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Abstract. In this paper, we revisit shuffle protocol for Shamir secret
sharing. Upon examining previous works, we observe that existing con-
structions either produce non-uniform shuffle or require large communi-
cation and round complexity, e.g. exponential in the number of parties.
We propose two shuffle protocols, both of which shuffle uniformly within
𝑂 ( 𝑘+𝑙

log 𝑘
𝑛2𝑚 log𝑚) communication for shuffling rows of an 𝑚 × 𝑙 matrix

shared among 𝑛 parties, where 𝑘 ≤ 𝑚 is a parameter balancing com-
munication and computation. Our first construction is more concretely
efficient, while our second construction requires only 𝑂 (𝑛𝑚𝑙) online com-
munication within 𝑂 (𝑛) round. In terms of overall communication and
online communication, both shuffle protocols outperform current optimal
shuffle protocols for Shamir secret sharing.
At the core of our constructions is a novel permutation-sharing technique,
which can be used to permute arbitrarily many vectors by computing
matrix-vector products. Once shared, applying a permutation becomes
much cheaper, which results in a faster online phase. Letting each party
share one secret uniform permutation in the offline phase and applying
them sequentially in the online phase, we obtain our first shuffle pro-
tocol. To further optimize online complexity and simplify the trade-off,
we adopt the shuffle correlation proposed by Gao et al. and obtain the
second shuffle protocol with 𝑂 (𝑛𝑚𝑙) online communication and 𝑂 (𝑛2𝑚𝑙)
online computation. This brings an additional benefit that the online
complexity is now independent of offline complexity, which reduces pa-
rameter optimization to optimizing offline efficiency.
Our constructions require only most basic primitives in Shamir secret
sharing scheme, and work for arbitrary field F of size larger than 𝑛. As
shuffle is a frequent operation in algorithm design, we expect them to
accelerate many other primitives in context of Shamir secret sharing
MPC, such as sorting, oblivious data structure, etc.
Keywords: Shuffle, Multiparty Computation, Shamir Secret Sharing

1 Introduction

Secure multiparty computation has found various applications in the real world.
In an MPC scenario, several parties coordinate with each other to compute a
function. The goal is to keep each party’s input secret from all other parties while
efficiently obtaining the output. This strong security guarantee makes MPC a
desirable solution for many real-world cooperations with privacy concerns.
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Most MPC protocols are built from primitives. That is, the designer of a
new protocol uses existing MPC protocols as its subroutines, enabling a succinct
algorithm description and a clear proof with the composition theorem [1]. Among
all primitives, the MPC shuffle protocol is a frequently used one. An MPC shuffle
protocol takes as input an array of secret shared values, randomly permutes it,
and outputs another re-randomized secret shared array such that no party knows
which entry of the output comes from which entry of the input. Such an operation
has found direct applications in the real world, e.g. in constructing an anonymous
communication system [2][3][4], electronic voting [5][6][7], distributed database
[8][9], etc. Most of these applications can be viewed as a direct result of an MPC
shuffle protocol.

Beyond such immediate applications, shuffle is also frequently used as a build-
ing block for more complicated MPC protocols. For examples, Hamada et al. [10]
shows that any comparison-based MPC sorting algorithm can be securely and
efficiently implemented with an MPC shuffle protocol plus MPC comparison
protocol. The reason is that after randomly shuffling the array, it is safe to dis-
close comparison results, which is equivalent to revealing random bits. This is
concluded by the “shuffle-then-sort” paradigm, which generates highly efficient
comparison-based MPC sorting protocols. Another useful MPC primitive is the
MPC oblivious random access memory (ORAM) proposed by Keller and Scholl
[11]. The proposed MPC ORAM uses MPC shuffle to obscure the data structure,
which prevents the parties from learning the access pattern. Building upon MPC
ORAM, [11] further constructs more MPC algorithms, including oblivious array,
priority queue, shortest path algorithm, etc.

Despite the vast application of MPC shuffle, recent researches concentrate
on MPC shuffle protocol for additive secret sharing. This is largely due to a
recent advance in two-party additive secret sharing shuffle protocol by Chase
et al. [12], which builds a semi-honest two-party shuffle protocol with compu-
tation and communication complexity both almost linear. The protocol consists
of mostly oblivious transfer extension (OTE) and local computation of pseudo-
random generator, which makes it considerably efficient. This protocol is en-
hanced to active security and multi-party cases with linear online communica-
tion/computation in a sequential works of [4][13][14]. Hence for additive secret
sharing schemes, shuffle operation is already quite efficient and cheap.

In terms of Shamir secret sharing MPC, current techniques for building shuf-
fle protocol are still limited. Currently, the most efficient Shamir secret sharing
shuffle protocol is based on switching network [3][15] and sorting network [16][17],
with communication 𝑂 (𝑛𝑚𝑙 log𝑚) for 𝑛 parties shuffling 𝑚 vectors, each of length
𝑙. However, the most severe drawback of such approaches is that they either do
not shuffle uniformly [3][15] or only shuffle uniformly with certain probability
[16][17], as their authors pointed out respectively. This makes the argument of
security difficult for MPC protocols built upon such shuffle protocols. To shuffle
uniformly, the only approach available is the permute-in-turn method [18][11],
which results in higher communication and round complexity. The construction
of [18] requires 𝑂 (2𝑛𝑛1.5) rounds, which is efficient only when the number of par-
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ties is small. The construction of [11] requires 𝑂 (𝑛2𝑚𝑙 log𝑚) communication and
𝑂 (𝑛 log𝑚) rounds, which is also weaker in communication and round complex-
ity compared to above non-uniform shuffle protocols. In addition, the protocol
designed in [18] requires parties to compute zero-knowledge proof to be actively
secure. These approaches are further discussed in Section 2, and see Table 1 for
a conclusion of existing constructions.

In this paper, we develop shuffle protocols for Shamir secret sharing, with un-
conditional security against malicious parties under honest majority. We adopt
the approach of permute-in-turn, which guarantees the uniformity of shuffle.
We propose two constructions, both having 𝑂 ( 𝑘+𝑙

log 𝑘
𝑛2𝑚 log𝑚) overall commu-

nication complexity and 𝑂 ( 𝑘𝑙
log 𝑘

𝑛2𝑚 log𝑚) computation complexity. The first
construction is better in overall concrete complexity, while the second requires
only 𝑂 (𝑛𝑚𝑙) online communication, which is not achieved before for Shamir se-
cret sharing. At the core of our constructions is a new primitive, which shares
a permutation among parties with 𝑂 ( 𝑘

log 𝑘
𝑛𝑚 log𝑚) communication and com-

putation, and allows the parties to perform it on any 𝑚-long vector with only
𝑂 ( 1

log 𝑘
𝑛𝑚 log𝑚) communication and 𝑂 ( 𝑘

log 𝑘
𝑛𝑚 log𝑚) computation, for param-

eter 𝑘 ≤ 𝑚. As shared permutations can be reused, permuting rows of 𝑚 × 𝑙

matrix boils down to permuting each column vector separately. Following the
permute-in-turn paradigm, we obtain a uniform shuffle protocol that requires
𝑂 ( 𝑘

log 𝑘
𝑛2𝑚 log𝑚) offline communication, 𝑂 ( 𝑙

log 𝑘
𝑛2𝑚 log𝑚) online communica-

tion and 𝑂 ( 𝑛 log𝑚

log 𝑛
) online rounds. By further utilizing the shuffle correlation of

Gao et al. [14], we obtain a uniform shuffle protocol with 𝑂 ( 𝑘+𝑙
log 𝑘

𝑛2𝑚 log𝑚) offline
communication, 𝑂 (𝑛𝑚𝑙) online communication and 𝑂 (𝑛) online rounds. We re-
mark that in terms of overall communication complexity, this result outperforms
all previous actively secure uniform shuffle protocols, including those for additive
secret sharing, which has optimal communication complexity 𝑂 ( 𝐵𝑙

log 𝑘
𝑛2𝑚 log𝑚)

and computation complexity 𝑂 ( 𝐵𝑘𝑙
log 𝑘

𝑛2𝑚 log𝑚), for some 𝐵 grows with security
parameter [19]. All our constructions are based on only most basic primitives
for Shamir secret sharing (mostly multiplications). This not only makes our con-
structions compatible with other Shamir secret sharing MPC protocols, but also
offers a fairly simple and straightforward security analysis via the composition
theorem [1].

Our contributions are summarized as follows.

1. We develop a novel permutation protocol for Shamir secret sharing, which
involves new primitives for sharing a permutation and applying the shared
permutation to vectors of proper size. Following the naive permute-in-turn
paradigm, we construct a shuffle protocol with 𝑂 ( 𝑘+𝑙

log 𝑘
𝑛2𝑚 log𝑚) communi-

cation and 𝑂 ( 𝑛 log𝑚

log 𝑘
+ log log 𝑘) rounds in total, with parameter 𝑘 balancing

between computation, communication and round complexity. In terms of
overall communication and round complexity, this protocol outperforms all
existing uniform shuffle protocols for Shamir secret sharing. In terms of on-
line communication and round complexity, for small 𝑛 = 𝑜(log𝑚), choosing
𝑘 = 𝜔(2𝑛) enables 𝑜(𝑛𝑚𝑙 log𝑚) online communication and 𝑜(log𝑚) online
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round complexity, both of which outperform even switching-network-based
and sorting-network-based approaches, at the cost of larger offline commu-
nication.

2. We propose the first shuffle protocol for Shamir secret sharing that has linear
online communication complexity 𝑂 (𝑛𝑚𝑙) while always shuffles uniformly.
While its overall communication complexity outperforms all existing actively
secure uniform MPC shuffle protocols, its online communication complexity
outperforms all existing shuffle protocols in context of Shamir secret sharing,
including those non-uniform ones. The overall communication complexity of
this protocol is also 𝑂 ( 𝑘+𝑙

log 𝑘
𝑛2𝑚 log𝑚), except larger in constant.

3. Complexity analysis is done to support the claims regarding communica-
tion, computation and round complexity. This analysis not only validates
our claims, but also reveals the relationship between parameter 𝑘 and com-
munication, computation and round complexity, which helps determine 𝑘 in
practice and optimize concrete efficiency.

The rest of the paper is organized as follows. In Section 2, we briefly re-
view previous approaches towards constructing MPC shuffle protocol. As we are
mostly concerned about Shamir secret sharing MPC, we focus our discussion
to the shuffle protocols that can be implemented in Shamir secret sharing. In
Section 3, we introduce the basic notations and models for security. Section 4
introduces our new permutation-sharing technique, and shows how to build a
shuffle protocol with it. We show how to use the developed permutation proto-
col to build a shuffle protocol with linear online phase in Section 5. Besides its
linear online phase, the shuffle protocol developed in Section 5 has same overall
complexity as the one in Section 4, except with larger constant. Lastly in Sec-
tion 6, we discuss some related topics regarding our constructions. Due to page
limitation, we offer our security analysis in Appendix A.

2 Related Works

The concept of “multi-party shuffle” traces back to the seminal work of Chaum
[20], as a byproduct of the concept of “decryption shuffle”. In such a scenario,
there are several servers and clients engaging the shuffle. A client wishes to send
an anonymous message first applies an iterative encryption, with keys consist of
all servers’ public keys. Then it sends the ciphertext to the first server. Upon
receiving a batch of ciphertexts from clients, each server decrypts the cipher-
texts with its own private key, randomly permutes them, then sends them to the
next server. After the decryption and permutation applied by the last server,
all messages in this batch is securely shuffled, in the sense that no server can
match a specific message with its sender. While the original work of Chaum [20]
does not provide security against malicious server, there are sequential works
enhancing the protocol to be actively secure [21][22][23][24]. The most common
approach is utilizing zero-knowledge proof, where each server proves that it has
honestly applied a decryption and a permutation. Due to proving the knowledge
of a permutation matrix, this requires 𝑂 (𝑚2) computation complexity of each
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server, where 𝑚 is the number of messages to be shuffled. Also, due to the appli-
cation of public key primitives and zero-knowledge proofs, these constructions
are generally heavy in computation.

Despite the complexity issue, the decryption shuffle technique does not fit
in multi-party computation (MPC) task. This is because after decryptions and
permutations, the output is exactly shuffled plaintext. However, to perform fur-
ther secure computation over the data in MPC, the output is also required to
be secret shared. For example, in the work of [25] and [26], the authors build an
MPC sort protocol from MPC shuffle protocol. It is crucial that the output of
MPC shuffle protocol remains secretly shared, so that further tasks can proceed
securely.

Very recently, the problem of MPC shuffle re-emerges, due to a current ad-
vance in two-party MPC shuffle. Chase et al. [12] propose the permutation de-
composition technique that decomposes a large 𝑚-permutation into 𝑂 (𝑚 log𝑚

𝑘 log 𝑘
)

many small 𝑘-permutations. By implementing 𝑘-permutation protocol with obliv-
iously punctured matrix (OPM), which includes 𝑂 (𝑘𝑙 + 𝑘 log 𝑘) communication
and 𝑂 (𝑘2𝑙) local computation, they construct a shuffle protocol with 𝑂 ((1 +

𝑙
log 𝑘
)𝑚 log𝑚) communication for two-party shuffle. In the lowest level, the pro-

tocol utilizes only OTE and PRG, which are computation-cheap and concretely
efficient. The protocol is semi-honest secure, and is later enhanced to having lin-
ear online communication for semi-honest security by Eskandarian and Boneh
[4], and to be malicious secure by Song et al. [19]. The most recent advance is
due to Gao et al. [14], which achieves both malicious security and linear online
communication.

However, all above advances in building MPC shuffle protocol happen in field
of additive secret sharing, which are not directly applicable to Shamir secret
sharing. This is due to several fundamental differences between the two secret
sharing schemes. For example, Shamir secret sharing scheme demands “struc-
tured shares”, i.e. valid shares must be points on some polynomial with bounded
degree. This prevents using generic PRG to re-randomize a secret, which is a
common approach in additive secret sharing to trade off computation for com-
munication. Thus, when it comes to building shuffle protocol in Shamir secret
sharing, the techniques are much more limited.

Currently, there are three approaches towards constructing MPC shuffle pro-
tocol in Shamir secret sharing. The first is based on switching networks, which
is proposed by Lu et al. [3] and Mardi et al. [15]. The idea is to use switching
network to perform shuffle, which consists of layers of switches. A switch is a
gate that randomly swaps two entries of an array depending on an extra random
bit, and can be implemented by MPC multiplication. The optimal communica-
tion complexity is achieved by Mardi et al. [15], which is 𝑂 (𝑛𝑚𝑙 log𝑚). However,
the major drawback of such a technique is that the produced permutation is
not uniform, i.e. some permutations are significantly more likely to be produced
than others, as is shown in Table 4 in [15]. This makes such approach weaker in
security guarantee. The second approach is to base the shuffle protocol on sort-
ing network, which is proposed by Movahedi et al. [16][17]. The idea is to utilize
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Table 1. Existing MPC Shuffle Protocols for Shamir Secret Sharing

Protocol Uniform On Comm On Round Off Comm Off Round Approach
[3] No 𝑂 (𝑛𝑚𝑙 log2 𝑚) 𝑂 (log2 𝑚) 𝑂 (B𝑚 log2 𝑚) 𝑂 (1) Switching Network
[15] No 𝑂 (𝑛𝑚𝑙 log𝑚) 𝑂 (log𝑚) 𝑂 (B𝑚 log𝑚) 𝑂 (1) Switching Network

[16][17] w.p.1 𝑂 (𝑛𝑚𝑙 log𝑚) 𝑂 (log𝑚) 𝑂 (C𝑚 log𝑚) 𝑂 (1) Sorting Network
[18] Yes 𝑂 (2𝑛𝑛1.5𝑚𝑙 log𝑚) 𝑂 (2𝑛/

√
𝑛) 𝑂 (1) 𝑂 (1) Permute-in-turn

[11] Yes 𝑂 (𝑛2𝑚𝑙 log𝑚) 𝑂 (𝑛 log𝑚) 𝑂 (𝑛2𝑚 log𝑚) 𝑂 (1) Permute-in-turn
Ours Yes 𝑂 ( 𝑛

2𝑚𝑙 log𝑚
log 𝑘

) 𝑂 ( 𝑛 log𝑚
log 𝑘

) 𝑂 ( 𝑘𝑛
2𝑚 log𝑚
log 𝑘

) 𝑂 (log log 𝑘) Permute-in-turn

Ours2 Yes 𝑂 (𝑛𝑚𝑙) 𝑂 (𝑛) 𝑂 ( (𝑘+𝑙)𝑛
2𝑚 log𝑚

log 𝑘
) 𝑂 ( log𝑚

log 𝑘
+ log log 𝑘) Permute-in-turn

𝑛 is the number of parties, 𝑚 the number of items to be shuffled, 𝑙 the bit length of each item and 𝑘 is
a parameter balancing between communication, computation and round complexity.
B is the cost for generating one shared random bit, C the cost for preparing one MPC comparison. Both
vary by concrete implementation.
“Off/On Comm” stands for “offline/online communication”, “Round” for “round complexity”, etc.
[15][16][17][11] are generic, i.e. can be applied to other MPC framework other than Shamir’s. However,
working in different framework might result in asymptotically different overheads.

a sorting network, which results in an MPC sorting protocol. By appending
the data entry with a random tag and sorting them by tag, the array is ran-
domly shuffled. The major drawback of this approach is that it requires an MPC
comparison protocol, which further requires many complex and expensive MPC
constructions. Another problem is that designing a sorting network (or equiva-
lently, oblivious sort algorithm) is a highly complicated task, and current sorting
networks are either too deep (e.g. Batcher’s odd–even merge sort and bitonic sort
[27], both of depth 𝑂 (log2 𝑚)), or with impractical constant (e.g. AKS network
[28]), or only sort with some probability (e.g. LP network [29]). By utilizing the
sorting network proposed in [29], Movahedi et al. [16][17] achieves 𝑂 (𝑛𝑚𝑙 log𝑚)
communication, with a uniform permutation with probability 1 −𝑂 (𝑚−3). Nev-
ertheless, as the protocol would shuffle non-uniformly with only small (albeit
non-negligible) probability, this protocol suffices for many applications.

The last approach is permute-in-turn, which is adopted by Laur et al. [18]
and Keller and Scholl [11]. The idea of construction in [18] is to let many subsets
of parties agree on uniform permutations, apply it to the array and re-share the
array to all parties. Such a subset must be large enough, so that reconstruction
of shared secret is possible within the subset of parties. Such subsets must also
be many, so that the adversary cannot learn all permutations by infiltrating all
subsets. It is concluded in [18] that approximately 𝑂 (2𝑛/

√
𝑛) many subsets are

needed, and the communication complexity is hence 𝑂 (2𝑛𝑛1.5𝑚𝑙 log𝑚). However,
remarkably, by using switching network for performing permutation, Keller and
Scholl [11] builds a shuffle protocol where each party permutes in turn. Their
construction lets each party share 𝑂 (𝑚 log𝑚) control bits, which specify the per-
mutation applied to the data passing through the switching network. By letting
all parties “permute in turn”, the underlying elements are uniformly shuffled.
This significantly accelerates this approach, and makes the communication com-
plexity 𝑂 (𝑛2𝑚𝑙 log𝑚) within 𝑂 (𝑛 log𝑚) rounds. The advantage of this approach
is that it always shuffles uniformly, and the construction of [18] is extremely
fast when the number of parties is small. The main drawback is that the com-
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munication and round complexity are both larger than previously mentioned
approaches. The round complexity of the construction of [18] is exponential in
𝑛, and the round complexity of [11] is larger than the approaches based on
switching/sorting network by a factor of 𝑛.

All the above works are summarized in Table 1.
Besides all the pros and cons mentioned, all these approaches ignore the

importance of online complexity. Many complicated MPC protocols are sepa-
rated into two phases, a data-independent offline phase and a data-dependent
online phase. This separation helps shift most of the workload to offline phase
and leave the online phase with fairly small overhead. This allows the parties
to respond swiftly to real-world event that causes the data. However, almost all
above protocols have trivial offline phase, which is merely a preparation phase
for most fundamental random resources, i.e. shared random values and bits. For
instances, the shuffle protocols based on switching network must wait until all
data arrive, and then feeds the data into the network. Before that, only random
bits can be prepared. The ones based on MPC sort protocol must also wait, or
otherwise it has nothing to sort. And although the construction of Keller and
Scholl [11] can let the parties share and verify control bits in offline phase, the
online phase still consists of 𝑂 (𝑛2𝑚𝑙 log𝑚) communication, which does not ben-
efit much from the offline phase. This makes their online phase heavy, which
could become bottleneck for MPC tasks built upon them.

In this paper, we build MPC shuffle protocols for Shamir secret sharing
scheme that always shuffle uniformly. We first develop a permutation sharing
technique, which offers a non-trivial trade-off between the communication over-
head of sharing a permutation and of applying a permutation. Building upon
such a technique, our first shuffle protocol requires 𝑂 ( 𝑘

log 𝑘
𝑛2𝑚 log𝑚) offline com-

munication and 𝑂 ( 𝑙
log 𝑘

𝑛2𝑚 log𝑚) online communication. Remarkably, for small
𝑛 = 𝑜(log𝑚), choosing 𝑘 = 𝜔(2𝑛) enables an 𝑜(𝑛𝑚𝑙 log𝑚) online communica-
tion complexity that is even smaller than switching-network-based and sorting-
network-based ones, at the cost of larger offline communication. Our second
construction has 𝑂 (𝑛𝑚𝑙) online communication, which is currently optimal in
context of Shamir secret sharing shuffle. This is achieved by applying the shuffle
correlation technique of Gao et al. [14], at the cost of slightly increasing concrete
complexity.

3 Preliminary

3.1 Basic Notation

In this paper, we consider an MPC scenario where 𝑛 parties 𝑃1, 𝑃2, ..., 𝑃𝑛 are
engaging computation. Let F be a field with |F| > 𝑛. Denote the prime subfield
1 According to [16], this probability is 1 −𝑂 (𝑚−3).
2 When 𝑛 ≥ 𝜅, the offline communication can be 𝑂 ( 𝑘+𝑙

log 𝑘
𝜅𝑛𝑚 log𝑚), online communi-

cation 𝑂 (𝜅𝑚𝑙) and online round complexity 𝑂 (𝜅), for statistical security parameter
𝜅. Roughly, this is done by randomly select 𝜅 parties and require them to choose the
permutations.
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of F as F𝑝. Let K be an extension of F, such that |K| ≥ 2𝜅 for statistical security
parameter 𝜅. Let {𝛼𝑖}𝑛𝑖=1 be 𝑛 distinct non-zero elements in F, which are public
and known to all parties. Let 𝑡 < 𝑛/2 be the number of corrupted parties.

We use bold font to indicate that a variable is vector, e.g. x, y, z. Vectors are
column vectors unless stated otherwise. We refer to the 𝑖-th entry of vector x by
𝑥𝑖 or x(𝑖). The latter is useful when the vector has its own subscript, e.g. vector
x1, x2, etc. We use bold uppercase to indicate that a variable is a matrix, e.g.
A,B,C. Similar to the case of vector, we denote by the element on 𝑖-th row and
𝑗-th column of matrix A by 𝑎𝑖, 𝑗 or A(𝑖, 𝑗). Suppose a vector x = (𝑥𝑖)𝑖∈[𝑚] is of
length 𝑚. Then for any 𝑚-permutation 𝜋 : [𝑚] → [𝑚], the result of applying it
on vector x is defined as

𝜋(x) := (𝑥𝜋 (1) , 𝑥𝜋 (2) , ..., 𝑥𝜋 (𝑚) ).

We define the permutation matrix of permutation 𝜋 to be P𝜋 := (𝑟𝑖, 𝑗 )𝑖, 𝑗∈[𝑚] ,
where

𝑝𝑖, 𝑗 =

{
1 if 𝑗 = 𝜋(𝑖),
0 otherwise.

Note that 𝑖 is the index of row, and 𝑗 of column, and

𝜋(x) = P𝜋 · x.

Define [𝑘] = {1, 2, ..., 𝑘} for any positive integer 𝑘. Denote by notation “⟦𝑠⟧”
sharing 𝑠 by Shamir secret sharing scheme among all parties. This means that
there exists a polynomial 𝑓 ∈ F[𝑋] with 𝑓 (0) = 𝑠 of degree 𝑡 (the number of
corrupted parties), such that 𝑓 (𝛼𝑖) is known only to 𝑃𝑖. When saying a vector
or matrix is secret shared, e.g. ⟦x⟧ or ⟦A⟧, we mean each entry of it is secret
shared. For notation simplicity, we denote a shared vector by

⟦v⟧ = (⟦𝑣1⟧, ⟦𝑣2⟧, ..., ⟦𝑣𝑚⟧)⊤ = ⟦𝑣1, 𝑣2, ..., 𝑣𝑚⟧⊤,

and same for matrix.
When calling a sub-protocol, three types of parameters may be involved. For

example, consider the following:

Prot(𝑎, ⟦𝑏⟧, 𝑃𝑖 : 𝑐).

This means to call protocol “Prot”, with parameter 𝑎 a public constant, 𝑏 of
secret shared form, and 𝑐 a private input from 𝑃𝑖.

We assume that the items to be shuffled is 𝑚 (field) elements/vectors, and
assume 𝑚 is power of two. The main reason for the assumption is to apply a
technique introduced by Chase et al. [12], which uses Beneš network [30] for
decomposing permutation. Originally, Beneš network is designed only for per-
mutation of a power-of-two size. Since shuffling 𝑚-sized array can be easily used
to shuffling array of smaller size 𝑚′ ≤ 𝑚, assuming 𝑚 is power of two is without
loss of generality.

8



3.2 Security Model

In the paper, we consider a malicious adversary that can corrupt up to 𝑡 < 𝑛/2
parties. We assume secure pair-wise channels and a secure broadcast channel.
The communication cost for broadcasting is assumed to be 𝑂 (𝑛). For simplicity,
we assume log |K| is 𝑂 (1), hence broadcasting a field element in F or K both
require 𝑂 (𝑛) communication.

Our goal is to construct shuffle protocols that are secure-with-abort with
unconditional security against static adversary, under honest majority. The ad-
versary is static, meaning that it must choose and fix the parties it wants to
corrupt before the start of the protocol. The security is unconditional, meaning
that the security of our construction does not depend on computational hard-
ness assumption, i.e. the adversary can be computationally unbounded. That
is, as long as the number of corrupted parties is smaller than 𝑛/2, our con-
struction remains statistically secure, where the honest parties will abort with
overwhelming probability 𝑝 > 1 − 𝐶 · 2−𝜅 if the corrupted parties deviate from
the protocol, where 𝐶 is the number of MPC operations (a.k.a. size of the com-
putation circuit). It is extensively studied and long been established that such a
strong security guarantee can (only) be achieved in honest majority.

3.3 Primitives for Shamir Secret Sharing Scheme

Our constructions require only a very high-level view of Shamir secret sharing.
Hence, we formalize our constructions with the ideal functionalities of Shamir
secret sharing.

We assume an ideal MPC functionality FShamir that supports following com-
mands:

– ⟦𝑠⟧ ← Πinput(𝑃𝑖 : 𝑠), which shares a secret from 𝑃𝑖 to all parties.
– 𝑠← Πopen(⟦𝑠⟧), which publicly opens a secret 𝑠 to all parties.
– 𝑠← Πopen(⟦𝑠⟧, 𝑃𝑖), which opens 𝑠 to party 𝑃𝑖.
– ⟦𝑠⟧ ← Πadd (⟦𝑎⟧, ⟦𝑏⟧), which returns 𝑠 = 𝑎 + 𝑏. This protocol can be done

without communication.
– ⟦𝑠⟧ ← Πmul (⟦𝑎⟧, ⟦𝑏⟧), which returns 𝑠 = 𝑎𝑏 (with re-randomization).
– ⟦𝑠⟧ ← Πinner (⟦a⟧, ⟦b⟧), which return inner product 𝑠 = a⊤ · b (with re-

randomization).

– ⟦𝑟⟧ ← Πrand (J), which draws uniformly 𝑟
$← J where J is either F𝑝, F or K.

– 𝜆← Πchallenge (K), which draws public uniform 𝜆 over designated field K.

We assume that, the above functionalities are ideal, in the sense that any
misbehavior leads to immediate abort. Note that this is different from real-
world protocol, where honest parties will detect misbehavior only after certain
correctness check.

Note that Πinput, Πopen, Πmul, Πrand and Πchallenge can be implemented in
𝑂 (𝑛) communication and 𝑂 (𝑛) computation. Note also that Πinner, when called
with two vectors of length 𝑚, requires 𝑂 (𝑛) communication and 𝑂 (𝑛𝑚) compu-
tation. Moreover, we assume Πadd can be done without communication.
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A concrete construction supporting above primitives can be found in [31].
Note that in practice, current constructions for FShamir require batched pro-
cessing for achieving amortized linear communication. As our construction does
not require immediate and separate correctness check for multiplications, the
amortized complexity can be faithfully achieved. Also note that due to efficiency
consideration, concrete implementation of Πchallenge produces only a distribution
“close to” uniform, which costs 𝑂 (𝑛) communication (see [31]). For the simplicity
of analysis, we omit this issue and simply assume that the output is uniform.
This will not harm the security of our protocol.

4 Permutation Protocol and Shuffle Protocol

In this section, we describe the construction of our first shuffle protocol. This
protocol is constructed by first developing a protocol that allows a single party
𝑃𝑤 to share a secret permutation 𝜋, such that parties can apply permutation 𝜋

to any vector of compatible size. Once such a permutation sharing protocol is
available, the shuffle protocol follows directly from permute-in-turn paradigm.
That is, in the offline phase, each party shares a secret uniform 𝑚-permutation.
In the online phase, all parties perform all the 𝑚-permutations sequentially. The
uniformity of shuffle follows by the fact that as long as one of the permutation
remains unknown and uniform, the produced permutation is uniform.

To implement such a permutation-sharing scheme, there are two straightfor-
ward approaches:

1. Share an 𝑚 × 𝑚 permutation matrix among parties. Sharing such a per-
mutation requires 𝑂 (𝑛𝑚2) communication, and applying it requires 𝑂 (𝑛𝑚)
communication, 𝑂 (𝑛𝑚2) computation and 𝑂 (1) rounds.

2. Share 𝑚 log𝑚 bits among parties, each responds to a control bit in the permu-
tation network [11]. Sharing a permutation hence requires 𝑂 (𝑛𝑚 log𝑚) com-
munication, and applying it requires 𝑂 (𝑛𝑚 log𝑚) communication/computation
and 𝑂 (log𝑚) rounds.

The first approach offers optimal communication overhead for applying the per-
mutation, while the second offers optimal overall communication complexity. The
main drawback of the first approach is its 𝑂 (𝑚2) communication/computation,
which is unrealistic for large 𝑚. The main drawback of the second approach is
its 𝑂 (log𝑚) rounds, and that applying a permutation is no cheaper than sharing
it, i.e. the protocol does not benefit much from an offline phase.

It turns out that the above two approaches can be viewed as two extreme
cases of a more sophisticated construction of ours. Roughly, it turns out that
we can represent an 𝑚-permutation by 𝑚 log𝑚

𝑘 log 𝑘
many 𝑘 × 𝑘 permutation matrices.

Applying a shared permutation is thus replaced by multiplying a bunch of 𝑘 ×
𝑘 matrices with a bunch of 𝑘-long vectors, in appropriate order. To this end,
we require a protocol for sharing (well-formed) permutation matrix. However,
checking if an arbitrarily shared matrix is well-formed permutation matrix is a
non-trivial task (see discussion in Section 6.1). To overcome this, we first let
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party share 𝑘 one-hot vectors. By checking if the 𝑘 one-hot vectors are distinct
from each other, the parties are able to check the well-formedness of permutation
matrix.

Hence in the following, we first present our definition of shared permuta-
tion, and how parties could use it to perform permutation. We then give our
construction for sharing one-hot vectors, which is then used to generate shared
permutation matrix. After presenting the construction of our shuffle protocol,
we analyze its complexity at the end of this section.

4.1 Shared Permutation

Definition 1 (𝑘-Shared 𝑚-Permutation). We say an 𝑚-permutation 𝜋 is 𝑘-
shared as ⟦𝜋⟧𝑘, if

⟦𝜋⟧𝑘 := (𝑘, 𝑠, {{⟦P𝜋′
𝑖, 𝑗
⟧, 𝑇𝑖, 𝑗 } 𝑗∈[𝑚/𝑘 ]}𝑖∈[𝑠]),

where

1. Each 𝜋′
𝑖, 𝑗

is a 𝑘-permutation.
2. 𝑠 = 𝑂 ( log𝑚

log 𝑘
). This requirement is tight, c.f. Section 6.3.

3. Permutation matrix P𝜋′
𝑖, 𝑗

is secret shared among parties.
4. 𝑇𝑖, 𝑗 ⊆ [𝑚] of size 𝑘, which is denoted as “task” of 𝜋′

𝑖, 𝑗
. For same 𝑖, 𝑇𝑖, 𝑗 are

disjoint.
5. 𝜋 = 𝜋𝑠,1 ◦ 𝜋𝑠,2 ◦ · · · 𝜋𝑠,𝑚/𝑘 ◦ 𝜋𝑠−1,1 ◦ · · · ◦ 𝜋1,𝑚/𝑘, where 𝜋𝑖, 𝑗 is defined as the

𝑚-permutation acquired by letting 𝜋′
𝑖, 𝑗

acting on entries specified by 𝑇𝑖, 𝑗 .

For simplicity, we require in addition that 𝑚 and 𝑘 are power-of-two. When
𝑘 is not important in context, we simply write a shared 𝜋 as ⟦𝜋⟧.

Once ⟦𝜋⟧ is shared, parties can apply it to arbitrarily many 𝑚-long vectors.
This is done by properly and iteratively replacing the entries of the vector by the
matrix-vector product between the shared permutation matrices and the vector.
As an example, when 𝑘 = 𝑚, the entire shared permutation is simply an 𝑚 × 𝑚
permutation matrix, and multiplying it by the vector results immediately the
permuted vector. This process is formalized in Algorithm 1.

4.2 Sharing One-hot Vector

A one-hot vector is a vector that has exactly one non-zero entry, whose value is 1.
Define the “index” of a one-hot vector to be the position where 1 locates. Sharing
one-hot vector serves as the first step towards sharing permutation matrix, as
a 𝑘 × 𝑘 permutation matrix consists of 𝑘 many one-hot vectors with distinct
indices.

Suppose party 𝑃𝑤 needs to share a one-hot vector of length 𝑘 with index ind,
for 𝑘 = 2𝑑. It first decomposes the index into log 𝑘 = 𝑑 many bits 𝑏1, 𝑏2, ..., 𝑏𝑑,
i.e.

ind =

𝑑∑︁
𝑖=1

2𝑖−1𝑏𝑖 .
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Algorithm 1 ⟦𝜋(v)⟧ ← Permute(⟦𝜋⟧, ⟦v⟧)
Require: 𝜋 is a shared 𝑚-permutation and v is of length 𝑚.
Ensure: Return ⟦𝜋(v)⟧.

Parse ⟦𝜋⟧ as (𝑘, 𝑠, {{⟦P𝜋′
𝑖, 𝑗
⟧, 𝑇𝑖, 𝑗 } 𝑗∈[𝑚/𝑘 ] }𝑖∈[𝑠] )

for 𝑖 = 1 to 𝑠 do
for 𝑗 = 1 to 𝑚/𝑘 do parallel
⟦u⟧ ← ⟦v(𝑙)⟧𝑙∈𝑇𝑖, 𝑗
⟦u′⟧ ← ⟦P𝜋′

𝑖, 𝑗
⟧ · ⟦u⟧ ⊲ 𝑘 calls to Πinner.

⟦v(𝑙)⟧ ← ⟦u′ (𝑙)⟧ for each index 𝑙 ∈ 𝑇𝑖, 𝑗
end for

end for
Return ⟦v⟧.

Then it shares ⟦𝑏𝑖⟧ to all parties. The parties can check if all shared values are
Boolean by generating a challenge 𝜆 ∈ K and checking that

0 =

𝑑∑︁
𝑖=1

𝜆𝑖−1⟦𝑏𝑖⟧⟦1 − 𝑏𝑖⟧.

Note that this is evaluating a polynomial 𝐹 ∈ K[𝑋] of degree at most 𝑑 − 1 at a
random point 𝜆 ∈ K. As a (𝑑 − 1)-degree polynomial has at most 𝑑 − 1 roots in
field, we have

Pr[𝐹 (𝜆) ≠ 0 | ∃𝑖 s.t. 𝑏𝑖 (1 − 𝑏𝑖) ≠ 0] ≥ 1 − 𝑑 − 1
|K| ≥ 1 − 𝑑 − 1

2𝜅
.

This Boolean checking protocol is formally described in Algorithm 2.

Algorithm 2 BoolCheck(⟦𝑏1⟧, ..., ⟦𝑏𝑑⟧)
Ensure: Abort if any 𝑏𝑖 is not in {0, 1}.

𝜆← Πchallenge (K)
⟦𝑢⟧ ← ∑𝑑

𝑖=1 𝜆
𝑖−1⟦𝑏𝑖⟧⟦1 − 𝑏𝑖⟧ ⊲ One call to Πinner.

𝑢 ← Πopen (⟦𝑢⟧)
All parties abort if 𝑢 ≠ 0.

If the check passes, parties convert the shared bits into a one-hot vector.
This operation of unfolding log 𝑘 bits into 𝑘-long one-hot vector is known as
“demultiplex”. In MPC, this can be done by the demux protocol proposed by
Launchbury et al. [32], which computes the desired one-hot vector with 𝑂 (𝑘)
MPC multiplication within 𝑂 (log log 𝑘) rounds. This is done by first separating
the bits into two parts and recursively generating corresponding one-hot vector
for each part. By computing the tensor product of two returned one-hot vector,
the parties obtain the one-hot vector with correct index. This protocol is formally
presented in Algorithm 3.
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Algorithm 3 (⟦𝑠1⟧, ..., ⟦𝑠2𝑑⟧) ← Demux(⟦𝑏1⟧, ..., ⟦𝑏𝑑⟧)
Ensure: Output a one-hot vector with index

∑𝑑
𝑖=1 2

𝑖−1𝑏𝑖 + 1.
if 𝑑 = 1 then

Return (1 − ⟦𝑏1⟧, ⟦𝑏1⟧)
end if
𝑡 ← ⌊𝑑/2⌋
⟦𝑢1⟧, ⟦𝑢2⟧, ..., ⟦𝑢2𝑡⟧ ← Demux(⟦𝑏1⟧, ..., ⟦𝑏𝑡⟧)
⟦𝑣1⟧, ⟦𝑣2⟧, ..., ⟦𝑣2𝑑−𝑡⟧ ← Demux(⟦𝑏𝑡+1⟧, ..., ⟦𝑏𝑑⟧) ⊲ Parallel recursive calls.
for 𝑖 = 1 to 2𝑡 do parallel

for 𝑗 = 1 to 2𝑑−𝑡 do parallel
⟦𝑠𝑖+2𝑡 ( 𝑗−1)⟧ ← Πmul (⟦𝑢𝑖⟧, ⟦𝑣 𝑗⟧)

end for
end for
Return ⟦𝑠1, ..., 𝑠2𝑑⟧

Algorithm 4 gives a formal description of our OneHot protocol, which helps
party 𝑃𝑤 share a one-hot vector. Note that parties can check all shared bits in
one call to BoolCheck, instead of checking separately for each one-hot vector.

Algorithm 4 (⟦𝑠1⟧, ..., ⟦𝑠𝑘⟧) ← OneHot(𝑘, 𝑃𝑤 : ind)
Require: 𝑘 = 2𝑑 is a power of two.
Ensure: Output a one-hot vector, with index ind.

𝑃𝑤 computes bits 𝑏1, ..., 𝑏𝑑 , s.t. ind =
∑𝑑
𝑖=1 2

𝑖−1𝑏𝑖 + 1.
𝑃𝑤 shares ⟦𝑏1⟧, ..., ⟦𝑏𝑑⟧.
BoolCheck(⟦𝑏1⟧, ..., ⟦𝑏𝑑⟧)
Return Demux(⟦𝑏1⟧, ..., ⟦𝑏𝑑⟧).

4.3 Sharing Permutation Matrix

Note that a 𝑘 × 𝑘 permutation matrix is 𝑘 many 𝑘-long one-hot vectors with
distinct indices. By calling 𝑘 times OneHot protocol and viewing the results as
row vectors, the parties obtain a shared matrix P ∈ {0, 1}𝑘×𝑘 , such that each
row contains exactly one 1. However, a corrupted 𝑃𝑤 could make P ill-formed
by putting more than one 1 on same column. To prevent this, parties need to
check if the shared matrix is well-formed. As there are in total 𝑘 many 1 in the
matrix and 0 elsewhere, it suffices to check that sum along column is never 0,
which is equivalent to verifying that all sums along column are 1.

To this end, a naive approach is to open the sums along each column, and
check if all of them are 1. To batch the check, the parties can first generate a
challenge 𝜆← Πchallenge (K), and check if

𝑘∑︁
𝑖=1

𝜆𝑖−1
?
=

𝑘∑︁
𝑖=1

(
𝜆𝑖−1

(
𝑘∑︁
𝑗=1

P( 𝑗 , 𝑖)
))

.
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Since a non-zero polynomial of degree 𝑘 − 1 will have at most 𝑘 − 1 roots in
field, the equality will not hold with probability 1 − 𝑘−1

|K | ≥ 1 − 𝑘−1
2𝜅 if P is not a

permutation matrix.
The protocols are formally presented in Algorithm 5 and Algorithm 6. Note

that the entire process of Algorithm 6 is a single call to protocol Πchallenge plus
Πopen. Also, parties can batch all permutation checks into one single check,
instead of checking each matrix separately, which could improve concrete com-
munication complexity.

Algorithm 5 ⟦P⟧ ← PermMat(𝑃𝑤 : 𝜋)
Require: 𝜋 is a 𝑘-permutation, where 𝑘 is power of two.
Ensure: Output a permutation matrix P.

for 𝑖 = 1 to 𝑘 do parallel
v𝑖 ← OneHot(𝑘, 𝑃𝑤 : 𝜋(𝑖))

end for
⟦P⟧ := ⟦𝑣𝑖, 𝑗⟧𝑖, 𝑗∈[𝑘 ]
PermCheck(⟦P⟧)
Return ⟦P⟧.

Algorithm 6 PermCheck(⟦P⟧)
Require: P is of size 𝑘 × 𝑘, with each row a one-hot vector.
Ensure: Abort with high probability if P is not a permutation matrix.
⟦sum⟧ ← ⟦0⟧
𝜆← Πchallenge (K)
for 𝑗 = 1 to 𝑘 do ⊲ Enumerate columns.
⟦sum⟧ ← ⟦sum⟧ + 𝜆 𝑗−1 (1 −∑𝑘

𝑖=1⟦P(𝑖, 𝑗)⟧)
end for
sum← Πopen (⟦sum⟧)
Abort if sum ≠ 0.

4.4 Permutation Decomposition and Sharing Permutation

The Beneš network dates back to the seminal work of Beneš [30]. In short, it is
a switching network capable of representing any 𝑚-permutation within 𝑂 (log𝑚)
depth. By partitioning the network by layers and taking out intermediate per-
mutations, one naturally obtains a reformulation of original permutation. Chase
et al. [12] first introduce the permutation decomposition technique based on
such reformulation, which decomposes an 𝑚-permutation into 𝑂 (𝑚 log𝑚

𝑘 log 𝑘
) many

smaller permutations, each of size 𝑘. Original Beneš network works only for 𝑚

being power of two. Though there are works extending it to work with arbi-
trary input size, some important properties are lost, e.g. the independency of
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decomposed small permutations, which is crucial for the round complexity to be
𝑂 (log𝑚).

To formalize this process, denote by

(𝜋1, 𝜋2, ..., 𝜋𝑠) ← Decompose(𝜋, 𝑘)

the process of decomposing 𝜋 into

𝜋 = 𝜋𝑠 ◦ 𝜋𝑠−1 ◦ · · · ◦ 𝜋1,

with each 𝜋𝑖 an 𝑚-permutation. The concrete value is 𝑠 = (2 log𝑚 − 1)/log 𝑘
according to [12], which is 𝑂 ( log𝑚

log 𝑘
). Each 𝜋𝑖 can be further decomposed as

{𝜋𝑖, 𝑗 } 𝑗∈[𝑚/𝑘 ] , each of which is an 𝑚-permutation that touches only 𝑘 entries
of the vector. Hence,

𝜋 = 𝜋𝑠,1 ◦ 𝜋𝑠,2 ◦ · · · 𝜋𝑠,𝑚/𝑘 ◦ 𝜋𝑠−1,1 ◦ · · · ◦ 𝜋1,𝑚/𝑘 .

Define the “task” of each 𝜋𝑖, 𝑗 as

Task(𝑚, 𝑘, 𝑖, 𝑗) = {𝑥 ∈ [𝑚] | 𝜋𝑖, 𝑗 affects the 𝑥-th entry}.

Denote by 𝜋′
𝑖, 𝑗

the “compressed” permutation of 𝜋𝑖, 𝑗 , in the sense that it is now a
𝑘-permutation acting on its task. The decomposition guarantees that each task
has size 𝑘.

We note that the decomposition enjoys task-invariant property, which means
that the task of 𝜋𝑖, 𝑗 is independent of 𝜋. This allows all parties to agree on the
tasks (i.e. which of the entries shall be permuted) even without knowing the
permutation being currently applied.

Example 1. As a concrete example, consider decomposing a 8-permutation 𝜋,
with 𝑘 = 4. Suppose we have decomposed 𝜋 and obtained 𝜋1 as

𝜋1 =

(
1 2 3 4 5 6 7 8
5 4 3 6 7 8 1 2

)
.

It can further be decomposed into two disjoint permutations, i.e.

𝜋1,1 =

(
1 3 5 7
5 3 7 1

)
, 𝜋1,2 =

(
2 4 6 8
4 6 8 2

)
.

Note that 𝜋1,1 and 𝜋1,2 are “disjoint” 8-permutations, in the sense that they are
essentially two smaller permutations acting on disjoint fixed subsets (i.e. their
tasks) of {1, ..., 8}. The corresponding tasks are

Task(8, 4, 1, 1) = {1, 3, 5, 7},
Task(8, 4, 1, 2) = {2, 4, 6, 8}.

Note that 𝜋1,1 may vary by 𝜋, but its task will not, due to the task-invariant
property of the decomposition. Hence, we may compress them into 𝜋′1,1 and 𝜋′1,2,
where

𝜋′1,1 =

(
1 2 3 4
3 2 4 1

)
, 𝜋′1,2 =

(
1 2 3 4
2 3 4 1

)
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We have thus represented a 8-permutation 𝜋1 by two 4-permutations 𝜋′1,1
and 𝜋′1,2, each acting on disjoint entries.

Our construction for permutation sharing protocol is formally presented in
Algorithm 7. Roughly, all parties firstly agree on the parameter 𝑘. Each party
then obtains a sequence of task by locally computing {Task(𝑚, 𝑘, 𝑖, 𝑗)}, and party
𝑃𝑤 who chooses the permutation 𝜋 locally decomposes 𝜋 into a sequence of small
permutation {𝜋′

𝑖, 𝑗
}. Then 𝑃𝑤 shares all 𝜋′

𝑖, 𝑗
as permutation matrices. Since 𝜋𝑖, 𝑗

are disjoint for same 𝑖, this satisfies our definition for 𝑘-shared 𝑚-permutation.

Algorithm 7 ⟦𝜋⟧𝑘 ← SharePerm(𝑘, 𝑃𝑤 : 𝜋)
Require: 𝜋 is 𝑚-permutation.
Ensure: Return 𝑘-shared 𝑚-permutation ⟦𝜋⟧𝑘 .

Party 𝑃𝑤 let (𝜋1, ..., 𝜋𝑠) ← Decompose(𝜋, 𝑘).
Party 𝑃𝑤 further decomposes each 𝜋𝑖 into 𝜋𝑖,1, ..., 𝜋𝑖,𝑚/𝑘 .
for 𝑖 = 1 to 𝑠 do parallel

for 𝑗 = 1 to [𝑚/𝑘] do parallel
𝑇𝑖, 𝑗 ← Task(𝑚, 𝑘, 𝑖, 𝑗)
⟦P𝜋′

𝑖, 𝑗
⟧ ← PermMat(𝑃𝑤 : 𝜋′

𝑖, 𝑗
)

end for
end for
Return ⟦𝜋⟧𝑘 := (𝑘, 𝑠, {{⟦P𝜋′

𝑖, 𝑗
⟧, 𝑇𝑖, 𝑗 } 𝑗∈[𝑚/𝑘 ] }𝑖∈[𝑠] ).

4.5 Shuffle Protocol

Our first shuffle protocol consists of exactly 𝑛 calls to the permutation proto-
col developed above. The two phases of the protocol are formally presented in
Algorithm 8 and Algorithm 9. In the offline phase, parties prepare 𝑛 shared
permutations, one from each party. In the online phase, parties apply these per-
mutations to the incoming data by protocol Permute.

Algorithm 8 {⟦𝜋𝑖⟧𝑘}𝑖∈[𝑛] ← Shuffle1Off (𝑘, 𝑚)
Require: Both 𝑚 and 𝑘 are power of two.

for 𝑤 = 1 to 𝑛 do
Party 𝑃𝑤 draws 𝑚-permutation 𝜋𝑤 uniformly.
SharePerm(𝑘, 𝑃𝑤 : 𝜋𝑤)

end for
Return {⟦𝜋𝑖⟧𝑘}𝑖∈[𝑛] .

16



Algorithm 9 ⟦v′1, v′2, ..., v′𝑙⟧ ← Shuffle1On (⟦v1, v2, ..., v𝑙⟧)
Require: Each v𝑖 is of length 𝑚, which is a power of two.
Ensure: Return shuffled ⟦𝜋(v𝑖)⟧𝑖∈[𝑙 ] , with secret uniform 𝜋.

Fetch fresh {⟦𝜋𝑖⟧}𝑖∈[𝑛] generated by Shuffle1off .
for 𝑤 = 1 to 𝑛 do

for 𝑖 = 1 to 𝑙 do parallel
⟦v𝑖⟧ ← Permute(⟦𝜋𝑤⟧, ⟦v𝑖⟧)

end for
end for
Return ⟦v′1, v

′
2, ..., v

′
𝑙
⟧.

4.6 Complexity Analysis

Below we offer a detailed analysis of the complexity of above protocols. We
discuss the offline and online complexity separately when necessary, and omit
this separation for simple protocols. The complexities for shuffle protocols are
concluded in Corollary 1.

Theorem 1. For protocol Permute(⟦𝜋⟧𝑘 , ⟦v⟧) described in Algorithm 1, the
communication, computation and round complexity are 𝑂 ( 1

log 𝑘
𝑛𝑚 log𝑚), 𝑂 ( 𝑘

log 𝑘
𝑛𝑚 log𝑚)

and 𝑂 ( log𝑚

log 𝑘
), respectively.

Proof: The parties are computing 𝑂 (𝑚 log𝑚

𝑘 log 𝑘
) many matrix-vector products,

each multiplying a 𝑘 × 𝑘 permutation matrix by 𝑘-long data vector. Such a
multiplication is simply 𝑘 calls to Πinner, of each the communication complexity
is only 𝑂 (𝑛𝑘). The communication complexity is hence 𝑂 ( 1

log 𝑘
𝑛𝑚 log𝑚). The

computation complexity of a single matrix-vector product is 𝑂 (𝑛𝑘2), and the
computation complexity is hence 𝑂 ( 𝑘

log 𝑘
𝑛𝑚 log𝑚).

For round complexity, note that the parties can parallelize all small permuta-
tion 𝜋′

𝑖, 𝑗
with same 𝑖. The entire 𝑖-th iteration is thus done within 𝑂 (1) rounds,

and the round complexity is simply 𝑂 (𝑠) = 𝑂 ( log𝑚

log 𝑘
).

Lemma 1. For protocol BoolCheck(⟦𝑏1, ..., 𝑏𝑑⟧) described in Algorithm 2, the
communication, computation and round complexity are 𝑂 (𝑛), 𝑂 (𝑛𝑑) and 𝑂 (1),
respectively.

Proof: The only communication happens at one call to Πchallenge, Πopen and
Πinner, all within 𝑂 (𝑛) communication and 𝑂 (1) rounds.

The computation bottleneck is computing

⟦𝑢⟧ ←
𝑑∑︁
𝑖=1

𝜆𝑖−1⟦𝑏𝑖⟧⟦1 − 𝑏𝑖⟧,

which is 𝑂 (𝑛𝑑) computation in total.
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Lemma 2. For protocol Demux(⟦𝑏1, ..., 𝑏𝑑⟧) described in Algorithm 3, the com-
munication, computation and round complexity are 𝑂 (𝑛2𝑑), 𝑂 (𝑛2𝑑) and 𝑂 (log 𝑑),
respectively.

Proof: Denote by 𝑀 (𝑑) the number of calls to primitive Πmul. Then

𝑀 (𝑑) = 2 × 𝑀 (𝑑/2) + 2𝑑 .

Since for all 𝑑 ≥ 4,

2𝑑+1 ≥ 2 × 2𝑑/2+1 + 2𝑑 = 2𝑑/2+2 + 2𝑑 ,

we conclude that 𝑀 (𝑑) = 𝑂 (2𝑑+1) = 𝑂 (2𝑑).
Recall that in protocol Demux, only calls to Πmul require communication.

Hence, the communication complexity is 𝑂 (𝑛2𝑑). The computation complexity
follows similarly.

Denote by 𝑅(𝑑) the number of rounds. Note that

𝑅(𝑑) = 𝑅(𝑑/2) +𝑂 (1).

This is because the two calls to Demux can be parallelized, and the remainder
is parallel calls to Πmul. Hence, the round complexity is 𝑂 (log 𝑑).

Lemma 3. For protocol OneHot(𝑘, 𝑃𝑤 : ind) described in Algorithm 4, the com-
munication, computation and round complexity are 𝑂 (𝑛𝑘), 𝑂 (𝑛𝑘) and 𝑂 (log log 𝑘),
respectively.

Proof: The bottleneck is the call to Demux(⟦𝑏1, ..., 𝑏𝑑⟧), for 𝑑 = log 𝑘. Ac-
cording to Lemma 2, its communication, computation and round complexity are
𝑂 (𝑛2𝑑), 𝑂 (𝑛2𝑑) and 𝑂 (log 𝑑), respectively. As 𝑑 = log 𝑘, the theorem follows
trivially.

Lemma 4. For protocol PermCheck(⟦P⟧) described in Algorithm 6, the com-
munication, computation and round complexity are 𝑂 (𝑛), 𝑂 (𝑛𝑘2) and 𝑂 (1), re-
spectively.

Proof: The communication happens only at Πchallenge and Πopen, each costs
𝑂 (𝑛) communication and 𝑂 (1) rounds.

The most computation-heavy step in the algorithm is each party locally com-
puting the sum, which costs 𝑂 (𝑛𝑘2) in total.

Lemma 5. For protocol PermMat(𝑃𝑤 : 𝜋) described in Algorithm 5, the commu-
nication, computation and round complexity are 𝑂 (𝑛𝑘2), 𝑂 (𝑛𝑘2) and 𝑂 (log log 𝑘),
respectively.

Proof: The protocol consists of 𝑘 parallel calls to protocol OneHot(𝑘, 𝑃𝑤 : 𝜋(𝑖))
plus one call to PermCheck(P). By Lemma 3 and Lemma 4, this costs 𝑂 (𝑛𝑘2)
communication, 𝑂 (𝑛𝑘2) computation and 𝑂 (log log 𝑘) rounds.
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Theorem 2. For protocol SharePerm(𝑘, 𝑃𝑤 : 𝜋) given in Algorithm 7, the com-
munication, computation and round complexity are 𝑂 ( 𝑘

log 𝑘
𝑛𝑚 log𝑚), 𝑂 ( 𝑘

log 𝑘
𝑛𝑚 log𝑚)

and 𝑂 (log log 𝑘), respectively.

Proof: Recall that the permutation decomposition of [12] decomposes an 𝑚-
permutation 𝜋 into 𝑠 = 𝑂 ( log𝑚

log 𝑘
) many 𝑚-permutations 𝜋1, ..., 𝜋𝑠. Each permu-

tation 𝜋𝑖 is then decomposed into 𝑚/𝑘 many permutations 𝜋𝑖,1, ..., 𝜋𝑖,𝑚/𝑘 , each
transformed into a 𝑘-permutation 𝜋′

𝑖, 𝑗
.

To share the permutations, 𝑃𝑤 needs to share 𝑂 (𝑚 log𝑚

𝑘 log 𝑘
) many 𝑘×𝑘 permuta-

tion matrices in total. According to Lemma 5, by parallel calls to PermMat, this
is 𝑂 ( 𝑘

log 𝑘
𝑛𝑚 log𝑚) communication and computation, and 𝑂 (log log 𝑘) rounds.

Corollary 1. Suppose the parties are shuffling vector of vectors, i.e. shuffling
⟦V⟧ = ⟦v1, ..., v𝑚⟧, each v𝑖 of length 𝑙.

For our first shuffle protocol described in Algorithm 8 and 9, the offline com-
munication, computation and round complexity are 𝑂 ( 𝑘

log 𝑘
𝑛2𝑚 log𝑚), 𝑂 ( 𝑘

log 𝑘
𝑛2𝑚 log𝑚)

and 𝑂 (log log 𝑘), respectively. The online complexities are 𝑂 ( 𝑙
log 𝑘

𝑛2𝑚 log𝑚),
𝑂 ( 𝑘𝑙

log 𝑘
𝑛2𝑚 log𝑚) and 𝑂 ( 𝑛 log𝑚

log 𝑘
), respectively.

Proof: Note that all parties can share permutation matrices in parallel in the
offline phase. Hence, the offline round complexity is simply 𝑂 (log log 𝑘).

Other complexities follow naturally from Theorem 1 and 2.

5 Shuffle Protocol with Linear Online Communication

In this section, we give the construction of our second shuffle protocol. We utilize
the malicious shuffle correlation proposed by Gao et al. [14], and obtain a shuffle
protocol with 𝑂 (𝑛𝑚𝑙) online communication with 𝑂 ( 𝑘+𝑙

log 𝑘
𝑛2𝑚 log𝑚) offline com-

munication. For a clarity of demonstration, below we describe the construction
for 𝑙 = 1, i.e. the case of shuffling vector entries.

5.1 Correlation Check of Public Values

The functionality of protocol CorrCheck(a, b, ⟦𝛽⟧, ⟦r⟧) is to check for 𝑃𝑤 whether
𝛽a = b + r. For honest 𝑃𝑤, this protocol aborts w.h.p. if the correlation is not
satisfied.

This protocol is for the online phase of the shuffle protocol, where each party
𝑃𝑖 will send some a and b to 𝑃𝑖+1. Party 𝑃𝑖+1 could use this protocol to make
sure that it is receiving correct messages. If honest 𝑃𝑖+1 passes the check, this
means that 𝑃𝑖 has sent correct message to 𝑃𝑖+1. In [14], it is shown that as long as
honest 𝑃𝑤 receives correct messages, the permutation chosen by it is protected.

To perform the check, party 𝑃𝑤 first locally draws a challenge 𝜆 ← K. It
computes

𝑢 ←
𝑚∑︁
𝑖=1

𝜆𝑖−1a(𝑖), 𝑣 ←
𝑚∑︁
𝑖=1

𝜆𝑖−1b(𝑖),
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and broadcasts 𝜆, 𝑢, 𝑣. Then all parties compute

⟦𝑠⟧ ← ⟦𝛽⟧𝑢 − 𝑣 −
𝑚∑︁
𝑖=1

𝜆𝑖−1⟦r(𝑖)⟧,

and check if the result is zero. Note that communications happen only at a call
to Πopen and Πmul, besides the broadcast of 𝜆.

This protocol is formally presented in Algorithm 10.

Algorithm 10 CorrCheck(𝑃𝑤 , a, b, ⟦𝛽⟧, ⟦r⟧)
Require: a and b are known to 𝑃𝑤 . However, they are not secret.
Ensure: If 𝑃𝑤 = ∅ or 𝑃𝑤 is honest, abort w.h.p. if 𝛽a ≠ b + r.

Let 𝑚 be the length of a, b and ⟦r⟧.
if 𝑃𝑤 ≠ ∅ then

𝑃𝑤 draws uniformly 𝜆← K.
𝑃𝑤 computes 𝑢 ← ∑𝑚

𝑖=1 𝜆
𝑖−1a(𝑖).

𝑃𝑤 computes 𝑣 ← ∑𝑚
𝑖=1 𝜆

𝑖−1b(𝑖).
𝑃𝑤 broadcasts 𝜆, 𝑢, 𝑣.

else ⊲ a and b are known to all.
𝜆← Πchallenge ()
All parties locally compute 𝑢 ← ∑𝑚

𝑖=1 𝜆
𝑖−1a(𝑖).

All parties locally compute 𝑣 ← ∑𝑚
𝑖=1 𝜆

𝑖−1b(𝑖).
end if
⟦𝑠⟧ ← ⟦𝛽⟧𝑢 − 𝑣 −∑𝑚

𝑖=1 𝜆
𝑖−1⟦r(𝑖)⟧

𝑠← Πopen (⟦𝑠⟧)
All parties abort if 𝑠 ≠ 0.

5.2 Offline Phase

The main task of the offline phase is to generate a shuffle correlation, i.e. to
generate some random (secret shared) values satisfying certain correlation. The
definition of shuffle protocol is given below.

Definition 2 (𝑚-Shuffle Correlation[14]). The 𝑚-shuffle correlation is de-
fined as

cor =


⟦𝛽⟧ ⟦r⟧ ⟦𝛽r⟧ ⟦s⟧
𝜋1 𝜋2 · · · 𝜋𝑛

⟦𝜋1 (r′1)⟧ ⟦𝜋2 (r′2)⟧ · · · ⟦𝜋𝑛 (r′𝑛)⟧
z2 · · · z𝑛

 ,

where

1. 𝜋𝑖 is an 𝑚-permutation known only to 𝑃𝑖. It is chosen by 𝑃𝑖 and is uniform
over all possible 𝑚-permutations if 𝑃𝑖 is honest.

2. ⟦𝛽⟧ is a secret shared random variable uniform over K.
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3. ⟦r⟧, ⟦s⟧, ⟦r′1⟧, ..., ⟦r′𝑛⟧ are secret shared vectors of length 𝑚, with each entry
independently uniformly random over K. ⟦𝛽r⟧ is secret shared 𝛽 · r.

4. z𝑖 = (z𝑖,1, z𝑖,2), where z𝑖, 𝑗 is a vector of length 𝑚. The entries of z𝑖,1 are
uniformly random, under the constraint{

z𝑖,2 = 𝛽z𝑖,1 + 𝜋𝑖−1 (r′𝑖−1) − r′𝑖 ∀𝑖 = 2, 3, ..., 𝑛

s = 𝜋𝑛 (𝜋𝑛−1 (· · · 𝜋2 (𝜋1 (r) − z2,1) − z3,1 · · · ) − z𝑛,1)

To generate such a shuffle correlation, the parties first generate a random
⟦𝛽⟧ and 2𝑛 random vectors in K, each of length 𝑚. Denote them as

⟦r1⟧, ⟦r2⟧, ..., ⟦r𝑛⟧, ⟦r′1⟧, ⟦r′2⟧, ..., ⟦r′𝑛⟧.

The parties then call protocol Πmul and acquire

⟦𝛽r1⟧, ⟦𝛽r2⟧, ..., ⟦𝛽r𝑛⟧,

i.e. multiplying each entry by a same factor 𝛽.
The parties then call protocol Permute for 𝑛 times, and acquire for 𝑖 ∈ [𝑛]

⟦𝜋𝑖 (r𝑖), 𝜋𝑖 (𝛽r𝑖), 𝜋𝑖 (r′𝑖)⟧ ← Permute(𝑃𝑖 : 𝜋𝑖 , ⟦r𝑖 , 𝛽r𝑖 , r′𝑖⟧).

Now the parties compute for each 𝑖 ≥ 2

⟦z𝑖,1⟧ ← ⟦𝜋𝑖−1 (r𝑖−1)⟧ − ⟦r𝑖⟧,
⟦z𝑖,2⟧ ← ⟦𝜋𝑖−1 (𝛽r𝑖−1)⟧ + ⟦𝜋𝑖−1 (r′𝑖−1)⟧ − ⟦𝛽r𝑖⟧ − ⟦r′𝑖⟧.

Note that ⟦z𝑖⟧ := (⟦z𝑖,1⟧, ⟦z𝑖,2⟧) is a vector of length 2𝑚.
The parties then open each ⟦z𝑖⟧ to 𝑃𝑖, for each 𝑖 ≥ 2. And the shuffle corre-

lation returned by this protocol is

cor :=


⟦𝛽⟧ ⟦r1⟧ ⟦𝛽r1⟧ ⟦𝜋𝑛 (r𝑛)⟧
𝜋1 𝜋2 ... 𝜋𝑛

⟦𝜋1 (r′1)⟧ ⟦𝜋2 (r′2)⟧ · · · ⟦𝜋𝑛 (r′𝑛)⟧
z2 · · · z𝑛

 .

Note that each z𝑖 is held as plaintext by party 𝑃𝑖 for 𝑖 ≥ 2, and variables with
bracket is shared among all parties.

To see that this satisfies the definition of shuffle correlation, note that by
substituting the r and s in the definition with r1 and 𝜋𝑛 (r𝑛), all requirements
will be satisfied.

This protocol is formally described in Algorithm 11.

5.3 Online Phase

In the online phase of the protocol, when parties are to shuffle ⟦v⟧, the parties
first compute

⟦z1⟧ = (⟦v⟧ − ⟦r1⟧, ⟦𝛽⟧⟦v⟧ − ⟦𝛽r1⟧ − ⟦r′1⟧),
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Algorithm 11 cor← Shuffle2off (𝑃1 : 𝜋1, ..., 𝑃𝑛 : 𝜋𝑛)
Require: For honest 𝑃𝑖 , 𝜋𝑖 is sampled uniformly from all 𝑚-permutations.
Ensure: Output a shuffle correlation.
⟦𝛽⟧ ← Πrand (K).
for 𝑖 = 1 to 𝑛 do parallel
⟦r𝑖 ( 𝑗)⟧ ← Πrand (K) for 𝑗 ∈ [𝑚]
⟦r′

𝑖
( 𝑗)⟧ ← Πrand (K) for 𝑗 ∈ [𝑚]

⟦𝛽r𝑖⟧ ← Πmul (⟦𝛽⟧, ⟦r𝑖⟧)
⟦𝜋𝑖⟧ ← SharePerm(𝑘, 𝑃𝑖 : 𝜋𝑖)
⟦𝜋𝑖 (r𝑖), 𝜋𝑖 (𝛽r𝑖), 𝜋𝑖 (r′𝑖)⟧ ← Permute(⟦𝜋𝑖⟧, ⟦r𝑖 , 𝛽r𝑖 , r′𝑖⟧)
if 𝑖 ≥ 2 then
⟦z𝑖,1⟧ ← ⟦𝜋𝑖−1 (r𝑖−1)⟧ − ⟦r𝑖⟧
⟦z𝑖,2⟧ ← ⟦𝜋𝑖−1 (𝛽r𝑖−1)⟧ − ⟦𝛽r𝑖⟧ + ⟦𝜋𝑖−1 (r𝑖−1)⟧ − ⟦r′𝑖⟧
⟦z𝑖⟧ := (⟦z𝑖,1⟧, ⟦z𝑖,2⟧)

end if
end for
for 𝑖 = 2 to 𝑛 do parallel

Πopen (⟦z𝑖⟧, 𝑃𝑖)
end for

Return cor :=


⟦𝛽⟧ ⟦r1⟧ ⟦𝛽r1⟧ ⟦𝜋𝑛 (r𝑛)⟧
𝜋1 𝜋2 ... 𝜋𝑛

⟦𝜋1 (r′1)⟧ ⟦𝜋2 (r
′
2)⟧ · · · ⟦𝜋𝑛 (r

′
𝑛)⟧

z2 · · · z𝑛

.

and open them to 𝑃1. 𝑃1 then computes and sends

y1 = 𝜋1 (z1)

to party 𝑃2. Note that here we slightly abuse the notation, and define

𝜋1 (z1) := (𝜋1 (z1,1), 𝜋1 (z1,2)).

This is also defined for other vector of length 2𝑚, where 𝜋 is an 𝑚-permutation.
Then for 2 ≤ 𝑖 ≤ 𝑛 − 1, 𝑃𝑖 first checks if the message from 𝑃𝑖−1 is correct.

This is done by a call to protocol

CorrCheck(𝑃𝑖 , y𝑖−1,1, y𝑖−1,2, ⟦𝛽⟧, ⟦𝜋𝑖−1 (r′𝑖−1)⟧).

If the check fails, all parties abort; otherwise 𝑃𝑖 computes and sends to 𝑃𝑖+1

y𝑖 = 𝜋𝑖 (z𝑖 + y𝑖−1).

The last party 𝑃𝑛, after applying a similar check, computes and broadcasts
y𝑛 = 𝜋𝑛 (z𝑛 + y𝑛−1). Then all parties check if

CorrCheck(∅, y𝑛,1, y𝑛,2, ⟦𝛽⟧, ⟦𝜋𝑛 (r′𝑛)⟧).

If the check passes, then the protocol takes

y𝑛 − ⟦𝜋𝑛 (r𝑛)⟧
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as the output.
Above process is formally presented in Algorithm 12. To see the correctness

of the protocol, note that if all parties are honest, each 𝑃𝑖+1 will receive

z𝑖+1,1 = 𝜋𝑖 (r𝑖) − r𝑖+1,
z𝑖+1,2 = 𝛽z𝑖+1,1 + 𝜋𝑖 (r′𝑖) − r′𝑖+1,
y𝑖,1 = 𝜋𝑖 ◦ · · · ◦ 𝜋1 (x) − 𝜋𝑖 (r𝑖),
y𝑖,2 = 𝛽y𝑖,1 − 𝜋𝑖 (r′𝑖).

Hence, it will send 𝜋𝑖+1 (y𝑖 + z𝑖+1), which is

y𝑖+1,1 = 𝜋𝑖+1 ◦ · · · ◦ 𝜋1 (x) − 𝜋𝑖+1 (r𝑖+1),
y𝑖+1,2 = 𝛽y𝑖+1,1 − 𝜋𝑖+1 (r′𝑖+1).

Thus, these invariants are maintained along all 𝑃𝑖, until lastly parties compute
y𝑛 + 𝜋𝑛 (r𝑛), which is exactly 𝜋(x).

To see security, note that as the adversary does not know 𝛽 and r′, a corrupted
𝑃𝑖 cannot forge wrong y𝑖 and pass the following correlation check with non-
negligible probability. Hence, the fact that the check passes means that correct
y𝑖 is used as input. For honest 𝑃𝑖+1, this means that it has received correct y𝑖
from 𝑃𝑖. For corrupted 𝑃𝑖+1, this means that it knows correct y𝑖, and has used it
as input for the checking. This is formally proven in the work of Gao et al. [14].

Algorithm 12 ⟦x′⟧ ← Shuffle2on (⟦x⟧)
Ensure: Output shuffled ⟦𝜋(x)⟧ for some secret uniform 𝜋.

Fetch a fresh 𝑚-shuffle correlation cor generated by Shuffle2off .
⟦z1⟧ ← (⟦x⟧ − ⟦r1⟧, ⟦𝛽⟧⟦x⟧ − ⟦𝛽r1⟧ − ⟦r′1⟧)
Open ⟦z1⟧ to 𝑃1.
𝑃1 computes y1 ← 𝜋1 (z1).
𝑃1 sends y1 to 𝑃2.
for 𝑖 = 2 to 𝑛 do

CorrCheck(𝑃𝑖 , y𝑖−1,1, y𝑖−1,2, ⟦𝛽⟧, ⟦𝜋𝑖−1 (r′𝑖−1)⟧)
𝑃𝑖 computes y𝑖 ← 𝜋𝑖 (y𝑖−1 + z𝑖).
if 𝑖 < 𝑛 then

𝑃𝑖 sends y𝑖 to 𝑃𝑖+1.
else

𝑃𝑛 broadcasts y𝑛.
end if

end for
CorrCheck(∅, y𝑛,1, y𝑛,2, ⟦𝛽⟧, ⟦𝜋𝑛 (r′𝑛)⟧)
Return y𝑛,1 − ⟦𝜋𝑛 (r𝑛)⟧.
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5.4 Complexity Analysis

Theorem 3. For Shuffle2off (𝑃1 : 𝜋1, ..., 𝑃𝑛 : 𝜋𝑛) described in Algorithm 11, the
(offline) communication, computation and round complexity are 𝑂 ( 𝑘

log 𝑘
𝑛2𝑚 log𝑚),

𝑂 ( 𝑘
log 𝑘

𝑛2𝑚 log𝑚) and 𝑂 ( log𝑚

log 𝑘
+ log log 𝑘), respectively.

Proof: There are in total 𝑛 · 𝑚 many calls to each of Πrand, Πmul and Πopen.
This requires 𝑂 (𝑛2𝑚) communication, which is not the bottleneck.

The bottleneck of all the complexities is the 𝑛 calls to protocol SharePerm and
Permute, each for permuting an 𝑚 × 3 matrix. Since these calls are in parallel,
by combining the offline and online complexities presented in Theorem 1 and
2, we obtain that the communication, computation and round complexity are
𝑂 ( 𝑘

log 𝑘
𝑛2𝑚 log𝑚), 𝑂 ( 𝑘

log 𝑘
𝑛2𝑚 log𝑚) and 𝑂 ( log𝑚

log 𝑘
+ log log 𝑘), respectively.

Theorem 4. For Shuffle2on(⟦v⟧) described in Algorithm 12, the communica-
tion, computation and round complexity are 𝑂 (𝑛𝑚 + 𝑛2), 𝑂 (𝑛2𝑚) and 𝑂 (𝑛), re-
spectively. Note that for 𝑛 = 𝑂 (𝑚), the communication is just 𝑂 (𝑛𝑚).

Proof: Note that protocol CorrCheck, when called for vector of length 𝑚,
costs 𝑂 (𝑛) communication, 𝑂 (𝑛𝑚) computation and 𝑂 (1) round. Besides calls
to CorrCheck, parties compute Πmul over 𝑚-long vector, and each party 𝑃𝑖 sends
y𝑖 of length 𝑂 (𝑚) to 𝑃𝑖+1. 𝑃𝑛 lastly broadcasts y𝑛, which requires 𝑂 (𝑛𝑚) com-
munication.

Summing all, the communication complexity is 𝑂 (𝑛(𝑛+𝑚)), the computation
complexity is 𝑂 (𝑛2𝑚) due to 𝑛 calls to CorrCheck and round complexity is 𝑂 (𝑛).

Corollary 2. For shuffling rows of 𝑚× 𝑙 matrix, the shuffle protocol described in
Algorithm 11 and 12 requires 𝑂 (𝑛𝑚𝑙+𝑛2) online communication, 𝑂 (𝑛2𝑚𝑙) online
computation and 𝑂 (𝑛) online rounds, with an offline overhead of 𝑂 ( 𝑘+𝑙

log 𝑘
𝑛2𝑚 log𝑚)

communication, 𝑂 ( 𝑘𝑙
log 𝑘

𝑛2𝑚 log𝑚) computation and 𝑂 ( log𝑚

log 𝑘
+ log log 𝑘) rounds.

This concludes our main results in this section.

6 Discussion

6.1 Sharing Permutation Matrix

Recall that the parties wish to perform computation in some field F with prime
subfield F𝑝. Suppose party 𝑃𝑤 needs to share an 𝑚 × 𝑚 permutation matrix.
When 𝑝 is larger than 𝑚, generating and checking permutation matrix can be
much easier.

To generate a (purported) permutation matrix chosen by party 𝑃𝑤, the pro-
tocol simply requires 𝑃𝑤 to share it. This matrix will be a permutation matrix,
if the following conditions are satisfied:

1. Each entry of the matrix is either 0 or 1.
2. Sum along its row is always 1.
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3. Sum along its column is always 1.

To see the reason, note that the first condition makes the matrix Boolean. Since
𝑝 > 𝑚, sum along the row will not overflow, which makes the sum exactly the
number of 1s. Hence, since this is a Boolean matrix with exactly 1 on each
row and column, this is a permutation matrix. Also, the first condition can be
checked by a single call to Πinner, and all conditions can be batched into a single
Πopen. Thus, this check has almost the same overhead as PermCheck protocol.

However, above argument is valid only when 𝑝 > 𝑚. A counterexample is
when 𝑚 = 𝑝 + 1, a malicious party can share an all one matrix and pass all the
check, since 1 ≡ 𝑝 + 1 in such a field. In the case of 𝑝 ≤ 𝑚, checking whether an
arbitrary matrix is a permutation matrix seems much harder.

Hence, in our construction, we pose specific constraint (via one-hot vector)
to make such a check easier in general case. The communication complexities
of the two approaches are equal asymptotically, both of which are 𝑂 (𝑛𝑚2) for
generating and checking one permutation matrix.

6.2 Online Complexity

There are several reasons for the online complexity of an MPC protocol to be
much more important than the offline complexity. One is that, for example, if
we construct anonymous communication system based on an MPC shuffle (e.g.
Clarion by [4]), the online complexity stands for the latency that users/clients
will experience. Similar arguments can also be made for other real-world MPC
applications.

Another profound reason is that, the offline phases of multiple protocol ses-
sions can be done in parallel. This enables a significant reduction in round
complexity of the protocol. For example, suppose the parties wish to sequen-
tially perform shuffle for 𝑘 times, where each execution takes 𝑅off rounds in
offline phase and 𝑅on rounds online. Then the total computation will require
𝑅off offline rounds and 𝑘 · 𝑅on online rounds, via a naive parallelization of the
data-independent operations. This could be even more significant if the protocol
serves as a sub-routine of some high-level protocol. A concrete example is the
MPC sorting algorithm by Hamada et al. [25], which requires MPC shuffle as
a primitive. To sort data by 128-bit index, 128 sequential calls to shuffle pro-
tocol are required, which requires at least 𝑅off + 128 × 𝑅on rounds. Since only
the online phase will be inevitably embedded (as subroutine) into higher-level
protocol, only the online round complexity is subject to such an amplification.
This makes the online round complexity much more important than the offline
one.

6.3 Definition of Shared Permutation

The requirement of 𝑠 = 𝑂 ( log𝑚

log 𝑘
) in Definition 1 is tight. To see this, note

that there are 𝑚! many 𝑚-permutations. The number of possible 𝑘-shared 𝑚-
permutations in above definition is at most (𝑘!)𝑚𝑠/𝑘 , which must be no smaller
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than 𝑚!. Hence,

𝑠 ≥ log(𝑘!)𝑚/𝑘 (𝑚!) = 𝑘 log(𝑚!)
𝑚 log(𝑘!) .

By noting 𝑚! = Θ(𝑚 log𝑚), we obtain 𝑠 = Ω( log𝑚

log 𝑘
).

Note that one may also consider a recursive definition, where ⟦P𝑖, 𝑗⟧ is re-
placed by recursive ⟦𝜋𝑖, 𝑗⟧. The recursion halts when some ⟦𝜋⟧ is shared exactly
as ⟦P𝜋⟧. Nevertheless, for our purpose, the present definition suffices.
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A Security Proofs

In this section, we analyze our protocols and prove that the shuffle protocols are
secure. By the merit of ideal functionality FShamir and the work of Gao et al.
[14], the security is obtained almost immediately from definitions. Nevertheless,
we will provide in this section some insights about security of our protocols.

To simplify our analysis, we focus on detecting the misbehavior of the ad-
versary. That is, we prove that if the adversary deviates from the protocol, the
protocol will abort with overwhelming probability. This approach is justified by
noting that, in standard simulation based security, one must construct a simu-
lator that is able to simulate the view of the adversary, while being ignorant of
the input of honest parties. This simulation, however, is almost always trivial
in Shamir secret sharing, because the simulator stands for all honest parties,
which makes it able to reconstruct all values shared from the adversary. Hence,
in a typical proof, the simulator simply sends random values to adversary as its
received messages, aborts if any check fails, and lastly modifies the shares for
honest parties to make them consistent with the output from ideal functional-
ity. This means that we need to only argue that any misbehavior will lead to
abort with overwhelming probability, so that the output of the simulator will
coincide with real distribution. Note that all basic operations of our construc-
tion are via ideal functionalities, which gives us (seemingly extremely) powerful
security guarantee, e.g. even introducing error in Πadd will lead to immediate
abort. However, such a strong condition is justified by composition theorem,
which states that a protocol remains to be secure after replacing ideal function-
alities with their secure implementations. Hence, any misbehavior against ideal
functionalities will be detected, and we are left to only prove that misbehavior
outsides the ideal functionalities will be detected.

Hence, below, we focus on arguing that a protocol will end with one of the
two cases. One is that the adversary misbehaves, and the protocol aborts with
overwhelming probability. Another is that all parties act honestly, and the honest
parties receive correct shares.

As one of the results by Gao et al. [14], it is proved that if protocol Permute
is secure then protocol Shuffle2off and Shuffle2on are secure. This is stated in the
Theorem 5 below.

Theorem 5 ([14], informal). Consider an ideal functionality

⟦𝜋(v)⟧ ← Πperm(𝑃𝑤 : 𝜋, ⟦v⟧),

which takes secret input 𝜋 from 𝑃𝑤, and securely permutes ⟦v⟧ as ⟦𝜋(v)⟧.
If protocol Permute securely implements Πperm, then Shuffle2off and Shuffle2on

are secure by the composition theorem. This means that misbehavior of corrupted
parties will make all parties abort with overwhelming probability, and if the pro-
tocol does not abort, with overwhelming probability v is correctly shuffled and
shared among honest parties, with adversary learning no information about the
permutation applied.
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This theorem allows us to focus on the security of Permute protocol. Since
Permute is only calls to basic primitives and earlier developed protocols, it suf-
fices to prove the security of its sub-protocols.

A.1 Security of One-hot Protocol

The security of one-hot vector sharing protocol follows almost directly from basic
primitives, which we briefly review here.

Lemma 6. The protocol BoolCheck(⟦𝑏1⟧, ..., ⟦𝑏𝑑⟧) described in Algorithm 2 is
secure, in the sense that if any input is not Boolean, it aborts with probability

𝑝 ≥ 1 − 𝑑 − 1
2𝜅

.

Proof: Since the computation is done via ideal functionalities Πopen and Πinner,
upon disclosure, the parties receive correctly

𝑢 =

𝑑∑︁
𝑖=1

𝑏𝑖 · (1 − 𝑏𝑖) · 𝜆𝑖−1.

Since 𝜆 is generated by Πchallenge, it is uniform over K. Note that in field K,
product 𝑏𝑖 (1 − 𝑏𝑖) is zero if and only if one of them is zero. As any degree 𝑑 − 1
polynomial has at most 𝑑 − 1 roots in field K, 𝜆 happens to be one of the roots
with probability

𝑝fail ≤
𝑑 − 1
|K| ≤

𝑑 − 1
2𝜅

.

Hence, 𝑢 is nonzero with probability at least

𝑝 = 1 − 𝑝fail ≥ 1 − 𝑑 − 1
2𝜅

.

Lemma 7. If all inputs are shared Boolean, the protocol Demux(⟦𝑏1⟧, ..., ⟦𝑏𝑑⟧)
described in Algorithm 3 is secure, in the sense that if the protocol does not abort,
honest parties share ⟦s⟧ as a one-hot vector whose index is 1 +∑𝑑

𝑖=1 2
𝑖−1𝑏𝑖.

Proof: The basic case is 𝑑 = 1, where all honest parties hold

⟦s⟧ = (⟦1 − 𝑏1⟧, ⟦𝑏1⟧),

which is both correct and secure.
For 𝑑 > 1, the protocol is in essence computing a tensor product of two one-

hot vector, with calls to ideal functionality Πmul. The correctness and security
hence follow trivially.

Theorem 6. The protocol OneHot(𝑘, 𝑃𝑤 : ind) described in Algorithm 4 is se-
cure, in the sense that upon normal exit, honest parties hold a valid one-hot
vector, with index chosen by 𝑃𝑤.

In addition, if 𝑃𝑤 is honest, then the corrupted parties will not learn any
information about the chosen index.
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Proof: If 𝑃𝑤 is honest, it is clear that upon normal exit, the result is a one-hot
vector with index chosen by 𝑃𝑤. Further, in the protocol BoolCheck, since the
opened value will be zero, which reveals nothing but that the vector is a Boolean
one, which is trivial.

Suppose now 𝑃𝑤 is malicious and shares ⟦𝑏′
𝑖
⟧ during protocol OneHot. If

any 𝑏′
𝑖
∉ {0, 1}, then BoolCheck will fail with overwhelming probability due

to Lemma 6. Otherwise, if all 𝑏′
𝑖
∈ {0, 1}, then there is a valid index ind′ =∑𝑘

𝑖=1 2
𝑖−1𝑏′

𝑖
+ 1 underlies the generated vector. As 𝑃𝑤 is free to choose the index,

this does not harm the security.

A.2 Security of Permutation Protocol

Theorem 7. If the input 𝑘 one-hot vectors do not form a valid 𝑘 × 𝑘 permu-
tation matrix, protocol PermCheck(⟦P⟧) described in Algorithm 6 aborts with
probability

𝑝 ≥ 1 − 𝑘 − 1
2𝜅

.

Proof: Note that the parties are computing

⟦sum⟧ ←
𝑘∑︁
𝑗=1

𝜆 𝑗−1

(
1 −

𝑘∑︁
𝑖=1

⟦P(𝑖, 𝑗)⟧
)
.

As these arithmetic operations are provided by ideal functionality, we may as-
sume the parties always get correct ⟦sum⟧, unless the protocol already aborts
due to misbehavior.

Hence, ⟦sum⟧ is (shared) zero if P is a well-formed permutation matrix. If
P is not a permutation matrix, then at least one of the coefficients is 1, which
makes ⟦sum⟧ a non-zero polynomial of 𝜆 of degree at most 𝑘 − 1. This means
that the polynomial has at most 𝑘 − 1 roots in field K. Since 𝜆 is uniform over
K, 𝜆 happens to be one of the roots with probability

𝑝fail ≤
𝑘 − 1
|K| ≤

𝑘 − 1
2𝜅

.

Stated otherwise, if P is not a permutation matrix, ⟦sum⟧ is not zero with
probability

𝑝 = 1 − 𝑝fail ≥ 1 − 𝑘 − 1
2𝑘

.

Thus, the protocol aborts with such a probability if P is not a permutation
matrix.

Corollary 3. Protocol PermMat described in Algorithm 5 is secure, in the sense
that if all parties act honestly, honest parties share a valid permutation matrix
⟦P⟧, with permutation chosen by and known to 𝑃𝑤. And if the malicious adver-
sary misbehaves, the protocol aborts with overwhelming probability.

Also, if 𝑃𝑤 is honest, then the corrupted parties cannot learn any information
about P.
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Proof: This is immediate by combining Theorem 6 and Theorem 7.

Corollary 4. Protocol SharePerm described in Algorithm 7 is secure, in the
sense that any misbehavior of adversary will lead to abort with overwhelming
probability. And if all parties act honestly, honest parties will share ⟦𝜋⟧ with 𝜋

chosen by and known to 𝑃𝑤.
In addition, if 𝑃𝑤 is honest, the adversary cannot learn information about 𝜋.

Proof: By Corollary 3, if the protocol hasn’t aborted, the matrices are valid
permutation matrices, which means the permutation is correctly shared.

Corollary 5. Protocol Permute(⟦𝜋⟧, ⟦v⟧) described in Algorithm 1 is secure, in
the sense that any misbehavior of adversary will lead to abort with overwhelming
probability. And if all parties act honestly, honest parties will share ⟦𝜋(v)⟧.

This follows trivially by the definition of shared permutation and the security
of ideal functionalities.

This concludes the security of our permutation protocol.

A.3 Security of Shuffle Protocol

Lastly, we conclude the security of shuffle protocol by combining Theorem 5 and
Corollary 4 and 5.

Corollary 6. The Shuffle1off and Shuffle1on prototocols described in Algorithm
8 and 9 are secure, in the sense that they aborts w.h.p. if the adversary misbe-
haves. Otherwise, the protocols shuffle ⟦V⟧ by a secret permutation uniformly
over all 𝑚-permutations.

Proof: This is a direct result from Corollary 4 and 5.

Corollary 7. The Shuffle2off and Shuffle2on protocols described in Algorithm 11
and 12 are secure, in the sense that they aborts w.h.p. if the adversary misbe-
haves. Otherwise, the protocols shuffle ⟦v⟧ by a secret permutation uniformly
over all 𝑚-permutations.

Proof: This is obtained directly from Theorem 5 and Corollary 4 and 5.
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