
Improved NTT and CRT-based RNR Blinding for
Side-Channel and Fault Resistant Kyber

Max Duparc 1 and Mounir Taha2

1 EPFL, Lausanne, Switzerland, max.duparc@epfl.ch
2 Nagra Kudelski Group, Cheseaux-sur-Lausanne, Switzerland, mounir.taha@nagra.com

Abstract. In this paper, we build upon the blinding methods introduced in recent years
to enhance the protection of lattice-based cryptographic schemes against side-channel
and fault injection attacks. Specifically, we propose a cost-efficient blinded Number
Theoretic Transform (NTT) that impedes the convergence of Soft Analytical Side-
Channel Attacks (SASCA), even with limited randomness sampling. Additionally,
we extend the blinding mechanism based on the Chinese Remainder Theorem (CRT)
and Redundant Number Representation (RNR) introduced by Heiz and Pöppelmann
by reducing the randomness sampling overhead and accelerating the verification
phase. These two blinding mechanisms are nicely compatible with each other’s
and, when combined, provide enhanced resistance against side-channel attacks, both
classical and soft analytical, as well as fault injection attacks, while maintaining
good performance and low overhead, making the approach well-suited for practical
applications, particularly in resource-constrained IoT environments.
Keywords: Kyber · Blinding · NTT · RNR · Side-Channel Attacks · Fault
Attacks

1 Introduction
With the release of the first post-quantum cryptographic standards by NIST [NIS24b,
NIS24a, NIS24c], post-quantum cryptography has taken a significant step toward integra-
tion into everyday applications. Among these standards, ML-KEM [NIS24b], previously
known as CRYSTALS-Kyber [SAB+22], is, as of now, the sole standardized Key En-
capsulation Mechanism (KEM). Based on the Module Learning With Errors (M-LWE)
problem—a variant of the Ring-LWE problem [LPR10]—Kyber offers a practical balance
of small public key and ciphertext sizes along with competitive performance. Moreover,
its efficiency on embedded devices has been demonstrated in various implementations
[KRSS19].

However, a critical aspect that has received comparatively less attention during its
development is its vulnerability to side-channel attacks. Due to the inherent complexity
of post-quantum cryptographic schemes, especially when compared to traditional crypto-
graphic schemes like RSA or ECDHE, their implementations provide an expanded attack
surface, heightening the risk of side-channel and fault injection vulnerabilities, posing a
challenge for secure deployments in uncontrolled environments, as it is typically the case
in IoT devices. For example, Kyber has been subjected to a wide range of side-channel
and fault-injection attacks, exposing vulnerabilities in its critical computational steps.
Side-channel attacks, such as Correlation Power Analysis (CPA), have targeted power
and electromagnetic leakage of the polynomial multiplication and sampling operations
[KdG21, MPG+22, YWY+23, KT23]. Soft Analytical Side-Channel Attacks (SASCA) have
leveraged recursive patterns in the Number Theoretic Transform (NTT) and modular reduc-
tions, using statistical inference to recover private keys [PPM17, PP19, HHP+21, HSST23].

https://orcid.org/0009-0001-4179-9547
mailto:max.duparc@epfl.ch
mailto:mounir.taha@nagra.com

2
Improved NTT and CRT-based RNR Blinding for Side-Channel and Fault Resistant

Kyber

Additionally, fault-injection attacks, including techniques like clock glitches and electro-
magnetic disturbances, have focused on disrupting NTT operations to induce exploitable
errors [Del22, HMS+23].

Thankfully, a breath of countermeasures to these attacks do exists and have been
proposed thoughout the years. One family of such countermeasures is called masking
[RRVV15, OY23, BGR+21], which consists in splitting sensitive data in several independent
shares, performing leaky operations on each part individually. Although very strong, it
must be noted that masking does not always prevent SASCA [HHP+21], nor injection
attacks [HMS+23], and is quite costly since it requires performing the same operation
multiple times.

Another family of countermeasures is blinding, which consists in combining the data
with noise to complexify side channel attacks. This can take the form of random delays in
the mechanism or of multiplicative masking, meaning that leaky operations over secret
values are performed up to a scalar. Examples of blinding include [RPBC20], which
provides efficient countermeasure against SASCA and [HP21] which uses Redundant
Number Representation (RNR) based on the Chinese Remainder Theorem (CRT) to
provide protection against SCA and fault injections.

Creating side-channel-resistant implementations involves selecting appropriate counter-
measures while carefully evaluating their mutual compatibility. Some countermeasures
may conflict with others, leading to a marked increase in implementation complexity and
resource requirements.

Contribution In this paper, we build upon the foundational works of [RPBC20] and
[HP21], introducing improvements to their respective blinding mechanisms. Specifically,
we propose a novel blinded NTT structure that maximizes the number of loops in the
factor graph underlying SASCA, effectively diminishing such attacks efficiency. Addi-
tionally, we extend the CRT-based RNR blinding mechanism to require less randomness,
substantially accelerating the verification phase. These enhancements not only improves
the countermeasure’s overall performance but also its practicality.

Thanks to the fact that the first countermeasure target the roots of unity while the
second targets the variables, both are nicely compatible with each other. We therefore
present a combined implementation of Kyber that integrates both improved countermea-
sures and evaluate both the overhead and the practical leakage of our implementation
compared to the unsecured standard.

Our implementation is available at: https://github.com/moun18/KYBER-CRT-NTT-
SEC.

Organization The rest of this paper is structure as follows. In Section 2, we give a
reminder on Kyber, the NTT and side channel attacks. In Section 3, we introduce our
improved blinded-NTT design that relies on shifted blocks. In Section 4, we introduce
our improved method to protect Kyber against side-channel and fault using a CRT-based
RNR blinding. Finally, in Section 5, we detail our implementation and its results against
SCA and FA.

2 Background
In this section, we present an overview of the Kyber scheme, highlighting its core com-
ponents, including the Number Theoretic Transform (NTT) and the modular arithmetic
operations upon which it is built. We then discuss prior work addressing fault and
side-channel attack protections for implementations of lattice-based cryptography.

https://github.com/moun18/KYBER-CRT-NTT-SEC
https://github.com/moun18/KYBER-CRT-NTT-SEC

Max Duparc and Mounir Taha 3

2.1 CRYSTALS-Kyber
Kyber [SAB+22] is a Key Encapsulation Mechanism (KEM) based on the M-LWE problem
(a variant of the R-LWE problem). The KEM is constructed in two parts. The first one
is building an IND-CPA PKE scheme that encrypts a 32 bytes message, and the second
one is using a tweaked Fujisaki-Okamoto transform (FO-transform) to build an IND-CCA
KEM.

Kyber works in the polynomial ring Rq = Zq[X]/(Xn + 1), with q = 3329 and n = 256.
The PKE scheme consists of three algorithms: KeyGen, Encrypt, and Decrypt. A simplified
version of the PKE is given in Algorithms 1-3. Bold uppercase letters represent matrices
of size k × k with elements in Rq. Bold lowercase letters represent vectors of size k
with elements in Rq, k depending on the security level. SampleU samples from a uniform
distribution and SampleCBD samples from a centered binomial distribution. Expand expands
a small seed into a matrix with coefficients in Rq. Compress loosely maps elements from
Zq to Z2d , Decompress maps elements from Z2d to Zq. ◦ denote a Kyber specific baseline
product of the polynomials, specified in Section 2.2.

Algorithm 1 ML-KEM/Kyber.CPAPKE.KeyGen()
output Pair of public/secret keys (pk, sk)

1: ρ ← SampleU()
2: σ ← SampleU()
3: Â ∈ Rk×k

q ← Expand(ρ)
4: s ∈ Rk

q ← SampleCBD(σ, 0)
5: e ∈ Rk

q ← SampleCBD(σ, k)
6: ŝ ∈ R̂k

q ← NTT(s)
7: ê ∈ R̂k

q ← NTT(e)
8: t̂ = Â ◦ ŝ + ê
9: return pk = (ρ, t̂), sk = ŝ

Algorithm 2 ML-KEM/Kyber.CPAPKE.Enc(pk, m, rs)
input pk, the message m ∈ {0, 1}256 and a random seed rs ∈ {0, 1}256

output The ciphertext pair ct = (u, v)
1: Â ∈ R̂k×k

q ← Expand(ρ)
2: r ∈ Rk

q ← SampleCBD(rs, 0)
3: e1 ∈ Rk

q ← SampleCBD(rs, k)
4: e2 ∈ Rq ← SampleCBD(rs, 2k)
5: r̂ ∈ R̂k

q ← NTT(r)
6: u ∈ Rk

q ← INTT(Ât ◦ r̂) + e1

7: v ∈ Rq ← INTT(̂tt ◦ r̂) + e2 + Decompress(m)
8: return (Compress(u) , Compress(v))

2.2 NTT
As shown in Algorithm 1-3, an important part of Kyber is the NTT and its inverse, the
INTT operations. These refer to the Number Theoretic Transform and the Inverse Number
Theoretic Transform, and are integral for efficiently performing polynomial multiplication
in Rq. Specifically, they reduce the computational cost of polynomial multiplication from
O(n2), with a naive approach, to O(n log(n)) field multiplications in Zq. This efficiency

https://orcid.org/0009-0001-4179-9547

4
Improved NTT and CRT-based RNR Blinding for Side-Channel and Fault Resistant

Kyber

Algorithm 3 ML-KEM/Kyber.CPAPKE.Dec(sk,ct)
input sk, ct
output The message m

1: u′ ∈ Rk
q ← Decompress(ctu)

2: v′ ∈ Rq ← Decompress(ctv))
3: û′ ∈ R̂k

q ← NTT(u′)
4: m′ ∈ Rq ← v′ − INTT(û′ ◦ ŝ))
5: m ← Compress(m′)
6: return m.

gain stems from their ability—analogous to the Discrete Fourier Transform (DFT), which
they generalize—to transform a convolution into a Hadamard product. We refer the reader
to [SML24] for further details. In the specific case of Kyber, contrary to other lattice
based schemes such as Dilithium [LDK+22], the NTT is incomplete and correspond to the
following transformation. Let ω ∈ Zq be a primitive n-th root of unity, usually called a
twiddle factor and f = (f0, · · · , fn−1):

NTTω : Zq[X]/⟨Xn + 1⟩ ∼=
n
2 −1∏
k=0

Zq[X]/⟨X2 − ω2k+1⟩

f̂j = NTTω(f)j =



n
2 −1∑
i=0

f2iω
(2j+1)i j = 0 mod 2

n
2 −1∑
i=0

f2i+1ω(2j+1)i j = 1 mod 2

With INTTω = 2
n NTTω−1 . The reason for that change during the 2nd round of

the NIST standardisation [NIS] was that it enabled smaller parameters and equivalent
performance, as detailed in [ZXZ+18, ACC+22]. Due to this change, the NTT transform
convolution into the following baseline product:

(
f̂ ◦ ĝ

)
j

=
{

f̂2j ĝ2j + ω2j+1f̂2j+1ĝ2j+1 j = 0 mod 2
f̂2j ĝ2j+1 + f̂2j+1ĝ2j j = 1 mod 2

As the NTT is a natural extension of the DFT, the techniques developed for performing
the Fast Fourier Transform (FFT) can also be applied to the NTT. In this paper, we
focus on two main variants: the Decimation-In-Time (DIT-FFT) [GS66] and its dual,
the Decimation-In-Frequency (DIF-FFT) [CT65]. Specifically, we implement the NTT
using DIT and the INTT using DIF. This design choice is guided by Tellegen’s principle
[BLS03, Proposition 2], which guarantees that any efficient implementation of the DIT-
NTT induces a corresponding DIF-INTT with the same computational complexity. Note
that both implementation are bit-reversing, meaning that DIT-NTT(f)j = f̂bitrv(j), where
bitrv denotes the bit-reversal of index j, seen as an 8 bit integer. Figure 1 provides an
example of an in-line representation of a DIF-FFT. The corresponding algorithms for
Kyber’s specific NTT and INTT are detailed in [NIS24b, Algorithms 8 and 9].

At their hearth, both mechanisms are based on linear structures called butterflies,
consisting of a multiplication with a twiddle factor coupled with an addition and subtraction
between two coefficients. DIT butterfly and DIF butterfly are described in Figure 2. Both
are dual of one another1.

1More specifically, the matrix representing a DIT-butterfly is the transpose of the DIF-butterfly matrix.

Max Duparc and Mounir Taha 5

f0

f4

f2

f6

f1

f5

f3

f7

ω4

ω4

ω4

ω4

+

−

+

−

+

−

+

−

ω2

ω6

ω2

ω6

+

+

−

−

+

+

−

−

ω1

ω5

ω3

ω7

+

+

+

+

−

−

−

−

f̂0

f̂1

f̂2

f̂3

f̂4

f̂5

f̂6

f̂7

Figure 1: Example of the DIT-FFT for n = 8.

x0

x1

+

−
ωk

y0

y1

x0

x1

+

−
ωk

y0

y1

Figure 2: Diagram of DIT-butterfly (left) and DIF-butterfly (right)

2.3 Modular operations
The two primary functions employed for modular arithmetic in Kyber are the Montgomery
and Barrett reductions, described in Algorithms 4 and 5, respectively. These functions
are constant time and improve efficiency over naïve modular arithmetic approaches by
eliminating the need for costly division. Both mechanisms play a crucial role in the
implementation of our countermeasures against side channel attacks.

Algorithm 4 Montgomery Reduction
Constant: 2t−1 ≤ N < 2t an odd number, R = 2s and N ′ = N−1 mod R
Require: x an positive integer smaller than NR.
Ensure: xR−1 mod N

1: n = (x&(R− 1)) ·N ′

2: m = N · (n &(R− 1))
3: z = (x−m)≫ s
4: z = z +

(
N&

(
2t+1 − (z ≫ t)

))
▷ Ensures conditional addition of N if z < 0.

5: return z.

2.4 Side channel and fault attacks.
2.4.1 Power analysis

Power analysis is a widely used category of side-channel attacks against cryptographic
implementations. It exploits variations in power consumption caused by intermediate
computations and register transitions, as the current drawn by a device often correlates
with the Hamming weight of processed data. Consequently, an unprotected implementation
of a cryptographic algorithm may inadvertently leak sensitive information. By collecting
and analyzing power traces over multiple runs, an attacker can potentially recover the
secret key using only public information and the captured traces.

https://orcid.org/0009-0001-4179-9547

6
Improved NTT and CRT-based RNR Blinding for Side-Channel and Fault Resistant

Kyber

Algorithm 5 Barrett Reduction

Constant: N < 2t an odd number, R = 2s and Q =
⌊

2t+s

N

⌋
mod N

Require: x an positive integer smaller than NR.
Ensure: x mod N

1: m = (x ·Q)≫ s + t− 1
2: z = m ·N
3: z = x− z
4: return z +

(
N&

(
2t+1 − (z ≫ t)

))
▷ Ensures conditional addition of N if z < 0.

Over the years, several power analysis techniques have been developed, including
Simple Power Analysis (SPA), Differential Power Analysis (DPA), and Correlation Power
Analysis (CPA). Among these, CPA has proven to be particularly effective against Kyber
[KdG21, MPG+22, YWY+23, KT23], as it exploits statistical correlations between power
consumption and key-dependent operations.

The classical way to protect against side channel attack is masking by using shares
[RRVV15, OY23, BGR+21]. This method offers a strong protection against power analysis,
however it also introduces a significant overhead that makes it less attractive. An alternative
to shares is to introduce noise inside the computation, as proposed in [HP21].

2.4.2 Soft Analytical Side Channel Attacks (SASCA)

Soft-Analytical Side-Channel Attacks (SASCA) are very specific single-trace attacks.
Originally applied to AES and SHA-3 [VGS14, KPP20], SASCA uses a single trace
matched against precomputed templates to reconstruct the secret key. In lattice-based
cryptosystems, SASCA primarily targets the NTT (Number Theoretic Transform) [PPM17,
PP19, HHP+21, HSST23], exploiting sensitive intermediate variables to retrieve secret-
dependent inputs. SASCA operates in two phases:

1. Profiling: Templates are built using leakage from a clone device.

2. Execution: A single trace from the target device is segmented, matched to templates,
and modeled as a factor graph. The graph is processed using the Belief Propagation
(BP) algorithm, combining intermediate leakage to recover secrets.

While BP guarantees correct results for acyclic graphs, "loopy BP" is used for graphs
with cycles. However, loopy BP’s accuracy and convergence degrade as loops in the graph
increase or shorten, often causing oscillations and overconfidence in beliefs. Further details
on BP are in [Mac03, Chapter 26] and [PPM17, PP19]. Improved method such as the
Generalized Belief Propagation [YFW00] do exist to remedy this problem, but comes
at the cost of significantly higher computational complexity, making it unsuitable for
applications such as SASCA, where computational efficiency is critical, as factor graph
of the NTT are large. We represent in Figure 3 how a DIT-butterfly is represented in
the factor graph of the NTT in [PPM17, PP19], in which fleak(xi) = P[xi|leak] are the
observed side-channel information resulted from the outcome of the template matching while
fADD(y) = 1x0+ωx1(y), fSUB(y) = 1x0−ωx1(y) and fBT F (y0, y1) = fADD(y0)fSUB(y1).

Using these representations, [PPM17] create a SASCA targeting generic Ring-LWE-
based scheme. Their proposed attack required over a million templates for a successful key
recover of Kyber. Importantly, their representation of a DIT-butterfly in the factor graph
enabled [PPM17, Section 5.3] a quasi-linear propagation of parts of the BP algorithm.
[PP19] is an improvement on the previous attack requires only hundreds of templates,
when the target vector has a small range. This improvement comes at the expense of a
slower computation of the BP. [HHP+21] combined SASCA with a Chosen Ciphertext

Max Duparc and Mounir Taha 7

x0

x1

y0

y1

fADD

fSUB

fleak

fleak

x0

x1

y0

y1

fBT F

fleak

fleak

Figure 3: Representation of a DIT butterfly in the respective factor graph of [PPM17](left)
and [PP19, HHP+21](right).

Attack strategy in order to construct sparse polynomials at the input of inverse NTT
computations, secret key. A final important point to note is that, in order to be efficient,
SASCA requires quite low noise level during sampling. (From σ = 0.5 to 2.)

2.4.3 Fault attacks

Fault injection attacks are another threats to cryptographic implementation. These attacks
typically proceed in two stages: first, an adversary injects faults into a cryptographic
computation, often by introducing errors into hardware or software operations. Second,
the adversary analyzes the resulting faulty outputs to infer secret information, leveraging
techniques such as Differential Fault Analysis (DFA).

In the context of Kyber, fault attacks are partially mitigated by its use of the Fujisaki-
Okamoto (FO) transform. This transform ensures that decryption errors—whether caused
by natural faults or deliberate injections—result in a mismatch between the ciphertext
generated during reencryption and the original ciphertext, preventing the return of faulty
outputs. However, the FO transform does not completely eliminate the vulnerability to
fault attacks. Indeed, several effective fault attacks have been demonstrated against Kyber.
Pessl and Prokop [PP21] showed that skipping a single instruction during decryption
can bypass the FO transform’s protection. By analyzing whether the error is detected,
attackers can gather valuable information about the secret key.

Additionally, other fault injection strategies exploit slightly invalid ciphertexts to induce
perturbations that are later corrected during decryption, effectively bypassing protections.
Notable examples include the techniques described in [HPP21, Del22], where attackers
carefully craft faulty inputs to extract secret key material.

3 Blinded-NTT using mixed blocks
Among the proposed countermeasures against SASCA, Ravi et al.[RPBC20] introduced
two methods named blinding in time and blinding in memory. Blinding in time involves
introducing time delays and randomly shuffling the execution of different butterflies
within each NTT stage. This strategy increases the complexity of correlating side-channel
information with internal computations, thereby making attacks more challenging. However,
as shown in [HSST23], while this countermeasure is effective, it is not impervious to attacks
by a powerful adversary who can still achieve success under certain conditions.

The second approach involves applying multiplicative masking to intermediate values
within the NTT using a masking twiddle factor. This technique mitigates SASCA attacks
by introducing loops into the factor graph, effectively obstructing the convergence of the
BP algorithm. While this method remains constant-time, it requires significant random
sampling if applied to every butterfly operations. For Kyber, this amounts to 6144 random
bits per NTT computation. To reduce this overhead, blocks of butterflies are often masked
using the same masking twiddle factors, thereby reusing randomness.

https://orcid.org/0009-0001-4179-9547

8
Improved NTT and CRT-based RNR Blinding for Side-Channel and Fault Resistant

Kyber

Our proposed solution enhances the block-based blinding-in-memory technique. Specif-
ically, it maximizes the number of loops in the factor graph while maintaining the same
number of multiplications as the original solution. In exchanges, we no longer allow for
the number of masks to vary across the different NTT stages.

3.1 Masked-butterflies
The fundamental building block of our blinded NTT consist, similarly to [RPBC20], in
masked butterflies, but different ones. A masked butterfly takes as input its initial data,
multiplied by one or two masking twiddle factors, and return the standard output, also
multiplied by one or two twiddle factors. As a butterfly has 2 input and 2 outputs, we
have that a masked butterfly can be of 4 distinct types, based on whether the masking
twiddle factors for the input and output are the same or different. We denote that SISO
(Same Input, Same Output), DISO (Different Input, Same Output), SIDO and DIDO.
Additionally, each of the butterflies can be DIT or DIF, resulting in a total of 8 masked
butterflies. Among these 8 possibilities, 4 (SISO-DIT, SISO-DIF, DISO-DIT and SIDO-
DIF) can be performed using only 2 modular multiplications while the others (SIDO-DIT,
DISO-DIF, SISO-DIT and DIDO-DIF) require 3 multiplications.

In [RPBC20], the authors primarily used SISO butterflies (both DIT and DIF), with
limited use of DISO-DIT and SIDO-DIF butterflies. In contrast, our approach exclusively
employs DISO-DIT butterflies for the NTT and SIDO-DIF butterflies for the INTT, both
illustrated in Figure 4. For even further clarity, the pseudocode for the DISO-DIT butterfly
is detailed in Algorithm 6.

ωix0

ωjx1

+

−

ωℓ−i

ωk+ℓ−j

ωℓy0

ωℓy1

ωℓx0

ωℓx1

+

−
ωk+j−ℓ

ωi−ℓ

ωiy0

ωjy1

Figure 4: The DISO-DIT (left) and SODI-DIF (right)

Algorithm 6 – DISO-DIT-BF(f0, f1, p1, p2, p3, k): (Different Input Same Output Derivation
in Time Butterfly).
Require: f0, f1 in Zq and p1, p2, p3, k ∈ Z2n , ω a fixed 2n root of unity.
Ensure: f0, f1 in Zq.

1: q ← ωbitrv(k)+mp3 −mp2 f1 ▷ bitrv(k) is the bit-reverse of k in Z2n .
2: p← ωmp3 −mp1 f0
3: f0 ← p + q
4: f1 ← p− q
5: return f0, f1

Although our method requires two modular multiplications instead of one, as in the
standard butterfly (Figure 2). Some implementations, such as [ABD+18], perform one
Montgomery multiplication and one Barrett reduction on an alternate branch. In these
cases, the computational cost of our approach is approximately equivalent.

3.2 Masking Blocks
As touched priorly and in [RPBC20, Section 3.2], if we decided to sample a random mask
for every butterfly inside our NTT, we would have to sample up to 6144 = 8 · 6 · 128

Max Duparc and Mounir Taha 9

random bits per NTT in Kyber 2, which significantly temper the performance.
This is why we employ the concept of masking blocks. Concretely, masking blocks are

defined as sets of butterflies, where every butterfly within a block uses the same masking
twiddle factor for both input and output. The size of each block, noted B (and thus their
total number) is a power of two and remains fixed throughout the NTT. By using blocks
of size B, the amount of randomness required is significantly reduced. Specifically, for one
NTT computation in Kyber, we only need to sample 6144

B bits of randomness, making this
approach efficient while maintaining the desired security properties.

Since B is a power of 2, the logic to manage and track the various twiddle factors
can be efficiently implemented using, in the case of Kyber, 8-bit additions combined with
bit shifts. Notably, the connections between successive masking blocks within the NTT
can themselves be represented as an NTT diagram of length 7 and height log2(128/B),
which simplifies both construction and control. However, the challenge with block-based
masking lies in handling the later stages of the NTT, when the distance between the two
inputs of the butterfly is smaller than the block size. In this case, both masking input
twiddle factors are equal, weakening the resistance to SASCA. This issue is particularly
significant since the majority of butterflies fall into this category, especially when using
smaller randomness budgets (e.g., sampling only 256 or 512 bits of randomness per NTT).

To address this limitation without incurring additional computational cost, we employ
two types of blocks in our NTT design:

• Normal Blocks: Used during stages where the distance between the two inputs of
the butterfly is greater than the block size. These blocks are defined based on the
butterfly index. Specifically, the i-th butterfly of stage s belongs to the j-th block if
and only if: ⌊

i

B

⌋
= j

• Mixed block: Used when the distance of two input of the butterfly is smaller than
the block-size. Here, the block also depends on the spacing between the two inputs
of the butterfly, i.e. the current stage in the NTT. In this case, we have that the i-th
butterfly of stage s is in the j-th block if and only if:

2
⌊

i

2B

⌋
+

(⌊
2s(i &(B − 1))

28

⌋
&1

)
= j

Mixed block induces a shift in the different butterflies which ensures that the masking
input twiddle comes from two different blocks, that are in fact concomitant.

Finally, the first and last masking twiddle factor used in our blinded NTT are set to 1.
This choice ensures compatibility with Kyber’s vector tests. Using this mask structure, we
can efficiently determine the input and output twiddle factors for each masking block in
the case of a DISO-DIT implementation. To do so, we assume that our different masks are
available in an array, at different position. These computations are handled by Algorithms
8 and 9, which together enable the construction of the blinded NTT, as described in
Algorithm 7. We implemented our NTT such that it is modular with respect to the block
size. If a fixed block size is preferred, the relevant positions could be precomputed for
greater efficiency.

For a detailed representation of the graph of the blinded NTT, we refer the reader to
Appendix A and Figure 11.

2and up to 8064 bits per NTT in Dilithium

https://orcid.org/0009-0001-4179-9547

10
Improved NTT and CRT-based RNR Blinding for Side-Channel and Fault Resistant

Kyber

Algorithm 7 – DISO-DIT-NTT(f): Our Kyber Blinded Number Theoric Transform.
Constant: ω – a primitive 256th root of unity in Zq, B = 2b the block size and N = 27−b

the number of blocks.
Require: f = (f0, . . . , f255) – coefficients of f(x) ∈ Zq[x].

Require: m = (m0, . . . , m8N−1) – list of mask index with mi ∈ Z28 . First and last N
masks set to 0.

Ensure: f̂ = (f̂0, . . . , f̂255) – the NTT of f(x). It is in bit reverse order.
1: k = 0 ▷ k denote which roots of unity
2: pad = 0
3: //Part I, with Normal Blocks
4: for len = 7 to len = b + 1 do ▷ Stage loop
5: num = 0
6: for st = 0 to 256 with step 2len+1 do ▷ NTT standard loop
7: k = k + 1
8: for j = st to st + 2len with step B do ▷ Block loop
9: p1, p2, p3 ← Compute-Normal_Block_Pos(num, len, pad, b)

10: for i = j to j + B do
11: fi, fi+2len ← DISO-DIT-BF(fi, fi+2len , p1, p2, p3, k)
12: num = num + 1
13: pad = pad + N
14: //Part II, with Mixed Blocks
15: for len = b to len = 1 do ▷ Stage loop
16: num = 0
17: for st = 0 to 256 with step 2B do ▷ Block loop
18: p1, p2, p3 ← Compute-Mixed_Block_Pos(num, len, pad, b)
19: for j = st to j + 2B with step 2len+1 do ▷ NTT standard loop
20: k = k + 1
21: for j = i to i + 2len−1 do
22: fi, fi+2len ← DISO-DIT-BF(fi, fi+2len , p1, p2, p3, k)
23: fi+2len−1 , fi+3·2len−1 ← DISO-DIT-BF(fi+2len−1 , fi+3·2len−1 , p1, p2, p3 + 1, k)
24: num = num + 2
25: pad = pad + N
26: return f

3.3 A quick cryptanalysis of our Blinded-NTT
We give a quick intuition of why our blinded NTT hampers SASCA. First, the randomness
inside the NTT makes it significantly harder from a practical side-channel perspective,
though not impossible, to identify the underlying targeted operations within the NTT
and compute templates. Nevertheless, Similarly to [RPBC20], our design has the great
property to make our butterflies no longer one-to-one. They are in fact surjective (in the
case of Kyber, they are exactly 224-to-one). This hampers the BP algorithm, as we now
have to consider the butterfly function

fBT F (xa, xa+l, ya, ya+l, i, j, m) = 1 ⇐⇒
{ yi = ωm−ixa + ωk+m−jxa+l and

yi+l = ωm−ixa − ωk+m−jxa+l

This therefore heavily slows down the propagation in the BP algorithm.
Secondly, we have that our different masks create numerous additional loops inside the

factor graph that represent our NTT. Indeed, as shown in Figure 5, each masks values are
linked to 3B distinct butterfly functions inside our NTT. Those additional connections
ensure the creation of many 4-cycles, the smallest possible. They are of two types:

Max Duparc and Mounir Taha 11

Algorithm 8 – Compute_Normal_Block_Pos(num, len, pad, b).
Require: num, len, pad, b.
Ensure: p1, p2, p3

1: p1 ←
((

(num≫ b)≫ (len + 1− b)
)
≪ (len + 1− b)

)
+

(
(num≫ b)&(2len−b − 1)

)
|pad

2: p2 ←
(
(p1 + 2len−b)&(N − 1)

)
|pad

3: p3 ← (num≫ b)|(pad + N)

Algorithm 9 – Compute_Mixed_Block_Pos(num, len, pad, b).
Require: num, len, pad, b.
Ensure: p1, p2, p3.

1: p1 ←
(
(num≫ b + 1)≪ 1

)
|pad

2: p2 ← p1 + 1
3: p3 ← p1 +

(
num&((B − 1)≫ (len− 1))&1

)
+ N

• Variable cycles: These cycles are induced by the masking twiddle factor around each
variable inside our NTT. Both nodes are connected by two functions at different
stage of the NTT. In our proposed Kyber NTT, there are 5 · 28 such cycles.

• Block cycles: These cycles are induces by the fact that our masking twiddle variables
are used for multiple butterflies. Here, both nodes are connected via two functions
in the same stage of the NTT. For each pair of butterflies inside a block, there exists
3 such cycles. In our proposed Kyber NTT, there are 16 ·

(
B
2
)

such cycles.

x0

x1

x2

x3

x4

x5

x6

x7

i0

j0

f0

f1

f2

f3

x0

x1

x2

x3

x4

x5

x6

x7

i1

j1

f0

f1

f2

f3

x0

x1

x2

x3

x4

x5

x6

x7

i2

j2

Figure 5: Subset of the factor graph on our blinded NTT with 8 variables and using mixed
blocks of size 2. Leak functions are omitted. Examples of variable and block cycles are
highlighted.

3.4 Blinded INTT
Our blinded INTT is derived directly from the blinded NTT by leveraging Tellegen’s
Principle. This ensures that the INTT achieves almost3 same efficiency as the NTT while
maintaining an identical structure and blinding mechanism. The key distinction lies in the

3This difference is due to the last scalar multiplication of the INTT.

https://orcid.org/0009-0001-4179-9547

12
Improved NTT and CRT-based RNR Blinding for Side-Channel and Fault Resistant

Kyber

transformation of DISO-DIT butterflies into SIDO-DIF butterflies. For the sake of brevity,
we do not include a detailed description of the INTT in this section. A comprehensive
explanation, including all relevant details, is available in Appendix A.

To conclude, it is worth noting that our proposed design can be adapted to incorporate
DIDO butterfly operations. Such an adaptation would increase the computational cost by
requiring one additional multiplication per butterfly operation compared to the current
scheme. However, this approach would further complexify side-channel attacks.

4 CRT-based RNR blinding
In 2021, Heinz and Pöppelmann proposed a side channel and fault protection model
for lattice-based schemes [HP21]. Their method is faster than standard masking with
shares, which works on the algorithm’s linear parts. First, they use RNR for side channel
protection. Instead of having coefficients in the field Zq, they perform linear operations
(multiplications, additions, subtractions) in the ring Zqt, where t is an odd number. The
coefficients are randomized by adding rq with random r ∈ Zt before operations and
derandomized by reducing coefficients modulo q. There are two restrictions on the choice
of t. It must be odd to allow fast Montgomery reduction, and it must not be a divider of
the 256th root of unity in Zq; otherwise, going through the NTT will de-randomize the
coefficient. Their method is depicted in figure 6. The numbers written on the arrows are
the numbers of bits sampled with the TRNG/PRNG.

.
Figure 6: Diagram of the side channel protection of [HP21]

Second, they use a technique based on the CRT for fault protection. Instead of working
in the polynomial ring Rq, they work in the ring Rpq = Zpq[X]/(Xn + 1), with p an odd
number coprime with q. Thanks to the CRT, we have that Rpq

∼= Rp ×Rq where the ring
Rq contains the input coefficients to protect, and the ring Rp contains constants. We will
call this isomorphism lifting. It can be easily computed using the formula:

Lift(cp, cq) = cp · q · (q−1mod p) + cq · p · (p−1mod q)

Max Duparc and Mounir Taha 13

As shown in Figure 7, their method for fault protection is as follows. During precomputa-
tions, they sample a random polynomial c ∈ Rp and perform all the operations that have
to be protected on c, storing the result. At run time, they lift the polynomial, meaning
that when given the input polynomial to protect s ∈ Rq, use the isomorphism to pass from
(c, s) to a polynomial in Rpq. They then perform the desired operations in Rpq and finally
check that the final value, reduced to Rp, matches the precomputed value. If it does, it
returns the value in Rq.

(a) Precomputations. (b) Run time.
.

Figure 7: Diagram of the fault protection of [HP21]

Finally, they proposed a technique to combine both protections. In the fault protection
method, instead of precomputing the operations on a single sampled polynomial, they do
everything at run time. They also proposed to use different roots of unity for the NTT in
Rpq. Using the roots of unity they proposed makes the NTT in Rpq equivalent to an NTT
in Rp and an NTT in Rq. This method requires p to be coprime with q and Zp to contain
a 256th root of unity.

Although their method costs less than masking with shares, it still has some issues,
especially when trying to deploy it in a limited resources environment:

• Sampling the random polynomials takes a non-negligible amount of time.

• Storing the random polynomials adds a significant memory overhead.

• Lifting the polynomials (applying the isomorphism from Rp ×Rq to Rpq) introduces
a new leakage point.

• Having to perform a second decryption in Rp is time-consuming.

In this section, we tackle these issues and propose an improved countermeasure.

4.1 Our improvements
We instead work in Rpqt where Rq contains the computations to protect, Rt is used for
side channel protection, and Rp for fault protection, with p an odd prime number greater
than q, and t an odd number. p, q and t are pairwise co-prime. The value of t can be
changed at each execution, or even between each reduction. The best approach to avoid
plummeting the performances is to store a table containing the possible values of pqt and
a table for each constant that depends on pqt for the reductions.

To lift the coefficients, instead of sampling the polynomials at random in Rp, we decided
to sample a random number in Zp and use polynomials with all coefficients equal to this
number. This significantly reduces the overhead caused by sampling and verification.

https://orcid.org/0009-0001-4179-9547

14
Improved NTT and CRT-based RNR Blinding for Side-Channel and Fault Resistant

Kyber

Another critical point is to hide the coefficients before lifting. Lifting the coefficients
requires multiplying them with a known constant, which opens a very obvious and easy-to-
exploit target for side-channel attacks. By first hiding, we ensure that the multiplication
with the constant gives a different trace at each execution.

For the NTT, we perform all the operations in Zpqt and use different roots of unity.
Instead of using the 256th roots of unity ωq in Zq or ωpqt in Zpqt, we use a specific 256th

root of unity ω in Zpq:

ω = Lift(ωp, ωq)

This will lead to some undefined behavior in Zt but will result in a normal NTT being
performed in Zp and Zq. Our method for combined fault and side channel protection is:

1. Sample a random number d ∈ Zpt.

2. Hide the polynomial by adding d× q to each coefficient.

3. Sample a random number f ∈ Zp.

4. Lift each coefficient of the hidden polynomial with f .

5. Perform all the operations with the lifted polynomials and obtain r′.

6. Reduce the polynomial modulo p to obtain r′′.

7. Compute the expected values based on f .

8. Verify that r′′ matches the expected results.

9. Reduce r′ modulo q to obtain the final result.

Figure 8: Diagram of our protection.

Max Duparc and Mounir Taha 15

The main advantages of using a single number to lift all the coefficients are that it
reduces the sampling cost and drastically increases the speed of the verification step.
Instead of reproducing all the polynomial operations, it suffices to perform a subset of
scalar operations to obtain the expected results in Zp. Let’s say we fault protect the
polynomials a and b with the numbers fa and fb. To check that a + b ran correctly, it
suffices to check that all the coefficients of the result are equal to fa + fb in Zp. We just
need a scalar addition instead of a polynomial addition. The same goes for the subtraction.
For the multiplication, the verification step is slightly more complicated but still much
faster than performing a polynomial multiplication. Instead of performing an NTT, a
pointwise product, and an INTT, we first compute fab = fa × fb and then verify that the
coefficient i (for i ∈ Zn) of the result is equal to (2(i + 1)− n)fab.

Our method solves all the problems listed previously but still has one main issue: the
coefficient 127 is expected to be 0 in Zp right after a multiplication, regardless of the
value of f . This is not trivial to exploit as it involves a single coefficient and requires any
fault produced to set this coefficient to either 0 or a multiple of p. The error propagation
through the INTT makes it even harder to exploit this problem.

5 Implementation and Evaluation
To evaluate the effectiveness of our countermeasures, we developed a proof-of-concept
implementation of Kyber in C, incorporating both countermeasures described in this paper.
This implementation is publicly available for review and experimentation at the following
repository:

https://github.com/moun18/KYBER-CRT-NTT-SEC

We used this implementation to evaluate the impact of to assess the impact of our
countermeasures on performance and security. Specifically, we measured the overhead
introduced by our countermeasures and checked that they significatively hindered both
side-channel and fault injection attacks.

5.1 Performance
We tested our implementation on an x86 architecture. With blocks of size 8.

The result of our assessment can be found in Tables 1. The overhead represent the
slowdown compared to the unprotected version. For example, a 2 means that our protected
version is twice as slow as the reference version.

Table 1: Table of our countermeasure’s performance (number of cycles) compared to
reference.

Algorithm Reference CRT-RNR & NTT Blind Overhead

Kyber-512
indcpa-Key 128 762 521 930 4.05
indcpa-Enc 179 150 471 779 2.63
indcpa-Dec 66 404 212 286 3.19

Kyber-768
indcpa-Key 228 819 822 304 3.59
indcpa-Enc 287 089 705 402 2.45
indcpa-Dec 88 097 279 121 3.16

Kyber-1024
indcpa-Key 365 707 1 174 802 3.2
indcpa-Enc 457 149 972 513 2.12
indcpa-Dec 112 034 332 016 2.96

As can be seen in Table 1, our defense makes the algorithms between 2.12 and 4.05
times slower than an unprotected version, depending on which algorithm is being run. The

https://orcid.org/0009-0001-4179-9547
https://github.com/moun18/KYBER-CRT-NTT-SEC

16
Improved NTT and CRT-based RNR Blinding for Side-Channel and Fault Resistant

Kyber

slowdown can be explained by the fact that we use multiple defenses, the cost of lifting
and verifying polynomial multiplications, and by the non optimization of our code. We
also protect every variable, not only the secret ones, making our code more robust but
also slower. On top of that we used a relatively small block size.

To reduce this overhead, we could precompute blocks, protect less variables and use
bigger blocks.

We can observe a much bigger overhead for the KeyGen function, this is because this
function outputs the keys in the NTT domain. So, to be able to perform the known answer
tests, we need to first perform an INTT in Zp which has a significant cost.

Concerning the memory, we have an overhead of about 1.42. This overhead is explained
by the size of the coefficients passing from 16 to 32 bits integers and the extra roots of
unity and constants that have to be stored for the reductions.

Table 2: Overhead factor for v - INTT(ŝ◦NTT(u)) in Kyber768.CPA.Dec decryption.

Architecture Implementation Source Nb. of cycles Overhead
Cortex-M4 Masking & Redundancy [KRSS20, ABCG20] 229 922 2.89
Cortex-M4 CRT-RNR [HP21] 174 858 2.20
x86 CRT-RNR & NTT blinding This work 187 777 2.24

In Table 2, we compare our defense performance with other published defenses. Since
we are using a different architecture/reference code and did not optimize our code, the
comparison may not be the most relevant. Despite that, we still obtain very good results.

Table 3: Table of our countermeasure’s NTT performance (number of cycles) compared to
reference.

Block size Architecture Implementation Source Function Nb. cycles Overhead

8 x86 CRT-RNR & NTT Blind This work NTT 33 895 2.69
INTT 37 505 1.93

32 x86 CRT-RNR & NTT Blind This work NTT 32 888 2.61
INTT 35 605 1.84

32 Cortex-M4 NTT Blind [RPBC20] NTT 72 100 2.32
INTT 87 200 1.72

In Table 3, we show the performance of our NTT compared to the unprotected NTT.
We don’t observe significant differences between the NTT in Zp and the NTT in Zpqt, so we
reported both results under the generic NTT/INTT line. This is due to the fact that we use
32 bit int for coefficients in Zp even though they should not exceed 12 bits. This explains
why we are slightly slower than [RPBC20] who probably still use 16 bit for the NTT. The
difference in cycle between [RPBC20] and us is due to the difference in architecture. To
compare our works we would recommend looking at the overhead, which was computed
based on the reference implementation running on the relevant architecture/reference code.

5.2 Side-Channel resistance
We collected power traces using a ChipWhisperer-Lite. Our analysis was conducted using
it for measurement and faults injection and using a separate Arduino Due board running
Kyber as the target. Thanks to this setup, we were able to target specific instructions
and did not have to spend much time preprocessing the collected data. The experiment’s
goal was to ensure that our defense fixed, or at least lessened, some of the side channel
and fault vulnerabilities. We used this setup to target both the reference implementation
[ABD+18] and ours.

Max Duparc and Mounir Taha 17

We will focus on a specific part of the decryption, where the ciphertext u is multiplied
by the secret s. More specifically, we insert an instruction to trigger the capture just
after the NTT of u is finished and just before the pointwise product is called. Since the
ciphertext is public, the consistent variance in the power consumption will only depend
on the value of s, making this product a target of choice for side-channel attacks. Many
researchers [KdG21, MPG+22, YWY+23] have successfully targeted this part with CPA
attacks.

We choose to go for a Test Vector Leakage Assessment (TVLA), as described by
Becker et al. [BCD+13], to evaluate our defense’s effectiveness. The idea is to collect
two sets of power traces that we expect to have different means due to side channel
leakage. We can then assess the likelihood that the difference in their means is only due to
variance in the power traces. If the probability is small enough, we consider that there is
leakage. We performed the TVLA on both the reference implementation and the protected
implementation.

To assess the likelihood of leakage, we used Welch’s t-test:

t = X1 −X2√
s2

1
N1

+ s2
2

N2

Where Xi is the mean of the power traces of dataset i, Ni is the total amount of power
traces in dataset i, and s2

i is the variance of the dataset i. Note that each trace contains
multiple points corresponding to measurements done at different time periods. Here, all
the statistics are performed on a single point of the trace over all the traces of the dataset.
So, in practice, we will compute multiple t-tests, each one representing the leakage at a
specific time.

We performed a non-specific, fixed vs random key TVLA. Data set 1 consists of a fixed
key Dk and a set of random ciphertexts [c0 to cn]. Data set 2 consists of a set of random
keys [Dk0 to Dkn] and the same set of ciphertexts as in dataset 1. For data set 1, the
trace i corresponds to the decapsulation of the ci with the key Dk. For dataset 2, the
trace i corresponds to the decapsulation of the ci with the key Dki.

We collected 10 000 traces per dataset, each trace containing 5000 measurements. All
the measurements are performed during the pointwise product.

We performed two independent t-tests with the following sets of traces:

1. Test 1: t-test comparing the first 5000 traces of dataset 1 to the first 5000 traces of
dataset 2.

2. Test 2: t-test comparing the last 5000 traces of dataset 1 to the last 5000 traces of
dataset 2.

We consider that the device leaked information about the secret if both Test 1 and
Test 2 show a t-score smaller than -4.5 or bigger than 4.5 at the same point in time.
To improve readability, when showing the results of the unprotected decapsulation, we
zeroed out both t-scores if one of the two tests had a value between [-4.5 and 4.5]. This
allows us to only show points where leakage occurs. Figure 9 shows the TVLA of the
unprotected version, while Figure 10 shows the TVLA of the decapsulation protected by
our countermeasures.

As expected, the test shows clear leakage on the unprotected decapsulation meanwhile
the protected decapsulation shows no sign of leakage. In theory, if we could take pt times
more traces (about 1 billion traces), we should again see clear leakage even with the
protected decapsulation. However, collecting so many traces of decapsulation with the
same key would require an unrealistic amount of time and storage.

https://orcid.org/0009-0001-4179-9547

18
Improved NTT and CRT-based RNR Blinding for Side-Channel and Fault Resistant

Kyber

Figure 9: TVLA results of unprotected decapsulation. The x-axis represents time, and
the y-axis represents the t-score. Test 1 is represented in blue; Test 2 is represented in red.

5.3 Fault attacks
For the faults, we will focus on the different functions executed during the decryption: the
NTT of u, the pointwise product of u and s, the INTT of the result, and the subtraction
of the result to v. This covers most of the linear functions in Kyber.

We decided to use voltage glitching. We removed some of the capacitors of the Arduino
Due target to permit sudden tension changes. Those changes will cause instruction skips or
data corruption, leading to either a crash of the decapsulation or a wrong value computed.

In our setup, the glitches were ineffective the majority of the time, leading to a normal
execution without faults. Because of this, it was hard to spot effective glitches leading to
ineffective faults. To evaluate our defense, we only considered the effective faults to get a
better overview. In a more consistent setup, where the fault almost always occurs, it would
be interesting to study ineffective faults and see how well our defense works against them.

We applied at different points in time for each function and tried the glitch about 300
times per point in time.

The results are compiled in the Tables 4 and 5. For each function, we tried to fault it
at different moments to cover a wide variety of instruction skips and/or data corruption.
Most of the time, the plaintext obtained in the faulted decapsulation produced a different
ciphertext when re-encrypted. We marked those cases as “Arrived to FO”. Note that
in those cases, the faulted plaintext is written in memory, even if it is not returned at
the end. If the plaintext was detected by our defense, we marked it as “Detected before
FO-transform”. In those cases, the decapsulation is aborted before writing the plaintext in
memory.

Max Duparc and Mounir Taha 19

Figure 10: TVLA results of protected decapsulation. The x-axis represents time, and
the y-axis represents the t-score. Test 1 is represented in blue; Test 2 is represented in red.

Table 4: Table of the effective faults obtained for the unprotected decapsulation.

Function Total faults Crash Detected before FO-transform Arrived to FO
NTT 2082 1253 0 829
Pointwise mul 2656 1142 0 1514
INTT 2549 2017 0 532
Sub 792 684 0 108

Table 5: Table of the effective faults obtained for the protected decapsulation.

Function Total faults Crash Detected before FO-transform Arrived to FO
NTT 3905 2371 1479 55
Pointwise mul 5095 2195 2900 0
INTT 3455 2108 1347 0
Sub 505 362 143 0

As expected, the unprotected version was subject to many effective faults that required
the FO-transform to be detected. Thanks to our defense, the protected version detected
almost all of them, avoiding the reencryption of faulted message. In both versions, there
were no time points during which no effective faults occurred.

It is important to note that there were still some undetected effective faults in the
protected decapsulation, all occurring during the NTT of u. There were few points in

https://orcid.org/0009-0001-4179-9547

20
Improved NTT and CRT-based RNR Blinding for Side-Channel and Fault Resistant

Kyber

time where the effective fault could happen; however, during those points, it was common
to have the effective fault occurring multiple times and producing the same result. This
means that attacks that rely on modifying the twiddle factors like the one of Ravi et al.
[RYB+22] would probably be detected. It would still be interesting to go into details to
check exactly what were the faults produced and if it is exploitable or not.

6 Conclusion
In this paper, we introduced two key improvements to blinding countermeasures: a Blinded
NTT leveraging distinct masking blocks and an enhanced RNR mechanism based on the
CRT. These countermeasures complement each other effectively, as the first focuses on
the roots of unity while the second targets the variables. By incorporating both into our
proof-of-concept C implementation of Kyber, we demonstrated their practical feasibility.
Our evaluation showed promising results in terms of both efficiency and resistance to
side-channel attacks, paving the way for further research. In particular, exploring optimized
hardware implementations of these mechanisms presents an exciting avenue for future
work.

References
[ABCG20] Erdem Alkim, Yusuf Alper Bilgin, Murat Cenk, and François Gérard. Cortex-

M4 optimizations for {R,M}LWE schemes. IACR TCHES, 2020(3):336–357,
2020.

[ABD+18] Roberto Avanzi, Joppe Bosa, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. CRYSTALS-Kyber. Submission to [NIS], 2018.

[ACC+22] Amin Abdulrahman, Jiun-Peng Chen, Yu-Jia Chen, Vincent Hwang,
Matthias J. Kannwischer, and Bo-Yin Yang. Multi-moduli NTTs for Saber on
Cortex-M3 and Cortex-M4. IACR TCHES, 2022(1):127–151, 2022.

[BCD+13] Georg T. Becker, Jim Cooper, Elizabeth K. DeMulder, Gilbert Goodwill,
Joshua Jaffe, Gary Kenworthy, T. Kouzminov, Andrew J. Leiserson, Mark E.
Marson, Pankaj Rohatgi, and Sami Saab. Test Vector Leakage Assessment
(TVLA) methodology in practice, 2013. https://api.semanticscholar.
org/CorpusID:28168779.

[BGR+21] Joppe W. Bos, Marc Gourjon, Joost Renes, Tobias Schneider, and Christine
van Vredendaal. Masking Kyber: First- and higher-order implementations.
IACR TCHES, 2021(4):173–214, 2021.

[BLS03] A. Bostan, G. Lecerf, and É. Schost. Tellegen’s principle into practice. In
Proceedings of the 2003 International Symposium on Symbolic and Algebraic
Computation, ISSAC ’03, pages 37 – 44, New York, NY, USA, 2003. Association
for Computing Machinery.

[CT65] James W Cooley and John W Tukey. An algorithm for the machine calculation
of complex fourier series. Mathematics of computation, 19(90):297–301, 1965.

[Del22] Jeroen Delvaux. Roulette: A diverse family of feasible fault attacks on masked
Kyber. IACR TCHES, 2022(4):637–660, 2022.

https://api.semanticscholar.org/CorpusID:28168779
https://api.semanticscholar.org/CorpusID:28168779

Max Duparc and Mounir Taha 21

[GS66] W. M. Gentleman and G. Sande. Fast fourier transforms: for fun and profit.
In Proceedings of the November 7-10, 1966, Fall Joint Computer Conference,
AFIPS ’66 (Fall), pages 563–578, New York, NY, USA, 1966. Association for
Computing Machinery.

[HHP+21] Mike Hamburg, Julius Hermelink, Robert Primas, Simona Samardjiska,
Thomas Schamberger, Silvan Streit, Emanuele Strieder, and Christine van
Vredendaal. Chosen ciphertext k-trace attacks on masked CCA2 secure Kyber.
IACR TCHES, 2021(4):88–113, 2021.

[HMS+23] Julius Hermelink, Erik Mårtensson, Simona Samardjiska, Peter Pessl, and
Gabi Dreo Rodosek. Belief propagation meets lattice reduction: Security
estimates for error-tolerant key recovery from decryption errors. IACR TCHES,
2023(4):287–317, 2023.

[HP21] Daniel Heinz and Thomas Pöppelmann. Combined fault and DPA protection
for lattice-based cryptography. Cryptology ePrint Archive, Report 2021/101,
2021.

[HPP21] Julius Hermelink, Peter Pessl, and Thomas Pöppelmann. Fault-enabled chosen-
ciphertext attacks on kyber. In Avishek Adhikari, Ralf Küsters, and Bart
Preneel, editors, INDOCRYPT 2021, volume 13143 of LNCS, pages 311–334.
Springer, Cham, December 2021.

[HSST23] Julius Hermelink, Silvan Streit, Emanuele Strieder, and Katharina Thieme.
Adapting belief propagation to counter shuffling of NTTs. IACR TCHES,
2023(1):60–88, 2023.

[KdG21] Alexandre Karlov and Natacha Linard de Guertechin. Power analysis attack
on Kyber. Cryptology ePrint Archive, Report 2021/1311, 2021.

[KPP20] Matthias J. Kannwischer, Peter Pessl, and Robert Primas. Single-trace attacks
on Keccak. IACR TCHES, 2020(3):243–268, 2020.

[KRSS19] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
pqm4: Testing and benchmarking NIST PQC on ARM Cortex-M4. Cryptology
ePrint Archive, Report 2019/844, 2019.

[KRSS20] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
Pqm4: Post-quantum crypto library for the arm cortex-m4, 2020, accessed
12/16/2020, 2020. https://github.com/mupq/pqm4.

[KT23] Yen-Ting Kuo and Atsushi Takayasu. A lattice attack on CRYSTALS-kyber
with correlation power analysis. In Hwajeong Seo and Suhri Kim, editors,
ICISC 23, Part I, volume 14561 of LNCS, pages 202–220. Springer, Singapore,
November / December 2023.

[LDK+22] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe,
Gregor Seiler, Damien Stehlé, and Shi Bai. CRYSTALS-DILITHIUM. Tech-
nical report, National Institute of Standards and Technology, 2022. avail-
able at https://csrc.nist.gov/Projects/post-quantum-cryptography/
selected-algorithms-2022.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. In Henri Gilbert, editor, EUROCRYPT 2010,
volume 6110 of LNCS, pages 1–23. Springer, Berlin, Heidelberg, May / June
2010.

https://orcid.org/0009-0001-4179-9547
https://github.com/mupq/pqm4
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

22
Improved NTT and CRT-based RNR Blinding for Side-Channel and Fault Resistant

Kyber

[Mac03] David JC MacKay. Information theory, inference and learning algorithms.
Cambridge university press, 2003.

[MPG+22] Haocheng Ma, Shijian Pan, Ya Gao, Jiaji He, Yiqiang Zhao, and Yier Jin. Vul-
nerable PQC against Side Channel Analysis - A Case Study on Kyber. In 2022
Asian Hardware Oriented Security and Trust Symposium (AsianHOST), pages
1–6, 2022. https://doi.org/10.1109/AsianHOST56390.2022.10022165.

[NIS] NIST. Post-Quantum Cryptography Standardization.

[NIS24a] NIST. Module-lattice-based digital signature scheme standard. Technical
Report Federal Information Processing Standards Publications (FIPS PUBS)
204, U.S. Department of Commerce, Washington, D.C., August 2024.

[NIS24b] NIST. Module-lattice-based key-encapsulation mechanism standard. Technical
Report Federal Information Processing Standards Publications (FIPS PUBS)
203, U.S. Department of Commerce, Washington, D.C., August 2024.

[NIS24c] NIST. Stateless hash-based digital signature standard. Technical Report
Federal Information Processing Standards Publications (FIPS PUBS) 205, U.S.
Department of Commerce, Washington, D.C., August 2024.

[OY23] Sila Ozeren and Oguz Yayla. Methods for Masking CRYSTALS-Kyber Against
Side-Channel Attacks. In 2023 16th International Conference on Information
Security and Cryptology (ISCTürkiye), pages 1–6, 2023. http://dx.doi.org/
10.1109/ISCTrkiye61151.2023.10336068.

[PP19] Peter Pessl and Robert Primas. More practical single-trace attacks on the
number theoretic transform. In Peter Schwabe and Nicolas Thériault, editors,
LATINCRYPT 2019, volume 11774 of LNCS, pages 130–149. Springer, Cham,
October 2019.

[PP21] Peter Pessl and Lukas Prokop. Fault attacks on CCA-secure lattice KEMs.
IACR TCHES, 2021(2):37–60, 2021.

[PPM17] Robert Primas, Peter Pessl, and Stefan Mangard. Single-trace side-channel
attacks on masked lattice-based encryption. In Wieland Fischer and Naofumi
Homma, editors, CHES 2017, volume 10529 of LNCS, pages 513–533. Springer,
Cham, September 2017.

[RPBC20] Prasanna Ravi, Romain Poussier, Shivam Bhasin, and Anupam Chattopadhyay.
On configurable sca countermeasures against single trace attacks for the ntt. In
Lejla Batina, Stjepan Picek, and Mainack Mondal, editors, Security, Privacy,
and Applied Cryptography Engineering, pages 123–146, Cham, 2020. Springer
International Publishing.

[RRVV15] Oscar Reparaz, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Ver-
bauwhede. A masked ring-LWE implementation. In Tim Güneysu and He-
lena Handschuh, editors, CHES 2015, volume 9293 of LNCS, pages 683–702.
Springer, Berlin, Heidelberg, September 2015.

[RYB+22] Prasanna Ravi, Bolin Yang, Shivam Bhasin, Fan Zhang, and Anupam Chat-
topadhyay. Fiddling the Twiddle Constants - Fault Injection Analysis of the
Number Theoretic Transform. Cryptology ePrint Archive, Paper 2022/824,
2022. https://eprint.iacr.org/2022/824.

https://doi.org/10.1109/AsianHOST56390.2022.10022165
http://dx.doi.org/10.1109/ISCTrkiye61151.2023.10336068
http://dx.doi.org/10.1109/ISCTrkiye61151.2023.10336068
https://eprint.iacr.org/2022/824

Max Duparc and Mounir Taha 23

[SAB+22] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède
Lepoint, Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, Damien Stehlé,
and Jintai Ding. CRYSTALS-KYBER. Technical report, National Institute
of Standards and Technology, 2022. available at https://csrc.nist.gov/
Projects/post-quantum-cryptography/selected-algorithms-2022.

[SML24] Ardianto Satriawan, Rella Mareta, and Hanho Lee. A complete beginner guide
to the number theoretic transform (NTT). Cryptology ePrint Archive, Paper
2024/585, 2024.

[VGS14] Nicolas Veyrat-Charvillon, Benoît Gérard, and François-Xavier Standaert. Soft
analytical side-channel attacks. In Palash Sarkar and Tetsu Iwata, editors,
ASIACRYPT 2014, Part I, volume 8873 of LNCS, pages 282–296. Springer,
Berlin, Heidelberg, December 2014.

[YFW00] Jonathan S Yedidia, William Freeman, and Yair Weiss. Generalized belief
propagation. In T. Leen, T. Dietterich, and V. Tresp, editors, Advances in
Neural Information Processing Systems, volume 13. MIT Press, 2000.

[YWY+23] Yipei Yang, Zongyue Wang, Jing Ye, Junfeng Fan, Shuai Chen, Huawei Li,
Xiaowei Li, and Yuan Cao. Chosen ciphertext correlation power analysis
on Kyber. Integration, 91:10–22, 2023. https://doi.org/10.1016/j.vlsi.
2023.02.012.

[ZXZ+18] Shuai Zhou, Haiyang Xue, Daode Zhang, Kunpeng Wang, Xianhui Lu, Bao
Li, and Jingnan He. Preprocess-then-NTT technique and its applications to
KYBER and NEWHOPE. Cryptology ePrint Archive, Report 2018/995, 2018.

A Generic blinded NTT
The blinded NTT we described in Section 3 is specialized to Kyber, but the method can
be adapted to any NTT-based cryptographic scheme (e.g., Dilithium) and, more broadly,
to any FFT-based scheme. In this appendix, we provide the generalized pseudocode for
both a complete NTT and its corresponding INTT.

The full pseudocode for the complete blinded NTT is provided in Algorithm 12, while
the corresponding INTT is described in Algorithm 13, which employs the SIDO-DIF
method (as defined in Algorithm 11).

Additionally, for clarity, Figure 11 presents a fully specified diagram of our NTT,
including the computations and masking strategies used across all stages.

Algorithm 10 – Compute-Final_Block_Pos(num, len, pad, b). Compute positions in the
final column
Require: num, len, pad, b.
Ensure: p1, p2, p3.

1: p1 ← ((num≫ b + 1)≪ 1) + pad
2: p2 ← p1 + 1
3: p3 ← (num≫ b) + pad + N

https://orcid.org/0009-0001-4179-9547
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.1016/j.vlsi.2023.02.012
https://doi.org/10.1016/j.vlsi.2023.02.012

24
Improved NTT and CRT-based RNR Blinding for Side-Channel and Fault Resistant

Kyber

Algorithm 11 – SIDO-DIF-BF(f0, f1, p1, p2, p3, k, t): (Different Input Same Output Deriva-
tion in Time Butterfly).
Require: f0, f1 in F and p1, p2, p3, k ∈ Z2n .
Ensure: f0, f1 in F.

1: p← f0 + f1
2: q ← f0 − f1
3: f0 ← ωmp1 −mp3 p
4: f1 ← ωbitrv(k)+mp2 −mp3 q ▷ bitrv(k) is the bit-reverse of k in Z2n .
5: return f0, f1

Algorithm 12 – DISO-DIT-NTT(f): Tukey–Cooley Blinded Number Theoric Transform.
Constant: ω - a 2n root of unity in F, B = 2b the block size and 2N = 2n/B the number

of blocks.
Require: f = (f0, . . . , f2n−1) - coefficients of f(x) ∈ F[x].

Require: m = (m0, . . . , m(n+1)N−1) - list of mask index with mi ∈ Z2n . First and last
N masks set to 0.

Ensure: f̂ = (f̂0, . . . , f̂2n−1) – the NTT of f(x). It is in bit reverse order.
1: k = 0
2: pad = 0
3: //Part I, with Normal Blocks
4: for len = n− 1 to len = b + 1 do
5: num = 0
6: for st = 0 to 2n with step 2len+1 do
7: k = k + 1
8: for j = st to st + 2len with step B do
9: p1, p2, p3 ← Compute-Normal_Block_Pos(num, len, pad, b) ▷ Algorithm 8

10: for i = j to j + B do
11: fi, fi+2len ← DISO-DIT-BF(fi, fi+2len , p1, p2, p3, k)
12: num = num + 1
13: pad = pad + N
14: //Part II, with Mixed Blocks
15: for len = b to len = 1 do
16: num = 0
17: for st = 0 to 2n with step 2B do
18: p1, p2, p3 ← Compute-Mixed_Block_Pos(num, len, pad, b) ▷ Algorithm 9
19: for j = st to j + 2B with step 2len+1 do
20: k = k + 1
21: for j = i to i + 2len−1 do
22: fi, fi+2len ← DISO-DIT-BF(fi, fi+2len , p1, p2, p3, k, 0)
23: fi+2len−1 , fi+3∗2len−1 ← DISO-DIT-BF(fi+2len−1 , fi+3∗2len−1 , p1, p2, p3 + 1, k)
24: num = num + 2
25: pad = pad + N
26: //Part III, Last Stage
27: num = 0
28: for st = 0 to 2n with step 2B do
29: p1, p2, p3 ← Compute_Final_Block_Pos(num, len, pad, b) ▷ Algorithm 10
30: for i = st to st + 2B with step 2 do
31: k = k + 1
32: fi, fi+1 ← DISO-DIT-BF(fi, fi+1, p1, p2, p3, k)
33: num = num + 1
34: return f = (f0, . . . , fn)

Max Duparc and Mounir Taha 25

f0

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

f14

f15

ωm0

ωm0

ωm1

ωm1

ωm2

ωm2

ωm3

ωm3

ω8+m0

ω8+m0

ω8+m1

ω8+m1

ω8+m2

ω8+m2

ω8+m3

ω8+m3

+

+

+

+

+

+

+

+

−

−

−

−

−

−

−

−

ωm′
0−m0

ωm′
0−m0

ωm′
1−m1

ωm′
1−m1

ω4+m′
0−m2

ω4+m′
0−m2

ω4+m′
1−m3

ω4+m′
1−m3

ωm′
2−m0

ωm′
2−m0

ωm′
3−m1

ωm′
3−m1

ω12+m′
2−m2

ω12+m′
2−m2

ω12+m′
3−m3

ω12+m′
3−m3

+

+

+

+

−

−

−

−

+

+

+

+

−

−

−

−

ωm′′
0 −m′

0

ωm′′
1 −m′

0

ω2+m′′
0 −m′

1

ω2+m′′
1 −m′

1

ωm′′
0 −m′

0

ωm′′
1 −m′

0

ω10+m′′
0 −m′

1

ω10+m′′
1 −m′

1

ωm′′
2 −m′

2

ωm′′
3 −m′

2

ω6+m′′
2 −m′

3

ω6+m′′
3 −m′

3

ωm′′
2 −m′

2

ωm′′
3 −m′

2

ω14+m′′
2 −m′

3

ω14+m′′
3 −m′

3

+

+

−

−

+

+

−

−

+

+

−

−

+

+

−

−

ω−m′′
0

ω1−m′′
1

ω−m′′
0

ω9−m′′
1

ω−m′′
0

ω5−m′′
1

ω−m′′
0

ω13−m′′
1

ω−m′′
2

ω3−m′′
3

ω−m′′
2

ω11−m′′
3

ω−m′′
2

ω7−m′′
3

ω−m′′
2

ω15−m′′
3

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

f̂0

f̂8

f̂4

f̂12

f̂2

f̂10

f̂6

f̂14

f̂1

f̂9

f̂5

f̂13

f̂3

f̂11

f̂7

f̂15

MixedNormal

Figure 11: Diagram of a DIT-NTT using 4 blocks (n=16)

https://orcid.org/0009-0001-4179-9547

26
Improved NTT and CRT-based RNR Blinding for Side-Channel and Fault Resistant

Kyber

Algorithm 13 – SIDO-DIF-INTT(f): Gentelman-Sande fast Blinded Inverse Number
Theoric Transform.
Constant: ω - a 2n root of unity in F, B = 2b the block size and 2N = 2n/B the number

of blocks.
Require: f̂ = (f̂0, . . . , f̂2n−1) - the NTT of f(x).

Require: m = (m0, . . . , m(n+1)N−1) - list of mask index with mi ∈ Z2n . First and last
N masks set to 0.

Ensure: f = (f0, . . . , f2n−1) - in bit reverse order.
1: k = 2n

2: pad = nN
3: num = 0
4: //Part III, First Row
5: for st = 0 to 2n with step 2B do
6: p1, p2, p3 ← Compute_Final_Block_Pos(num, len, pad, b) ▷ Algorithm 10
7: for i = st to st + 2B with step 2 do
8: k = k− 1
9: fi, fi+1 ← SIDO-DIF-BF(fi, fi+1, p1, p2, p3, k + 1)

10: num = num− 1
11: pad = pad−N
12: //Part II, with Mixed Blocks
13: for len = 1 to len = b do
14: num = 0
15: for st = 0 to 2n with step 2B do
16: p1, p2, p3 ← Compute_Mixed_Block_Pos(num, len, pad) ▷ Algorithm 9
17: for j = st to j + 2B with step 2len+1 do
18: k = k− 1
19: for j = i to i + 2len−1 do
20: fi, fi+2len ← SIDO-DIF-BF(fi, fi+2len , p1, p2, p3, k + 1)
21: fi+2len−1 , fi+3∗2len−1 ← SIDO-DIF-BF(fi+2len−1 , fi+3∗2len−1 , p1, p2, p3 + 1, k + 1)
22: num = num− 2
23: pad = pad−N
24: //Part I, with Normal Blocks
25: for len = b + 1 to len = n− 1 do
26: num = 0
27: for st = 0 to 2n with step 2len+1 do
28: k = k− 1
29: for j = st to st + 2len with step B do
30: p1, p2, p3 ← Compute_Normal_Block_Pos(num, len, pad, b) ▷ Algorithm 8
31: for i = j to j + B do
32: fi, fi+2len ← SIDO-DIF-BF(fi, fi+2len , p1, p2, p3, k + 1)
33: num = num− 1
34: pad = pad−N
35: for i = 0 to 2n do
36: fi ← fi ∗ 2−n ▷ 2−n the inverse of 2n in Fq.
37: return f = (f0, . . . , fn)

	Introduction
	Background
	CRYSTALS-Kyber
	NTT
	Modular operations
	Side channel and fault attacks.

	Blinded-NTT using mixed blocks
	Masked-butterflies
	Masking Blocks
	A quick cryptanalysis of our Blinded-NTT
	Blinded INTT

	CRT-based RNR blinding
	Our improvements

	Implementation and Evaluation
	Performance
	Side-Channel resistance
	Fault attacks

	 Conclusion
	Generic blinded NTT

