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Abstract. Lund et al. (JACM 1992) invented the powerful Sumcheck
protocol that has been extensively used in complexity theory and in
designing concretely efficient (zero-knowledge) arguments. In this work,
we systematically study Sumcheck in the context of secure multi-party
computation (MPC). Our main result is a new generic framework for
lifting semi-honest MPC protocols to maliciously secure ones, with a
constant multiplicative overhead in both computation and communication,
and in the best case, only an additional logarithmic communication cost.
In general, our approach applies to any semi-honest linear secret-sharing
based MPC secure up to additive attacks, where linear secret-sharing
can be enhanced with an authentication mechanism. At a high-level,
our approach has a highly distributive flavor, where the parties jointly
emulate a Sumcheck prover to prove the correctness of MPC semi-honest
evaluations in zero-knowledge, while simultaneously emulating a Sumcheck
verifier to verify the proof themselves. Along the way, we provide a new
perspective on the fully linear interactive oracle proof (FLIOP) systems
proposed by Boneh et al. (CRYPTO 2019). That is, essentially distributed
Sumcheck on proving a batch of multiplications can be viewed as an
optimized concrete instantiation of the FLIOP-based approach.
As a concrete application of our techniques, we first consider semi-honest
MPC protocols based on Shamir secret sharing in the honest majority
setting. Given M parties and a circuit of size N , our approach achieves
malicious security with only additional 10MN +O(M logN) total com-
putation, logarithmic communication for reconstructing 4 logN+6 secret-
shared values, O(logN) rounds, and O(logN) correlated randomness.
This demonstrates that malicious security with abort in honest majority
MPC comes free in terms of both computation and communication.
We then consider dishonest-majority MPC, where the best known semi-
honest protocol achieves 2N online communication per party and sub-
linear preprocessing by using programmable pseudorandom correlation
generators (PCGs). We realize malicious MPC with 5N +O(logN) on-
line communication while maintaining sublinear preprocessing, less than
6N achieved in Le Mans (CRYPTO 2022). Our protocol leverages Sum-
check techniques to check N unverified authenticated multiplication triple
relations, requiring only N + 1 standard Beaver triples and O(logN) ran-
dom authenticated shares. Compared to the FLIOP-based verification
mechanism of Boyle et al. (CRYPTO 2022), which requires O(

√
N) com-

munication and O(N1.5) computation, our approach eliminates additional
cryptographic assumption beyond PCGs and achieves O(N) computation.
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1 Introduction

Secure multi-party computation (MPC) allows a set of parties to jointly compute
a function on their inputs, where no information would be revealed except
the output, in spite of the existence of adversaries. Since its birth in mid 80s
[Yao86,GMW87,CCD88,BGW88], numerous works have been investigating on
the boundaries of MPC in terms of feasibility and complexity. Though, the
focus of intensive research has shifted to designing concretely efficient MPC
protocols in the past decade. These works often follow a modular design, where a
simple protocol with semi-honest security is put forward firstly, then powerful but
usually heavy techniques will be applied to achieve a stronger notion of security,
e.g., malicious security. This methodology has proven to yield efficient protocols,
measured by the overhead introduced during the compilation process.



Hence, a dream goal in the context of MPC is to realize protocols with
higher security as efficient as in semi-honest setting. Towards this end, tremen-
dous progress has been made and various frameworks have been established
and developed, fitting wide scenarios. In summary, these include GMW com-
piler [GMW87], IPS compiler [IPS08], AMD circuits [GIP+14,GIP15], dual exe-
cution [CGH+18,RS22], fully linear probabilistically checkable proofs (FLPCPs)
and fully linear interactive oracle proofs (FLIOPs) [BBC+19], etc. We briefly
summarize the state-of-the-art results in the following, and defer more details
about the related works in Section 1.2.

First, the assumption that how many fractions of parties are honest is crucial
to the costs of defending semi-honest MPC protocols from malicious adver-
saries. An exception is the AMD circuits paradigm proposed by Genkin et al.
[GIP+14,GIP15] which complies semi-honest protocols into maliciously ones in
both honest majority and dishonest majority settings, under the plain model and
the OT/OLE-hybrid model. However, the concrete overhead of their approach is
not explicitly stated and remains unclear.

For the honest majority setting, [HVW20] achieved a constant communi-
cation overhead under the framework of IPS compiler [IPS08]. However, their
results remain theoretic due to the use of heavy algebraic geometric tools. While
[CGH+18] achieved an overhead of 2 by exploiting the “dual execution” idea.
With the introduction of FLPCPs & FLIOPs, [BBC+19] and follow-up works
[BBC+19,BGIN20,GS20,GSZ20,DEN24] achieved malicious security with abort
(even full security), only incurring additional logarithmic communication and
linear computation. However, each party’s computation also scales linearly with
the party number in [BGIN20,DEN24]. Though this is not the case for [GS20],
the concrete computational overhead was not explicitly stated there.

For the dishonest majority setting, the IPS framework [IPS08,HVW20] offers
constant communication overhead over the passive protocols of [GMW87] for
arbitrary fields. However, the concrete efficiency remains unclear. In addition,
[BGIN21,BGIN22] generalize FLPCPs & FLIOPs based techniques into dishonest
majority by first assuming the assistant of a semi-honest dealer and later distribu-
tively emulating the dealer. In summary, [BGIN21] introduces additional linear
computation and linear communication per party, while [BGIN22] introduces
homomorphic encryption (HE) and achieves sublinear communication but sub-
quadratic computation. It is worth to mention that in private communication,
the sub-quadratic computation of [BGIN22] has been optimized to linear by
an independent concurrent work [BHG+25]. However, they rely on LPN-style
assumptions and the concrete efficiency remains unclear at the current stage. On
the other hand, SPDZ-line protocols [BDOZ11,DPSZ12] offer nearly optimal zero
overhead in the preprocessing model, where the parties only communicate only 2
elements per gate, and have linear computation in the online phase. However,
typically the preprocessing is much more expensive and dominates both the
overall complexity and the overhead compared to the semi-honest protocol.

In general, previous works have primarily optimized communication and
round complexity, with comparatively less focus on computational complexity.

3



Notably, recent advancements have achieved constant computational overhead for
OT/OLE [AK23,BCG+23] against malicious adversaries, suggesting the feasibility
of an actively secure protocol with constant computational overhead for an
arithmetic circuit C. However, the concrete efficiency of [AK23] remains unclear.

Despite impressive progress, significant efficiency gaps remain between semi-
honest and malicious security.

Can maliciously secure protocols be achieved as efficient as semi-honestly
secure protocols in both honest and dishonest majority settings?

We resolve this open problem affirmatively in terms of both computation
and communication complexity, by introducing the powerful Sumcheck tech-
nique [LFKN92] from complexity theory, originally used to establish the seminal
result IP = PSPACE [Sha92]. Since the milestone work GKR [GKR08,GKR15],
Sumcheck has been widely employed in concretely efficient succinct non-interactive
arguments of knowledge (SNARKs) [WTS+18,XZZ+19,ZXZS20,ZLW+21,DH24],
and recently in interactive zero-knowledge proofs [DH23,LXY24]. However, in
the context of MPC, the full potential of Sumcheck has not been fully recognized.
While [BBC+19,Cor19] showed that the GKR protocol can be understood as an
FLIOP (making it applicable to MPC scenarios), it has not been studied whether
GKR or Sumcheck can elevate MPC to a high level.

1.1 Our Contributions - A New Framework

In this work, we focus on MPC for computing arithmetic circuits over a sufficiently
large finite field F. We distill the powerful sumcheck technique from the interactive
proofs literature, and present a general compiler for lifting semi-honestly secure
MPC to malicious security, which simultaneously preserves the computation and
communication complexity. Our compiler supports an arbitrary number of parties
and can be naturally extended to arbitrary finite fields or rings, such as Zpk .

In an interactive proof for some language L ⊆ {0, 1}n, given a public input
x ∈ {0, 1}n, the prover convinces to the verifier that x belongs to L. We observe
that the settings of interactive proofs and MPC are quite different as follows:

1. Informally, most secret-sharing based MPC protocols are symmetric and
highly distributive, whereas interactive proofs are not. In MPC, all parties
have equal rights and similar computational resources1. In contrast, interactive
proofs ensure soundness against the prover, i.e., the prover must not be able to
fool the verifier with a false statement. Furthermore, the verifier is assumed to
be computationally weaker than the prover, so that he could not independently
verify the statement himself. Otherwise, the proofs become trivial.

2. In MPC, the computation is “shared” among parties, with each holding a
piece of the input, such that no single party knows the entire input. In
contrast, in interactive proofs, both the prover and the verifier have access
to the complete statement.

1 Though some MPC protocols introduce a king party to optimize communication
complexity, the essence of MPC protocol remains symmetric.
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While the above two major differences inherently limit the benefits of interactive
proofs, we will show an exception through the Sumcheck protocol. A feasible
approach is to follow the GMW paradigm [GMW87] by designing tailored zero-
knowledge protocols from Sumcheck, and having parties prove that each message
is honestly generated. However, such method incurs a significant computational
overhead.

To minimize this overhead, we instead have the parties first compute (via
semi-honest secure MPC protocols) and later verify the values. At a high level,
the verification is performed in a distributed manner: the parties generate shares
of the proof from their respective shares of the statement and jointly verify the
secret-shared proof.

Since the statement to be verified is shared and not known to any single
party, we require the underlying secret sharing scheme to offer an “authenticated”
property2. Informally, authentication means a secret-shared value is “committed”
such that dishonest openings are detected with overwhelming probability. Other-
wise, an adversary could arbitrarily modify the shared statement, making the
check meaningless. In addition, we require the semi-honest protocols to be secure
up to additive attacks as discussed in [GIP+14], meaning the adversary can
only inject additive errors into the input wires of gates. As shown in [GIP+14],
many semi-honest MPC protocols based on secret sharing, with either an honest
majority or a dishonest majority, satisfy this property. Hence, it suffices to verify
the computation of multiplication gates in the circuit for most linear secret
sharing schemes.
New protocols in the honest majority setting. Let C be a circuit over
F with N multiplication gates and consider an M -party setting with t < M/2
corruptions. Let [·]t denote a Shamir secret sharing scheme (refer to Appendix
A.1), which is robust (hence authenticated), linear and moreover multiplicative.

Theorem 1.1 (informal). Given a semi-honest protocol based on Shamir se-
cret sharing (e.g., the DN protocol [DN07]), there exists a maliciously secure
protocol that computes C with additional 10N + O(M logN) computation per
party, O(logN) communication per party, O(logN) random Shamir shares and
O(logN) random coins, O(logN) rounds, and soundness error O( logN

|F| ).

Specifically, the 10N term in computation is from emulating the Sumcheck
prover, while the O(M logN) term comes from reconstructing the Sumcheck
proof (Sumcheck verification only requires O(logN) computation in our case).
Concretely, each party broadcasts 4 logN + 6 field elements (for reconstructions),
makes logN+1 calls to a coin-tossing functionality FCoin, and consumes 3 logN+5
random Shamir shares (for privacy). In particular, we can employ the king
party idea to further reduce the broadcast messages and computation per party.
Consequently, the king party runs additional O(N +M logN) field operations,
while each remaining party only runs additional O(N) field operations.

2 This property is slightly weaker than the “robust” property in the FLIOP ap-
proach [BBC+19,BGIN20,BGIN21,DEN24]. Informally, robustness means that honest
parties’ shares determine the secret as well as corrupted parties’ shares.
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New protocols in the dishonest majority setting. We first consider a
simple problem of checking N SPDZ-style unverified authenticated multiplica-
tion triples. The previous “sacrificing” method requires N additional unverified
authenticated triples, incurring at least a 2× overhead. Such overhead is undesir-
able, since typically producing authenticated multiplication triples dominates the
overall complexity. Notably the method of [BGIN22] only requires O(

√
N) com-

munication, but introduces O(N1.5) computation. By leveraging the Sumcheck
techniques, we offer an efficient alternative solution.

Theorem 1.2 (informal). There exists a maliciously secure protocol that checks
N unverified SPDZ-style authenticated multiplication triples with O(N) compu-
tation per party, 2N + O(logN)communication per party, O(logN) correlated
randomness, O(logN) rounds, and soundness error O( logN

|F| ).

Specifically, the correlated randomness required for the protocol consists of N +1
standard Beaver triples (respect to a PCG seed of size O(logN)), 3 logN + 5
authenticated secret shares, which is significantly easier and cheaper to produce
than N authenticated triples. A major downside is the inherent O(logN) round
complexity, while both the approaches of [BGIN22] and sacrifice can have O(1)
rounds.

We then show concrete benefits of applying distributed Sumcheck in dishon-
est majority MPC. Following the paradigm of [RS22], our preprocessing uses
programmable PCGs to generate partially authenticated multiplication triples.
While the online phase of [RS22] employs a “dual execution” mechanism to ver-
ify multiplication gates, achieving sublinear preprocessing communication and
6 + o(1) field elements per multiplication gate per party. At a high level, we pay
one opening to transform a partially authenticated triple to an unverified authen-
ticated triple and replace dual execution with distributed Sumcheck, reducing
communication to 5+o(1), only 2.5 times that of the semi-honest security setting.

Corollary 1.3 (informal). Assuming secure programmable PCGs for VOLE
and multiplication triples, there exists a maliciously secure dishonest majority
MPC protocol that sends 5 + o(1) field elements per multiplication gate per party.

Methodology of our compiler. Generally speaking, our compiler works for
any semi-honest MPC protocol based on linear secret sharing schemes and
secure up to additive attacks, where authentication can be added. Moreover, our
approach only incurs a constant multiplicative overhead in both computation and
communication for both honest majority and dishonest majority. The compiler
follows from the following key steps:

1. We first transform the verification of N multiplication gates into a related
sumcheck problem, on which we can apply the Sumcheck protocol. The
transformation critically leverages the parallelism of multiplication gates.

2. We then carefully translate the sumcheck problem to an equivalent form that
preserves zero-knowledge. Informally, the verifier learns nothing about the
inputs to the multiplication gates when applying the Sumcheck protocol on
this new form. This step consumes only O(logN) correlated randomness.
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3. The parties jointly emulate both the Sumcheck prover and Sumcheck verifier,
effectively executing a “virtual” Sumcheck protocol on the transformed prob-
lem from Step 2. In the end, each party obtains a complete Sumcheck proof
and decides its validity based on the transcripts.
The zero-knowledge property guarantees the privacy of the inputs to mul-
tiplication gates. The additional communication consists of the Sumcheck
proof size (O(logN)) and the cost of distributively generating the proof (free
for multiplicative secret sharing, otherwise O(N)).

4. The distributed proof generation is optimized so that each party performs
only O(N) field multiplications, independent of the number of parties.

Intuition of our benefits and relations to FLIOP. Here, we first address
a critical difference from FLIOP-based approaches in the distributed prover
setting [BBC+19,GSZ20,EGPS22]. That is we no longer require the full Sumcheck
proof to be robustly secret-shared and reconstructed. Instead, we rely on secret
sharing schemes with authentication and in fact the secret-shared statement is
“committed”. Such a difference is particularly crucial in the dishonest majority
setting. Let us briefly explain this interesting phenomenon.

Let us briefly recap the Sumcheck protocol. The classical Sumcheck protocol
enables a lightweight verifier to validate the computation of the summation of a
multi-variate polynomial over a binary hypercube, e.g., H ?

=
∑

X∈{0,1}n f(X). In
a bare-bone sketch, the Sumcheck protocol works as follows: in each round i, the
prover sends a univariate polynomial

fi(Xi) :=
∑

xi+1,...,xn∈{0,1}

f(r1, . . . , ri−1, Xi, xi+1, . . . , xn)

and the verifier returns a challenge ri. The verifier checks that

H = f1(0)+f1(1), fi−1(ri−1) = fi(0)+fi(1) for i ∈ [2, n] and fn(rn) = f(r1, . . . , rn).

In particular, the Sumcheck protocol is doubly efficient for some structured
polynomials (e.g., the product of ℓ multilinear polynomials), requiring O(ℓ · 2n)
computation for the prover and O(ℓn) for the verifier. Essentially, the Sumcheck
protocol boils down the original Sumcheck problem (i.e., H ?

=
∑

X∈{0,1}n f(X))

to checking a single random evaluation of f (i.e., fn(rn)
?
= f(r1, . . . , rn)). The

prover’s consistency and truthfulness are enforced in the sense that when starting
with a wrong claim, if the prover fools in intermediate rounds, then eventually
with high probability fn(rn) ̸= f(r1, . . . , rn). Therefore, there is no need to
guarantee each fi(Xi) provided by the prover is computed correctly. Informally,
interactions buy the verifier the ability to ensure that the prover faithfully
computes and adheres to intermediate values of the computation without requiring
the prover to explicitly provide or materialize those values. Reflected in MPC
settings, each fi(Xi) has not to be robustly shared and reconstructed. However,
H and f(r1, . . . , rn) should be authenticated and reconstructed correctly, making
authenticated secret sharing an inherent requirement.
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The equivalence of FLIOP and Sumcheck. Surprisingly, we observe that known
FLIOP constructions [BBC+19] are essentially equivalent to Sumcheck. To illus-
trate this, we analyze a concrete instantiation from [GS20]. Their approach can
be interpreted as follows:

1. Reduce the verification of Wo
?
= Wℓ ∗Wr to a sumcheck problem:

c =

N−1∑
i=0

λi ·Wo(i)
?
=

N−1∑
i=0

λi ·Wℓ(i)︸ ︷︷ ︸
a(i)

·Wr(i)︸ ︷︷ ︸
b(i)

,

where λ
$← F and Wo,Wℓ,Wr ∈ FN .

2. Inductively reduce the underlying sumcheck problem by half at each step
using the evaluation set {0, 1} until get a constant size. This step is essentially
equivalent to applying the Sumcheck protocol to the above equation. Infor-
mally, suppose [c′]t , [a

′]t , [b
′]t is the sumcheck problem after one reduction

with respect to challenge r1
$← F in [GS20], and f1(X1) is the polynomial

that the prover sends in the first Sumcheck round. Through appropriately or-
dering the inputs, we obtain f1(r1) = c′, while [a′]t , [b

′]t specify a polynomial
f2(X2) such that c′ = f1(r1) = f2(0) + f2(1). This demonstrates that [GS20]
naturally fits to the Sumcheck framework. See Appendix D.2 for details.

In sketch, there are two major technical differences between our distributed
Sumcheck approach and [GS20]:
(i) Instead of using (1, λ, . . . , λN−1) as in [GS20], we employ a more structured

choice of random coefficients for Step 1. This substantially improves soundness,
reducing the error probability to logN

|F| rather than N
|F| in [GS20].

(ii) We fully exploit the round-by-round soundness nature of Sumcheck by directly
reconstructing the secret-shared polynomial [fj(Xj)]2t without consuming
double sharings (refer to Definition A.2) to compute [fj(Xj)]t and thus
[fj(rj)]t as in [GS20]. This difference is critical in the dishonest majority
setting. However, we need to pay more attention to make the Sumcheck
protocol zero-knowledge, as plain fj(Xj) would leak information about the
inputs.

Concrete Comparisons. Our compiler significantly improves over the state-
of-the-art in both honest majority and dishonest majority settings. Below, we
present a comparison table. W.l.o.g., we consider Shamir secret sharing for honest
majority, and SPDZ-style unverified authenticated secret sharing for dishonest
majority. For other secret sharing schemes, our compiler is plausible to offer
concrete benefits as well. We leave it as future work.

As discussed above, our approach shares similarities with [GS20], which builds
on FLIOPs. In addition to the advantage of avoiding double sharings, our method
also offers higher security-level for large circuits compared to [GS20], e.g., ≈ 15-
bit higher security for circuits size 220. Moreover, we believe that adapting our
distributed Sumcheck approach to the paradigm of [BGIN21,BGIN22,BHG+25]
in the dishonest majority setting would yield further benefits. We leave it as
future work.
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Corrupt. Methods Computation Communication Randomness Round

t < M/2
[GS20] O(MN) O(M logN) 3 logN DS+ 2 SS O(logN)

[BGIN20] O(M2N) O(M2 logN) M DS+ 2 SS O(1)
This work O(MN) O(M logN) 3 logN SS O(logN)

t < M
Le Mans [RS22] O(MN) 4MN O(logN) O(1)

[BGIN22] O(MN1.5) O(M2
√
N) O(

√
N) O(1)

This work O(MN) 3MN +O(M logN) O(logN) O(logN)

Table 1. Comparisons for costs of lifting semi-honest MPC protocols to malicious
security, where N is the number of multiplication gates and M is party number.
We consider total computation and total communication costs. For honest ma-
jority, SS denotes a random Shamir sharing while DS denotes a random double
sharing of Shamir sharing. For dishonest majority, PCGs are used to compress
correlated randomness storage. Insignificant terms and the costs for emulating
FCoin are omitted.

1.2 Related Work

Very recently, there is a line of works [XZC+22,GGJ+23,LXZ+24,LZW+24] con-
sider distributing the proof generation of sumcheck-based SNARKs to many
workers for acceleration. Since their motivation is totally different from ours,
typically, these works mainly focus on the concrete efficiency, with privacy and
security being less concerned. We then list the-state-of-art results for achieving
malicious MPC protocols in the following, classified by the fraction of honest
parties.

Strong Honest Majority Setting. For less than (1−ϵ)/3 fraction of corrupted
parties and Boolean circuits, Genkin et al. [GIW16] achieved polylog(|C|, κ) over-
head, where |C| is the circuit size and κ is the statistical security parameter. For
at least two-thirds honest parties, [FL19] achieved O(d) additive communication
with fairness using Shamir’s secret sharing scheme, where d is the depth of the
circuit, while [DEN22] achieved constant additive communication for full security.
However, the scheme of [DEN22] is efficient only for a small number of parties,
as it heavily relies on replicated secret sharing. Moreover, the computational
overhead of these works remain unclear.

Honest Majority Setting. By exploiting the “dual execution” idea, [CGH+18]
demonstrated active security with abort for arithmetic circuits, achieving a mul-
tiplicative overhead of 2 compared to passive protocols for sufficiently large fields.
Following the IPS paradigm [IPS08], [IKP+16] achieved a constant multiplicative
communication overhead for arbitrary fields but only for a constant number of
parties, later [HVW20] extended to support an arbitrary number of parties, build-
ing on a variant of [DN07] instantiated with algebraic geometric secret sharing
[CC06]. However, the computational overhead is unclear due to the use of alge-
braic geometry codes. With the introduction of FLPCP/FLIOPs by Boneh et al.
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[BBC+19], follow-up works [BGIN19,BGIN20,GSZ20,DEN24] achieve malicious
security with abort (even full security) with additive logarithmic communication
in various settings. However, the additional computation is at least quasi-linear
in the circuit size since the underlying FLIOP has a quasi-linear time prover.

Dishonest Majority Setting. In this setting, there are two ways of measuring
the overhead of achieving malicious security.

Over the passive GMW protocol [GMW87]. For Boolean circuits, [IPS08] and
[HIV17] demonstrated constant communication overhead over GMW and garbled
circuits [Yao86]. For arithmetic computations, [GIP+14] established constant
communication overhead in the OLE-hybrid model over GMW for sufficiently
large fields, by introducing AMD circuits. Notably, [GIW16] also works in the
dishonest majority setting, and has polylog(|C|, κ) communication overhead for
an arbitrary number of parties. In addition, Hazay, Venkitasubramaniam, and
Weiss [HVW20] based on IPS compiler [IPS08] achieved constant communication
overhead (2 in the best case), though their result remains mostly theoretical.

Over the preprocessing model. Many modern concretely efficient MPC protocols
in the dishonest majority works in the preprocessing model. Specifically, during
an offline phase, the parties execute a circuit/input independent procedure to
generate correlated randomness. Once inputs are available, the parties run a
lightweight, non-cryptographic online phase that consumes the correlated random-
ness. Hence, an efficient online protocol should have low communication as well as
correlated randomness consumption. The correlated randomness typically comes
in two forms: multiplication triples [Bea91] and authenticated multiplication
triples [BDOZ11,DPSZ12], for semi-honest and malicious security, respectively.
Informally, authenticated multiplication triples enhance multiplication triples by
using linearly homomorphic message authentication codes (MACs). Intuitively,
secret-sharing with MACs offers authentication, so that malicious adversary’s
deviation could be detected. Recent advancements in pseudorandom correlation
generators (PCGs) [BCG+19,BCG+20,BCCD23,BBC+25,LXYY25] have demon-
strated concretely efficient methods for generating multi-party multiplication
triples, or two-party authenticated multiplication triples with sublinear commu-
nication complexity even for arbitrary fields. However, it still remains open how
to extend these techniques to efficiently generate authenticated multiplication
triples for more than two parties.

Recent works [BGIN21,BGIN22,RS22] presented MPC with O(|C|) online
communication per party with sublinear preprocessing. Roughly speaking, [BGIN21,BGIN22]
extend the FLIOP approach to dishonest majority setting, by introducing a star-
sharing framework. Very concurrently, Boyle et al. [BHG+25] greatly improve
over this routine and put forward MPC with 2|C| + o(1) communication and
linear computation based on LPN-style assumptions. A minor drawback is that
the online phase would no longer be information-theoretic secure. In contrast, Le
Mans [RS22] proposed a simpler approach for producing unverified authenticated
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triples by leveraging the programmability of PCGs for multiplication triples and
VOLE. However, their approach allows the adversary to inject additive errors to
the unverified authenticated triples. To solve this issue, they employ the “dual
execution” idea and essentially move the check to the online phase.

2 Technical Overview

Informally, the goal is to find efficient approaches that verify statements being
shared among the parties. In the literature, typically there are two approaches
that employ proof systems in different flavors.
GMW-style vs. Distributed proof. The first is of the celebrated “GMW”-
style [GMW87], where each party proves that he sent the correct message in
the semi-honest protocol. The state-of-the-art proof system suitable for this
framework is the FLIOP [BBC+19]. At a high level, FLIOP-based approach first
reduce the statement to sub-statements that “capture” each party Pi’s honest
behaviors, where Pi (as an FLIOP prover) knows the sub-statement i, while
the remaining parties (jointly emulate an FLIOP verifier) holds secret sharings
of it. Then it suffices to apply FLIOPs in a black-box way, yielding sublinear
communication in the honest majority setting [BBC+19,BGIN19,DEN24], and
in the dishonest majority setting [BGIN21] (assuming a semi-honest dealer). In
terms of computational complexity, the underlying FLIOPs have linear prover
time and verification time.

Regardless of the efficiency of FLIOPs, we find the above approach contains
“redundancy”, in the sense that the “proof-of-behavior” is only essential to the
corrupted parties, since honest parties will never deviate the protocol3! However,
this redundancy appears to be unavoidable, as there is no efficient method to
identify corrupted parties. Consequently, each party’s computation also scales
linearly with the party number in [BBC+19,BGIN19,BGIN21,DEN24], which
limits the scalability.

The second approach allows the parties to jointly emulate a virtual prover,
who knows the secret-shared statement, and proves the statement to them-
selves. In other words, the proof is generated distributively and then verified
by the parties. This paradigm is intuitively more efficient, and a concrete, in-
formal example is the global MACs technique used in SPDZ [DPSZ12], which
improves upon the pairwise MACs used in BDOZ [BDOZ11]. On the one hand,
if corrupted parties cheat in the proof generation, soundness ensures rejection
with high probability. On the other hand, every party contributes to the proof,
and no one’s computation is meaningless. Despite potential efficiency bene-
fits, there remains a major question: how to generate a proof without even
knowing the statement. Existing works answer with FLIOP-based solutions by
utilizing the multiplicative property of Shamir secret sharing in the honest major-
ity [BBC+19,BGIN20,GS20,GSZ20], and introducing homomorphic encryption

3 We only consider static corruptions in this work. One can think of that interactive
proofs become trivial if the prover always tells the truth.
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schemes in the dishonest majority [BGIN22]. Note that [GS20] simultaneously
achieves additional linear computation and sublinear communication via Shamir
secret sharing. However, the inherent robustness required by FLIOPs poses a
barrier in the dishonest majority setting.
Towards distributed interactive proof. The huge gap between interactive
proofs and MPC raises numerous challenges that have not been elaborately
explored before. Our first key observation comes from the fact that for most
applications of Sumcheck, the multi-variate polynomial to be summed up is of
low-degree and moreover highly structured. For instance, the GKR [GKR08]
protocol (for proving circuit satisfiability) runs Sumcheck on polynomials of the
form

fz(X,Y) := m̃ult(X,Y, z)W̃ (X)W̃ (Y) + ãdd(X,Y, z)
(
W̃ (X) + W̃ (Y)

)
,

where W̃ (·), m̃ult(·, ·, z) and ãdd(·, ·, z) are multilinear polynomials. In addition,
m̃ult and ãdd are called wiring predicates and only depend on the circuit typology,
and W̃ (·) is the multilinear extension (MLE) of wire values. Hence, in MPC
scenarios, if the underlying secret sharing scheme is multiplicative, then parties can
locally compute the shares of fz(X,Y) for any evaluation point without additional
interaction. This suggests that GKR might be suitable for the distributed proof
approach in MPC. Additionally, GKR is doubly efficient and has been optimized
to linear prover time [XZZ+19]. These together make it possible to achieve
distributed interactive proof systems with linear computation and sublinear
communication.

Despite intuitively feasible, there remain a lot of issues to address since
interactive proofs and MPC are totally different. First, the zero-knowledge
property (resp. privacy) is not necessarily required for interactive proofs, while in
contrast, MPC becomes trivial if privacy is not required. While many interactive
proofs can be made zero-knowledge almost for free [Tha22, Chapter 13], it is
unclear how to apply such tricks in MPC. Secondly, security analyses become
significantly more complicated. In (zero-knowledge) interactive proofs, the security
analysis is modular and it suffices to consider two cases: a corrupted prover
interacting with an honest verifier (for soundness), or an honest prover with a
corrupted verifier (for zero-knowledge). When diving into MPC settings, it will
be the case that corrupted provers may collude with corrupted verifiers to learn
honest parties’ inputs (as all parties jointly emulate the prover as well as the
verifier). Hence, a simulation-based proof that guarantees privacy and soundness
simultaneously is required. Thirdly, it is unclear how to adapt the techniques for
achieving linear prover time in [XZZ+19] to MPC settings, since the statement
is secretly shared among the parties. Finally, the above three issues become
much more challenging in the dishonest majority case, where multiplicative secret
sharing is no longer viable. Basically, we need to minimize the multiplications
during distributed proof generation. Otherwise, our Sumcheck-based approach
offers no advantage over prior methods.
Distributed Sumcheck for verifying multiplications. In a bird’s eye view,
there are four key steps in building our compiler:
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1. Reduce verification of multiplications to sumcheck problems.
2. Reformulate the sumcheck problem to guarantee privacy.
3. Enable joint emulation of the Sumcheck prover and verifier by all parties.
4. Optimize computational and communication complexity.

For a better readability, we first briefly introduce related notations.

Notations. Assume N = 2n. The goal is to verify Wo
?
= Wℓ ∗Wr, where

Wo,Wℓ,Wr ∈ FN are secret-shared inputs and ∗ denotes the entry-wise mul-
tiplication. As in the literature, we view vectors as functions, for instance, Wo

defines Wo : {0, 1}n → F, such that Wo(i) equals to the i-th entry of Wo. Denote
the multilinear extension(MLE) of Wo by W̃o. Namely,

W̃o(y1, . . . , yn) =
∑

ω∈{0,1}n

Wo(ω) · χω(y1, . . . , yn),

where χω(x1, . . . , xn) :=
∏n

i=1(xiωi+(1−xi)(1−ωi)) is referred as the multilinear
Lagrange basis. We refer to Definition 3.1 for a formal definition of MLEs.

The reduction. A direct approach is to follow the insightful idea proposed by
Goldwasser et al. [GKR08,GKR15], by viewing the verification as evaluating a
one-layer circuit consisting of N multiplication gates. Indeed, this is our starting
point, and we find that carefully generalizing sophisticated techniques suffices
for honest-majority MPC. However, we fail in obtaining concrete benefits in
dishonest majority. In fact, such characterizations contain redundancy, since GKR
applies to general layered circuits with both addition gates and multiplication
gates, while in our case, there are only multiplications.

We take a step further on utilizing MLEs and propose a new tighter reduction
that yields better efficiency. Inspired by the approach of [WJB+17] for improving
GKR efficiency in the single instruction multiple date (SIMD) setting, we introduce
the point predicate: Pz(y) : {0, 1}n → {0, 1}, which evaluates to 1 if and only if
y = z and otherwise 0. Then for y, z ∈ {0, 1}n, we have

Wo(z) =
∑

y∈{0,1}n

Pz(y) ·Wℓ(y) ·Wr(y).

The key observation is that the Lagrange basis χy(z) = χz(y) =
∏n

i=1(ziyi +
(1− zi)(1− yi)) is essentially a point predicate. Then, we have that

W̃o(z) =
∑

ω∈{0,1}n

χω(z) ·Wo(ω) =
∑

ω∈{0,1}n

χω(z) ·
( ∑
y∈{0,1}n

Pω(y) ·Wℓ(y) ·Wr(y)
)

=
∑

y∈{0,1}n

χω(y) ·Wℓ(y) ·Wr(y) =
∑

Y∈{0,1}n

χY(z) · W̃ℓ(Y) · W̃r(Y)︸ ︷︷ ︸
fz(Y)

,

(1)
which holds for any z ∈ Fn. In the interactive proofs setting, it suffices to run
the Sumcheck protocol on the above relation with a verifier-sampled random
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z
$← F. Recall that in each round j of the Sumcheck protocol, the verifier

receives a polynomial f j
z (Yj) :=

∑
bj+1...bn∈{0,1}n fz(r1 . . . rj−1, Yj , bj+1 . . . bn),

and responds with rj
$← F to the prover.

Adding zero-knowledge. If parties jointly emulate a Sumcheck prover on proving
the above Eq.(1), the proof messages (e.g., f j

z (Yj)) would leak information about
the inputs. To keep privacy, we employ methods inspired from Libra [XZZ+19]. At
a high level, we mask the equation with a random sparse low degree polynomial
and the inputs with random low degree vanishing polynomials, similar to Libra.
However, there are subtle differences in detail. Jumping ahead, we basically run
the Sumcheck protocol on a new equation of the following form:

W̃o(z) +G =
∑

Y∈{0,1}n

(
W̃ℓ(Y) + aYn(1− Yn)

)︸ ︷︷ ︸
W̃ ′

ℓ
(Y)

(
W̃r(Y) + bYn(1− Yn)

)︸ ︷︷ ︸
W̃ ′

r(Y)

χz(Y) + g(Y)

=
∑

Y∈{0,1}n

(
f ′
z(Y) + g(Y)

)
,

(2)
where G =

∑
Y∈{0,1}n g(Y). Let us briefly explain the intuition. First, a, b are

uniformly random and g(Y) is a random n-variate sparse polynomial of low
degrees. Informally, g(Y) as a masking polynomial, prevents the verifier from
learning information about f ′

z(Y). We note that in the zero-knowledge interactive
proof setting of Libra, g(Y) is determined by both prover and verifier. Loosely
speaking, the prover first commits to a polynomial g′(Y) and the verifier samples
a random ρ

$← F, defining g(Y) := ρ · g′(Y). This implies the resulting Sumcheck
protocol is honest-verifier zero-knowledge. Note that a malicious verifier can
simply set ρ = 0. However, it will not be the case in the MPC setting, since
there is at least one honest party. Therefore, one can naturally assume an ideal
functionality that distributes shares of coefficients of g(Y) ensuring privacy
without relying on an honest verifier.

Finally, aYn(1 − Yn) and bYn(1 − Yn) are vanishing polynomials, evaluat-
ing to 0 for all Y ∈ {0, 1}n. In contrast to interactive proofs, where vanishing
polynomials can be arbitrary, here we use such tailored forms to minimize multipli-
cations, which is particularly crucial in the dishonest majority setting. Essentially,
W̃ ′

ℓ(Y), W̃ ′
r(Y) are low-degree extensions of Wℓ,Wr that agree to the multilin-

ear extensions (except for variable Yn), respectively. Running the Sumcheck
protocol on such low-degree extensions yields efficiency benefits in computing
f ′
z(r1, . . . , rn). Now, the prover can reveal W̃ ′

ℓ(r1, . . . , rn) and W̃ ′
r(r1, . . . , rn) to

the verifier while keeping the privacy of Wℓ and Wr.

Joint emulation. The key observation is that shares of Wℓ,Wr imply shares of
their MLEs W̃ℓ(Y), W̃r(Y), while χz(Y) is publicly known. Hence, if the secret
sharing is multiplicative, the parties can locally compute shares of the Sumcheck
proof

(f ′j
z + gj)(Yj) :=

∑
bj+1,...,bn∈{0,1}n−j

(f ′
z + g)(r1, . . . , rn−1, Yj , bj+1, . . . , bn)
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for each round j. By the soundness of Sumcheck, the proof need not be robustly
shared and parties can directly reconstruct it in each round. Moreover, this
property enables using standard Beaver triples to jointly compute the proof
when the secret-sharing scheme is not multiplicative, e.g., SPDZ-sharing in the
dishonest majority. As for jointly emulating the verifier, we leverage the public-
coin nature of Sumcheck: security holds as long as the verifier tosses random
coins, which will be visible to the prover as soon as tossed. Since at least one
party is honest, an ideal functionality FCoin that samples rj

$← F in each round
suffices. We remark that in the last round n, the parties need to check

(f ′n
z + gn)(rn)

?
= (f ′

z + g)(r1, . . . , rn) = (χzW̃
′
ℓW̃

′
r + g)(r1, . . . , rn).

The right-hands values should be reconstructed in an authenticated manner,
since it is computed after sampling rn. This is guaranteed by the fact that
W̃ ′

ℓ(Y), W̃ ′
r(Y) and g(Y) are essentially shared by a secret-sharing scheme with

authentication, allowing parties to reveal one evaluation.

Linear time optimization. Thanks to the fact that MLEs are highly structured,
the Sumcheck prover on proving Eq.(2) can pay only O(N) computations and
O(N) memory usage, by employing the well-known bookkeeping table algorithm.
In a bare-bone sketch, in each round j, the prover maintains three bookkeeping
tables (containing 2n−j+1 evaluations of W̃ℓ(Y), W̃r(Y),χz(Y), respectively)
that allow to compute f ′j

z (Yj) efficiently with only O(2n−j) operations. Ad-
ditionally, updating the bookkeeping tables for the next round requires only
O(2n−j) operations. However, in the MPC setting, no one holds plaintext tables
for W̃ℓ(Y), W̃r(Y) (except for χz(Y)), since they depend on the secret-shared
inputs. Instead, each party can locally compute shares of the bookkeeping tables,
enabling an efficient distributed algorithm for computing secret-shared f ′j

z (Yj).
Recall that f ′j

z (Yj) has not to be robustly shared, the shares can be locally com-
puted without additional interaction if the secret-sharing scheme is multiplicative.
While without multiplicative property, the algorithm is much more complicated.
We resort to using standard Beaver triples and pay great efforts to minimize the
number of consumed triples.

Minimize multiplication triples. Concretely, for round j, it suffices for the Sum-
check prover to compute 4 evaluations, e.g.,{0,±1, 2}, of

f ′j
z (Yj) :=

∑
bj+1,...,bn∈{0,1}

f ′
z(r1, . . . , rj−1, Yj , bj+1, . . . , bn).

Define h(Y) := (W̃ ′
ℓ · W̃ ′

r)(Y), and thus f ′
z(Y) := (χz · h)(Y). Our idea is to

additionally maintain bookkeeping tables for the polynomial h(Y), which, in
round j, store 3 · 2n−j evaluations of h(Y) at points of the form

(r1 . . . rj−1, {0,±1}, bj+1 . . . bn),
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for all (bj+1 . . . bn) ∈ {0, 1}n−j . A direct observation is that, given the secret
sharings of the table for h(Y), parties can locally compute secret sharings
of f ′j

z (Yj), since they already know χz(Y). Thus, the challenge reduces to
maintaining distributed bookkeeping tables for h(Y).

The key observation is that the first two columns (respect to bj+1 ∈ {0, 1})
of the table for round j + 1 are linear combinations of the table for round j.

Tablej : h(r1, . . . , rj−1, {0, 1,−1}, bj+1, bj+2, . . . , bn),

⇓ interpolate and evaluate at rj
Tablej+1 : h(r1, . . . , rj−1, rj , bj+1, bj+2, . . . , bn),

This implies that sharings of the first two columns can be locally computed
from those of the previous table. As for sharings of the last column (respect
to bj+1 = −1), parties compute its entries from sharings of W̃ ′

ℓ(Y) and W̃ ′
r(Y)

evaluated at (r1, . . . , rj ,−1, bj+2, . . . , bn), consuming 2n−j−1 standard Beaver
triples for round j + 1. As for the initial table for round 1, the parties already
hold sharings of the first two columns (respect to b1 ∈ {0, 1}) eliminating the
need to recompute them using Beaver triples. It follows from the fact that for
all Y ∈ {0, 1}n, h(Y) = W̃ ′

ℓW̃
′
r(Y) = W̃o(Y). In the final round, two additional

points should be evaluated as h(Y) has degree-4 in Yn. This is precisely why we
select vanishing polynomials of the form aYn(1− Yn) and bYn(1− Yn). The total
number of required Beaver triples is 2 +

∑n
j=1 2

n−j = N + 1.

3 Preliminaries

Security Model and Functionalities. In the work, we consider static malicious
security with abort, where the adversary A corrupts t parties at the beginning,
and can cheat arbitrarily during the protocol execution. The security is guaranteed
in the sense that if A cheats, then A will be caught by honest parties with a
high probability, and moreover, A learns nothing about honest parties’ input
beyond the output. We formalize related standard functionalities in Appendix A.3.
Specifically, these include FMPC, FCoin for coin-tossing, FCommit for commitment,
FShamir for distributing random Shamir secret sharings, and etc.
Multilinear Extension. Multilinear extensions (MLEs) play a crucial role in
the study of interactive proofs. We give a formal definition as follows:

Definition 3.1 (Multi-Linear Extension). Let f : {0, 1}n → F be a function
that maps the n-dimensional binary hypercube to a commutative ring F. The
multilinear extension of f is the unique polynomial f̃ : Fn → F such that
f̃(x1, . . . , xn) = f(x1, . . . , xn) for all x1, . . . , xn ∈ {0, 1}, where the degree of f̃
in each variable is 1. Moreover, f̃ has the form

f̃(x1, . . . , xn) =
∑

ω∈{0,1}n

f(ω) · χω(x1, . . . , xn),
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where, for any ω = (ω1, . . . , ωn),

χω(x1, . . . , xn) :=

n∏
i=1

(
xiωi + (1− xi)(1− ωi)

)
.

The set {χω : Fn → F}ω∈{0,1}n is referred to as the set of multilinear Lagrange
basis polynomials with interpolating set {0, 1}n.

Assume Pω(x) : {0, 1}n → {0, 1} is a function that maps x to 1 if x equals ω and
0 otherwise, and we call it a point predicate. Then χω can be viewed as the MLE
of Pω(·), i.e., P̃ω := χω. Formally, given Pω,

P̃ω(x) :=
∑

ν∈{0,1}n

Pω(ν) · χν(x) = χω(x).

Note the above computation is similar to executing private information retrieval
(PIR) via function secret sharings (FSS) for point functions. The above extension
function also holds for point functions i.e., Pω(x) = z for some z ∈ F.

With MLEs of the point predicate, actually we can transform any extension
(maybe not multilinear) of a function to a multilinear extension. Given g : Fn → F
as an extension of f : {0, 1}n → F, the MLE of f can be computed as

f̃(x) :=
∑

ω∈{0,1}n

P̃ω(x) · g(ω) =
∑

ω∈{0,1}n

χω(x) · g(ω).

It is easy to verify that for arbitrary y ∈ {0, 1}, f̃(y) = g(y) = f(y) as g is
an extension of f . Moreover, f̃ is multilinear as χω is multilinear and g(·) is
independent of x.

W.l.o.g., assume N is a power of two, then a vector W := (w0, . . . , wN−1)
over F can be naturally viewed as a function W : {0, 1}logN → F such that W (i)
equals to the i-th entry of W for all i ∈ [0, N). Hence, we define the multilinear
extension of a vector W in this way, similarly denoted by W̃ . To evaluate the
multilinear extension W̃ of W efficiently, we employ the algorithm proposed
in [VSBW13], which takes O(N) time and O(N) memory usage.

Lemma 3.2 ([VSBW13]). Assume N = 2n and given W ∈ FN and r ∈ Fn,
one can compute W̃ (r) in O(N) time and O(N) space.

Recap: Sumcheck [LFKN92]. The celebrated Sumcheck protocol allows to
delegate in a verifiable way the task of summing up an n-variate polynomial
f : Fn → F on a binary cube {0, 1}n. In sketch, the Sumcheck protocol proceeds
inductively as follows: in each round i, P sends to V a univariate polynomial

fi(Xi) :=
∑

bi+1,...,bn∈{0,1}

f(r1, . . . , ri−1, Xi, bi+1, . . . , bn),

that is the summation of f on a binary cube {0, 1}n−i with the first i − 1
variables being fixed to r1, . . . , ri−1 (received from V in previous rounds), then
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V returns to P a random ri
$← F. By definition, one can simply verify that

fi−1(ri−1) = fi(0) + fi(1). Formal descriptions of the Sumcheck protocol are
given in ΠSumcheck. Assuming the maximum degree of f in each variable is d, the
Sumcheck protocol has communication complexity O(dn), round complexity n,
and soundness error O(dn/|F|) by the Schwartz-Zippel Lemma. Moreover, the
verifier is lightweight, as he only needs to evaluate f at one point rather than 2n

points, and n univariate polynomials of degree at most d.

Protocol 1: ΠSumcheck

Given an n-variate polynomial f : Fn → F. Let degi(f) denote the degree of
f(X1, . . . , Xi, . . . , Xn) in variable Xi. The protocol proceeds as follows.

– At the beginning, the prover P sends to the verifier V a value H claimed to
equal the summation of f on the binary hypercube.

– In the first round, P sends to V the univariate polynomial f1(X1) of degree
at most deg1(f) claimed to equal∑

b2,...,bn∈{0,1}

f(X1, b2, . . . , bn).

V checks that H = f1(0) + f1(1). V sends a random r1
$← F to P.

– In the ith round, where 1 < i < n, P sends to V the univariate polynomial
fi(Xi) of degree at most degi(f), claimed to equal∑

bi+1,...,bn∈{0,1}

f(r1, . . . , ri−1, Xi, bi+1, . . . , bn).

V checks that fi−1(ri−1) = fi(0) + fi(1). V sends a random ri
$← F to P.

– In the nth round, P sends to V the univariate polynomial fn(Xn) of degree
at most degn(f), claimed to equal

f(r1, . . . , rn−1, Xn).

V checks that fn−1(rn−1) = fn(0) + fn(1). Finally, V selects rn
$← F, and

checks that f(r1, . . . , rn) = fn(rn). V will accept if and only if all the above
checks pass. Otherwise, V rejects and aborts.

Lemma 3.3 (Schwartz-Zippel Lemma). For any nonzero n-variate polyno-
mial f(x1, . . . , xn) over F with each variable’s degree at most d, we have that

Pr
[
f(α) = 0 | α $← Fn

]
≤

∑n
i=1 degi(f)

|F|
≤ dn

|F|
.

4 Distributed Sumcheck

In this section, we study the sumcheck problem in the distributed setting, where
the polynomial f(X1, . . . , Xn) together with H is shared across M parties, and
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the parties wish to verify whether f correctly sums to H. To this end, we present
a general distributed sumcheck protocol ΠDSumcheck. We then focus on a concrete
Sumcheck problem in the distributive setting, well-motivated by MPC scenarios:
verifying multiplication relations, where inputs and outputs are secret-shared.

4.1 Distributed Sumcheck

We assume an authenticated linear secret sharing scheme, denoted by J·K. This
means that if the parties jointly hold shares of a sufficient number of evaluations
of f(X1, . . . , Xn), or all its coefficients, then they can locally compute shares of
any evaluation f(r1, . . . , rn). In both cases, we say f is shared among the M
parties, denoted by JfK. Moreover, f is authenticated as each of its coefficients
is authenticated. Following the structure of the classical Sumcheck protocol, we
now give an informal description of a distributed sumcheck protocol.

– All parties jointly play the role of a Sumcheck prover. Specifically, for each
message (i.e., a polynomial fi(Xi)) that a Sumcheck prover would send in
round j, the parties hold a sharing of it and collectively open the message.

– All parties jointly emulate a Sumcheck verifier. Note that a Sumcheck verifier
samples a random ri

$← F and sends it to the Sumcheck prover. This procedure
can be emulated by an ideal functionality FCoin which tosses random coins
for all parties. Additionally, each party also acts as an individual verifier to
check the reconstructed proof.

For completeness, assuming each party follows the above protocol honestly, it is
readily to see that all parties accept if and only if H =

∑
b1,...,bn∈{0,1}n f(b1, . . . , bn)

by completeness of the Sumcheck protocol. Before discussing security, we first
address subtle differences between proof systems and MPC settings. For proof
systems, the prover is considered to be malicious and could deviate the proto-
col arbitrarily whereas the verifier is usually assumed to be honest. Moreover,
zero-knowledge is not necessarily required. In contrast, in MPC, the minimal
assumption is that at least one party is honest and the remaining parties may
collude. However, the privacy of honest parties’ inputs should be always preserved.

In fact, the above protocol is not secure, because the proof messages fi(Xi)
may leak information about the secret-shared polynomial f(X). To mitigate
this, we mask f with a random sparse polynomial g, which is also shared among
the parties. This is indeed a distributed analogue of the masking polynomial
technique used for zero-knowledge Sumcheck in [XZZ+19]. As long as g has
sufficient entropy, the Sumcheck proof reveals nothing beyond the fact that
H

?
=

∑
b1,...,bn∈{0,1}n f(b1, . . . , bn). We now present the distributed Sumcheck

protocol ΠDSumcheck, assuming that J·K has t-privacy4, and at most t parties are
corrupted.

4 The shared value remains uniformly random conditioned on any ≤ t shares.
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Protocol 2: ΠDSumcheck

Let J·K denote an M -party authenticated linear secret sharing scheme over F
with t-privacy. Consider an n-variate polynomial f : Fn → F, where the degree
of f in variable Xi is denoted by degi(f) for i ∈ [1, n]. We assume access to the
ideal functionality FCoin.
Input: JHK, Jf(X1, . . . , Xn)K :=

∑
I JfIK ·XI .a

Correlated randomness: Jg(X1, . . . , Xn)K := Jg0K+
∑n

i=1

∑degi(f)
j=1 Jgi,jK ·Xj

i ,
where g0, gi,j are uniformly random in F.
Goal: Verify that H =

∑
b1,...,bn∈{0,1} f(b1, . . . , bn).

1. Parties compute JGK :=
∑

b1,...,bn∈{0,1} Jg(b1, . . . , bn)K, and open JH +GK.
2. For each round i ∈ [1, n],

(a) Parties P1, . . . ,PM locally compute

Jfi(Xi)K :=
∑

bi+1,...,bn∈{0,1}n
J(f + g)(r1, . . . , ri−1, Xi, bi+1, . . . , bn)K ,

whose degree is at most degi(f). Then they open the polynomial fi(Xi).
(b) If i = 1, all parties check H +G = f1(0) + f1(1). Otherwise, they check

fi−1(ri−1) = fi(0) + fi(1).
(c) Parties invoke FCoin to sample ri

$← F.
3. Parties P1, . . . ,PM compute J(f + g)(r1, . . . , rn)K and open it. All parties

check fn(rn) = (f + g)(r1, . . . , rn).
4. All parties accept if and only if all the above checks pass. Otherwise, they

reject and abort.

a XI := Xi1
1 · · ·Xin

n , where 0 ≤ ij ≤ degj(f), for j ∈ [1, n].

Theorem 4.1. Assume at most t corruptions, FCoin, and a sufficient number of
random shares, ΠDSumcheck realizes the ideal functionality FSumcheck that verifies
sumcheck relations with malicious security.

We briefly argue the soundness of ΠDSumcheck. The main observation is that
essentially the parties jointly emulate an honest prover. Note that the underlying
secret sharing scheme J·K is both linear and authenticated. Hence, the proof
message fi(Xi) in round i is actually shared in an authenticated way, meaning
that honest parties can detect whether these proof messages are opened correctly.
In addition, the verifier is honestly emulated by an ideal functionality FCoin,
leaving no room for adversarial manipulation. It is natural to assume the existence
of FCoin, since there is at least one honest party and FCoin can be instantiated
efficiently. Similarly, the correlated randomness Jg(X)K can also be assumed to
be generated by an ideal functionality. Informally, the soundness of ΠDSumcheck

reduces to the soundness of interactive proofs where both the prover and the
verifier are honest, which trivially holds.

Interestingly, the soundness of ΠDSumcheck does not rely on the soundness of
the Sumcheck protocol, which suggests that full authentication may not be strictly
necessary for achieving malicious security. Specifically, it may not be essential to

20



prevent the emulated prover from cheating, since the Sumcheck protocol itself
is secure against a malicious prover. To explore this, we examine the notion
of “minimal authentication”. At first glance, authentication is necessary for the
inputs, i.e., the statement to be checked. For instance, the adversary A should be
prevented from changing JHK arbitrarily, otherwise A can falsely “correct” and
prove incorrect sumcheck relations H ̸=

∑
f(X). However, since all messages

in ΠDSumcheck are essentially linear combinations of the inputs (and the public
randomness), then they are inherently authenticated as long as the inputs are
authenticated. We will see soon for many MPC scenarios it is not often the case
that all coefficients of f(X1, . . . , Xn) are explicitly shared among the parties.
Instead, the function f is more likely of the form:

f(X1, . . . , Xn) =
∏

i∈[1,ℓ]

fi(X1, . . . , Xn)

and coefficients of f1, . . . , fℓ are shared. Such cases are much more challenging, in
particular, if we do not further assume a multiplicative secret sharing scheme. On
the other hand, it in turn leaves us room to relax the full authenticated property.
Loosely speaking, the polynomial f = f1 · · · fℓ is not necessary to be shared with
authentication, since authenticated shares of f1, . . . , fℓ fully determine f and A
can not modify the statement. For instance, the well-known Shamir secret sharing
is robust (hence authenticated) against t < M/2 corruptions, denoted by [·]t, and
([a]t , [b]t) determines c = ab. The parties could obtain a non-authenticated share
of c = ab through local multiplications, denoted by [c]2t.

4.2 Sumcheck for Multiplication Verification in MPC

For semi-honest MPC protocols based on robust linear secret sharing schemes
that are secure up to additive attacks, it is well-known that to achieve malicious
security it suffices to verify multiplications [GIP+14,BBC+19,BGIN21]. In this
section, we aim at characterizing such multiplication verification problems using
sumcheck relations. Concretely, given JWoK , JWℓK , JWrK corresponding to the
outputs and inputs of multiplication gates in a circuit, the goal is to verify
Wo

?
= Wℓ ∗Wr, where ∗ denotes the entry-wise multiplication.

Notations. Let n ∈ N, N = 2n and define Wo,Wℓ,Wr ∈ FN . View Wo as
a function Wo : {0, 1}n → F, such that Wo(i) equals to the i-th entry of Wo,
for i ∈ {0, 1}n = [0, N − 1], and define Wℓ,Wr similarly. Denote multilinear
extensions(MLEs) of Wo,Wℓ,Wr by W̃o, W̃ℓ, W̃r, respectively.

We show two sumcheck relations induced by Wo = Wℓ ∗Wr. The first
follows the idea of GKR [GKR08] by defining a “wiring predicate” mult(z, x, y) :
{0, 1}n×{0, 1}n×{0, 1}n → {0, 1}, where mult(z, x, y) evaluates to 1 if and only
if inputs (z, x, y) correspond to the three wire labels of a multiplication gate of
the circuit. In this way, we have Wo(z) =

∑
x,y∈{0,1}n mult(z, x, y) ·Wℓ(x) ·Wr(y).

By the uniqueness of multilinear extensions, the above implies that

W̃o(z) =
∑

X,Y∈{0,1}n

m̃ult(z,X,Y) · W̃ℓ(X) · W̃r(Y).
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The above equation holds for any z ∈ Fn. Note that the Schwartz-Zippel Lemma
guarantees that for any W ∗

o ̸= Wo, z
$← Fn, W̃ ∗

o (z) equals to W̃o(z) with prob-
ability ≤ n/|F|. Hence, verifying a single random evaluation of W̃o suffices to
establish correctness, leading to a sumcheck relation. Applying the Sumcheck
protocol to this relation incurs 2n rounds, O(n) communication and O(N) prover
computation by using the optimization technique of [XZZ+19]. However, such
a sumcheck relation contains redundancy. Intuitively, the wiring predicate was
originally introduced for a general circuit consisting of addition gates and mul-
tiplication gates. In our setting, where only multiplication gates are involved,
an output wire label alone is sufficient to identify the gate, leading to further
optimizations.

As indicated in Section 2, inspired by the approach of [WJB+17], we introduce
the point predicate Pz(y) : {0, 1}n → {0, 1}, which evaluates to 1 if and only if
y = z and otherwise. We obtain the following relations as in Eq.(1):

W̃o(z) =
∑

Y∈{0,1}n

χY(z) · W̃ℓ(Y) · W̃r(Y)︸ ︷︷ ︸
fz(Y)

,

which holds for any z ∈ Fn. Applying the Sumcheck protocol on the above relation
would be more efficient, since there are only n variables to sum-up. However,
the parties do not hold explicit secret shares of the polynomial fz(Y), but only
secret shares of the coefficients of W̃ℓ(Y), W̃r(Y). Hence, ΠDSumcheck does not
directly apply, and we need to develop techniques that enable efficient sumcheck
verification while working with shared polynomial coefficients of W̃ℓ(Y), W̃r(Y).

5 MPC with an Honest Majority

In this section, we generalize the sumcheck techniques to work in the honest
majority MPC setting, where we additionally assume multiplicative secret sharing
schemes. Our result achieves efficiency comparable to semi-honest MPC protocols
in both computation and communication. Without lose of generality, we take
Shamir secret sharing (refer to Appendix A.1) as a concrete and representative
instantiation, denoted by [·]t. Formally, we assume M -party, t < M/2 corruptions,
and a sufficiently large field F, so that [·]t is robust (hence authenticated),
linear, and multiplicative. Now, the goal is to verify that secret-shared values
[Wo]t , [Wℓ]t , [Wr]t satisfy Wo = Wℓ ∗Wr. We first define additional notations
used in this section.
Notations. Assume Wo,Wℓ,Wr ∈ FN with N = 2n for some n ∈ N. Denote
their multilinear extensions(MLEs) by W̃o(Y), W̃ℓ(Y), W̃r(Y), respectively. Let
g(Y) := g0 +

∑n
i=1

∑3
j=1 gi,jY

j
i be a random sparse masking polynomial with

all coefficients shared among the parties. Define G :=
∑

Y∈{0,1}n g(Y). Accord-

ing to Eq.(1), we define fz(Y) := χz(Y) · W̃ℓ(Y) · W̃r(Y). For simplicity, for
r1 . . . rj−1, v ∈ F and bj+1, . . . , bn ∈ {0, 1} we define

V j
v := (r1, . . . , rj−1, v, bj+1, . . . , bn), Ŷj := (r1, . . . , rj−1, Yj , bj+1, . . . , bn).
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For each ω := (bj+1, . . . , bn) ∈ {0, 1}n−j , we abuse

f j
z,ω(Yj) := fz(Ŷj) = fz(r1, . . . , rj−1, Yj , bj+1, . . . , bn),

and one can see that f j
z,ω(v) = fz(V

j
v ). We also denote

f j
z (Yj) :=

∑
ω∈{0,1}n−j

(
fz(Ŷj) + g(Ŷj)

)
=

∑
ω∈{0,1}n−j

(
f j
z,ω(Yj) + g(Ŷj)

)
.

Given above notations, verifying Wo = Wℓ ∗Wr reduces to sampling z
$← F and

then applying the Sumcheck protocol to the relation

W̃o(z) +G =
∑

Y∈{0,1}n

(fz + g)(Y).

In a bare-bone sketch, in each round j, the verifier would receive a polynomial
f j
z (Yj), and verify that f j−1

z (rj−1) = f j
z (0)+f j

z (1). In the final round, the verifier
additionally checks fn

z (rn) = (fz + g)(r1, . . . , rn).
Distributed Sumcheck. In the MPC setting, inputs Wo,Wℓ,Wr and the
random masking polynomial g(Y) are shared among the parties. Note that the
secret sharing scheme [·]t is robust, linear, and multiplicative. A direct observation
is that W̃o(z)+G is authentically shared among parties. Moreover, for any y ∈ Fn

parties can locally compute [(fz + g)(y)]2t :=
[
W̃ℓ(y)

]
t
·
[
W̃r(y)

]
t
·χz(y)+[g(y)]t .

Hence, for each j ∈ [1, n], they can locally compute and reconstruct[
f j
z (Yj)

]
2t

:=
∑

ω∈{0,1}n−j

[
f j
z,ω(Yj)

]
2t
+

[
g(Ŷj)

]
t
.

We remark here that [·]2t is not authenticated, meaning that the adversary A can
open f j

z (Yj) to an arbitrary polynomial f∗j
z (Yj). This adversarial behavior does

not compromise security because the round-by-round soundness of the Sumcheck
protocol prevents any meaningful cheating. Essentially, all parties are involved in
emulating a (malicious) Sumcheck prover in the interactive proofs setting.

Verifying the final equation fn
z (rn) = (fz + g)(r1, . . . , rn) is more complicated.

The challenge arises because fn
z (Yn) is opened before rn being sampled while (fz+

g)(r1, . . . , rn) is not. If parties simply reconstruct [(fz + g)(r1, . . . , rn)]2t,A can al-
ways dishonestly pass the final check by opening it to the target fn

z (rn). Basically,
(fz + g)(r1, . . . , rn) = (W̃ℓW̃rχz + g)(r1, . . . , rn) should be computed and recon-
structed in an authenticated way. To this end, a naive approach would be to recon-
struct Shamir sharings of

[
W̃ℓ(r1, . . . , rn)

]
t
,
[
W̃r(r1, . . . , rn)

]
t

and [g(r1, . . . , rn)]t .

However, this leaks information about the inputs. We provide two solutions to the
above issue. The first is to compute

[
W̃ℓW̃r(r1, . . . , rn)

]
t
with the help of one ran-

dom Beaver triple ([a]t , [b]t , [c]t), and it suffices to open
[
W̃ℓ(r1, . . . , rn)− a

]
t
,

and
[
W̃r(r1, . . . , rn)− b

]
t
. Using local computation, parties can then obtain
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[(fz + g)(r1, . . . , rn)]t and open it in an authenticated way. This approach is
technically simple and only introduces a minor cost for preparing one triple.

Inspired by the zero-knowledge GKR technique from [XZZ+19], we show an al-
ternative method that avoids using Beaver triples while requires only 4 additional
random Shamir shares. At a high level, the idea is to mask W̃ℓ(Y), W̃r(Y) with
(low-degree) vanishing polynomials, such that it is allowed to open evaluations
meanwhile the sumcheck relation still holds. Specifically, we choose the vanishing
polynomials to be aYn(1 − Yn), bYn(1 − Yn), where a, b

$← F and parties hold
[a]t , [b]t. We reformulate the sumcheck relation as follows:

W̃o(z)+G =
∑

Y∈{0,1}n
χz(Y)·

(
W̃ℓ(Y) + aYn(1− Yn)

)︸ ︷︷ ︸
W̃ ′

ℓ
(Y)

·
(
W̃r(Y) + bYn(1− Yn)

)︸ ︷︷ ︸
W̃ ′

r(Y)

+g(Y).

(3)
The main observation is that for j ∈ [1, n− 1], it holds that

f j
z (Yj) =

∑
ω∈{0,1}n−j

(
f j
z,ω(Yj) + g(Ŷj)

)
=

∑
bj+1,...,bn∈{0,1}

(W̃ℓW̃rχz + g)(Ŷj)

=
∑

bj+1,...,bn∈{0,1}

(W̃ ′
ℓW̃

′
rχz + g)(Ŷj).

Thus, for rounds j ∈ [1, n− 1], parties can still reconstruct f j
z (Yj) as before. For

round n, instead of opening fn
z (Yn), parties reconstruct a degree-5 polynomial

f ′n
z (Yn) := χz(Ŷn) ·

(
W̃ℓ(Ŷn) + aYn(1− Yn)

)
·
(
W̃ℓ(Ŷn) + bYn(1− Yn)

)
+ g(Ŷn).

Since f ′n
z (Yn) has degree 5, for privacy, the random masking polynomial g(Y)

should be of degree-5 on variable Yn as well. It holds that fn−1
z (rn−1) = f ′n

z (0) +

f ′n
z (1) and in the end they check (f ′n

z + g)(rn) = (W̃ ′
ℓW̃

′
rχz + g)(r1, . . . , rn) by

opening Shamir shares
[
W̃ ′

ℓ(r1, . . . , rn)
]
t
:=

[
W̃ℓ(r1, . . . , rn)

]
t
+ rn(1− rn) · [a]t ,[

W̃ ′
r(r1, . . . , rn)

]
t
:=

[
W̃r(r1, . . . , rn)

]
t
+ rn(1− rn) · [b]t , and [g(r1, . . . , rn)]t .

By the randomness of [a]t , [b]t , [g(Y)]t, this approach ensures that no additional
information is leaked beyond verifying whether Wo = Wℓ ∗Wr.

In summary, the above specifications admit a distributed sumcheck protocol
for verifying N = 2n multiplications with O(n) rounds, O(n) communication,
consuming O(n) coins and O(n) random Shamir shares. Specifically, the commu-
nication costs consist of, reconstructions of 4n+6 elements, and n+1 invocations
of FCoin. The required randomness, beyond FCoin, is 3n+5 random Shamir shares.
Computational Complexity. We also place special emphasis on computational
efficiency. By introducing the bookkeeping table technique from [Tha13] to the
distributed setting, we achieve O(N +M logN) computation and O(N) memory
for each party. At a high level, all parties maintain three global bookkeeping
tables for W̃ℓ, W̃r,χz during the protocol, where the first two tables are shared
among parties via [·]t. We briefly outline the algorithms.
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For each round j, the global table Aj
ℓ (for W̃ℓ(Y)) stores 2n−j+1 values

W̃ℓ (r1, . . . , rj−1, bj , bj+1, . . . , bn) ,

for all bj , bj+1 . . . bn ∈ {0, 1}. Given a fixed ω := (bj+1 . . . bn) ∈ {0, 1}n−j , one can
interpolate a degree-1 polynomial W̃ j

ℓ,ω(Yj) such that W̃ j
ℓ,ω(v) = Aj

ℓ(v∥ω), for v ∈
{0, 1}. Since W̃ j

ℓ,ω(Yj) corresponds to W̃ℓ(Ŷj), where Ŷj := (r1 . . . rj−1, Yj , bj+1 . . . bn),
evaluating W̃ j

ℓ,ω(Yj) at rj yields W̃ℓ(r1 . . . rj−1, rj , bj+1 . . . bn), i.e., the ω-entry
of table Aj+1

ℓ . Formally, for each ω = (bj+1 . . . bn) ∈ {0, 1}n−j , the table Aj+1
ℓ

updates as
Aj+1

ℓ (ω) := (1− rj)A
j
ℓ(0∥ω) + rjA

j
ℓ(1∥ω).

Hence, for each j ∈ [1, n−1],
[
Aj+1

ℓ

]
t
can be locally computed from

([
Aj

ℓ

]
t
, rj

)
using O(2n−j) operations in F. Since A1

ℓ stores all N evaluations of W̃ℓ(Y)
(i.e., Wℓ), parties initialize

[
A1

ℓ

]
t

and iteratively compute subsequent tables by∑n
j=1 O(2n−j) = O(N) operations in F.
The same procedure applies to the tables

[
Aj

r

]
t
,Aj

χ for W̃r(Y),χz(Y),
respectively. There is a minor difference in obtaining A1

χ, which requires additional
computations. Since χz(Y) =

∏n
i=1(ziYi + (1− zi)(1− Yi)) is highly structured,

the table A1
χ can be easily prepared in O(N) time. In particular, Appendix D.1

presents an efficient algorithm with only N +O(
√
N) multiplications.

Given the bookkeeping tables
[
Aj

ℓ

]
t
,
[
Aj

r

]
t

and Aj
χ for round j, the parties

interpolate linear polynomials
[
W̃ℓ(Ŷj)

]
t
,
[
W̃r(Ŷj)

]
t

and χz(Ŷj), and compute
two additional evaluations at points v ∈ {−1, 2}, for each bj+1, . . . , bn ∈ {0, 1}.
These evaluations determine

[
f j
z,ω(Yj)

]
2t

:=
[
fz(Ŷj)

]
2t

and further

[
f j
z (Yj)

]
2t

:=
∑

ω∈{0,1}n−j

([
f j
z,ω(Yj)

]
2t
+

[
g(Ŷj)

]
t

)
.

Since [g(Y)]t is sparse with only 3n+3 terms, computing evaluations of
[
g(Ŷj)

]
t

is much cheaper.
We give a self-contained distributed Sumcheck protocol ΠVrfy for verifying

multiplications with a detailed computational cost analysis in Appendix D.1.

Protocol 3: ΠVrfy

Let n ∈ N and N = 2n. Let [·]t denote an M -party Shamir secret sharing
scheme over F. Assume at most t < M/2 parties are corrupted and access to
functionalities FCoin and FShamir.
Input: [Wo]t , [Wℓ]t , [Wr]t, where Wo,Wℓ,Wr ∈ FN .
Randomness: [a]t , [b]t and [g(Y)]t := [g0]t + [gn,4]t · Y

4
n + [gn,5]t · Y

5
n +
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∑n
i=1

∑3
j=1 [gi,j ]t · Y

j
i , where a, b, g0, gi,j are uniformly random in F.

Goal: Verify that Wo = Wℓ ∗Wr.

1. Parties P1, . . . ,PM invoke FCoin to obtain z
$← F.

2. Each party computes
[
W̃o(z)

]
t
:=

∑
ω∈{0,1}n [Wo(ω)]t · χω(z) and [G]t :=∑

b1...bn∈{0,1} [g(b1, . . . , bn)]t. Then they securely open
[
W̃o(z) +G

]
t
.

3. For round j ∈ [1, n− 1]:
(a) Compute the bookkeeping tables

[
Aj

ℓ

]
t
,
[
Aj

r

]
t
,Aj

χ.
(b) For each ω := (bj+1, . . . , bn) ∈ {0, 1}n−j , Compute

[
f j
z,ω(Yj)

]
2t

i. Obtain
[
Aj

ℓ(0∥ω)
]
t
,
[
Aj

ℓ(1∥ω)
]
t

from table
[
Aj

ℓ

]
t

and interpolate

the polynomial
[
W̃ℓ(Ŷj)

]
t
. (Obtain

[
W̃r(Ŷj)

]
t
,χz(Ŷj) similarly.)

ii. Evaluate
[
W̃ℓ(Ŷj)

]
t

at Yj ∈ {−1, 2} to obtain
[
W̃ℓ(V

j
−1)

]
t
,[

W̃ℓ(V
j
2 )

]
t
. (Also evaluate

[
W̃r(Ŷj)

]
t
,χz(Ŷj) at Yj ∈ {−1, 2}.)

iii. Interpolate a degree-3 polynomial
[
f j
z,ω(Yj)

]
2t

, such that[
f j
z,ω(v)

]
2t

:=
[
W̃ℓ(V

j
v )

]
t

[
W̃r(V

j
v )

]
t
· χz(V

j
v ), for v ∈ {0,±1, 2}.

(c) Let
[
f j
z (Yj)

]
2t

:=
∑

ω∈{0,1}n−j

([
f j
z,ω(Yj)

]
2t

+
[
g(Ŷj)

]
t

)
.

(d) Open f j
z (Yj) of degree 3. If j = 1, all parties verify f1

z (0) + f1
z (1) =

W̃0(z) +G, otherwise f j
z (0) + f j

z (1) = f j−1
z (rj−1).

(e) Invoke FCoin to obtain rj
$← F.

4. For round j = n:
(a) Compute the bookkeeping tables [An

ℓ ]t , [A
n
r ]t ,A

n
χ.

(b) Obtain [An
ℓ (0)]t , [A

n
ℓ (1)]t from the table [An

ℓ ]t and interpolate the
polynomial

[
W̃ℓ(Ŷn)

]
t
. (Obtain

[
W̃r(Ŷn)

]
t
,χz(Ŷn) similarly.)

(c) Evaluate
[
W̃ℓ(Ŷn)

]
t

at Yj ∈ {−1,±2, 3}, and obtain
[
W̃ℓ(V

n
v )

]
t
, for

v ∈ {−1,±2, 3}. (Also evaluate
[
W̃r(Ŷn)

]
t
,χz(Ŷn) at {−1,±2, 3}.)

(d) Interpolate a degree 5 polynomial [f ′n
z (Yn)]2t such that [f ′n

z (v)]2t :=( [
W̃ℓ(V

n
v )

]
t
+[a]t v(1−v)

)( [
W̃r(V

n
v )

]
t
+[b]t v(1−v)

)
·χz(V

n
v )+g(V n

v )

for each v ∈ {0,±1,±2, 3}.
(e) Open f ′n

z (Yn). All parties check f ′n
z (0) + f ′n

z (1) = fn−1
z (rn−1).

(f) Invoke FCoin to obtain rn
$← F. Additionally, define r := (r1 . . . rn).

5. Parties compute and open
[
W̃ ′

ℓ(r)
]
t

:=
[
W̃ℓ(r)

]
t
+ rn(1 − rn) · [a]t,[

W̃r(r)
]
t
:=

[
W̃r(r)

]
t
+ rn(1− rn) · [b]t, [g(r)]t.

6. All parties verify f ′n
z (rn) = (χz · W̃ ′

ℓ · W̃ ′
r + g)(r).

7. All parties accept if and only if all above checks pass. Otherwise, reject.

Theorem 5.1. ΠVrfy securely realizes the functionality FVrfyMult in the (FCoin,FShamir)-
hybrid model against a static malicious adversary who corrupts at most t parties,
where t < M/2. Specifically, ΠVrfy has the following properties:
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– Computational complexity O(N +M logN).
– Communication complexity O(logN). Concretely, parties reconstruct 4 logN+

6 secret shared values, and consume 3 logN + 5 random Shamir shares from
FShamir, logN + 1 random coins from FCoin.

– Round complexity O(logN).
– The adversary A has an advantage of at most 4 logN+2

|F| .

Proof. The detailed security proof is given in Appendix C.1. Here, we briefly
discuss the computational complexity of ΠVrfy, which mainly consists of three
parts, emulations of the Sumcheck prover, reconstructions of the proof messages,
and verification of the proof. Specifically in each round j, computing the secret-
shared proof message

[
f j
z (Yj)

]
2t

takes O(2n−j) computations, opening Shamir
secrets f j

z (Yj) takes O(M) computations5, and verifying f j−1
z (rj−1) = f j

z (0) +
f j
z (1) takes O(1) computations. Hence, the total computational cost per party is
O(N +M logN) with an overall O(logN) = O(n) rounds. ⊓⊔

Remark 5.2. We then apply ΠVrfy to the well-known semi-honest protocol by
Damgård and Nielsen [DN07] with the optimizations from [GS20,GSZ20], which
requires communication complexity of 5.5N field elements per multiplication
gate per party, O(NM) field operations for a designated king party, and O(N)
field operations for each remaining party. To integrate ΠVrfy efficiently, we can
also employ the king party approach, and let the king party to recover the proof
message f j

z (Yj)
6. The resulting malicious protocol retains the same efficiency

in terms of both computation and communication. Specifically, the additional
communication is O(logN) field elements per party, while for computation, the
king party incurs only an additional O(N + M logN) operations, and every
remaining party incurs an additional O(N) operations.

6 MPC with a Dishonest Majority

In this section, we further tackle the dishonest majority setting, where we no
longer assume multiplicative secret sharing schemes. By developing the distributed
sumcheck techniques, we consequently obtain a concretely efficient MPC pro-
tocol with sublinear preprocessing, and online communication of 5 + o(1) field
elements per multiplication gate per party. W.l.o.g, we take SPDZ-like [DPSZ12]
authenticated secret sharing (see Appendix A.2) as a concrete and representative
instantiation.

Authenticated Beaver triples serve as an essential building block for designing
modern MPC protocols, particularly in settings against a malicious majority.
An authenticated Beaver triple over F is a tuple of random authenticated shares
(JxK , JyK , JzK), satisfying x, y

$← F and z = x · y. Given a sufficient amount of au-
thenticated triples, the MPC online protocol can be executed efficiently, with com-
munication of 2 + o(1) field elements per multiplication gate per party [DPSZ12].
5 We assume the Lagrange coefficients to recover the secrets have been pre-computed.
6 The king party has not to be fixed in different rounds. Moreover, ΠVrfy can also be

applied to the ATLAS protocol [GLO+21].
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However, generating authenticated Beaver triples often constitutes a major bot-
tleneck in overall complexity. Unlike other types of correlations, e.g. standard
Beaver triples, authenticated shares that can be generated in sublinear commu-
nication by using efficient programmable pseudorandom correlation generators
(PCGs) [BCG+19]. To our best knowledge, existing efficient PCGs for authenti-
cated Beaver triples [BCG+20,BCCD23,LXYY25] are currently restricted to the
two-party case.

6.1 Checking Unverified Authenticated Beaver Triples

Before introducing our dishonest majority MPC protocols, we first study a fun-
damental problem: verification of the unverified authenticated triple relations.
Basically, for SPDZ-like protocols, correctness of the random authenticated triples
should be ensured before the online phase. To securely generate N valid authen-
ticated triples, a typical method is to first generate 2N unverified authenticated
triples via a semi-honest protocol, and then sacrifice half of them for verification,
which incurs at least 2× overhead. However, such 2× overhead is not so satisfying,
since the underlying semi-honest protocols are usually expensive.

We propose an alternative method for validating unverified authenticated
Beaver triples by introducing the powerful sumcheck idea into the context.
Concretely, for verifying N unverified authenticated Beaver triples, our sumcheck-
based approach only requires additional correlated randomness of N +1 standard
Beaver triples, and 3 logN + 5 random authenticated sharings, which are signifi-
cantly cheaper to generate than N authenticated Beaver triples. Our approach
builds on the high-level ideas of ΠVrfy from Section 5. The major difference and
challenge is that the underlying secret sharing scheme is no longer multiplicative.
Notations. Suppose N = 2n for some n ∈ N. Let [·] denote an additive secret
sharing scheme and J·K denote the SPDZ authenticated secret sharing scheme.
Let JWoK , JWℓK , JWrK be the inputs, where parties want to check Wo = Wℓ ∗
Wr. Denote W̃o, W̃ℓ, W̃r : Fn → F as the multilinear extensions (MLEs) of
Wo,Wℓ,Wr ∈ FN , respectively. Let g be a random sparse polynomial of the
form g(Y) := g0+ gn,4Y

4
n + gn,5Y

5
n +

∑n
i=1(gi,1Yi+ gi,2Y

2
i + gi,3Y

3
i ), and z

$← Fn.
Define polynomials h(Y) = W̃ℓ(Y)·W̃r(Y), h′(Y) = W̃ ′

ℓ(Y)·W̃ ′
r(Y), fz(Y) =

χzW̃ℓW̃r(Y) and f ′
z(Y) = χzW̃

′
ℓW̃

′
r(Y), where W̃ ′

ℓ(Y) = W̃ℓ(Y) + aYn(1− Yn),

W̃ ′
r(Y) = W̃r(Y) + bYn(1 − Yn), and a, b

$← F. Let G =
∑

Y∈{0,1}n g(Y). The
parties essentially check the same sumcheck relation as in ΠVrfy:

W̃o(z) +G =
∑

Y∈{0,1}n

(f ′
z(Y) + g(Y)) =

∑
Y∈{0,1}n

(χzW̃
′
ℓW̃

′
r + g)(Y). (4)

For each j ∈ [1, n − 1] and ω := (bj+1, . . . , bn) ∈ {0, 1}n−j , we simply denote
Ŷj = (r1 . . . rj−1, Yj , bj+1 . . . bn) and define polynomials

hj
ω(Yj) = h(Ŷj), h′j

ω (Yj) = h′(Ŷj), χj
z,ω(Yj) = χz(Ŷj)

f j
z,ω(Yj) = fz(Ŷj), f ′j

z,ω(Yj) = f ′
z(Ŷj).
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Note that for j ∈ [1, n− 1], h(Ŷj) = h′(Ŷj) and therefore fz(Ŷj) = f ′
z(Ŷj).

For j ∈ [1, n − 1], define f j
z (Yj) =

∑
ω∈{0,1}n−j

(
f j
z,ω(Yj) + g(Ŷj)

)
and for

j = n, simply denote f ′n
z,ω(Yn) as f ′n

z (Yn). Recall that if applying the Sumcheck
protocol to Eq.(4), the verifier will receive a degree-3 polynomial f j

z (Yj) in each
round j ∈ [1, n−1] and a degree-5 polynomial f ′n

z (Yn) in the final round n. These
polynomials should satisfy f1

z (0)+f1
z (1) = W̃o(z)+G, f j

z (0)+f j
z (1) = f j−1

z (rj−1),
for j ∈ [2, n− 1], and f ′n

z (0) + f ′n
z (1) = fn−1

z (rn−1) by definition.
Apply distributed Sumcheck to Eq.(4). The technical difficulty comes from
J·K is not multiplicative, hence the parties can no longer locally compute sharings
of fz(Ŷj) and further f j

z (Yj) from
r
W̃ℓ(Ŷj)

z
,
r
W̃r(Ŷj)

z
. As shown in Section 5

that f j
z (Yj) has not to be authentically shared, it suffices to use standard Beaver

triples to compute
[
f j
z (Yj)

]
. We remark that the techniques used for achieving

privacy (i.e., zero-knowledge) in Section 5 can naturally apply to this setting.
Therefore, we concentrate on minimizing the number of consumed Beaver triples.

A direct approach. At a first glance, for each round j, parties need to reconstruct a
polynomial f j

z (Yj) as f j
z (Yj) :=

∑
ω∈{0,1}n−j

(
f j
z,ω(Yj) + g(Ŷj)

)
. Note that each

f j
z,ω(Yj) has degree 3 and is defined as f j

z,ω(Yj) = χz(Ŷj) · W̃ℓ(Ŷj) · W̃r(Ŷj). Since
χz(Ŷj) is publicly known to all parties, and the parties can locally compute shares
W̃ℓ(Ŷj), W̃r(Ŷj) from JWℓK , JWrK, it suffices to compute shares of 4 evaluations
of f j

z,ω(Yj) via 4 Beaver triples. These amount to total 6+
∑n−1

j=1 4 ·2n−j = 4N−2
Beaver triples over n rounds (the term “6” is due to that f ′n

z (Yn) has degree 5).

An optimization via bookkeeping tables. We show the above 4N − 2 triples can be
reduced to 2N +1 via bookkeeping tables. Note that given JWℓK , JWrK, for each
round j ∈ [1, n], parties can locally compute the sharings of bookkeeping tables
Aj

ℓ ,A
j
r for W̃ℓ(Y), W̃r(Y), respectively. Based on

r
Aj

ℓ

z
,
q
Aj

r

y
, we let parties

also maintain a global bookkeeping table Ah for h(Y) = (W̃ℓW̃r)(Y). Specifically,
for each j ∈ [1, n], the global table Aj

h contains 3 · 2n−j entries

h(r1, . . . , rj−1, v, bj+1, . . . , bn),

where v ∈ {0,±1}, bj+1 . . . bn ∈ {0, 1}. It is not hard to see that given
[
Aj

h

]
,

parties are able to locally compute
[
f j
z (Yj)

]
.

Now we examine the costs of maintaining bookkeeping tables for h(Y).
Assume parties hold

[
Aj

h

]
. For each ω := (bj+1 . . . bn) ∈ {0, 1}n−j ,

[
hj
w(Yj)

]
can be locally computed from

[
Aj

h(0∥ω)
]
,
[
Aj

h(1∥ω)
]
,
[
Aj

h(−1∥ω)
]
, and thus

one can evaluate
[
hj
w(Yj)

]
at rj to obtain

[
Aj+1

h (ω)
]
. To complete the next

table
[
Aj+1

h

]
, we rely on the two tables

r
Aj+1

ℓ

z
,
q
Aj+1

r

y
. Recall that V j+1

v :=

(r1 . . . rj , v, bj+2 . . . bn) and Aj+1
h (−1∥bj+2 · · · bn) = h(V j+1

−1 ) = (W̃ℓW̃r)(V
j+1
−1 ),
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where
r
W̃ℓ(V

j+1
−1 )

z
(similarly for

r
W̃r(V

j+1
−1 )

z
) can be locally computed from

r
Aj+1

ℓ (0∥bj+2 · · · bn)
z
,
r
Aj+1

ℓ (1∥bj+2 · · · bn)
z
. Hence, one standard Beaver triple

suffices to compute
[
Aj+1

h (−1∥bj+2 · · · bn)
]

for each bj+2 . . . bn ∈ {0, 1}. Similarly,

the first table
[
A1

h

]
can be computed from

q
A1

ℓ

y
,
q
A1

r

y
by consuming 3 · 2n−1

Beaver triples. These amount to total 3 ·2n−1+(
∑n−1

j=2 2n−j)+3 = 2N +1 Beaver
triples in n rounds (the last term of “3” is due to (W̃ ′

ℓW̃
′
r)(Ŷn) has degree 4 rather

than 2, and two more evaluations are required).

The final optimization. Our final optimization comes from observing that
[
A1

h

]
can be obtained by using only 2n−1 Beaver triples. In more detail, recall that for
each ω := (b2, . . . , bn) ∈ {0, 1}n−1 and for v ∈ {0, 1},

A1
h(v∥ω) = A1

ℓ(v∥ω)A1
r(v∥ω) = W̃ℓ(V

1
v )W̃r(V

1
v ) = W̃o(V

1
v )

where W̃o(V
1
v ) corresponds to the (v∥ω)-th entry of Wo and has already been

shared. Hence, there is no need to compute these 2n shares from JWℓK , JWrK,
and we can reuse JWoK.
Missing pieces. A missing piece is that as in ΠVrfy, authenticated openings
are required, i.e., W̃o(z) +G, W̃ ′

ℓ(r1, . . . , rn), W̃
′
r(r1, . . . , rn), g(r1, . . . , rn), which

are shared by J·K. To this end, we can apply the standard SPDZ MAC check
mechanism [DKL+13], presented in πVrfyMAC. We also give formal descriptions
of required functionalities, FCoin,FCommit,FAuth, and FTriple. Specifically, FCoin

provides random consistent values to the parties, and FCommit is used in πVrfyMAC.
Besides, FAuth, FTriple provide correlated randomness of random authenticated
sharings, and random Beaver triples, respectively. Note that A is allowed to
introduce additive errors to triples produced by FTriple. Putting all pieces together,
we present ΠVrfyAuTriple that employs the sumcheck idea to check unverified
authenticated multiplication triples. The security proof is presented in Appendix
C.2.

Protocol 4: πVrfyMAC

Input: Jx1K , . . . , JxℓK, where x1, . . . , xℓ ∈ F are opened to all parties.
Goal: All parties verify the MACs of Jx1K , . . . , JxℓK.

1. Parties invoke FCoin and obtain α1, . . . , αℓ ∈ F.
2. Parties compute [σ] :=

∑ℓ
j=1 αj([∆]xj −

[
Mxj

]
). Each party calls FCommit

with input [σ].
3. With [σ] being committed, parties open their commitments and check that∑M

i=1 σi
?
= 0. If not, output reject, else output accept.
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Protocol 5: ΠVrfyAuTriple

The goal is to verify N = 2n (unverified) authenticated Beaver triples (produced
by FAuTripleE). Assume access to FCoin,FCommit,FAuth,FTriple in an M -party setting.
Input: JWℓK , JWrK , JWoK with Wℓ,Wr,Wo ∈ FN .
Correlated Randomness: N + 1 random Beaver triples. In addition, 3n+ 5
random authenticated shares JaK , JbK with JgK specifying an n-variable polyno-
mial g(Y1, . . . , Yn) = g0 + gn,4Y

4
n + gn,5Y

5
n +

∑n
i=1(gi,1Yi + gi,2Y

2
i + gi,3Y

3
i ).

Goal: All parties verify that Wo = Wℓ ∗Wr.

1. Parties P1, . . . ,PM invoke FCoin to obtain z
$← Fn.

2. Each party locally computes
r
W̃o(z)

z
:=

∑
ω∈{0,1}n JWo(ω)K · χω(z) and

JGK :=
∑

b∈{0,1}n Jg(b1, . . . , bn)K. Then they open W̃o(x) + G and check
using πVrfyMAC. If incorrect, all parties reject and abort.

3. For round j ∈ [1, n− 1]: consume 2n−j Beaver triples to obtain
[
f j
z (Yj)

]
.

(a) Locally compute the bookkeeping tables
q
Aj

ℓ

y
,
q
Aj

r

y
,Aj

χ, and part of[
Aj

h

]
(i.e.,

[
Aj

ℓ(v∥ω)
]
, for v ∈ {0, 1}, ω ∈ {0, 1}n−j).

(b) For each ω := (bj+1, . . . , bn) ∈ {0, 1}n−j ,
i. Obtain

r
W̃ℓ(V

j
0 )

z
:=

q
Aj

ℓ(0∥ω)
y
,

r
W̃ℓ(V

j
0 )

z
:=

q
Aj

ℓ(1∥ω)
y

from

the table
q
Aj

ℓ

y
and interpolate the polynomial

r
W̃ℓ(Ŷj)

z
. (Inter-

polate
r
W̃r(Ŷj)

z
,χz(Ŷj) similarly.)

ii. Evaluate
r
W̃ℓ(Ŷj)

z
,
r
W̃r(Ŷj)

z
at point −1 to obtain

r
W̃ℓ(V

j
−1)

z
,

r
W̃r(V

j
−1)

z
. Then, evaluate χz(Ŷj) at points −1, 2 and obtain

χz(V
j
−1),χz(V

j
2 ).

iii. Compute
[
Aj

h(−1∥ω)
]
:=

[
W̃ℓ(V

j
−1)W̃r(V

j
−1)

]
using one Beaver

triple. Fill in the table
[
Aj

h

]
.

iv. Interpolate the polynomial
[
hj
ω(Yj)

]
of degree 2 satisfying[

hj
ω(v)

]
:=

[
Aj

h(v∥ω)
]
, for v ∈ {0,±1}. Then evaluate

[
hj
ω(Yj)

]
at

point 2, i.e., obtain
[
h(V j

2 )
]
.

v. Interpolate the polynomial
[
f j
z,ω(Yj)

]
of degree 3 such that[

f j
z,ω(v)

]
:=

[
hj
ω(v)

]
· χz(V

j
v ), for v ∈ {0,±1, 2}.

(c) Compute
[
f j
z (Yj)

]
:=

∑
ω∈{0,1}n−j

([
f j
z,ω(Yj)

]
+ Jg(r1, . . . , rj−1, Yj , ω)K

)
.

(d) Open f j
z (Yj) of degree 3. If j = 1, all parties check f1

z (0) + f1
z (1) =

W̃0(z) +G, otherwise, they check f j
z (0) + f j

z (1) = f j−1
z (rj−1).

(e) Invoke FCoin to obtain rj
$← F.

4. For round j = n: consume 3 Beaver triples to obtain [f ′n
z (Yn)].

(a) Compute the bookkeeping tables JAn
ℓ K , JAn

r K ,An
χ, and part of [An

h].
(b) Read JAn

ℓ (0)K , JA
n
ℓ (1)K from the table JAn

ℓ K and interpolate the poly-
nomial

r
W̃ℓ(Ŷn)

z
. (Obtain

r
W̃r(Ŷn)

z
,χz(Ŷn) similarly.)

(c) Evaluate
r
W̃ℓ(Ŷn)

z
,
r
W̃r(Ŷn)

z
at points −1,±2, and obtain

r
W̃ ′

ℓ(V
n
v )

z
:=

r
W̃ℓ(V

n
v )

z
+ JaK v(1 − v),

r
W̃ ′

r(V
n
v )

z
:=

r
W̃r(V

n
v )

z
+

JbK v(1− v) for v ∈ {−1,±2}. Evaluate χz(Ŷn) at points −1,±2, 3.
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(d) Use 3 Beaver triples to compute
[
W̃ ′

ℓ(V
n
v )W̃ ′

r(V
n
v )

]
, for v ∈ {−1,±2}.

(e) Interpolate the polynomial [h′(Yn)] of degree 4 satisfying [h′(0)] :=

JAn
h(0)K, [h′(1)] := JAn

h(1)K, and [h′(v)] :=
[
W̃ ′

ℓ(V
n
v )W̃ ′

r(V
n
v )

]
, for

v ∈ {−1,±2}. Then evaluate [h′(Yn)] at point 3.
(f) Interpolate the polynomial [f ′n

z (Yn)] of degree 5 such that [f ′n
z (v)] :=

[h′(v)] · χ(V n
v ) + Jg(V n

v )K, for v ∈ {−1,±2, 3}.
(g) Open f ′n

z (Yn). All parties check f ′n
z (0) + f ′n

z (1) = fn−1
z (rn−1).

(h) Invoke FCoin to obtain rn
$← F. Additionally, define r := (r1 . . . rn).

5. Parties locally compute and open
r
W̃ ′

ℓ(r)
z
:=

r
W̃ℓ(r)

z
+ rn(1− rn) · JaK,

r
W̃ ′

r(r)
z
:=

r
W̃r(r)

z
+ rn(1− rn) · JbK, Jg(r)K. They check the openings by

invoking πVrfyMAC. If the openings are incorrect, all parties reject.
6. All parties verify f ′n

z (rn) = (χz · W̃ ′
ℓ · W̃ ′

r + g)(r).
7. All parties accept if and only if all above checks pass. Otherwise, reject.

Theorem 6.1. ΠVrfyAuTriple securely realizes the functionality FVrfyAuTriple in the
(FCoin,FCommit,FTriple,FAuth)-hybrid model against a static malicious adversary
corrupting up to M−1 parties. Moreover, ΠVrfyAuTriple has the following properties:

– Computational complexity: each party performs O(N) operations over F.
– Communication complexity: each party sends 4 logN + 6 elements (for re-

constructions), and 2(N + 1) elements (for Beaver triple openings), calls
FCommit(for checking MACs) twice.

– Correlated randomness: the parties consume N+1 random Beaver triples from
FTriple, 3 logN + 5 random authenticated shares from FAuth, and logN + 4
random coins from FCoin.

– Round complexity O(logN).
– The adversary A has an advantage of at most 4 logN+4

|F| .

Remark 6.2. Let ΠAuTriple := (FAuTripleE, ΠVrfyAuTriple) be a protocol that first in-
vokes FAuTripleE to generate unverified authenticated triples and then applies
ΠVrfyAuTriple to verify the validity of these triples. It is readily to see that
ΠAuTriple securely realizes FAuTriple that produces fully verified authenticated
Beaver triples. Furthermore, such triples can directly fit SPDZ online protocol
while LeMans [RS22] cannot produce SDPZ-type authenticated triples.

6.2 Malicious MPC with a Dishonest Majority

In this section, we design a malicious MPC protocol by leveraging ΠVrfyAuTriple

to check multiplication gates, where the preprocessing phase can be realized in
sublinear communication and the online phase only sends 5 + o(1) field elements
per multiplication gate per party.

We follow a similar high-level strategy to Le Mans [RS22]. The main observa-
tion is that partially authenticated multiplication triples (JaK , JbK , [c]) also suffice
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for online circuit evaluations, provided that additional procedures of authenti-
cating c and checking multiplication gates are applied. In particular, Le Mans
adopts a checking method inspired by “dual execution” that requires 4 + o(1)
additional field elements per multiplication gate per party. Moreover, as shown
in Le Mans, partially authenticated multiplication triples can be generated in
sublinear communication by utilizing the programmability of PCGs for OLE and
PCGs for VOLE7. Therefore, the overall asymptotic communication complexity
by Le Mans’ approach is 6 + o(1) field elements per multiplication gate per party.

We present an efficient MPC protocol ΠMPC, where multiplication gates are
instead verified by ΠVrfyAuTriple. The functionality for preprocessing is presented in
FPrep, which can be instantiated with programmable PCGs as shown in [RS22].

Protocol 6: ΠMPC

Let C be a circuit consisting of N = 2n multiplication gates and ℓ input gates
involving M parties.
Initialize: The parties prepare correlated randomness as follows:

1. Invoke FPrep on input (Initialize) to get a MAC key share ∆i ∈ F.
2. Invoke FPrep on input (Input,Pi) for all parties to obtain random authenti-

cated shares JrK where Pi learns r, for every input that Pi will provide.
3. Invoke FPrep on input (AuShare, N+3n+5) to obtain N+O(n) authenticated

shares together with their MAC key.
4. Invoke FPrep on input (Triple, N+1) to obtain N+1 standard Beaver triples

(where the adversary may inject additive errors).
5. Invoke FPrep on input (AuTriple, N) to obtain N unverified authenticated

triples (where the adversary may inject additive errors).

Input: To share an input x held by party Pi:

1. Let JrK be an unused random authenticated share. Pi sends x − r to all
other parties.

2. The parties compute JxK := JrK + (x− r).

Add: To add two values JxK and JyK, the parties locally compute JzK = JxK+JyK.
Mult: To multiply two values JxK and JyK:

1. Let (JaK , JbK , [c]) be an unused partially authenticated triple and JrK a
random authenticated share. The parties open JxK− JaK as α, JyK− JbK as
β and [c]− JrK as γ.

2. They locally compute JzK = JrK + γ + α JbK + β JaK + αβ.

Output: After the evaluation, to output a value JzK:

1. Call the procedure πVrfyMAC to check the MACs on the values that have
been opened in multiplications.

7 In fact, the state-of-art-art PCGs for OLEs and VOLEs are based on different
paradigms and different variants of LPN assumptions. Hence, their seeds cannot be
directly reused and instead a tailored PCG for VOLE is used.
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2. Let Wo,Wℓ,Wr ∈ FN be the outputs and inputs corresponding to
N multiplication gates in C. The parties invoke ΠVrfyAuTriple on inputs
JWoK , JWℓK , JWrK.

3. If both πVrfyMAC and ΠVrfyAuTriple output accept, then the parties securely
open JzK. Otherwise, the parties abort.

Remark 6.3. Although ΠVrfyAuTriple assumes errors are only introduced in the
output wires, this still suffices to ensure security. The reason is that if A wants
to introduce an additive error to some input wire, the error can be reduced to
deviations in certain output wire of previous gates, which then will be caught by
ΠVrfyAuTriple with high probability.

Corollary 6.4. ΠMPC securely realizes the FMPC in the (FPrep,FCoin,FCommit)-
hybrid model against a static malicious adversary corrupting at most M − 1
parties. Moreover, ΠMPC has the following properties:

– Computational complexity: O(N).
– Communication: 5N+2 openings (3N in multiplications, 2N+2 in ΠVrfyAuTriple);

4 logN + 6 reconstructions in ΠVrfyAuTriple; ℓ broadcasts in inputs; O(1) invo-
cations of πVrfyMAC;

– Round complexity: O(depth(C) + logN).

Remark 6.5. Note that for dishonest majority, we also benefit from a king party
optimization, since the Sumcheck proof messages have not to be robustly re-
constructed. In addition, we can support arbitrary finite fields and rings Zpk

via using Galois extensions, incurring a λ× overhead, where λ is the security
parameter.
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Supplementary Material
A More Preliminaries & Functionalities

A.1 Shamir Secret Sharing Scheme

Recall the Shamir secret sharing scheme [Sha79]. Consider an M -party setting over
a finite field F. A degree t Shamir sharing of s ∈ F is denoted as [s]t := (s1 . . . sM )
such that there exists a degree t polynomial f(·) ∈ F[X] satisfying:

f(0) = s and ∀i ∈ [1,M ], f(i) = si.

Definition A.1 (Multplicative Secret Sharing Scheme). If ∀x, y ∈ F, [x] :=
(x1 . . . xM ), [y] := (y1 . . . yM ), there exists a recombination vector z := (z1 . . . zM )
such that ∑

j∈[1,M ]

zj · xjyj = x · y.

The linear secret sharing scheme [·] is called multiplicative.

Note that Shamir secret sharing scheme is multiplicative as the entry-wise product
can be viewed as a degree 2t polynomial evaluation and thus there always exists
a recombination vector z from Lagrange interpolation.

Definition A.2 (Double Sharings). A double sharing for Shamir secret shar-
ing scheme is a pair of the form ([r]t , [r]2t), where r is uniformly random and
unknown to the adversary.

The double sharings can be used to reduce the degree from 2t to t during multi-
plications. [DN07] proprosed an efficient approach to produce double sharings,
with linear amortized communication cost per double-sharing.

A.2 SPDZ Sharing [DPSZ12]

Consider an M -party setting over a field F. Formally, the authenticated secret-
sharing of x ∈ F is defined as:

JxK = (∆i, xi,Mx,i)
M
i=1 such that

∑
i

xi = x, and
∑
i

Mx,i = x ·
∑
i

∆i,

where xi, ∆i,Mx,i ∈ F are held by party Pi. We call ∆ :=
∑

i ∆i the global key
and Mx :=

∑
i Mx,i the MAC key of x, where the global key shares ∆i are fixed

for every shared x. This structure ensures authentication, in the sense that JxK is
binding to x.

A.3 Functionalities
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Functionality 1: FMPC

On receiving inputs x1, x2, . . . , xℓ from the parties, send C(x1, x2, . . . , xℓ) to all
parties.

Functionality 2: FCoin

FCoin samples r
$← F and sends it to all parties.

Functionality 3: FCommit

Commit: On input (Commit,Pi, x, τx) from Pi, where τx is a previously unused
identifier, FCommit stores (Pi, x, τx) and sends (Pi, τx) to all parties.
Open: On input (Open,Pi, τx) from Pi, FCommit retrieves x and sends (x,Pi, τx)
to all parties.

Functionality 4: FShamir

Suppose M -party, and t < M/2 corruptions. Denote by [·]t the Shamir secret
sharing scheme. Let ℓ be the length parameter.

1. FShamir samples g
$← Fℓ and constructs [g]t.

2. FShamir distributes [g]t to all parties.

Functionality 5: FMult

Let n be a positive integer and N = 2n. Suppose M -party, and t < M/2
corruptions. Denote by [·]t the Shamir secret sharing scheme. Let T with |T | = t
denote the set of corrupted parties controlled by the adversary A.

1. FMult receives from honest parties their shares of [Wℓ]t , [Wr]t, which relate
to inputs of N multiplications gates. Then FMult reconstructs Wℓ,Wr ∈ FN .

2. FMult computes the shares of [Wℓ]t , [Wr]t held by corrupted parties and
sends these shares to A.

3. FMult receives from A a set of shares {W′
o,i}i∈T and an additive error ϵ.

4. FMult computes W′
o = Wℓ ∗Wr + ϵ. Based on the secret W′

o and t shares
{W′

o,i}i∈T , FVrfyMult reconstructs the whole sharing [W′
o]t and distributes

the shares to honest parties.

Functionality 6: FVrfyMult

Let n be a positive integer and N = 2n. Suppose M -party, and t < M/2
corruptions. Denote by [·]t the Shamir secret sharing scheme. Let T with |T | = t
denote the set of corrupted parties controlled by the adversary A.
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1. FVrfyMult receives from honest parties their shares of [Wℓ]t , [Wr]t , [Wo]t,
which relate to inputs of N multiplications gates. Then FVrfyMult reconstructs
Wℓ,Wr,Wo ∈ FN .

2. FVrfyMult computes the shares of [Wℓ]t , [Wr]t , [Wo]t held by corrupted
parties and sends these shares to A.

3. FVrfyMult computes ϵ := Wo −Wℓ ∗Wr.
4. If ϵ ̸= 0, FVrfyMult sends abort to all parties. Otherwise, FVrfyMult sends accept

to all parties.

Functionality 7: FTriple

Suppose M -party, and t ≤M − 1 corruptions. Denote by [·] the additive secret
sharing scheme. Let T with |T | = t denote the set of corrupted parties controlled
by the adversary A. Let ℓ be the length parameter.

1. FTriple samples random triples a,b, c
$← Fℓ with c = a ∗ b.

2. FTriple receives shares ai,bi, ci from A for i ∈ T and ϵ.
3. FTriple computes c′ := c+ ϵ. Based on shares from corrupted parties, FTriple

constructs [a] , [b] , [c′] and distributes the shares to honest parties.

Functionality 8: FAuth

Suppose M -party, and t ≤M − 1 corruptions. Denote by J·K the authenticated
secret sharing scheme. Let ℓ be the length parameter. Let T with |T | = t denote
the set of corrupted parties controlled by the adversary A.

1. FAuth samples global keys to each honest parties, and receives global keys
∆i ∈ F from A for i ∈ T . FAuth sets ∆ :=

∑M
i=1 ∆i.

2. FAuth samples g
$← Fℓ and constructs JgK.

3. FAuth distributes JgK to all parties.

Functionality 9: FAuTripleE

Let n be a positive integer and N = 2n. Suppose M -party, and t ≤ M − 1
corruptions. Denote by J·K the authenticated secret sharing scheme. Let T with
|T | = t denote the set of corrupted parties controlled by the adversary A.

1. FAuTripleE samples global keys to each honest parties, and receives global
keys ∆i ∈ F from A for i ∈ T . FAuTripleE sets ∆ :=

∑M
i=1 ∆i.

2. FAuTripleE samples random triples Wℓ,Wr,Wo
$← FN with Wo = Wℓ ∗Wr.

3. FAuTripleE receives shares Wℓ,i,Wr,i,Wo,i and their MAC keys
Mℓ,i,Mr,i,Mo,i from A for i ∈ T and ϵ.

4. FAuTripleE computes W′
o := Wo + ϵ. Based on shares from corrupted par-

ties and the global key ∆, FAuTripleE constructs JWℓK , JWrK , JW′
oK and

distributes the shares to honest parties.
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Functionality 10: FVrfyAuTriple

Let n be a positive integer and N = 2n. Suppose M -party, and t ≤ M − 1
corruptions. Denote by J·K the authenticated secret sharing scheme. Let T with
|T | = t denote the set of corrupted parties controlled by the adversary A.

1. FVrfyAuTriple receives global keys ∆i from all parties and compute ∆ :=∑M
i=1 ∆i.

2. FVrfyAuTriple receives JWℓK , JWrK , JWoK from all parties. Then FVrfyAuTriple

reconstructs Wℓ,Wr,Wo, Mℓ,Mr,Mo, and checks ∆·Wℓ
?
= Mℓ, ∆·Wr

?
=

Mr, ∆ ·Wo
?
= Mo. If all these check pass, FVrfyAuTriple continues. Otherwise,

FVrfyAuTriple sends abort to all parties.
3. FVrfyAuTriple computes ϵ := Wo −Wℓ ∗Wr. If ϵ ≠ 0, FVrfyAuTriple sends abort

to all parties. Otherwise, FVrfyAuTriple sends accept to all parties.

Functionality 11: FAuTriple

Let n be a positive integer and N = 2n. Suppose M -party, and t ≤ M − 1
corruptions. Denote by J·K the authenticated secret sharing scheme. Let T with
|T | = t denote the set of corrupted parties controlled by the adversary A.

1. FAuTriple samples global keys to each honest parties, and receives global keys
∆i ∈ F from A for i ∈ T . FAuTriple sets ∆ :=

∑M
i=1 ∆i.

2. FAuTriple samples random triples Wℓ,Wr,Wo
$← FN with Wo = Wℓ ∗Wr.

3. FAuTriple receives shares Wℓ,i,Wr,i,Wo,i and their MAC keys
Mℓ,i,Mr,i,Mo,i from A for i ∈ T and ϵ.

4. FAuTriple computes W′
o := Wo + ϵ. Based on shares from corrupted parties

and the global key ∆, FAuTriple constructs JWℓK , JWrK , JW′
oK and distributes

the shares to honest parties.
5. If ϵ ̸= 0, FVrfyAuTriple sends abort to all parties. Otherwise, FVrfyAuTriple sends

accept to all parties.

Functionality 12: FPrep

Initialize: On input (Init) from all parties, FPrep samples global keys to each
honest parties, and receives global keys ∆i ∈ F from A for i ∈ T . FPrep sets
∆ :=

∑M
i=1 ∆i.

Input: On input (Input,Pi) from all parties, do the following:

1. FPrep samples r
$← F and constructs JrK.

2. FPrep sends r to Pi and distributes JrK to all parties.

Authenticated Share: On input (AuShare, ℓ) from all parties, do the following:

1. FPrep samples r
$← Fℓ and constructs JrK.

2. FPrep distributes JrK to all parties.
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Triple: On input (Triple, ℓ) from all parties, FPrep performs as follows

1. FPrep samples random triples a,b, c
$← Fℓ with c = a ∗ b.

2. FPrep receives shares ai,bi, ci from A for i ∈ T and ϵ.
3. FPrep computes c′ := c+ ϵ. Based on shares from corrupted parties, FPrep

constructs [a] , [b] , [c′] and distributes the shares to honest parties.

Partially Authenticated Triple: On input (AuTriple, ℓ) from all parties, do:

1. FPrep samples random triples a,b, c
$← Fℓ with c = a ∗ b.

2. FPrep receives shares ai,bi, ci and their MAC keys Ma,i,Mb,i from A for
i ∈ T and ϵ.

3. FPrep computes c′ := c+ ϵ. Based on shares from corrupted parties and the
global key ∆, FPrep constructs JaK , JbK , [c′] and distributes the shares to
honest parties.

B Sumcheck for Other Relations

In this section, we characterize typical relations appeared in MPC scenarios
by Sumcheck relations, so that one can replace the original check by using our
distributed Sumcheck techniques.

B.1 Multiplication Triple

We first recap multiplication triple relations. Formally, given u,v,w ∈ FN , the
goal is to verify that wi = uivi, for each i ∈ [0, N − 1].
Notations. W.l.o.g., assume N = 2n. View w as a function w : {0, 1}n → F,
such that w(i) = wi, for i ∈ {0, 1}n = [0, N − 1]. Let Pz : {0, 1}n → {0, 1} denote
the point predicate, such that Pz(i) = 1 if and only if z = i, and otherwise
Pz(i) = 0, where i ∈ {0, 1}n. We have the following:

w(z) =
∑

i∈{0,1}n

Pz(i) · u(i) · v(i).

Hence, the multilinear extensions satisfy the following:

w̃(z) =
∑

y∈{0,1}n

P̃z(y) · ũ(y) · ṽ(y) =
∑

y∈{0,1}n

χx(z) · ũ(y) · ṽ(y),

for every z ∈ Fn. Thus, one can run Sumcheck with z
$← Fn.

B.2 Circuit Dependent Preprocessing

Multiplication triples are used for circuit independent preprocessing. Nowadays,
many MPC protocols employ circuit dependent preprocessing to further decrease
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online phase communication. Here, we consider relations for circuit dependent
preprocessing. Specifically, given rx, ry, rz as the masks of the three wires of a
multiplication gate, and the wire values (x, y, z), the masked values are computed
as (Λx, Λy, Λz)← (x+ rx, y+ ry, z+ rz). Generally, the protocol works as follows.
Given (Λx, Λy) and (rx, ry, rx ·ry+rz) being additively shared among the parties,
Λz is computed as

Λz ← z + rz = (Λx − rx) · (Λy − ry) + rz

= Λx · Λy + rx · ry + rz − rx · Λy − ry · Λx.

After the protocol execution, the invariant becomes that

Λz − rz = (Λx − rx) · (Λy − ry) = Λx · Λy + rx · ry − rx · Λy − ry · Λx.

Let Wx,Wy,Wz : {0, 1}n → F be the functions for (rx, ry, rz) and Px, Py, Pz :
{0, 1}n → F the functions for (Λx, Λy, Λz). Then the problem reduces to the
following Sumcheck:

W̃z(u) =
∑

ω∈{0,1}n

χu(ω) ·
(
P̃z(ω)− W̃x(ω) · W̃y(ω) + P̃x(ω) · W̃y(ω)

+ W̃x(ω) · P̃y(ω)− P̃x(ω) · P̃y(ω)
)
,

for u
$← Fn. Note that the MLEs (P̃x, P̃y, P̃z) can be explicitly computed by all

of the parties as (Λx, Λy, Λz) will be explicitly recovered during the protocol
execution.

B.3 Rank One Constraint System

R1CS is a popular NP language. We consider proving R1CS in the MPC setting.
Specifically, given three public matrices A,B,C ∈ Fk×m and a witness z ∈ Fm

robustly shared by the parties, the goal is to prove that Az ∗Bz = Cz, where ∗
denotes entry-wise multiplication.

Define a,b, c as a := A·z,b := B ·z, c := C ·z. The R1CS satisfiability problem
reduces to verifying a[i] · b[i] = c[i] for each i ∈ [1, k]. Note that the parties
can locally compute secret sharings of a,b, c, since we always assume a linear
secret sharing scheme. Let ã, b̃, c̃ be the multilinear extension of a,b, c viewed
as multivariate functions. Then the R1CS problem reduces to the following:

c̃(x) =
∑
ω

χx(ω) · ã(ω) · b̃(ω),

which is equivalent to check multiplications.

B.4 Circuit Evaluation

The celebrated GKR [GKR08] protocol employs the Sumcheck protocol to prove
circuit satisfiability. The core idea is to capture the relations between two adjacent
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layers of the circuit by Sumcheck relations. Specifically, let Wj+1 ∈ FNj+1 be
the input to layer j, and Wj ∈ FNj be the output. In the MPC setting, typically
Wj+1,Wj are shared by the parties. As in GKR, we define “wiring predicates”
multj (addj) which take as inputs three labels (two from Wj+1 and one from Wj),
and output 1 if and only if they correspond to a multiplication (addition) gate in
layer j, otherwise output 0. With Wj ,multj , addj defined as above, it holds that
for any z ∈ F,

W̃j(z) =
∑

x,y∈{0,1}nj+1

m̃ultj(z, x, y)W̃j+1(x)W̃j+1(y)+ãddj(z, x, y)
(
W̃j+1(x)+W̃j+1(y)

)
,

In a bare-bone sketch, GKR proceeds from output layer to input layer sequentially,
and employs the Sumcheck protocol for the layer-by-layer reduction. We find that
semi-honest MPC protocols that are based on non-linear secret sharing schemes,
or not secure up to additive attacks may benefit from a distributive analogue of
GKR.

C Security Proofs

C.1 Proof of Theorem 5.1

Proof (Proof of security of ΠVrfy). For completeness, we give a detailed proof,
which is essentially a simplified version of the proof of ΠVrfyAuTriple for dishonest
majority. We construct a simulator S for our protocol and show that the view
it generates is statistically indistinguishable to the adversary A’s view in a real
execution. Let T be the set of corrupted parties controlled by A. The simulator S
receives {ϵ, (Wℓ,i,Wr,i,Wo,i)i∈T } as an input, and then interacts with A playing
the role of the honest parties. S also emulates functionalities FCoin,FShamir that
output random coins and random Shamir shares, respectively. In particular, S
works as follows:

1. S randomly picks Wℓ,Wr,W
∗
o

$← FN with W ∗
o = Wℓ∗Wr+ϵ and constructs

random Shamir secret sharings for honest parties conditioned on A’s shares.
2. Distributing correlated randomness: S constructs Shamir secret sharings of

3n+ 5 random elements of F, and sends corresponding shares to corrupted
parties controlled by A.

3. Emulating FCoin: S samples z
$← Fn and sends it to A.

4. S receives (W̃ ∗
o,i(z) + Gi) from A, and at the same time, sends shares

to A as the role of each honest party. Then S checks W̃ ∗
o,i(z) + Gi

?
=∑

ω∈{0,1}n Wo,i(ω) · χω(z) +
∑

Y∈{0,1}n gi(Y), for each i ∈ T . S accepts
if and only if all these checks pass. This procedure corresponds to authenti-
cally open Shamir secrets in the real execution, where the honest parties will
always reject an incorrect W̃ ∗

o,i(z) + Gi. Moreover, if all W̃ ∗
o,i(z) + Gi sent

by A are correct, then in the real execution, (W̃ ∗
o (z) + G) = (W̃o(z) + G)

happens with probability at most n
|F| by the Schwartz-Zippel Lemma.

5. Emulating Round j, where j ∈ [1, n]:
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(i) S sends shares (of f j
z (Yj)) to A as the role of each honest party, and at

the same time, receives those from A, for party i ∈ T .
(ii) Reconstruct the polynomial from the shares, where might exist additive

errors introduced by A, denoted by f∗j
z (Yj) := f j

z (Yj) + f j
δ (Yj). S checks

whether f j
δ (0) + f j

δ (1) = f
∗(j−1)
z (rj−1)− f j−1

z (rj−1). (If j = 1, S instead
checks whether f j

δ (0) + f j
δ (1) = W̃ ∗

o (z)− W̃o(z).)

(iii) Emulating FCoin: S samples rj
$← F and sends it to A.

6. S sends shares to A as the role of each honest party, and at the same time,
receives from A the party i’s sharings of W̃ ′

ℓ(Y), W̃ ′
r(Y), g(Y) evaluated at

(r1, . . . , rn), for each i ∈ T . S checks whether these openings are correct since
S knows the actual shares of corrupted parties. S rejects if any of the above
checks fails.

7. S rejects as long as ϵ ̸= 0.

Here we rely on the induction hypothesis that W̃ ∗
o (z) ̸= W̃o(z). Consider the

reconstructed polynomial f∗1
z (Y1) in round 1, which should satisfy W̃ ∗

o (z) +G =
f∗1
z (0) + f∗1

z (1). Otherwise, honest parties will reject eventually.

– If f∗1
z (Y1) = f1

z (Y1), then W̃ ∗
o (z) +G = f∗1

z (0) + f∗1
z (1) = f1

z (0) + f1
z (1) =

W̃o(z) +G, which implies a contradiction.
– If f∗1

z (Y1) ̸= f1
z (Y1), then f∗1

z (r1) = f1
z (r1) happens with probability at

most 3
|F| , for a random r1

$← F, by Schwartz-Zippel Lemma. Note that
f∗1
z (r1) = f1

z (r1) is equivalent to f1
δ (r1) = 0.

Thus we obtain the induction hypothesis for the next round, i.e., f∗1
z (r1) ̸= f1

z (r1).
For round j ∈ [2, n − 1], assume the induction hypothesis f

∗(j−1)
z (rj−1) ̸=

f j−1
z (rj−1), and consider the reconstructed polynomial f∗j

z (Yj). Similarly, f∗j
z (Yj)

needs to satisfy f
∗(j−1)
z (rj−1) = f∗j

z (0) + f∗j
z (1).

– If f∗j
z (Yj) = f j

z (Yj), then f
∗(j−1)
z (rj−1) = f∗j

z (0) + f∗j
z (1) = f j

z (0) + f j
z (1) =

f j−1
z (rj−1), which implies a contradiction.

– If f∗j
z (Yj) ̸= f j

z (Yj), then f∗j
z (rj) = f j

z (rj) happens with probability at

most 3
|F| , for a random rj

$← F, by Schwartz-Zippel Lemma. Note that
f∗j
z (rj) = f j

z (rj) is equivalent to f j
δ (rj) = 0.

For round n, assume the induction hypothesis f
∗(n−1)
z (rn−1) ̸= fn−1

z (rn−1), and
consider the reconstructed polynomial f ′∗n

z (Yn), which should satisfy f
∗(n−1)
z (rn−1) =

f ′∗n
z (0) + f ′∗n

z (1). Recall that fn−1
z (Yn−1) = f

′(n−1)
z (Yn−1).

– If f ′∗n
z (Yn) = f ′n

z (Yn), then f
∗(n−1)
z (rn−1) = f ′∗n

z (0) + f ′∗n
z (1) = f ′n

z (0) +

f ′n
z (1) = f

′(n−1)
z (rn−1) = fn−1

z (rn−1), which implies a contradiction.
– If f ′∗n

z (Yn) ̸= f ′n
z (Yn), then f ′∗n

z (rn) = f ′n
z (rn) = (W̃ ′

ℓW̃
′
rχ + g)(r1, . . . , rn)

happens with probability at most 5
|F| , for a random rn

$← F, by Schwartz-
Zippel Lemma.
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Note that both S and honest parties will reject if for some round j, f∗(j−1)
z (rj−1) ̸=

f∗j
z (0) + f∗j

z (1), even if ϵ = 0. We claim that the reconstructed values, i.e.,
the entire Sumcheck proof, are independent of the inputs Wℓ,Wr,Wo. In-
tuitively, this is because that the parties essentially apply a Sumcheck pro-
tocol on (f ′

z + g)(Y), which is zero-knowledge as shown in Libra [XZZ+19].
Recall that the reconstructed values are, W̃o(z) +G, f ′j

z (Yj) for j ∈ [1, n], and
W̃ ′

ℓ(r1, . . . , rn),W̃
′
r(r1, . . . , rn),g(r1, . . . , rn). First, W̃ ′

ℓ(r1, . . . , rn) := W̃ℓ(r1, . . . , rn)+

arn(1 − rn) and W̃ ′
r(r1, . . . , rn) := W̃r(r1, . . . , rn) + brn(1 − rn) are uniformly

random by the randomness of a, b. Hence it suffices to consider the leakage
on the polynomial f ′

z(Y). In fact, each f ′j
z (Yj) (j ∈ [1, n − 1]) reveals 4 linear

combinations of coefficients of the polynomial (f ′
z + g)(Y) (6 for f ′n

z (Yn)). In
addition, there are n+1 linear constraints of these polynomials, as it should hold
that W̃o(z)+G = f ′1

z (0)+f ′1
z (1), f ′(j−1)

z (rj−1) = f ′j
z (0)+f ′j

z (1) for j ∈ [2, n] and
f ′n
z (rn) = (f ′

z+g)(r1, . . . , rn). Hence, there are total
(
1+4(n−1)+6+1

)
−(n+1) =

3n+ 3 independent linear constraints on (f ′
z + g)(Y) and a masking polynomial

g of the type g := g0 + gn,4 · Y 4
n + gn,5 · Y 5

n +
∑n

i=1

∑3
j=1 gi,j · Y

j
i with 3n + 3

random coefficients suffices.
Hence the adversary A’s indistinguishability advantage is upper bounded by

4n+2
|F| by a union bound. ⊓⊔

C.2 Proof of Theorem 6.1

Proof (Proof of security of ΠVrfyAuTriple). We construct a simulator S for our pro-
tocol and show that the view it generates is statistically indistinguishable to the
adversary A’s view in a real execution. Let T be the set of corrupted parties con-
trolled byA. The simulator S receives {ϵ, (Wℓ,i,Wr,i,Wo,i,Mℓ,i,Mr,i,Mo,i, ∆i)i∈T }
as an input, and then interacts with A playing the role of the honest parties. S
also emulates functionalities FCoin,FCommit,FAuth,FTriple. In particular, S works
as follows:

1. S randomly picks Wℓ,Wr,W
∗
o

$← FN with W ∗
o = Wℓ∗Wr+ϵ and constructs

random authenticated secret sharings for honest parties conditioned on A’s
shares.

2. Distributing correlated randomness: S samples n random Beaver triples over
F and 3n+ 5 random authenticated sharings, and sends the corresponding
shares to corrupted parties controlled by A8.

3. Emulating FCoin: S samples z
$← Fn and sends it to A.

4. Emulating πVrfyMAC: S receives (W̃ ∗
o,i(z) +Gi) from A, and at the same time,

sends corresponding shares to A as the role of each honest party. Then S
emulates FCommit, where S receives MAC key openings from A and at the
same time, informs A that honest parties’ MAC key openings are received.
After that, S sends MAC key openings of honest parties to A.

8 Here for simplicity, we assume A does not inject additive errors in distributing
random Beaver triples, since such additive errors can be captured by the additive
errors introduced in opening

[
f j
z (Yj)

]
.
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5. Then S checks W̃ ∗
o,i(z) +Gi

?
=

∑
ω∈{0,1}n Wo,i(ω) ·χω(z) +

∑
Y∈{0,1}n gi(Y),

for each i ∈ T . S accepts if and only if all these checks pass. This procedure
corresponds to check validity of MAC openings in the real execution, where
the honest parties would accept an incorrect W̃ ∗

o,i(z) +Gi with probability at
most 1

|F| . Moreover, if all W̃ ∗
o,i(z) +Gi sent by A are correct, then in the real

execution, (W̃ ∗
o (z) +G) = (W̃o(z) +G) happens with probability at most n

|F|
by the Schwartz-Zippel Lemma.

6. Emulating Round j, where j ∈ [1, n]:
(i) S acts as honest parties for i /∈ T , except that all messages being sent to
A are uniformly sampled from F. In more detail, S sends Beaver triple
openings to A as the role of each honest party, and at the same time,
receives Beaver triple openings from A. After that, S sends shares (of
f j
z (Yj)) to A as the role of each honest party, and at the same time,

receives those from A, for party i ∈ T .
(ii) Note that S can detect A’s deviations in Beaver triple openings (however,
S cannot compute the corresponding additive error polynomial f j

δ1
(Yj),

which depends on the inputs). While, S can compute the additive error
polynomial introduced by A in opening f j

z (Yj), denoted by f j
δ2
(Yj). S

checks f j
δ2
(0) + f j

δ2
(1) = 0.

(iii) Emulating FCoin: S samples rj
$← F and sends it to A.

7. Emulating πVrfyMAC: S sends shares to A as the role of each honest party, and
at the same time, receives fromA the party i’s sharings of W̃ ′

ℓ(Y), W̃ ′
r(Y), g(Y)

evaluated at (r1, . . . , rn), for each i ∈ T . Then S emulates FCoin and sends 3
random coefficients to A. After that, S emulates FCommit, where S receives
MAC key openings from A and at the same time, informs A that honest
parties’ MAC key openings are received. Finally, S sends MAC key openings
of honest parties to A. S checks whether these openings are correct since S
knows the actual shares of corrupted parties. S rejects if any of the above
checks fails.

8. S rejects as long as ϵ ̸= 0.

We show an inductive analysis on privacy and soundness, which is essentially
a distributed analogue of soundness analysis of the zero-knowledge Sumcheck
protocol [XZZ+19]. Recall that JWℓK , JWrK , JW ∗

o K , JgK satisfy W ∗
o = Wo + ϵ,

where ϵ is either zero or non-zero, Wℓ ∗Wr = Wo, and g specifies an n-variate
polynomial g(Y) (of degree 3 on variables Y1, . . . , Yn−1, and degree 5 on variable
Yn). We analyze A’s view in the real execution as follows:

First, since W ∗
o , g(Y) are authenticated, A can open W̃ ∗

o (z) +G to another
value with advantage at most 1

|F| . As S will reject an incorrect opening, this leads
to A’s indistinguishability advantage at most 1

|F| . Moreover, G is a random mask

and therefore W̃ ∗
o (z) +G is uniformly random.

Next, since if W ∗
o ̸= Wo, then W̃ ∗

o (z) ̸= W̃o(z) with z
$← Fn happens with

probability at most 1
|F| , by the Schwartz-Zippel Lemma. If W̃ ∗

o (z) = W̃o(z), then
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A can pass all the subsequent checks of honest parties. Note that W̃ ∗
o (z) = W̃o(z)

is equivalent to ϵ̃(z) = 0, which can be detected by A. Since S will finally reject
as long as ϵ ̸= 0, this leads to A’s indistinguishability advantage at most 1

|F| .

Now, we can start with assuming W̃ ∗
o (z) ̸= W̃o(z). Essentially, A wants

to convince honest parties a wrong claim that W̃ ∗
o (z) =

∑
Y∈{0,1}n χz(Y) ·

W̃ℓ(Y)W̃r(Y). We briefly recall notations used here. Let h(Y) = W̃ℓ(Y)W̃r(Y),
fz(Y) = χz(Y) ·W̃ℓ(Y)W̃r(Y) and f j

z (Yj) =
∑

bj+1,...,bn∈{0,1}(fz+g)(Ŷj), where
Ŷj = (r1 . . . rj−1, Yj , bj+1 . . . bn). Besides, V j

v = (r1 . . . rj−1, v, bj+1 . . . bn).
Round 1. Induction hypothesis: W̃ ∗

o (z) ̸= W̃o(z).
Strategy of A. Recall that all parties will reconstruct a polynomial f∗1

z (Y1),
and honest parties will reject in the end if f∗1

z (0) + f∗1
z (1) ̸= W̃ ∗

o (z) + G. We
first examine A’s strategies to satisfy this condition. Basically, A can open an
arbitrary f∗1

z (Y1) such that f∗1
z (0) + f∗1

z (1) = W̃ ∗
o (z) +G. In general, there are

three cases.

Case 1. If A proceeds the protocol honestly. Then the parties would reconstruct
a degree-3 polynomial f∗1

z (Y1) such that

f∗1
z (Y1) =

∑
ω∈{0,1}n−1

χz(Ŷ1)
(
h1
ω(Y1) + h1

ϵ,ω(Y1)
)
+ g(Ŷ1) = f1

z (Y1) + f1
ϵ (Y1),

where h1
ϵ,ω(Y1) is a degree-2 polynomial with h1

ϵ,ω(v) = ϵ̃(V 1
v ) for v ∈ {0, 1} and

h1
ϵ,ω(−1) = 0. Note that∑
v∈{0,1}

f1
ϵ (v) =

∑
v∈{0,1}

∑
ω∈{0,1}n−1

χz(V
1
v )h

1
ϵ,ω(v) =

∑
Y∈{0,1}n

χz(Y)ϵ̃(Y) = ϵ̃(z).

Hence, f∗1
z (0) + f∗1

z (1) = f1
z (0) + f1

ϵ (0) + f1
z (1) + f1

ϵ (1) = W̃o(x) +G+ f1
ϵ (0) +

f1
ϵ (1) = W̃o(x) +G+ ϵ̃(z) = W̃ ∗

o (z) +G. This means that A can pass the check
f∗1
z (0) + f∗1

z (1) = W̃ ∗
o (z) +G without tampering.

Case 2. If A sends incorrect Beaver triple openings. Recall that Beaver triples
are used to compute additive shares of h1

ω(−1) := W̃ℓ(V
1
−1)W̃r(V

1
−1) in the honest

execution, for each ω := (b2, . . . , bn) ∈ {0, 1}n−1. W.l.o.g., suppose for some
ω := (b2, . . . , bn) ∈ {0, 1}n−1, there are additive errors δℓ,ω, δr,ω introduced by A,
and ([a] , [b] , [c]) is the Beaver triple used. Then[

h∗1
ω (−1)

]
= [a] (W̃r(V

1
−1)− b+ δr,ω) + [b] (W̃ℓ(V

1
−1)− a+ δℓ,ω) + [c]

+ (W̃ℓ(V
1
−1)− a+ δℓ,ω)(W̃r(V

1
−1)− b+ δr,ω)

=
[
h1
ω(V

1
−1)

]
+ δℓ,ω

[
W̃r(V

1
−1)

]
+ δr,ω

[
W̃ℓ(V

1
−1)

]
+ δℓ,ωδr,ω︸ ︷︷ ︸[

h1
δ1,ω

(−1)
]

Since the resulting additive error h1
δ1,ω

(−1) depends on the shared value, it
may leak information about Wℓ,Wr via observing whether f∗1

z (0) + f∗1
z (1) =
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W̃ ∗
o (z) +G. We show that the check f∗1

z (0) + f∗1
z (1) = W̃ ∗

o (z) +G always passes
no matter how A cheats in opening Beaver triples. Intuitively, errors introduced
at evaluation point −1 make no difference on evaluations at points v ∈ {0, 1}.

f∗1
z (Y1) =

∑
ω∈{0,1}n−1

χz(Ŷ1)
(
h1
ω(Y1) + h1

ϵ,ω(Y1) + h1
δ1,ω(Y1)

)
+ g(Ŷ1)

= f1
z (Y1) + f1

ϵ (Y1) + f1
δ1(Y1),

where h1
δ1,ω

(Y1) is a degree-2 polynomial with h1
δ1,ω

(v) = 0, for v ∈ {0, 1} and
h1
δ1,ω

(−1) defined as above. This implies that f1
δ1
(Y1) =

∑
ω∈{0,1}n−1 χz(Ŷ1)h

1
δ1,ω

(Y1)

evaluates to 0 at {0, 1}. Finally they would reconstruct a degree-3 polynomial
f∗1
z (Y1) = f1

z (Y1) + f1
ϵ (Y1) + f1

δ1
(Y1), such that f∗1

z (0) + f∗1
z (1) = W̃o(z) +G+

f1
ϵ (0) + f1

ϵ (1) + f1
δ1
(0) + f1

δ1
(1) = W̃ ∗

o (z) +G. Therefore, A can always pass the
check f∗1

z (0) + f∗1
z (1) = W̃ ∗

o (z) +G in this case.

Case 3. If A sends incorrect Beaver triple openings and incorrect openings of
f∗1
z (Y1). Then they would finally reconstruct a degree-3 polynomial f∗1

z (Y1) =(
f1
z (Y1) + f1

ϵ (Y1) + f1
δ1
(Y1)

)
+ f1

δ2
(Y1), where f1

δ2
(Y1) is of degree ≤ 3 and only

depends on additive errors introduced by A. Now f∗1
z (0) + f∗1

z (1) = W̃o(z) +G+

f1
ϵ (0) + f1

ϵ (1) + f1
δ1
(0) + f1

δ1
(1) + f1

δ2
(0) + f1

δ2
(1) = W̃ ∗

o (z) +G+ f1
δ2
(0) + f1

δ2
(1).

Therefore, A needs to select f1
δ2
(Y1) such that f1

δ2
(0) + f1

δ2
(1) = 0.

View of A. We claim that A learns zero knowledge in round 1. Generally,
A receives i) Beaver triple openings, ii) honest parties’ shares of f∗1

z (Y1), iii) r1.
It is straightforward to see that Beaver triple openings and r1 are uniformly
random. Note that the final reconstructed polynomial f∗1

z (Y1) is masked by
g1(Y1) =

∑
b2,...,bn

g(Ŷ1), which is a random polynomial9 of degree 3. Therefore,
in all the above three cases, f∗1

z (Y1) as well as its shares of honest parties are
uniformly random.

Advantage of A in round 1. Here we rely on the induction hypothesis that
W̃ ∗

o (z) ̸= W̃o(z). Consider the final reconstructed polynomial f∗1
z (Y1).

– If f∗1
z (Y1) = f1

z (Y1), then W̃ ∗
o (z) +G = f∗1

z (0) + f∗1
z (1) = f1

z (0) + f1
z (1) =

W̃o(z) +G, which implies a contradiction.
– If f∗1

z (Y1) ̸= f1
z (Y1), then f∗1

z (r1) = f1
z (r1) happens with probability at

most 3
|F| , for a random r1

$← F, by Schwartz-Zippel Lemma. Note that
f∗1
z (r1) = f1

z (r1) is equivalent to f1
ϵ (r1) + f1

δ1
(r1) + f1

δ2
(r1) = 0. There are

two conditions depending on whether A cheats on Beaver triple openings.
• If A sends Beaver triple openings honestly, then f1

δ1
(Y1) = 0. Since f1

δ2
(r1)

and f1
ϵ (r1) are determined by r1 and additive errors introduced by A,

A can know whether f∗1
z (r1) = f1

z (r1) happens. Then in the following
rounds j ∈ [2, n], A can open f∗j

z (Yj) to the correct f j
z (Yj) (jumping

9 Indeed, g(Y) is referred as the masking polynomial in the literature. We argue the
entropy of g is sufficient for all rounds at the very end of this proof.
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ahead, by setting f j
δ1
(Yj) = 0 and f j

δ2
(Yj) := −f j

ϵ (Yj)), and will pass the
checks of honest parties. This means A succeeds in fooling honest parties
and leads to A′s indistinguishability advantage at most 3

|F| .
• If A sends incorrect Beaver triple openings, then probably f1

δ1
(Y1) ̸= 0

(since it depends on Wℓ,Wr), and A cannot learn whether he succeeds
during the protocol execution and determine the cheating strategy. This
obviously is a worse strategy for A and there is no need to give a tight
bound of A’s advantage in this case, since any degree-3 polynomial
vanishes at a random point with probability at most 3

|F| .

Thus we obtain the induction hypothesis for the next round, i.e., f∗1
z (r1) ̸= f1

z (r1).

Remark C.1. We argue that there is no leakage of information if A has sent
incorrect Beaver triple openings and honest parties finally accepts. Jumping
ahead, cheating on Beaver triple openings will not leads to f

∗(j−1)
z (rj−1) ̸=

f∗j
z (0) + f∗j

z (1) in some round j (this claim will be soon argued, which is similar
to the j = 1 case). Hence, such events only mean that the random polynomial
f
′∗(n)
z (Yn) reconstructed in the last round, evaluates to a random value (χzW̃

′
ℓW̃

′
r+

g)(r1, . . . , rn) at a random point rn, which happens with probability at most 3
|F| .

Round j ∈ [2, n− 1]. Induction hypothesis: f∗(j−1)
z (rj−1) ̸= f

(j−1)
z (rj−1).

Strategy of A. We argue similarly to that of round 1. Here, all parties will
reconstruct a polynomial f∗j

z (Yj), and honest parties will reject in the end if
f∗j
z (0) + f∗j

z (1) ̸= f
∗(j−1)
z (rj−1). There are three cases as well.

Case 1. If A proceeds the protocol honestly. Then they will reconstruct

f∗j
z (Yj) =

∑
ω∈{0,1}n−j

χz(Ŷj)
(
hj
ω(Yj) + hj

ϵ,ω(Yj)
)
+ g(Ŷj) = f j

z (Yj) + f j
ϵ (Yj),

where hj
ϵ,ω(v) = hj−1

ϵ,v∥ω(rj−1) for v ∈ {0, 1} and hj
ϵ,ω(−1) = 0. Note that

f j
ϵ (Yj) =

∑
ω∈{0,1}n−j

χz(Ŷj)h
j
ϵ,ω(Yj)

is determine by the initial errors ϵ and randomness r1, . . . , rj−1 introduced in
the previous rounds.∑

v∈{0,1}

f j
ϵ (v) =

∑
v∈{0,1}

∑
ω∈{0,1}n−j

χz(V
j
v )h

j
ϵ,ω(v)

=
∑

ω′∈{0,1}n−j+1

χz(V
j−1
rj−1

)hj−1
ϵ,ω′ (rj−1) = f j−1

ϵ (rj−1).

Hence,

f∗j
z (0) + f∗j

z (1) = f j
z (0) + f j

ϵ (0) + f j
z (1) + f j

ϵ (1)

= f j−1
z (rj−1) + f j−1

ϵ (rj−1) = f∗(j−1)
z (rj−1).
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This means that A can pass the check f∗j
z (0) + f∗j

z (1) = f
∗(j−1)
z (rj−1) without

tampering.

Case 2. Similarly, if A sends incorrect Beaver triple openings. Then there would
be an additive error hj

δ1,ω
(−1) for some ω := (bj+1, . . . , bn) ∈ {0, 1}n−j . The

reconstructed polynomial f∗j
z (Yj) will have the form

f∗j
z (Yj) =

∑
ω∈{0,1}n−j

χz(Ŷj)
(
hj
ω(Yj) + hj

ϵ,ω(Yj) + hj
δ1,ω

(Yj)
)
+ g(Ŷj)

= f j
z (Yj) + f j

ϵ (Yj) + f j
δ1
(Yj),

where hj
δ1,ω

(Yj) is a degree-2 polynomial with hj
δ1,ω

(v) = 0, for v ∈ {0, 1} and
hj
δ1,ω

(−1) defined as above. This implies that f j
δ1
(Yj) =

∑
ω∈{0,1}n−j χz(Ŷj)h

j
δ1,ω

(Yj)

evaluates to 0 at {0, 1}. Hence, A can always pass the check f∗j
z (0) + f∗j

z (1) =

f
∗(j−1)
z (rj−1) in this case.

Case 3. Similarly, if A sends incorrect Beaver triple openings and incorrect
openings of f∗j

z (Yj). Then they would finally reconstruct a degree-3 polynomial
f∗j
z (Yj) =

(
f j
z (Yj) + f j

ϵ (Yj) + f1
δ1
(Yj)

)
+ f j

δ2
(Yj), where f j

δ2
(Yj) is of degree ≤ 3

and only depends on additive errors introduced by A. Now f∗j
z (0) + f∗j

z (1) =

f j
z (0)+ f j

z (1)+ f j
ϵ (0)+ f j

ϵ (1)+ f j
δ1
(0)+ f j

δ1
(1)+ f j

δ2
(0)+ f j

δ2
(1) = f

∗(j−1)
z (rj−1)+

f j
δ2
(0)+ f j

δ2
(1). Therefore, A needs to select f j

δ2
(Yj) such that f j

δ2
(0)+ f j

δ2
(1) = 0.

View of A. By a very similar analyses to that of round 1, we claim that A
learns zero knowledge in round j.

Advantage of A in round j. Here we rely on the induction hypothesis
that f

∗(j−1)
z (rj−1) ̸= f

(j−1)
z (rj−1). Consider the final reconstructed polynomial

f∗j
z (Yj).

– If f∗j
z (Yj) = f j

z (Yj), then f
∗(j−1)
z (rj−1) = f∗j

z (0) + f∗j
z (1) = f j

z (0) + f j
z (1) =

f
(j−1)
z (rj−1), which implies a contradiction.

– If f∗j
z (Yj) ̸= f j

z (Yj), then f∗j
z (rj) = f j

z (rj) happens with probability at

most 3
|F| , for a random rj

$← F, by Schwartz-Zippel Lemma. Note that
f∗j
z (rj) = f j

z (rj) is equivalent to f j
ϵ (rj) + f j

δ1
(rj) + f j

δ2
(rj) = 0. Besides, A is

suggested not to cheat on Beaver triple openings, so that A can learn whether
f∗j
z (rj) = f j

z (rj) happens. Then in the following rounds, j + 1, . . . , n, A can
open the polynomials f

∗(j+1)
z (Yj+1), . . . , f

′∗n
z (Yn) to the correct polynomials

f j+1
z (Yj+1), . . . , f

′n
z (Yn) and succeeds in fooling honest parties. This leads to

A’s indistinguishability advantage at most 3
|F| .

Round n. Induction hypothesis: f∗(n−1)
z (rn−1) ̸= f

(n−1)
z (rn−1). Here we also

take checks after round n into consideration. Actually the case of round n only
slightly differs in analyzing A’s advantage and view.
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Advantage of A in round n. Let f ′∗n
z (Yn) be the degree-5 polynomial

reconstructed in the final round. Note that f ′n
z (Yn) satisfies f

(n−1)
z (rn−1) =

f
′(n−1)
z (rn−1) = f ′n

z (0) + f ′n
z (1).

– If f ′∗n
z (Yn) = f ′n

z (Yn), then f
∗(n−1)
z (rn−1) = f ′∗n

z (0) + f ′∗n
z (1) = f ′n

z (0) +

f ′n
z (1) = f

′(n−1)
z (rn−1) = f

(n−1)
z (rn−1), which implies a contradiction.

– If f ′∗n
z (Yn) ̸= f ′n

z (Yn). In the end, the parties securely open
r
W̃ ′

ℓ(r1, . . . , rn)
z
:=

r
W̃ℓ(r1, . . . , rn)

z
+ JaK rn(1 − rn),

r
W̃ ′

r(r1, . . . , rn)
z
:=

r
W̃r(r1, . . . , rn)

z
+

JbK rn(1 − rn), and Jg(r1, . . . , rn)K. Since W̃ℓ(Y), W̃r(Y), a, b, g(Y) are au-
thenticated, A can open them into some other values with advantage at most
2
|F| (as we apply a batched MAC check). Assume correct openings, then all
parties locally compute

(f ′
z + g)(r1, . . . , rn) := (χzW̃

′
ℓ · W̃ ′

r + g)(r1, . . . , rn),

and check
f ′∗n
z (rn)

?
= (f ′

z + g)(r1, . . . , rn) = f ′n
z (rn),

which happens with probability at most 5
|F| , for a random rn

$← F, by
Schwartz-Zippel Lemma. This leads to A’s indistinguishability advantage at
most 5

|F| , since in the end S always rejects as long as ϵ ̸= 0.

Total advantage of A. With discussions as above, if ϵ ̸= 0, then by a union
bound, A is able to distinguish the view in the ideal world and that in the real
execution with advantage at most 4n+4

|F| . If ϵ = 0, A’s advantage is upper bounded
by 2

|F| (in this case, S differs from honest parties only in checking validity of
MAC openings).
Total view of A. We claim that in the end of the protocol, A learns no
information about Wℓ,Wr,Wo beyond the fact that Wℓ ∗Wr = Wo. Recall
that f ′

z(Y) = (χzW̃
′
ℓW̃

′
r + g)(Y), where g has n variables and 3n+ 3 uniformly

random coefficients. At the beginning, W̃o(z) + g(z) is reconstructed. Then in
each round j ∈ [1, n−1], a degree-3 polynomial f j

z (Yj) = f ′j
z (Yj) is reconstructed,

which essentially reveals 4 independent linear combinations of coefficients of
(f ′

z + g)(Y). In round j = n, a degree-5 polynomial f ′n
z (Yn) is reconstructed, and

reveals 6 independent linear combinations of coefficients of (f ′
z + g)(Y). Finally

(f ′
z+g)(r1, . . . , rn) is computed from revealing W̃ ′

ℓ(r1, . . . , rn) := W̃ℓ(r1, . . . , rn)+

arn(1−rn), W̃ ′
r(r1, . . . , rn) := W̃r(r1, . . . , rn)+brn(1−rn), and g(r1, . . . , rn). Note

that W̃ ′
ℓ(r1, . . . , rn), W̃

′
r(r1, . . . , rn) are uniformly random by the randomness of

a, b. Hence, it remains to consider the leakage on (f ′
z + g)(Y). Note that the

above linear combinations are conditioned on f
′(j−1)
z (rj−1) = f ′j

z (0) + f ′j
z (1)

between round j−1 and j (for j = 1, W̃o(z)+G = f ′1
z (0)+f ′1

z (1), and f ′n
z (rn) =

(f ′
z+g)(r1, . . . , rn)). Hence, there are total

(
1+4(n−1)+6+1

)
−(n+1) = 3n+3

independent linear constraints on (f ′
z + g)(Y), and a masking polynomial g with

3n+ 3 random coefficients is sufficient. ⊓⊔
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D Concrete Complexity Analyses

In this section, we show the concrete procedure to compute the complexity results
of our approach and the best known approach [GS20] in honest majority.

D.1 Concrete Computation Complexity of Distributed Sumcheck

Following the estimation of [BGIN20,BGIN21], we focus on counting the multi-
plication operations involved in our distributed Sumcheck protocol ΠVrfy.

In a bird’s eye view, for each round j ∈ [1, n], each party’s computational costs
are dominated by two parts: (i) compute bookkeeping tables Aj

χ,
[
Aj

ℓ

]
t
,
[
Aj

r

]
t
,

(ii) compute
[
f j
z (Yj)

]
2t

given access to bookkeeping tables.

Part One. Consider the costs of computing
[
Aj

ℓ

]
t
from

[
Aj−1

ℓ

]
t
. Note that

[
Aj

ℓ

]
t

has 2n−j+1 entries and the value respect to entry ω ∈ {0, 1}n−j+1 equals to

(
[
Aj−1

ℓ [1∥ω]
]
t
−
[
Aj−1

ℓ [0∥ω]
]
t
) · rj−1 +

[
Aj−1

ℓ [0∥ω]
]
t
,

which requires only one multiplication. Hence, computing the three table for
round j ∈ [2, n] requires 3 · 2n−j+1 multiplications.

Note that
[
A1

ℓ

]
t
,
[
A1

r

]
t

are actually the inputs, and no computations are
needed. We introduce a fast algorithm for computing A1

χ. Assume n = 2s and
let ⊗ denote the tensor product. The main observation is that A1

χ of 22
s

entries
equals to the tensor product of two sub-tables of size 22

s−1

. For instance, if s = 1,
A1

χ contains 4 = 22
1

values,

(1− z0, z0)⊗ (1− z1, z1).

If s = 2, A1
χ contains 16 = 22

2

values,(
(1− z0, z0)⊗ (1− z1, z1)

)
⊗
(
(1− z2, z2)⊗ (1− z3, z3)

)
.

This implies that A1
χ of 22

s

entries can be inductively computed, following a
binary-tree structure. The computational costs are

∑s
i=1 2

2i ·2s−i =
∑s

i=1 N
1/2i−1 ·

2i−1 = N +O(
√
N) multiplications. In addition, given access to A1

χ,
[
W̃o(z)

]
t
=∑

ω∈{0,1}n χz(ω) · [Wo(ω)]t can be computed in N = 2n multiplications.

Part Two. Recall that the parties compute sharings of four evaluations of

f j
z (Yj) =

∑
bj+1,...,bn

(χz · W̃ℓ · W̃r + g)(r1, . . . , rj−1, Yj , bj+1, . . . , bn)
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at {0,±1, 2}. For simplicity, we omit the costs for evaluating g(Y)10, since g(Y)

has only O(logN) monomials. First, as χz, W̃ℓ, W̃r are multilinear, computing
their evaluations at −1, 2 from evaluations at 0, 1 only involves additions. For
instance, let V j

v denote (r1, . . . , rj−1, v, bj+1, . . . , bn),

χz(V
j
−1) = 2χz(V

j
0 )− χz(V

j
1 ) = χz(V

j
0 ) + χz(V

j
0 )− χz(V

j
1 ).

Since for each (bj+1, . . . , bn) ∈ {0, 1}n−j , 4 evaluations need to be computed and
each involves 2 multiplications, a direct calculation takes 8 · 2n−j multiplications
for round j. We show that the required multiplications can be reduced to 5 · 2n−j

for round j ∈ [2, n] and 3 · 2n−1 for round 1.
The saving for round j ∈ [2, n] is due to

(W̃ℓ · W̃r)(V
j
2 ) = 3(W̃ℓ · W̃r)(V

j
1 )− 3(W̃ℓ · W̃r)(V

j
0 ) + (W̃ℓ · W̃r)(V

j
−1),

which only involves additions. The additional savings for round 1 is due to that[
(χz · W̃ℓ · W̃r)(V

1
v )

]
2t

can be replaced with
[
(χz · W̃o)(V

1
v )

]
t
, for v ∈ {0, 1},

which has already been computed in calculating
[
W̃o(z)

]
t
.

Putting all pieces together. By the above analyses, each party’s computation is
dominated by

2N +O(
√
N) +

( n∑
j=1

(3 + 7) · 2n−j
)
− 4 · 2n−1 = 10N +O(

√
N).

Note that the verification costs are O(logN) computations.

Remark D.1. As for our distributed Sumcheck in dishonest majority, the hidden
constant of each party’s O(N) computation is slightly higher. The additional com-
putation mainly stems from the use of multiplication triples, more sophisticated
calculation of evaluations of

[
f j
z (Yj)

]
and the MACs of

r
W̃o(z)

z
,
r
W̃ℓ(r)

z
,
r
W̃r(r)

z
.

D.2 Concrete Complexity of [GS20]

In this section, we calculate the concrete computation complexity of [GS20],
which presents an verification protocol in the honest majority setting implicitly
based on FLIOPs. In particular, we choose the compression factor k of [GS20] to
be 2, so that the underlying FLIOP has optimized linear prover time. Along the
way, we also show that [GS20] is essentially performing Sumcheck.

In an overview, [GS20]’s approach consists of the following three steps:
DeLinearization, DimensionReduction, Randomization. Suppose the goal is to verify
N = 2n multiplications on Wℓ,Wr,Wo.
10 In fact, we also omit the verification costs for each round and the additional costs for

round n, since they are constant.
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Costs of Step One. DeLinearization transforms the task to the verification of an
inner-product of dimension N . Concretely, let r

$← FCoin. Each party computes
r1, r2, . . . , rN−1, and then [x]t := ([Wℓ(0)]t , r · [Wℓ(1)]t , . . . , r

N−1 · [Wℓ(N − 1)]t),
[y]t := Wr, [z]t :=

∑N−1
i=0 ri · [Wo(i)]t. This step requires 3N multiplications.

//Note that [GS20] essentially applies Sumcheck on z =
∑N−1

i=0 x(i)y(i).

Costs of Step Two. Informally, DimensionReduction inductively reduces the
problem of checking inner-product of dimension N by half, until the result-
ing inner-product has a constant size, e.g., 2. Hence, we first calculate the
costs for reducing dimension N to N/2. We denote [x]t := (

[
x(0)

]
t
,
[
x(1)

]
t
),

[y]t := (
[
y(0)

]
t
,
[
y(1)

]
t
). Let {0,±1} be the evaluation set. //Note that [x]t, [y]t

essentially correspond to the initial bookkeeping tables.
In DimensionReduction, the parties first compute

[
z(j)

]
2t

=
∑N/2−1

i=0

[
x(j)(i)

]
t
·[

y(j)(i)
]
t
and then consume one double sharing pair to obtain

[
z(j)

]
t
for j ∈ {0, 1}.

This procedure requires N multiplications. //Note that z(j) =
∑

b2,...,bn∈{0,1}(x̃ ·
ỹ)(j, b2, . . . , bn) = f1(0), for j ∈ {0, 1}.

Then the parties compress (
[
x(0)

]
t
,
[
x(1)

]
t
) into

[
x(r1)

]
t
, where x(r1) ∈

FN/2. Suppose r1
$← FCoin. Concretely,

[
x(r1)(i)

]
t
:= (

[
x(1)(i)

]
t
−

[
x(0)(i)

]
t
) ·

r1 +
[
x(0)(i)

]
t
, for each i ∈ [1, N/2]. In addition,

[
y(r1)(i)

]
t

is computed in a
similarly way. This introduces N multiplications per party. //This corresponds
to computing bookkeeping tables for the next round.

It remains to compute
[
z(r1)

]
t
. The parties first compute

[
z(−1)

]
2t

:=

N/2−1∑
i=0

(2
[
x(0)(i)

]
t
−

[
x(1)(i)

]
t
) · (2

[
y(0)(i)

]
t
−
[
y(1)(i)

]
t
),

then they consume one double sharing pair to obtain
[
z(−1)

]
t
. //Note that

z(−1) =
∑

b2,...,bn∈{0,1}(x̃ · ỹ)(−1, b2, . . . , bn) = f1(−1).
Finally, the parties compute

[
z(r1)

]
t
:= (

[
z(1)

]
t
+
[
z(−1)

]
t

2
−

[
z(0)

]
t
) · r20 +

[
z(1)

]
t
−

[
z(−1)

]
t

2
· r0 +

[
z(0)

]
t
.

This introduces N/2 multiplications per party. //Note that z(r1) =
∑

b2,...,bn∈{0,1}(x̃·
ỹ)(r1, b2, . . . , bn) = f1(r1).

Therefore, reducing dimension N to N/2 requires only 5N/2 multiplications,
yielding 5N multiplications for a constant dimension 2. //The inner-product
relation ([zr1 ]t ,

[
x(r1)

]
t
,
[
y(r1)

]
t
) in [GS20] is equivalent to f2(X2) such that

f1(r1) = f2(0) + f2(1) in Sumcheck.

Costs of Step Three. After O(logN) iterations of DimensionReduction, the inner-
product has a constant dimension, and can be checked directly. The costs of this
procedure can be omitted.

57



Putting all pieces together. Given discussion as above, each party’s computation
is dominated by 8N = 3N + 5N multiplications.

Remark D.2. Note that the 8N computation of the above instantiation is less
than 10N of our distributed Sumcheck approach. The reason is that we use a more
structured type of coefficients (χz(0), . . . ,χz(N−1)) rather than (1, λ, . . . , λN−1)
for compressing multiplications into sumcheck. The advantage of the multilin-
ear coefficients is the resulting logN

|F| soundness error rather than N
|F| from the

later. Actually, we can employ the reduction of [GS20] and obtain the same 8N
computation.
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