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Abstract. Differential cryptanalysis is one of the main methods of cryptanalysis
and has been applied to a wide range of ciphers. While it is very successful, it also
relies on certain assumptions that do not necessarily hold in practice. One of these
is the hypothesis of stochastic equivalence, which states that the probability of a
differential characteristic behaves similarly for all keys. Several works have demon-
strated examples where this hypothesis is violated, impacting the attack complexity
and sometimes even invalidating the investigated prior attacks. Nevertheless, the
hypothesis is still typically taken for granted. In this work, we propose AutoDiVer,
an automatic tool that allows to thoroughly verify differential characteristics. First,
the tool supports calculating the expected probability of differential characteristics
while considering the key schedule of the cipher. Second, the tool supports estimating
the size of the space of keys for which the characteristic permits valid pairs, and
deducing conditions for these keys. AutoDiVer implements a custom SAT modeling
approach and takes advantage of a combination of features of advanced SAT solvers,
including approximate model counting and clause learning. To show applicability
to many different kinds of block ciphers like strongly aligned, weakly aligned, and
ARX ciphers, we apply AutoDiVer to GIFT, PRESENT, RECTANGLE, SKINNY, Midori,
WARP, SPECK, and SPEEDY.

Keywords: Differential cryptanalysis · Hypothesis of stochastic equivalence · Tool ·
SAT solver · GIFT · SKINNY · Midori · WARP · SPECK · SPEEDY

1 Introduction
Differential cryptanalysis is one of the main cryptanalytic techniques for block ciphers and
other symmetric primitives [BS90, BS91]. It has been applied successfully to a range of
targets. Differential cryptanalysis focuses on differences between two inputs rather than
individual values. The reason behind this is that in many deterministic computations,
differential propagation can be constructed even without knowing the value of the key.
The main idea is to encrypt two similar messages and predict the intermediate differences
and the output differences of the primitive. Crucially, we do not need to analyze the whole
cipher at once. Instead, we use differentials for each component, i.e., predictions of how
differences propagate through the component, and then stitch them together to form a
differential characteristic. The probabilities for all the differentials can be multiplied to
estimate the probability of the differential characteristic. However, this estimate might be
inaccurate due to several assumptions it implicitly makes.
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First, we rely on the Dominant Trail Assumption [LMM91]. It states that the probability
of the differential characteristic is a good approximation for the probability of the differential.
For the differential, we only care about observing the output difference given that the
input difference is satisfied. Hence, its differential probability may be higher than that of
the differential characteristic, which fixes all intermediate differences.

Additionally, we assume the analyzed cipher to be a Markov cipher [LMM91]. It states
that the probability of a difference propagation through a cipher round is independent of
the value of the round input if the round keys are chosen uniformly at random. For ciphers
with a partial key addition, like SKINNY and GIFT, this is not the case. For Markov ciphers,
one can calculate the expected probability of a differential characteristic by multiplying
the probabilities of the individual rounds. However, this product of probabilities only
states the expected probability for uniformly distributed and independent round keys. In
a differential attack, we care only about the probability for the attacked key.

Therefore, we rely on the Hypothesis of Stochastic Equivalence [LMM91], which states
that the expected probability over uniform round keys is approximately equal to the
probability for a given sequence of round keys for almost all sequences of round keys.
However, as we discuss in the following, substantial evidence in the existing literature
suggests that this assumption may not hold in practice. Differential characteristics can
be dependent on the specific values of the key. Therefore, verifying key dependencies in
relation to a differential characteristic is of paramount importance. This necessity forms
the core motivation of our work.

Related Work. The limitations of these assumptions in the differential cryptanalysis of
different designs have been studied in several works.

Daemen and Rijmen examine the distribution of differential characteristic probability
across different keys [DR07]. Introducing the concept of plateau characteristics, they
describe a scenario where the probability is zero for a subset of keys and a fixed nonzero
value for the other keys. By defining planar differentials and employing affine spaces, they
demonstrate that for AES, all 2-round characteristics exhibit plateau behavior.

Leurent studies differential attacks on ARX constructions [Leu12]. He further gen-
eralizes the notion of generalized differences by De Canniere and Rechberger [CR06] by
considering conditions on multiple bits, and proposes a tool to derive these multi-bit
conditions and show inconsistencies. He applies these multi-bit conditions on differential
characteristics for the hash function Skein, and points out problems in several of them.

Canteaut et al. [CLN+17] model necessary conditions for a pair following a differential
characteristic in an unkeyed setting using affine spaces. By intersecting these spaces, they
derive improved probability estimates for differentials in unkeyed Feistel or SPN ciphers.

Ankele and Kölbl [AK18] analyze the difference between differential characteristic prob-
ability and differential probability. Using SMT solvers, they enumerate many differential
characteristics compatible with a differential to provide a better probability estimate.
Additionally, they measure the differential probability for various keys experimentally.

Sun et al. [SWW18] analyze how differential characteristics of Midori64 interact with
its key schedule. By modeling necessary conditions for a pair that follows the differential
characteristic with affine subspaces, they find necessary conditions on the key. Furthermore,
they enumerate all the solutions of characteristics for one STEP function of LED [GPPR11]
to calculate the differential characteristic probability.

Liu et al. [LZS+20] propose using linear systems of equations to model the solution
sets for differential characteristics of block ciphers with planar S-boxes. They combine this
model with a linear system that describes the key schedule. In case the key schedule is
partially non-linear, the linear system only covers the linear part. With this model they
show that some characteristics they find are valid for at least one key of AES-128 but
invalid for AES-192. Additionally, they show an invalid characteristic for Midori128 and
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two characteristics for PRINCE where no key exists that leads to both characteristics being
possible. Furthermore, they show a sufficient condition based for when the hypothesis of
stochastic equivalence holds for a differential characteristic.

Liu et al. [LIM20] propose a method to find differential characteristics for the Gimli
permutation that are not impossible. They propose to model the difference and value
transitions simultaneously in one Mixed-Integer Linear Programming model. Therefore, a
solution to this model includes a conforming pair in addition to a differential characteristic.

Beyne and Rijmen [BR22a] analyze the probability of differential characteristics in a
fixed-key setting. They propose the theory of quasidifferential trails which track probabilis-
tic linear equations on the values satisfying a differential characteristic. Based on these
trails, the probability of a differential characteristic can be calculated as the sum of all
compatible quasidifferential trails. They also provide a tool to find quasidifferential trails
for several ciphers.

Peyrin and Tan [PT22] analyze the key dependencies arising from differential char-
acteristics in GIFT and SKINNY. Their work provides algorithms for finding linear and
nonlinear key dependencies (where this distinction primarily refers to the cause, not the
representation, of conditions [Sun24]). The idea of their algorithm is modeling degrees of
freedom, where constraints on cells are tracked through the linear layer. We note that
their tool is challenging to adapt to other ciphers, especially for weakly aligned ciphers.

In summary, different approaches for the detection, representation, and analysis of
key dependencies and related aspects in differential cryptanalysis have been proposed.
Nevertheless, the study often remains limited to dedicated papers, while new cryptanalysis
papers rarely take these effects and dependencies into account. This is at least in part due
to the lack of easily useable, broadly applicable tools that can directly answer questions
such as “For how many and for which keys is this characteristic valid? What is the impact
of the key schedule on the expected probability?”. Furthermore, many of the available
approaches have different limitations in terms of the type of key conditions they can
potentially identify.

Our Contribution. In this paper, we propose AutoDiVer, a precise, versatile, and usable
tool designed to verify the probability of differential characteristics and identify key
dependencies. Our approach is based on modeling the set of valid pairs and their associated
keys for a given characteristic as a Boolean satisfiability (SAT) problem in conjunctive
normal form (CNF). AutoDiVer then leverages the capabilities of advanced SAT solvers
and model counters to provide the following functionalities:

• Estimate the probability of a differential characteristic averaged over all keys while
considering the key schedule.

• Estimate the probability of a differential characteristic for a fixed key or for an
unkeyed permutation.

• Estimate and bound the number of keys for which there exist valid pairs for the
characteristic, also while considering the key schedule.

• Derive necessary linear and nonlinear conditions on the key such that valid pairs for
the characteristic exist.

Some of the tool’s functionalities yield deterministic results and upper bounds, while
others lead to statistical estimates. For estimating the probability of a differential charac-
teristic, our tool gives probably approximately correct estimates. These are within a certain
range of the true value (based on a tolerance parameter ε) with a certain probability
(based on a confidence parameter δ). We provide two statistical estimates for the number
of keys that permit valid pairs. One of them gives similar probably approximately correct
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guarantees, while the other is based on sampling keys and returns a interval based on a
chosen confidence parameter. To complement these statistical estimates, we implement
methods to derive linear and nonlinear conditions on keys, whose correctness is derived by
a SAT solver. These conditions then lead to concrete upper bounds on the set of keys that
permit valid pairs.

AutoDiVer is precise in the sense that we model the actual cipher, including the full
details of the S-box and key schedule. This increased precision allows us to better capture
the behavior of the differential characteristic. To ensure our formulas are correct, we
compare the results we get by solving the CNF to the cipher reference implementations.

Finally, AutoDiVer provides good usability, as adding a new cipher is simple: one
creates a subclass of our SboxCipher class, gives the S-box as a table and describes the
linear layer and key schedules with Xors constraints and CNF clauses. We demonstrate
the applications of AutoDiVer in the SPN-based ciphers GIFT-64, GIFT-128 [BPP+17],
PRESENT [BKL+07], Midori64, Midori128 [BBI+15], SKINNY-64, SKINNY-128 [BJK+16],
RECTANGLE [ZBL+15] and SPEEDY [LMMR21]. Along with SPN-based constructions, we
also apply our tool to the Generalized Feistel-based construction WARP [BBI+20] and the
ARX cipher SPECK [BSS+13, BSS+15]. A summary of our results is provided in Table 1
(Section 4). Furthermore, our tool produces clear output to minimize the need for manual
post-processing. AutoDiVer is available on GitHub1.

To estimate the probability of differential characteristics, we use approximate model
counting [CMV13]. Approximate model counting gives a probably approximately correct
estimate for the number of solutions of a CNF formula, with a confidence parameter δ and
tolerance parameter ε. We apply projected model counting, a variant of model counting,
to estimate the size of the set of valid keys. Additionally, we experimentally test whether
some random key samples belong to the set of valid keys to estimate its size.

These statistical solver-based approaches introduce interesting advantages and limita-
tions. They are often successfully applicable to characteristics where other experimental
approaches fail due to the low probability of the characteristic, while still taking the
complete specification including the key schedule into account. On the downside, hav-
ing only statistical estimates with no easily verifiable evidence or interpretation is often
unsatisfactory. The correctness of the results relies both on the correctness of the solver
implementation (which is generally a reasonable assumption) and on the parameters δ, ε.
To address these limitations of the purely statistical approach, we implement multiple
approaches for learning key conditions to describe the set of valid keys. These necessary
conditions provide concrete bounds for the number of valid keys.

As observed in previous work, most key conditions can be expressed as affine constraints.
In our approach, we consider the affine hull of the set of valid keys. We derive candidate
constraints on the affine hull, which are then confirmed using the SAT solver. This approach
will identify all affine conditions on the set of valid keys and provide an upper bound on its
size. In many cases, this upper bound appears to be tight as it closely matches our other
methods for estimating the size of the set of valid keys. To fill any remaining gap between
the estimate and bound, we also implement an approach to learn nonlinear conditions,
again taking advantage of SAT solver features. Specifically, we use the clauses that the
SAT solver learns during the statistical evaluation to deduce conditions on the key.

By combining the method for finding the affine hull of the set of valid keys with
the learned CNF clauses about the key, we can give a good description of the set of
valid keys in many cases. Thereby, we complement existing techniques that can be
used to prove conditions on the key, such as constraint-propagation-based techniques
[Leu12, PT22], quasidifferential trails [BR22a], and techniques based on linear systems of
equations [DR07, CLN+17, SWW18, LZS+20]. Naturally, constraints on the key can be

1https://github.com/isec-tugraz/AutoDiVer
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expressed and explained in multiple ways. In this paper, we will explain some constraints
with value-based arguments (as used internally by our tool) as well as quasidifferential
trails (for a succinct summary), to better show the connections between the different
representations. Similarly, all other key conditions we list can also be represented using a
handful of quasidifferential trails.

As an example, for a differential characteristic of Midori64, we find key dependencies
that lead to a weak-key space of size 2111, while the characteristic is impossible for all
other keys. We list 17 linear constraints that describe this weak-key set. Furthermore,
we can verify the expected differential probability of the same Midori64 characteristic to
be 2−52 in just 1.5 seconds. Similarly, we find key dependencies for certain differential
characteristics of all our analyzed ciphers.

We note that, since AutoDiVer is based on SAT solvers and model counters, it is
sometimes hard to predict the runtime. In particular, our methods based on model
counting become less efficient with more rounds. Furthermore, our tool only analyzes one
differential characteristic at a time, so we still rely on the dominant trail assumption.

We believe AutoDiVer to be useful for a wide audience. Cryptanalysts can easily verify
their differential characteristics and potentially improve them, while designers can use it
to test various parameters of their block cipher, particularly different key schedules.

Outline. In Section 2, we recall the necessary background on differential cryptanalysis,
SAT solvers, and model counters. In Section 3, we describe our method for verifying the
probability and describing the set of valid keys. In Section 4, we summarize our results.
In Section 5, we compare our tool to related work. We conclude in Section 6.

2 Background
In this section, we recall the necessary background. In Subsection 2.1, we recall differential
cryptanalysis. In Subsection 2.2, we give an example of a key dependency on a toy cipher.
In Subsection 2.3, we outline Boolean satisfiability (SAT) problems and algorithms to
solve them. In Subsection 2.4, we recall the related problem of model counting and outline
an algorithm for approximate model counting.

2.1 Differential Cryptanalysis
Differential cryptanalysis is a powerful statistical approach for attacking block ciphers,
introduced by Biham and Shamir in 1990 [BS90]. It is a chosen plaintext attack. The idea
is to look at differences between pairs of plaintext inputs rather than studying individual
values. The rationale behind this is that the propagation of these differences can be
predicted, even without knowing the value of the secret key used in the encryption process.

The attack starts by selecting two plaintext messages, denoted as x and x′, that are
processed by the same function f . Let ∆x = x⊕x′ and ∆y = f(x)⊕f(x′). The event where
the difference ∆x propagates to ∆y, denoted as ∆x → ∆y, is called a differential transition
of f . The attacker’s goal is to compute the probability of this event, i.e., Pr(∆x → ∆y),
and to find differences ∆x and ∆y with high differential probability.

For linear functions, the probability is always 1 or 0, however; for non-linear functions,
it can be lower. The probability can be computed as the ratio of the number of inputs that
produce the desired differential transition to the total number of inputs. For a function
f : Fn

2 → Fn
2 , the probability can be computed as [NK92]:

Pr(∆x → ∆y) = #{x ∈ Fn
2 : f(x)⊕ f(x⊕∆x) = ∆y}

2n
.
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In order to apply differential cryptanalysis to an iterated block cipher, the attacker
usually focuses on the differential characteristics through the round functions. Let us
consider an iterated block cipher E = Er−1 ◦ · · · ◦E0. Let us denote input to the i-th round
Ei as xi and output as yi. The differential characteristic is a series of differences that show
the propagation of a difference through the round functions of an iterated cipher. An
r-round differential characteristic with a series of intermediate differences (α0, α1, . . . , αn)
is denoted as α0

E0−→ α1
E1−→ . . .

Er−1−−−→ αr, where α0 is the difference in the input plaintexts
and αr is the difference between the outputs after r rounds. The attacker searches for
differential characteristics that propagate with high probability through multiple rounds
of the cipher, providing a means to recover the secret key. Thus, the attacker is interested
in the conditional probability of a differential characteristic

Pr(α0
E0−→ α1

E1−→ . . .
Er−1−−−→ αr) = Pr[∆yr

= αr, ∆yr−1 = αr−1, . . . , ∆y1 = α1|∆y0 = α0].

The probability is taken over all choices of plaintext and key. The computation of this
conditional probability is not straightforward, as the probability of αi = ∆yi depends on
all the previous values. However, for a Markov Cipher [LMM91], this can be calculated
from the one-round characteristics that compose the r-round cipher. For a Markov Cipher,
the probability of a one-round differential, taken over all keys and a specific input value, is
independent of the specific input value. Therefore, for a Markov cipher with uniformly
random round keys, then the probability of an r-round characteristic can be computed as
the product of the probabilities of each one-round characteristic. Specifically,

Pr(α0
E0−→ α1

E1−→ . . .
Er−1−−−→ αr) =

r∏
i=1

Pr[∆yi = αi|∆yi1
= αi−1].

Previously, we discussed the concept of a differential for any function, which measures
how the output of a function changes in response to a certain input change. The probability
of any differential from input difference α to output difference β can be computed by
taking the sum over the probabilities of all possible characteristics of the form α0

E0−→
α1

E1−→ . . .
Er−1−−−→ αr where α = α0 and β = αr. Thus, if the function is an iterated Markov

cipher then the probability of any differential (α→ β) can be computed as

Pr(α→ β) =
∑
α1

∑
α2

· · ·
∑
αr−1

r∏
i=1

Pr[∆yi
= αi|∆yi1

= αi−1] .

However, the attacker needs to consider the average probabilities over all possible
keys to calculate this probability, which is computationally expensive. Note that all the
plaintext-ciphertext pairs that an attacker collects are usually encrypted with a fixed and
unknown key. So, we assume that the probabilities are equivalent for almost all keys. This
assumption is called the hypothesis of stochastic equivalence [LMM91], which states that

Pr[∆yr
= αr, ∆yr−1 = αr−1, ..., ∆y1 = α1|∆y0 = α0, K = k]

≈ Pr[∆yr
= αr, ∆yr−1 = αr−1, ..., ∆y1 = α1|∆y0 = α0],

where K is a random variable for the key. However, it is important to note that this
assumption is not always true; it is a common simplifying assumption made in cryptanalysis
that usually, but not always, holds. For instance, the designers of Rijndael in [DR00]
mentioned that block ciphers can have weak keys, which result in some differential
characteristics having very high probabilities while others have very low probabilities. In
[DR07], the authors proposed the concept of plateau characteristics, where the probability
for a fixed key is either zero or a single nonzero value. It was demonstrated that for AES,
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as well as many other block ciphers, all two-round differential characteristics are plateau
characteristics. Furthermore, in the case of AES, most of the four-round characteristics
are plateau characteristics. Thus, if an attacker suspects that the stochastic equivalence
assumption does not hold for a specific cipher or key, then more complex techniques, such
as experimental verification, are needed. However, for differentials with low probability,
performing experimental verification is often infeasible. This challenge serves as the primary
motivation for our work. In addition to the existing literature we have discussed, which
suggests that differential characteristics can depend on specific key values, we present the
following simple example to explore this issue.

2.2 Example of a Key Dependency
To illustrate how a key dependency can arise, we give an example in Figure 1. In this figure,
we consider a toy cipher that uses the PRESENT S-box and a small version of PRESENT’s
bit permutation. To discuss the main issue, we consider a differential characteristic, with
probability 2−10 when averaged over all keys. However, if the desired differential transition
in the rightmost S-box in the first round happens, then the least significant output bit is
always 0. Similarly, the least significant input bit of the rightmost S-box in the second
round must be 0 for the transition to happen. Therefore, the key bit K1,0, that connects
the output and input bits, must be 0. Otherwise, the characteristic is impossible (i.e., the
probability is 0). If the key bit is 0, the probability doubles to 2−9 as the least significant
input bit in the last round always has the right value. Thus, the probabilities are not
equivalent for all keys, i.e., the hypothesis of stochastic equivalence does not hold.

Based on this example, we use the term independent probability as in [PT22], which
states the probability of the differential characteristic when only the set of valid keys, i.e.,
the set of keys which lead to non-zero probability, is considered. In this example, the
independent probability would be doubled to 2−9. Note that even within the set of valid
keys, there might be variations of the probability depending on the exact value of the key.

⊕K0

S S S S

⊕K1

S S S S

⊕K2

S
a
2

S
f
1

S
2
aS

1
3

{S(x) : S(x⊕ a) = S(x)⊕ 2} = {0, 2}

{x : S(x⊕ 2) = S(x)⊕ a} = {0, 2}

K1,0 must be 0

Figure 1: Key dependency in a differential characteristic of a toy cipher.

This example can also be explained in the framework of quasidifferential trails [BR22a].
A quasidifferential trail is a pair of a differential characteristic and associated linear
masks. The linear masks specify linear equations over the valid pairs for the differential
characteristic with a certain correlation. The total correlation is then calculated like in
linear cryptanalysis, but for each S-box only the valid pairs for the differential transition are
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considered. To show a contradiction, we consider two quasidifferential trails of maximum
absolute correlation [BR22a, Theorem 4.2]. For both of them the differential part is given
by our differential characteristic in Figure 1. The first one is the trivial one, where the linear
part consists of only zero masks. The correlation of this trivial quasidifferential trail always
equals the differential characteristic probability, i.e., 2−10. The second quasidifferential trail
has non-zero linear masks as indicated the red/black dashed line in Figure 1. From before,
we know that this linear approximation of the involved bits is always satisfied for valid
pairs. Due to the key addition, this quasidifferential trail has correlation (−1)K1,0 · 2−10.
This implies that for K1,0 = 1, the characteristic is impossible [BR22a, Theorem 4.2]. Note
that in the general case, one would consult the quasidifferential transition matrix to find
the correlation.

2.3 SAT Solvers
Boolean satisfiability (SAT) solving is one of two major constraint programming paradigms
used in the automated cryptanalysis of symmetric primitives. SAT solvers solve decision
problems expressed using Boolean constraints in conjunctive normal form (CNF). Several
popular generalizations are summarized under the term Satisfiability Modulo Theories
(SMT) and provide more expressive languages for the constraints, such as bitvector
operands or integer arithmetic. Given a problem, the solvers return either a solution
satisfying all constraints or UNSAT, if such a solution does not exist. More advanced solvers
additionally support features such as enumerating solutions. Internally, most solvers
implement (extensions of) the Davis-Putnam-Logemann-Loveland (DPLL) algorithm for
backtracking-based search [DLL62], particularly Conflict-Driven Clause Learning (CDCL)
[SS96]. In CDCL, the solver derives new constraints learned during the search procedure;
some solvers can also return these learned clauses via their user interface.

SAT solvers have been used for cryptanalysis for more than two decades [MM00, Mas99,
SNC09], originally for executing straightforward key-recovery or preimage attacks based on
given data. For this purpose, the cryptographic circuit can be translated into CNF with a
generic transformation such as the Tseitin transformation [Tse70] and Boolean variables for
the values of intermediate results, with the data of one or a few single plaintext-ciphertext
pairs added as additional constraints.

In the last ten years, they have become more popular for finding distinguishers,
particularly differential and linear distinguishers [MP13, Köl14, SHW+14]. Here, the
Boolean variables instead represent differences/linear mask , and the constraints encode the
propagation rules of differences/linear masks, either on a truncated level (e.g., for cell-wise
activity patterns to derive bounds on the number of active S-boxes) or on a precise bitwise
level based on the DDT or LAT (e.g., when searching for fully specified characteristics
for an attack). Challenges include the modeling of large S-boxes [AST+17, BC20, SW23],
efficient integer counters for bounding the probability of characteristics [SWW21a, EME22],
modeling clustering and the differential effect [AK18], efficient problem partitioning and
parallelization due to the single-threaded nature of most SAT solvers [EME22], combining
characteristic search with solution search [SWW18], and more.

2.4 Model Counting
Model counting, also known as #SAT, is the problem of counting the number of solutions
#F to a formula F in conjunctive normal form (CNF). Instead of enumerating all solutions,
a number of dedicated model counters exist, most of which compete in the regular occurring
model counting competitions [FHH21, KJ21, LM17, LMY21].

A feature of many model counters is the ability to perform projected model counting,
where an additional input, the sampling set V, is provided. Now, instead of counting all
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solutions, the number of unique assignments to the variables in the sampling set such that
the formula remains satisfiable is counted. We denote this projected count as #VF .

To make these model counters more scalable, so called approximate model counters
exist. We use ApproxMC [CMV13] which gives probabilistic guarantees: For a formula F
with #F solutions, the following holds for the approximate count c:

1
1 + ε

·#F ≤ c ≤ (1 + ε) ·#F with probability p ≥ 1− δ,

where ε and δ parameterize the tolerance and confidence, respectively. The lower these
values are, the better the approximation. However, better approximations also require
more computational resources.

The main idea of ApproxMC is to divide the solutions space of the formula into
many small cells by using a (noncryptographic) hash function and then counting the
exact number of solutions for a subset of these cells. Assume F is a formula over n
variables with #F solutions. To partition F into cells of approximate size #F · 2−m,
we pick masks (a1, a2, . . . am) uniformly at random from {0, 1}n. This defines a hash
function h(y) = h1(y) ∥ h2(y) ∥ . . . ∥ hm(y) where hi(y) =

⊕n
j=0 ai,j · yj . Each cell then

corresponds to the subset of solutions where h(y) takes a specific value α ∈ {0, 1}m denoted
as F ∧ h(y) = α. Thus, we arrive at a first estimate:

#F ≈ 2m ·#(F ∧ h(y) = α) .

To provide the necessary guarantees, we calculate this estimate multiple times for
non-empty cells of a certain size. To pick the number of Xors m, we initialize m = 0
and increase it until the cell size is less than a given threshold t# based on the tolerance
parameter ε, where t# ∈ O (1/ε2). The iteration count tit is based on the confidence
parameter δ, where tit ∈ O (log2 (1/δ)). Finally, we return the median of all tit estimates.

Note that this explanation only covers the basic ideas as proposed at CP 2013 [CMV13].
Since then, a number of improvements have been implemented [SM19, SGM20, YM23].
For a full specification, we refer to these papers and the source code of ApproxMC2.

3 SAT-Based Verification of Differential Characteristics
Now, we outline our approach for verifying differential characteristics. In Subsection 3.1, we
show how to encode the set of valid pairs for a differential characteristic and associated keys
in conjunctive normal form (CNF). In Subsection 3.2, we explain how to use that encoding
to calculate the precise probability for that differential characteristic. In Subsection 3.3,
we show how to estimate for how many keys this differential characteristic permits valid
pairs. In Subsection 3.4, we explain how to obtain necessary conditions such that a key
permits valid pairs for a certain differential characteristic. In Subsection 3.6, we give some
implementation details of AutoDiVer, and outline how it can be extended for new ciphers.

3.1 Encoding valid pairs as a CNF
Given a differential characteristic, we aim to find a set of pairs that conform to the specified
differential characteristic. To achieve this, we represent this set in conjunctive normal form
(CNF). Essentially, we construct a CNF in which every solution is representative of the
cipher execution adhering to the differential characteristic.

A naive approach involves encoding the execution of the cipher twice and adding
constraints to ensure that, at each step, the differences follow the specified differential

2https://github.com/meelgroup/approxmc

https://github.com/meelgroup/approxmc
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characteristic. Such an approach is used in the existing literature [MZ06, SRB21]. Con-
straints are then created for all S-boxes and the linear layers in accordance with the
cipher specification. The characteristic is then encoded by specifying that certain variables
are equal or not equal. However, this encoding has a significant drawback: it requires
specifying the cipher twice, resulting in twice as many variables and more than double the
number of constraints.

Here, we use a different approach from the existing literature [NPE23] that is based on
3 key observations:

1. Variable elimination: We can eliminate all the variables associated with the second
execution. Each variable in the second execution can be expressed as either identical
to or the negation of its corresponding variable in the first execution, depending on
the differential characteristic.

2. Single encoding of the linear layer: The linear layer needs to be encoded only
once because the propagation of differences through the linear layer is deterministic.

3. Optimized S-box encoding: Instead of encoding each S-box twice (once for the
normal variables and once for the variables with some bits flipped), we can directly
analyze the solution set for the S-box {(x, y) : S(x) = y∧S(x⊕α) = y⊕β}. Concretely,
we create a dedicated small CNF using a logic minimizer like espresso [BHMS84] for
a Boolean function f such that f(x, y) = 1 if and only if S(x) = y∧S(x⊕α) = y⊕β.

To make our approach more comprehensive, we give an algorithmic description in
Algorithm 1. In line 8, we use espresso to generate a small CNF that encodes the S-box
constraints. In line 12, we record the constraints as Xor constraints. When passing this
CNF to a solver that supports Xor constraints, such as CryptoMiniSAT, we pass the Xor
constraints unmodified; otherwise, we convert them into standard CNF constraints.

Algorithm 1: Encoding valid pairs as a CNF formula.

Data: A differential characteristic α0
R−→ α1

R−→ . . . αr

Result: CNF Formula F that encodes the valid pairs and associated keys
1 for j = 0 to r do
2 Create variables for S-box inputs xj,i and outputs yj,i and the round keys Kj,i

3 Calculate output differences βj of the S-box layer based on αj+1
4 end
5 F ← F∧ constraints for the key schedule
6 for every S-box yr,i = S(xr,i) do
7 Let αr,i and βr,i denote the input and output differences of the S-box.
8 F ← F ∧ (xr,i, yr,i) ∈ {x, y : S(x) = y ∧ S(x⊕ αr,i) = y ⊕ βr,i}
9 end

10 Let cr denote the round constants
11 for every linear layer xr+1 = L(xr, Kr, cr) do
12 F ← F ∧ xr+1 = L(xr, Kr, cr)
13 end
14 return F

Finally, when creating the CNF, it is crucial to ensure a one-to-one correspondence
between solutions and valid pairs for the differential characteristic. For instance, if there
was an unused variable with no constraints, each valid pair would correspond to two
solutions. This would hinder our ability to count the number of solutions accurately to
determine the number of valid pairs. Therefore, we take care not to introduce any unused
variables into our model.
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By solving this model with a SAT solver, we can verify whether the differential
characteristic is possible. If the solver returns UNSAT, we know it is impossible. In the
following, we propose various advanced applications of our model.

Remark. The applications of AutoDiVer, that we discuss below, are easily extendable to
the tweakey framework. In this framework, we consider the tweakey instead of the key, as
will be elaborated later for the SKINNY block cipher in Section 4.

3.2 Verifying the Probability
Often, differential characteristics have such low probabilities that verifying them experi-
mentally is infeasible. To verify the probability of such low-probability characteristics, we
use our CNF encoding by counting the number of valid pairs and keys. It is important to
note that each solution of our CNF corresponds to a plaintext and key. Therefore, we can
calculate the number of solutions as follows:

Pr(α0
R−→ α1

R−→ . . . αr) = #F

2n+k
,

where F denotes the encoding of valid pairs, n denotes the block size and k denotes the
key size in bits.

This method enables us to determine the exact probability of the differential character-
istic, averaged over all 2k keys of the block cipher. One advantage compared to evaluating
the differential characteristic using the DDT is that our approach takes the key schedule
into account. Of course, when we approximate #F using ApproxMC, we remain subject
to its probabilistic (ε, δ) guarantees.

Having discussed the exact probability averaged over all keys of the block cipher, we
now address the case of a fixed key. To calculate the differential characteristic probability
for a specific key, we can add constraints to fix the key to a specific value and then avoid
dividing by the key size, i.e.,

Pr(α0
RK0−−−→ α1

RK1−−−→ . . . αr) = #(F ∧ K = K)
2n

,

where K denotes the variables for the key and K denotes a fixed value.

3.3 Verifying the Number of Valid Keys
As a second application of our model, we discuss how to determine the size of the set of valid
keys that satisfy a given differential characteristic. Some differential characteristics only
permit a valid pair for a specific subset of keys, which we refer to as K⋆. In extreme cases, the
characteristic might not permit valid pairs for any key, meaning K⋆ = ∅. This phenomenon
has been noted multiple times in the literature [AK18, SWW18, PT22, BR22a].

When the set of valid keys is non-empty, the differential characteristic can be leveraged
in a weak key attack. In such cases, the probability of the differential characteristic is
zero for most keys but significantly amplified for the set of valid keys. Therefore, it is
important to estimate the size of this set and describe its elements. We propose two ways
to do this using AutoDiVer:

1. One way to estimate the size of the set of valid keys is to use projected model
counting. We set the sampling set to the key variables and count:

∥K⋆∥ = #KF ,

where K denotes the variables for the key. Again, we use ApproxMC to approximate
this count. This gives us a flexible way to estimate the size of the set of valid keys.
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2. We can approximate the size of the set of valid keys by sampling many random
keys and using a SAT solver to verify whether a valid pair exists for that key. If we
perform this experiment for, say, t random samples and tsat turn out to be satisfiable,
we can approximate the size of the set of valid keys as

∥K⋆∥ ≈ 2k · tsat

t
.

To quantify the certainty of this estimate, we use the Wilson score interval [Wil27].
This interval defines an upper and lower limit of the true probability ∥K⋆∥

2k based on
the observations t, tsat with a certain confidence.
One way to implement this approach is to add clauses to the CNF to constrain the
key. However, we would leave some performance on the table, as the SAT solver
would start a fresh search for each CNF. Instead, we do not modify the formula F
and pass the random key as assumptions to CryptoMiniSAT. Assumptions allow us
to fix certain variables (the key variables in our case) to a value without modifying
the CNF. This way, the clauses the SAT solver learns for one key will be reused for
subsequent keys.
We can improve this process by instructing the solver to systematically search for
clauses over the assumption variables, i.e., the key. To do so, whenever the solver
returns UNSAT, we call the find_conflict method of CryptoMiniSAT. This method
then returns a learned clause over the assumptions variables that excludes the current
assignment of assumption variables. We find that explicitly calling find_conflict
gives much better results than iterating over all learned clauses. After we have
identified enough clauses, we minimize them using espresso [BHMS84] to get a better
representation.

One important benefit of the second approach is that we can use the learned clauses to
learn information about the set of valid keys K⋆. The idea is to iterate over all learned
clauses and look for clauses where all variables are bits of the key. Since the SAT solver
only learns clauses that are implied by the original formula, these clauses serve as necessary
conditions that a key belongs to the set of valid keys K⋆. This approach works well for
GIFT, where the linear layer and key schedule are simple. However, for ciphers with
more complex key schedules we find that many clauses are necessary to describe the key
dependency. In particular, Xors involving many variables can only be described using an
amount of CNF clauses that is exponential in the number of variables. Therefore, we need
a more systematic way to find linear conditions on the key, which we describe next.

3.4 Describing the Set of Valid Keys
Here, we present a systematic approach to describe the set of valid keys corresponding
to a given characteristic. This method is based on the observation that in the existing
literature most conditions on the key are affine conditions [DR07, CLN+17, SWW18,
LZS+20, BR22a, PT22]. This usually occurs because most S-boxes are planar, i.e., the set
of inputs/outputs for a given differential transition form an affine space. Still, SKINNY-128
also shows affine conditions [PT22] but uses a non-planar S-box.

In the existing literature such affine key conditions are often identified by modeling
the solution sets of active S-boxes, the linear layer, and sometimes the key schedule as a
system of linear equations. Here, we present a new method that also captures the effect
of inactive S-boxes, by modeling the solution sets as a CNF (including the connection
between input and output value). Note that the connection between input and output has
been captured in different ways in the existing literature as well [BR22a, PT22].

We aim to describe the affine hull of the set of valid keys, namely aff(K⋆). Since
K⋆ ⊆ aff(K⋆), if a key lies outside of aff(K⋆) it is also outside of K⋆. Thus, we have a
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necessary condition for a key to be valid. Furthermore, in Section 4, we will see that in
many cases the affine hull of valid keys and the set of valid keys are nearly identical:

aff(K⋆) ≈ K⋆ .

To construct the affine hull, we find k + 1 solutions for our encoding of valid pairs F ,
where k denotes the key size in bits. We store these solutions in the set Ksol. To ensure
these k + 1 solutions are actually different, we take the following two steps:

1. Instruct the SAT solver to select the polarity of the variables it uses for branching
decisions at random.

2. Use a different random seed every time.

From these k + 1 solutions, we can extract k + 1 values for the key which span an affine
hull aff(Ksol) of dimension d ≤ k. This is definitely a subset of the affine hull of valid keys
aff(K⋆). But how do we know whether they are equal?

Affine hull as a set of linear equations. To answer that question, we need to restructure
our affine hull aff(Ksol) as a set of linear equations. We start with an arbitrary element
K0 ∈ Ksol to serve as a constant offset. Then, we apply Gaussian reduction to K0 ⊕Ksol
to receive a k × d basis matrix B. With this basis, we can represent any key K ∈ aff(Ksol)
as K = K0 + B · v for some v ∈ Fd

2. Let us consider A = ker(B) with A ∈ F(k−d)×k
2 and

c = A ·K0 with c ∈ Fk−d
2 . Because ker(B) ·B = 0, after multiplying with A, we get

A ·K = c .

This gives us a linear-equation-based representation of the affine hull aff(Ksol). Crucially,
the dimension d of our affine hull is likely close to k, so this way, we get a much shorter
representation than using the basis matrix.

Finding a counterexample. With this linear-equation-based representation for the affine
hull, we can use our SAT solver to solve the problem F ∧A · K ̸= c, where K denotes the
SAT variables used for the key. If this new problem is satisfiable, we retrieve the key and
add it to our basis B and start over. Otherwise, if it is unsatisfiable, we have proved that
no valid key exists outside of the affine hull, i.e., aff(Ksol) = aff(K⋆). This also implies
that the conditions A ·K = c are necessary conditions for a valid key.

Combining the techniques. While many key dependencies for differential characteristics
can be described using linear equations, nonlinear key dependencies do sometimes exist.
Therefore, we combine the technique to find the affine hull of the set of valid keys with the
SAT-based experimental verification from Subsection 3.3. Concretely, instead of sampling
uniformly from the full key space, we sample uniformly from the affine hull of valid keys.
This way we can verify whether there is a significant number of invalid keys within the
affine hull of valid keys. Furthermore, if there are invalid keys, the clauses returned by the
SAT solver when we call get_conflict will describe the nonlinear key conditions.

Impact on probability. With the technique from Subsection 3.2, we can verify the expected
differential probability p, i.e. the probability of the differential characteristic when averaged
over all 2k keys of the block cipher. If we find that the probability is nonzero only for a set
of 2k−x keys (for example, if we find x linear constraints on the key), then we can conclude
that the independent probability, i.e. the probability averaged over the 2k−x valid keys of
the block cipher, is p · 2x. The independent probability predicts the data complexity of a
weak key attack.
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3.5 Explaining Contradictions

In some cases a differential characteristic may be impossible. With a CNF encoding of
the solution set, we can quickly identify such impossible characteristics as the SAT solver
returns UNSAT. However, to find better characteristics, we would like to learn why the
characteristic is impossible.

Now, we augment our tool to automatically identify the source(s) of impossible charac-
teristics. To do so, we first add extra assumption variables sr,i for all (active and inactive)
S-boxes. We use this assumption variable to selectively toggle the constraints for this
S-box on or off. We achieve this by modeling a logical implication:

sr,i → (xr,i, yr,i) ∈ {x, y : S(x) = y ∧ S(x⊕ αr,i) = y ⊕ βr,i},

where xr,i and yr,i denote the input and output values and αr,i and βr,i denote the input
and output difference. In conjunctive normal form this implication can be modeled in
a straightforward way, by appending ∨ ¬sr,i to each clause of the existing S-box model.
Now, if we constrain the new variables sr,i to be true, then this model is equivalent to the
existing one.

To learn which S-boxes cause the contradiction, we pass all sr,i variables as assumptions
to the SAT solver. Remember that assumptions allow us to fix certain variables without
modifying the CNF. Additionally, if the solving process returns UNSAT, we can call
get_conflict to learn a clause over the assumption variables. This learned clause then
lists the S-boxes that cause a contradiction.

We can apply the same idea to explain which S-boxes are responsible for which affine
conditions on the key. To do so, we first find the linear conditions on the key as explained
in Subsection 3.4. Then, for each identified constraint, we add the inverse to our model,
making it unsatisfiable, and use the method outlined above to find the relevant S-boxes.
Similarly, we also apply this method to explain nonlinear constraints by explaining each
clause separately. We also apply this method to ARX ciphers, where we add an assumptions
variable for each full adder, i.e., n assumption variables for each n-bit addition.

To illustrate the method, we apply it to the toy cipher example (Figure 1, page 7).
First, we define the variables sr,i with r ∈ {0, 1} and i ∈ {0, 1, 2, 3} where i = 0 denotes the
rightmost S-box. Then, we apply the method from Subsection 3.4 (with sr,i as assumption
variables) to find that K1,0 = 0. Next, we add the constraint that K1,0 = 1 making the
problem UNSAT and the call to get_conflict returns ¬s0,0 ∨ ¬s1,0 indicating that one
of the two rightmost S-boxes must be removed for the model to be satisfiable. Hence, we
conclude that the two rightmost S-boxes cause the conflict.

3.6 Implementation of the Approach

The methods outlined above are all implemented in a Python library. We use CryptoMini-
SAT as a SAT solver and ApproxMC as an approximate model counter. Furthermore, we
use espresso to minimize the formulas for the S-boxes.

We ensure that our cipher descriptions match the actual ciphers as specified by using
an extensive suite of automated tests. For each cipher, we test our CNF descriptions
against a reference implementation. Furthermore, we also test that the solutions for a
given characteristic match that characteristic.

Our library can be readily extended to include more ciphers. To implement a new
cipher, one has to describe the linear layer and the key schedule in terms of CNF clauses
and/or Xor constraints. Note that describing the S-boxes is handled automatically, based
on a table description of the S-box.
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4 Results
We apply AutoDiVer to the ciphers GIFT-64, GIFT-128, SKINNY-64, SKINNY-128, Midori64,
Midori128, RECTANGLE, WARP, SPEEDY, and SPECK. Note that this list includes SPN
ciphers, generalized Feistel ciphers, strongly aligned ciphers, and weakly aligned ciphers.
We particularly focused on reproducing results from related work to verify the applicability
of the tool but also provide new results not included in prior work. This diverse set of
ciphers highlights the broad applicability of AutoDiVer.

We list our results for estimating the size of the set of valid keys in Table 1. ‘EDP’ lists
the expected differential characteristic probability calculated using the DDT. Key set size
denotes the size of the set of keys that permits valid pairs for the differential characteristic
calculated using various methods: ‘AMC’ denotes the estimate using projected approximate
model counting with ApproxMC with δ = 0.2 and ε = 0.8. ‘Exp. est.’ denotes the estimate
based on picking many keys independently uniformly at random and verifying whether
valid pairs exist; the range shows the 80% confidence interval. The last columns summarize
the number of key conditions in our and prior work: ‘LC’ denotes the number of linear
conditions found with AutoDiVer, with ⋆ denoting cases where we found additional nonlinear
constraints. This gives an upper bound on the size of the set of valid keys. ‘RW’ lists
the number of conditions, expressed as the key space reduction measured in bits (i.e., n
corresponds to a key space reduction by a factor of 2−n).

We find that the most efficient method is to calculate the affine hull. Furthermore, we
note that in many cases the upper bound given by the affine hull matches very well with
the experimental estimate of the key size. In these cases, the linear constraints discovered
by AutoDiVer provide a very accurate description of the set of valid keys.

When applying approximate model counting, we always use the default parameters
of δ = 0.2 and ε = 0.8. This guarantees, that with 80% probability the result is within a
factor of 2±0.85. However, we observe that even with these parameters the results match
very closely with our experimental verification. That is, the results from approximate
model counting seem to be more accurate than the guarantees given by the proof.

When applying our method for verifying the probability of a differential characteristic,
we find that the runtime is only acceptable for Midori64, where we are able to verify
a characteristic of probability of 2−54 in only 1.5 seconds. Furthermore, we verify the
probabilities of reduced variants of GIFT and WARP characteristics. For GIFT, we can
verify characteristics with probabilities of about 2−40, while for WARP, we can verify
characteristics with probabilities as low as 2−78.

4.1 Results for GIFT
GIFT is a family of SPN-based block ciphers proposed by Banik et al. at CHES 2017
[BPP+17]. We give a specification in Appendix A.1.

Results. We present our findings on the size of the set of valid keys for various character-
istics of GIFT from existing literature in Table 1. For GIFT, we find a key dependency in
most characteristics. The affine hull also serves as a very good upper bound for the size of
the set of valid keys.

Our results for GIFT mostly match those published by Peyrin and Tan [PT22]. However,
for a characteristic of GIFT-128 [ZDY19, Tab. 14], we find an additional linear key constraint
compared to the Peyrin and Tan. This additional linear constraint also matches the
experimental estimate. Furthermore, we manually analyze the involved S-boxes and
confirm the key constraints.

For the characteristics from [LWZZ19, Table 7 and Table 8], we observe additional
effects that increase the independent probability as listed in [PT22, Table 3]. Because these
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Table 1: Our results for estimated key set size that permits valid pairs for the differential
characteristic. EDP: expected differential probability for characteristic. AMC: approximate
model counting with δ = 0.2, ε = 0.8. Experimental estimate denotes the 80% confidence
interval. LC: number of linear conditions on the key. RW: key space reduction in related
work in bits (red: new constraints on the key). ○: impossible characteristic. ⋆: extra
nonlinear constraints found. †: independent round keys (other results use key schedule).

Cipher Characteristic #R EDP Key set size
AMC exp. est. LC RW

GIFT-64

[LWZZ19, Tab. 2] 9 2−42 2124.00 [3.92, 4.08] 4 4
[LWZZ19, Tab. 7] 12 2−58 2124.00 [3.96, 4.12] 4 4
[LWZZ19, Tab. 8] 13 2−62 [3.93, 4.09] 4 4
[SWW21b, Tab. 8.1] 13 2−64 1 1
[SWW21b, Tab. 8.2] 13 2−64 [4.79, 4.97] 5 5
[SWW21b, Tab. 8.3] 13 2−64 3 3
[ZDY19, Tab. 4] 12 2−59 [2.92, 3.03] 3 3
[ZDY19, Tab. 6] 12 2−60 0 0

GIFT-128

[LLL+21, Tab. 5] 12 2−60.4 2127.00 [0.96, 1.00] 1 1
[ZDY19, Tab. 13] 12 2−62.4 2127.00 [0.97, 1.01] 1 1
[LLL+21, Tab. 6] 13 2−67.8 2127.00 [0.97, 1.01] 1 1
[ZDY19, Tab. 14] 14 2−85.0 2125.00 [2.92, 3.03] 3 2
[ZDY19, Tab. 10] 18 2−109 0 − ○ ○

PRESENT-80 [Wan08, Tab. 5] 4 2−18 [0.00, 0, 00] 0 −
[Wan08, Tab. 7] 14 2−62 0 −

RECTANGLE† [ZBL+14, App. E] 14 2−63 1 1
[ZBL+14, App. E] 14 2−66 2 2

SKINNY-64 [DDH+21, Tab. 9] 15 2−54 2185.81 [6.11, 6.48] 5⋆ 6.2
SKINNY-128 [DDH+21, Tab. 12] 17 2−110 2376.67 [7.39, 7.98] 6⋆ −
Midori64 [ZHWW20, Tab. 5] 5 2−52 2111.00 [17.1, 18.0] 17 −
Midori128 [TAY16, Tab. 3] 11 2−123 [5.11, 5.29] 4⋆ −
Midori128 [CXTQ23, Tab. 7] 10 2−115 4 −

WARP [KY21, Tab. 8] 18 2−122 16 −
[KY21, Tab. 9] 18 2−122 16 −

SPECK-32†

[BR22b, Tab. 18.1] 6 2−13 296.00 [0.00, 0.00] 0 0
[BR22b, Tab. 18.2] 7 2−18 2112.00 [0.00, 0.00] 0 0
[BR22b, Tab. 19.1] 8 2−24 2126.00 [1.96, 2.16] 2 2
[BR22b, Tab. 19.2] 8 2−27 2125.00 [2.87, 3.18] 3 3
[BR22b, Tab. 20.1] 9 2−30 2142.93 [0.98, 1.10] 1⋆ 1
[BR22b, Tab. 20.2] 9 2−33 2141.55 [2.49, 2.75] 1⋆ 1
[BR22b, Tab. 20.3] 9 2−33 2141.29 [2.40, 2.65] 2⋆ 2

SPECK-48† [ALLW14, Tab. 7] 10 2−41 2240.00 [0.00, 0.00] 0 −
SPECK-64† [BR22b, Tab. 22.2] 15 2−62 3 3
SPECK-96† [BR22b, Tab. 22.3] 15 2−81 6 6

SPECK-128†

[BR22b, Tab. 23.1] 20 2−128 5 5
[BR22b, Tab. 23.2] 20 2−128 7 7
[BR22b, Tab. 23.3] 20 2−128 5 5
[BR22b, Tab. 23.4] 20 2−128 3 3

SPEEDY-192 [BDBN23, Fig. 4] 5.5 2−171 0 − ○ ○
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are based on a 4-round iterative characteristic and due to the simple key schedule of GIFT-
64, we find that certain key constraints are created twice. We now analyze the 13-round
characteristic [LWZZ19, Table 8]. By using our method for explaining key constraints, we
find that the constraint K8,1⊕K10,1 = 0 is created due to (S1,4,S1,6,S2,1,S2,9) and due to
(S9,4,S9,6,S10,1,S10,9), where Sr,i denotes the S-box i in round r and both r and i start from
0. Similarly, the constraint K24,0 ⊕K26,0 = 0, is created due to (S3,0,S3,2,S4,0,S4,8) and
due to (S11,0,S11,2,S12,0,S12,8). Therefore, we conclude that if these two key constraints
are met, the overall probability of the characteristic becomes 24 times as likely. Combined
with the other 2 linear constraints, the independent probability is 26 higher than the
probability as calculated by the DDT. The analysis for the 12-round characteristic [LWZZ19,
Table 7] is very similar as it is a prefix of the 13-round characteristic. Here, the constraint
generated by the S-boxes in the last round does not exist. Therefore, the independent
probability is increased by a factor of 25 compared to the probability calculated by the
DDT.

We notice that our results for GIFT-128 cover more rounds than for GIFT-64. While the
18-round result is an outlier as the contradiction is due to a local effect, we show results on
14 rounds of GIFT-128 compared to 13 rounds for GIFT-64. We conjecture this is because
of the increased degrees of freedom available when solving GIFT-128 models. That is, for
GIFT-64 the probability of the characteristics is very close to the generic probability of
2−64, while for GIFT-128, the margin is larger.

As Peyrin and Tan, we find that the 18-round characteristic by Zhu et al. [ZDY19,
Tab. 10] is impossible. By applying our tool we find that the contradiction occurs in
round 16–17 as illustrated in Figure 2. The relevant S-boxes in round 16 and 17 both
have differential transitions of 2→ 6. The most significant bit (MSB) at the output of the
relevant S-box in round 16 connects to the MSB at the input of the relevant S-box in the
next round without key addition.

To explain the contradiction, provide a value-based explanation and the relevant
quasidifferential trails. The solution set for the S-boxes highlighted in red in Figure 2 is
{(x,S(x)) : S(x⊕ 2) = S(x)⊕ 6} = {(1, a), (3, c), (5, f), (7, 9)} . We see that at the output
the MSB is always 1, while at the input it is always 0. Since they are connected without a
key addition, the characteristic is impossible.

A very similar effect happens at the S-boxes highlighted in yellow. We identified these
S-boxes by modeling a GIFT-128 variant with a full key addition each round. We let our
tool then search for key dependencies and explain the source. We find that the involved
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{S(x) : S(x⊕ 2) = S(x)⊕ 6} = {9, a, c, f} {x : S(x⊕ 2) = S(x)⊕ 6} = {1, 3, 5, 7}

Figure 2: Contradiction in differential characteristic for GIFT-128 [ZDY19, Tab. 10, rounds
16–17]. The dashed red line shows the inactive bit that causes the contradiction. Our tool
identifies the red S-boxes as the source of the contradiction. The yellow dashed line shows
an inactive bit that leads to a contradiction if the involved round constant bit is 1.
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round constant must be 0, which is the case when the characteristic is used for rounds
0–17 of the block cipher. With the same model, we find a total of 8 linear constraints. One
of them is always satisfied due to the partial key addition of GIFT-128, effectively doubling
the probability. And two of them span over 5 rounds of the cipher. These constraints are
also discussed in [Sun24].

In the framework of quasidifferential trails, the red/black dashed line corresponds to
the linear masks for a quasidifferential trail with (key independent) correlation −2−109.
Therefore, the differential characteristic has probability 0. Similarly, the yellow/black
dashed line corresponds to the linear masks for a quasidifferential trail with correlation
(−1)rc · 2−109, where rc denotes the involved round constant bit. Hence, if rc = 1, the
characteristic has probability 0.

Finally, we verify the expected differential probability of round-reduced variants of
differential characteristics for GIFT-64. We find that the probability closely matches the
estimate using the differential distribution table. We detail our results in Table 2.

Table 2: Estimated and measured probability for reduced variants of GIFT-64 characteristics.
DDT: negative logarithm of the probability estimate using differential distribution table.
AMC: probability measurement with approximate model counting (δ = 0.2, ε = 0.8).

Rounds 0–7 1–8 2–9 3–10 4–11 5–12

[SWW21b, Table 8.1]
DDT 40.0 40.0 40.0 40.0 40.0 40.0
AMC 39.91 39.87 39.98 39.91 40.09 39.89
Time 17s 11s 4s 13s 4s 1m

[SWW21b, Table 8.2]
DDT 38.0 40.0 42.0 40.0 42.0 40.0
AMC 37.96 40.02 42.05 39.91 42.05 39.96
Time 3s 3s 7s 5s 2s 2s

[SWW21b, Table 8.3]
DDT 40.0 40.0 42.0 40.0 42.0 40.0
AMC 40.09 39.85 42.14 39.96 42.00 40.00
Time 3s 2s 37s 16s 4s 43s

4.2 Results for SKINNY
SKINNY is a family of tweakable block ciphers proposed by Beierle et al. at CRYPTO
2016 [BJK+16]. We give a specification in Appendix A.2.

Results. The results on the size of the set of valid keys for SKINNY are given in Table 1.
For SKINNY, we notice a tweakey dependency for both analyzed characteristics. In contrast
to GIFT, we notice a slight discrepancy between the counted size of the set of valid tweaks
and the upper bound given by the affine hull. This indicates that there are some nonlinear
dependencies that cannot be captured by the affine hull. For SKINNY-64, the nonlinear
constraints explain a key space reduction by a factor of 21.18, leaving only a gap of 20.01.
For SKINNY-128, the nonlinear constraints explain a key space reduction by a factor of
21.29, leaving only a gap of 20.04. Note that we fixed a typo in the first round of the
characteristic where 0x32 was stated instead of 0x20 (see Figure 6 on page 32).

In many applications, we do not expect this tweakey dependency to affect a differential
attack. This is because, usually, the tweakey is split into 3 parts: TK1, TK2, and TK3,
where TK2 and TK3 or just TK3 serve as a tweak that the attacker can control. This
allows the attacker to alternate the tweak and work around the dependency. Still, once a
valid pair is found, the constraints listed in Appendix C.3 could accelerate key recovery.

Our constraints for SKINNY match those published by Peyrin and Tan [PT22]. However,
our tool does not predict the probability distribution across valid keys.
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4.3 Results for Midori
Midori is a family of block ciphers proposed by Banik et al. at ASIACRYPT 2015 [BBI+15].
We give a specification in Appendix A.3.

Results. The characteristic we analyze for Midori64 is depicted in Figure 9a. In Figure 9b
we show the solutions sets that we model for active S-boxes; we model inactive S-boxes
according to the S-box definition. For this characteristic, we have verified the expected
differential probability of 2−52 in only 1.5 seconds. Furthermore, we find a strong key
dependence as only for a fraction of 2−17 of all keys valid pairs exist. However, the
independent probability, i.e. the probability of the characteristic for the set of valid keys, is
2−52 · 217 = 2−35. Therefore, this characteristic can be used for a weak key attack where a
much lower data complexity is traded for a small weak key space. We list the conditions
on the key in Appendix C.2. Furthermore, we analyze whether there are any additional
nonlinear constraints on the key by selecting 100 000 keys at random from the affine hull
of valid keys. We find that all 100 000 keys permit an assignment of plaintext/ciphertext
that follows the differential characteristic.

For the 11-round characteristic of Midori128 [TAY16, Tab. 3], we find 4 linear constraints
and an additional 36 CNF clauses that further reduce the key space by 2−1.22. We find
these extra constraints in a few seconds by analyzing rounds 4–8 of the block cipher.

4.4 Results for WARP
WARP is a lightweight block cipher proposed by Banik et al. at SAC 2020 [BBI+20]. We
give a specification in Appendix A.4.

Results. For WARP, when using the characteristics by Kumar and Yadav [KY21], we find
that solving our CNF takes a long time. Still, with our method of finding the affine hull of
valid keys, we are able to give an upper bound of 2112 on the size of valid keys using only
130 SAT calls, taking about 7 hours each. This highlights the effectiveness of the idea to
describe the affine hull. We list the linear constraints we find for WARP in Appendix C.4

While applying approximate model counting to the full characteristics turns out to be
infeasible, we can still verify reduced versions very efficiently. We find that we can verify
up to 8 rounds with probabilities as low as 2−78. Our results are listed in Table 3.

Table 3: Estimated and measured probability for reduced variants of WARP characteristics.
DDT: negative logarithm of the probability estimate using differential distribution table.
AMC: probability measurement with approximate model counting (δ = 0.2, ε = 0.8).

(a) Results for characteristic from [KY21, Table 8].

Rounds 0–7 1–8 2–9 3–10 4–11 5–12 6–13 7–14 8–15 9–16 10–17

DDT 36.0 32.0 36.0 40.0 50.0 66.0 72.0 78.0 76.0 76.0 74.0
AMC 36.02 31.93 36.09 40.02 50.00 65.89 72.00 77.87 76.09 76.07 74.05
Time 2m 2s 2m 4s 2h 23m 7s 4m 10s 19s 5s

(b) Results for characteristic from [KY21, Table 9].

Rounds 0–7 1–8 2–9 3–10 4–11 5–12 6–13 7–14 8–15 9–16 10–17

DDT 36.0 32.0 36.0 40.0 50.0 66.0 72.0 78.0 76.0 76.0 74.0
AMC 35.85 31.93 35.93 40.02 50.05 65.98 72.07 78.05 75.98 76.02 73.93
Time 5m 2s s 5s 5s 3h 2m 4s 6m 25s 9s 6s
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4.5 Results for SPEEDY
SPEEDY was proposed as an ultra-low-latency block cipher by Leander et al. at CHES
2021 [LMMR21]. We give a specification in Appendix A.5.

Related Work. Boura et al. analyzed SPEEDY and presented a differential attack on
all 7 rounds [BDBN23] with a time complexity of 2187.84. Subsequently, Beyne and Neyt
provided a note that shows that the main characteristic used in the attack is impossible
[BN24]. They used quasidifferential trails to show a contradiction in the second round of
the main characteristic.

Results. We reproduce this result by modeling the set of valid pairs for the main
characteristic and find that the resulting CNF is indeed unsatisfiable.

The implications of these findings on the attack are not entirely clear since the attack
uses additional characteristics with the same input and output differences that contribute
2−171.49 to the total differential probability. If these additional characteristics were valid,
the attack would likely still be applicable, albeit the data and time complexity would be
higher. These additional characteristics are not published, so we cannot analyze them.

In general, the impossibility of one characteristic does not serve as a security argument
for a block cipher. While the dependency leads to a contradiction in this case, it could
increase the overall probability in other cases. With more careful and complex analysis,
we believe such improved characteristics can be identified.

4.6 Results for PRESENT
PRESENT is a lightweight block cipher proposed by Bogdanov et al. at CHES 2007
[BKL+07]. We give a specification in Appendix A.6.

Results. We apply approximate model counting to measure the probability of the 4-round
iterative characteristic [Wan08, Tab. 5]. We find that the probability averaged over all 280

keys is 2−17.98 (δ = 0.2, ε = 0.8). We do not find key dependencies for this characteristic.
To analyze the 14-round characteristic, we look for linear conditions on the round keys

of PRESENT, i.e., we analyze PRESENT with independent round keys. We find no linear
key dependencies in this setting. Additionally, we verify the first and last 10 rounds of
the characteristic separately with the PRESENT-80 key schedule. We do not find any key
dependencies here as we try 1000 random keys and all of them permit valid pairs.

4.7 Results for RECTANGLE
RECTANGLE is a block cipher propesed by Zhang et al. in 2015 [ZBL+15, ZBL+14]. We
give a specification in Appendix A.7.

Related Work. Beyne and Rijmen analyze the characteristics provided by the designers
[BR22a, ZBL+14] and find key dependencies in both. They also predict some variation in
probability based on an unspecified linear combination of round key bits.

Results. By applying our tool to rounds 9–11 of the characteristic with p = 2−63 from
[ZBL+14, App. E], we find 1000 SAT clauses that explain the key space reduction of 2−1.
To ease analysis, we also model RECTANGLE with independent round keys. We find that
the following key-condition is caused by the S-boxes S9,6, S10,2, S10,3, and S11,3:

RK10
2,2 ⊕RK10

3,3 ⊕RK11
3,0 ⊕RK11

3,1 = 1 ,
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where RKi
c,r denotes the bit at column c and row r of the round key for round i.

With the knowledge of the involved S-boxes, we provide a value-based explanation
of the key dependency. We trace the parity, i.e., the Xor, of the bits highlighted in
red through the S-boxes shown in Figure 3. At the output of S9,3 the parity of the bits
highlighted in red is 1, as they must be different. Due to the key addition, at the inputs
of S10,2 and S10,3, the parity is 1⊕RK10

2,2 ⊕RK10
3,3. The two S-boxes do not change the

parity, but we add two keys and arrive at a parity of 1⊕RK10
2,2 ⊕RK10

3,3 ⊕RK11
3,1 ⊕RK11

3,0
at the input of S11,3. For this S-box, the parity of the two highlighted input bits must be
0; hence, we arrive at the key condition.

We can phrase this explanation in terms of quasidifferential trails like in previous work
[BR22a]. In Figure 3, the red lines correspond to the linear mask for the quasidifferential
trail. The same linear masks have been derived by Beyne and Rijmen [BR22a, Table 3].
This quasidifferential trail has a correlation of (−1)RK10

2,2+RK10
3,3+RK11

3,0+RK11
3,1+1 ·2−63. Thus,

[BR22a, Theorem 4.2] leads to the same key condition.

2 → c

S9,6

8 → 1

S10,3

6 → 2

S10,2

3 → 8

S11,3

RK10
3,3

RK10
2,2

RK11
3,1

RK11
3,0

11007→1000
11107→0100

01017→1110
11017→1111

10117→1101
10017→0000
11117→0010
11017→1111

01117→1001
01007→0001

Figure 3: Part of a differential characteristic of RECTANGLE that leads to a key dependency.
Next to the S-boxes we list the values the inputs/outputs can take if the differential
characteristic is followed.

4.8 Results for SPECK
SPECK is a lightweight block cipher proposed by the National Security Agency [BSS+13].
We give a specification in Appendix A.8. In our work, we only consider ‘long-key’ variants
of SPECK, i.e., SPECK with independent round keys.

Related Work. The characteristics from [BR22b] have already been analyzed by Beyne
and Rijmen. For those characteristics, we list the original attribution in Table 4 on page
page 36. With our tool we find the same conditions on the keys as them. 3 Additionally,
they find some dependencies that only affect the probability which we cannot reproduce
with our tool. However, AutoDiVer can prove some nonlinear key dependencies that were
previously only reported to lead to a probability of approximately zero. Furthermore,
we can capture and measure the non-local effect of SPECK-32 where the characteristic is
unsatisfiable because its probability is too close to 2−32.

Results. In all cases, we can find the linear conditions on the key in only a few seconds.
For the SPECK-32 characteristics with probability close to 2−32, we find many non-local
nonlinear conditions. These conditions probably arise from the fact that the probability of
some characteristics are very close to 2−32. The SAT solver then finds many long SAT
clauses that only exclude a tiny fraction of keys each. Hence, we do not list them. However,
as visible in Table 1, we can still learn the fraction of keys that permit valid pairs.

3In the published version [BR22a] there are some wrong key conditions due to a mistake in a formula
which are fixed in the newest eprint version [BR22b].
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For the characteristic [BR22b, Table 20.2], we find some nonlinear key dependencies.
In addition to 1 linear constraint, we find 4 nonlinear constraints which we reformulate as

(RK3
8 ⊕RK3

9 = 1) ∨ (RK4
2 ⊕RK4

3 = 1) .

Hence, the space of valid keys is reduced by a factor of 3/4 ≈ 2−0.42. While such nonlinear
constraints can be identified with quasidifferential trails, proving them is more difficult. In
[BR22a], these conditions where reported to lead to a probability of approximately zero.

5 Comparison with Existing Work and Discussion
Now, we discuss our tool in comparison with related work, particularly the work on
quasidifferential trails by Beyne and Rijmen and the work by Peyrin and Tan.

Quasidifferential trails [BR22a] provide an accurate theoretical model to calculate
the exact probability of differentials and differential characteristics. A quasidifferential
trail is defined by a combination of a differential characteristic and a set of linear masks
that describe the solutions sets for the differential transitions. The exact probability
of a differential (characteristic) can be calculated by summing the correlations of all
quasidifferential trails compatible with a given differential (characteristic). Since summing
all compatible quasidifferential trails seems computationally infeasible, the authors prove a
sufficient condition for a differential characteristic to be impossible [BR22a, Theorem 4.2].
Concretely, they show that if you find any number of quasidifferential trails with maximum
absolute correlation that sum to zero, the associated differential characteristic is impossible.
Since the sign of quasidifferential trails is often key-dependent, Beyne and Rijmen use
this result to find key dependencies. They also use quasidifferential trails to explain a key
dependency for SPECK-64 that affects only the probability. Furthermore, Beyne and Neyt
use quasidifferential trails with key-independent signs to show that a characteristic for
SPEEDY is impossible [BN24].

Quasidifferential trails have the advantage of allowing more detailed analysis to explain
dependencies that only affect probability. Beyne and Rijmen focus on providing a theoretical
framework, but they also publish code to find quasidifferential trails with weight and
sign. Additional analysis is deferred to the user of the code. While quasidifferential trails
of maximum absolute correlation allow straight-forward deduction of the implied key
dependency, there is no similarly easy way to prove key dependencies that are due to
quasidifferential trails of lower absolute correlation. We see this in our application on
SPECK-32 where we prove nonlinear key dependencies that where only reported to lead to
a probability of approximately zero by [BR22a]. Furthermore, AutoDiVer directly deduces
and prints the constraints on the key as we list them in our appendices, taking the key
schedule into account (if desired), and identifies the S-boxes causing the constraint.

The work by Sun, Wang, and Wang analyzes how differential characteristics of Midori64
interact with its key schedule [SWW18]. They find conditions on the key by modeling the
solution set of the active S-boxes as linear equations and applying Gaussian elimination.
This approach is very efficient and excels at finding conditions that are due to two rounds
interacting. However, conditions that are caused by more than two rounds interacting
cannot be found with this method. Furthermore, they use SAT solvers to combine the
sets of valid keys of many characteristics that correspond to a differential. In contrast,
AutoDiVer does not explicitly support analysis of differentials. However, we do find key
conditions over many rounds as evident by the results on RECTANGLE and GIFT-128.

The work by Peyrin and Tan [PT22] finds linear and nonlinear key dependencies by
analyzing how constraints on the internal values due to active S-boxes diffuse through
the cipher. In their framework, an S-box is called active if the set of inputs and outputs
is restricted to a particular subset. This can happen because of a differential transition
or because the linear layer only combines active S-boxes when calculating a new S-box
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input. An active S-box is called a half constraint. When two half constraints meet at a
key addition, they form a full constraint on the involved key. With this diffusion-based
approach, they identify key dependencies and impossibilities on the keys for characteristics
on SKINNY and GIFT. This includes an analysis yielding nonlinear constraints, although in
a different format than our CNF-based analysis. Furthermore, they analyze the identified
constraints to evaluate which percentage of keys leads to which probability.

The work by Peyrin and Tan has the advantage of calculating the probability distribution
over the keys for SKINNY. However, we find that their work is quite tailored towards GIFT
and SKINNY. It seems there is no shared code between their analysis of the two ciphers.
In contrast, for AutoDiVer, all presented methods apply to all implemented ciphers. We
believe our tool to be easier to adapt for new ciphers as shown by broad cipher support.

One limitation of our tool is that the effectiveness of the counting-based probability
verification seems to depend on the key schedule. We found it to be very effective for
WARP, Midori-64, and GIFT-64, which use relatively simple key schedules. There, it worked
even for characteristics with very low probability, such as 2−78 for WARP. For other ciphers,
the counting became infeasible after few rounds. However, the detection of (non)linear key
conditions still provides bounds for the key space and independent probability.

In summary, we believe that AutoDiVer will yield useful results for cryptanalysts, as
we are providing a practical and extensible tool that complements existing theoretical
frameworks. While our tool is unable to detect key dependencies that only lead to variations
in probability, it excels at finding key conditions. Furthermore, we verify the probability
of characteristics for WARP and Midori128 that are infeasible to verify experimentally.

6 Conclusion
We have shown various methods to analyze differential characteristics very closely. Our
approach includes a method to estimate the probability of a differential characteristic,
considering the block cipher’s actual key schedule. Further, we describe how to estimate
the size of the set of valid keys for a characteristic. Finally, based on the linear and
nonlinear conditions we derive, we can upper bound the size of the set of valid keys.

All these methods are packaged into AutoDiVer, an open-source tool designed with a
focus on extensibility and usability. AutoDiVer can be easily adapted for new ciphers by
describing the linear layer and the key schedule. It also provides detailed output in human
and machine-readable formats to minimize the need for manual post-processing.

AutoDiVer allows us to test the hypothesis of stochastic equivalence. We have seen that
for many characteristics, this hypothesis does, in fact, not hold. This was demonstrated
by many examples where the set of valid keys is restricted to a small subset of all keys.
Crucially, the analyzed cipher does not need to be a Markov cipher, and we do not need
to assume independent round keys since we model the block cipher’s actual key schedule.

However, we still rely on the dominant trail assumption as our tool can only analyze
one differential characteristic at a time. In future work, the tool could be combined
with automatic differential characteristic search to analyze differentials [LPS21, BdSF+21,
SII23, WMEJ24]. Alternative applications include finding many differential characteristics
with the same input difference and weak key spaces that cover a large fraction of keys.
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A Cipher Descriptions
A.1 GIFT
GIFT is a family of SPN-based block ciphers proposed by Banik et al. at CHES 2017
[BPP+17]. This family includes two variants: GIFT-64 and GIFT-128. Both variants use
a 128-bit key, but they differ in state size and the number of rounds. GIFT-64 has a
64-bit state size and consists of 28 rounds, while GIFT-128 features a 128-bit state size
and 40 rounds. The round function in both GIFT-64 and GIFT-128 employs a 4-bit S-box,
combined with a bit permutation and partial key addition. Specifically, for GIFT-64, the
round keys are added to the 0th and 1st bits of each 4-bit nibble, whereas for GIFT-128,
they are added to the 1st and 2nd bits. The round function and S-box are depicted in
Figure 4. One of the characteristics we analyze is depicted in Figure 5.

The key schedule is defined as follows. For the n-bit version, the round key of n/2 bits
is divided into two halves as U ∥ V . U is added to bits b4i+1 (GIFT-64) or b4i+2 (GIFT-128),
0 ≤ i < n/4, and V is added to bits b4i (GIFT-64) or b4i+1 (GIFT-128), 0 ≤ i < n/4. The
7-bit round constants are added to bits bi, i ∈ {n− 1, 23, 19, 15, 11, 7, 3}. Each round key
is a subset of the permuted bits of the 128-bit master key K = k7 ∥ . . . ∥ k0.
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04812162024283236404448525660

(a) GIFT-64 round function.

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

04812162024283236404448525660646872768084889296100104108112116120124

(b) GIFT-128 round function.
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(c) GIFT S-box S.

Figure 4: The round function of GIFT-64 and GIFT-128.

A.2 SKINNY
SKINNY’s round function operates on a 4 × 4 state of nibbles or bytes. The variants
we analyze, SKINNY-64-192 and SKINNY-128-384, apply 40 and 56 rounds, respectively.
Each round comprises a SubCells operation, an AddConstants operation, a partial tweakey
addition on the top 2 rows, and a lightweight MixColumns operation. The tweakey schedule
is entirely linear and based on a cell shuffle and application of two linear feedback shift
registers. The round function is depicted in Figure 7. A characteristic we analyze is
depicted in Figure 6.
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Figure 5: Differential characteristic for 13-round GIFT-64 [SWW21b, Table 8.2].
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Figure 6: Differential characteristic for 17-round SKINNY-128 [DDH+21, Table 12]. The
highlighted cell in the first round shows a fixed typo.
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Figure 7: The round function of SKINNY.

A.3 Midori
Midori is a family of block ciphers proposed by Banik et al. at ASIACRYPT 2015 [BBI+15].
The members Midori64 and Midori128 both accept a 128-bit key but differ in block size
and number of rounds. Midori64 and Midori128 apply 16 and 20 iterations of the round
function, respectively.

Midori’s round function is depicted in Figure 8. It operates on a 4× 4 state of nibbles
or bytes. First, SubCell (SC in Figure 8) applies a 4- or 8-bit S-box to each cell. Next,
ShuffleCell (SR) permutes the cells of state. Then, MixColumn (MC) multiples each column
of the state with the Near-MDS matrix M .

Midori’s key schedule is very simple. For Midori64, the master key K is split into
two halves: K = K0 ∥ K1. At the first round and after the last round, a whitening key
WK = K0 ⊕K1 is Xored. All other round keys are determined by one of the two halves
and a constant: RKi = Ki mod 2 ⊕ αi. For Midori128, the key schedule is even simpler.
The whitening keys equal the master key WK = K, and the round keys are determined
based on some constants: RKi = K ⊕ βi.

0 4 8 c
1 5 9 d
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3 7 b f

SB

0 e 9 7
a 4 3 d
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f 1 6 8

SR MC
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(a) Round function.

M =
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
(b) MC matrix M .

Figure 8: The round function of Midori.
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4→ 2 {(0, c), (2, d), (4, e), (6, f)} 2→ 4 {(c, 0), (d, 2), (e, 4), (f, 6)}

(b) Solution sets of differential transitions.

Figure 9: Differential characteristic for 5-round Midori64 [ZHWW20, Table 5].
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A.4 WARP

WARP is a lightweight block cipher proposed by Banik et al. at SAC 2020 [BBI+20].
It encrypts a 128-bit plaintext block using a 128-bit key. Its structure is based on a
generalized Feistel construction with 32 branches.

WARP applies 41 rounds in total. For each round, a 4-bit S-box is applied to all even
branches of the state. Then, the output of the S-boxes and a 64-bit round key is Xored
onto all odd branches. Finally, a nibble permutation is performed as depicted in Figure 10.

X
(i)
0 X

(i)
1

S

K
(b)
0

X
(i)
2 X

(i)
3

S

K
(b)
1

X
(i)
4 X

(i)
5

S

K
(b)
2

X
(i)
6 X

(i)
7

S

K
(b)
3

X
(i)
8 X

(i)
9

S

K
(b)
4

X
(i)
10 X

(i)
11

S

K
(b)
5

X
(i)
12 X

(i)
13

S

K
(b)
6

X
(i)
14 X

(i)
15

S

K
(b)
7

X
(i)
16 X

(i)
17

S

K
(b)
8

X
(i)
18 X

(i)
19

S

K
(b)
9

X
(i)
20 X

(i)
21

S

K
(b)
10

X
(i)
22 X

(i)
23

S

K
(b)
11

X
(i)
24 X

(i)
25

S

K
(b)
12

X
(i)
26 X

(i)
27

S

K
(b)
13

X
(i)
28 X

(i)
29

S

K
(b)
14

X
(i)
30 X

(i)
31

S

K
(b)
15rc0 rc1

Figure 10: The round function of WARP, where the round key index is b = i mod 2.

A.5 SPEEDY

SPEEDY was proposed as an ultra-low-latency block cipher by Leander et al. at CHES
2021 [LMMR21]. Three versions exist: SPEEDY-5-192, SPEEDY-6-192, and SPEEDY-7-192
all of which accept a 192-bit key and a 192-bit plaintext input. SPEEDY-5-192 uses 5
rounds and claims 128 bits of security when data is limited to 264. SPEEDY-6-192 uses 6
rounds and claims 128 bits of security, while SPEEDY-7-192 uses 7 rounds and claims full
192 bits of security.

The round function of SPEEDY applies to a 32 × 6 matrix of bits and comprises 7
operations: AddRoundKey, which performs a full key addition with the round key. SubBox,
which applies a 6-bit S-box to each state row. ShiftColums, which rotates the j-th column
of the state upwards by j bits. Another SubBox. Another ShiftColumns. MixColumns, which
multiples each row with a cyclic binary matrix. And finally, AddConstants, which Xors
a dense constant onto the state. For the last round, the second ShiftColumns as well as
the MixColumns and the AddConstants operations are omitted, while a post-whitening key
is added to the state. One full round function excluding constant addition is depicted in
Figure 11. The key schedule of SPEEDY is based on repeatedly applying a bit permutation
to the key.
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Figure 11: The round function of SPEEDY.
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A.6 PRESENT
PRESENT is a lightweight SPN-based block cipher proposed by Bogdanov et al. at CHES
2007 [BKL+07]. It encrypts a 64-bit plaintext block using either a 80-bit or 128-bit key and
consists of 31 rounds. The round function comprises three operations: First addRoundKey,
which XORs a round key to the state, then sBoxLayer, which applies the 4-bit S-box
specified in Figure 12b to the state, and finally pLayer, which performs a bit permutation
on the state. The round function is illustrated in Figure 12. The key schedule is nonlinear
and based on a bit rotation, partial application of the PRESENT S-box and XOR of a
round counter.

SSSSSSSSSSSSSSSS

04812162024283236404448525660

(a) Round function.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S(x) c 5 6 b 9 0 a d 3 e f 8 4 7 1 2

(b) PRESENT S-box S.

Figure 12: The round function of PRESENT.

A.7 RECTANGLE
RECTANGLE is a lightweight SPN-based block cipher proposed by Zhang et al. [ZBL+14,
ZBL+15]. Its block length is 64 bits, and the key is either 80 or 128 bits long. Over 25
rounds, it applies three operations: AddRoundKey (AK), which XORs the round key to
the state, SubColumn (SC), which applies 4-bit S-boxes to the columns of the state, and
ShiftRow (SR), which applies a left rotation over each row, with different shifts. The
key schedule consists of four applications of the RECTANGLE S-box, a generalized Feistel
transformation and an XOR with a round constant.

0
1
2
3

0123456789101112131415

AK
SC

0
1
2
3

0123456789101112131415

SR 0
1
2
3

0123456789101112131415

(a) Round function.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S(x) 6 5 c a 1 e 7 9 b 0 3 d 8 f 4 2

(b) RECTANGLE S-box S.

Figure 13: The round function of RECTANGLE.

A.8 SPECK
SPECK is a lightweight block cipher designed by the NSA and published at DAC 2015
[BSS+13, BSS+15, BSS+17]. The family consists of several members SPECK-2n/mn with
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X0
i X1

i

≫ α

≪ βki

X0
i+1 X1

i+1

Figure 14: The round function of SPECK.

different block sizes of 2n bits and key sizes of mn bits for word sizes n ∈ {16, 24, 32, 48, 64}
and parameters m ∈ {2, 3, 4}. The round function is a pure ARX function operating on
two n-bit words X0, X1 and one n-bit round key. Let (X0

i , X1
i ) denote the input and

(X0
i+1, X1

i+1) the output of the ith round, and ki the corresponding round key. Then the
round function is defined as follows, as illustrated in Figure 14:

(X0
i+1, X1

i+1) = (((X0
i ≫ α) ⊞ X1

i )⊕ ki, (X1
i ≪ β)⊕ (((X0

i ≫ α) ⊞ X1
i )⊕ ki)),

where the rotation parameters (α, β) vary depending on the family member:

(α, β) =
{

(7, 2) for block size 2n = 32,
(8, 3) otherwise.

The key schedule is nonlinear, using the same operations as the round function to generate
round keys.

Table 4 provides an overview of selected characteristics for SPECK.

Table 4: Characteristics analyzed by [BR22b] and original source.
Characteristic Attribution Comment
[BR22b, Tab. 18.1] [ALLW14] Table 7, rounds 1–7
[BR22b, Tab. 18.2] [ALLW14] Table 7, rounds 0–7
[BR22b, Tab. 19.1/2] [ALLW14]? not found in [ALLW14]
[BR22b, Tab. 20.1] [BRV14] Table 6
[BR22b, Tab. 20.2/3] [SHY16] not explicitly listed
[BR22b, Tab. 23.2] [SHY16] Table 6
[BR22b, Tab. 23.1/3/4] [SHY16] not explicitly listed

Figure 15 shows the differential characteristic where we find additional nonlinear key
dependencies. With our tool, we can automatically identify the full adders which cause
the key dependency. We highlight the inputs and outputs of the relevant full adders in the
figure.
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Figure 15: Characteristic for 9 rounds of SPECK-32 [BR22b, Tab. 20.2]. We highlight the
inputs/outputs of the full adders involved in the nonlinear key-dependency we find.
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B Runtime of our Tool
We list the runtime of our tool in Table 5. All experiments where performed on a single
core of an AMD EPYC 9754 CPU.

We find that finding the affine hull of the set of valid keys is the most efficient method
in all cases. In particular, when we modeling independent round keys, this method is very
efficient, as the associated SAT problems become very easy. For example, the slow result
for Midori128 can be reproduced in a minute.

For the experimental estimate, we often find that the UNSAT cases are much quicker
since the contradiction is often local. In general, the SAT problems for finding valid pairs
for a given key are harder to solve since we lose the degrees of freedom of the key.

For model counting, we find that counting the set of valid keys is more efficient than
counting all solutions to estimate the probability. From Subsection 2.4, we know that
ApproxMC adds Xor clauses over the projection variables. For counting the keys there are
fewer projection variables leading to shorter Xor clauses. In general, model counting is
slower than SAT solving, as it uses many internal SAT solver calls with modified problems.

Table 5: The necessary runtime of our results. All runtimes are single-core numbers. Note
that the experimental estimate was performed in parallel, so the wall clock time is lowered
by the number of cores available.

Cipher Reference #R EDP key set Runtime

LC AMC exp. est. LC

GIFT-64

[LWZZ19, Tab. 2] 9 2−42 4 6s 3s (n = 8k) 1.7s
[LWZZ19, Tab. 7] 12 2−58 4 7h 4h (n = 8k) 3.9s
[LWZZ19, Tab. 8] 13 2−62 4 34h (n = 8k) 4.6s
[SWW21b, Tab. 8.1] 13 2−64 1 6.1s
[SWW21b, Tab. 8.2] 13 2−64 5 185h (n = 12k) 5.0s
[SWW21b, Tab. 8.3] 13 2−64 3 5.3s
[ZDY19, Tab. 4] 12 2−59 3 68h (n = 8k) 3.4s
[ZDY19, Tab. 6] 12 2−60 0 4.0s

GIFT-128

[LLL+21, Tab. 5] 12 2−60.4 1 23m 2h (n = 8k) 48s
[ZDY19, Tab. 13] 12 2−62.4 1 5m 28h (n = 8k) 45s
[LLL+21, Tab. 6] 13 2−67.8 1 7h 26h (n = 8k) 7m
[ZDY19, Tab. 14] 14 2−85.0 3 25h 9h (n = 8k) 6m
[ZDY19, Tab. 10] 18 2−109 ○ 3s 1s (n = 8k) 3s

SKINNY-64 [DDH+21, Tab. 9] 15 2−54 5 4h 8m (n = 8k) 2m
SKINNY-128 [DDH+21, Tab. 12] 17 2−110 6 8h 7m (n = 8k) 46m

Midori64 [ZHWW20, Tab. 5] 5 2−52 17 1s 4m (n = 4M) 1.2s
Midori128 [TAY16, Tab. 3] 11 2−123 4 1122h (n = 14M) 4m
Midori128 [CXTQ23, Tab. 7] 10 2−115 4 101h

WARP [KY21, Tab. 8] 18 2−122 16 6h
[KY21, Tab. 9] 18 2−122 16 6h

SPECK-32

[BR22b, Tab. 18.1] 6 2−13 0 2s 7s (n = 5k) 1s
[BR22b, Tab. 18.2] 7 2−18 0 10s 32s (n = 5k) 1s
[BR22b, Tab. 19.1] 8 2−24 2 15s 22s (n = 4k) 1s
[BR22b, Tab. 19.2] 8 2−27 3 13s 14s (n = 4k) 1s
[ALLW14, Tab. 7] 9 2−31 0 26m 19m (n = 4k) 1s
[BR22b, Tab. 20.1] 9 2−30 1 19s 1m (n = 12k) 1s
[BR22b, Tab. 20.2] 9 2−33 1 16s 2m (n = 40k) 1s
[BR22b, Tab. 20.3] 9 2−33 2 23s 1m (n = 10k) 1s

SPECK-48 [ALLW14, Tab. 7] 10 2−41 0 12h 19h (n = 2k) 2s
SPECK-64 [BR22b, Tab. 22.2] 15 2−62 3 6s
SPECK-96 [BR22b, Tab. 22.3] 15 2−81 6 16s

SPECK-128
[BR22b, Tab. 23.1] 20 2−128 5 1m
[BR22b, Tab. 23.2] 20 2−128 7 1m
[BR22b, Tab. 23.3] 20 2−128 5 1m
[BR22b, Tab. 23.4] 20 2−128 3 1m

SPEEDY-192 [BDBN23, Fig. 4] 5.5 2−171 ○ 2s 2s
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C Constraints on the Key
Here we list the linear and nonlinear constraints on the key as discovered by our tool.

C.1 Linear Constraints for GIFT
For GIFT, we find linear constraints on the key for almost all characteristics. We use
Kn,i to denote bit i of nibble n of the key. The constraints marked with ⋆ occur two
times caused by two independent sets of S-boxes. Therefore these constraints increase
the independent probability by 22 instead of 21. Below we list the constraints we find on
characteristics for GIFT-64:

K8,1 ⊕ K10,1 = 0⋆

K9,1 ⊕ K11,1 = 0
K24,0 ⊕ K26,0 = 0
K25,0 ⊕ K27,0 = 0

 for char. [LWZZ19, Table 7]

K8,1 ⊕ K10,1 = 0⋆

K9,1 ⊕ K11,1 = 0
K24,0 ⊕ K26,0 = 0⋆

K25,0 ⊕ K27,0 = 0

 for char. [LWZZ19, Table 8]

K8,1 ⊕ K10,1 = 0
K9,1 ⊕ K11,1 = 0

K24,0 ⊕ K26,0 = 0
K25,0 ⊕ K27,0 = 0

 for char. [LWZZ19, Table 2]

K25,0 = 1
}

for char. [SWW21b, Table 8.1]

K8,0 ⊕ K10,0 = 0
K9,0 ⊕ K11,0 = 0

K24,1 ⊕ K26,1 = 0
K25,0 = 1

K25,1 ⊕ K27,1 = 0

 for char. [SWW21b, Table 8.2]

K8,0 ⊕ K10,0 = 0
K24,1 ⊕ K26,1 = 0

K25,0 = 1

}
for char. [SWW21b, Table 8.3]

K8,0 ⊕ K10,0 = 0
K24,1 ⊕ K26,1 = 0
K25,1 ⊕ K27,1 = 0

}
for char. [ZDY19, Table 4]

Now, we list the constraints we find on characteristics for GIFT-128.
K3,1 ⊕ K6,1 = 0

}
for char. [LLL+21, Table 5]

K25,1 ⊕ K30,3 = 0
}

for char. [ZDY19, Table 13]

K2,0 ⊕ K5,0 = 0
}

for char. [ZDY19, Table 6]

K24,0 ⊕ K29,2 = 0
K26,3 = 1
K27,3 = 1

}
for char. [ZDY19, Table 14]
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C.2 Constraints for Midori
For Midori128, we use Kn,b to denote nibble n and bit b of the key. We list the identified
constraints below.

K16,3 = 1
K20,3 ⊕ K22,3 = 1
K24,3 ⊕ K30,3 = 0
K28,3 ⊕ K30,3 = 0

 for char. [TAY16, Table 3]

K18,3 ∨ K20,3 ∨ K21,1 ∨ ¬K22,3

¬K18,3 ∨ K20,3 ∨ K21,1 ∨ K22,3

K19,1 ∨ ¬K20,3 ∨ K21,1 ∨ K23,1

K19,1 ∨ K20,3 ∨ ¬K21,1 ∨ ¬K23,1

¬K19,1 ∨ K20,3 ∨ ¬K21,1 ∨ K23,1

¬K19,1 ∨ ¬K20,3 ∨ K21,1 ∨ ¬K23,1

K18,3 ∨ ¬K19,1 ∨ ¬K21,1 ∨ K22,3 ∨ K23,1

K18,3 ∨ K19,1 ∨ ¬K21,1 ∨ K22,3 ∨ ¬K23,1

¬K18,3 ∨ ¬K19,1 ∨ ¬K21,1 ∨ ¬K22,3 ∨ K23,1

¬K18,3 ∨ K19,1 ∨ ¬K21,1 ∨ ¬K22,3 ∨ ¬K23,1

K26,3 ∨ K27,1 ∨ ¬K28,3 ∨ K29,1 ∨ K30,3 ∨ ¬K31,1

K26,3 ∨ K27,1 ∨ ¬K28,3 ∨ ¬K29,1 ∨ K30,3 ∨ K31,1

K26,3 ∨ ¬K27,1 ∨ ¬K28,3 ∨ K29,1 ∨ K30,3 ∨ K31,1

K26,3 ∨ ¬K27,1 ∨ ¬K28,3 ∨ ¬K29,1 ∨ K30,3 ∨ ¬K31,1

¬K26,3 ∨ K27,1 ∨ ¬K28,3 ∨ K29,1 ∨ ¬K30,3 ∨ ¬K31,1

¬K26,3 ∨ K27,1 ∨ ¬K28,3 ∨ ¬K29,1 ∨ ¬K30,3 ∨ K31,1

¬K26,3 ∨ ¬K27,1 ∨ ¬K28,3 ∨ K29,1 ∨ ¬K30,3 ∨ K31,1

¬K26,3 ∨ ¬K27,1 ∨ ¬K28,3 ∨ ¬K29,1 ∨ ¬K30,3 ∨ ¬K31,1

K3,1 ∨ K7,1 ∨ K16,3 ∨ K17,0 ∨ K18,3 ∨ K20,3 ∨ K21,0

K3,1 ∨ K7,1 ∨ K16,3 ∨ ¬K17,0 ∨ K18,3 ∨ K20,3 ∨ ¬K21,0

K3,1 ∨ ¬K7,1 ∨ K16,3 ∨ K17,0 ∨ K18,3 ∨ K20,3 ∨ ¬K21,0

K3,1 ∨ ¬K7,1 ∨ K16,3 ∨ ¬K17,0 ∨ K18,3 ∨ K20,3 ∨ K21,0

¬K3,1 ∨ K7,1 ∨ K16,3 ∨ K17,0 ∨ K18,3 ∨ K20,3 ∨ ¬K21,0

¬K3,1 ∨ K7,1 ∨ K16,3 ∨ ¬K17,0 ∨ K18,3 ∨ K20,3 ∨ K21,0

¬K3,1 ∨ ¬K7,1 ∨ K16,3 ∨ K17,0 ∨ K18,3 ∨ K20,3 ∨ K21,0

K3,1 ∨ K7,1 ∨ ¬K16,3 ∨ K17,0 ∨ ¬K18,3 ∨ ¬K20,3 ∨ K21,0

¬K3,1 ∨ ¬K7,1 ∨ K16,3 ∨ ¬K17,0 ∨ K18,3 ∨ K20,3 ∨ ¬K21,0

K3,1 ∨ K7,1 ∨ ¬K16,3 ∨ ¬K17,0 ∨ ¬K18,3 ∨ ¬K20,3 ∨ ¬K21,0

K3,1 ∨ ¬K7,1 ∨ ¬K16,3 ∨ K17,0 ∨ ¬K18,3 ∨ ¬K20,3 ∨ ¬K21,0

K3,1 ∨ ¬K7,1 ∨ ¬K16,3 ∨ ¬K17,0 ∨ ¬K18,3 ∨ ¬K20,3 ∨ K21,0

¬K3,1 ∨ K7,1 ∨ ¬K16,3 ∨ K17,0 ∨ ¬K18,3 ∨ ¬K20,3 ∨ ¬K21,0

¬K3,1 ∨ K7,1 ∨ ¬K16,3 ∨ ¬K17,0 ∨ ¬K18,3 ∨ ¬K20,3 ∨ K21,0

¬K3,1 ∨ ¬K7,1 ∨ ¬K16,3 ∨ K17,0 ∨ ¬K18,3 ∨ ¬K20,3 ∨ K21,0

¬K3,1 ∨ ¬K7,1 ∨ ¬K16,3 ∨ ¬K17,0 ∨ ¬K18,3 ∨ ¬K20,3 ∨ ¬K21,0



for char. [TAY16, Table 3]

K1,3 ⊕ K5,3 ⊕ K7,3 = 0
K12,0 = 1
K18,0 = 0

K24,0 ⊕ K30,0 = 1

 for char. [CXTQ23, Table 7]



Marcel Nageler, Shibam Ghosh, Marlene Jüttler and Maria Eichlseder 41

For the characteristic for Midori64 [ZHWW20, Table 5], we find the following conditions,
where Ki,r,c,b denotes bit b, row r, column c of Ki:

K0,0,0,3 ⊕ K0,1,0,3 = 1
K0,0,3,3 ⊕ K0,1,3,3 ⊕ K0,3,3,3 = 0

K0,1,1,3 ⊕ K0,3,1,3 = 0
K0,1,2,3 ⊕ K0,3,2,3 = 1

K0,3,0,3 = 0
K1,0,1,2 ⊕ K1,1,1,2 ⊕ K1,3,1,2 = 0
K1,0,1,3 ⊕ K1,1,1,3 ⊕ K1,3,1,3 = 0

K1,0,3,2 ⊕ K1,1,3,2 = 0
K1,0,3,3 ⊕ K1,1,3,3 = 0

K1,1,0,0 = 1
K1,1,0,3 = 0

K1,2,0,0 ⊕ K1,3,0,0 = 0
K1,2,0,3 ⊕ K1,3,0,3 = 0
K1,2,1,2 ⊕ K1,3,1,2 = 0
K1,2,1,3 ⊕ K1,3,1,3 = 0

K1,3,2,2 = 0
K1,3,2,3 = 0



for char. [ZHWW20, Table 5] / Figure 9a

C.3 Constraints for SKINNY
For SKINNY-64, we find the following linear constraints. We use Kt

r,c,b to denote row r,
column c, and bit b of tweakey t.

K1
2,1,0 ⊕ K1

2,1,1 ⊕ K1
2,1,2 ⊕ K2

2,1,0 ⊕ K2
2,1,1 ⊕ K2

2,1,3 ⊕ K3
2,1,0 ⊕ K3

2,1,2 = 1

K1
2,1,3 ⊕ K2

2,1,1 ⊕ K3
2,1,0 ⊕ K3

2,1,1 ⊕ K3
2,1,3 = 0

K1
2,2,0 ⊕ K2

2,2,0 ⊕ K2
2,2,2 ⊕ K3

2,2,0 ⊕ K3
2,2,1 ⊕ K3

2,2,2 ⊕ K3
2,2,3 = 1

K1
2,2,1 ⊕ K1

2,2,3 ⊕ K2
2,2,0 ⊕ K2

2,2,3 ⊕ K3
2,2,1 = 0

K1
2,2,2 ⊕ K2

2,2,0 ⊕ K2
2,2,2 ⊕ K2

2,2,3 ⊕ K3
2,2,1 ⊕ K3

2,2,2 ⊕ K3
2,2,3 = 0


for char.
[DDH+21, Table 9]

In addition to the linear constraints above, we find the following nonlinear constraints on
the round tweakeys. We use RTKi

r,c,b to denote row r, column c, and bit b of the round
tweakey used in round i.

¬RT K2
0,1,0 ∨ RT K2

0,1,2 ∨ RT K3
1,1,3

RT K2
0,1,0 ∨ RT K2

0,1,2 ∨ ¬RT K3
1,1,3

RT K2
0,1,0 ∨ RT K2

0,1,2 ∨ RT K3
1,1,0 ∨ RT K3

1,1,1 ∨ RT K3
1,1,2

RT K2
0,1,0 ∨ RT K2

0,1,2 ∨ RT K3
1,1,0 ∨ ¬RT K3

1,1,1 ∨ ¬RT K3
1,1,2

RT K2
0,1,0 ∨ RT K2

0,1,2 ∨ ¬RT K3
1,1,0 ∨ RT K3

1,1,1 ∨ ¬RT K3
1,1,2

RT K2
0,1,0 ∨ RT K2

0,1,2 ∨ ¬RT K3
1,1,0 ∨ ¬RT K3

1,1,1 ∨ RT K3
1,1,2

¬RT K2
0,1,0 ∨ ¬RT K2

0,1,2 ∨ RT K3
1,1,0 ∨ RT K3

1,1,1 ∨ ¬RT K3
1,1,2

¬RT K2
0,1,0 ∨ ¬RT K2

0,1,2 ∨ RT K3
1,1,0 ∨ ¬RT K3

1,1,1 ∨ RT K3
1,1,2

¬RT K2
0,1,0 ∨ ¬RT K2

0,1,2 ∨ ¬RT K3
1,1,0 ∨ RT K3

1,1,1 ∨ RT K3
1,1,2

¬RT K2
0,1,0 ∨ ¬RT K2

0,1,2 ∨ ¬RT K3
1,1,0 ∨ ¬RT K3

1,1,1 ∨ ¬RT K3
1,1,2

RT K2
0,1,0 ∨ RT K3

1,1,0 ∨ RT K3
1,1,1 ∨ RT K3

1,1,2 ∨ ¬RT K3
1,1,3

RT K2
0,1,0 ∨ ¬RT K3

1,1,0 ∨ ¬RT K3
1,1,1 ∨ RT K3

1,1,2 ∨ ¬RT K3
1,1,3

RT K2
0,1,0 ∨ RT K3

1,1,0 ∨ ¬RT K3
1,1,1 ∨ ¬RT K3

1,1,2 ∨ ¬RT K3
1,1,3

RT K2
0,1,0 ∨ ¬RT K3

1,1,0 ∨ RT K3
1,1,1 ∨ ¬RT K3

1,1,2 ∨ ¬RT K3
1,1,3

¬RT K2
0,1,2 ∨ RT K3

1,1,0 ∨ ¬RT K3
1,1,1 ∨ RT K3

1,1,2 ∨ RT K3
1,1,3

¬RT K2
0,1,2 ∨ RT K3

1,1,0 ∨ RT K3
1,1,1 ∨ ¬RT K3

1,1,2 ∨ RT K3
1,1,3

¬RT K2
0,1,2 ∨ ¬RT K3

1,1,0 ∨ RT K3
1,1,1 ∨ RT K3

1,1,2 ∨ RT K3
1,1,3

¬RT K2
0,1,2 ∨ ¬RT K3

1,1,0 ∨ ¬RT K3
1,1,1 ∨ ¬RT K3

1,1,2 ∨ RT K3
1,1,3



for char.
[DDH+21, Table 9]

For and SKINNY-128, we find the following linear constraints.
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K1
0,2,0 ⊕ K2

0,2,0 ⊕ K3
0,2,0 = 0

K1
0,3,3 ⊕ K2

0,3,1 ⊕ K3
0,3,5 = 0

K1
1,0,3 ⊕ K2

1,0,1 ⊕ K3
1,0,5 = 0

K1
2,3,1 ⊕ K2

2,3,5 ⊕ K2
2,3,7 ⊕ K3

2,3,3 = 0

K1
3,3,3 ⊕ K2

3,3,1 ⊕ K3
3,3,5 = 1

K1
3,3,7 ⊕ K2

3,3,6 ⊕ K3
3,3,0 ⊕ K3

3,3,6 = 0


for char.
[DDH+21, Table 12]

and the following nonlinear constraints on the round tweakeys:
¬RT K5

0,0,4 ∨ RT K5
0,0,6

RT K3
0,3,4 ∨ RT K3

0,3,6 ∨ RT K3
0,3,7

RT K4
0,3,4 ∨ RT K4

0,3,6 ∨ RT K4
0,3,7

RT K4
0,2,4 ∨ RT K4

0,2,6 ∨ RT K4
0,2,7

¬RT K4
0,1,4 ∨ RT K4

0,1,6 ∨ RT K4
0,1,7

RT K3
0,3,3 ∨ RT K3

0,3,4 ∨ ¬RT K3
0,3,5 ∨ RT K3

0,3,7

¬RT K3
0,3,3 ∨ RT K3

0,3,4 ∨ RT K3
0,3,5 ∨ RT K3

0,3,7


for char.
[DDH+21, Table 12]

C.4 Linear Constraints for WARP
For WARP, we use Kn,i to denote nibble n and bit i of the key. Below, we list the linear
constraints we have identified.

K0,0 ⊕ K0,2 ⊕ K6,0 ⊕ K6,2 = 1
K0,1 ⊕ K0,2 ⊕ K0,3 ⊕ K6,1 ⊕ K6,2 ⊕ K6,3 = 1

K8,0 ⊕ K8,2 ⊕ K14,0 ⊕ K14,2 = 1
K12,0 ⊕ K12,2 = 0
K13,0 ⊕ K13,2 = 1
K16,0 ⊕ K16,2 = 0
K16,1 ⊕ K16,3 = 1
K19,0 ⊕ K19,2 = 1

K19,1 ⊕ K19,2 ⊕ K19,3 = 0
K22,0 ⊕ K22,2 = 0
K22,1 ⊕ K22,3 = 1
K23,0 ⊕ K23,2 = 0
K28,0 ⊕ K28,2 = 1
K29,0 ⊕ K29,2 = 1

K29,1 ⊕ K29,2 ⊕ K29,3 = 1
K30,0 ⊕ K30,2 = 1



for char.
[KY21, Table 8]

K0,0 ⊕ K0,2 ⊕ K6,0 ⊕ K6,2 = 1
K8,0 ⊕ K8,2 ⊕ K14,0 ⊕ K14,2 = 1

K12,0 ⊕ K12,2 = 1
K13,0 ⊕ K13,2 = 1

K13,1 ⊕ K13,2 ⊕ K13,3 ⊕ K20,0 ⊕ K20,2 = 1
K16,0 ⊕ K16,2 = 0
K19,0 ⊕ K19,2 = 1

K19,1 ⊕ K19,2 ⊕ K19,3 = 0
K22,0 ⊕ K22,2 = 1
K23,0 ⊕ K23,2 = 0
K28,0 ⊕ K28,2 = 1

K28,1 ⊕ K28,2 ⊕ K28,3 = 0
K29,0 ⊕ K29,2 = 1

K29,1 ⊕ K29,2 ⊕ K29,3 = 1
K30,0 ⊕ K30,2 = 1

K30,1 ⊕ K30,2 ⊕ K30,3 = 0



for char.
[KY21, Table 9]
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C.5 Linear Constraints for RECTANGLE
For RECTANGLE, we find the following linear constraints on the key. For the main
characteristic from the design paper [ZBL+14, App. E, p = 2−63], we find the following
constraint. We use RKi

r,c to denote row r, column c of the key used in round i.
RK

10
2,2 ⊕ RK

10
3,3 ⊕ RK

11
3,0 ⊕ RK

11
3,1 = 1 .

For the secondary characteristic from the design paper [ZBL+14, App. E, p = 2−66],
we find the following constraints:

RK
10
2,2 ⊕ RK

10
3,3 ⊕ RK

11
3,0 ⊕ RK

11
3,1 = 0 ,

RK
11
0,3 ⊕ RK

11
3,0 ⊕ RK

12
0,0 ⊕ RK

12
0,3 = 1 .

C.6 Constraints for SPECK
In addition to the linear and non-local nonlinear constraints, we some local nonlinear
conditions for the characteristic [BR22b, Table 20.2].

RK3
8 ∨ RK3

9 ∨ RK4
2 ∨ RK4

3

¬RK3
8 ∨ ¬RK3

9 ∨ RK4
2 ∨ RK4

3

RK3
8 ∨ RK3

9 ∨ ¬RK4
2 ∨ ¬RK4

3

¬RK3
8 ∨ ¬RK3

9 ∨ ¬RK4
2 ∨ ¬RK4

3

 for characteristic
[BR22b, Table 20.2]

Note that these 4 constraints can be reformulated as (RK3
8⊕RK3

9 = 1)∨(RK4
2⊕RK4

3 = 1).
Now, we list the linear constraints we identified.

RK1
9 ⊕ RK1

10 = 0

RK2
11 ⊕ RK2

12 = 1

}
for characteristic
[BR22b, Table 19.1]

RK1
9 ⊕ RK1

11 = 0

RK1
10 ⊕ RK1

11 = 0

RK2
11 ⊕ RK2

12 = 1

 for characteristic
[BR22b, Table 19.2]

RK4
2 ⊕ RK4

3 = 1
} for characteristic

[BR22b, Table 20.1]

RK1
13 ⊕ RK1

14 = 1
} for characteristic

[BR22b, Table 20.2]

RK1
10 ⊕ RK1

11 = 0

RK4
2 ⊕ RK4

3 = 1

}
for characteristic
[BR22b, Table 20.3]

RK6
25 ⊕ RK6

26 = 0

RK7
28 ⊕ RK7

30 = 1

RK7
29 ⊕ RK7

30 = 1

 for characteristic
[BR22b, Table 22.2]

RK5
25 ⊕ RK5

26 = 1

RK5
27 ⊕ RK5

29 = 0

RK5
28 ⊕ RK5

29 = 0

RK6
30 ⊕ RK6

34 = 1

RK6
32 ⊕ RK6

34 = 1

RK6
33 ⊕ RK6

34 = 1


for characteristic
[BR22b, Table 22.3]
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RK2
1 ⊕ RK2

2 = 1

RK3
4 ⊕ RK3

5 = 0

}
for characteristic
[BR22b, Table 23.1/2]

RK6
13 ⊕ RK6

14 = 1

RK7
16 ⊕ RK7

17 = 0

}
for characteristic
[BR22b, Table 23.2/3]

RK10
25 ⊕ RK10

26 = 1

RK11
28 ⊕ RK11

30 = 1

RK11
29 ⊕ RK11

30 = 1

 for characteristic
[BR22b, Table 23.1/2/3/4]
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