
Efficient Pseudorandom Correlation Generators
for Any Finite Field

Zhe Li, Chaoping Xing, Yizhou Yao, Chen Yuan

School of Electronic Information and Electrical Engineering,
Shanghai Jiao Tong University, Shanghai, China

lizh0048@e.ntu.edu.sg,{xingcp,yaoyizhou0620,chen_yuan}@sjtu.edu.cn

Abstract. Correlated randomness lies at the core of efficient modern
secure multi-party computation (MPC) protocols. Costs of generating
such correlated randomness required for the MPC online phase protocol
often constitute a bottleneck in the overall protocol. A recent paradigm
of pseudorandom correlation generator (PCG) initiated by Boyle et al.
(CCS’18, Crypto’19) offers an appealing solution to this issue. In sketch,
each party is given a short PCG seed, which can be locally expanded
into long correlated strings, satisfying the target correlation. Among
various types of correlations, there is oblivious linear evaluation (OLE),
a fundamental and useful primitive for typical MPC protocols on arith-
metic circuits. Towards efficient generating a great amount of OLE, and
applications to MPC protocols, we establish the following results:
(i) We propose a novel programmable PCG construction for OLE over any
field Fp. For kN OLE correlations, we require O(k logN) communication
and O(k2N logN) computation, where k is an arbitrary integer ≥ 2. Pre-
vious works either have quadratic computation (Boyle et al. Crypto’19),
or can only support fields of size larger than 2 (Bombar et al. Crypto’23).
(ii) We extend the above OLE construction to provide various types of
correlations for any finite field. One of the fascinating applications is an
efficient PCG for two-party authenticated Boolean multiplication triples.
For kN authenticated triples, we offer PCGs with seed size of O(k2 logN)
bits. To our best knowledge, such correlation has not been realized with
sublinear communication and quasi-linear computation ever before.
(iii) In addition, the programmability admits efficient PCGs for multi-party
Boolean triples, and thus the first efficient MPC protocol for Boolean
circuits with silent preprocessing. In particular, we show kN m-party
Boolean multiplication triples can be generated in O(m2k logN)-bit com-
munication, while the state-of-the-art FOLEAGE (Asiacrypt’24) requires
a broadcast channel and takes mkN +O(m2 log kN) bits communication.
(iv) Finally, we present efficient PCGs for circuit-dependent preprocessing,
matrix multiplications triples, and string OTs etc. Compared to previous
works, each has its own right.

Table of Contents

1 Introduction . 3
1.1 Our Contributions . 4
1.2 Organization . 7

2 Our Techniques . 7
2.1 Limitations of PCG for OLEs from [BCG+20, BCCD23] 7
2.2 Trace to the Rescue . 8
2.3 Warm-up: from F2k to F2 via Trace . 9
2.4 PCG for Authenticated Multiplication Triples. 13

3 Preliminaries . 14
3.1 Function Secret Sharing . 14
3.2 Pseudorandom Correlation Generators . 15
3.3 Syndrome Decoding of Quasi-Abelian Codes 16

4 Ring Isomorphisms and Trace Functions . 17
5 PCG for OLE over Any Finite Field . 18
6 PCG for Authenticated Multiplication Triples . 22
7 PCG for Other Correlations and Applications . 27

7.1 MPC with Preprocessing . 27
7.2 PCG for Matrix Multiplication Triples . 29
7.3 PCG for Subfield OLE . 33

8 PCG Setup Protocols from QA-SD . 36
8.1 Semi-honest Distributed Setup from QA-SD 36
8.2 OLE Setup Protocols from QA-SD with Malicious Security 39
8.3 Authenticated Multiplication Triples from QA-SD 43
8.4 Complexity for Basic Operations . 48

9 Security Analysis and Parameter Selections . 49
9.1 Known Attacks for Ring-LPN and QA-SD . 50
9.2 Parameters . 56
9.3 Performance Evaluation . 59

A More Preliminaries . 64
B Deferred Proofs for Ring Isomorphisms and Traces Functions 65
C Distributed DPF Setup . 69
D PCG Setup Protocols from Ring-LPN . 71

D.1 PCG for OLE from Ring-LPN . 72
D.2 Authenticated Boolean Triple Constructions from Ring-LPN 73
D.3 Semi-honest Distributed Setup from Ring-LPN 75
D.4 PCG Setup Protocols from Ring-LPN with Malicious Security . . 76
D.5 Authenticated Boolean Triples from Ring-LPN 78

1 Introduction

Correlated randomness stands as a fundamental and crucial part in secure multi-
party computation (MPC) protocols with preprocessing. Thanks to the celebrated
work of Beaver [Bea91], studies of concretely efficient MPC are maturing, and
various settings are explored, e.g., honest majority [EGPS22], dishonest major-
ity [DPSZ12, KOS16, EGP+23], and fluid MPC [RS22]. All these modern MPC
protocols are designed in a preprocessing model, in which parties are given access
to a sufficient number of correlated random strings, typically Ω(N) for securely
computing circuits with N gates.

Many types of correlations have been used for wide scenarios: for instance,
oblivious linear function evaluation (OLE) enables (semi-honest) secure 2-party
computation (2-PC) on arithmetic circuits, and it also allows for m-party (semi-
honest) secure computation on arithmetic circuits, through building m-party
Beaver triples, which further admits malicious secure MPC via constructing
authenticated Beaver triples. Oblivious transfer (OT) enables semi-honest secure
2-PC on Boolean circuits by Yao’s garbled circuit technique [Yao86], and can be
used to generate various types of correlations, including OLE. Finally, matrix
multiplication triples become useful recently, receiving attentions from industry
in privacy-preserving machine learning.

Hence, there is a great demand for concretely efficient approaches to generat-
ing various and numerous correlated randomness, so that MPC can be applied
to more real-life scenarios, wider and larger. Pseudorandom correlation genera-
tors (PCGs) introduced in [BCGI18, BCG+19a, BCG+19b] and the subsequent
works [BCG+19a, YWL+20, BCG+20, BCG+22, BCG+23, RRT23, BCCD23,
ABG+24] offer an appealing solution to efficient preprocessing. Informally, in a
PCG-based preprocessing, each party is given a short PCG seed, who then can
locally expand their own seed and get the target long correlations. Such procedure
is called silent preprocessing, since no interaction is required as long as PCG
seeds are distributed.

Technically, most of existing PCG constructions have an “extension” flavor.
The PCG seeds essentially specify short correlations, then the seeds are locally
expanded via variants of learning parity with noise (LPN) assumptions [BFKL93]
or syndrome decoding assumptions [BCG+22, BCCD23, RRT23]. Depending on
the correlations and settings, generating of seeds relies on efficient function secret
sharing schemes (FSS) [GI14, BGI15, BGI16], and distributed setup protocols
with semi-honest/malicious security [BCG+20, GYW+23, ZGY+24, BBC+24]. In
this work, we start with PCG constructions for OLEs, which is a critical building
block for other correlations and applications.
PCG for OLEs. The pioneer work [BCG+19b] constructs efficient PCGs for
several correlations from LPN assumptions, including OLE. Their initial con-
struction generally works for any finite field with a sublinear seed size, but has a
major downside of Õ(N4) computation for N OLE correlations. Though later
it is optimized to Õ(N2) computation, which is still very expensive, as N is
usually huge. The follow-up work [BCG+20] presents a new PCG with Õ(N)
computation from using a structured LPN assumption, namely, the Ring-LPN

3

assumption. Though [BCG+20] achieves good concrete efficiency, the field size is
restricted to be larger than N , inherently induced by Ring-LPN. Following the
routine from Ring-LPN, Bombar et al. [BCCD23] put a step forward, achieving
OLE over arbitrary fields only except for the significantly interesting case of F2.
Their results are obtained by introducing the quasi-abelian syndrome decoding
(QA-SD) assumption, intuitively a “multi-variate” sense of Ring-LPN.

We remark that for the interesting case of F2, where OLE over F2 is actually
equivalent to bit OT, there do exist efficient PCG constructions [BCG+19a,
BCG+19b, YWL+20, BCG+23]. However, these PCGs for OTs are obtained by
hashing random Vector-OLE (VOLE) correlations (from PCG), hence they are not
easy to be extended to PCGs for other correlations, for example, Boolean multipli-
cation triples. Moreover, the involved hash function also prevents these PCGs from
being extended to multi-party correlations, while other PCGs [BCG+20, BCCD23]
without hashing likely enjoy a “programmability” property, allowing for the multi-
party generalization.

The task of constructing efficient PCGs for authenticated triples is much
more challenging, even in the 2-party case. Because authenticated triples are
actually degree-3 relations while OLEs are of degree-2. Though the Ring-LPN/QA-
SD based approaches from [BCG+20, BCCD23] imply constructions for fields
with size ≥ 3, it is unclear how to construct PCGs for authenticated Boolean
multiplication triples. Therefore, we ask the following question:

Do there exist efficient programmable PCGs for OLEs, and PCGs for authen-
ticated multiplication triples over any finite field, in particular, the binary field
F2?

1.1 Our Contributions

In this work, we revisit and generalize the approach of [BCG+20, BCCD23] for
constructing PCG for OLEs, obtaining a new framework by introducing a simple
but effective function, the Trace function for the polynomial rings defined over Fpk .
This allows us to give an efficient programmable PCG for OLEs over any fields.
We also implement and evaluate concrete performances of our constructions,
which are as efficient as previous PCGs over large fields. We then extend our OLE
construction for various useful correlations, in particular, including authenticated
Boolean multiplication triples. Other useful correlations we show are multi-party
Beaver triples, matrix multiplication triples, and string OTs, etc.
PCG for OLEs over any finite field. We present new PCG constructions
for random OLE correlations, in which previous constructions either have large
computational complexity, or have the undesirable restriction on the field size.
In Table 1, we summarize our results and give comparisons with existing PCGs.

In an OLE correlation, for σ ∈ {0, 1}, party Pσ holds xσ, zσ ∈ Fp, such
that x0 · x1 = z0 + z1. In other words, each party holds an additive share of
x0 ·x1, and we simply denote it as [x0 · x1]. Our constructions build upon existing,
well-studied Ring-LPN/QA-SD assumptions and function secret sharing (FSS)
for sums of point functions (SPFSS). For simplicity, here we present the results
from QA-SD, and the Ring-LPN based constructions are deferred to Appendix D.

4

As for fast computation, the generic FFT with quasi-linear complexity [Obe07,
Algorithm 74] can be applied, and it is optimized for some concrete rings in
[BBC+24, Section 4.3].

N OLEs Comm. Comp. Programmability Assumption
[BCG+19b] Any Fp O(λ3 logN) O(N2 logN) Yes Dual-LPN
[BCG+20] Fp, p > N O(λ3 logN) O(N logN) Yes Ring-LPN
[BCCD23] Fp, p > 2 O(λ3 logN) O(N logN) Yes QA-SD
[BCG+23] F2 O(λ2 logN) O(N) No Dual-LPN
This work Any Fp O(λ3 logN) O(N logN) Yes QA-SD

Table 1. Comparisons to previous PCGs for OLE. Let λ denote the security
parameter. By “Comm.” we refer to the communication complexity while “Comp.”
stands for the computation complexity. All these approaches allow for arbitrary
polynomial stretch (the ratio of number of correlations and communication cost).

Authenticated multiplication triples. Informally, authenticated multiplica-
tion triples are multiplication triples with message authentication codes (MACs).
To authenticate a multiplication triple ([x] , [y] , [z]) with x, y, z ∈ Fp, x · y = z,
parties additionally holds ([x ·∆] , [y ·∆] , [z ·∆]), where ∆ ∈ Fpk is the global
key and keeps identical among triples. We denote such a triple by (JxK , JyK , JzK).
Note that x, y, z are additively shared over Fp, while ∆·x,∆·y,∆·z are additively
shared over Fpk with k = O(λ/ log p). The construction generalizes the above
PCG for OLE, and also relies on QA-SD assumptions and SPFSS schemes.

Theorem 1.1 (PCG for authenticated multiplication triples, informal).
Assuming the QA-SD assumption and the SPFSS in [BGI16], there exists a secure
PCG construction for generating O(N) authenticated multiplication triples, with
seed size O(λ3 logN) and computational complexity O(N logN), where λ is the
security parameter.

We remark that taking p = 2 in Theorem 1.1 induces extremely interesting results
over F2, i.e., the PCG for authenticated Boolean triples. Moreover, we consider
semi-honestly/maliciously secure distributed setup protocols for OLEs/triples,
which rely on the malicious DPF construction in [BCG+20]. In particular, we
evaluate the concrete seed expansion time on our machine following the way in
[BCG+20]. The results are summarized in Table 2, showing that our constructions
for authenticated Boolean triples are as efficient as those for authenticated
multiplication triples over large fields.
Other Applications. Since our PCG for OLEs is programmable, it is extended
to m-party semi-honest Beaver triples by a strandard transformation, leading to
the seed size O(m logN). Compared to the m-party Boolean triple preprocessing
of [BBC+24], our approach offers a completely silent preprocessing with sublinear
communication O(m2 logN), while [BBC+24] requires a broadcast channel and
has communication complexity of mN +O(m2 logN) bits. In Table 3, we report

5

Protocol Field Triple Generation Comm.
Overdrive [KPR18] 128 bit prime field 30, 000/s 2 GB

PCG [BCG+20] estimated 128 bit prime field 50, 000/s 4.2MB
This work Boolean with 128-bit MAC key 43, 000/s 47.54MB

Table 2. The cost refers to the generation of authenticated multiplication triples
for two parties. Both the Overdrive results and the estimated results from
[BCG+20] are taken from [BCG+20]. The concrete performance of this work
is derived from running our program for generating 316 authenticated Boolean
multiplication triples.

the concrete efficiency of our approach for generating multiparty Boolean triples,
and compare with the state-of-the-art works.

Party No. Triple No. Comm. Broad. Time. (s)
SoftSpokenOT [Roy22] (k = 8) 2 109 3.7 GB 0 211

F4OLEAGE [BBC+24, Table 1] 2 109 33.5 MB 0 81
F4OLEAGE [BBC+24, Our machine] 2 109 33.5 MB 0 83

This work 2 109 33.6 MB 0 162

SoftSpokenOT[Roy22] (k = 8) 10 109 34 GB 0 1900

F4OLEAGE [BBC+24, Table 1] 10 109 0.6 GB 0.12 GB 1463
F4OLEAGE [BBC+24, Our machine] 10 109 0.6 GB 0.12 GB 1511

This work 10 109 0.6 GB 0 2932

Table 3. Concrete evaluation performances on a PC with Intel(R) Xeon(R) Gold
5220R 2.20GHz CPU and 128GB of RAM, following the same way as [BBC+24].
For fairness, we run the F4OLEAGE source code on our machine and use the
same parameters as F4OLEAGE: c = 3, t = 27, and n = 16. By “Comm.”, we refer
to the per-party communication over a point-to-point channel. By “Broad.”, we
refer to the per-party communication over a broadcast channel. By “Time.”, we
refer to the seed expansion time in the localhost setting.

Following the routine of [BCG+20, BCCD23], our approach also supports
circuit-dependent preprocessing. For computing N copies on the circuit on the
circuit C over Fp with different inputs, we offer a silent preprocessing with
seed size O(|C| logN). We also construct PCGs for matrix multiplication triples.
Concretely, for N/k triples of k × k matrices over Fp, we have seed size of
O(kλ3 logN), while the previous work [BCG+20] for large fields has seed size
of O(k2λ3 logN/k)1 and the recent work [LXYZ24] for any field has seed size
of O(Nλ2 log k). Finally, we give a PCG construction for OTs with seed size of
1 The subsequent work [BCG+22] implicitly gives a pseudorandom correlation function

(PCF) for matrix triples, which can produce an arbitrary number of correlations but
the computation per correlation is much higher (2-3M PRG evaluations).

6

O(λ3(k + logN)) for generating N k-bit string OT correlations. It is worth to
mention that our construction for OTs does not require correlation-robust hash
functions, which is a feasible result and of independent interest.

1.2 Organization

We provide a detailed technical overview of our approach in Section 2, and
preliminaries in Section 3. We give related mathematical results in Section 4
with proofs deferred to Appendix B. We give the PCG construction for OLE
over any field in Section 5, and the construction for authenticated multiplication
triples over any field in Section 6. In Section 7, we discuss more applications of
our approach, including multi-party multiplication triples and circuit-dependent
preprocessing in Section 7.1, matrix triples in Section 7.2, and finally OTs in
Section 7.3. We give specific PCG setup protocols with semi-honest/malicious
security in Section 8, and underlying DPF constructions in Appendix C. In
Section 9, we analyze security of underlying assumptions and select appropriate
parameters for our PCG constructions. In Appendix A, we give more preliminaries,
and in Appendix D, we show constructions from Ring-LPN assumptions.

2 Our Techniques

2.1 Limitations of PCG for OLEs from [BCG+20, BCCD23]

We briefly review the framework of PCG for OLE over Fpk in [BCG+20, BCCD23].
Suppose the goal is to generate N := dn random OLE correlations over Fpk ,
where p is a prime and n, k ≥ 1. Let R := Fpk [X1, . . . , Xn]/(f(X1), . . . , f(Xn)),
where f(X) = Xd − 1, and d | pk − 1. The framework relies on a ring isomorphism
R ≃ FN

pk , which is implied by the Chinese remainder theorem (CRT), so that it

suffices to distribute one OLE correlation over R. Let a $← R be the public input,
and sσ, eσ be t-sparse elements of R, where σ ∈ {0, 1}. The Ring-LPN/QA-SD
assumption2 implies that xσ := a · sσ + eσ is pseudorandom, for each σ ∈ {0, 1}.
The key observation is the following:

x0 · x1 = (a · s0 + e0) · (a · s1 + e1) = a2 · (s0s1) + a · (s0e1 + s1e0) + e0e1.

Hence, it suffices to distribute additive shares of cross-terms s0s1, s0e1, s1e0, e0e1
to the two parties, which then can be locally converted into additive shares of
x0 · x1. By the isomorphism R ≃ FN

pk , additive sharings of x0 · x1 over R are
equivalent to N OLE correlations over Fpk , as desired. Since s0s1, s0e1, s1e0, e0e1
are essentially t2-sparse elements of R, sharing of them can be done efficiently
from using SPFSS. Moreover, the resulting construction has programmability,
admitting PCG for multi-party Beaver triples.
2 The Ring-LPN assumption corresponds to the univariate case, where n is always 1

and N | pk − 1. While the QA-SD assumption corresponds to the multivariate case,
where N = dn and d | pk − 1.

7

However, the above approach has an undesirable and inherent restriction on
the field size. Although, Bombar et al. [BCCD23] significantly relax the restriction
of pk > N from Ring-LPN via introducing QA-SD assumptions, they fail in the
significantly interesting case of F2. The main reason is that F2 has only one
invertible element, and setting f(X) := X(X− 1) incurs a severe attack on the QA-
SD assumption as shown in [BCCD23], while setting f(X) := X−1 leads to a trivial
extension. Also, [BCCD23, Theorem 47] elaborates an impossibility result on it.
We would like to mention that using advanced mathematical tools of algebraic
geometry seems unhelpful, turning the problem to be more complicated [BCCD23,
Appendix D].

Though the QA-SD approach does not offer a direct solution to correlations
over F2, it is shown in FOLEAGE [BBC+24] that multi-party Boolean triples
can be obtained by first generating OLEs over F4, and then turning into F2

via reconstructing parts of shares. However, this approach requires additional
interaction and linear communication for sharing reconstruction, hence not a
silent preprocessing. Moreover, it is not clear how to further efficiently construct
silent PCG for authenticated Boolean triples from such F4 OLEs.

2.2 Trace to the Rescue

To overcome the barrier of the field size restriction, a fundamentally different
approach is in demand. Instead of directly building PCG constructions upon
assumptions on polynomial rings or algebraic curves over F2, we resort to finding
an approach that allows to convert F2k correlations into desired F2 correlations
efficiently and locally. Among maps from F2k to F2, the trace map seems a good
candidate that might help, as it is additively homomorphic and well-studied.
Bearing this in mind, we come up with a novel approach based on trace.

To this end, we first extend the notion of trace function from field elements of
Fpk to vectors in FN

pk in a natural way, and then examine the properties on the
ring R, since we have the isomorphism R ≃ FN

pk induced by CRT. Specifically,
for a vector v ∈ FN

pk , the trace of v is defined as

Tr(v) := (Tr(v1) . . .Tr(vN)) ∈ FN
p .

Recall that for an arbitrary α ∈ Fpk , the trace of α is defined as Tr(α) :=∑k−1
i=0 α

pi ∈ Fp, so we define trace function of an arbitrary f ∈ R as

Tr(f) :=
k−1∑
i=0

fp
i

.

We systematically study the above trace function over R, and we refer the
details to Section 4. Informally, it preserves most properties of the trace function
over Fpk , for instance, Tr(·) is Fp-linear, i.e., ∀α ∈ Fp,∀f ∈ R, Tr(α ·f) = α ·Tr(f).
Moreover, let ϕ : R → FN

pk denote the isomorphism of R ≃ FN
pk . Then the trace

function for R has the following desired property.

∀f ∈ R, ϕ(Tr(f)) ∈ FN
p .

8

It is not hard prove that ϕ(Tr(f)) = Tr(ϕ(f)) ∈ FN
p , i.e., ϕ and Tr are “commuta-

tive”. Note that here we abuse the trace function Tr(·) over R and over FN
pk . The

above described properties make it possible to obtain efficient PCGs for any field.
High-level idea of our approach. Let xσ := asσ + eσ, for σ ∈ {0, 1}, be two
QA-SD/Ring-LPN samples. Towards bypassing the field restriction, the core idea
is to share the product of the traces of x0, x1, i.e., Tr(x0) · Tr(x1), rather than
x0 ·x1 as in previous works. In more detail, as long as we can succinctly distribute
xσ, zσ ∈ R to Pσ satisfying

Tr(x0) · Tr(x1) = z0 + z1,

the two parties immediately obtain [Tr(x0) · Tr(x1)]R. By the ring isomorphism
R ≃ FN

pk , ϕ(z0+z1) is destined to be over FN
p with ϕ(z0), ϕ(z1) ∈ FN

pk rather than
FN
p . Therefore, the k − 1 high-dimensional arrays of ϕ(z0), ϕ(z1) ∈ (Fk

p)
N cancel

out and can be discarded. Since p is the characteristic of Fpk , Tr(xσ) =
∑k−1

i=0 (asσ+

eσ)
pi

has 2k terms and Tr(x0) · Tr(x1) =
∑

i,j∈[0,k−1](a
pi

sp
i

0 + ep
i

1)(ap
j

sp
j

0 + ep
j

1)

has 4k2 terms . Then it suffices to use FSS to share the cross-terms, e.g., sp
i

0 e
pj

1 ,
leading to a PCG having seed size scaling with 4k2. By further utilizing algebraic
properties of trace, we are able to achieve a PCG of seed size scaling with 4k, i.e.,
O(λkt2 logN) for kN OLE correlations over an arbitrary field Fp, where t is set
O(λ) for guaranteeing security of the QA-SD assumptions and k is an arbitrary
integer ≥ 2.

2.3 Warm-up: from F2k to F2 via Trace

We give a warm-up construction, focusing on the special case of OLE over F2.
Assume Rk := F2k [X1 . . . Xn]/(X

2k−1
1 . . . X2

k−1
n). Without loss of generality, we

first set k = 2, N = 3n, ξ ∈ F4 s.t. F4 = F2(ξ). Let a $← R2 be the public
input, and sσ, eσ be two random t-sparse elements of R2, where σ ∈ {0, 1}.
Given (a, bσ = a · sσ + eσ), denote QA-SD(R2, t) as the problem to distinguish
(a, b) from (a, u) with u

$← R2. The hardness of QA-SD(R2, t) implies that
xσ := a · sσ + eσ is pseudorandom for σ ∈ {0, 1}. Recall that for OLEs over F4

(i.e., for σ ∈ {0, 1}, Pσ obtains random xσ, zσ ∈ R2, such that x0 · x1 = z0 + z1),
following the construction of [BCCD23], it suffices to use SPFSS to additively
share s0s1, s0e1, e0s1, e0e1, according to the following equation:

x0 · x1 = (a · s0 + e0) · (a · s1 + e1) = a2 · (s0s1) + a · (s0e1 + s1e0) + e0e1. (1)

However, it is not clear how to efficiently and locally convert additive shares of
x0 · x1 over R2 ≃ FN

4 to OLE correlations over F2.
We also start with QA-SD(R2, t), but instead we try to employ trace of F4

over F2 to achieve the local conversion. To this end, we embed the trace structure
to Eq.(1). Our goal is to additively share Tr(ϕ(x0)) ∗ Tr(ϕ(x1)) ∈ FN

2 , which is

9

equivalent to share Tr(x0) · Tr(x1) ∈ R2. We have the following observation:

Tr(x0) · Tr(x1) = (x20 + x0)(x
2
1 + x1) =

∏
σ∈{0,1}

(
(a · sσ + eσ)

2 + a · sσ + eσ
)

=
∏

σ∈{0,1}

(a2 · s2σ + a · sσ + e2σ + eσ)

= a4 · s20s21 + a3 · (s20s1 + s0s
2
1) + a2 · (s20e21 + s20e1 + s0s1 + s21e

2
0 + s21e0)

+ a · (s0e21 + s0e1 + s1e
2
0 + s1e0) + (e20e

2
1 + e20e1 + e0e

2
1 + e0e1).

(2)

It is easy to see that the above formula on the right has 16 = 4 · 4 terms, and it
suffices to use SPFSS to distribute additive shares of these values. Suppose each
term is shared as (αi, βi) for i ∈ [1, 16], i.e., party P0,P1 obtains {αi}i, {βi}i,
respectively, such that Tr(x0)·Tr(x1) =

∑16
i=1(αi+βi). Then P0 and P1 can locally

compute α = ϕ(
∑16

i=1 αi) mod ξ, and β = ϕ(
∑16

i=1 βi) mod ξ, respectively.
Correctness directly follows by Theorem 4.1 (ϕ,Tr are “commutative”), namely,

ϕ(Tr(x0)) ∗ ϕ(Tr(x1)) = ϕ(

16∑
i=1

αi) + ϕ(

16∑
i=1

βi) = α+ β,

as ϕ(Tr(x0)), ϕ(Tr(x1)) ∈ FN
2 , and the coefficients of ξ of ϕ(

∑16
i=1 αi), ϕ(

∑16
i=1 βi)

vanish. For security, by the pseudorandomness of x0, x1, Tr(x0),Tr(x1) are pseu-
dorandom, and by the security of underlying SPFSS, α,β are indistinguishable
from the uniform distribution over FN

2 .
At a first glance, the seed size would be quite large, since term e.g., s20s21 is

the product of four t-sparse elements of R2 and could be t4-sparse. In fact, we
show a much tighter upper bound of the sparsity. That is quadratic of t. Due
to Lemma 4.3, s2σ, e2σ are also t-sparse in R2. Hence the seed size of our PCG is
proportional to t2, same as that of [BCCD23].
Optimizations. We first show an optimization that reduces the number of
underlying FSS instances of point functions by half, from carefully rewriting
Eq.(2). Jumping ahead, the goal is to distribute α, β ∈ R2 to P0,P1, with the
following:

Tr(x0) · Tr(x1) = Tr(α) + Tr(β). (3)

Note that Tr(α),Tr(β) can be locally computed by P0,P1 respectively. To this
end, by Definition 4.1, we can rewrite Eq.(2) as follows:

Tr(x0) · Tr(x1) = (a4s20s
2
1 + a2s0s1) + (a3s20s1 + a3s0s

2
1) + (a2s20e

2
1 + as0e1)

+ (a2s20e1 + as0e
2
1) + (as1e0 + a2s21e

2
0) + (as1e

2
0 + a2s21e0) + (e20e

2
1 + e0e1) + (e21e2 + e1e

2
2)

= Tr(a2s0s1) + Tr(s0s
2
1) + Tr(as0e1) + Tr(as0e

2
1) + Tr(as1e0)

+ Tr(as1e
2
0) + Tr(e0e1) + Tr(e0e

2
1).

(4)
Therefore, it suffices to additively share these eight t2-sparse terms s0s1, s0s21, s0e1,
s0e

2
1, s1e0, s1e

2
0, e0e1, e1e22 via SPFSS. We denote the shares held by P0,P1 as

10

αi, βi, i ∈ [1, 8]. Then party P0 can locally compute

α := a2 · α1 + a · (α3 + α4 + α5 + α6) + (α2 + α7 + α8),

while P1 locally computes

β := a2 · β1 + a · (β3 + β4 + β5 + β6) + (β2 + β7 + β8).

For correctness, it is easy to verify that α, β satisfy Eq.(3). Then (Tr(x0),Tr(x1),
Tr(α),Tr(β)) are essentially N OLEs over F2. For security, α, β are indistinguish-
able from being uniformly random in R2 (as e.g., α7, β7 are uniformly random)
by the security of underlying SPFSS. This completes our first optimization.

Next, we show that the above α, β ∈ R2 essentially admit 2N independent
random OLE correlations over F2, thus further reducing the communication by
half in an amortization flavor. This optimization also relies on the properties of
our trace function. Let ξ ∈ F4 s.t. F4 = F2(ξ), then (1, ξ) is a basis of F4 over F2.
By Theorem 4.3, for x $← R2, Tr(x) and Tr(ξx) are independent and uniform over
FN
2

3. Hence, we can extract additional N OLEs from the following observation:

Tr(ξx0) · Tr(ξx1) = (ξ2x20 + ξx0)(ξ
2x21 + ξx1)

=
∏

σ∈{0,1}

(a2 · ξ2s2σ + a · ξsσ + ξ2e2σ + ξeσ)

= Tr(a2ξ2 s0s1︸︷︷︸
α1+β1

) + Tr(s0s
2
1︸︷︷︸

α2+β2

) + Tr(aξ2 s0e1︸︷︷︸
α3+β3

) + Tr(a s0e
2
1︸︷︷︸

α4+β4

)

+ Tr(aξ2 s1e0︸︷︷︸
α5+β5

) + Tr(a s1e
2
0︸︷︷︸

α6+β6

) + Tr(ξ2 e0e1︸︷︷︸
α7+β7

) + Tr(e0e
2
1︸︷︷︸

α8+β8

)

(5)

Therefore, the above αi, βi ∈ R2 from Eq.(3) can be reused. Let P0 additionally
compute

α′ := a2ξ2α1 + a(ξ2α3 + α4 + ξ2α5 + α6) + (α2 + ξ2α7 + α8)

and P1 additionally compute

β′ := a2ξ2β1 + a(ξ2β3 + β4 + ξ2β5 + β6) + (β2 + ξ2β7 + β8).

It can be directly verified that

Tr(ξx0) · Tr(ξx1) = Tr(α′) + Tr(β′).

This implies extra N OLE correlations over F2 by the isomorphism. Security
follows the security of underlying SPFSS and Theorem 4.3.

Intuitively, F4 can be viewed as a dimension 2 vector space over F2. From the
isomorphism R2 ≃ FN

4 , a random element x of R2 has 2N -bit entropy and there
3 Actually, this is nothing but the coordinates of x in the dual basis (with respect to

the trace map) of (1, ξ).

11

are at most 2N elements of F2 can be extracted from x. Analogously, Rk allows
at most extractions of kN F2 elements.

Sharing products of sparse elements. We show how to share the cross-terms
using a sum of point function secret sharing scheme SPFSS. Note that SPFSS can
be directly instantiated with DPFs. For R2 = F4[X1, . . . , Xn]/(X

3
1 − 1, . . . , X3n − 1),

it is easy to see that R2 has a basis {
∏n

i=1 X
ji
i }, where (j1, . . . , jn) goes through

[0, 3)n. For simplicity, we define a bijection φ2 : j 7→
∏n

i=1 X
ji
i , where j ∈ [0, N)

andN = 3n. Given the bijection φ2 and the basis {
∏n

i=1 X
ji
i }, any t-sparse element

x of R2 can be uniquely represented by two vectors A ∈ [0, N)t (indicating the
non-zero positions of x) and s ∈ (F∗4)t (corresponding to the coefficients of x).
This allows to succinctly distribute additive shares of x ∈ R2 via SPFSS with
domain [0, N) and range F4.

Let (A0
σ, sσ) represent the t-sparse element sσ of R2, for σ ∈ {0, 1}. By

Lemma 4.3, s21 is t-sparse of R2 as well. Furthermore, the representation of s21,
denoted by ((A0

1)
2, (s1)

2), can be computed as

(A0
1)

2 := φ−12

(
φ2(A

0
1) ∗ φ2(A

0
1)
)
, (s1)

2 = s1 ∗ s1.

Then, by Lemma 4.3, s0s21 is t2-sparse of R2, and the representation of s0s21,
denoted by (A0

0 ⊞ (A0
1)

2, s0 ⊗ (s1)
2), can be computed as follows:

A0
0 ⊞ (A0

1)
2 := φ−12

(
φ2(A

0
0)⊗ φ2((A

0
1)

2)
)
,

where ⊗ refers to the tensor product. Essentially, the above “additions” on the
positions of [0, N) are equivalent to the additions on G = Zn

3 , and we abuse the
equivalence in this work. We remark that there exists a ternary FSS with domain
Zn
3 [BBC+24, Section 5.1].

The final optimized construction. Though, we already get desired OLE
correlations over F2 from k = 2, it is not easy to extend to a general k ≥ 2. It
seems very heuristic to write a similar formula for k > 2 as Eq.(4).

One significantly useful property of trace over finite fields is that for an
arbitrary u ∈ F2k , Tr(u) ∈ F2, hence ∀u, v ∈ F2k , Tr(u) · Tr(v) = Tr(Tr(u) · v).
To further exploit the properties of trace functions over Rk, we establish the
following result: ∀f, g ∈ Rk, it holds that

Tr(f) · Tr(g) = Tr(Tr(f) · g) = Tr(f · Tr(g)),

i.e., Tr(·) over R “absorbs” Tr(R) as well. Moreover, our Tr(·) over Rk also
enjoys additive homomorphism, making it compatible with the additive sharings.
Specifically, if x is additively shared over Rk, then additive shares of Tr(x) can
be locally obtained. These indicate that the trace function over Rk employs
analogues properties of the trace over finite fields. Generally, Tr(·) over Rk is
properly defined with respect to the isomorphism ϕ.

Recall that it suffices to share Tr(x0) · Tr(x1), which offers kN extractions of
OLEs over F2 by fixing a basis (1, ξ, . . . , ξk−1) of F2k = F2(ξ). For an arbitrary

12

k ≥ 2, and j = 0, 1, . . . , k − 1, we give the following concise representation:

Tr(ξjx0) · Tr(ξjx1) = Tr(ξjx0 · Tr(ξjx1))

= Tr
(
ξj · (as0 + e0) ·

k−1∑
i=0

ξj·2
i

· (as1 + e1)
2i
)

= Tr
(
ξj·(2

i+1) ·
k−1∑
i=0

(as0 + e0)(a
2is2

i

1 + e2
i

1)
)

=

k−1∑
i=0

Tr
(
ξj·(2

i+1) · (a2
i+1 · s0s2

i

1 + a2
i

· e0s2
i

1 + a · s0e2
i

1 + e0e
2i

1)
)
.

The construction also satisfies programmability, allowing for generating multi-
party Beaver triples over F2 as shown in [BCG+19b]. Compared to the approach
of [BBC+24], the generation of multi-party F2 Beaver triples is silent, meaning
that as long as the PCG seeds are honestly distributed, the parties can obtain
Beaver triples via local expansion. We defer arguments of programmability to
Section 5.

2.4 PCG for Authenticated Multiplication Triples.

Adapting the above OLE constructions to triples is straightforward, in which one
can distribute additive sharings of x0, x1 via SPFSS. Sharing with a global key
∆

$← Fpk is much more complicated, where k = O(λ). The above optimization
of moving Tr(x1) inside Tr(·) does not work in this case as ∆ ∈ Fpk . Hence, the
seed size grows by a factor of O(k) in general. For σ ∈ {0, 1} and s ∈ [0, k − 1],
sharings of ∆ · Tr(ξs · xσ) can be obtained as follows:

∆ · Tr(ξs · xσ) =
∑

i∈[0,k−1]

∆ · ξs·p
i

· (asσ + eσ)
pi

=
∑

i∈[0,k−1]

ξs·p
i

· (ap
i

∆ · sp
i

σ +∆ · ep
i

σ).

Hence, it suffices to share ∆ · spi

σ , ∆ · ep
i

σ via SPFSS, for all i ∈ [0, k − 1], which
are t-sparse elements. As for sharings of ∆ · Tr(ξs · x0) · Tr(ξs · x1), s ∈ [0, k − 1],

∆ · Tr(ξs · x0) · Tr(ξs · x1)

=
∑

i,j∈[0,k−1]

∆ · ξs·p
i

· (as0 + e0)
pi

· ξs·p
j

· (as1 + e1)
pj

=
∑

i,j∈[0,k−1]

ξs(p
i+pj) · (ap

i+pj

∆sp
i

0 s
pj

1 + ap
j

∆ep
i

0 s
pj

1 + ap
i

∆sp
i

0 e
pj

1 +∆ep
i

0 e
pj

1)

Hence, it suffices to share∆·sp
i

0 s
pj

1 , ∆·s
pi

0 e
pj

1 , ∆·e
pi

0 s
pj

1 , ∆·e
pi

0 e
pj

1 via SPFSS, for all
i, j ∈ [0, k− 1], which are t2-sparse elements. Putting all pieces together, the seed

13

size is O
(
(t2k2+t2k+tk+t)λ logN

)
= O(λ3k2 logN) for kN authenticated triples.

In addition, we remark that the above construction is only for illustrating the basic
idea and k does not have to be O(λ). In fact, through our optimizations, k can
be arbitrary integers larger than 2, so that the seed size remains O(λ3k2 logN).

We also demonstrate an effcient maliciously secure setup protocol to produce
the PCG seeds, via instantiating SPFSS with concretely efficient DPFs.

3 Preliminaries

Notations. Let A[i] denote the i-th entry of A. Given ℓ, r ∈ Z, denote [ℓ, r] =
[ℓ, r + 1) ⊂ Z as the set of integers starts from ℓ and ends with r. If a value x
is additively shared, we denote it as [x]. If a value x is shared via a SPDZ-style
authenticated sharing, for instance JxK := (JxK0 , JxK1) and JxKσ := (xσ,Mσ[x])
where x = x0 + x1, M0[x] +M1[x] = x · (∆0 +∆1) and (∆0, ∆1) is a sharing of
the global key.

3.1 Function Secret Sharing

Function secret sharing (FSS) [BGI15, BGI16] allows to share functions succinctly
among two parties. More concisely, for some secret function f : I → G where G
is an Abelian group, an FSS scheme splits it into two functions f0, f1, such that:
(1) f0(x) + f1(x) = f(x) for every input x ∈ I, and (2) f0, f1 can be represented
by short keys K0,K1 respectively, with each of K0,K1 individually hiding f .

Distributed point function (DPF) [GI14, BGI15] is a useful and fundamental
kind of FSS schemes, specialized for sharing point functions. We give a formal
definition of DPF as follows.

Definition 3.1 (Distributed point function). Given an input domain I =
[0, N), and an Abelian group (G,+), the point function fα,β : I → G is defined
by fα,β(x) = β if x = α, and fα,β(x) = 0 if x ≠ α, where α ∈ I, β ∈ G. A DPF
scheme for the class of point functions {fα,β : α ∈ I, β ∈ G} consists of the
following two algorithms.

– DPF.Gen(1λ, α, β) is a PPT algorithm that, given the security parameter
λ, a position index α ∈ I and an element β ∈ G, outputs a pair of keys
(kdpf

0 ,kdpf
1).

– DPF.Eval(σ,kdpf
σ , x) is a polynomial-time algorithm that, given a key kdpf

σ for
party σ ∈ {0, 1}, and an input x ∈ I, outputs zσ ∈ G.

The above scheme should satisfy the following requirements.

– Correctness: For any α ∈ I, β, x ∈ G, it holds that z0 + z1 = f(x), where
zσ ← DPF.Eval(σ,kdpf

σ , x) for σ ∈ {0, 1} and (kdpf
0 ,kdpf

1)
$← DPF.Gen(1λ, α, β).

– Security: For any σ ∈ {0, 1}, there exists a PPT simulator S such that for any
point function fα,β , the distributions {(kdpf

σ : (kdpf
0 ,kdpf

1)
$← DPF.Gen(1λ, α, β))}

and {kdpf
σ

$← S(1λ, I,G)} are computationally indistinguishable.

14

In this paper, we will use a simple and generic extension of DPF to sums of
point functions. Let A = (α1, . . . , αt) ∈ [0, N)t, β = (β1, . . . , βt) ∈ Gt, the sum
of point functions fA,β : [0, N)→ G is defined by

∑t
i=1 fαi,βi . And it is direct

to see that an FSS for fA,β can be realized by invoking t parallel DPFs, with
each for fαi,βi

. Similarly, we define (SPFSS.Gen,SPFSS.Eval) as FSS for sums of
point functions, with security following that of DPF. For convenience, we define
SPFSS.FullEval as evaluations of SPFSS.Eval on all possible x ∈ [0, N).

The typical DPF construction [BGI16] uses an arbitrary pseudorandom
generator(PRG) G : {0, 1}λ → {0, 1}2λ+2 and the parameter is given as follows.
The key size is at most ⌈logN⌉ (λ+2)+λ+⌈log |G|⌉ bits. Takingm =

⌈
log |G|
λ+2

⌉
, the

key generation SPFSS.Gen algorithm makes at most 2(⌈logN⌉+m) PRG calls and
the full domain evaluation algorithm SPFSS.FullEval makes at most N(1 +m)
PRG calls. For regular multi-point distributions, the number of PRG calls
sheaves by a factor t. Employing batching codes, the SPFSS.FullEval algorithm
can be asympcotically improved at the cost of more complicated seed generation
algorithm. Recently, the SPFSS.Gen and SPFSS.FullEval algorithms are improved
via a half-tree technique [GYW+23]. To show that our OLE and authenticated
multiplication triples constructions are comparable to the previous constructions
from Ring-LPN [BCG+20] and QA-SD [BCCD23], we still use the parameters
from [BGI16] because the previous constructions rely on the parameters of
[BGI16].

3.2 Pseudorandom Correlation Generators

The notion pseudorandom correlation generators PCG was first introduced in
[BCG+19a, BCG+19b]. Informally, a PCG for some correlation, allows to dis-
tribute short, correlated seeds to the parties, such that each party can locally
compute long, correlated pseudorandomness (satisfying the desired correlation)
from expanding their own seed. To give a formal definition, we start with correla-
tion generators, and reverse-sampleable correlation generators.

Definition 3.2 (Correlation generator). A correlation generator C is a PPT
algorithm that on input 1λ, outputs a pair of strings in {0, 1}ℓ × {0, 1}ℓ, where
ℓ ∈ poly(λ).

Definition 3.3 (Reverse-sampleable correlation generator). Let C be a
correlation generator. We say C is reverse sampleable if there exists a PPT
algorithm RSample such that for σ ∈ {0, 1}, the following distribution

{(R′0, R′1) | (R0, R1)
$← C(1λ), R′σ := Rσ, R

′
1−σ

$← RSample(σ,Rσ)}

is computationally indistinguishable from the distribution given by C(1λ).

In the following, we give the definition of PCG. Programmable PCG is formally
defined in Appendix A.

15

Definition 3.4 (PCG). Let C be a reverse-sampleable correlation generator. A
PCG for C consists of two algorithms (PCG.Gen,PCG.Expand) with the following
syntax:

– PCG.Gen(1λ) is a PPT algorithm that given the security parameter λ, outputs
a pair of seeds (k0,k1).

– PCG.Expand(σ,kσ) is a polynomial-time algorithm that given a party index
i ∈ {0, 1} and a seed kσ, outputs a bit string Rσ ∈ {0, 1}ℓ.

The two algorithms (PCG.Gen,PCG.Expand) should satisfy the following:

– Correctness. The following distribution

{(R0, R1) | (k0,k1)
$← PCG.Gen(1λ), Rσ ← PCG.Expand(σ,kσ)}

is computationally indistinguishable from the distribution given by C(1λ).
– Security. For any σ ∈ {0, 1}, the following two distributions are computa-

tionally indistinguishable:

{(k1−σ, Rσ) | (k0,k1)
$← PCG.Gen(1λ),Rσ ← PCG.Expand(σ,kσ)} and

{(k1−σ, Rσ) | (k0,k1)
$← PCG.Gen(1λ),R1−σ ← PCG.Expand(σ,k1−σ)},

Rσ
$← RSample(σ,R1−σ)},

where RSample is the reverse sampling algorithm for correlation C.

3.3 Syndrome Decoding of Quasi-Abelian Codes

In this section, we recall the syndrome decoding assumption of Quasi-Abelian
codes introduced in [BCCD23]. For simplicity, we only introduce the concrete
instantiation used in this work, and refer details of Quasi-Abelian codes to
[BCCD23, BBC+24]. We define Ring-LPN assumption in a similar way (viewed
as a univariate variant of QA-SD) in Appendix A.

Definition 3.5 (Search QA-SD). Let R = Fq[X1, . . . , Xn]/(X
d
1 − 1, . . . , Xdn − 1),

where d | q − 1. Let c ≥ 2 be some constant integer called the compression factor.
Let a = (1, a1, . . . , ac−1), where ai

$← R, i ∈ [1, c − 1]. Let e0, e1, . . . , ec−1 be
random t-sparse elements of R. Given access to a pair of the form (a, ⟨a, e⟩),
the goal is to recover e.

Definition 3.6 (Decisional QA-SD). Let R = Fq[X1, . . . , Xn]/(X
d
1−1, . . . , Xdn−

1), where d | q − 1. Let c ≥ 2 be some constant integer called the compression
factor. The goal is to distinguish the following two distributions:

D0 : {(a1, . . . , ac−1, u)}, where ai, u
$← R, i ∈ [1, c− 1]

D1 : {(a1, . . . , ac−1, ⟨a, e⟩+ e0)}, where ai
$← R, e0, ei are random

t-sparse elements of R, i ∈ [1, c− 1].

16

In this work, for simplicity we set the compression factor c = 2, and the above
problems are referred as search QA-SD(R, t), decisional QA-SD(R, t), respectively.
All of our constructions can be naturally extended to cases of c ≥ 2. We say that
the search (decisional) QA-SD(R, t) assumption holds when there exists no PPT
algorithm that solves the problem with a non-negligible advantage.

4 Ring Isomorphisms and Trace Functions

In this section, we show some useful properties of the univariate ring and mul-
tivariate ring that we are working on. Then we define the trace functions over
the ring, which employ similar properties to the trace function over finite field
extension. The detailed proofs of the results in this section are presented in
Appendix B. We first show the univariate ring and the multivariate ring are
isomorphic to a vector ring.

Lemma 4.1 (The Univariate Ring). Let R := Fq[X]/(X
N−1) with N | (q−1).

Then there exists ϕ : R → FN
q such that ϕ is a ring isomorphism. In particular,

the addition and multiplication operations on FN
q are defined component-wisely.

Lemma 4.2 (The Multivariate Ring). Let R = Fq[X1, . . . , Xn]/(X
d
1−1, . . . , Xdn−

1), where d | (q − 1). Then there exists ϕ : R → FN
q , where N = dn, such that ϕ

is a ring isomorphism.

Remark 4.1. Lemma 4.2 can be generalized to R = Fq[X1 . . . Xt]/(X
d1
1 −1 . . . Xdn

n −
1) with each di | (q − 1). Lemma 4.1 can be viewed as a special case of Lemma
4.2 with n = 1.

Let Fp be a prime field of characteristic p, and Fpk be a finite extension of Fp.
Then we show the polynomial ring R over Fpk inherits some nice properties from
the finite field extension Fpk of Fp.

Lemma 4.3 (Properties of R). For a prime p and k ∈ N, let R = Fpk [X]/(XN−
1) or R = Fpk [X1, . . . , Xn]/(X

d
1 − 1, . . . , Xdn − 1) as defined above.

1. R has characteristic p.
2. For arbitrary a, b ∈ R and j ∈ N, then (a+ b)p

j

= ap
j

+ bp
j

.
3. If a ∈ R is t-sparse, then ap

j

is t-sparse for any integer j.
4. For arbitrary a ∈ R, ap

k

= a.

Recall that for arbitrary α ∈ Fpk , the trace TrF
pk

/Fp
(α) of α ∈ Fpk over Fp is

defined by
TrF

pk
/Fp

(α) = α+ αp + · · ·+ αpk−1

.

In this work, we focus on a general prime field Fp and the specific case where p = 2,
and we simplify the notation Tr(α) as the trace of α ∈ Fpk over Fp. In addition,
we naturally define the trace Tr(α) of an vector α ∈ FN

pk as (Tr(α1), . . . ,Tr(αN)).
Below we define trace functions over R.

17

Definition 4.1 (Trace Functions for Ring Elements). For an arbitrary
f ∈ R, define the trace function as Tr(f) :=

∑k−1
i=0 f

pi

.

One significant property of trace functions over finite fields is that for an arbitrary
α ∈ Fpk , Tr(α) ∈ Fp. We prove that our trace function over R is properly defined
with respect to the isomorphism ϕ, i.e., ∀f ∈ R, ϕ(Tr(f)) ∈ FN

p .

Theorem 4.1. For an arbitrary f ∈ R, ϕ(Tr(f)) ∈ FN
p . In particular,

ϕ(Tr(f)) = Tr(ϕ(f)) ∈ FN
p .

Hence, one can view as ϕ and Tr are “commutative”.

Moreover, the trace function for R also satisfies the following properties as the
trace function for Fpk .

Theorem 4.2. The trace function over R satisfies the following properties:

1. ∀f1, f2 ∈ R, Tr(f1 + f2) = Tr(f1) + Tr(f2).
2. ∀α ∈ Fp,∀f ∈ R, Tr(α · f) = α · Tr(f).
3. ∀f ∈ R, Tr(fp) = Tr(f).
4. ∀f1, f2 ∈ R, Tr(f1) · Tr(f2) = Tr(Tr(f1) · f2) = Tr(f1 · Tr(f2)).

Note that for arbitrary two field elements α, β ∈ Fpk , Tr(α) ·Tr(β) = Tr(Tr(α) ·β)
because of Tr(α) ∈ Fp. Generalizing it to vectors, for arbitrary two vectors
u,v ∈ FN

pk , it holds that Tr(u) ∗ Tr(v) = Tr(Tr(u) ∗ v) as the multiplication is
computed component-wise. Property 4 of Theorem 4.2 indicates that a similar
result holds for R as well.

Theorem 4.3. Let ξ ∈ Fpk s.t. Fpk = Fp(ξ). For x
$← R, we have that(

Tr(x),Tr(ξx), . . . ,Tr(ξk−1x)
)

are distributed uniformly at random in FkN
p , where

N = dn.

Theorem 4.3 essentially holds for any basis (b1, . . . , bk) of Fpk over Fp. For instance,(
Tr(ξp

0

x),Tr(ξp
1

x), . . . ,Tr(ξp
k−1

x)
)

are distributed uniformly at random in FkN
p

as well, since (ξp
0

, ξp
1

, . . . , ξp
k−1

) is a basis.

Theorem 4.4. Let k, η, d be integers such that d | pk − 1 and k | η. Then the
isomorphism ϕk : Rk = Fpk [X1, . . . , Xn]/(X

d
1 − 1, . . . , Xdn − 1) → FN

pk naturally
induces an isomorphism ϕη : Rη = Fpη [X1, . . . , Xn]/(X

d
1 − 1, . . . , Xdn − 1) → FN

pη ,
where N = dn.

5 PCG for OLE over Any Finite Field

In this section, we show how to construct a secure programmable PCG for OLE
over any field from using Trace. To address difference from the state-of-the-art
construction in [BCCD23] that only supports a field F with |F| > 2, we discuss
the particularly interesting case of OLE over F2 in Section 2.3, referred as a

18

warm-up construction. Our trace approach essentially can apply to any field, and
the core idea is to use trace to locally and efficiently convert correlations over
Fpk to the target OLE correlations over Fp.

In this section, we give a generic PCG construction for OLE over any field.
Basically, the construction is obtained by a similar approach as in Section 2.3.

Let Rn,d
p,k = Fpk [X1, . . . , Xn]/(X

d
1 − 1, . . . , Xdn − 1) with Fp an arbitrary finite

field of characteristic p and d | pk−1. W.l.o.g., assume d reaches the upper bound
pk − 1 and simply write Rn,d

p,k by Rk. Assume QA-SD(Rk, t), and we show how

to generate kN OLEs over Fp in a batch, where N = (pk − 1)n. Let a $← Rk be
the public input, and sσ, eσ be random t-sparse elements of Rk, where σ ∈ {0, 1}.
By hardness of QA-SD(Rk, t), xσ := a · sσ + eσ is pseudorandom for σ ∈ {0, 1}.
Similar to our initial idea of Section 2.3, we have the following observation:

Tr(x0) · Tr(x1) = (xp
k−1

0 + . . .+ xp
0

0) · (xp
k−1

1 + . . .+ xp
0

1)

= (
∑

i∈[0,k−1]

x0
pi

) · (
∑

i∈[0,k−1]

x1
pi

) =
∑

i,j∈[0,k−1]

x0
pi

x1
pj

=
∑

i,j∈[0,k−1]

(as0 + e0)
pi

· (as1 + e1)
pj

=
∑

i,j∈[0,k−1]

(ap
i

sp
i

0 + ep
i

0) · (ap
j

sp
j

1 + ep
j

1)

=
∑

i,j∈[0,k−1]

(ap
i+pj

sp
i

0 s
pj

1 + ap
j

ep
i

0 s
pj

1 + ap
i

sp
i

0 e
pj

1 + ep
i

0 e
pj

1)

(6)

Thus, one can obtain additive shares of Tr(x0) ·Tr(x1) by succinctly sharing these
4k2 cross-terms via SPFSS. In fact, we can significantly reduce the cross terms
needs to be shared by exploiting the Fp-linearity of trace, which is similar to that
of our first optimization in Section 2.3. The difference is that here we present in
a more systematic way, by Theorem 4.2 (Property 4).

Tr(x0) · Tr(x1) = Tr(x0 · Tr(x1)) = Tr(x0 · (
k−1∑
i=0

xp
i

1)) =

k−1∑
i=0

Tr(x0 · xp
i

1)

=

k−1∑
i=0

Tr
(
(as0 + e0) · (as1 + e1)

pi)
=

k−1∑
i=0

Tr
(
(as0 + e0) · (ap

i

sp
i

1 + ep
i

1)
)

=

k−1∑
i=0

Tr(ap
i+1s0s

pi

1 + ap
i

e0s
pi

1 + as0e
pi

1 + e0e
pi

1)

(7)

By Lemma 4.3, sp
i

1 , e
pi

1 are t-sparse elements of Rk as well. Therefore, for each
i ∈ [0, k − 1], we can use SPFSS to succinctly share the t2-sparse elements
s0s

pi

1 , e0s
pi

1 , s0e
pi

1 , e0e
pi

1 of Rk. Hence, the communication complexity scales with
4k. By Theorem 4.3, essentially we can extract in total kN OLE correlations
over Fp from these 4k shares. This time, we consider the basis ξp

0

, ξp
1

, . . . , ξp
k−1

19

of Fpk = Fp(ξ) over Fp. Then, for each j ∈ [0, k − 1], we have that

Tr(ξp
j

x0) · Tr(ξp
j

x1) =

k−1∑
i=0

Tr
(
ξp

j

· (as0 + e0) · ξp
j+i

· (as1 + e1)
pi)

=

k−1∑
i=0

Tr
(
ξp

j+pj+i

· (ap
i+1s0s

pi

1 + ap
i

e0s
pi

1 + as0e
pi

1 + e0e
pi

1)
)
.

(8)

With Eq.(7) & (8) as above, we are able to explicitly present a construction
Cons

Fp

OLE that works for any p, k ≥ 2. The construction relies on the hardness of QA-
SD(Rk, t) and an SPFSS scheme for sums of point functions, with domain [0, N)
and range Fpk . We address that here we define a bijection φk : j 7→

∏n
i=1 X

ji
i ,

where j ∈ [0, N) and (j1, . . . , jn) go through [0, pk − 1)n. Thus, any s ∈ Rk

corresponds to a unique pair (A, s) ∈ [0, N)t × Ft
pk under φk. Similarly, for

A0,A1 ∈ [0, N)t, we define A0⊞A1 := φ−1k

(
φk(A0)⊗φk(A1)

)
, and the operation

(A0)
pi

for i ∈ [0, k − 1] is generalized from that of Section 2.3 in a similar way.
Note that the above “additions” on the positions of [0, N) are essentially nothing
more than standard additions on a group G = Zn

pk−1.

Construction 1: ConsFp

OLE

PARAMETER: Security parameter λ, noise weight t = t(λ), N = (pk − 1)n,
Rk = Fpk [X1, . . . , Xn]/(X

pk−1
1 − 1, . . . , Xp

k−1
n − 1), ξ ∈ Fpk s.t. Fpk = Fp(ξ). An

FSS scheme (SPFSS.Gen, SPFSS.FullEval) for sums of t2 point functions, with
domain [0, N)a and range Fpk . Fix a basis (ξ, ξp

1

, . . . , ξp
k−1

) of Fpk over Fp.
PUBLIC INPUT: A uniformly random a ∈ Rk.
CORRELATION: After expansion, outputs (x

(0)
0 , . . . ,x

(k−1)
0 , z

(0)
0 , . . . , z

(k−1)
0) ∈

F2kN
p and (x

(0)
1 , . . . ,x

(k−1)
1 , z

(0)
1 , . . . , z

(k−1)
1) ∈ F2kN

p such that x
(j)
0 · x(j)

1 =

z
(j)
0 + z

(j)
1 for all j ∈ [0, k).

Gen: On input 1λ:

1. For σ ∈ {0, 1}, sample random vectors A0
σ,A

1
σ ← [0, N)t and sσ, eσ ←

(F∗
pk)

t.
2. Sample FSS keys according to Eq.(7), namely for each i ∈ [0, k − 1]:

(K4i
0 ,K4i

1)
$← SPFSS.Gen(1λ,A0

0 ⊞ (A0
1)

pi , s0 ⊗ (s1)
pi),

(K4i+1
0 ,K4i+1

1)
$← SPFSS.Gen(1λ,A1

0 ⊞ (A0
1)

pi , e0 ⊗ (s1)
pi),

(K4i+2
0 ,K4i+2

1)
$← SPFSS.Gen(1λ,A0

0 ⊞ (A1
1)

pi , s0 ⊗ (e1)
pi),

(K4i+3
0 ,K4i+3

1)
$← SPFSS.Gen(1λ,A1

0 ⊞ (A1
1)

pi , e0 ⊗ (e1)
pi),

3. For σ ∈ {0, 1}, let kσ =
(
(Ki

σ)i∈[0,4k−1], (A
0
σ, sσ), (A

1
σ, eσ)

)
.

4. Output (k0,k1).

Expand: On input (σ,kσ):

1. Parse kσ as
(
(Ki

σ)i∈[0,4k−1], (A
0
σ, sσ), (A

1
σ, eσ)

)
.

20

2. Define elements of Rk

sσ =

t∑
l=1

sσ[l] ·A0
σ[l], eσ =

t∑
l=1

eσ[l] ·A1
σ[l].

3. For each j ∈ [0, k − 1], compute x
(j)
σ = Tr

(
ξp

j

· (asσ + eσ)
)
.

4. For i ∈ [0, 4k − 1], compute uσ,i ← SPFSS.FullEval(σ,Ki
σ),viewed as Rk

elements.
5. For each j ∈ [0, k − 1], according to Eq.(8), compute

z(j)σ :=

k−1∑
i=0

Tr
(
ξp

j+pj+i

· (api+1uσ,4i + apiuσ,4i+1 + auσ,4i+2 + uσ,4i+3)
)

6. Output {(x(j)
σ , z

(j)
σ)}j∈[0,k−1].

a Each j ∈ [0, N) corresponds to a basis
∏n

i=1 X
ji
i of Rk, where ji ∈ [0, pk − 1).

The addition on [0, N) is actually the addition on G = Zn
pk−1.

Theorem 5.1. Assume a secure FSS scheme SPFSS for sums of point functions
and QA-SD(Rk, t) is hard. Then there exists a PCG construction Cons

Fp

OLE that
generates OLE correlations over Fp. If the SPFSS is based on a PRG : {0, 1}λ →
{0, 1}2λ+2 via the PRG-based construction from [BGI16], for generating kN OLE
correlations over Fp, we have that:

– Each party’s seed has maximum size around: 4kt2
(
(logN − log t+1)(λ+2)+

λ+ k log p
)
+ 2t(logN + k log p) bits.

– The computation of Expand can be done with at most (2+⌈(k log p)/λ⌉)4kNt
PRG operations and O(k2N logN) operations in Fpk .

Remark 5.1. Regarding the size of the different parameters, we also follow opti-
mizations of [BCG+20, BCCD23], e.g., assuming the QA-SD assumption holds
also for a regular noise distributions. Then the seed size and computations can be
obtained by following a similar argument as theirs.

Proof. Correctness is straightforward given by the Construction Cons
Fp

OLEand
Eq.(8). Security is based on a QA-SD assumption and the underlying SPFSS
scheme, and we prove in a similar way to those of [BCG+20, BCCD23]. For
completeness, we give a sketched proof as follows. It suffices to consider Party
P0’s view (i.e., σ = 0). Let (k0,k1)

$← PCG.Gen(1λ) with associated expanded
outputs (x

(j)
0 , z

(j)
0) and (x

(j)
1 , z

(j)
1), for j ∈ [0, k − 1]. We need to show that

{(k0, (x
(j)
1 , z

(j)
1)j∈[0,k−1])} ≡

{
(k0, (x̃

(j)
1 , z̃

(j)
1)j∈[0,k−1]) |

j ∈ [0, k − 1], x̃
(j)
1

$← FN
p ,

z̃
(j)
1 = x

(j)
0 ∗ x̃

(j)
1 − z

(j)
0

}
To show this, we use a sequence of hybrid distributions.

21

– Replace z
(j)
1 by x

(j)
0 ∗ x

(j)
1 − z

(j)
0 , for all j ∈ [0, k − 1].

– Step by step replace each the SPFSS key Ki
0 in k0 by a simulated key

generated only with the range and the domain of the function. Due to the
correctness and the security properties of the SPFSS scheme, this distribution
is indistinguishable from the original distribution.

– Replace x
(j)
1 by a fresh x̃

(j)
1 for all j ∈ [0, k − 1]. It is also impossible to

distinguish this distribution from the previous one, since the Ki
0 are now

completely independent of (x(0)
1 , . . . ,x

(k−1)
1), and we can rely on the QA-SD

assumption and Theorem 4.3.
– Reverse step 2 by using the SPFSS security property once again.

We remark that QA-SD assumption implies x1 ∈ Rk can not be distinguished
from uniform, and Theorem 4.3 implies that (x

(0)
1 , . . . ,x

(k−1)
1) computed from a

random x1 ∈ Rk are uniformly distributed in FkN
p . ⊓⊔

Note that to achieve security, choosing t = O(λ) is sufficient. Actually p =
2, k = 2 is the case of our warm-up construction in Section 2.3. Thus analyses of
Cons

Fp

OLE naturally apply to that case.

Theorem 5.2. The PCG construction Cons
Fp

OLE has programmability.

Proof. To show that Cons
Fp

OLE is programmable, we can re-define Gen by letting
it take additional inputs (ρ0, ρ1) where ρσ = (A0

σ,A
1
σ, sσ, eσ), for σ ∈ {0, 1}.

Note that ρσ corresponds two t-sparse elements sσ, eσ of Rk as well as an
element xσ := a · sσ + eσ ∈ Rk. According to Eq.(8), party Pσ can locally
compute (Tr(ξp

0

xσ), . . . ,Tr(ξ
pk−1

xσ)) ∈ FkN
p from ρσ. This essentially proves the

programmability. Correctness follows that of Theorem 5.1. The programmable
security can be proved in a very similar way to that of Theorem 5.1. ⊓⊔

6 PCG for Authenticated Multiplication Triples

For the sake of generality, we give a generic PCG construction for authenticated
triples over any field, which can be directly applied to the Boolean case.
Secret-sharing with MACs. We consider authenticated secret-sharing based
on SPDZ MACs between m parties. To share a value x ∈ Fp, when Fp is a
small field, in particular, the binary field F2, the MAC key needs to be picked
from a sufficiently large extension field. In this way, a sharing will be prevented
from being opened incorrectly with overwhelming probability, via a MAC check
method from [DKL+13]. The authenticated secret-sharing of x ∈ Fp is defined as:

JxK = (∆i, xi,Mx,i)
m
i=1 such that

∑
i

xi = x, and
∑
i

Mx,i = x ·
∑
i

∆i,

where xi ∈ Fp,∆i,Mx,i ∈ Fpk , for each i. We call∆ :=
∑

i∆i ∈ Fpk the MAC key.
Note that the MAC key shares ∆i are fixed for every shared x. An authenticated
multiplication triple for Fp is a tuple of random sharings (JxK , JyK , JzK), satisfying

22

x, y
$← Fp and z = x · y. For the security of MPC online protocols, k is often

selected as k log p = O(λ). For simplicity, we call it an authenticated Boolean
triple if consider the case of Fp = F2. We show an efficient PCG that outputs a
batch of random authenticated triples over any field Fp for the two-party case.
Our PCG construction. We present a self-contained construction in ConsAuth−Triple,
which incorporates the PCG construction for authenticated triples over large
fields from [BCG+20] and our Cons

Fp

OLE construction in Section 5. To begin with,
we recall the notations. Let Rk denote Fpk [X1, . . . , Xn]/(X

d
1− 1, . . . , Xdn− 1), where

d | pk−1. We have Rk ≃ FN
pk , where N = dn. We fix a basis of (ξp

0

, ξp
1

, . . . , ξp
k−1

)

of Fpk = Fp(ξ). We assume QA-SD(Rk, t), in which xσ := a·sσ+eσ is conjectured

to be indistinguishable from uniformly random, for public a $← Rk, and random
t-sparse elements sσ, eσ of Rk, σ ∈ {0, 1}.

Recall that ConsFp

OLE essentially distributes ξp
s

xσ, z
(s)
σ ∈ Rk to party Pσ, with

Tr(ξp
s

x0) ∗ Tr(ξp
s

x1) = Tr(z
(s)
0) + Tr(z

(s)
1), for σ ∈ {0, 1}, s ∈ [0, k − 1]. To get

multiplication triples, it suffices to distribute additive shares of x0, x1 between
the two parties, instead of having Pσ hold xσ in the clear. This follows the fact
that, for σ ∈ {0, 1}, s ∈ [0, k − 1],

Tr(ξp
s

· [xσ]Rk
) = Tr(

[
ξp

s

· xσ
]
Rk

) =
[
Tr(ξp

s

· xσ)
]
FN
p

.

Since [xσ]Rk
:= a · [sσ]Rk

+ [eσ]Rk
and sσ, eσ are t-sparse, we can use t-point

SPFSS with domain [0, N), range Fpk to obtain the sharing succinctly. This leads
to a seed size of O

(
λ(kt2 + t) logN

)
bits.

The authentication part is more complicated and expensive. A direct solution
is as follows, where the goal is to obtain:

(
[
∆ · Tr(ξp

s

x0)
]
FN

pk

,
[
∆ · Tr(ξp

s

x1)
]
FN

pk

,
[
∆ · Tr(ξp

s

x0) · Tr(ξp
s

x1)
]
FN

pk

),

for j ∈ [0, k − 1], where ∆ $← Fpk is fixed among triples. Due to that Tr is
not Fpk -linear, the seed size would be roughly increased by a factor of O(k).
Concretely, for sharing the first two terms, it can be observed that

∆ · Tr(ξp
s

· xσ) =
∑

i∈[0,k−1]

∆ · ξp
s+i

· (asσ + eσ)
pi

=
∑

i∈[0,k−1]

ξp
s+i

· (ap
i

∆ · sp
i

σ +∆ · ep
i

σ).
(9)

Hence, we have to distribute
[
∆ · spi

σ

]
Rk

,
[
∆ · epi

σ

]
Rk

for all i ∈ [0, k − 1]. This

part would lead to a seed size of O(λkt logN) bits via SPFSS. While for sharing

23

the last term, we have that

∆ · Tr(x0) · Tr(x1) = ∆ · (xp
k−1

0 + . . .+ xp
0

0) · (xp
k−1

1 + . . .+ xp
0

1)

=
∑

i,j∈[0,k−1]

∆ · (as0 + e0)
pi

· (as1 + e1)
pj

=
∑

i,j∈[0,k−1]

∆ · (ap
i

sp
i

0 + ep
i

0) · (ap
j

sp
j

1 + ep
j

1)

=
∑

i,j∈[0,k−1]

(ap
i+pj

∆sp
i

0 s
pj

1 + ap
j

∆ep
i

0 s
pj

1 + ap
i

∆sp
i

0 e
pj

1 +∆ep
i

0 e
pj

1)

(10)

Hence we have to share 4k2 cross-terms, i.e. ∆sp
i

0 s
pj

1 , ∆e
pi

0 s
pj

1 , ∆s
pi

0 e
pj

1 , ∆e
pi

0 e
pj

1 ,
for all i, j ∈ [0, k − 1]. Moreover, these cross-terms are t2-sparse elements of Rk

by Lemma 4.3. Similarly, by Theorem 4.3, we can extract kN correlations from
these shares. Namely, fix a basis (ξp

0

, ξp
1

, . . . , ξp
k−1

), and for s ∈ [0, k − 1], we
have

∆ · Tr(ξp
s

· x0) · Tr(ξp
s

· x1)

=
∑

i,j∈[0,k−1]

∆ · ξp
s+i

· (as0 + e0)
pi

· ξp
s+j

· (as1 + e1)
pj

=
∑

i,j∈[0,k−1]

ξp
s(pi+pj) · (ap

i+pj

∆sp
i

0 s
pj

1 + ap
j

∆ep
i

0 s
pj

1 + ap
i

∆sp
i

0 e
pj

1 +∆ep
i

0 e
pj

1)

(11)
This part would incur a seed size of O(λt2k2 logN) via SPFSS. The O(k) overhead
of the above approach is quite large, since for security it is required that k log p =
O(λ), i.e. O(k) = O(λ). Here, we show a method that allows k to be an arbitrary
integer ≥ 2, so that the overhead could be only a small constant.

Our main observation is that for any k ≥ 2, the global key ∆ can be sampled
from Fpη where k | η and η log p = O(λ). This implies that there exists ζ ∈ Fpη s.t.
Fpη = Fpk [ζ], and moreover d | pη−1 as long as d | pk−1. Then, by Theorem 4.4,
the isomorphism ϕk : Rk → FN

pk naturally induces ϕη : Rη → FN
pη = FN

pk(ζ).
Hence, for sharing values we can use a t2-point SPFSS with domain G = Zn

d ,
and range Fpk , while for sharing MACs, we can use an SPFSS′, which is the
same as SPFSS except that the range is Fpη . Putting all pieces together, the
total seed size would be O

(
λ(t2k2 + t2k+ tk+ t) logN

)
= O(λ3k2 logN) for kN

authenticated triples over Fp, where k is an arbitrary integer ≥ 2. We give a
self-contained PCG construction for authenticated triples in ConsAuth−Triple.

Construction 2: ConsAuth−Triple

PARAMETER: Security parameter 1λ, noise weight t = t(λ), d | pk−1, N = dn,
η satisfying pη ≥ 2λ and k | η, Rk = Fpk [X1, . . . , Xn]/(X

d
1−1, . . . , Xdn−1), ξ ∈ Fpk

s.t. Fpk = Fp(ξ). An FSS scheme (SPFSS.Gen, SPFSS.FullEval) for sums of point

24

functions, with domain [0, N)a and range Fpk or Fpη . We abuse ϕ as a fixed
isomorphism map from Rk to FN

pk , and from Rη to FN
pη .

PUBLIC INPUT: A uniformly random a ∈ Rk.
CORRELATION: After expansion, for s ∈ [0, k), outputs authenticated
triples (

r
X(s)

z
,
r
Y (s)

z
,
r
Z(s)

z
), where X(s),Y (s),Z(s) ∈ FN

p , satisfying

Z(s) = X(s) ∗ Y (s), and MAC key shares ∆0,∆1 ∈ Fpη .
Gen: On input 1λ:

1. Sample ∆0,∆1
$← Fpη , and compute ∆ := ∆0 +∆1.

2. For σ ∈ {0, 1}, sample random vectors A0
σ,A

1
σ ← [0, N)t, sσ, eσ ← (F∗

pk)
t.

Define elements of Rk:

sσ =
t∑

l=1

sσ[l] ·A0
σ[l], eσ =

t∑
l=1

eσ[l] ·A1
σ[l].

3. Sample FSS keys (sharing of ∆ ·Z(s)) according to Eq.(10), for i, j ∈ [0, k):
(K

4(ki+j)
0 ,K

4(ki+j)
1)

$← SPFSS.Gen(1λ, (A0
0)

pi ⊞ (A0
1)

pj ,∆ · (s0)
pi ⊗ (s1)

pj),
(K

4(ki+j)+1
0 ,K

4(ki+j)+1
1)

$← SPFSS.Gen(1λ, (A1
0)

pi ⊞ (A0
1)

pj ,∆ · (e0)
pi ⊗

(s1)
pj),

(K
4(ki+j)+2
0 ,K

4(ki+j)+2
1)

$← SPFSS.Gen(1λ, (A0
0)

pi ⊞ (A1
1)

pj ,∆ · (s0)
pi ⊗

(e1)
pj),

(K
4(ki+j)+3
0 ,K

4(ki+j)+3
1)

$← SPFSS.Gen(1λ, (A1
0)

pi ⊞ (A1
1)

pj ,∆ · (e0)
pi ⊗

(e1)
pj),

4. Sample FSS keys (sharing of Z(s)) according to Eq.(7), for i ∈ [0, k):
(K4k2+4i

0 ,K4k2+4i
1)

$← SPFSS.Gen(1λ,A0
0 ⊞ (A0

1)
pi , s0 ⊗ (s1)

pi),
(K4k2+4i+1

0 ,K4k2+4i+1
1)

$← SPFSS.Gen(1λ,A1
0 ⊞ (A0

1)
pi , e0 ⊗ (s1)

pi),
(K4k2+4i+2

0 ,K4k2+4i+2
1)

$← SPFSS.Gen(1λ,A0
0 ⊞ (A1

1)
pi , s0 ⊗ (e1)

pi),
(K4k2+4i+3

0 ,K4k2+4i+3
1)

$← SPFSS.Gen(1λ,A1
0 ⊞ (A1

1)
pi , e0 ⊗ (e1)

pi),
5. Sample FSS keys (sharing of ∆ ·X(s),∆ · Y (s)) according to Eq.(9), for

i ∈ [0, k):
(K

4(k2+k+i)
0 ,K

4(k2+k+i)
1)

$← SPFSS.Gen(1λ,A0
0,∆ · (s0)

pi),
(K

4(k2+k+i)+1
0 ,K

4(k2+k+i)+1
1)

$← SPFSS.Gen(1λ,A1
0,∆ · (e0)

pi),
(K

4(k2+k+i)+2
0 ,K

4(k2+k+i)+2
1)

$← SPFSS.Gen(1λ,A0
1,∆ · (s1)

pi),
(K

4(k2+k+i)+3
0 ,K

4(k2+k+i)+3
1)

$← SPFSS.Gen(1λ,A1
1,∆ · (e1)

pi),
6. Sample FSS keys (sharing of X(s),Y (s)) as follows:

(K4k2+8k
0 ,K4k2+8k

1)
$← SPFSS.Gen(1λ,A0

0, s0),
(K4k2+8k+1

0 ,K4k2+8k+1
1)

$← SPFSS.Gen(1λ,A1
0, e0),

(K4k2+8k+2
0 ,K4k2+8k+2

1)
$← SPFSS.Gen(1λ,A0

1, s1),
(K4k2+8k+3

0 ,K4k2+8k+3
1)

$← SPFSS.Gen(1λ,A1
1, e1),

7. For σ ∈ {0, 1}, let kσ =
(
∆σ, (K

i
σ)i∈[0,4k2+8k+3]

)
.

8. Output (k0,k1).

25

Expand: On input (σ,kσ):

1. Parse kσ as
(
∆σ, (K

4(ki+j)
σ)i,j∈[0,k), (K

4k2+i
σ)i∈[0,8k), (K

4k2+8k+i
σ)i∈[0,3)

)
.

2. For each i ∈ [0, 4k2), compute uσ,i ← SPFSS.FullEval(σ,Ki
σ),

viewed as Rη elements. And for each i ∈ [0, 8k), compute vσ,i ←
SPFSS.FullEval(σ,K4k2+i

σ). View vσ,i as Rk elements for i ∈ [0, 4k), and
as Rη elements for i ∈ [4k, 8k). Finally for each i ∈ [0, 4), compute
wσ,i ← SPFSS.FullEval(σ,K4k2+8k+i

σ), viewed as Rk elements.
3. For each s ∈ [0, k − 1], according to Eq.(8), compute

Z(s)
σ :=

k−1∑
i=0

Tr
(
ξp

s+ps+i

· (api+1vσ,4i + apivσ,4i+1 + avσ,4i+2 + vσ,4i+3)
)
.

It holds that Z
(s)
0 +Z

(s)
1 = Tr

(
ξp

s

· (as0 + e0)
)
∗ Tr

(
ξp

s

· (as1 + e1)
)
.

4. For each s ∈ [0, k − 1], according to Eq.(10), compute

M
(s)
Z,σ := ϕ

(k−1∑
i=0

k−1∑
j=0

ξp
s(pi+pj) ·

(
api+pjuσ,4(ki+j) + apjuσ,4(ki+j)+1

+ apiuσ,4(ki+j)+2 + uσ,4(ki+j)+3

))
.

It holds that M
(s)
Z,0 +M

(s)
Z,1 = ∆ · Tr

(
ξp

s

· (as0 + e0)
)
∗ Tr

(
ξp

s

· (as1 + e1)
)
.

5. For each s ∈ [0, k − 1], compute the following

X(s)
σ := Tr

(
ξp

s

· (awσ,0 + wσ,1)
)
, Y (s)

σ := Tr
(
ξp

s

· (awσ,2 + wσ,3)
)
.

It holds that X
(s)
0 + X

(s)
1 = Tr

(
ξp

s

· (as0 + e0)
)
, and Y

(s)
0 + Y

(s)
1 =

Tr
(
ξp

s

· (as1 + e1)
)
.

6. For each s ∈ [0, k − 1], compute the following

M
(s)
X,σ := ϕ

(k−1∑
i=0

ξp
s+i

· (apivσ,4k+4i + vσ,4k+4i+1)
)
,

M
(s)
Y,σ := ϕ

(k−1∑
i=0

ξp
s+i

· (apivσ,4k+4i+2 + vσ,4k+4i+3)
)
.

It holds that M
(s)
X,0 +M

(s)
X,1 = ∆ ·Tr

(
ξp

s

· (as0 + e0)
)
, and M

(s)
Y,0 +M

(s)
Y,1 =

∆ · Tr
(
ξp

s

· (as1 + e1)
)
.

7. Output ∆σ ∈ Fpλ , and (X
(s)
σ ,Y

(s)
σ ,Z

(s)
σ ,M

(s)
X,σ,M

(s)
Y,σ,M

(s)
Z,σ) ∈ F3N

p ×F3N
pη ,

for s ∈ [0, k).

a Each j ∈ [0, N) corresponds to a basis
∏n

i=1 X
ji
i of Rk, where ji ∈ [0, pk − 1).

The Addition on [0, N) is actually the addition on G := Zn
d .

Theorem 6.1. Assume a secure SPFSS for sums of point functions and QA-
SD(Rk, t) is hard. Then there exists a PCG construction ConsAuth−Triple that gener-

26

ates authenticated multiplication triple correlations over Fp. If the SPFSS is based
on a PRG : {0, 1}λ → {0, 1}2λ+2 via the PRG-based construction from [BGI16],
to produce kN authenticated multiplication triples over Fp, we have that:

– Each party has seed size at most: 4(k2t2+ kt2+ kt+ t)
(
(logN − log t+1)(λ+

2) + λ
)
+ 4
(
η(k2t2 + kt) + k(kt2 + t)

)
log p+ η log p bits.

– Suppose k is a small constant, then computations of Expand are dominated
by 4k2tN · (2 +

⌈
η log p

λ

⌉
) PRG calls and O(k3N logN) operations over Fpη .

7 PCG for Other Correlations and Applications

In this section, we show more applications of our approach from trace. In Sec-
tion 7.1, we generalize our PCG for OLE to the multiparty setting by utilizing
the programmability. In Section 7.2&7.3, we consider other useful correlations,
such as matrix multiplication triples and OT. To this end, we construct new
PCGs by extending our trace approach. Compared to previous PCG construc-
tions [BCG+19a, BCG+19b, BCG+20], our PCG for matrix triples has smaller
seed size, and our PCG for OT does not require correlation-robust hash functions.

7.1 MPC with Preprocessing

Multiplication triples for preprocessing MPC. Recall that our PCG con-
struction Cons

Fp

OLEsatisfies “programmability” (Theorem 5.2), which allows to
generate multi-party correlations as shown in [BCG+19b]. Here we consider the
correlation of m-party multiplication triples, also known as Beaver triple [Bea91].
Concretely, the goal is to distribute additives shares of x, y, z to the parties,

([x] , [y] , [z]) = (xi, yi, zi)
m
i=1 s.t. (

m∑
i=1

xi) · (
m∑
i=1

yi) = (

m∑
i=1

zi).

A standard solution is to distribute each party Pi with xi, yi and {ui,j , vi,j}j ̸=i,
such that ui,j +uj,i = xi ·yj , and vi,j +vj,i = yi ·xj . Then Pi can locally compute
zi := xi · yi +

∑
j ̸=i(ui,j + vi,j). It holds that

m∑
i=1

zi =

m∑
i=1

(
xi · yi +

∑
j ̸=i

(ui,j + vi,j)
)
=

m∑
i=1

(
xi · yi +

∑
j>i

(ui,j + uj,i + vi,j + vj,i)
)

=

m∑
i=1

(
xi · yi +

∑
j>i

(xi · yj + yi · xj)
)
= (

m∑
i=1

xi) · (
m∑
i=1

yi).

The programmability allows xi, yi to be “reused” among Cons
Fp

OLE calls on dis-
tributing additives shares of xi · yj , yi ·xj between Pi and Pj , for all j ̸= i. Hence,
our Cons

Fp

OLE implies a PCG for multi-party multiplication triples over any field
Fp.

27

Theorem 7.1. Assume a secure FSS scheme SPFSS for sums of point functions
and QA-SD(Rk, t) is hard. Then there exists a PCG that generates Beaver triples
over Fp. If the SPFSS is based on a PRG : {0, 1}λ → {0, 1}2λ+2 via the PRG-based
construction from [BGI16], for generating kN m-party multiplication correlations
over Fp, we have that:

– Each party’s seed has maximum size around: 8(m − 1)kt2
(
(logN − log t +

1)(λ+ 2) + λ+ k log p
)
+ 4t(logN + k log p) bits.

– Each party runs Expand of ConsFp

OLEfor 2(m− 1) times, and does additional
O(mk2N) operations over Fp.

Circuit-dependent MPC preprocessing. Circuit-dependent preprocessing
extends the standard Beaver’s circuit randomization technique with multiplication
triples [Bea91], which in general allows to reduce the MPC online communication
by half. The intuitive idea is to preprocess multiplications according to the
circuit topology, so that in the online phase just one opening is required per
multiplication gate, instead of two when using multiplication triples.

Circuit-dependent preprocessing has been investigated in recent works [DNNR17,
Cou19, BNO19, EGPS22, EGP+23]. Previous works [BCG+20, BCCD23] show
that PCGs offer a significant saving for circuit-dependent preprocessing in the
batch setting4, which cost only O(|C| logB) communication for computing B
copies of the same circuit C. However, due to the inherent field restriction of
their PCG constructions, neither of them can be used to efficiently support the
Boolean circuit case. Using our approach from trace, we are able to do efficient
circuit-dependent preprocessing for any field. Our results are summarized as
follows.

Theorem 7.2. Assume a secure FSS scheme SPFSS for sums of point functions
and QA-SD(Rk, t) is hard. Suppose the SPFSS is based on a PRG : {0, 1}λ →
{0, 1}2λ+2 via the PRG-based construction from [BGI16]. Then there exists a
PCG-based m-party preprocessing construction that generates circuit-dependent
correlations for kN evaluations of a circuit C over any field Fp with following:

– Total communication is O(m2kt2λ|C| logN) bits.
– Each party makes O(mkt|C|N) PRG calls, and has O(mk2|C|N logN) opera-

tions in Fpk .

Proof. The proof directly follows that of [BCG+20, BCCD23], and for complete-
ness, we sketch the main idea. For each evaluation, the goal is to assign each
wire w a fresh mask rw and each multiplication gate with input wires u, v a fresh
mask su,v, and distribute additive shares of these masks to the parties. The masks
are designed as follows.

• if w is an input wire, rw
$← Fp.

4 We remark that the batch setting seems necessary, due to the fact that the correlated
randomness depends on the general circuit topology, so that it cannot be compressed
beyond the description of the circuit.

28

• if w is the output wire of a multiplication gate, rw
$← Fp.

• if w is the output wire of an addition gate with input wire u and v, set
rw = ru + rv.

• for each multiplication gate, assign a value su,v s.t. on input wire u and v,
su,v = ru · rv.

For sharing su,v, by the standard transformation of m-party multiplication triples
from 2-party OLE, it suffices to use our programmable Cons

Fp

OLE to generate seeds
for the m(m− 1)/2 pairs of parties. Methods of sharing masks rw (of an input
wire or the output wire of a multiplication gate) are directly implied by Cons

Fp

OLE.
By Theorem 5.1, we complete the proof. ⊓⊔

We remark that our ConsAuth−Triple can also be extended to do circuit-dependent
preprocessing in an authentication sense, e.g., used for [BNO19] in the two-
party setting. In this case, we also require the batch setting, and the offline
communication is O(λk2t2|C| logN) for kN executions of C over any field.

7.2 PCG for Matrix Multiplication Triples

In this section, we show an efficient PCG construction for generating matrix
multiplication triples over any field Fp.
Subfield OLE and Correlated Subfield OLE. To start with, we introduce two
new notions of subfield OLE and correlated subfield OLE. Subfield OLE has many
similarities with existing widely used correlations, such as OT, OLE, VOLE, etc.
More concisely, in a subfield OLE correlation, party P0 holds b ∈ FN

p , z0 ∈ FN
pk ,

while party P1 holds x, z1 ∈ FN
pk , such that

b ∗ x = z0 + z1.

On the one hand, subfield OLE is a natural generalization of subfield VOLE, in
the sense that in subfield VOLE, all entries of x are identical to some x ∈ Fpk . On
the other hand, by fixing a basis (ξ0, ξ1, . . . , ξk−1) and viewing Fpk = Fp(ξ) as a
vector space over Fp, the above subfield OLE defines N instances of VOLE over
Fp with a fixed length k, given by b[s] · x[s] = z0[s] + z1[s], for each s ∈ [0, N).
We will present efficient PCG constructions for subfield OLE in Section 7.3.

Correlated subfield OLE is a variant of subfield OLE, in which party P0 holds
b(j) ∈ FN

p , z
(j)
0 ∈ FN

pk , while party P1 holds x, z
(j)
1 ∈ FN

pk , such that

b(j) ∗ x = z
(j)
0 + z

(j)
1 ,

for all j ∈ [1, ℓ]. Similarly, by fixing a basis (ξ0, ξ1, . . . , ξk−1) of Fpk = Fp(ξ)
over Fp, the above correlated subfield OLE correlation defines ℓN instances of
VOLE over Fp, denoted by b(j)[s] · x⃗[s] = z⃗

(j)
0 [s] + z⃗

(j)
1 [s], where b(j)[s] ∈ Fp, and

x⃗[s], z⃗
(j)
0 [s], z⃗

(j)
1 [s] ∈ Fk

p, for each j ∈ [1, ℓ], s ∈ [0, N). We will show how to build
efficient PCG constructions for correlated subfield OLE later in this section. In
particular, our construction works for any ℓ ≤ k.

29

Matrix Multiplication Triples from Correlated Subfield OLE. We show
that PCG for correlated subfield OLE directly implies PCG for matrix multipli-
cation triples. Let Fp be a field and w.l.o.g., we consider multiplications of k × k
matrices. Specifically, the goal is to to produce N random triples of ([A] , [B] , [C]),
where A,B,C ∈ Fk×k

p satisfy AB = C. To begin with, we show how to obtain
[C] from VOLE.

Denote entries of A by ai,j , where i, j ∈ [1, k]. Let A⃗j denote the j-th column
of A (same for B,C), for j ∈ [1, k]. To obtain

[
C⃗j

]
of C = AB, it suffices to

distribute additive shares of the following matrix:

M =


A⃗1b1,1 A⃗2b2,1 . . . A⃗kbk,1
A⃗1b1,2 A⃗2b2,2 . . . A⃗kbk,2

...
...

...
...

A⃗1b1,k A⃗2b2,k . . . A⃗kbk,k

 ,

which corresponds to kN VOLE correlations5, with a fixed length k. A direct
observation is that each A⃗i would be reused for k times. The authors of [LXYZ24]
exploit this observation and show that to obtain N matrix triples, one can “repeat”
for kN times a programmable PCG for generating VOLE of length k. Their
approach leads to a PCG seed size of Oλ(kNt log k), where t is the noise weight
of underlying LPN assumption.

As correlated subfield OLE can be locally transformed into VOLEs, we present
a more efficient approach to generating a large number of matrix triples. Recall we
want to obtain N random triples of (

[
A(s)

]
,
[
B(s)

]
,
[
C(s)

]
), for each s ∈ [0, N).

Note that our PCG construction for correlated subfield OLE is able to produce

b(j) · x = z
(j)
0 + z

(j)
1 ,

where b(j) ∈ FkN
p and x, z0, z1 ∈ FkN

pk , for j ∈ [1, k].
For s ∈ [0, N), i ∈ [1, k], we can view x[ks + i] ∈ Fpk as an element of Fk

p,
and denote it by A⃗

(s)
i , and denote b(j)[ks + i] by b

(s)
i,j for each j ∈ [1, k]. Note

that we have already obtained
[
A⃗

(s)
i b

(s)
i,j

]
for all i, j ∈ [1, k], s ∈ [0, N). This

essentially completes the key step of PCG.Expand for matrix triples. It remains to
distribute

[
A(s)

]
,
[
B(s)

]
for each s ∈ [0, N) between P0,P1 (rather than directly

send b(j) to P0, and x to P1 as in correlated subfield OLE). Jumping ahead, in
our PCG construction, all b(j), j ∈ [1, k] are determined by a QA-SD sample
x0 := as0 + e0 while x is determined by x1 := as1 + e1. Suppose s0, e0, s1, e1
are t-sparse, then it suffice to employ a SPFSS scheme with domain [0, N) and
range Fpk to efficiently distribute additive shares of x0, x1. Hence assuming the
hardness of QA-SD(Rk, t), the seed size is Oλ

(
4(kt2 + t)(k + log kN)

)
, where

N ≤
⌊
(pk − 1)n/k

⌋
, and Rk = Fpk [X1, . . . , Xn]/(X

pk−1
1 − 1, . . . , Xp

k−1
n − 1).

5 We remark that for matrix triples, VOLE is defined in the sense that P0,P1 hold
additive shares of each A⃗j , bi,j instead of P0 holding A⃗j , P1 holding bi,j in the clear.

30

We remark here that [BCG+20] also proposes a PCG for matrix triples from
Ring-LPN. Briefly, they start with a PCG for inner products, and rely on the
ring Fp[X]/(f(X)) with f(X) =

∏N
i=1(X− αi)

k, where αi are distinct elements of
Fp. The seed size of their PCG is Oλ(4k

2t2 logN), where t is the noise weight of
the underlying Ring-LPN assumption. As indicated above, this approach has a
undesirable restriction on the field size, namely, |Fp| > N .

We remark that as QA-SD assumptions essentially build upon on multi-variate
polynomial rings with fully reducible f(Xi), the PCG construction of [BCCD23]
does not enjoy the above optimization for inner products. Hence the seed size
would be Oλ(4k

3t2 logN), if using their PCG for OLE (|Fp| > 2).

PCG for Matrix Multiplication Triples. As indicated above, it suffices
to consider distributing correlated subfield OLE correlations, and our PCG
construction also exploits algebraic properties of trace. We start with a subfield
OLE construction. Observing that subfield OLE is not a symmetric correlation,
in which P0’s multiplier b ∈ FN

p , while P1’s multiplier x is over Fpk , the intuitive
idea is to apply trace only on the P0 side.

We first recall the notations. Let Rk = Fpk [X1, . . . , Xn]/(X
pk−1
1 −1, . . . , Xpk−1

n −
1). Let a $← Rk be the public input, and sσ, eσ be random t-sparse elements of Rk,
for σ ∈ {0, 1}. The hardness of QA-SD(Rk, t) implies that xσ := a · sσ + eσ ∈ Rk

is indistinguishable from uniform. Let ϕk : Rk → FN
pk be a bijection, where

N = (pk − 1)n. Then to obtain subfield OLE correlations, we can use SPFSS to
additively share (x0 + xp

1

0 + · · ·+ xp
k−1

0) · x1 among P0,P1. Denote the additive
shares by α, β, we have that

Tr(x0) · x1 = α+ β,

which are N subfield OLE correlations as desired. By Lemma 4.3, we have that

(

k−1∑
i=0

xp
i

0) · x1 =
(k−1∑

i=0

(as0 + e0)
pi)
· (as1 + e1)

=
(k−1∑

i=0

(ap
i

sp
i

0 + ep
i

0)
)
· (as1 + e1)

=

k−1∑
i=0

(ap
i+1sp

i

0 s1 + ap
i

sp
i

0 e1 + aep
i

0 s1 + ep
i

0 e1).

(12)

Hence, it suffices to invoke SPFSS with domain [0, N) and range Fpk for sharing
these 4k t2-sparse elements of Rk, and the total seed size would be O

(
4kt2(k +

logN)
)

bits. We remark that such PCG construction is programmable, and to
obtain correlated subfield OLE, one can “repeat” PCG for subfield OLE for ℓ
times. However, this naive approach leads to an O(ℓ) overhead.

Instead, we can extract at most kN correlated subfield OLE correlations by
Theorem 4.3. By fixing a basis (1, ξp, . . . , ξp

k−1

) of Fpk = Fp(ξ), the extracted

31

correlations can be computed from

(k−1∑
i=0

(ξp
j

x0)
pi)
· x1 =

k−1∑
i=0

ξp
i+j

(ap
i+1sp

i

0 s1 + ap
i

sp
i

0 e1 + aep
i

0 s1 + ep
i

0 e1), (13)

for j ∈ [0, k − 1]. More specifically, P0 computes b(j) := Tr(ξp
j−1

x0) for j ∈
[1, k], while P1 computes x := ϕk(x1). As for z

(j)
σ , σ ∈ {0, 1}, they can be

locally computed according to Eq.(13). This completes the PCG construction
for correlated subfield OLE. As for matrix multiplication triples, it suffices to
let P0,P1 obtain additive shares of x0, x1 instead of Pσ receiving xσ in the clear,
for σ ∈ {0, 1}. This can be done by sharing t-sparse elements s0, e0, s1, e1 of Rk

via a SPFSS scheme. We present a PCG construction for matrix multiplication
triples in ConsMatrixTriple.

Construction 3: ConsMatrixTriple

PARAMETER: Security parameter λ, noise weight t = t(λ), N = (pk − 1)n,
Rk = Fpk [X1, . . . , Xn]/(X

pk−1
1 − 1, . . . , Xp

k−1
n − 1), ξ ∈ Fpk s.t. Fpk = Fp(ξ). An

FSS scheme (SPFSS.Gen, SPFSS.FullEval) for sums of t2 point functions, with
domain [0, N)a and range Fpk .
PUBLIC INPUT: A uniformly random a ∈ Rk.
CORRELATION: After expansion, outputs (

[
A(s)

]
,
[
B(s)

]
,
[
C(s)

]
) with

A(s), B(s), C(s) ∈ Fk×k
p s.t. C(s) = A(s)B(s), for s ∈ [0, N ′), N ′ = ⌊N/k⌋.

Gen: On input 1λ:

1. For σ ∈ {0, 1}, sample random vectors A0
σ,A

1
σ ← [0, N)t, sσ, eσ ← (F∗

pk)
t.

2. Sample FSS keys (referring to C(s)) according to Eq.(12), for each i ∈ [0, k):
(K4i

0 ,K4i
1)

$← SPFSS.Gen(1λ, (A0
0)

pi ⊞A0
1, (s0)

pi ⊗ s1),
(K4i+1

0 ,K4i+1
1)

$← SPFSS.Gen(1λ, (A0
0)

pi ⊞A1
1, (s0)

pi ⊗ e1),
(K4i+2

0 ,K4i+2
1)

$← SPFSS.Gen(1λ, (A1
0)

pi ⊞A0
1, (e0)

pi ⊗ s1),
(K4i+3

0 ,K4i+3
1)

$← SPFSS.Gen(1λ, (A1
0)

pi ⊞A1
1, (e0)

pi ⊗ e1),
3. Sample FSS keys (referring to A(s), B(s)) as follows:

(K4k
0 ,K4k

1)
$← SPFSS.Gen(1λ,A0

0, s0),
(K4k+1

0 ,K4k+1
1)

$← SPFSS.Gen(1λ,A1
0, e0),

(K4k+2
0 ,K4k+2

1)
$← SPFSS.Gen(1λ,A0

1, s1),
(K4k+3

0 ,K4k+3
1)

$← SPFSS.Gen(1λ,A1
1, e1),

4. For σ ∈ {0, 1}, let kσ =
(
(Ki

σ)i∈[0,4k+3]

)
.

5. Output (k0,k1).

Expand: On input (σ,kσ):

1. Parse kσ as
(
(Ki

σ)i∈[0,4k),K
4k
σ ,K4k+1

σ ,K4k+2
σ ,K4k+3

σ

)
.

2. For each i ∈ [0, 4k + 3], compute uσ,i ← SPFSS.FullEval(σ,Ki
σ), viewed as

Rk elements.

32

3. For each j ∈ [0, k), according to Eq.(13), compute

z(j)σ := ϕk

(k−1∑
i=0

ξp
i+j

·
(
api+1uσ,4i + apiuσ,4i+1 + auσ,4i+2 + uσ,4i+3

))
.

4. Compute vσ := ϕk

(
a · uσ,4k+2 + uσ,4k+3

)
∈ FN

pk . For s ∈ [0, N ′), i ∈ [0, k),
view vσ[ks+ i] ∈ Fpk as an element of Fk

p, denoted by α⃗
(s)
σ,i. It holds that

A⃗
(s)
i = α⃗

(s)
0,i + α⃗

(s)
1,i , where A⃗

(s)
i is the i-th column of A(s).

5. For each j ∈ [0, k), compute b
(j)
σ := Tr

(
ξp

j

· (a · uσ,4k + uσ,4k+1)
)
∈ FN

p . For
s ∈ [0, N ′), i, j ∈ [0, k), denote b

(j)
σ [ks+ i] by β

(s)
σ,i,j . It holds that B

(s)
i,j of

B(s) equals to β
(s)
0,i,j + β

(s)
1,i,j .

6. For s ∈ [0, N ′), i, j ∈ [0, k), σ ∈ {0, 1}, view z
(j)
σ [ks + i] ∈ Fpk as an

element of Fk
p, denoted by v⃗

(s)
σ,i,j . Compute γ⃗

(s)
σ,j :=

∑k−1
i=0 v⃗

(s)
σ,i,j . It holds that

C⃗
(s)
j = γ⃗

(s)
0,j + γ⃗

(s)
1,j =

∑k−1
i=0 A⃗

(s)
i B

(s)
i,j , where C⃗

(s)
j is the j-th column of C(s).

7. Output (α
(s)
σ,i,j , β

(s)
σ,i,j , γ

(s)
σ,i,j) ∈ F3

p, for i, j ∈ [0, k), s ∈ [0, N ′).

a Each j ∈ [0, N) corresponds to a basis
∏n

i=1 X
ji
i of Rk, where ji ∈ [0, pk − 1).

For simplicity, we abuse the pre-defined bijection φk.

Theorem 7.3. Assume a secure FSS scheme SPFSS for sums of point functions
and QA-SD(Rk, t) is hard. Then there exists a PCG construction that generates
k × k matrix multiplication triples over Fp. If the SPFSS is based on a PRG :
{0, 1}λ → {0, 1}2λ+2 via the PRG-based construction from [BGI16], for generating
N ′ =

⌊
(pk − 1)n/k

⌋
matrix triples, we have that:

– Each party’s seed has maximum size around: (4kt2+4t)
(
(logN− log t+1)(λ+

2) + λ+ k log p
)

bits.
– The computation of Expand can be done with at most (2+ ⌈k/λ⌉)4(k+1)Nt

PRG operations and O(kN logN) operations in Fpk .

7.3 PCG for Subfield OLE

In this section, we present an efficient PCG construction for subfield OLE. Recall
that in subfield OLE, party P0 holds b ∈ FN

p , z0 ∈ FN
pk , while party P1 holds

x, z1 ∈ FN
pk , such that b ∗ x = z0 + z1. This directly implies an OT construction.

Our construction. Recall that in Section 7.2 we show how to construct a
PCG for correlated subfield OLE, and the PCG construction based on Eq.(12)
essentially admits a PCG for subfield OLE. However, the construction allows
for kN correlated subfield OLE correlations, and it seems wasteful to use only
N of them as subfield OLE correlations. More specifically, the construction has
seed size of Oλ(4kt

2(logN + k)) for N subfield OLE correlations. We propose an
approach to significantly reducing the seed size, by a multiplicative factor of at
most O(k).

33

From now on, we focus on the case Fp = F2. In general, our approach works
for subfield OLE over any Fp. To start with, we give notations used in this
section as follows. Let R2 = F4[X1, . . . , Xn]/(X

3
1 − 1, . . . , X3n − 1) ≃ FN

4 , and Rk =
F2k [X1, . . . , Xn]/(X

3
1 − 1, . . . , X3n − 1) ≃ FN

2k , where N = 3n. By Lemma 4.4, if k is
even, there exists ζ ∈ F2k s.t. F2k = F4(ζ), and the isomorphism ϕ2 : R2 → FN

4

actually determines an isomorphism ϕk : Rk → FN
2k = FN

4 (ζ), by fixing a basis
(1, ζ, . . . , ζk/2−1). We will rely on two QA-SD assumptions, QA-SD(R2, t) and
QA-SD(Rk, t).

In a high level, the idea is to restrict a QA-SD sample x0 := a · s0 + e0 to be
in R2 ⊂ Rk, so that applying trace on x0 would only lead to a constant number
of cross-terms to be shared rather than 4k terms as in Eq.(12). Let a0

$← R2 and
s0, e0 be random t-sparse elements of R2. And let a1

$← Rk and s1, e1 be random
t-sparse elements ofRk. We present a self-contained PCG construction for subfield
OLE over F2 in ConsF2

sOLE, which assumes both QA-SD(R2, t), QA-SD(Rk, t) and
employs SPFSS according to the following equation:

Tr(x0) · x1 = (x20 + x0) · x1
=
(
(a0s0 + e0)

2 + (a0s0 + e0)
)
· (a1 · s1 + e1)

= (a20s
2
0 + e20 + a0s0 + e0) · (a1 · s1 + e1).

(14)

Construction 4: ConsF2

sOLE

PARAMETER: Security parameter λ, noise weight t = t(λ), N = 3n, Rk =
F2k [X1, . . . , Xn]/(X

3
1−1, . . . , X3n−1), R2 = F4[X1, . . . , Xn]/(X

3
1−1, . . . , X3n−1). Fix

a natural embedding R2 ↪→ Rk. An FSS scheme (SPFSS.Gen, SPFSS.FullEval)
for sums of t2 point functions, with domain [0, N)a and range F2k .
PUBLIC INPUT: A uniformly random a ∈ Rk.
CORRELATION: After expansion, outputs b ∈ FN

2 , z0 ∈ FN
2k and (x, z1) ∈ F2N

2k

such that b ∗ x = z0 + z1.
Gen: On input 1λ:

1. For σ ∈ {0, 1}, sample random vectors A0
σ,A

1
σ

$← [0, N)t. Sample s0, e0 ←
(F∗

4)
t, and s1, e1

$← (F∗
2k)

t.
2. Sample FSS keys according to Eq.(14), namely as follows:

(K1
0 ,K

1
1)

$← SPFSS.Gen(1λ, (A0
0)

2 ⊞A0
1, (s0)

2 ⊗ s1),
(K2

0 ,K
2
1)

$← SPFSS.Gen(1λ, (A0
0)

2 ⊞A1
1, (s0)

2 ⊗ e1),
(K3

0 ,K
3
1)

$← SPFSS.Gen(1λ,A0
0 ⊞A0

1, s0 ⊗ s1),
(K4

0 ,K
4
1)

$← SPFSS.Gen(1λ,A0
0 ⊞A1

1, s0 ⊗ e1),
(K5

0 ,K
5
1)

$← SPFSS.Gen(1λ, (A1
0)

2 ⊞A0
1, (e0)

2 ⊗ s1),
(K6

0 ,K
6
1)

$← SPFSS.Gen(1λ,A1
0 ⊞A0

1, e0 ⊗ s1),
(K7

0 ,K
7
1)

$← SPFSS.Gen(1λ,A1
0 ⊞A1

1, e0 ⊗ e1),
(K8

0 ,K
8
1)

$← SPFSS.Gen(1λ, (A1
0)

2 ⊞A1
1, (e0)

2 ⊗ e1).

34

3. Output (k0,k1), where k0 =
(
(Ki

0)i∈[1,8], (A
0
0, s0), (A

1
0, e0)

)
, and k1 =(

(Ki
1)i∈[1,8], (A

0
1, s1), (A

1
1, e1)

)
.

Expand: On input (σ,kσ):

1. Parse kσ as
(
(Ki

σ)i∈[1,8], (A
0
σ, sσ), (A

1
σ, eσ)

)
.

2. Define elements of Rk:

sσ =

t∑
l=1

sσ[l] ·A0
σ[l], eσ =

t∑
l=1

eσ[l] ·A1
σ[l].

Note that actually s0, e0 ∈ R2 ⊂ Rk.
3. If σ = 0, compute b = Tr(a0 ·s0+e0); if σ = 1, compute x = ϕk(a1 ·s1+e1).
4. For i ∈ [1, 8], compute uσ,i ← SPFSS.FullEval(σ,Ki

σ), viewed as Rk ele-
ments.

5. According to Eq.(14), compute

zσ := ϕk(a
2
0a1uσ,1+a2

0uσ,2+a0a1uσ,3+a0uσ,4+a1uσ,5+a1uσ,6+uσ,7+uσ,8).

6. Output (b, z0) and (x, z1).

a Each j ∈ [0, N) corresponds to a basis X⃗j :=
∏n

i=1 X
ji
i of R2 ↪→ Rk, where

ji ∈ [0, 3). For simplicity, we abuse the pre-defined bijection φ2.

Theorem 7.4. Assume a secure FSS scheme SPFSS for sums of point func-
tions and both QA-SD(R2, t), QA-SD(Rk, t) are hard. Then there exists a PCG
construction that generates subfield OLE correlations for F2k over F2. If the
SPFSS is based on a PRG : {0, 1}λ → {0, 1}2λ+2 via the PRG-based construction
from [BGI16], for generating N = 3n subfield OLE correlations, we have that:

– Each party’s seed has maximum size around: 8t2
(
(logN − log t+ 1)(λ+ 2) +

λ+ k
)
+ 2t(logN + k) bits.

– The computation of Expand can be done with at most (2 + ⌈k/λ⌉)4Nt PRG
operations and O(N logN) operations in F2k .

Applications of Subfield OLE. A direct application of subfield OLE is that
it implies string OT. Recall that ConsF2

sOLE generates b ∈ FN
2 , z0 ∈ FN

2k and
(x, z1) ∈ F2N

2k such that b ∗ x = z0 + z1. Then for each j ∈ [1, N], party P0 can
view b[j] as a bit, and z0[j] as a k-bit string, while party P1 views x[j], z1[j] as
two k-bit strings. It holds that z0[j] = z1[j] if b[j] = 0, and z0[j] = z1[j]⊕ x[j] if
b[j] = 1, which is essentially a OT correlation where P0 is the OT receiver with
input bit b[j], output string z0[j], and P1 is the OT sender with input strings
z1[j], z1[j]⊕ x[j].

To address the advantage of our string OT construction from subfield OLE,
we briefly review the previous PCG construction [BCG+19a, BCG+19b] for
string OT from subfield VOLE. Recall that in subfield VOLE, party P0 holds

35

b ∈ FN
2 , z0 ∈ FN

2k , while party P1 holds x ∈ F2k , z1 ∈ FN
2k , such that b · x =

z0 + z1. Then for each j ∈ [1, N], P0,P1 holds (b[j], z0[j]), (z1[j], z1[j]⊕ x) with
z0[j] = z1[j]⊕ (b[j] ·x), which are not random OT correlations, as P1’s N pairs of
inputs (z1[j], z1[j]⊕ x) share the same offset x. To obtain standard random OT,
they further assume a correlation-robust hash function H : {0, 1}k → {0, 1}λ,
such that (

b[j], H(z0[j])
)
,
(
H(z1[j]), H(z1[j]⊕ x)

)
looks independently and uniformly random.

As shown above, transforming subfield OLE into OT does not require any
cryptographic assumption, since the offsets x[j] are independently random. Our
PCG construction for subfield OLE only assumes QA-SD assumptions and a
SPFSS scheme. To our best knowledge, no previous PCG construction gener-
ates OT correlations without assuming correlation-robust hash functions. As a
downside, the seed size is slightly larger than [BCG+19a, BCG+19b].

8 PCG Setup Protocols from QA-SD

In this section, we show the distributed two-party setup protocols for PCGs
for OLE correlations and authenticated multiplication triples assuming the
pseudorandomness of QA-SD assumptions. For the sake of generality, we consider
the case of Fp. Taking p = 2 leads to OLEs over F2 and authenticated Boolean
triples. Distributed setup protocols for our PCGs on other correlations (e.g.,
matrix triples) can be obtained in a similar way, thus omitted. Note that our PCG
protocols can be used in a bootstrapping flavor, where a small part of the PCG
outputs would be reserved for subsequent PCG seed generations. In the setup
protocols, we focus on bootstrapping from a smaller size correlations. The initial
correlations could be obtained via previous protocols [KOS16, KPR18, BCG+19b].

In Section 8.1, a protocol ΠFp

OLE−Setup securely realizes the functionality
FFp

OLE−Setup that outputs the OLE seed against semi-honest adversaries. After
receiving the OLE seed, the parties locally expand the seed to generate OLE
correlations. Similar to [BCG+20], we present a protocol ΠFp

mal−OLE that securely
realizes the corruptible OLE functionality FFp

mal−OLE in Section 8.2 against ma-
licious adversaries. Then in Section 8.3, we present a protocol ΠFp

Auth−Triple that
realizes the functionality FFp

Auth−Triple for authenticated multiplication triples with
malicious security. Finally, in Section 8.4 we summarize the complexity for basic
operations used in our setup protocols. The underlying functionalities e.g., F2PC,
FDPF are presented in Appendix C.

8.1 Semi-honest Distributed Setup from QA-SD

In this section, we show a protocol ΠFp

OLE−Setup that realizes the seed generation
functionality FFp

OLE−Setup for OLE correlations from QA-SD assumptions against
a semi-honest adversary. Note that after the setup protocol, each party obtains

36

succinct representations of the sparse error vector via (postion, value) pairs and
succinct representations of the products of error vectors via DPFs.

Functionality 5: FFp

OLE−Setup

Parameters: Security parameter 1λ, PCGOLE := (PCGOLE.Gen,PCGOLE.Expand)

in line with Construction Cons
Fp
OLE.

Functionality:

1. Sample (k0, k1)← PCGOLE.Gen(1
λ).

2. For σ ∈ {0, 1}, output kσ to Pσ.

Then we show a protocol realizes the setup functionality FFp

OLE−Setupagainst
semi-honest adversaries.

Protocol 6: ΠFp

OLE−Setup

Parameters: Security parameter 1λ, length N = (pk − 1)n, F = Fpk = Fp(ξ)

and R = Fpk [X1, . . . , Xn]/(X
pk−1
1 −1, . . . , Xp

k−1
n −1). Let G = Zn

pk−1. Let DPF be
a distributed point function DPF := (DPF.Gen,DPF.Eval) with domain size N
and range Fpk . Assume each variable is shared via additive sharing, for instance
[x] = (x0, x1). Moreover, assume access to functionalities F2PC, FDPF.
Protocol:

1. Pσ samples random vectors A0
σ,A

1
σ

$← Gt and b0
σ,b

1
σ

$← (F∗
pk)

t. We remark
that the pair (Ai

σ,b
i
σ) defines a t-sparse element in R.

2. P0 inputs the positions and the values. For i ∈ [0, 1], j ∈ [1, t],[
Ai

0[j]
]G
← Input(P0,A

i
0[j]),

[
bi
0[j]

]F
← Input(P0,b

i
0[j]).

3. P1 computes the positions and the values. For i ∈ [0, 1], j ∈ [1, t], ℓ ∈ [0, k−1],
compute pℓ ·Ai

1[j] and (bi
1[j])

pℓ iteratively. Then, P1 inputs them[
pℓ ·Ai

1[j]
]G
← Input(P1, p

ℓ ·Ai
1[j]),

[
(bi

1[j])
pℓ
]F
← Input(P1, (b

i
1[j])

pℓ).

4. Compute the cross sums of positions and products of values. For each
ℓ ∈ [0, k − 1], i, j ∈ [1, t],[
αijℓ
0

]G
← Add(

[
A0

0[i]
]
,
[
pℓ ·A0

1[j]
]
),
[
βijℓ
0

]F
← Mul(

[
b0
0[i]

]
,
[
(b0

1[j])
pℓ
]
)

[
αijℓ
1

]G
← Add(

[
A1

0[i]
]
,
[
pℓ ·A0

1[j]
]
),
[
βijℓ
1

]F
← Mul(

[
b1
0[i]

]
,
[
(b0

1[j])
pℓ
]
)[

αijℓ
2

]G
← Add(

[
A0

0[i]
]
,
[
pℓ ·A1

1[j]
]
),
[
βijℓ
2

]F
← Mul(

[
b0
0[i]

]
,
[
(b1

1[j])
pℓ
]
)[

αijℓ
3

]G
← Add(

[
A1

0[i]
]
,
[
pℓ ·A1

1[j]
]
),
[
βijℓ
3

]F
← Mul(

[
b1
0[i]

]
,
[
(b1

1[j])
pℓ
]
)

37

5. Convert the position value over G to binary value over {0, 1}⌈log |G|⌉. For
κ ∈ [0, 3], i, j ∈ [1, t], ℓ ∈ [0, k − 1],[

αijℓ
κ

]{0,1}⌈log |G|⌉

← ToBinary(
[
αijℓ
κ

]G
)

6. Sample the FSS key shares via calling FDPF with binary domain {0, 1}⌈log |G|⌉

and range Fpk . For each κ ∈ [0, 3], i, j ∈ [1, t], ℓ ∈ [0, k − 1],

(Kijℓκ
0 ,Kijℓκ

1)← FDPF(
[
αijℓ
k

]{0,1}⌈log |G|⌉

,
[
βijℓ
k

]F
).

7. Pσ outputs kσ :=
({

Kijℓκ
σ

}ℓ∈[0,k−1]

i,j∈[1,t],κ∈[0,3]
,
{
Ai

σ,b
i
σ

}
i∈{0,1}

)
.

Theorem 8.1. The protocol ΠFp

OLE−Setup securely realizes the PCG seed generation
functionality FFp

OLE−Setup with security against semi-honest adversaries in the
(F2PC,FDPF)-hybrid model.

Proof. Note that the protocolΠFp

OLE−Setup securely evaluates each step of PCGOLE.Gen

of Cons
Fp

OLE. The SPFSS.Gen is implemented via calling the FDPF upon each
nonzero point. ⊓⊔

Remark 8.1. The aboveΠFp

OLE−Setup considers the ringR = Fpk [X1 . . . Xn]/(X
pk−1
1 −

1, . . . , Xp
k−1

n − 1), and the “additions” of positions are essentially computed over
G = Zn

pk−1. For pk = 4, the DPF KeyGen can be implemented via a ternary
tree evaluation which requires 1-out-of-3 OT [BBC+24, Section 5]. The early
termination technique [BGI16, Remark 3.4] can be used to reduce the depth of
the GGM tree. Generally speaking, the early termination technique does not
work for malicious DPF key generation. The main reason comes from the fact
that, to achieve malicious security, DPF is used to succinctly share K · e, where
K is a λ-bit global MAC key. In addition, the half-tree technique [GYW+23] can
be used to further optimize the efficiency of underlying DPFs.

The costs of above setup protocol mainly consist of the following operations.

1. kt2 Mul over Fpk .
2. 4kt2 ToBinary function calls over Zn

pk−1.
3. 4kt2 FDPF calls with domain size N and range Fpk .

Combining with complexity for ToBinary and FDPF, we have

Theorem 8.2 (Semi-honest Distributed OLE Generation). Assume the
hardness of QA-SD(R, t). Then there exists a protocol securely realizing FOLE−Setup
against semi-honest adversaries. To generate kN OLE correlations over Fp, the
protocol has the following complexity.

38

– Correlated randomness: Taking correlated randomness as follows.
1. kt2 multiplication triples over Fpk .
2. Length 4kt2 subfield VOLE over F2/F2λ .
3. 8kt2 multiplication triples over Fpk and 4kt2 logN number of λ-string-

OTs.
– Computational complexity: Dominated by 8kt2N PRG calls.
– Communication complexity: Dominated by

1. 2k2t2 log p bits.
2. 4k2t2n(λ+ 1) log p.
3. 4kt2((2λ+ 3) logN + 5k log p) bits.

8.2 OLE Setup Protocols from QA-SD with Malicious Security

We show PCG protocol for generating OLE correlations with distributed setup
realizing the corruptible OLE functionality FFp

mal−OLE with security against ma-
licious adversaries. The protocols with malicious security are based on a static
leakage variant of QA-SD as in [BCG+20, Section 6.2]. Intuitively, in the dis-
tributed setup protocol, an adversary is able to maliciously guess a predicate on
the position of the error vector.

Definition 8.1 (QA-SD with Static Leakage). Let R = Fpk [G] be a group
algebra with |G| = N6. Let St be the distribution over R with Hamming weight
at most t. Let Game(b, λ) be the following game.

1. Assume Ai $← Gt and bi $← (F∗pk)
t

2. The adversary A makes a polynomial number of queries of the form (i, j, P)
where i ∈ {0, 1}, j ∈ [1, t] and P : [0, N) → {0, 1}. If a query satisfy
P (Ai[j]) = 0, then abort. Otherwise send continue to A.

3. Set ei =
∑

j b
i[j] · Ai[j] and b0 ← a · e0 + e1 and b1

$← R.
4. Return bb to A.

The QA-SD problem with static leakage for a given a
$← R is hard for an arbitrary

PPT adversary A if

|Pr [A(Game(0, λ)) = 1]− Pr [A(Game(1, λ)) = 1]| ≤ negl(λ).

Our protocol for OLE is given in ΠFp

mal−OLE, which realizes the corruptible OLE
functionality FFp

mal−OLE with malicious security.

6 By instantiating G with
∏n

i=1(Z/diZ), the group algebra Fpk [G] is nothing else than
the ring Fpk [X1, . . . , Xn]/(X

d1
1 − 1, . . . , Xdnn − 1), where di = pk − 1.

39

Functionality 7: FFp

mal−OLE

Parameters: Security parameter 1λ. Length parameter N = (pk − 1)n.
Functionality:
If both parties are honest:

1. Sample x0,x1
$← FkN

p .

2. Sample z0
$← FkN

p and set z1 = x0 ∗ x1 − z0.

If Pσ is corrupted,

1. Wait for input (xσ, zσ) ∈ F2kN
p from the adversary.

2. Sample x1−σ and compute z1−σ ← x0 ∗ x1 − zσ.
3. Output (x1−σ, z1−σ) to the honest party P1−σ.

Protocol 8: ΠFp

mal−OLE

Parameters:Security parameter 1λ, noise weight t = t(λ), length N = (pk−1)n,
F := Fpk = Fp(ξ) and Rk = Fpk [X1, . . . , Xn]/(X

pk−1
1 − 1, . . . , Xp

k−1
n − 1). Let

η ∈ N such that pη ≥ 2λ and k | η. Let G = Zn
pk−1. Let DPF be a distributed

point function DPF := (DPF.Gen,DPF.Eval) with domain size N and range
Fpk . We abuse ϕ as a fixed isomorphism map from Rk to FN

pk , and from Rη to
FN
η . Assume each variable is shared via a SPDZ-style authenticated sharing,

for instance JxK := (JxK0 , JxK1) and JxKσ := (xσ,Mσ[x]) where x = x0 + x1,
M0[x] + M1[x] = x · (∆0 + ∆1) and (∆0,∆1) is a sharing of the global key.
For simplicity, the malicious PowerP operation is implicitly represented as
J·Kp

ℓ

. There exists an implicit ToBinary function call before calling Fmal−DPF.
Furthermore, it is given access to the functionalities F2PC and Fmal−DPF.
Input: A random element a ∈ Rk.
Correlation: For θ ∈ [0, k − 1], output X

(θ)
0 ,Z

(θ)
0 ,X

(θ)
1 ,Z

(θ)
1 ∈ FN

p such that
X

(θ)
0 ∗X

(θ)
1 = Z

(θ)
0 + Z

(θ)
1 .

Protocol:

1. Pσ samples random vectors A0
σ,A

1
σ

$← Gt and b0
σ,b

1
σ

$← (F∗)t. Note that
each pair (Ai

σ,b
i
σ) defines a t-sparse element in Rk.

2. Input the position and values. For σ ∈ {0, 1}, i ∈ [0, 1], j ∈ [1, t],q
Ai

σ[j]
y
← Input(Pσ,A

i
σ[j]),

q
bi
σ[j]

y
← Input(Pσ,b

i
σ[j])

3. Generate FSS keys for
r
Z(θ)

z
according to Eq. (10). For i, j ∈ [1, t], κ, ℓ ∈

[0, k − 1], //Note there exists an implicit ToBinary function call before
calling Fmal−DPF.

(Kijκℓ0
0 ,Kijκℓ0

1)← Fmal−DPF(p
κ q

A0
0[i]

y
+ pℓ

q
A0

1[j]
y
,
q
b0
0[i]

ypκ ·
q
b0
1[j]

ypℓ

)

(Kijκℓ1
0 ,Kijκℓ1

1)← Fmal−DPF(p
κ q

A0
0[i]

y
+ pℓ

q
A1

1[j]
y
,
q
b0
0[i]

ypκ ·
q
b1
1[j]

ypℓ

)

(Kijκℓ2
0 ,Kijκℓ2

1)← Fmal−DPF(p
κ q

A1
0[i]

y
+ pℓ

q
A0

1[j]
y
,
q
b1
0[i]

ypκ ·
q
b0
1[j]

ypℓ

)

40

(Kijκℓ3
0 ,Kijκℓ3

1)← Fmal−DPF(p
κ q

A1
0[i]

y
+ pℓ

q
A1

1[j]
y
,
q
b1
0[i]

ypκ ·
q
b1
1[j]

ypℓ

)

4. Generate X
(θ)
σ . Pσ computes

e0σ =
∑

j∈[1,t]

b0
σ[j] · X⃗A

0
σ [j], e1σ =

∑
j∈[1,t]

b1
σ[j] · X⃗A

1
σ [j]

and
X(θ)

σ = Tr
(
ξp

θ

· (a · e0σ + e1σ)
)
.

5. Generate
r
Z(θ)

z
. Set

Kκℓ0
σ :=

∑
i,j∈[t]

Kijκℓ0
σ , Kκℓ1

σ :=
∑

i,j∈[t]

Kijκℓ1
σ ,

Kκℓ2
σ :=

∑
i,j∈[t]

Kijκℓ2
σ , Kκℓ3

σ :=
∑

i,j∈[t]

Kijκℓ3
σ .

For θ ∈ [0, k − 1], compute
r
Z(θ)

z

σ
: = ϕ

(∑
κ,ℓ∈[0,k−1]

ξp
θ(pκ+pℓ) ·

(
apκ+pℓ ·Kκℓ0

σ

+ apκ ·Kκℓ1
σ + apℓ ·Kκℓ2

σ +Kκℓ3
σ

))
6. Pσ outputs

(
X

(θ)
σ ,Z

(θ)
σ

)
. //Note that we only output the sharing of Z(θ)

without the MAC shares, though we actually get
r
Z(θ)

z
.

Note that the PowerP operation, i.e., J·Kp
κ

during FSS key generation forq
Z(θ)

y
can be precomputed, which avoids O(k2t2) number of PowerP operations

because the values of PowerP are reused. The complexity of PowerP is shown in
Section 8.4.

Theorem 8.3. If the QA-SD problem with static leakage is hard, then the pro-
tocol ΠFp

mal−OLE implements the functionality FFp

mal−OLE in the (F2PC,Fmal−DPF)-
hybrid model against malicious adversaries.

Proof. – Both parties are honest. Note that there is no direct communication
between the two parties and the communication is performed via ideal
functionality calls. Thus, we only need to prove that protocol the output
distribution is computationally indistinguishable from the distribution of
the ideal functionality description. From the pseudorandomness of QA-SD
and the linear independence of the trace function, (X(θ)

0 ,X
(θ)
1 ,Z

(θ)
0 ,Z

(θ)
1) is a

pseudorandom OLE correlation.
– Corrupted Pσ. The simulator S waits for the input (Ai

σ,b
i
σ) from A and

sets, e0σ =
∑

j∈[1,t] b
0
σ[j] · XA

0
σ[j], e1σ =

∑
j∈[1,t] b

1
σ[j] · XA

1
σ[j] and X

(θ)
σ =

ϕ(Tr(ξp
θ · (a · e0σ + e1σ))). Next, S simulates the invocations to Fmal−DPF. For

41

i ∈ {0, 1}, j ∈ [t], S outputs β = 0 and aborts on that instance. After receiving
a guess set B of size at most N from A for other instances, S responds with
⊥ whatever B is and continues. For i, j ∈ [t], κ, ℓ ∈ [0, k − 1], η ∈ [0, 3] of
non-aborting instance, S awaits the input Kijκℓη

σ and predicate P ijκℓη from
A. Then S chooses A0,A1,b0,b1. For i, j ∈ [t], κ, ℓ ∈ [0, k − 1], η ∈ [0, 3],
in the (i, j, κ, ℓ, η) call of Fmal−DPF, if P ijκℓη(pκAα[i] + pℓAβ

σ[j]) = 0 with
(αβ) being binary representation of η, S aborts on all instances and outputs
(pκAα[i] + pℓAβ

σ[j], (b
α[i])p

κ · (bβ
σ[j])

pℓ

). Otherwise, S outputs success and
continues. If S does not abort on any instance, S definesKκℓη

σ =
∑

i,j[t]K
ijκℓη
σ

and computes
r
Z(θ)

z

σ
: = ϕ

(∑
κ,ℓ∈[0,k−1]

ξp
θ(pκ+pℓ) ·

(
ap

κ+pℓ

·Kκℓ0
σ

+ ap
κ

·Kκℓ1
σ + ap

ℓ

·Kκℓ2
σ +Kκℓ3

σ

))
for θ ∈ [0, k − 1]. Then S forwards (X

(θ)
σ ,Z

(θ)
σ)θ∈[0,k−1] to the functionality.

Based on the above simulation, we show that if there exists an adversary
A distinguish the above simulated transcript from a real transcript, then
there exists an adversary B for the QA-SD problem with static leakage. B
executes the simulation until it receives the predicate P ijκℓη from A during
Fmal−DPF. B defines the predicate Qijκℓη : Gt → {0, 1} as Qijκℓη(A) = 0

if and only if P ijκℓη(A + pℓA
η[2]
σ [j]) = 0. Then S sends (i, κ, η[1]) and the

predicate Qijκℓη to the QA-SD game. If the game aborts on one (̃i, j̃, κ̃, ℓ̃, η̃),
then B samples A0,A1 ←R Gt conditioned on Qĩj̃κ̃ℓ̃η̃(pκ̃Aη̃[1] [̃i]) = 0 and
Qijκℓη(pκAη[1][i]) = 1 for queried (i, j, κ, ℓ, η). Next, B samples b0,b1 ←R

(F∗)t and returns (pκ̃Aη̃[1] [̃i] + pℓ̃A
η̃[2]
σ [j̃], (bη̃[1] [̃i])p

κ̃ · (bη̃[2]
σ [j̃])p

ℓ̃

) to A and
aborts. To enable the occurrence of the conditional event, B runs in expected
polynomial time. If the QA-SD game does not abort, B receives v ∈ R and
sets X1−σ := ϕ(v). Next B computes Tr(x0) · Tr(x1). Then B outputs 0 if A
outputs real protocol execution.
Next, we argue that B statistically simulates the protocol. For b = 0, i.e., a QA-
SD instance, B simulates the real protocol execution execept with negligible
probability. Note that the probability that the adversary correctly guesses
the B to the functionality Fmal−DPF is negligible. The output distribution
simulated by B is indeed the real output distribution. The QA-SD game aborts
if and only if Fmal−DPF aborts at least during one call. Thus, B simulates
the real protocol execution except with negligible probability. For b = 1, B
faithfully simulates the simulation, because the QA-SD game aborts if and
only if the simulation aborts in an ideal execution. ⊓⊔

The above setup protocol mainly consists of the following steps.

1. 2t Input over G and Fpk .
2. 2tk PowerP operations over Fpk and 4k2t2 multiplications over Fpk .
3. 4t2k2 ToBinary function calls over G.

42

4. 4t2k2 Fmal−DPF functionality calls with domain size N and range Fpk .

Combining with complexity for PowerP, ToBinary and Fmal−DPF, we have

Theorem 8.4 (Malicious Distributed OLE Generation). Assume the hard-
ness of QA-SD(R, t) with static leakage. Then there exists a protocol securely
realizing FFp

mal−OLE against malicious adversaries. To generate kN OLE correla-
tions over Fp, the protocol has the following complexity.

– Correlated randomness: Taking correlated randomness as follows:
1. 2 length 2tn subfield VOLE over Zpk−1 and 2 length 2t subfield VOLE

over Fpk .
2. 2tk sVOLE over Fpk and 4k2t2 authenticated multiplication triples over

Fpk .
3. 12t2k2 logN symmetric subfield VOLE and 4t2k2 logN authenticated

Boolean multiplication triples.
4. 12t2k2 authenticated multiplication triples over Fpk and 2 length 16t2k2

sVOLE over Fpk .
– Computational complexity: Dominated by 8t2k2N PRG calls and O(k3N logN)

operations over Fpk × Fpη .
– Communication complexity: Dominated by

1. 2tnk log p+ 2tk log p bits per party.
2. 2tk2 log p+ 4k3t2 log p bits per party.
3. 8t2k2(λ+ 1) logN bits per party.
4. 4t2k2((2λ+ 3) logN + 11k log p) bits.

8.3 Authenticated Multiplication Triples from QA-SD

We define the ideal corruptible functionality for authenticated Boolean triples
in FFp

Auth−Triple. We slightly modify the original construction for authenticated
multiplication triples (with seed size increased by a small factor), so that the
distributed setup can be simpler. Our protocol is obtained by extending the
malicious OLE construction Π

Fp

mal−OLE and the PCG for authenticated triple
construction Cons

′Fp

Auth−Triple.

Functionality 9: FFp

auth−triple

Parameters: Security parameter 1λ, d | pk − 1, N = dn, Fpk = Fp(ξ). Let
η ∈ N such that pη ≥ 2λ and k | η.
Functionality:
If both parties are honest,

1. Sample ∆0,∆1
$← Fpη and let ∆← ∆0 +∆1.

2. Sample x0,x1,y0,y1
$← FkN

p and let x = x0 + x1,y = y0 + y1.
3. Let z← x ∗ y ∈ FkN

p .

43

4. Sample mx,0,my,0,mz,0
$← FkN

pη and let mx,1 ← ∆ · x −mx,0,my,1 ←
∆ · y −my,0,mz,1 ← ∆ · z−mz,0.

5. For σ ∈ {0, 1}, output (∆σ,xσ,yσ, zσ,mx,σ,my,σ,mz,σ) to Pσ.

If Pσ is corrupted,

1. Wait for input (∆σ,xσ,yσ, zσ,mx,σ,my,σ,mz,σ) ∈ Fpη ×F3kN
p ×F3kN

pη from
the adversary.

2. Sample ∆1−σ
$← Fpη and x1−σ,y1−σ

$← FkN
p . Set ∆ ← ∆0 + ∆1,x ←

x0 +x1,y← y0 +y1 and z = x ∗y. Let mx,1−σ ← ∆ ·x−mx,σ,my,1−σ ←
∆ · y −my,σ,mz,1−σ ← ∆ · z−mz,σ.

3. Output (∆1−σ,x1−σ,y1−σ, z1−σ,mx,1−σ,my,1−σ,mz,1−σ) to the honest
party P1−σ.

Construction 10: Cons′Fp

Auth−Triple

Parameters: Security parameter 1λ, noise weight t = t(λ), d | pk − 1, N = dn,
η satisfying pη ≥ 2λ and k | η, Rk = Fpk [X1, . . . , Xn]/(X

d
1 − 1, . . . , Xdn − 1),

ξ ∈ Fpk s.t. Fpk = Fp(ξ). Let G := Zn
d and F := Fpk . An FSS scheme

(SPFSS.Gen,SPFSS.FullEval) for sums of point functions, with domain size N
and range Fpk or Fpη . We abuse ϕ as a fixed isomorphism map from Rk to FN

pk ,
and from Rη to FN

pη . The global MAC key shares ∆0,∆1 ∈ Fpη are implicitly
provided by authenticated multiplication triples.
Public input: A uniformly random a ∈ Rk.
Correlation: For ℓ ∈ [0, k − 1], output (

r
X(ℓ)

z
,
r
Y(ℓ)

z
,
r
Z(ℓ)

z
), where

X(ℓ),Y(ℓ),Z(ℓ) ∈ FN
p such that X(ℓ) ∗ Y(ℓ) = Z(ℓ) and MAC key shares

∆0,∆1 ∈ Fpη .
Gen: On input 1λ,

1. For σ ∈ {0, 1}, i ∈ {0, 1}, sample random vectors Ax,i
σ ,Ay,i

σ
$← Gt and

bx,i
σ ,by,i

σ
$← (F∗)t for the positions and values. Let Ax,i,Ay,i ∈ G2t and

bx,i,by,i ∈ (F∗)2t be the union of the corresponding positions and values.
Define elements of Rk:

ex,i :=
2t∑

j=1

bx,i[j] · X⃗A
x,i[j], x := a · ex,0 + ex,1

ey,i :=

2t∑
j=1

by,i[j] · X⃗A
y,i[j], y := a · ey,0 + ey,1

2. Sample FSS keys for
r
X(ℓ)

z
,
r
Y(ℓ)

z
according to Eq.(9). For i ∈ {0, 1},

j ∈ [0, k−1], //Here we use J·K to highlight that the MAC value is computed
together.
– (Kx,i,j

0 ,Kx,i,j
1)← SPFSS.Gen(1λ,⊞pj

q
Ax,i

y
,⊗pj

q
bx,i

y
)

44

– (Ky,i,j
0 ,Ky,i,j

1)← SPFSS.Gen(1λ,⊞pj
q
Ay,i

y
,⊗pj

q
by,i

y
)

3. Sample FSS keys for
r
Z(ℓ)

z
according to Eq. (10). For i, j ∈ [0, k − 1],

(Kz,i,j,0
0 ,Kz,i,j,0

1)← SPFSS.Gen(1λ,
q
Ax,0ypi

⊞
q
Ay,0ypj

,
q
bx,0ypi⊗

q
by,0ypj

)

(Kz,i,j,1
0 ,Kz,i,j,1

1)← SPFSS.Gen(1λ,
q
Ax,0ypi

⊞
q
Ay,1ypj

,
q
bx,0ypi⊗

q
by,1ypj

)

(Kz,i,j,2
0 ,Kz,i,j,2

1)← SPFSS.Gen(1λ,
q
Ax,1ypi

⊞
q
Ay,0ypj

,
q
bx,1ypi⊗

q
by,0ypj

)

(Kz,i,j,3
0 ,Kz,i,j,3

1)← SPFSS.Gen(1λ,
q
Ax,1ypi

⊞
q
Ay,1ypj

,
q
bx,1ypi⊗

q
by,1ypj

)

4. For σ ∈ {0, 1}, let kσ =
({

Kx,i,j
σ ,Ky,i,j

σ

}i∈{0,1}
j∈[0,k−1]

,
{
Kz,i,j,κ

σ

}κ∈[0,3]

i,j∈[0,k−1]

)
.

5. Output (k0, k1).

Expand: On input (σ, kσ):

1. Parse kσ as
({

Kx,i,j
σ ,Ky,i,j

σ

}i∈{0,1}
j∈[0,k−1]

,
{
Kz,i,j,κ

σ

}κ∈[0,3]

i,j∈[0,k−1]

)
.

2. For i ∈ {0, 1}, j ∈ [0, k− 1], compute //View ui,j , vi,j , wijκ as Rk elements.
r
ui,j

z

σ
← SPFSS.FullEval(σ,Kx,i,j

σ),
r
vi,j

z

σ
← SPFSS.FullEval(σ,Ky,i,j

σ)

3. For i, j ∈ [0, k − 1], κ ∈ [0, 3], compute
r
wijκ

z

σ
← SPFSS.FullEval(σ,Kz,i,j,κ

σ).

4. For ℓ ∈ [0, k − 1], compute

r
X(ℓ)

z

σ
← ϕ

 ∑
j∈[0,k−1]

ξp
ℓ+j

·
(
apj ·

r
u0,j

z

σ
+

r
u1,j

z

σ

)
r
Y (ℓ)

z

σ
← ϕ

 ∑
j∈[0,k−1]

ξp
ℓ+j

·
(
apj ·

r
v0,j

z

σ
+

r
v1,j

z

σ

)
5. For ℓ ∈ [0, k − 1], according to Eq.(10), compute

r
Z(ℓ)

z

σ
← ϕ

(∑
i,j∈[0,k−1]

ξp
ℓ(pi+pj) ·

(
api+pj ·

r
wz,i,j,0

z

σ

+ api ·
r
wz,i,j,1

z

σ
+ apj ·

r
wz,i,j,2

z

σ
+

r
wz,i,j,3

z

σ

))
.

6. For ℓ ∈ [0, k − 1], output
(r

X(ℓ)
z

σ
,
r
Y(ℓ)

z

σ
,
r
Z(ℓ)

z

σ

)
to Pσ, where

X(ℓ),Y(ℓ),Z(ℓ) ∈ FN
p .

As indicated in Cons
′Fp

Auth−Triple, the protocol for authenticated multiplication
triples from QA-SD assumptions calls the Fmal−DPF, which not only outputs the

45

shared value but also the shared MACs for the shared value. To enable distributed
setup and build on the QA-SD assumption with weight 2t, for each of X,Y, each
party samples a QA-SD instance with error weight 2t and thus the total weight
for X is 4t.

Protocol 11: ΠFp

auth−triple

Parameters: Security parameter 1λ, noise weight t = t(λ), d | pk − 1, length
N = dn, F := Fpk = Fp(ξ) and R = Fpk [X1, . . . , Xn]/(X

d
1 − 1, . . . , Xdn − 1). Let

G = Zn
d . Let η ∈ N such that pη ≥ 2λ and k | η. Let DPF be a distributed point

function DPF := (DPF.Gen,DPF.Eval) with domain size N and range Fpk or
Fpη . We abuse ϕ as a fixed isomorphism map from Rk to FN

pk , and from Rη to
FN
pη . Assume each variable is shared via a SPDZ-style authenticated sharing,

for instance JxK := (JxK0 , JxK1) and JxKσ := (xσ,Mσ[x]) where x = x0 + x1,
M0[x] + M1[x] = x · (∆0 + ∆1) and (∆0,∆1) is a sharing of the global key.
For simplicity, the malicious PowerP operation is implicitly represented as
J·Kp

ℓ

. There exists an implicit ToBinary function call before calling Fmal−DPF.
Furthermore, it is given access to the functionalities F2PC and Fmal−DPF.
Input: A random element a ∈ R.
Protocol:

1. The parties sample the error vector and input them. For i ∈ {0, 1}, Pσ

samples Ax,i
σ ,Ay,i

σ
$← Gt and bx,i

σ ,by,i
σ

$← (F∗)t. For i ∈ {0, 1},j ∈ [1, t],
(i)

q
Ax,i

σ [j]
y
← Input(σ,Ax,i

σ [j]),
q
bx,i
σ [j]

y
← Input(σ,bx,i

σ [j]).
(ii)

q
Ay,i

σ [j]
y
← Input(σ,Ay,i

σ [j]),
q
by,i
σ [j]

y
← Input(σ,by,i

σ [j]).
Then Pσ obtains

{q
Ax,i[j]

y
σ
,
q
bx,i[j]

y
σ
,
q
Ay,i[j]

y
σ
,
q
by,i[j]

y
σ

}
i∈{0,1},j∈[1,2t]

.

2. Generate FSS keys for
(r

X(θ)
z
,
r
Y(θ)

z)
according to Eq.(9). For i ∈ {0, 1},

j ∈ [1, 2t], ℓ ∈ [0, k − 1], // Note there exists an implicit ToBinary function
call before calling Fmal−DPF.

(Kx,i,j,ℓ
0 ,Kx,i,j,ℓ

1)← Fmal−DPF(p
ℓ ·

r
Ax,i[j]

z
,
r
bx,i[j]

zpℓ

)

(Ky,i,j,ℓ
0 ,Ky,i,j,ℓ

1)← Fmal−DPF(p
ℓ ·

r
Ay,i[j]

z
,
r
by,i[j]

zpℓ

)

3. Generate FSS keys for
r
Z(θ)

z
according to Eq. (10). For i, j ∈ [1, 2t],

κ, ℓ ∈ [0, k− 1],//Note there exists an implicit ToBinary function call before
calling Fmal−DPF.

(K
ijκℓ0
0 , K

ijκℓ0
1)← Fmal−DPF(p

κ
r
A

x,0
[i]

z
+ p

ℓ
r
A

y,0
[j]

z
,
r
b

x,0
[i]

zpκ

·
r
b

y,0
[j]

zpℓ

)

(K
ijκℓ1
0 , K

ijκℓ1
1)← Fmal−DPF(p

κ
r
A

x,0
[i]

z
+ p

ℓ
r
A

y,1
[j]

z
,
r
b

x,0
[i]

zpκ

·
r
b

y,1
[j]

zpℓ

)

(K
ijκℓ2
0 , K

ijκℓ2
1)← Fmal−DPF(p

κ
r
A

x,1
[i]

z
+ p

ℓ
r
A

y,0
[j]

z
,
r
b

x,1
[i]

zpκ

·
r
b

y,0
[j]

zpℓ

)

(K
ijκℓ3
0 , K

ijκℓ3
1)← Fmal−DPF(p

κ
r
A

x,1
[i]

z
+ p

ℓ
r
A

y,1
[j]

z
,
r
b

x,1
[i]

zpκ

·
r
b

y,1
[j]

zpℓ

)

46

4. Generate (
r
X(θ)

z
,
r
Y(θ)

z
). Set

Kx,i,ℓ
σ :=

∑
j∈[1,2t]

Kx,i,j,ℓ
σ ,Ky,i,ℓ

σ :=
∑

j∈[1,2t]

Ky,i,j,ℓ
σ .

For θ ∈ [0, k − 1], compute
r
X(θ)

z

σ
:= ϕ

(∑
ℓ∈[0,k−1]

ξp
θ+ℓ

·
(
apℓ ·Kx,0,ℓ

σ +Kx,1,ℓ
σ

))
r
Y(θ)

z

σ
:= ϕ

(∑
ℓ∈[0,k−1]

ξp
θ+ℓ

·
(
apℓ ·Ky,0,ℓ

σ +Ky,1,ℓ
σ

))
5. Generate

r
Z(θ)

z
. Set

Kκℓ0
σ :=

∑
i,j∈[2t]

Kijκℓ0
σ , Kκℓ1

σ :=
∑

i,j∈[2t]

Kijκℓ1
σ ,

Kκℓ2
σ :=

∑
i,j∈[2t]

Kijκℓ2
σ , Kκℓ3

σ :=
∑

i,j∈[2t]

Kijκℓ3
σ .

For θ ∈ [0, k − 1], compute
r
Z(θ)

z

σ
:= ϕ

(∑
κ,ℓ∈[0,k−1]

ξp
θ(pκ+pℓ)·

(
apκ+pℓKκℓ0

σ +apκKκℓ1
σ +apℓKκℓ2

σ +Kκℓ3
σ

))
.

6. Pσ outputs
(r

X(θ)
z

σ
,
r
Y(θ)

z

σ
,
r
Z(θ)

z

σ

)
, for each θ ∈ [0, k − 1].

Note that the PowerP operation during FSS key generations for (JXK , JYK)
can be reused during FSS key generations for JZK. The ToBinary function call
during FSS key generations for JZK can be avoided via BitAdd the position values
of FSS key for (JXK , JYK).

Theorem 8.5. If the QA-SD problem with static leakage is hard, then the protocol
Π

Fp

Auth−Triple implements the functionality FFp

Auth−Triple in the (F2PC,Fmal−DPF)-
hybrid model.

The proof is an analogue to the proof of Theorem 8.3. We omit it here.
The above setup protocol mainly consists of the following steps.

1. 4t Input over G and Fpk .
2. 8tk PowerP operations over Fpk .
3. 8tk ToBinary function calls over G.
4. 8tk Fmal−DPF functionality calls with domain size N and range Fpk .
5. 16k2t2 Mul over Fpk .
6. 16k2t2 BitAdd function calls over Flog |G|

2 .
7. 16k2t2 Fmal−DPF functionality calls with domain size N and range Fpk .

47

Combining with complexity for PowerP, ToBinary and Fmal−DPF, we have

Theorem 8.6 (Distributed Authenticated Multiplication Triples Gen-
eration). Assume the hardness of QA-SD(R, t) with static leakage. Then there
exists a protocol securely realizing FFp

Auth−Triple against malicious adversaries. To
generate kN authenticated multiplication triples over Fp, the protocol has the
following complexity.

– Correlated randomness: Taking correlated randomness as follows:
1. 2 length 4tn subfield VOLE over Zpk−1 and 2 length 4t subfield VOLE

over Fpk .
2. 2 length 8tk subfield VOLE over Fpk .
3. 24tk logN symmetric subfield VOLE and 8tk logN authenticated Boolean

multiplication triples.
4. 24tk authenticated multiplication triples and 2 length 32tk sVOLE over

Fpk .
5. 16k2t2 authenticated multiplication triples over Fpk .
6. 16k2t2 authenticated Boolean multiplication triples.
7. 48k2t2 authenticated multiplication triples and 2 length 64k2t2 sVOLE

over Fpk .
– Computational complexity: Dominated by (32t2k2 + 16tk)N PRG calls

and O(k3N logN) operations overs Fpk × Fpη .
– Communication complexity: Dominated by

1. 4tnk log p+ 4tk log p bits per party.
2. 8tk2 log p bits per party.
3. 16tk(λ+ 1) logN bits per party.
4. 8tk((2λ+ 3) logN + 11k log p) bits per party.
5. 32k3t2 log p bits per party.
6. 32k2t2 bits per party.
7. 16k2t2((2λ+ 3) logN + 11k log p) bits per party.

8.4 Complexity for Basic Operations

We list the complexity of the main functions in our protocol.
Input(Pσ, x): For semi-honest security, there is no communication, i.e., [x] := (x, 0).
For malicious security, it consumes an authenticated random value and has com-
munication cost of log q bits per party for x ∈ Fq. The authenticated random
value can be implemented via two symmetric subfield VOLE [BCG+19b]. Assume
pk − 1 =

∏ℓ
i=1 p

di
i . To support authenticated sharing over Zpk−1, we simply use

authenticated sharing over {Z
p
di
i

}i∈[ℓ] via Chinese remainder theorem. For di > 1,
Galois ring [EXY22] can be used to provide authenticated sharing. Here, we omit
the details.
Add: It is a local operation.
Scalar : It is a local operation.
PowerP : For semi-honest security, it is a local operation and there is no communi-
cation because for any x1, x2 ∈ Fpk , (x1+x2)p

i

= xp
i

1 +xp
i

2 . For malicious security,

48

the parties locally compute shares and then consume a random authenticated
value over Fpk to obtain an authenticated shares. The online communication
is k log p bits per party. Each random authenticated value consumes two sym-
metric sVOLE instances over Fpk . To verify the PowerP operation is honestly
executed, for any uniformly distributed x ∈ Fpk , the parties consecutively com-

pute JxpK . . .
r
xp

k−1
z
,
r
xp

k
z

and then verify
r
xp

k
z
− JxK = J0K because xp

k

= x

and x is uniformly distributed. Note that this verification is not trivial because
after each PowerP operation the value shares and the MAC shares are refreshed
by a random authenticated value. The verification cost can be amortized for a
batch of opening via checking a random linear combination of the MAC shares.
Mul(JxKFq , JyKFq): It takes one multiplication triple and has online communication
complexity of 2 log q bits per party.
ToBinary: For semi-honest security, we use the A2B algorithm in ABY2.0 [PSSY21,
Lemma C.5] to convert a number to binary representations, which requires
(4λ+ 1) logN bits communication for setup phase and (λ+ 1) logN bits online
communication, and takes one correlated OT on λ bit strings or one subfield
VOLE over F2/F2λ . For malicious security, we use the authenticated garbled
circuits of [WRK17, Table 2] to evaluate size-optimized adder circuit [BP06, SZ13]
with size logN and depth logN to obtain Yao sharing and then use Y2B to
obtain authenticated binary sharings. The online communication is (2λ+2) logN
bits. The authenticated garbled circuit takes 2 logN symmetric subfield VOLE
over Zpk−1, logN symmetric subfield VOLE over F2, and logN authenticated
multiplication triples over F2.
BitAdd(JxKF

ℓ
2 , JyKF

ℓ
2): It computes the sum of two integers in binary representa-

tions and takes ℓ AND gates, i.e., ℓ Boolean multiplication triples, leading to 2ℓ
online communication bits per party.

9 Security Analysis and Parameter Selections

In this section, we analyze the security of QA-SD and Ring-LPN problems under
various concrete attacks to choose appropriate parameters for a given security
level. The general field Fpk is taken into account when investigating these attacks.

In particular, an adversary is given a QA-SD/Ring-LPN instance (a, b) ∈ R2

with a
$← R, and b = a · e0 + e1, where e0, e1 are random elements of R of

Hamming weight t. The goal is to either distinguish (a, b) with the uniform
distribution or to recover e0, e1. Essentially, the QA-SD/Ring-LPN correspond
to linear codes over Fpk of dimension N , length 2N and thus code rate 1/2.
Alternatively, the problems can be viewed as syndrome decoding problems, in
the sense that given (H,b = H · e) the adversary is asked to recover e, where
H ∈ FN×2N

pk is the parity check matrix and derived from a.
We consider two typical noise distributions:

Fixed Hamming weight. Let HW(F) = {HWt,N (F)}t,N be the family of
distributions of uniformly random vectors with fixed Hamming weight. Namely,
we abuse e← HWt,N (F) as e

$← {x ∈ FN | wt(x) = t}.

49

Regular Hamming weight. Let RG(F) = {RGt,N (F)}t,N be the family of
distributions of uniformly random regular weight vectors. W.o.l.g. we assume
t|N and let e = (e(1), ..., e(t)), where e(i) ∈ FN/t, i ∈ [t]. Similarly, we abuse
e← RGt,N (F) as e

$← {x ∈ FN | wt(x(i)) = 1, i ∈ [t]}. Essentially, RG(F) can be
viewed as a special case of HW(F).

In this section, we mainly focus on attacks for the fixed Hamming weight
distributions. Besides, to our best knowledge, assuming the regular structure
would not significantly reduce the complexity of applying these attacks on our
concrete instantiation. Our analyses on QA-SD and Ring-LPN follow the routine
of previous works [BCG+20, BCCD23, BBC+24].

In summary, our analyses show that first the BKW attacks do not work,
since the code rate here is only 1/2, which can only apply to codes of extremely
low code rates. Secondly, it suffices to consider the information set decoding
(ISD) attacks and the statistical decoding (SD) attacks, whose complexity are
exponential in the Hamming weight of the secret vector (e0, e1). Finally, there
exists a folding attack that allows to fold a given instance into a new instance
with reduced code dimension, code length, and almost preserved noise weight,
so that one can apply a subsequent ISD attack. To avoid such folding attacks,
for Ring-LPN, we can choose N to be a prime. However, it is unavoidable in the
QA-SD setting. Hence, we take it into account.

Specifically, we select parameters for the particularly interesting Boolean
case, i.e. OLE over F2 and authenticated Boolean triples either from QA-SD or
Ring-LPN. In general, QA-SD assumptions offer more flexibility than Ring-LPN
on the parameter choice.

9.1 Known Attacks for Ring-LPN and QA-SD

Gaussian Elimination Attacks on Syndrome Decoding. Given H ∈
Fk×n
q ,b ∈ Fn

q , the goal of the syndrome decoding is to find e ∈ Fn
q such that

H · e = b and wt(e) = w. A direct Gaussian elimination attempts to guess the
n− k error-free positions and then run the Gaussian elimination to recover the
secret vector. Averagely, the Gaussian elimination needs 1/(1−w/n)n−k iterations
to find one n−k error free positions and during each iteration the attack inverts a
(n−k)×(n−k) sub-matrix with complexity O((n−k)2.8) by Straseen’s technique.
The quasi-abelian/quasi-cyclic structure enables faster inversion algorithm with
complexity O((n− k)2 log (n− k)). Thus the cost becomes

O

((
1

1− w/n

)n−k

· (n− k)2 log (n− k)

)
≈ O(e

w
n/(n−k) · (n− k)2 log (n− k)).

Note that the regular noise structure would not decrease the costs of the attack.
Assume the error vector is split into w sub-vectors of length n/w, each having
one error entry. Then the attack finds (n− k)/w error-free positions in each of
the w sub-vectors. The success probability is((

1− 1

n/w

)(n−k)/w
)w

=
(
1− w

n

)n−k
.

50

Information Set Decoding Attacks on Syndrome Decoding. Gener-
ally speaking, the information set decoding (ISD) algorithm of Prange [Pra62]
attempts to find a size w subset of the rows of H such that the w rows ex-
actly span b. The ISD algorithm has been studies in a long line of works
[Ste88, FS09, BLP11, MMT11, BJMM12, MO15, EKM17, BM18, DEEK24]. For
syndrome decoding problem with constant rate, and error weight w << n, the
analysis of Torres and Sendrier [TS16] indicates that all known ISD variants have
the following asymptotic complexity cw(1+o(1)), where c is constant related to
the code rate. As it is the case of our settings, the total complexity of applying
Prange’s ISD algorithm is

O
(
cw·(1+o(1)) · (n− k)2 log (n− k)

)
.

Statistical Decoding Attacks on Syndrome Decoding. In contrast to the
previous attacks recovering e, the statistical decoding(SD) attacks directly try
to distinguish a Ring-LPN or QA-SD instance from a random instance. By the
Singleton bound, the minimum distance of the code generated by H is lower
bounded by n−k+1. Given (H,b = H ·e), the SD attacks search for m such that
mT ·H is of small weight and then test whether ⟨m,b⟩ equals 0. If b is random,
then ⟨m,b⟩ being 0 happens with probability 1/q. Otherwise, the probability
of ⟨m,b⟩ being 0 is 1/q + ((k − 1)/n)w. Thus, the distinguishing advantage is
((k − 1)/n)w. Assume there exists a pre-processing procedure computing m such
that m ·H is of small Hamming weight. The complexity of SD attack is lower
bounded by

O

((n

k − 1

)w · k) .
We remark again that it seems that the adversary is not able to utilize the regular
noise structure to improve the cost of the SD attacks.
Attacks On LPN with Many Samples. Given a large number of LPN samples,
there exist attacks with various time-space trade-offs. However, such attacks only
work for LPN with at least super-linear number of samples. In our Ring-LPN
and QA-SD assumptions, the number of samples is linear, i.e., 2N with respect
to dimension N samples, rather than super-linear.

The well-known BKW [BKW00] algorithm has both sub-exponential sample
complexity and sub-exponential time complexity, namely, 2O(N/ logN). It is worth
to mention that BKW can be viewed as a variant of the ISD attack. Note that
BKW works for constant error rate as well. There exists an improved BKW
algorithm [Lyu05] which has polynomial sample complexity, i.e., Ω(N1+ϵ) and
degenerated time complexity 2O(N/ log logN). Additionally, BKW can also be
combined with other existing attacks. The resulting algorithm still has sub-
exponential sample complexity and sub-exponential time complexity [EKM17].
Attacks on Ring-LPN with Fully Splittable Polynomials. Recall that for
Ring-LPN assumptions, we use the ring R = Fpk [X]/(XN −1), where N | pk−1 so
that f(X) := XN −1 is fully splittable over Fpk . This will lead to improved attacks.
Assume f has a sparse factor g, then the original instance can be reduced to a

51

new instance with reduced dimension and non-increasing noise weight. Then, the
adversary can run the above mentioned attacks on the above reduced instance.
The attack would be more efficient, since it has lower dimension.

Note that in our setting, f(X) = XN − 1 completely splits into N linear
factors over Fpk . For n | N , we have f(X) = (Xn − 1) · f ′(X) = (XN/n − 1) · f ′′(X)
where f ′, f ′′ are of degree N − n,N −N/n, respectively and maybe not sparse.
Furthermore for even N , we have f(X) = (XN/2 + 1)(XN/2 − 1). For a prime N ,
any nontrivial degree-n factor g(X) of XN − 1 has sparsity n+ 1. We remark that
if reducing by an n-sparse factor, typically one gets a factor of n amplification
for the noise weight. For n > 2, this significantly increases the noise weight and
the attack becomes infeasible. Thus, we focus on the 2-sparse factor case.

Intuitively, reducing modulo a 2-sparse factor g(X) of degree n with n = N/m,
the dimension is reduced fromN to n = N/m and the noise weight is reduced from
2t to a value between 2t/m and 2t because some error positions are overlapping
and vanishing. Now we consider the reduced instance and then apply existing
attacks.

Assume that each of the t errors in e is independently and uniformly sampled.
Then each error of e lands on a random position in ē := e mod g(X) of length n.
For j ∈ [n], define the Ej the event that j-th position in the reduced polynomial
ē equals to 0. Then Pr[Ej] = (1− 1/n)t. Thus, the expected Hamming weight
of errors in the reduced Ring-LPN instance is 2n(1− (1− 1/n)t). In summary
the new reduced LPN instance has dimension n, sample number 2n, and the
expected number of errors wn = 2n(1− (1− 1/n)t). Then, we have the following
attack costs.

Gaussian Elimination. Via iterating over all nontrivial factors of N , the cost of
the Gaussian elimination attack is

O

(
min
n|N

(
1

1− wn/(2n)

)n

· n2 log n
)
.

Information Set Decoding. When reducing a factor g(X) of f(X), the assumption
that the error weight is much smaller than the dimension of the code does not
hold any more. Via choosing appropriate factor n of N , it is possible that there
exists a reduced instance, such that some ISD variants outperform Prange’s ISD
decoding algorithm. To this end, we apply the lower bound results of [HOSS18].

Roughly speaking, the complexity of ISD algorithms for a parity check matrix
H with dimension n, sample number q, and error weight wn is lower bounded by

min
p0,p1

min
{
2n,
(

q
wn

)}(
n−p1

wn−p0

) ·

(
K1 +K2(

n+p1

p0

) +
w · (n− p1)

2p1

) ,

where (p0, p1) satisfy 0 ≤ p1 ≤ q − n and 0 ≤ p0 ≤ n + p1, K1 is the cost of
performing a Gaussian elimination on a submatrix of H with n − p1 columns,
K2 is the complexity of a special sub-algorithm. From [HOSS18], K2 is lower

52

bounded by (
(n+ p1)/2

p/8

)
if the algorithm of [BJMM12] is used. As the parity check matrix H has the
quasi-cyclic structure, we assume that the Gaussian elimination can be done in
time (n− p1)2 log (n− p1). Combining everything, a lower bound of cost of the
the ISD algorithms is

min
n|N

min
{
2n,
(

q
wn

)}(
n−p1

wn−p0

) ·

(
(n− q)2 log (n− q) +

(
(n+p1)/2

p/8

)(
n+p1

p0

) +
w · (n− p1)

2p1

) .

Statistical Decoding. Similarly, the cost of the SD attack is

O

(
min
n|N

(
q

n− 1

)wn

· (q − n)
)
.

To withstand the above attacks for Ring-LPN, one method is to let N be
a prime so that G = ZN has no nontrivial subgroups. In this case, the regular
noise structure can not be used since the noise weight w never divides a prime N .
Hence, the optimized PCG seed size for regular distributions does not apply to
prime N . Another option is to choose N being the largest prime factor of pk − 1.
As for binary correlations, we suggest k of F2k s.t. 2k − 1 is a Mersenne prime.
Folding Attacks for QA-SD. Assume R = Fpk [X1, . . . , Xn]/(X

d
1−1, . . . , Xdn−1),

where d | (pk − 1) and G = Zn
d . Given a QA-SD instance (a, b) over R, an

adversary can exploit the quasi-abelian structure to construct a reduced QA-SD
instance with smaller code length and dimension via modulo a subgroup H ≤ G.
As noted in [BCCD23, BBC+24], the most effective attack, termed folding attack,
leverages such subgroups. The folding attack maps a linear code of length 2|G|
to one of length 2|G/H|, preserving the code rate. This operation is applied
independently to each block, ensuring the number of errors per block remains
bounded by t. For p = 2, k = 2, d = 3, and G = Zn

3 , there are
[
n
η

]
3

subgroups of
cardinality 3η, where

[
n
η

]
3

is the Gaussian binomial coefficient representing the
number of η-dimensional subspaces of Zn

3 [And74].
Parameters are chosen such that ISD variants against all folded instances meet

the desired security level. Folding attacks are effective only for large subgroups H,
as these produce smaller folded instances of the decoding problem. For a folding
attack to succeed, the folded instance must have a unique solution, requiring the
number of errors in the folded instance to be below its Gilbert-Varshamov (GV)
bound. Finding a solution for any folded instance below the GV bound suffices
to compromise the QA-SD instance.

The folded error vector’s weight closely approximates that of the initial vector
with overwhelming probability due to the sparsity of the error distribution. A
formal analysis will show that the probability of the folded error having a much
smaller weight w̃ is exponentially small (Prw̃). Exploiting the large number of
subgroups H in G, the adversary performs folding attacks to decode errors of

53

weight w̃. This approach, as noted in [BBC+24], was used to argue that the
security parameters in [BCCD23] are overestimated.

Let H ⪯ G. The group homomorphism πH : G → G/H extends to an
morphism of algebra:

πH : Fpk [G] −→ Fpk [G/H]∑
g∈G

ag · g 7−→
∑

g∈G/H

(∑
h∈H

ah+g

)
g

This maps a vector of length |G| to one of length |G/H|, summing the |H| entries
of each coset of G/H in G. For (a, b) ∈ Fpk [G]2, the folding operation πH is
extended as

πH(a, b) := (πH(a), πH(b)) ∈ Fpk [G/H]2.

For a QA-SD instance (a, b), the folding operation πH maps

πH (a · s+ e) = πH(a) · πH(s) + πH(e) ∈ Fpk [G/H],

producing the syndrome of πH(e, s) with respect to the matrix induced by
πH(1, a). The goal is to estimate the weight of πH(e, s), where e and s are
independent and uniformly distributed with Hamming weight t.

Let ℓ := |H| and Cℓ := [ℓ, ℓ − 1]q be the parity code. Denote Pν,ℓ(X) as the
weight enumerator of Cℓ and Pθ,ℓ(X) as the weight enumerator of Fℓ

q\Cℓ [MS86,
Chapter 5.2].

Lemma 9.1. [BBC+24, Proposition 18] Given t ∈ [0, |G|] and u ∈ [0,min(t, |G/H|)],
for e uniformly sampled over the Hamming weight t elements of Fpk [G], it holds
that

Pr
e
[wt(πH(e)) = u] =

(|G/H|
u

)
· [Xt]

(
Pu
θ,ℓ(X)P

|G/H|−u
ν,ℓ (X)

)
(|G|

t

)
(q − 1)t

,

where
(|G/H|

u

)
· [Xt]

(
Pu
θ,ℓ(X)P

|G/H|−u
ν,ℓ (X)

)
is defined as the coefficient of Xt in the

polynomial
((|G/H|

u

)
Pu
θ,ℓ(X)P

|G/H|−u
ν,ℓ (X)

)
.

MacWilliam’s identity gives the formulae for Pν,ℓ and Pθ,ℓ.

Lemma 9.2. [CT19, Lemma 1] It holds that

Pν,ℓ(X) :=
1

q

(
(1 + (q − 1)X)ℓ + (q − 1)(1− X)ℓ

)
and

Pθ,ℓ(X) :=
q − 1

q

(
(1 + (q − 1)X)ℓ − (1− X)ℓ

)
.

54

Lemma 9.1 shows that the probability depends only on the cardinality of H.
The subgroup H is selected such that t/|G/H| is below the GV bound of the

folded code of rate 1/2. For the QA-SD assumption with p = 2, k = 2, d = 3,
G = Zn

3 and H = Zη
3 , it holds that |G/H| = 3n−η. Specifically, t ≤ δGV 3

n−η.
Choosing η = n − ⌈log3 (t/δGV)⌉ or η = n − ⌈log3 (t/δGV)⌉ − 1 minimizes the
complexity.

An adversary may assume a smaller error weight τ for the folded instance,
run the best decoding algorithm, and abort if the operation count exceeds the
threshold for decoding τ errors. The adversary then asserts that the folded
instance has no error vector below τ and repeats the process with another
random subgroup H. The average runtime is

CDec(τ) + Cfold

Pr[wt(πH(e)) = τ]
,

where CDec(τ) is the complexity of the best decoding algorithm for weight ≤ τ
and Cfold is the complexity of the folding operation, which scales with the original
code length. We choose τ to minimize the total complexity. Security parameters
are selected using a SageMath script [Bom24].
Algebraic Decoding Attacks. To utilize the structure of the linear codes, the
algebraic decoding attacks [Pel92, Kot92] were proposed to attack the McEliece
cryptosystem employing various hiding structures. The rough idea is to distinguish
the component-wise products of the target code from the component-wise products
of random linear codes. There is a line of works of algebraic decoding attacks
breaking the McEliece cryptosystem in the literature [MCMMP11, FGO+13,
CMP14]. Algebraic decoding attacks could distinguish the Ring-LPN or QA-SD
instances from random instances only if the given generator matrix G ∈ F(n−k)×n

q

of the linear code is strongly multiplicative, i.e., the pairwise tensor products
of the columns of G span a new linear code with dimension strictly less than
(n − k)2. In our scenario, given a random linear matrix G derived from H, G
being strongly multiplicative holds with negligible probability because the tensor
products of arbitrary two columns are linearly independent with overwhelming
probability. Hence, the algebraic decoding attacks do not work in our setting.
Decoding One Out of Many Attacks. For a given syndrome decoding
problem with M distinct syndromes, the decoding one out of many (DOOM)
attack [Sen11] provides a

√
M factor acceleration for the ISD algorithms. For Ring-

LPN/QA-SD assumptions, one can derive N new syndrome decoding instances
due to the quasi-cyclic or quasi-abelian structure. Specifically, given an instance
(a, b = a · e0 + e1), the N instances associated to the original instance (a, b) are
(a, b · X⃗i) for i ∈ [0, N − 1] where {X⃗i}i∈[0,N−1] is a basis of the ring R. If the
polynomial f(X) := XN − 1 in Ring-LPN has a non-trivial 2-sparse factor g(X) of
degree d, the DOOM attack provides a factor

√
d speedup to the ISD algorithms

on the reduced Ring-LPN instance with dimension d.
We observe that in our setting for k > 1, given an instance (a, b = a · e0 + e1),

there is a different method to exploit the structure of Fpk to derive new instances.
In particular, for j ∈ [0, k−1], each (ap

j

, bp
j

= ap
j ·ep

j

0 +ep
j

1) is a valid instance as

55

each of (ep
j

0 , e
pj

1) has weight t as well. Combining the quasi-abelian or the quasi-
cyclic structure with the above observation, the DOOM provides an acceleration
factor

√
N · k to the ISD attacks.

Attack on the Assumptions with Static Leakage. The malicious PCG
setup protocols rely on the Ring-LPN or QA-SD with static leakage. Recall that
in the static leakage security game, the adversary is able to query 2t predicates
P i
j : [0, N − 1]→ {0, 1} once the error vector (e0, e1) is sampled, where P i

j takes
the position of j-th non-zero value of ei. If one of {P i

j}i,j evaluates to 0, the
game aborts and the adversary loses the security game. While if all of {P i

j}i,j
evaluate to 1, the game sends success to the adversary. Based on the query results,
the adversary tries to distinguish between a valid Ring-LPN or QA-SD instance
and a random instance. We observe that for all of the attacks described in this
section, the decisions made by the adversary to distinguish (a, b = a · e0 + e1)
from a uniform instance are independent from b. For instance, the Gaussian
elimination attack only guesses the error free positions and the statistical decoding
attack finds the small weight codewords. Hence, the distinguishing probability of
the adversary could be estimated by hybrid arguments, where the error vector
is sampled after the adversary makes the decisions. Therefore, for the same
parameters, Ring-LPN or QA-SD with static leakage provides the same security
level as Ring-LPN or QA-SD without leakage.

9.2 Parameters

According to the above mentioned attacks in Section 9.1, we show various
parameters for Ring-LPN assumptions and the QA-SD assumptions in our PCG
constructions. In particular, we consider the most interesting case of OLEs over
F2 and authenticated Boolean triples. Recall that in the Ring-LPN based PCG
constructions, N is the vector length satisfying N | 2k − 1 and t denotes the
Hamming weight of each length N error vector. In the QA-SD based PCG
constructions, d | 2k − 1 and N = dn, where n denotes the number of variables.

To enable faster SPFSS evaluations (approximately t× savings in computa-
tion), one can assume the error vector has additionally a regular noise. This
additionally requires t | N , hence limits the parameter choices. To generate
appropriate parameters, we use the assumption of the form

(a0, a1 . . . ac, b =
∑

i∈[0,c−1]

ai · ei),

as well as in [BCG+20, BCCD23, BBC+24], where a0 = 1, ai
$← R and ei

$← R of
t-sparsity. Here c is denote as a syndrome compression parameter. Thus, ct is the
actual error weight of the syndrome decoding problem. Recall that for simplicity,
in our constructions, the parameter c is set as 2, i.e., (1, a1, b = e0 + a1 · e1), and
it is straightforward to extend our constructions to c ≥ 2. In the following, we
summarize key sizes of our PCG constructions, taking c ≥ 2 into consideration
(Basically, the formulas are obtained by just replacing t with ct/2 from those in
the corresponding theorems, e.g. Theorem 5.1).

56

PCG seed size from Ring-LPN/QA-SD:
1. Regular noise:

– OLEs over F2: k(ct)2
(
(logN − log t+ 1)(λ+ 2) + λ+ k

)
+ ct(logN + k).

– Authenticated Boolean triples: (k2(ct)2 + k(ct)2 + 2kct + ct)
(
(logN −

log t+ 1)(λ+ 2) + λ
)
+ η(k2(ct)2 + 2kct) + k(k(ct)2 + 2ct) + η.

2. Non-Regular noise:
– OLEs over F2: k(ct)2

(
logN(λ+ 2) + λ+ k

)
+ ct(logN + k).

– Authenticated Boolean triples: (k2(ct)2 + k(ct)2 + 2kct+ 2ct)
(
logN(λ+

2) + λ
)
+ η(k2(ct)2 + 2kct) + k(k(ct)2 + 2ct) + η.

Remark 9.1. The concrete seed sizes of constructions from Ring-LPN and QA-SD
vary only due to the different restrictions of k.

Error type λ c t F2k N Seed size kN OLEs Stretch
Regular 80 3 29 F228 228 − 1 228.72 232.80 16.98

Non-regular 80 2 43 F231 231 − 1 229.18 235.95 109.44
Non-regular 80 3 29 F231 231 − 1 229.21 235.95 106.94

Regular 128 5 29 F228 228 − 1 230.85 232.80 3.87
Regular 128 4 33 F232 232 − 1 230.97 236.99 64.96
Regular 128 2 71 F235 235 − 1 231.41 240.12 421.41

Non-regular 128 2 65 F231 231 − 1 231.03 235.95 30.33
Non-regular 128 4 33 F231 231 − 1 231.07 235.95 29.42

Table 4. Seed size for OLEs over F2 from Ring-LPN.

Error Type λ c t F2k N Seed Size kN Triples Stretch
Regular 80 3 29 F228 228 − 1 233.61 232.80 0.57
Regular 128 4 33 F232 232 − 1 236.05 236.99 1.92
Regular 128 2 71 F235 235 − 1 236.61 240.12 11.41

Non-regular 80 2 43 F231 231 − 1 234.21 235.95 3.34
Non-regular 80 3 29 F231 231 − 1 234.24 235.95 3.26
Non-regular 128 2 66 F231 231 − 1 236.10 235.95 0.89

Table 5. Seed size for authenticated Boolean triples from Ring-LPN.

We remark that as shown in the tables, the efficiency of our constructions
is comparable to the constructions of [BCG+20, BCCD23, BBC+24]. The QA-
SD assumption provides more freedom to choose parameters than the Ring-
LPN assumption while the Ring-LPN assumption employs well-studied FFT
techniques. In particular, for Ring-LPN assumption, the parameter k of the field
F2k determines the upper bound of the number of PCGs. Whereas QA-SD has
the additional parameter n of the number of variables to adjust the number of
correlations, allowing arbitrary stretch.

57

Error Type λ c t F2k n N Seed Size kN OLEs Stretch
Regular 80 3 27 F22 16 316 224.53 226.35 3.53
Regular 80 9 9 F22 19 319 224.89 231.11 74.63
Regular 80 2 49 F23 10 710 225.78 229.65 14.65
Regular 80 2 49 F23 12 712 226.08 235.27 584.15
Regular 80 6 15 F24 7 157 226.01 229.34 10.10
Regular 80 6 15 F24 8 158 226.21 233.25 131.36

Non-regular 80 2 42 F22 16 316 224.86 226.35 2.82
Non-regular 80 2 42 F22 18 318 225.02 229.52 22.67
Non-regular 80 5 17 F22 19 319 225.13 231.11 63.04
Non-regular 80 5 17 F22 20 320 225.20 232.69 179.97

Regular 128 2 81 F22 19 319 227.38 231.11 13.21
Regular 128 5 27 F22 19 319 226.95 231.11 17.92
Regular 128 5 27 F22 21 321 227.10 234.28 144.61
Regular 128 3 49 F23 10 710 227.61 229.65 4.10
Regular 128 3 49 F23 12 712 227.91 235.27 163.79
Regular 128 9 15 F24 7 157 227.84 229.34 2.83
Regular 128 9 15 F24 8 158 228.05 233.25 36.83

Non-regular 128 2 66 F22 17 317 226.91 227.94 2.04
Non-regular 128 4 33 F22 18 318 226.99 229.52 5.79
Non-regular 128 4 33 F22 19 319 227.07 231.11 16.49
Non-regular 128 4 33 F22 20 320 227.14 232.69 47.07

Table 6. Seed size for OLEs over F2 from QA-SD.

Error Type λ c t F2k n N Seed Size kN Triples Stretch
Regular 80 3 27 F22 16 316 226.17 226.35 1.13
Regular 80 3 27 F22 19 319 226.44 231.11 25.41
Regular 80 9 9 F22 20 320 226.60 232.69 68.47

Non-regular 80 2 43 F22 18 318 226.72 229.52 6.97
Non-regular 80 2 43 F22 19 319 226.80 231.11 19.88
Non-regular 80 2 43 F22 20 320 226.87 232.69 56.83

Regular 128 2 81 F22 19 319 229.01 231.11 4.27
Regular 128 5 27 F22 20 320 228.65 232.69 16.45
Regular 128 5 27 F22 21 321 228.73 234.28 46.85

Non-regular 128 2 66 F22 18 318 228.62 229.52 1.87
Non-regular 128 2 66 F22 19 319 228.69 231.11 5.34
Non-regular 128 2 66 F22 20 320 228.76 232.69 15.27

Table 7. Seed size for authenticated Boolean triples from QA-SD.

58

9.3 Performance Evaluation

We implement our PCGs 7 based on the source code of F4OLEAGE [BBC+24,
Bom24]. We then run the programs on a PC with Intel(R) Xeon(R) Gold 5220R
2.20GHz CPU and 128GB of RAM.

For fairness, we select the same concrete parameters and evaluate the efficiency
of generating binary triples in the same way as in F4OLEAGE. The results are
reported in Table 3. Specifically, we take c = 3, t = 27, n = 16 and F4, which
allows for generating 2 · 316 OLEs over F2 by our approach. Suppose the time
is T . We then estimate the per-party cost to generate 109 Beaver triples as
T · 109

2·316 for the two-party case, and 2 · (10− 1) · T · 109

2·316 for the 10-party case.
As for communication, we compute an estimate of C ≈ 26MB of communication
for generating a seed for 2 · 318 OLEs from using the distributed protocol of
F4OLEAGE. For 109 two-party Beaver triples, the per-party communication is
estimated as C · 109

2·318 , while for the 10-party case, the communication would be
2 · (10 − 1) · C · 109

2·318 . In general, the speed of our triple generation is roughly
2× slower than F4OLEAGE, while our communication is almost the same as
F4OLEAGE. Note that F4OLEAGE requires additional linear communication for
seed expansion in the multi-party case.

To evaluate the seed expansion time for generating authenticated Boolean
multiplication triples, we additionally implement the FFT over F2128 ,F264 . The
results are reported in Table 2. Concretely, the speed of our triple generation is
derived from running our program on our machine with c = 3, t = 27, n = 16, F4

and 128-bit MAC key. While the communication cost is estimated for generating
318 authenticated triples. In summary, our approach for authenticated Boolean
triples with 128-bit MAC key has similar efficiency as [BCG+20] for authenticated
triples over a 128-bit prime field.

Acknowledgments. The authors would like to thank Yuval Ishai for his many
helpful discussions and valuable suggestions on this work. They also thank Yi
Kuang and Wenhao Zhang for their assistance in running the programs. Addi-
tionally, the authors are grateful for the insightful comments from the anonymous
reviewers. This work was supported in part by the National Key Research and
Development (R&D) Program of China under Grants 2022YFA1004900, in part
by the National Natural Science Foundation of China under Grants 12361141818,
12426302, 12031011, and 12271084, and in part by the Natural Science Foundation
of Shanghai under the 2024 Shanghai Action Plan for Science, Technology, and
Innovation Grant 24BC3200700.

References

ABG+24. Amit Agarwal, Elette Boyle, Niv Gilboa, Yuval Ishai, Mahimna Kelkar,
and Yiping Ma. Compressing unit-vector correlations via sparse pseudo-

7 The code is available at https://github.com/zhli271828/Trace-F2-OLE-PCG.

59

https://github.com/zhli271828/Trace-F2-OLE-PCG

random generators. In CRYPTO 2024, volume 14927 of LNCS, pages
346–383. Springer, 2024.

And74. George E. Andrews. Applications of basic hypergeometric functions.
SIAM Review, 16(4):441–484, 1974.

BBC+24. Maxime Bombar, Dung Bui, Geoffroy Couteau, Alain Couvreur, Clément
Ducros, and Sacha Servan-Schreiber. FOLEAGE: F4OLE-Based Multi-
Party Computation for Boolean Circuits. In ASIACRYPT 2024, volume
15489 of LNCS, pages 69–101. Springer, 2024.

BCCD23. Maxime Bombar, Geoffroy Couteau, Alain Couvreur, and Clément Ducros.
Correlated pseudorandomness from the hardness of quasi-abelian decoding.
In CRYPTO 2023, volume 14084 of LNCS, pages 567–601. Springer, 2023.

BCG+19a. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter
Rindal, and Peter Scholl. Efficient two-round OT extension and silent
non-interactive secure computation. In CCS 2019, pages 291–308. ACM,
2019.

BCG+19b. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and
Peter Scholl. Efficient pseudorandom correlation generators: Silent OT
extension and more. In CRYPTO 2019, volume 11694 of LNCS, pages
489–518. Springer, 2019.

BCG+20. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and
Peter Scholl. Efficient pseudorandom correlation generators from ring-lpn.
In CRYPTO 2020, volume 12171 of LNCS, pages 387–416. Springer, 2020.

BCG+22. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl,
Nicolas Resch, and Peter Scholl. Correlated pseudorandomness from
expand-accumulate codes. In CRYPTO 2022, volume 13508 of LNCS,
pages 603–633. Springer, 2022.

BCG+23. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Nicolas
Resch, and Peter Scholl. Oblivious transfer with constant computational
overhead. In EUROCRYPT 2023, volume 14004 of LNCS, pages 271–302.
Springer, 2023.

BCGI18. Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing
vector OLE. In CCS 2018, pages 896–912. ACM, 2018.

Bea91. Donald Beaver. Efficient multiparty protocols using circuit randomization.
In CRYPTO ’91, volume 576 of LNCS, pages 420–432. Springer, 1991.

BFKL93. Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard J. Lipton.
Cryptographic primitives based on hard learning problems. In CRYPTO
1993, volume 773 of LNCS, pages 278–291. Springer, 1993.

BGI15. Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In
EUROCRYPT 2015, volume 9057 of LNCS, pages 337–367. Springer,
2015.

BGI16. Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing:
Improvements and extensions. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, 2016, pages 1292–
1303. ACM, 2016.

BJMM12. Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. De-
coding random binary linear codes in 2n/20: How 1 + 1 = 0 improves
information set decoding. In EUROCRYPT, volume 7237 of LNCS, pages
520–536. Springer, 2012.

BKW00. Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning,
the parity problem, and the statistical query model. In STOC, pages
435–440. ACM, 2000.

60

BLP11. Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Smaller decoding
exponents: Ball-collision decoding. In CRYPTO, volume 6841 of LNCS,
pages 743–760. Springer, 2011.

BM18. Leif Both and Alexander May. Decoding linear codes with high error rate
and its impact for LPN security. In PQCrypto, volume 10786 of LNCS,
pages 25–46. Springer, 2018.

BNO19. Aner Ben-Efraim, Michael Nielsen, and Eran Omri. Turbospeedz: Double
your online spdz! improving SPDZ using function dependent preprocessing.
In Applied Cryptography and Network Security, ACNS 2019, volume 11464
of LNCS, pages 530–549. Springer, 2019.

Bom24. Maxime Bombar. Estimator complexity for the F4OLEAGE PCG. https:
//github.com/mbombar/estimator_folding, 2024.

BP06. Joan Boyar and René Peralta. Concrete multiplicative complexity of
symmetric functions. In MFCS, volume 4162 of LNCS, pages 179–189.
Springer, 2006.

CMP14. Irene Marquez Corbella, Edgar Martínez-Moro, and Ruud Pellikaan. On
the unique representation of very strong algebraic geometry codes. Des.
Codes Cryptogr., 70(1-2):215–230, 2014.

Cou19. Geoffroy Couteau. A note on the communication complexity of multiparty
computation in the correlated randomness model. In EUROCRYPT 2019,
volume 11477 of LNCS, pages 473–503. Springer, 2019.

CT19. Rodolfo Canto-Torres and Jean-Pierre Tillich. Speeding up decoding a
code with a non-trivial automorphism group up to an exponential factor.
In ISIT, pages 1927–1931. IEEE, 2019.

DEEK24. Léo Ducas, Andre Esser, Simona Etinski, and Elena Kirshanova. Asymp-
totics and improvements of sieving for codes. In EUROCRYPT (6),
volume 14656 of LNCS, pages 151–180. Springer, 2024.

DKL+13. Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter
Scholl, and Nigel P. Smart. Practical covertly secure MPC for dishonest
majority - or: Breaking the SPDZ limits. In Computer Security - ESORICS
2013 - 18th European Symposium on Research in Computer Security, 2013,
volume 8134 of LNCS, pages 1–18. Springer, 2013.

DNNR17. Ivan Damgård, Jesper Buus Nielsen, Michael Nielsen, and Samuel Ranel-
lucci. The tinytable protocol for 2-party secure computation, or: Gate-
scrambling revisited. In CRYPTO 2017, volume 10401 of Lecture Notes
in Computer Science, pages 167–187. Springer, 2017.

DPSZ12. Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multi-
party computation from somewhat homomorphic encryption. In CRYPTO
2012, volume 7417 of LNCS, pages 643–662. Springer, 2012.

EGP+23. Daniel Escudero, Vipul Goyal, Antigoni Polychroniadou, Yifan Song, and
Chenkai Weng. Superpack: Dishonest majority MPC with constant online
communication. In EUROCRYPT 2023, volume 14005 of LNCS, pages
220–250. Springer, 2023.

EGPS22. Daniel Escudero, Vipul Goyal, Antigoni Polychroniadou, and Yifan Song.
Turbopack: Honest majority MPC with constant online communication.
In CCS 2022, pages 951–964. ACM, 2022.

EKM17. Andre Esser, Robert Kübler, and Alexander May. LPN decoded. In
CRYPTO (2), volume 10402 of LNCS, pages 486–514. Springer, 2017.

EXY22. Daniel Escudero, Chaoping Xing, and Chen Yuan. More efficient dishonest
majority secure computation over Z2k via galois rings. In CRYPTO (1),
volume 13507 of LNCS, pages 383–412. Springer, 2022.

61

https://github.com/mbombar/estimator_folding
https://github.com/mbombar/estimator_folding

FGO+13. Jean-Charles Faugère, Valérie Gauthier-Umaña, Ayoub Otmani, Ludovic
Perret, and Jean-Pierre Tillich. A distinguisher for high-rate mceliece
cryptosystems. IEEE Trans. Inf. Theory, 59(10):6830–6844, 2013.

FS09. Matthieu Finiasz and Nicolas Sendrier. Security bounds for the design of
code-based cryptosystems. In ASIACRYPT, volume 5912 of LNCS, pages
88–105. Springer, 2009.

GI14. Niv Gilboa and Yuval Ishai. Distributed point functions and their appli-
cations. In EUROCRYPT 2014, volume 8441 of LNCS, pages 640–658.
Springer, 2014.

GYW+23. Xiaojie Guo, Kang Yang, Xiao Wang, Wenhao Zhang, Xiang Xie, Jiang
Zhang, and Zheli Liu. Half-tree: Halving the cost of tree expansion in
COT and DPF. In EUROCRYPT (1), volume 14004 of LNCS, pages
330–362. Springer, 2023.

HOSS18. Carmit Hazay, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-
Vazquez. Tinykeys: A new approach to efficient multi-party computation.
In CRYPTO (3), volume 10993 of LNCS, pages 3–33. Springer, 2018.

KOS16. Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: faster
malicious arithmetic secure computation with oblivious transfer. In CCS
2016, pages 830–842. ACM, 2016.

Kot92. Ralf Kotter. An unified description of an error locating procedure for
linear codes. Proc. IAACCT, Voneshta Voda, Bulgaria, 1992.

KPR18. Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: Making
SPDZ great again. In EUROCRYPT (3), volume 10822 of Lecture Notes
in Computer Science, pages 158–189. Springer, 2018.

LAH16. Sian-Jheng Lin, Tareq Y. Al-Naffouri, and Yunghsiang S. Han. FFT
algorithm for binary extension finite fields and its application to reed-
solomon codes. IEEE Trans. Inf. Theory, 62(10):5343–5358, 2016.

LN97. Rudolf Lidl and Harald Niederreiter. Finite Fields. Cambridge University
Press, 1997.

LWYY24. Hanlin Liu, Xiao Wang, Kang Yang, and Yu Yu. The hardness of LPN
over any integer ring and field for PCG applications. In EUROCRYPT
2024, volume 14656 of LNCS, pages 149–179. Springer, 2024.

LXYZ24. Hongqing Liu, Chaoping Xing, Chen Yuan, and Taoxu Zou. Dishonest
majority multiparty computation over matrix rings. In ASIACRYPT
2024, volume 15489 of LNCS, pages 299–327. Springer, 2024.

Lyu05. Vadim Lyubashevsky. The parity problem in the presence of noise, de-
coding random linear codes, and the subset sum problem. In APPROX-
RANDOM, volume 3624 of LNCS, pages 378–389. Springer, 2005.

MCMMP11. Irene Márquez-Corbella, Edgar Martınez-Moro, and Ruud Pellikaan. Eval-
uation of public-key cryptosystems based on algebraic geometry codes. In
Proceedings of the Third International Castle Meeting on Coding Theory
and Applications, pages 199–204, 2011.

MMT11. Alexander May, Alexander Meurer, and Enrico Thomae. Decoding random
linear codes in Õ(20.054n). In ASIACRYPT, volume 7073 of LNCS, pages
107–124. Springer, 2011.

MO15. Alexander May and Ilya Ozerov. On computing nearest neighbors with
applications to decoding of binary linear codes. In EUROCRYPT (1),
volume 9056 of LNCS, pages 203–228. Springer, 2015.

MS86. F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting
Codes. North-holland Publishing Company, 2nd edition, 1986.

62

Obe07. Ulrich Oberst. The fast fourier transform. SIAM J. Control. Optim.,
46(2):496–540, 2007.

Pel92. Ruud Pellikaan. On decoding by error location and dependent sets of
error positions. Discret. Math., 106-107:369–381, 1992.

Pra62. Eugene Prange. The use of information sets in decoding cyclic codes. IRE
Trans. Inf. Theory, 8(5):5–9, 1962.

PSSY21. Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein Yalame.
ABY2.0: improved mixed-protocol secure two-party computation. In
USENIX Security Symposium, pages 2165–2182. USENIX Association,
2021.

Roy22. Lawrence Roy. Softspokenot: Quieter OT extension from small-field silent
VOLE in the minicrypt model. In CRYPTO (1), volume 13507 of LNCS,
pages 657–687. Springer, 2022.

RRT23. Srinivasan Raghuraman, Peter Rindal, and Titouan Tanguy. Expand-
convolute codes for pseudorandom correlation generators from LPN. In
CRYPTO 2023, volume 14084 of LNCS, pages 602–632. Springer, 2023.

RS22. Rahul Rachuri and Peter Scholl. Le mans: Dynamic and fluid MPC for
dishonest majority. In CRYPTO 2022, volume 13507 of LNCS, pages
719–749. Springer, 2022.

Sen11. Nicolas Sendrier. Decoding one out of many. In PQCrypto, volume 7071
of LNCS, pages 51–67. Springer, 2011.

Ste88. Jacques Stern. A method for finding codewords of small weight. In Coding
Theory and Applications, volume 388 of LNCS, pages 106–113. Springer,
1988.

SZ13. Thomas Schneider and Michael Zohner. GMW vs. yao? efficient secure
two-party computation with low depth circuits. In Financial Cryptography,
volume 7859 of LNCS, pages 275–292. Springer, 2013.

TS16. Rodolfo Canto Torres and Nicolas Sendrier. Analysis of information set
decoding for a sub-linear error weight. In PQCrypto, volume 9606 of
LNCS, pages 144–161. Springer, 2016.

WRK17. Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated gar-
bling and efficient maliciously secure two-party computation. In CCS,
pages 21–37. ACM, 2017.

Yao86. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended
abstract). In FOCS 1986, pages 162–167. IEEE Computer Society, 1986.

YWL+20. Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao Wang.
Ferret: Fast extension for correlated OT with small communication. In
CCS ’20, pages 1607–1626. ACM, 2020.

ZGY+24. Wenhao Zhang, Xiaojie Guo, Kang Yang, Ruiyu Zhu, Yu Yu, and Xiao
Wang. Efficient actively secure DPF and ram-based 2pc with one-bit
leakage. In IEEE Symposium on Security and Privacy, SP 2024, pages
561–577. IEEE, 2024.

63

Supplementary Material

A More Preliminaries

Programmable PCG Programmability is a crucial property that allows for
extending 2-party correlations from PCG to multi-party correlations. To define
programmability of PCG, suppose CN is a simple bilinear 2-party correlation
(specified by a bilinear map e : G1 ×G2 → GT for some groups G1,G2,GT).

Definition A.1 (Programmability). We say a PCG PCG = (PCG.Gen,PCG.Expand)
for a simple bilinear 2-party correlation C satisfies programmability, if PCG.Gen(1λ)
takes additional random inputs ρ0, ρ1 ∈ {0, 1}ℓ, for a poly(λ) size ℓ, such that:

– Programmability. There exist public efficiently computable functions ψ0 :
{0, 1}ℓ → GN

1 , ψ1 : {0, 1}ℓ → GN
2 such that

Pr

ρ0, ρ1 $← {0, 1}λ, (k0,k1)
$← PCG.Gen(1λ, ρ0, ρ1)

(R0, S0)← PCG.Expand(0,k0)
(R1, S1)← PCG.Expand(1,k1)

:
R0 = ψ0(ρ0)
R1 = ψ1(ρ1)

]
≥ 1−negl(λ),

– Programmable security. The following pair of distributions are computa-
tionally indistinguishable:{

(k1, (ρ0, ρ1)) | ρ0, ρ1
$← {0, 1}ℓ, (k0,k1)

$← PCG.Gen(1λ, ρ0, ρ1)
}

and{
(k1, (ρ0, ρ1)) | ρ0, ρ1, ρ̃0

$← {0, 1}ℓ, (k0,k1)
$← PCG.Gen(1λ, ρ̃0, ρ1)

}
as well as{

(k0, (ρ0, ρ1)) | ρ0, ρ1
$← {0, 1}ℓ, (k0,k1)

$← PCG.Gen(1λ, ρ0, ρ1)
}

and{
(k0, (ρ0, ρ1)) | ρ0, ρ1, ρ̃1

$← {0, 1}ℓ, (k0,k1)
$← PCG.Gen(1λ, ρ0, ρ̃1)

}
Ring-LPN Assumption. We define the Ring-LPN assumption as follows, which
can be viewed as a univariate variant of QA-SD assumption. We refer security
analysis of such Ring-LPN instantiation to [BCG+20, BCCD23, LWYY24].

Definition A.2 (Search Ring-LPN). Let R = Fq[X]/(X
N − 1), where N |

q − 1. Let c ≥ 2 be some constant integer called the compression factor. Let
a = (1, a1, . . . , ac−1), where ai

$← R, i ∈ [1, c− 1]. Let e0, e1, . . . , ec−1 be random
t-sparse elements of R. Given access to a pair of the form (a, ⟨a, e⟩), the goal is
to recover e.

Definition A.3 (Decisional Ring-LPN). Let R = Fq[X]/(X
N − 1), where

N | q − 1. Let c ≥ 2 be some constant integer called the compression factor. The

64

goal is to distinguish the following two distributions:

D0 : {(a1, . . . , ac−1, u)}, where ai, u
$← R, i ∈ [1, c− 1]

D1 : {(a1, . . . , ac−1, ⟨a, e⟩+ e0)}, where ai
$← R, e0, ei are random

t-sparse elements of R, i ∈ [1, c− 1].

For simplicity, we consider the compression factor c = 2 as well.

B Deferred Proofs for Ring Isomorphisms and Traces
Functions

Proof (Proof of Lemma 4.1). Let α1 . . . αN be N distinct roots of XN = 1 over
Fq. Then define

ϕ : R → FN
q

f 7→ (f(α1) . . . f(αn)) ∈ FN
q .

We first prove ϕ is a bijection from R to FN
q . Assume f =

∑N−1
i=0 fiX

i. Then the
map ϕ is a linear transformation associated with α := (α1 . . . αn). I.e., ϕ maps
(f0 . . . fN−1) to

(f0 . . . fN−1) ·Mα where Mα :=

 α0
1 . . . α0

n
...

...
...

αN−1
1 . . . αN−1

n

 .

Then ϕ is a bijection from R to FN
q as the matrix Mα is nonsingular.

Obliviously, 1R = 1 ∈ R and 1Fn
q
= 1 ∈ FN

q . Additionally, ϕ(1) = (1 . . . 1).
Thus, ϕ indeed maps 1R to 1Fn

q
.

Next, we prove the additive homomorphism. For any f1(X), f2(X) ∈ R with
f1 = (f1,0 . . . f1,N−1) and f2 = (f2,0 . . . f2,N−1), we have

ϕ (f1(X) + f2(X)) = ϕ

(
N−1∑
i=0

(f1,i + f2,i)X
i

)
= (f1,0+f2,0 . . . f1,N−1+f2,N−1)·Mα

and

ϕ(f1(X)) + ϕ(f2(X)) = (f1,0 . . . f1,N−1) ·Mα + (f2,0 . . . f2,N−1) ·Mα.

Thus, ϕ(f1(X) + f2(X)) = ϕ(f1(X)) +ϕ(f2(X)). Therefore, ϕ preserves the additive
group structure.

Next, we prove the multiplicative homomorphism. For any f1(X), f2(X) ∈ R,
the k-th entry of ϕ(f1(X)) ∗ ϕ(f2(X)) is

f1(αk)·f2(αk) =

(∑
i

f1,iα
i
k

)
·

(∑
i

f2,iα
i
k

)
=
∑
j

(∑
i

f1,i · f2,j−i (mod N)

)
αj
k.

65

Let g(X) := f1(X) · f2(X) mod (XN − 1). Then the j-th coefficient is gj :=∑
i f1,i · f2,j−i (mod N). Thus

g(αk) =
∑
j

gj · αj
k =

∑
j

(∑
i

f1,i · f2,j−i (mod N)α
j
k

)
.

It is ϕ(f1(X) · f2(X)) = ϕ(f1(X)) ∗ ϕ(f2(X)).
Hence, the isomorphism ϕ respects addition, multiplication and the identity

element. ⊓⊔
Proof (Proof of Lemma 4.2). Let (α1 . . . αd) be d distinct root of Xd = 1 over Fq.
Then define

ϕ : R → Fdn
q

f 7→ (f(αi1) . . . f(αin))i1∈[d]...it∈[d] ∈ Fdn
q .

Assume
f =

∑
i

fi · X
di1
1 · · · Xdin

n .

Denote M := ⊗nMα ∈ Fdn×dn
q as the n-th Kronecker product of Mα. Specifically,

the matrix M can be constructed via an inductive method. Assume M ′ ∈
Fd(n−1)×d(n−1)
q corresponds to the matrix for n− 1 variables. Then the matrix

for n variables is
α0
1 ·M ′ α0

2 ·M ′ . . . α0
d ·M ′

...
...

...
...

...
...

...
...

αd−1
1 ·M ′ αd−1

2 ·M ′ . . . αd−1
d ·M ′

 ∈ Fdn×dn
q ,

which is exactly Mα ⊗M ′.
Then ϕ maps f = (f0 . . . fdn−1) to (f0 . . . fdn−1) · M . The matrix M is

nonsingular as det(M) = det(Mα)
ndn−1 ̸= 0. Hence, ϕ is bijective.

Note that ϕ maps 1R = 1 ∈ R to the 1 = 1Fdn
q
∈ Fdn

q . Obliviously, ϕ preserves
the additive group structure.

Next, we prove the multiplicative homomorphism. Assume there is a canonical
order for Xd1

1 ·X
d2
2 · · · Xdn

n and there exists a map ψ from Z to {Xd1
1 ·X

d2
2 · · · Xdn

n }di∈[d].
For simplicity, denote X[i] as X[i] := Xi11 · · · Xinn and thus define i⊕j := [ψ(X[i] ·X[j])].
Similarly, denote α[k] as α[k] := (αk1 , . . . , αkn). For any f1(X), f2(X) ∈ R, the
k-th entry of ϕ(f1(X)) ∗ ϕ(f2(X)) is

f1(α[k]) · f2(α[k]) =

(∑
i

f1iα
[i]
[k]

)
·

(∑
i

f2,iα
[i]
[k]

)
=
∑
j

(∑
i

f1,i · f2,j⊖i

)
α
[j]
[k].

Assume g(X) := f1(X)·f2(X). Then the j-th coefficient of g(X) is gj :=
∑

i f1,if2,j⊖i.
Thus,

g(α[k]) =
∑
j

gj · α[j]
[k] =

∑
j

(∑
i

f1,if2,j⊖i · α[j]
[k]

)
.

66

It is ϕ (f1(X)) ∗ ϕ (f2(X)) = ϕ (f1(X) · f2(X)) .
Hence, the isomorphism ϕ respects addition, multiplication and the identity

element. ⊓⊔

An alternative method to prove this is the mathematical induction via viewing

R = Fq[X1 . . . Xn]/(X
d
1−1, . . . , Xdn−1) = (Fq[X1, . . . , Xn−1]/(X

d
1−1, . . . , Xdn−1−1))[Xt]/(Xdn−1).

Proof (Proof of Lemma 4.3).

1. For arbitrary α ∈ R, p · α = 0. Thus, R is of characteristic p.
2. We prove it by induction. From the binomial expansion,

(a+ b)p = ap +

(
p

1

)
ap−1b+ · · ·+

(
p

p− 1

)
abp−1 + bp = ap + bp.

Induction j, (a+ b)p
j

= (ap
j−1

+ bp
j−1

)p = ap
j

+ bp
j

.
3. Assume a is of t-sparse and there exist t nonzero coefficients (ai1 . . . ait) ∈ Ft

pk

such that a :=
∑

j∈[1,t] aijX
dij . Then ap = (

∑
j∈[1,t] aijX

dij)p =
∑

j∈[1,t] a
p
ij
X
p·dij

and thus ap is still t-sparse. Inductively, ap
j

is t-sparse.
4. For univariate ring Fpk [X]/(Xd − 1), it holds that Xp

k

= X (mod Xd − 1) as
N | (pk−1). For multivariate ring R = Fpk [X1, . . . , Xn]/(X

d
1−1, . . . , Xdn−1), it

holds that Xp
k

i = Xi (mod Xdi −1) as d | (pk−1). Assume a =
∑

j∈[0,N−1] ajX
j .

Then

ap
k

= (
∑

j∈[0,N−1]

ajX
j)p

k

=
∑

j∈[0,N−1]

ap
k

j (Xj)p
k

=
∑
j

ajX
j = a.

⊓⊔

An alternative method to prove this is the mathematical induction via viewing

R = Fq[X1 . . . Xt]/(X
n
1−1, . . . , Xnt −1) = (Fq[X1, . . . , Xt−1]/(X

n
1−1, . . . , Xnt−1−1))[Xt]/(Xnt −1).

Proof (Proof of Theorem 4.1). We directly prove ϕ(Tr(f)) = Tr(ϕ(f)) ∈ FN
p .

Assume ϕ(f) = v ∈ FN
pk . Then

Tr(v) =
k−1∑
i=0

vpi

=

k−1∑
i=0

(ϕ(f))p
i

=

k−1∑
i=0

ϕ(fp
i

) = ϕ(

k−1∑
i=0

fp
i

) = ϕ(Tr(f)),

where the third equality and the fourth equality follow from the ring isomorphism.
⊓⊔

Proof (Proof of Theorem 4.2).

1. For f1, f2 ∈ R, from the properties of R, we have (f1 + f2)
p = fp1 + fp2 .

Tr(f1 + f2) =

k−1∑
j=0

(f1 + f2)
pj

=

k−1∑
j=0

(fp
j

1 + fp
j

2) = Tr(f1) + Tr(f2).

67

2. Tr(α · f) =
∑k−1

j=0 (α · f)p
j

=
∑k−1

j=0 α · fp
j

= α · Tr(f).
3. From the properties of R, we have fp

k

= f . Then Tr(fp) =
∑k−1

j=0 (f
p)p

j

=

fp + fp
2

+ · · ·+ fp
k

= Tr(f).
4. It suffices to prove that for f1, f2 ∈ R, ϕ(Tr(f1) · Tr(f2)) = ϕ(Tr(Tr(f1) · f2))

as ϕ is a bijection and applying ϕ−1 leads to the desired result. Then,

ϕ(Tr(Tr(f1)·f2)) = Tr(ϕ(Tr(f1)·f2)) = Tr(ϕ(Tr(f1))∗ϕ(f2)) = ϕ(Tr(f1))∗Tr(ϕ(f2))

where the first equality follows from Theorem 4.1, the second equality follows
the ring isomorphism, and the third equality follows the fact that trace is an
Fp-linear map and ϕ(Tr(f1)) is over Fp. Moreover,

ϕ(Tr(f1)) ∗ Tr(ϕ(f2)) = ϕ(Tr(f1)) ∗ ϕ(Tr(f2)) = ϕ(Tr(f1) · Tr(f2)),

as desired. Hence Tr(Tr(f1) · f2) = Tr(f1) · Tr(f2). Since R is commutative,
we have Tr(f1 · Tr(f2)) = Tr(f1) · Tr(f2).

⊓⊔

To obtain Fp elements, one can compute the trace function on R elements and
then apply the function ϕ.

Proof (Proof of Theorem 4.3). Note that we have a bijection ϕ : R → FN
pk , it

suffices to prove that for a random x ∈ Fpk , (Tr(ξ0x),Tr(ξ1x) . . .Tr(ξk−1x)) ∈ Fk
p

is a linear transformation of (x1 . . . xk) ∈ Fk
p where (x1 . . . xk) ∈ Fk

p is the
coefficient of x with respect to a given basis (b1 . . . bk) of Fpk over Fp.

Lemma B.1. Given (b1 . . . bk) ∈ Fk
pk a basis of Fpk over Fp and an arbitrary

x =
∑

i∈[k] xi · bi ∈ Fpk with xi ∈ Fp, (Tr(x · b1) . . .Tr(x · bk)) is a linear
transformation of (x1 . . . xk).

Proof. Before the proof we first define the discriminant matrix of a tuple (b1 . . . bk).

Definition B.1 (Discriminant Matrix of a Tuple). The discriminant ma-
trix of a tuple (b1 . . . bk) ∈ Fk

pk is defined as

Disc(b1 . . . bk) :=


Tr(b1b1) . . . Tr(b1bk)
Tr(b2b1) . . . Tr(b2bk)

...
...

...
Tr(bkb1) . . . Tr(bkbk)

 .
Then the discriminant of (b1 . . . bk) ∈ Fk

pk is defined as ∆(b1 . . . bk) = det(Disc(b1 . . . bk)).

By [LN97, Theorem 2.37], if (b1 . . . bk) is a basis of Fpk over Fp, then det(Disc(b1 . . . bk)) ̸=
0. Then Tr(x · bj) =

∑
i∈[k] xi ·Tr(bibj) = (x1 . . . xk) · (Tr(b1bj) . . .Tr(bkbj))T, for

all j ∈ [1, k]. Thus,

(Tr(x·b1) . . .Tr(x·bk)) = (x1 . . . xk)

Tr(b1b1) . . . Tr(b1bk)...
...

...
Tr(bkb1) . . . Tr(bkbk)

 = (x1 . . . xk)Disc(b1 . . . bk).

68

Therefore, the trace function (Tr(x · b1) . . .Tr(x · bk)) of x =
∑

i∈[k] xi · bi induces
a linear transformation from Fk

p to Fk
p. ⊓⊔

Hence, a uniform x in Fpk induces a uniform tuple (Tr(x · b1) . . .Tr(x · bk)) over
Fk
p. In particular, (1, ξ1 . . . ξk−1) and (ξ, ξp

1

. . . ξp
k−1

) are two bases of Fpk over
Fp. Given a uniformly random x ∈ Fpk , (Tr(x · ξ0) . . .Tr(x · ξk−1)) is uniformly
random over Fk

p. This completes the proof. ⊓⊔

Proof (Proof of Theorem 4.4). Since k | η, there exists ζ ∈ Fpη such that
Fpη = Fpk [ζ], so that the natural embedding Fpk ↪→ Fpη implies a natural
embedding Rk ↪→ Rη. In addition, it follows that d | pη − 1 as well, since
d | pk − 1. Together by Lemma 4.2, we complete the proof. ⊓⊔

In particular, let p = 2, k = 2, d = 3, then Theorem 4.4 actually holds for any even
η. Namely, an isomorphism ϕ2 : R2 = F4[X1, . . . , Xn]/(X

3
1 − 1, . . . , X3n − 1)→ F3n

4

determines an isomorphism ϕη : Rη = F2η [X1, . . . , Xn]/(X
3
1− 1, . . . , X3n− 1)→ F3n

2η .

C Distributed DPF Setup

In this section, we review the existing distributed DPF setup results from
[BCG+20, Section 5], which was used to estimate the cost of our PCG setup pro-
tocols in Section 8. For semi-honest adversaries, the functionality for generating
DPF keys is given in FDPF.

Functionality 12: FDPF

Parameters: Distributed point function DPF := (DPF.Gen,DPF.Eval) with
domain size N range F = Fq, where N, q,∈ N. Let λ be the security parameter.
Functionality:
DPF: On input [α]{0,1}

⌈log N⌉
and [β]F:

1. Sample (kDPF
0 , kDPF

1)← DPF.Gen(1λ, α, β).
2. Output kDPF

σ to party Pσ for σ ∈ {0, 1}.

Lemma C.1 (Semi-honest Distributed DPF Key Generation). [BCG+20,
Section 5.2] For a point function with domain size N and range Fq, there exists
a protocol realizing the semi-honest DPF key generation functionality FDPFwith
the following complexity:

– Correlated randomness: 2 multiplication triples over Fq and 2 logN num-
ber λ string OTs.

– Computation complexity: dominated by 2N PRG calls.
– Communication complexity: (2λ+ 3) logN + 5 log q bits.

Next, we show a recent result for the semi-honest DPF construction.

69

Lemma C.2. [GYW+23, Adapted from Theorem 5] Given a circular correlation
robust(CCR) function H : F2λ → F2λ , function ConvertR : F2λ−1 → R, and
keyed hash function HS(x) := H(S ⊕ x) with some key S ← F2λ , there exists a
protocol ΠDPF realizing functionality FDPF against semi-honest adversaries in the
(FCOT,FRand)-hybrid model. Here is a complexity summary.

– ΠDPF uses n COT tuples each party and one FRand call.
– For t concurrent generation, the communication complexity is t(n+ 1)(λ+

1) + λ+ t log |R|. The amortized communication complexity is (n+ 1)(λ+
1) + λ

t + log |R|.
– The KeyGen complexity: 1.5N random permutation(RP) calls.
– Round complexity: n+ 3.
– Single point evaluation: n RP calls.
– Full-domain evaluation: 1.5N RP calls.
– Seed size: nλ+ (λ+ 1) + log |R|.

The function H and random permutation can be instantiated from fixed-key AES-
NI. Here are the details.

– A CCR function H can be constructed from a fixed-key block cipher. One
CCR function call takes one block cipher invocation.

– The random permutation can be instantiated via fixed-key AES-NI.
– For R is very small, the ConvertR can be instantiated from a PRG-free

implementation.

It is worth to mention there exists an efficient DPF scheme for ternary input
point [BBC+24, Section 5.1].

For malicious adversaries, the functionality for generating DPF keys is given
in Fmal−DPF. Note that the MAC sharing for (α, β) is implicitly included in the
SPDZ sharing

(
JαK{0,1}

⌈log N⌉
, JβKFq

)
.

Functionality 13: Fmal−DPF

Parameters: Distributed point function DPF := (DPF.Gen,DPF.Eval) with
domain size N range Fq, where N, q,∈ N. Let λ be the security parameter.
Assume η ∈ N such that qη ≥ 2λ. Denote ∆ ∈ Fqη as the global key.
mal-DPF(JαK{0,1}

⌈log N⌉
, JβKFq):

If both parties are honest,

1. If β = 0, output β = 0 to the two parties and abort.
2. Sample yσ

$← (Fq × Fqη)
N and set y1−σ ← (0 . . . 0, β · (1,∆) . . . 0)− yσ ∈

(Fq × Fqη)
N , where β · (1,∆) is at the α-th position.

3. Output yσ to Pσ for σ ∈ {0, 1}.

If Pσ is corrupted,

1. Wait for input yσ ∈ (Fq × Fqη)
N from the adversary (A determines the

output shares).

70

2. Wait for a predicate P : [0, N − 1]→ {0, 1} from the adversary (A queries
a predicate on α). If P (α) = 0, abort.

3. If β = 0, output β = 0 to the two parties and abort.
4. Set y1−σ ← (0 . . . 0, β · (1,∆) . . . 0)− yσ ∈ (Fq × Fqη)

N .
5. Output success to the adversary and y1−σ to the honest party P1−σ.

Note that Fmal−DPF allows some leakage on the position value α because
during the key generation a corrupted party is able to guess each bit of α learn
some bit of α. Different from FDPF, Fmal−DPF outputs the additive shares of the
DPF expanding results rather than the DPF keys.

Lemma C.3 (Malicious Distributed DPF Setup). [BCG+20, Section 5.3]
For a point function with domain size N and range Fq, there exists a protocol
realizing Fmal−DPF against malicious adversaries, .i.e., outputting the sharing of
a scaled unit vector as DPF expanding, with the following complexity:

– Correlated randomness: 3 authenticated multiplication triples over Fq and
2 length-4 VOLE over Fq.

– Computation complexity: dominated by 2N PRG calls.
– Communication complexity: (2λ+ 3) logN + 11 log q bits.

The efficiency of the protocol implementing Fmal−DPF can be plausibly further
improved by using the techniques of a concurrent work [ZGY+24].

Functionality 14: F2PC

The functionality operates on elements of F = Fpk for k ∈ N and elements of
G = Zn

d , where n ∈ N and d | pk − 1. Let N = |G| = dn. Each value stored
by the functionality is associated with a unique identifier that is given to all
parties. Let JxKF denote the identifier for a value x ∈ F and JxKG denote the
identifier for an element x ∈ G.
Input(Pσ, x): Receive a value x ∈ F or x ∈ G from party Pσ and store JxKF or
JxKG.
Add(JxKG , JyKG): Compute z = x+ y ∈ G and store JzKG.
ToBinary(JxKG): View x ∈ G as x̃ ∈ {0, 1}⌈logN⌉, and store Jx̃K{0,1}

⌈log N⌉
.

PowerP(JxKF , p): Compute and store JxpKF.
Mult(JxKF , JyKF): Compute z = x · y ∈ F and store JzKF.
Output(JxKN): Send the value x ∈ [0, N) to all parties.
Output(JxKF): Send the value x ∈ F to all parties.

D PCG Setup Protocols from Ring-LPN

For completeness, we give the Ring-LPN analogues of our results in this section.
Our results from Ring-LPN are obtained by extending those based on QA-SD
assumptions. Generally speaking, constructions from Ring-LPN mainly have

71

two advantages, i) Ring-LPN assumptions have been studied for a long time, ii)
mature FFT algorithms and implementations (for fields Fpk with small p, e.g.,
p = 2, we can use additive FFT [LAH16]). W.l.o.g., we focus on the binary field
in this section.

D.1 PCG for OLE from Ring-LPN

For completeness, we show a Boolean OLE construction.

Construction 15: ConsF2

OLE

Parameters: Security parameter λ, noise weight t = t(λ), N | 2k − 1,
R = F2k [X]/(X

N − 1), ξ ∈ F2k such that F2k = F(ξ). An FSS scheme
(SPFSS.Gen,SPFSS.FullEval) for sums of t2 point functions, with domain ZN

and range F2k . Fix a basis (ξ, ξ2
1

, . . . , ξ2
k−1

) of F2k over F2.
Public input: A uniformly random a ∈ R.
Correlation: For ℓ ∈ [0, k−1], output (X(ℓ)

0 ,Z
(ℓ)
0) ∈ F2N

2 and (X
(ℓ)
1 ,Z

(ℓ)
1) ∈ F2N

2

such that X
(ℓ)
0 ∗X

(ℓ)
1 = Z

(ℓ)
0 + Z

(ℓ)
1 .

Gen: On input 1λ,

1. For σ ∈ {0, 1}, i ∈ {0, 1}, sample random vectors Ai
σ ← Zt

N and bi
σ ←

(F∗
2k)

t.
2. Sample FSS keys according to Eq.(7). For j ∈ [0, k − 1],

(K0,j
0 ,K0,j

1)← SPFSS.Gen(1λ,A0
0 ⊞ (A0

1)
2j ,b0

0 ⊗ (b0
1)

2j)

(K1,j
0 ,K1,j

1)← SPFSS.Gen(1λ,A1
0 ⊞ (A1

1)
2j ,b1

0 ⊗ (b0
1)

2j)

(K2,j
0 ,K2,j

1)← SPFSS.Gen(1λ,A0
0 ⊞ (A0

1)
2j ,b0

0 ⊗ (b1
1)

2j)

(K3,j
0 ,K3,j

1)← SPFSS.Gen(1λ,A1
0 ⊞ (A1

1)
2j ,b1

0 ⊗ (b1
1)

2j)
3. Set kσ :=

(
{Ki,j

σ }i∈[0,3],j∈[0,k−1], {Ai
σ,b

i
σ}i∈{0,1}

)
4. Output (k0, k1).

Expand: On input (σ, kσ),

1. Parse kσ as
(
{Ki,j

σ }i∈[0,3],j∈[0,k−1], {Ai
σ,b

i
σ}i∈{0,1}

)
.

2. Define elements of R: For i ∈ {0, 1}, //xσ := a · e0σ + e1σ

eiσ :=
∑

j∈[1,t]

bi
σ[j] · X⃗A

i
σ [j].

3. For ℓ ∈ [0, k − 1], compute X
(ℓ)
σ := Tr

(
ξ2

ℓ

· (a · e0σ + e1σ)
)
∈ FN

2 .
4. For i ∈ [0, 3], j ∈ [1, k − 1], compute wi,j

σ := SPFSS.FullEval(σ,Ki,j
σ) as R

element.
5. For ℓ ∈ [1, k − 1], according to Eq (8), compute

Z(ℓ)
σ :=

∑
j∈[0,k−1]

Tr
(
ξ2

ℓ+2ℓ+j

· (a2j+1w0,j
σ + a2jw1,j

σ + aw2,j
σ + w3,j

σ)
)

6. Output {X(ℓ)
σ ,Z

(ℓ)
σ }ℓ∈[0,k−1].

72

Theorem D.1. Assume a secure FSS scheme SPFSS for sums of point functions
and Ring-LPN(R, t) is hard. Then there exists a PCG construction ConsF2

OLE that
generates OLE correlations over F2. If the SPFSS is based on a PRG : {0, 1}λ →
{0, 1}2λ+2 via the PRG-based construction from [BGI16], for generating kN OLE
correlations over F2, we have that:

– Each party has seed size at most: 4kt2
(
logN(λ+ 2) + λ+ k

)
+ 2t(logN + k)

bits.
– The Expand procedure makes at most 4kt2N(1 + ⌈k/λ⌉) PRG calls and
O(k2N logN) operations over F2k .

Remark D.1. The differences compared to Theorem 5.1 (from QA-SD) are that
now k = O(logN) and p = 2. Note here the optimizations from assuming regular
noise are not applied, since N might be a prime, e.g. when k is a Mersenne
prime.

D.2 Authenticated Boolean Triple Constructions from Ring-LPN

We show a PCG construction for authenticated Boolean triples from Ring-LPN
assumptions, which is analogue to Cons

′Fp

Auth−Triple (from QA-SD). For simplicity,
the construction makes use of SPDZ sharings.

Construction 16: Cons′F2

Auth−Triple

Parameters: Security parameter 1λ, noise weight t = t(λ), η satisfying η ≥ λ
and k | η, Rk = F2k [X]/(X

N −1) where N | 2k−1 , ξ ∈ F2k s.t. F2k = F2(ξ). Let
G := ZN and F := F2k . An FSS scheme (SPFSS.Gen, SPFSS.FullEval) for sums
of point functions, with domain ZN and range F2k or F2η . We abuse ϕ as a
fixed isomorphism map from Rk to FN

2k , and from Rη to FN
2η . The global MAC

key shares ∆0,∆1 ∈ F2η are implicitly provided by authenticated multiplication
triples.
Public input: A uniformly random a ∈ Rk.
Correlation: For ℓ ∈ [0, k − 1], output (

r
X(ℓ)

z
,
r
Y(ℓ)

z
,
r
Z(ℓ)

z
), where

X(ℓ),Y(ℓ),Z(ℓ) ∈ FN
2 such that X(ℓ) ∗ Y(ℓ) = Z(ℓ) and MAC key shares

∆0,∆1 ∈ F2η .
Gen: On input 1λ,

1. For σ ∈ {0, 1}, i ∈ {0, 1}, sample random vectors Ax,i
σ ,Ay,i

σ
$← Gt and

bx,i
σ ,by,i

σ
$← (F∗)t for the positions and values. Let Ax,i,Ay,i ∈ G2t and

bx,i,by,i ∈ (F∗)2t be the union of the corresponding positions and values.
Define elements of Rk:

ex,i :=

2t∑
j=1

bx,i[j] · XA
x,i[j], x := a · ex,0 + ex,1

ey,i :=

2t∑
j=1

by,i[j] · XA
y,i[j], y := a · ey,0 + ey,1

73

2. Share the value Ax,i,Ay,i ∈ G2t and bx,i,by,i ∈ (F∗)2t to obtainq
Ax,i

y
,
q
Ay,i

y
and

q
bx,i

y
,
q
by,i

y
via consuming SPDZ sharings.

3. Sample FSS keys for
r
X(ℓ)

z
,
r
Y(ℓ)

z
according to Eq.(9). For i ∈ {0, 1},

j ∈ [0, k − 1],
– (Kx,i,j

0 ,Kx,i,j
1)← SPFSS.Gen(1λ,⊞2j

q
Ax,i

y
,⊗2j

q
bx,i

y
)

– (Ky,i,j
0 ,Ky,i,j

1)← SPFSS.Gen(1λ,⊞2j
q
Ay,i

y
,⊗2j

q
by,i

y
)

4. Sample FSS keys for
r
Z(ℓ)

z
according to Eq. (10). For i, j ∈ [0, k − 1],

(Kz,i,j,0
0 ,Kz,i,j,0

1)← SPFSS.Gen(1λ,
q
Ax,0y2i

⊞
q
Ay,0y2j

,
q
bx,0y2i⊗

q
by,0y2j

)

(Kz,i,j,1
0 ,Kz,i,j,1

1)← SPFSS.Gen(1λ,
q
Ax,0y2i

⊞
q
Ay,1y2j

,
q
bx,0y2i⊗

q
by,1y2j

)

(Kz,i,j,2
0 ,Kz,i,j,2

1)← SPFSS.Gen(1λ,
q
Ax,1y2i

⊞
q
Ay,0y2j

,
q
bx,1y2i⊗

q
by,0y2j

)

(Kz,i,j,3
0 ,Kz,i,j,3

1)← SPFSS.Gen(1λ,
q
Ax,1y2i

⊞
q
Ay,1y2j

,
q
bx,1y2i⊗

q
by,1y2j

)

5. For σ ∈ {0, 1}, let kσ =
({

Kx,i,j
σ ,Ky,i,j

σ

}i∈{0,1}
j∈[0,k−1]

,
{
Kz,i,j,κ

σ

}κ∈[0,3]

i,j∈[0,k−1]

)
.

6. Output (k0, k1).

Expand: On input (σ, kσ):

1. Parse kσ as
({

Kx,i,j
σ ,Ky,i,j

σ

}i∈{0,1}
j∈[0,k−1]

,
{
Kz,i,j,κ

σ

}κ∈[0,3]

i,j∈[0,k−1]

)
.

2. For i ∈ {0, 1}, j ∈ [0, k− 1], compute //View ui,j , vi,j , wijκ as Rk elements.
r
ui,j

z

σ
← SPFSS.FullEval(σ,Kx,i,j

σ),
r
vi,j

z

σ
← SPFSS.FullEval(σ,Ky,i,j

σ)

3. For i, j ∈ [0, k − 1], κ ∈ [0, 3], compute
r
wijκ

z

σ
← SPFSS.FullEval(σ,Kz,i,j,κ

σ).

4. For ℓ ∈ [0, k − 1], compute

r
X(ℓ)

z

σ
← ϕ

 ∑
j∈[0,k−1]

ξ2
ℓ+j

·
(
a2j ·

r
u0,j

z

σ
+

r
u1,j

z

σ

)
r
Y (ℓ)

z

σ
← ϕ

 ∑
j∈[0,k−1]

ξ2
ℓ+j

·
(
a2j ·

r
v0,j

z

σ
+

r
v1,j

z

σ

)
5. For ℓ ∈ [0, k − 1], according to Eq.(10), compute

r
Z(ℓ)

z

σ
← ϕ

(∑
i,j∈[0,k−1]

ξ2
ℓ(2i+2j)(a2i+2j ·

r
wz,i,j,0

z

σ

+ a2i ·
r
wz,i,j,1

z

σ
+ a2j ·

r
wz,i,j,2

z

σ
+

r
wz,i,j,3

z

σ

))
6. For ℓ ∈ [0, k − 1], output

(r
X(ℓ)

z

σ
,
r
Y(ℓ)

z

σ
,
r
Z(ℓ)

z

σ

)
to Pσ, where

X(ℓ),Y(ℓ),Z(ℓ) ∈ FN
2 .

74

Theorem D.2. Assume a secure FSS scheme SPFSS for sums of point functions
and Ring-LPN(Rk, t) is hard. Then there exists a PCG construction Cons′F2

Auth−Triple
that generates authenticated Boolean triples. If the SPFSS is based on a PRG :
{0, 1}λ → {0, 1}2λ+2 via the PRG-based construction from [BGI16], to produce
kN authenticated Boolean triples, we have that:

– Each party has seed size at most: (16k2t2 +8kt) · ((λ+2) logN + λ+ (η+ k))
bits.

– The Expand procedure makes at most (16k2t2+8kt) · (1+
⌈
(k+η)
λ+2

⌉
) ·N PRG

calls and O(k3N logN) operations over F2k × F2η .

D.3 Semi-honest Distributed Setup from Ring-LPN

In this section, we show a protocol ΠF2

OLE−Setup that realizes the seed generation
functionality FF2

OLE−Setup for OLE correlations from Ring-LPN assumptions against
a semi-honest adversary. Note that after the setup protocol, each party obtains
succinct representations of the sparse error vector via (postion, value) pairs and
succinct representations of the products of error vectors via DPFs.

Functionality 17: FF2

OLE−Setup

Parameters: Security parameter 1λ, PCGOLE := (PCGOLE.Gen,PCGOLE.Expand)
in line with Construction ConsF2OLE.
Functionality:

1. Sample (k0, k1)← PCGOLE.Gen(1
λ).

2. For σ ∈ {0, 1}, output kσ to Pσ.

Protocol 18: ΠF2

OLE−Setup

Parameters: Security parameter 1λ, length N | 2k − 1, F2k = Fp(ξ) and
R = F2k [X]/(X

N − 1). Let G = ZN . Assume F := F2k . Let DPF be a distributed
point function DPF := (DPF.Gen,DPF.Eval) with domain size N and range F2k .
Assume each variable is shared via additive sharing, for instance [x] = (x0, x1).
Furthermore, it is given access to the functionalities F2PC and FDPF.
Protocol:

1. Pσ samples random vectors A0
σ,A

1
σ

$← Gt and b0
σ,b

1
σ

$← (F∗
2k)

t. We remark
that each pair (Ai

σ,b
i
σ) defines a t-sparse element in R.

2. P0 inputs the positions and the values. For i ∈ [0, 1], j ∈ [1, t],[
Ai

0[j]
]
← Input(P0,A

i
0[j]),

[
bi
0[j]

]
← Input(P0,b

i
0[j]).

3. P1 compute the positions and the values and then input them. For i ∈
[0, 1], j ∈ [1, t], ℓ ∈ [0, k − 1], compute 2ℓ ·Ai

1[j] and (bi
1[j])

2ℓ iteratively.
Then,[

2ℓ ·Ai
1[j]

]
← Input(P1, 2

ℓ ·Ai
1[j]),

[
(bi

1[j])
2ℓ
]
← Input(P1, (b

i
1[j])

2ℓ).

75

4. Compute the cross sums of positions and products of values. For ℓ ∈ [0, k−1],
i, j ∈ [1, t],[

αijℓ
0

]
← Add(

[
A0

0[i]
]
,
[
2ℓ ·A0

1[j]
]
),
[
βijℓ
0

]
← Mul(

[
b0
0[i]

]
,
[
(b0

1[j])
2ℓ
]
)[

αijℓ
1

]
← Add(

[
A1

0[i]
]
,
[
2ℓ ·A0

1[j]
]
),
[
βijℓ
1

]
← Mul(

[
b1
0[i]

]
,
[
(b0

1[j])
2ℓ
]
)[

αijℓ
2

]
← Add(

[
A0

0[i]
]
,
[
2ℓ ·A1

1[j]
]
),
[
βijℓ
2

]
← Mul(

[
b0
0[i]

]
,
[
(b1

1[j])
2ℓ
]
)[

αijℓ
3

]
← Add(

[
A1

0[i]
]
,
[
2ℓ ·A1

1[j]
]
),
[
βijℓ
3

]
← Mul(

[
b1
0[i]

]
,
[
(b1

1[j])
2ℓ
]
)

5. Convert the position value over G = ZN to binary value over {0, 1}⌈log |G|⌉.
For κ ∈ [0, 3], i, j ∈ [1, t], ℓ ∈ [0, k − 1],[

αijℓ
κ

]{0,1}⌈log |G|⌉

← ToBinary(
[
αijℓ
κ

]G
)

6. Sample the FSS key shares via calling FDPF with domain size N and range
F2k . For κ ∈ [0, 3], i, j ∈ [1, t], ℓ ∈ [0, k − 1],

(Kijℓκ
0 ,Kijℓκ

1)← FDPF(
[
αijℓ
k

]{0,1}⌈log |G|⌉

,
[
βijℓ
k

]
).

7. Pσ outputs kσ :=
({

Kijℓκ
σ

}ℓ∈[0,k−1]

i,j∈[1,t],κ∈[0,3]
,
{
Ai

σ,b
i
σ

}
i∈{0,1}

)
.

Theorem D.3. The protocol ΠF2

OLE−Setup realizes the OLE seed generation func-
tionality FF2

OLE−Setup with security against semi-honest adversaries in the (F2PC,FDPF)-
hybrid model.

Proof. Note that ΠF2

OLE−Setup securely evaluates each step of PCGOLE.Setup of
ConsF2

OLE. The SPFSS.Gen is implemented via calling the FDPF upon each nonzero
point. ⊓⊔

Remark D.2. The above protocol considers the ring R = F2k [X]/(X
N − 1), and

the “additions” are essentially computed over ZN .

D.4 PCG Setup Protocols from Ring-LPN with Malicious Security

We show a protocol for generating OLE correlations realizing the corruptible
OLE functionality FF2

mal−OLE with security against malicious adversaries. The
underlying assumption is the Ring-LPN with static leakage, which was introduced
in [BCG+20, Section 6.2]. Intuitively, in the distributed setup protocol, an
adversary is able to maliciously guess a predicate on the positions of the error
vector. Our protocol for OLE over F2 is given in ΠF2

mal−OLE.

76

Protocol 19: ΠF2

mal−OLE

Parameters: Security parameter 1λ, noise weight t = t(λ), length N = 2k − 1,
F := F2k = F2(ξ) and Rk = F2k [X]/(X

N − 1). Let G = ZN . Let η ∈ N such
that η ≥ λ and k | η. Let DPF be a distributed point function DPF :=
(DPF.Gen,DPF.Eval) with domain size N and range F2k or F2η . We abuse ϕ
as a fixed isomorphism map from Rk to FN

2k , and from Rη to FN
2η . Assume

each variable is shared via a SPDZ-style authenticated sharing, for instance
JxK := (JxK0 , JxK1) and JxKσ := (xσ,Mσ[x]) where x = x0+x1, M0[x]+M1[x] =
x · (∆0 +∆1) and (∆0,∆1) is a sharing of the global key. For simplicity, the
malicious PowerP operation is implicitly represented as J·Kp

ℓ

. There exists an
implicit ToBinary function call before calling Fmal−DPF. Furthermore, it is given
access to the functionalities F2PC and Fmal−DPF.
Input: A random element a ∈ Rk.
Correlation: For θ ∈ [0, k − 1], output X

(θ)
0 ,Z

(θ)
0 ,X

(θ)
1 ,Z

(θ)
1 ∈ FN

2 such that
X

(θ)
0 ∗X

(θ)
1 = Z

(θ)
0 + Z

(θ)
1 .

Protocol:

1. Pσ samples random vectors A0
σ,A

1
σ

$← Gt and b0
σ,b

1
σ

$← (F∗)t. Note that
each pair (Ai

σ,b
i
σ) defines a t-sparse element in Rk.

2. Input the position and values. For σ ∈ {0, 1}, i ∈ [0, 1], j ∈ [1, t],q
Ai

σ[j]
y
← Input(Pσ,A

i
σ[j]),

q
bi
σ[j]

y
← Input(Pσ,b

i
σ[j])

3. Generate FSS keys for
r
Z(θ)

z
according to Eq. (10). For i, j ∈ [1, t], κ, ℓ ∈

[0, k − 1], //Note there exists an implicit ToBinary function call before
calling Fmal−DPF.

(Kijκℓ0
0 ,Kijκℓ0

1)← Fmal−DPF(2
κ q

A0
0[i]

y
+2ℓ

q
A0

1[j]
y
,
q
b0
0[i]

y2κ ·
q
b0
1[j]

y2ℓ

)

(Kijκℓ1
0 ,Kijκℓ1

1)← Fmal−DPF(2
κ q

A0
0[i]

y
+2ℓ

q
A1

1[j]
y
,
q
b0
0[i]

y2κ ·
q
b1
1[j]

y2ℓ

)

(Kijκℓ2
0 ,Kijκℓ2

1)← Fmal−DPF(2
κ q

A1
0[i]

y
+2ℓ

q
A0

1[j]
y
,
q
b1
0[i]

y2κ ·
q
b0
1[j]

y2ℓ

)

(Kijκℓ3
0 ,Kijκℓ3

1)← Fmal−DPF(2
κ q

A1
0[i]

y
+2ℓ

q
A1

1[j]
y
,
q
b1
0[i]

y2κ ·
q
b1
1[j]

y2ℓ

)

4. Generate X
(θ)
σ . Pσ computes

e0σ =
∑

j∈[1,t]

b0
σ[j] · XA

0
σ [j], e1σ =

∑
j∈[1,t]

b1
σ[j] · XA

1
σ [j]

and
X(θ)

σ = ϕ
(
Tr(ξ2

θ

·
(
a · e0σ + e1σ)

))
.

5. Generate
r
Z(θ)

z
. Set

Kκℓ0
σ :=

∑
i,j∈[t]

Kijκℓ0
σ , Kκℓ1

σ :=
∑

i,j∈[t]

Kijκℓ1
σ ,

Kκℓ2
σ :=

∑
i,j∈[t]

Kijκℓ2
σ , Kκℓ3

σ :=
∑

i,j∈[t]

Kijκℓ3
σ .

77

For θ ∈ [0, k − 1], compute
r
Z(θ)

z

σ
: = ϕ

(∑
κ,ℓ∈[0,k−1]

ξ2
θ(2κ+2ℓ) ·

(
a2κ+2ℓ ·Kκℓ0

σ

+ a2κ ·Kκℓ1
σ + a2ℓ ·Kκℓ2

σ +Kκℓ3
σ

))
.

6. Pσ outputs
(
X

(θ)
σ ,Z

(θ)
σ

)
. //Note that we only output the sharing of Z(θ)

without the MAC shares, though we actually get
r
Z(θ)

z
.

Theorem D.4. Assume the hardness of Ring-LPN assumption with static leak-
age, then the protocol ΠF2

mal−OLE implements the functionality FF2

mal−OLE in the
(F2PC,Fmal−DPF)-hybrid model against malicious adversaries.

D.5 Authenticated Boolean Triples from Ring-LPN

We define the ideal corruptible functionality for authenticated Boolean triples
in FF2

Auth−Triple, and give the protocol ΠF2

Auth−Triple that realizes it with malicious
security.

Functionality 20: FF2

Auth−Triple

Parameters: Security parameter 1λ, N | 2k − 1, ξ ∈ F2k s.t. F2k = F2(ξ). Let
η ∈ N such that η ≥ λ and k | η.
Functionality:
If both parties are honest,

1. Sample ∆0,∆1
$← F2η and let ∆← ∆0 +∆1.

2. Sample x0,x1,y0,y1
$← FkN

2 and let x = x0 + x1,y = y0 + y1.
3. Let z← x ∗ y ∈ FkN

2 .
4. Sample mx,0,my,0,mz,0

$← FkN
2η and let mx,1 ← ∆ · x −mx,0,my,1 ←

∆ · y −my,0,mz,1 ← ∆ · z−mz,0.
5. For σ ∈ {0, 1}, output (∆σ,xσ,yσ, zσ,mx,σ,my,σ,mz,σ) to Pσ.

If Pσ is corrupted,

1. Wait for input (∆σ,xσ,yσ, zσ,mx,σ,my,σ,mz,σ) ∈ F2η ×F3kN
2 ×F3kN

2η from
the adversary.

2. Sample ∆1−σ
$← F2η and x1−σ,y1−σ

$← FkN
2 . Set ∆ ← ∆0 + ∆1,x ←

x0 +x1,y← y0 +y1 and z = x ∗y. Let mx,1−σ ← ∆ ·x−mx,σ,my,1−σ ←
∆ · y −my,σ,mz,1−σ ← ∆ · z−mz,σ.

3. Output (∆1−σ,x1−σ,y1−σ, z1−σ,mx,1−σ,my,1−σ,mz,1−σ) to the honest
party P1−σ.

78

Protocol 21: ΠF2

Auth−Triple

Parameters: Security parameter 1λ, noise weight t = t(λ), length N | 2k − 1,
F := F2k = F2(ξ) and Rk = F2k [X]/(X

N − 1). Let G = ZN . Let η ∈ N such
that η ≥ λ and k | η. Let DPF be a distributed point function DPF :=
(DPF.Gen,DPF.Eval) with domain size N and range F2k or F2η . We abuse ϕ
as a fixed isomorphism map from Rk to FN

2k , and from Rη to FN
2η . Assume

each variable is shared via a SPDZ-style authenticated sharing, for instance
JxK := (JxK0 , JxK1) and JxKσ := (xσ,Mσ[x]) where x = x0+x1, M0[x]+M1[x] =
x · (∆0 +∆1) and (∆0,∆1) is a sharing of the global key. For simplicity, the
malicious PowerP operation is implicitly represented as J·K2

ℓ

. There exists an
implicit ToBinary function call before calling Fmal−DPF. Furthermore, it is given
access to the functionalities F2PC and Fmal−DPF.
Input: A random element a ∈ Rk.
Protocol:

1. The parties sample the error vector and input them. For i ∈ {0, 1}, Pσ

samples Ax,i
σ ,Ay,i

σ
$← Gt and bx,i

σ ,by,i
σ

$← (F∗)t. For i ∈ {0, 1},j ∈ [1, t],
(i)

q
Ax,i

σ [j]
y
← Input(σ,Ax,i

σ [j]),
q
bx,i
σ [j]

y
← Input(σ,bx,i

σ [j]).
(ii)

q
Ay,i

σ [j]
y
← Input(σ,Ay,i

σ [j]),
q
by,i
σ [j]

y
← Input(σ,by,i

σ [j]).
Then Pσ obtains

{q
Ax,i[j]

y
σ
,
q
bx,i[j]

y
σ
,
q
Ay,i[j]

y
σ
,
q
by,i[j]

y
σ

}
i∈{0,1},j∈[1,2t]

.

2. Generate FSS keys for
(r

X(θ)
z
,
r
Y(θ)

z)
according to Eq.(9). For i ∈ {0, 1},

j ∈ [1, 2t], ℓ ∈ [0, k − 1], //Note there exists an implicit ToBinary function
call before calling Fmal−DPF.

(Kx,i,j,ℓ
0 ,Kx,i,j,ℓ

1)← Fmal−DPF(2
ℓ ·

r
Ax,i[j]

z
,
r
bx,i[j]

z2ℓ

)

(Ky,i,j,ℓ
0 ,Ky,i,j,ℓ

1)← Fmal−DPF(2
ℓ ·

r
Ay,i[j]

z
,
r
by,i[j]

z2ℓ

)

3. Generate FSS keys for
r
Z(θ)

z
according to Eq. (10). For i, j ∈ [1, 2t],

κ, ℓ ∈ [0, k−1], //Note there exists an implicit ToBinary function call before
calling Fmal−DPF.

(K
ijκℓ0
0 , K

ijκℓ0
1)← Fmal−DPF(2

κ
r
A

x,0
[i]

z
+ 2

ℓ
r
A

y,0
[j]

z
,
r
b

x,0
[i]

z2κ

·
r
b

y,0
[j]

z2ℓ

)

(K
ijκℓ1
0 , K

ijκℓ1
1)← Fmal−DPF(2

κ
r
A

x,0
[i]

z
+ 2

ℓ
r
A

y,1
[j]

z
,
r
b

x,0
[i]

z2κ

·
r
b

y,1
[j]

z2ℓ

)

(K
ijκℓ2
0 , K

ijκℓ2
1)← Fmal−DPF(2

κ
r
A

x,1
[i]

z
+ 2

ℓ
r
A

y,0
[j]

z
,
r
b

x,1
[i]

z2κ

·
r
b

y,0
[j]

z2ℓ

)

(K
ijκℓ3
0 , K

ijκℓ3
1)← Fmal−DPF(2

κ
r
A

x,1
[i]

z
+ 2

ℓ
r
A

y,1
[j]

z
,
r
b

x,1
[i]

z2κ

·
r
b

y,1
[j]

z2ℓ

)

4. Generate (
r
X(θ)

z
,
r
Y(θ)

z
). Set

Kx,i,ℓ
σ :=

∑
j∈[1,2t]

Kx,i,j,ℓ
σ , Ky,i,ℓ

σ :=
∑

j∈[1,2t]

Ky,i,j,ℓ
σ .

79

For θ ∈ [0, k − 1], compute
r
X(θ)

z

σ
:= ϕ

(∑
ℓ∈[0,k−1]

ξ2
θ+ℓ

· (a2ℓ ·Kx,0,ℓ
σ +Kx,1,ℓ

σ)
)

r
Y(θ)

z

σ
:= ϕ

(∑
ℓ∈[0,k−1]

ξ2
θ+ℓ

· (a2ℓ ·Ky,0,ℓ
σ +Ky,1,ℓ

σ)
)

5. Generate
r
Z(θ)

z
. Set

Kκℓ0
σ :=

∑
i,j∈[2t]

Kijκℓ0
σ , Kκℓ1

σ :=
∑

i,j∈[2t]

Kijκℓ1
σ ,

Kκℓ2
σ :=

∑
i,j∈[2t]

Kijκℓ2
σ , Kκℓ3

σ :=
∑

i,j∈[2t]

Kijκℓ3
σ .

For θ ∈ [0, k − 1], compute
r
Z(θ)

z

σ
: = ϕ

(∑
κ,ℓ∈[0,k−1]

ξ2
θ(2κ+2ℓ) ·

(
a2κ+2ℓ ·Kκℓ0

σ

+ a2κ ·Kκℓ1
σ + a2ℓ ·Kκℓ2

σ +Kκℓ3
σ

))
.

6. Pσ outputs
(r

X(θ)
z

σ
,
r
Y(θ)

z

σ
,
r
Z(θ)

z

σ

)
.

Theorem D.5. Assume the hardness of Ring-LPN assumption with static leak-
age, then the protocol ΠF2

Auth−Triple implements the functionality FF2

Auth−Triple in the
(F2PC,Fmal−DPF)-hybrid model against malicious adversaries.

80

	Introduction
	Our Contributions
	Organization

	Our Techniques
	Limitations of PCG for OLEs from BoyleCGIKS20C,QASD23C
	Trace to the Rescue
	Warm-up: from F2k to F2 via Trace
	PCG for Authenticated Multiplication Triples.

	Preliminaries
	Function Secret Sharing
	Pseudorandom Correlation Generators
	Syndrome Decoding of Quasi-Abelian Codes

	Ring Isomorphisms and Trace Functions
	PCG for OLE over Any Finite Field
	PCG for Authenticated Multiplication Triples
	PCG for Other Correlations and Applications
	MPC with Preprocessing
	PCG for Matrix Multiplication Triples
	PCG for Subfield OLE

	PCG Setup Protocols from QA-SD
	Semi-honest Distributed Setup from QA-SD
	OLE Setup Protocols from QA-SD with Malicious Security
	Authenticated Multiplication Triples from QA-SD
	Complexity for Basic Operations

	Security Analysis and Parameter Selections
	Known Attacks for Ring-LPN and QA-SD
	Parameters
	Performance Evaluation

	More Preliminaries
	Deferred Proofs for Ring Isomorphisms and Traces Functions
	Distributed DPF Setup
	PCG Setup Protocols from Ring-LPN
	PCG for OLE from Ring-LPN
	Authenticated Boolean Triple Constructions from Ring-LPN
	Semi-honest Distributed Setup from Ring-LPN
	PCG Setup Protocols from Ring-LPN with Malicious Security
	Authenticated Boolean Triples from Ring-LPN

