X)=l)

}
,

and x otherwise.

• Third, the simulator S returns the following value, depending on its input:

– Upon receiving “⊥”, the simulator returns the leakage l sampled at first.
– Otherwise, upon receiving “x”, the simulator re-samples another leakage l′

according to the distribution

max
{

0, Pr (L(x) = l′) − Pr (L(X) = l′)
TV (L(x); L(X))

}
.

One can verify that in the simulator described above, upon receiving x as fixed input, ψ
returns x with probability

ϵx = E
l

[
1 − min

{
1, Pr (L(x) = l)

Pr (L(X) = l)

}]
= TV (Pr (L(x)) ; Pr (L(X))) ,

which is confirmed by [DFS15b, Eq. (20)]. Hence, ϵDFS = E
x

[TV (Pr (L(x)) ; Pr (L(X)))] =
∆ (L; X), which suits well the authors’ hope to get rid of the field-size factor.

4.2 The Issue with the Offline Sampling
We now argue why the DFS simulator cannot work in the reduction of noisy leakage to
ARP. To build an appropriate simulator in the ARP model, one must verify the same
conditions listed in the proof of Theorem 1. The only difference is that nowadays, every ϵ
should be replaced by ϵx, and is allowed to depend on x.

Unfortunately, despite this simulator seems to verify all the conditions listed in the
proof of Theorem 1, it does not verify item 2c, namely that upon receiving “⊥”, the
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leakage distribution of the simulator should not depend on any input. To see why, observe
that despite the leakage returned in that case has been initially sampled “offline”, it still
implicitly relies on the input x, as the second step of the simulator acts as a (soft) rejection
sampling, depending on Pr (L(x) = l). This is testified in the proof of [DFS15b, Lemma 7]:

Since “⊥” indicates that l [...] is “correct for the real x”, in this case [the
simulator] simply outputs l [DFS15b, pp.172, 173].

More precisely, on the one hand, the authors prove that for any input x ∈ X , and for any
leakage l ∈ L, the following quantity — (14) in [DFS15b]:

Pr (ψ(x,R) = ⊥,S (ψ(x,R)) = l)

is equal to min {Pr (L(x) = l) ,Pr (L(X) = l)}. On the other hand, they prove that the
quantity Pr (ψ(x,R) ̸= ⊥) — (16) in [DFS15b] — is equal to TV (L(x); L(X)) — (20) in
[DFS15b]. Using these two equalities, one can notice that9

Pr (S (⊥,R) = l) = min {Pr (L(x) = l) ,Pr (L(X) = l)}
1 − TV (L(x); L(X))

= min {Pr (L(x) = l) ,Pr (L(X) = l)}∑
l∈L min {Pr (L(x) = l) ,Pr (L(X) = l)} ,

which does depend on x. As an example, if we take L(x) as the LSB of x in a field of size
2n, one can show that TV (L(x); L(X)) = 1

2 for any x, but if l = 0, we get that

min {Pr (L(0) = 0) ,Pr (L(X) = 0)} = min
{

1, 1
2

}
= 1

2 ,

min {Pr (L(1) = 0) ,Pr (L(X) = 0)} = min
{

0, 1
2

}
= 0 .

Hence it breaks the condition stated in item 2c.

5 The Average Probing is not Tight with Noisy Leakage
Now that we have emphasized the issue with the DFS simulator, we may naturally wonder
whether there exists some correct simulator in the average random probing — beyond
the trivial one exhibited in the proof of Theorem 1; and if so, to which extent the ϵARP
parameter is affected, compared to ϵDFS-ARP. We answer positively to the first question, by
showing that any (non-injective) noisy leakage is ARP-simulatable, in a non-trivial manner.
However, we answer negatively to the second question, by exhibiting some δ-noisy leakage
model that is ϵARP-ARP-simulatable, yet with ϵARP = Ω (|X | · δ).

5.1 A Necessary and Sufficient Condition for ARP-Simulation
To prove these two claims, we first derive a necessary and sufficient condition for simulation
in the average random probing.

Lemma 3. Let L : X → L be a leakage function. Let (ϵx)X , and define X ′ = {x ∈ X :
ϵx < 1}. Then, L is simulatable in the (ϵx)X -average random probing model if and only if
(1) X ′ is not empty, and (2) the following inequality holds:

1 ≤
∑
l∈L

min
x∈X ′

{
Pr (L(x) = l)

1 − ϵx

}
. (6)

Proof. We proceed by showing both implications.
9We use here that 1 − TV (L(x); L(X)) =

∑
l∈L min {Pr (L(x) = l) ,Pr (L(X) = l)}.
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=⇒ : Suppose L is simulatable in the (ϵx)X -average random probing model. Condi-
tion (1) is trivial, since otherwise ϵx = 1 for all input x ∈ X . In order to prove condition
(2), one may simply re-play the proof of Theorem 1, as it should verify the same constraints.
The only difference is that now ϵx is allowed to depend on x, so the quantity π(l) nowadays
depends on x and shall be denoted by π(l, x) hereafter. As a result, summing Equation 2
becomes ∑

l∈L

π(l, x) = 1 − ϵx ,

for all x ∈ X ′, and Equation 3 becomes

Pr (S (⊥) = l) = π(l, x)∑
l∈L π(l, x) = π(l, x)

1 − ϵx
,

for all x ∈ X ′. Likewise, the inequality π(l, x) ≤ Pr (L(x) = l) — derived from Equa-
tion 4 and the fact that Pr (S (x) = l) ≥ 0 for all x — remains valid, so for all x ∈ X ′,
Pr (S (⊥) = l) ≤ Pr(L(x)=l)

1−ϵx
. Since Pr (S (⊥) = l) should still remain independent of any

x, the latter inequality is equivalent to

Pr (S (⊥) = l) ≤ min
x′∈X ′

{
Pr (L(x′) = l)

1 − ϵx′

}
.

So we conclude that π(l, x) must verify the following constraint:

π(l, x) ≤ (1 − ϵx) · min
x′∈X ′

{
Pr (L(x′) = l)

1 − ϵx′

}
. (7)

Summing Equation 7 over L gives Equation 6.

⇐= : Suppose that X ′ is non-empty and Equation 6 is verified. We may build a
simulator. To this end, consider the following randomized algorithm S : X ∪ {⊥} → L:

• Upon receiving “⊥” from the oracle ψ(x), S returns a leakage l sampled according
to the distribution

Pr (S (⊥) = l) =
minx′∈X ′

{
Pr(L(x′)=l)

1−ϵx′

}
∑

l′∈L minx′∈X ′

{
Pr(L(x′)=l′)

1−ϵx′

} .

• Upon receiving “x”, from the oracle ψ(x), S returns samples a leakage according to
the following distribution:

– If x ∈ X ′:

Pr (S (x) = l) =
Pr (L(x) = l) − (1 − ϵx) · minx′∈X ′

{
Pr(L(x′)=l)

1−ϵx′

}
1 −

∑
l′∈L(1 − ϵx) · minx′∈X ′

{
Pr(L(x′)=l′)

1−ϵx′

} .

– If x /∈ X ′: Pr (S (x) = l) = Pr (L(x) = l), for all l ∈ L.

Let us show that all the conditions of an appropriate simulator are verified. It
is clear from its definition that Pr (S (⊥)) does not depend on any input x ∈ X , so
item 2c holds. Moreover, for all l ∈ L and for all x ∈ X ′, Pr (S (⊥) = l) = π(l,x)

1−ϵx
, and
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Pr (S (x) = l) = Pr(L(x)=l)−π(l,x)
ϵx

, where π(l, x) = (1 − ϵx) ·minx′∈X ′

{
Pr(L(x′)=l)

1−ϵx′

}
.10 This

is sufficient to argue that Pr (S (⊥)) and Pr (S (x)) are probability mass functions — this
trivially holds as well if x /∈ X ′. Thus, the conditions stated at item 1 and item 2 hold.
Finally, using the total probability formula,

Pr (S (ψ(x)) = l) =ϵx · Pr (S (x) = l) +(1 − ϵx) · Pr (S (⊥) = l) ,

=ϵx · Pr (L(x) = l) − π(l, x)
ϵx

+(1 − ϵx) · π(l, x)
1 − ϵx

,

= Pr (L(x) = l) − π(l, x) +π(l, x)
= Pr (L(x) = l) .

Hence, item 3 is verified.

Remark 2. Equation 6 can be seen as a relaxation of the condition of Theorem 1. Indeed,
when further assuming ϵx to be constant with respect to x, i.e., ϵx = ϵ < 1 for all x ∈ X ,
we find back the condition ϵ ≥ 1 −

∑
l minx Pr (L(x) = l).

We have derived a necessary and sufficient condition on the ϵx parameters of the oracle
for simulation in the average random probing model. However, contrary to the necessary
and sufficient condition for simulation in the random probing, stated in Theorem 1,
Equation 6 is not an explicit constraint on the (ϵx)X . The next lemma shows though that
for the optimal simulation, Equation 6 becomes an equality.

Lemma 4. Let E = {(ϵx)X : (ϵx)X verifies Equation 6}, and let (ϵ⋆x)X minimizing E
x

[ϵx]
over E. Then, it holds that

1 =
∑
l∈L

min
x∈X ′

{
Pr (L(x) = l)

1 − ϵ⋆x

}
.

Proof. Let (ϵ⋆x)X be the global minimum of E
x

[ϵx], over E , and define X ′ = {x ∈ X : ϵ⋆x < 1}.
Since (ϵ⋆x)X is a global minimum, it is also a local minimum, i.e., there is a neighbourhood
N ⊂ [0, 1)X ′ around the restriction of (ϵ⋆x)X ′ to X ′. This means that (ϵ⋆x)X ′ should also
minimize

∑
x∈X ′ ϵx, subject to f((ϵ⋆x)X ′) ≥ 1, where

f :
{

N ⊂ [0, 1)X ′ → R+

(ϵx)X ′ 7→
∑

l minx∈X ′
pl,x

1−ϵx

.

Note that f is continuous in (ϵ⋆x)X ′ . Furthermore, f is monotonically increasing in
each variable when the others are fixed. We show that necessarily f((ϵ⋆x)X ′) = 1. By
contradiction assume that f((ϵ⋆x)X ′) > 1. We distinguish two cases.

If ϵ⋆
x = 0 for all x ∈ X ′. Then, f((ϵ⋆x)X ′) =

∑
l minx∈X ′ pl,x ≤ 1, with equality if and

only if the leakage is deterministic (see Subsection 6.2). This contradicts f((ϵ⋆x)X ′) > 1, so
we may exclude this case.

If ϵ⋆
x > 0 for some x ∈ X ′. Let x ∈ X ′ be such that ϵ⋆x > 0. Then, by continuity and

monotony of f , there exists some 0 < a < ϵ⋆x such that (ϵ̃x)X ′ ∈ N defined by ϵ̃x = a
and ϵ̃x′ = ϵ⋆x′ for any x′ ∈ X ′ not equal to x, is such that f((ϵ⋆x)X ′) ≥ f((ϵ̃x)X ′) ≥ 1. But∑

x∈X ′ ϵ̃x <
∑

x ϵ
⋆
x which contradicts the minimality of (ϵ⋆x)X ′ .

Hence we can conclude that f((ϵ⋆x)X ′) = 1.
10If ϵx = 0 for some input x ∈ X , then one does not need to define Pr (S (x)), since “x” is never passed

to the simulator.
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A First Limitation of the ARP. We conclude this subsection on the characterization of
the ARP model by deriving a first negative consequence of Lemma 3. As already shown
in Subsection 4.2, the DFS simulator cannot be used to simulate any δ-noisy leakage in
the (δx)X -ARP, where δx = TV (L(x); L(X)) — whereas it was possible in the DFS-ARP
model as explained in Subsection 4.2. To this end, we used the lsb leakage model as a
counter-example. With Equation 6 nowadays, we may revisit this use case to prove an
even stronger negative result: there is no simulator for which the (δx)X -ARP-simulatability
holds.11

Corollary 1. Let lsb be the function returning the least significant bit of its input. Then, for
any x ∈ X , TV (lsb (x) ; lsb (X)) = 1

2 , but lsb is not simulatable in the
( 1

2 ,
1
2 , . . . ,

1
2
)
-average

random probing model.

Proof. Observe that we have δx = TV (lsb (x) ; lsb (X)) = 1
2 for any x ∈ X . It implies that

X ′ = X , yet for any leakage l ∈ {0, 1}, there exits some input x such that Pr (lsb (x) = l) =
0. Hence, Equation 6 is not verified.

5.2 Universality of the Average Random Probing
Provided with the new necessary and sufficient condition of Lemma 3, we may now address
the first question raised at the beginning of Section 5, namely the fact that any non-injective
leakage function is ARP-simulatable. By “non-injective”, we mean a leakage function not
verifying the following definition.
Definition 7 (Injectivity). A (possibly randomized) leakage function L : X → L is said
to be injective if for any leakage l ∈ L, there is a unique x such that Pr (L(x) = l) > 0.
Theorem 2 (ARP-Simulatability). Any non-injective leakage function is ARP-simulatable.
Reciprocally, any ARP-simulatable leakage is non-injective.

Proof. Let L : X → L be a leakage function. We proceed by both implication.

⇐= : Suppose that L is injective. We first show that the set X ′ of values for which
ϵx < 1 is reduced to a singleton. By contradiction, assume that there exists at least two
values x0, x1 ∈ X such that ϵx0 < 1 and ϵx1 < 1. We may then upper bound the right-hand
side of Equation 6 as follows:∑

l∈L

min
x∈X ′

{
Pr (L(x) = l)

1 − ϵx

}
≤

∑
l∈L

min
{

Pr (L(x0) = l)
1 − ϵx0

,
Pr (L(x1) = l)

1 − ϵx1

}
.

For all term in the latter sum, according to Definition 7, if Pr (L(x0) = l) > 0, then
necessarily Pr (L(x1) = l) = 0, and inversely. In other words, every term of the sum is
upper bounded by 0, which transgresses the condition of Equation 6. Therefore, the set
X ′ is reduced to one singleton {x0} at most, with ϵx0 = 1 − Pr (L(x0) ∈ Lx0) = 0, in order
to verify Equation 6. But this would result in a trivial simulation where the oracle always
returns its input, by only substituting “x0” with “⊥” in the alphabet X .

=⇒ : Suppose that L is non-injective. Then there exists a leakage l⋆ and at least
two inputs x0, x1 ∈ X such that 0 < Pr (L(x0) = l⋆) and 0 < Pr (L(x1) = l⋆). Define
ϵx0 = 1 − Pr (L(x0) = l⋆) , ϵx1 = 1 − Pr (L(x1) = l⋆), and ϵx = 1 for any x /∈ {x0, x1}. The
sum in Equation 6 may be simplified as∑

l∈L

min
x∈X ′

Pr (L(x) = l)
1 − ϵx

≥ min
{

Pr (L(x0) = l⋆)
1 − ϵx0

,
Pr (L(x1) = l⋆)

1 − ϵx1

}
= 1 .

11We will actually nuance this negative result in Subsection 6.2 showing that the lsb leakage model
remains 1

2 -ARP-simulatable, despite not being
(

1
2 ,

1
2 , . . . ,

1
2

)
-ARP-simulatable.
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Therefore, the necessary and sufficient condition of Equation 6 is verified.

A similar result holds for the DFS-ARP model, since it is essentially equivalent to the
noisy leakage model [DFS15b, Lemma 2]. On the opposite, the ARP contrasts with the
RP in that respect, since Theorem 2 would not extend for the latter leakage model.

5.3 A Catastrophic Channel for Average Random Probing
We now address the second question raised in Section 5, namely to which extent the
reduction is tight. To this end, consider the following side channel

X → pL | X → L

where X = L and Pr (L(x) = l) ≜ 1x̸=l

|X |−1 . In other words, observing L = l means that the
adversary receives the information “x cannot take the value l”.12

It can be verified, on the one hand, that for the catastrophic channel, ∆ (L; X) = |X |−1.
On the other hand, the following proposition states that the optimal parameter of the
ARP-simulation verifies ϵARP = Ω (1) = Ω (δ · |X |).

Proposition 3. Let L : x 7→ l with probability Pr (L(x) = l) = 1x ̸=l

|X |−1 . Let ϵ ∈ [0, 1] be any
parameter such that L is ϵ-ARP-simulatable. Then,

ϵ ≥ 1 − 1
4 · |X |

|X | − 1 ≥ 1
2 .

Proof. Let (ϵx)X be any set of parameters such that L is (ϵx)X -ARP-simulatable, and
define X ′ = {x ∈ X : ϵx < 1}. For any l ∈ X , if l ∈ X ′ then

min
x∈X ′

Pr (L(x) = l)
1 − ϵx

= Pr (L(l) = l)
1 − ϵl

= 0.

It results that the necessary condition for ARP-simulatability stated in Equation 6 may be
rephrased as

1 ≤
∑
l/∈X ′

min
x∈X ′

Pr (L(x) = l)
1 − ϵx

=
∑
l/∈X ′

min
x∈X ′

1
|X |−1

1 − ϵx
= |X | − |X ′|

|X | − 1 · 1
1 − minx∈X ′ ϵx

,

where the first inequality comes from Equation 6, the first equality holds by definition of
Pr (L(x) = l) is our case, and the second equality follows from the fact that for any x ≠ l,
the quantity Pr (L(x) = l) is constant. As a result, we have

min
x∈X ′

ϵx ≥ 1 − |X | − |X ′|
|X | − 1 . (8)

It now remains to compute the average over all ϵx:

ϵ = E
x

[ϵx] = |X ′|
|X |

· E
x∈X ′

[ϵx] + |X | − |X ′|
|X |

· E
x/∈X ′

[ϵx]

≥ |X ′|
|X |

· min
x∈X ′

ϵx + |X | − |X ′|
|X |

· 1

≥ |X ′|
|X |

·
(

1 − |X | − |X ′|
|X | − 1

)
+ |X | − |X ′|

|X |

= 1 − |X ′|
|X | · (|X | − 1) · (|X | − |X ′|) ,

12Interestingly, this leakage function has already been considered by Brian et al. to show some limitations
when reducing the noisy leakage model to the so-called bounded leakage model [BFO+21, Thm.10, Eq. (13)].
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where the first inequality is obtained by lower-bounding the expectation over X ′ by the
minimum over X ′, and the second inequality holds by virtue of Equation 8. The last
right-hand side, seen as a function of |X ′|, takes its minimum value for |X ′| = 1

2 · |X |,
which gives ϵ ≥ 1 − 1

4 · |X |
|X |−1 ≥ 1

2 .

In other words, this example proves that there are some δ-noisy leakage functions
L : X → L that are ϵ-ARP-simulatable, although at the condition that ϵ = Ω (δ · |X |).
This contradicts the claim that noisy leakage can be simulated from the ARP without the
field-size loss, as it is feasible from the DFS-ARP.

6 When is the Reduction Tight?
As seen in Section 5, it is not generally possible to have a tight reduction, i.e., without
field-size loss, from the noisy leakage model to the average random probing model, since
we have exhibited a counter-example. Nevertheless, that does not mean that the reduction
is loose for any leakage function. In this subsection, we emphasize two classes of leakage
functions for which a finer characterization, beyond measuring the noisy leakage parameter
δ, may allow for a tight reduction.

The former one concerns leakage functions whose marginal distribution has a bounded,
compact support. It covers very particular cases but for which the noisy leakage parameter
δ may be arbitrarily low. The latter one deals with deterministic leakage functions. In
that respect, there is no restriction on the leakage range, but by definition, it only covers
a few use cases such that δ ≥ |X |−1.13

6.1 Leakage Functions with Compact Support
In this first use-case, we consider leakage functions such that the marginal distribution is
compact, in the sense that the least likely observable leakage l⋆ is such that Pr (L = l⋆) ≫
|X |−1. This class of leakages is contained into the class of bounded leakage functions,
although not all bounded leakage functions are compact. This is formalized by the following
proposition.

Proposition 4. Let L : X → L be a δ-noisy leakage function. Then, L is ϵ-ARP-
simulatable, with

ϵ = δ

minl∈L Pr (L = l) .

Proof. Let T be any random variable with full support over L. For all x ∈ X , define

ϵx = 1 − min
l∈L

Pr (L(x) = l)
Pr (T = l) .

Then for any l ∈ L, we have that 1
1−ϵx

≥ Pr(T=l)
Pr(L(x)=l) so for all x ∈ X ′:

Pr (L(x) = l)
1 − ϵx

≥ Pr (T = l) .

Hence, ∑
l∈L

min
x∈X ′

Pr (L(x) = l)
1 − ϵx

≥
∑
l∈L

Pr (T = l) = 1 ,

13 To see why, notice that any deterministic leakage function is not RP-simulatable, except the constant
function, i.e. ϵRP = 1. The claim follows from Lemma 1.
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i.e., the necessary and sufficient condition of Equation 6 for ARP-simulatability is verified.
Let us now compute and bound ϵ = E

x
[ϵx], in the case where T = L(X).

ϵ = 1 − E
x

[
min
l∈L

Pr (L(x) = l)
Pr (L(X) = l)

]
= 1 − E

x

[
min
l∈L

Pr (X = x | L = l)
Pr (X = x)

]
(9)

= 1 −
∑
x∈X

min
l∈L

Pr (X = x | L = l)

=
∑
x∈X

Pr (X = x) − min
l∈L

Pr (X = x | L = l) (10)

=
∑
x∈X

max
l∈L

{Pr (X = x) − Pr (X = x | L = l)}

≤
∑
x∈X

∑
l∈L

max {0,Pr (X = x) − Pr (X = x | L = l)} (11)

=
∑
l∈L

TV (Pr (X) ; Pr (X | L = l)) (12)

≤ 1
minl∈L Pr (L = l) ·

∑
l∈L

Pr (L = l) · TV (Pr (X) ; Pr (X | L = l)) (13)

= ∆ (X; L)
minl∈L Pr (L = l) = δ

minl∈L Pr (L = l) .

In the latter development, we have used Bayes’ theorem to get Equation 9. We have
also rephrased 1 as the sum over X of Pr (X = x) in Equation 10. Equation 11 comes
from the fact that the maximum of positive values cannot be larger than their sum.14

Equation 12 holds by definition of the total variation distance – see Section 2. Finally, we
get Equation 13 by observing that for any l ∈ L, we have that 1 ≤ Pr(L=l)

minl′∈L Pr(L=l′) .

This proposition tells us that we may bound the average random probing parameter ϵ
by a function of δ and of minl∈L Pr (L = l). It is worth emphasizing that the choice of T
in the proof, and thereby ϵx, is not necessarily optimal, i.e., there is a chance that the
bound given in Proposition 4 may be improved, e.g., by using the bounded retrieval model
with a short description length.

6.2 The Case of Deterministic Leakages
Another interesting use case — perhaps less unrealistic — is the class of deterministic
leakage functions. It is easy to see that the leakage functions in this class are not RP-
simulatable, since there is no leakage that can be generated from any input, unless for the
constant leakage function. Nevertheless, such leakages remain ARP-simulatable by virtue
of Theorem 2.

A second reason to the interest in deterministic leakages is that it allows to turn
the implicit constraint of Equation 6 into explicit constraints on each ϵx, which in turn
allows to derive the optimal simulator in those cases. To this end, we may notice that for
deterministic leakage functions, any input can only be associated to one leakage value. In
other words, the input space can be partitioned into several sets of pre-images.

Lemma 5 (Characterization of Deterministic Leakages). A leakage function is determin-
istic if and only if the sets

Xl = {x ∈ X : Pr (L(x) = l) > 0} ,

are mutually exclusive.
14See [DDF14, Footnote 8].
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Proof. L is deterministic if and only if for any input x, there is only one leakage l such that
Pr (L(x) = l) > 0, so x can only belong to one set Xl. Reciprocally, if the sets are mutually
exclusive, any input x belongs to one set Xl⋆ , so Pr (L(x) = l⋆) =

∑
l Pr (L(x) = l) = 1.

Theorem 3. Let L : X → L be a deterministic leakage function. Then L is simulatable in
the (ϵx)X -average random probing model if and only if there is some leakage l⋆ ∈ L such
that for all x /∈ Xl⋆ we have ϵx = 1 .

Proof. The necessary and sufficient condition can be rephrased as

X ′ = {x ∈ X : ϵx < 1} ⊆ Xl⋆ , for some l⋆ ∈ L .

We proceed the proof by showing both implications.

=⇒ : Suppose X ′ ̸⊆ Xl for all l ∈ L. Then, for all l ∈ L, there is some x ∈ X ′ such
that Pr (L(x) = l) = 0. This in turn implies that∑

l∈L

min
x∈X ′

{
Pr (L(x) = l)

1 − ϵx

}
= 0 ,

which breaks the necessary condition of Equation 6.

⇐= : Suppose X ′ ⊆ Xl⋆ for some l⋆ ∈ L. Since, by assumption, {Xl}l∈L are mutually
exclusive, if X ⊆ Xl⋆ for some leakage l⋆ ∈ L, then such l⋆ is unique. Hence,∑

l∈L

min
x∈X ′

{
Pr (L(x) = l)

1 − ϵx

}
= min

x∈X ′

{
1

1 − ϵx

}
≥ 1,

which verifies Equation 6. In the latter equality, we used the fact that for deterministic
leakages, Pr (L(x) = l) > 0 ⇐⇒ Pr (L(x) = l) = 1.

Figure 2 illustrates the simulator, characterized through the proof of Theorem 3: one
chooses a single leakage, and only the values belonging to the pre-image set of l⋆ are
allowed to be revealed to the adversary with some probability ϵx strictly less than 1. Given
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(b) The corresponding optimal ARP simulator.

Figure 2: An exemplary deterministic leakage function, and the corresponding optimal
simulator.

that Theorem 3 requires no further constraint, for a given fixed l⋆, the best simulator —
i.e., the one minimizing ϵ — is such that ϵx = 0 for any x ∈ Xl⋆ . Hence,

ϵ = E
x

[ϵx] = 1 − |Xl⋆ |
|X |

.
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Consequently, the optimal simulation is obtained by choosing l⋆ as the leakage occurring
the most frequently. This allows to conclude with the following corollary.

Corollary 2 (Deterministic Leakages). Let L : X → L be a deterministic, δ-noisy, leakage
function. Then, L is δ-ARP-simulatable.

Proof. Observe that for deterministic leakages, δ = 1 −
E
l
[|Xl|]

|X | ≥ 1 − maxl|Xl|
|X | = ϵ.

In other words, assuming that each wire leaks a deterministic, δ-noisy function of its
value, Corollary 2 confirms that the provably secure construction of Brian et al. remains
valid [BDF24, Cor. 9].

7 Discussion and Perspectives
We have now exposed the main results of this work, but before concluding this paper,
let us synthesize some of its takeaway messages. We have exhibited a gap between the
formal definitions given to the average random probing model between Dziembowski et
al.’s works [DFS15b] and Brian et al.’s works [BDF24]. With this clarification in mind,
we have shown that contrary to Dziembowski et al.’s tight simulation in the DFS-ARP
model, the reduction to the ARP defined by Brian et al. still conveys a security loss of
Ω (|X |), questioning the tight reduction from noisy leakage to random probing model
claimed by Brian et al. Thankfully, this tight reduction remains valid, e.g., if one makes
the additional assumption that the leakage function of each wire is deterministic. We
begin our discussions hereafter by first elaborating on that point.

7.1 On the Deterministic Leakage Functions
Although far from generic, the deterministic leakage assumption covers physically realistic
situations, in a low physical noise setting, e.g. when the Hamming weight or whenever any
physical bit of each wire is revealed to the adversary. It can also be generalized to the
same leakage functions with some independent additive noise, since they can be trivially
simulated from their deterministic counterpart. But, the corresponding security bound
would be kept unchanged, regardless of this additive noise. This is clearly a proof artifact,
since this contradicts the intuition of noise amplification of masking [CJRR99].

However, a tight reduction for deterministic leakage functions does not make sound
security bounds yet. Framing the discussion in terms of admissible values of δ by the
whole chain of security proof, the deterministic-leakage assumption only covers a restricted
range. As argued in footnote 13, by definition of deterministic leakage functions, their
corresponding noisy-leakage parameter δ must be higher than |X |−1. This constraint must
be put into perspectives with two additional constraints: Firstly, Brian et al.’s security
proof requires ϵARP = 35ϵRP

2 [BDF24, Thm. 2]. Secondly, the current RP-secure circuits
with a constant tolerated leakage probability require ϵRP ≤ 2−7.5 [BRT21]. Overall, our
patch only works for deterministic leakages verifying

|X |−1 ≤ δ ≤ 2−15

35 ,

which in turn implies that |X | ≥ 220. In other words, outside this range, our patch does
not improve upon the classical reduction of Duc et al. [DDF14]. Such an improvement,
conjectured for a decade so far [DFS15a], remains therefore an open problem. Even if
the tolerated leakage probability ϵRP could be increased in a near future, Brian et al.’s
reduction would still require the optimal ARP parameter for deterministic leakage functions,
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namely ϵARP = 1 − maxl
|Xl|
|X | , to be at most 1

35 . This de facto eliminates most of the
physically realistic leakage functions.15

7.2 Cautionary Note: How not to Interpret our Result
Although we have shown that in its current state, the construction of Brian et al. [BDF24]
is not practical, we would like to stress that this does not necessarily invalidate Brian et
al.’s final result — it only remains unproven yet. In this respect, one must not interpret
from our work that the core idea implemented in Brian et al.’s construction is a dead-end.
Actually, we believe that it remains a promising line of research.

To see why, we need to take a few steps back: so far in this paper, we have considered
simulating leakage functions occurring at the scale of a single wire. Proving the reduction at
the scale of the whole circuit straightforwardly follows then, as shown by Duc et al. [DDF14,
Lemma 5]. More precisely, we can show that simulating from the RP at the scale of each
wire independently is necessary and sufficient to simulate from the RP at the scale of the
whole circuit, for any distribution of the circuit wires, as stated hereafter.16

Corollary 3 (of [DDF14, Lemma 5]). Let L1, . . . ,Lℓ be ℓ leakage functions: X → L,
mutually independent, given their respective inputs. Define for short the random vector
X⃗ = (X1, . . . ,Xℓ) for random variables Xi ∈ X , and L(X⃗) = (L1(X1), . . . ,Lℓ(Xℓ)). Then,
there exists a simulator SSS : (X ∪ {⊥})ℓ → Lℓ and an oracle φφφ(x⃗) = (φ1(x1), . . . , φℓ(xℓ)),
where each φi is an ϵi-identity function, such that for any distribution over the random
variables X1, . . . ,Xℓ, the following equality holds:

LLL(X⃗) d= SSS(φφφ(X⃗)) , (14)

if and only if each leakage function Li is ϵi-RP-simulatable.

In a sense, Corollary 3 is what makes the security proof of Duc et al. very generic and
elegant, as one does not need to bother about the actual distribution of the values in the
wires of the circuit. On the other hand, since Corollary 3 is equivalent to Theorem 1, there
is no hope to improve the parameters ϵi of the RP oracles given by Lemma 1, without any
extra assumption.

However, one might not need the reduction from noisy leakage to random probing to
hold for any distribution over the wires. Instead, a careful scrutiny of the joint distribution
of the wires on the masked circuit may allow to restrict the scope of Corollary 3, to some
distributions only, for which the parameters (ϵi)1≤i≤ℓ of the oracle might be significantly
improved. In a sense, we would like now that for a restricted set of joint distributions p
over X ℓ, ϵ may be allowed to depend on p, and not only on some features of the leaky
channel L. This is what Brian et al. capture through the construction of their circuit
compiler, and the subsequent analysis, e.g., by noticing that the joint distribution of some
wires is close to uniform [BDF24]. In that respect, we still believe that investigating this
line of research represents a promising strategy.

7.3 Possible Patches to [BDF24]
We conclude this paper by proposing two ways to circumvent the limitation of the ARP
leakage model. A first and natural strategy could be to revisit the analysis conducted by
Brian et al. based on the ARP model, directly in the DFS-ARP model. Although we did
not investigate this line of research, we do not believe this strategy to be promising.

15For leakage functions like lsb or Hamming weight, we have ϵARP = 1 − maxl
|Xl|
|X | ≥ 1

2 . As an example,
attacks are already exhibited from these leakage models if X is a binary field [MMMS23].

16The proof is given in Appendix A.



20 On the Average Random Probing Model

Indeed, leveraging their reduction from the noisy leakage to the DFS-ARP leakage
model, Dziembowski et al. have derived security bounds in two use cases: when a single
encoding is leaking, and when the Rivain & Prouff compiler [RP10] is applied with leak-free
refreshings [PR13]. Although their works cover adaptively-chosen leakage functions – a
much stronger, but somewhat unrealistic threat scenario –, the proof techniques used
by Dziembowski et al. in the DFS-ARP model are arguably tedious. Since then, their
bounds have been improved by Béguinot et al. [BCG+23, MRS22] and Ito et al. [IUH22]
in the single-encoding scenario, and by Masure and Standaert [MS23] in the Prouff-Rivain
scenario, through direct analysis in the noisy leakage model, with much simpler techniques.
This suggests that any security analysis in the DFS-ARP model could be conducted
in a simpler way in the noisy leakage model, without requiring Dziembowski et al.’s
reduction [DFS15b].

Inversely, we might figure out a patch by revisiting Brian et al.’s security analysis
directly from the noisy leakage model — instead of the ARP. This brings new challenges,
as we might lose the all-or-nothing nature of the (average) random probing model, that is
leveraged in most of the literature on those models. We let this opportunity as an open
question for future research.

A Missing Proofs
We first recall Duc et al.’s reduction to the random probing model, at the scale of a whole
circuit. We then prove that Lemma 6 can be equivalently restated as Corollary 3.

Lemma 6 ([DDF14, Lemma 5], rephrased). Let L1, . . . ,Lℓ be ℓ leakage functions, mu-
tually independent, given their respective inputs.17 For any 1 ≤ i ≤ ℓ, define ϵi =
1 −

∑
l∈L minx∈X Pr (Li(x) = l) . Then, there exist ℓ oracles φi— respectively ϵi-identity

functions — and ℓ simulators S1, . . . ,Sℓ such that for any tuple x1, . . . , xℓ,

L1(x1), . . . ,Lℓ(xℓ)
d= S1 (φ1(x1)) , . . . ,Sℓ (φℓ(xℓ)) . (15)

Proof of Corollary 3. We prove the equivalence by double implication.

=⇒ : Suppose that Equation 15 holds for any tuple (x1, . . . , xℓ). Using the total
probability formula, we have

Pr
(

L(X⃗) = l
)

=
∑

x⃗∈X ℓ

Pr
(

X⃗ = x⃗
)

· Pr (L(x⃗) = l)

=
∑

x⃗∈X ℓ

Pr
(

X⃗ = x⃗
)

·
ℓ∏

i=1
Pr (Li(xi) = li) (By indep. given the xis)

=
∑

x⃗∈X ℓ

Pr
(

X⃗ = x⃗
)

·
ℓ∏

i=1
Pr (Si(φi(xi)) = li) (By Theorem 1)

=
∑

x⃗∈X ℓ

Pr
(

X⃗ = x⃗
)

· Pr (SSS(φφφ(x⃗)) = l)

= Pr
(
SSS(φφφ(X⃗)) = l

)
(By total probability)

⇐= : Suppose that Equation 14 holds for any distribution of X1, . . . , Xℓ. In
particular, for any tuple (x1, . . . , xℓ), this holds whenever (X1, . . . ,Xℓ) = (x1, . . . , xℓ) with
probability 1, hence proving Equation 15.

17i.e. for each i ̸= j and for any couple xi, xj , Li(xi) and Lj(xj) are independent.
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