
Bootstrapping (T)FHE Ciphertexts
via Automorphisms: Closing the Gap Between

Binary and Gaussian Keys

Olivier Bernard and Marc Joye

Zama, Paris, France
firstname.lastname@zama.ai

Abstract. The GINX method in TFHE enables low-latency ciphertext
bootstrapping with relatively small bootstrapping keys but is limited to
binary or ternary key distributions. In contrast, the AP method supports
arbitrary key distributions, however, at the cost of significantly large
bootstrapping keys. Building on AP, automorphism-based methods, in-
troduced in LMK+ (EUROCRYPT 2023), achieve smaller key sizes. Each
automorphism application nevertheless necessitates a key switch, intro-
ducing additional computational overhead and noise accumulation.
This paper advances automorphism-based methods in two important
ways. First, it proposes a novel traversal blind rotation algorithm that op-
timizes the number of key switches for a given key material. Second, it in-
troduces a new external product that is automorphism-parametrized and
seamlessly applies an automorphism to one of the input ciphertexts. To-
gether, these techniques substantially reduce the number of key switches,
leading to faster bootstrapping and improved noise control.
In a typical setting, by utilizing additional key material, the LLW+ ap-
proach (TCHES 2024) reduces key switches by 17% compared to LMK+.
Our combined techniques achieve a 46% reduction using similar key ma-
terial and can eliminate an arbitrary large number (e.g., more than 99%)
of key switches with only a moderate (9×) increase in key material size.
As an independent contribution, this paper introduces a comprehensive
theoretical framework for analyzing the expected number of automor-
phism key switches, whose predictions perfectly align with the results of
extensive numerical experiments, demonstrating its practical relevance.

Keywords: Fully homomorphic encryption (FHE)· Ciphertext boot-
strapping· Blind rotation· Automorphisms· Implementation

1 Introduction

Fully homomorphic encryption (FHE) schemes [RAD78, Gen10] enable the eval-
uation of any circuit over encrypted data, ensuring that the data remains end-to-
end encrypted without requiring decryption for processing. Since their inception
in 2009, substantial research has focused on enhancing the practical efficiency of
FHE, which remains a critical challenge for its widespread deployment.

1

https://orcid.org/0000-0002-3410-3134
https://orcid.org/0000-0003-4433-2333

Current FHE implementations require noisy ciphertexts for their security.
However, as homomorphic operations are performed, noise accumulates, and
beyond a certain threshold, ciphertexts become undecryptable. This issue is re-
solved via a bootstrapping technique that refreshes ciphertexts by reducing the
noise to an acceptable level. Ciphertext bootstrapping is carried out through
a homomorphic evaluation of the decryption algorithm [Gen10]. On input a
(highly) noisy ciphertext, the output is a ciphertext encrypting the same mes-
sage, but with a reduced level of noise. This is a public operation. The most
efficient instantiations of ciphertext bootstrapping makes use of an astute tech-
nique known as blind rotation [AP14, DM15, GINX16, CGGI20].

Using a polynomial representation, the operation of blind rotation consists in
the homomorphic evaluation of x

∑n
i=1 ai si · w for some polynomial w := w(x),

where vector a = (a1, . . . , an) is public and vector s = (s1, . . . , sn) is secret.
The blind rotation can be used as a convenient way to implement a homomor-
phic look-up table with polynomials; see e.g., [Joy22]. When coupled with a
bootstrapping operation, the homomorphic evaluation of a look-up table is also
know as programmable bootstrapping [CJP21]. Since any univariate function
(over a small domain) can always be expressed as a look-up table, an encryption
scheme allowing homomorphic addition and homomorphic table look-up turns
out to be fully homomorphic. Note that the regular bootstrapping (whose pri-
mary goal is to reduce the noise) corresponds to a programmable bootstrapping
with the identity map for function f .

Several approaches are known for the blind rotation, with different trade-offs
between vector coefficients, evaluation key material, and number of operations:

1. GINX algorithm [GINX16, CGGI20] comparatively features a small evalu-
ation key material associated to secret vector s; however requiring s to be
binary, which may be restrictive.

2. AP algorithm [AP14, DM15], in its basic version, requires a huge amount
of evaluation key material associated to secret vector s (exponential in the
coefficients space of public vectors a) but with basically no restriction on
the distribution of s.

3. Automorphism-based algorithms [BDF18, LMK+23, WWL+24], which ulti-
mately are based on AP, decrease the global amount of evaluation key ma-
terial thanks to homomorphic evaluations of automorphisms; although, each
of these automorphism evaluations requires a key switch, inducing in fine
a significant increase in the number of operations—and thus in the overall
computational cost, as well as a significant noise growth.

Previous attempts to enhance GINX-type algorithms for using other distribu-
tions of the secret vector coefficients conclude to limit keys to small distributions
(typically, binary distribution or ternary distribution) in order to avoid a blow-up
of evaluation key material, thereby reducing their applicability; see e.g., [JP22].

Certain adaptations and extensions of the AP algorithm to various encryp-
tion schemes can be found in [XZD+23, MKMS24, LLW+24]. Again, all those
improved, adapted or extended methods have in common to rely on the presence
of automorphisms that can be homomorphically evaluated.

2

Our techniques and results The external product of ciphertexts is a fundamen-
tal operation in fully homomorphic encryption. It enables the multiplication of
two ciphertexts that are not necessarily in the same format. Specifically, given
a ciphertext c ← Encsk(µ) encrypting a plaintext µ under the scheme Enc,
and another (extended) ciphertext c̄ ← Enc⊛sk(µ̄) encrypting a plaintext µ̄ un-
der an associated scheme Enc⊛, the external product operation, denoted ⊛,
produces a new ciphertext c′ = c ⊛ c̄, which encrypts the product of the plain-
texts, µ′ = µ · µ̄. One key application of the external product lies in enabling
blind rotation for (programmable) bootstrapping. It also plays a critical role in
advanced techniques such as batched bootstrapping [MKMS24] and circuit boot-
strapping [WWL+24]. To optimize blind rotation, automorphism-based variants
of the AP type focus on reducing the computational overhead introduced by the
key switches incurred from the homomorphic evaluation of automorphisms.

We observe that in all of the automorphism-based methods, the homomor-
phic evaluation of automorphisms, including the associated key switch, is most of
the time combined with an external product. Specifically, these methods require
the encryption of ψ(µ) · µ̄ from the encryptions of µ and of µ̄, for some automor-
phism ψ. This process is typically carried out in three sequential steps, beginning
with the ciphertexts c← Encsk(µ) and c̄← Enc⊛sk(µ̄). First, the automorphism ψ
is applied to c, resulting in c1 ← ψ(c) ∈ Encψ(sk)(ψ(µ)). Next, a key switch oper-
ation is performed to transform c1 into c2, such that c2 ← KeySwitchψ(sk)→sk(c1),
producing Encsk(ψ(µ)). Finally, the transformed ciphertext c2 is combined with
c̄ through an external product operation, yielding c3 ← c2 ⊛ c̄, which encrypts
the product ψ(µ) · µ̄, i.e., c3 ← Encsk(ψ(µ) · µ̄).

The main contribution of this paper is the introduction of the Automorphism-
Parametrized External Product, a novel operation for FHE. This operation inte-
grates three key steps—automorphism evaluation, its associated key switch, and
an external product—at the computational cost of a single external product.
Specifically, we define this new operator as follows:

Encsk(µ)⊛ψ Enc⊛,ψsk (µ̄)← Encsk(ψ(µ) · µ̄) ,

where Encsk(µ) ⊛ψ Enc⊛,ψsk (µ̄) is computed as ψ(Encsk(µ)) ⊛ Enc⊛,ψsk (µ̄). Here,

Enc⊛,ψsk (µ̄) is a newly introduced ciphertext format, which we term automorphism-
extended ciphertext. As will become evident in Section 4, this format naturally
arises from the associated encryption scheme Enc⊛; in particular, both formats
coincide when the secret key is ψ(sk) instead of sk. Notably, our new operator
eliminates the need for a key switch. This presents a significant practical advan-
tage, as key switches are known to introduce substantial computational overhead
and add extra noise to the resulting ciphertext. It is also important to note that
although the format of the second ciphertext, Enc⊛,ψsk (µ̄), has been modified,
our new external product still outputs a regular Encsk ciphertext as before. This
ensures seamless integration in most applications that rely on the product in
the exponent based on automorphisms, including blind rotation. Indeed, in such
cases the second ciphertext is typically a global input (e.g., a bootstrapping key
in the context of blind rotation).

3

Another contribution of this paper is an improved algorithm for blind rota-
tion in FHE, termed the Traversal Windowed Hörner-like Method and detailed
in Algorithm 3.2. Building on Algorithm 7 of [LMK+23], which has been refor-
mulated in Algorithm 3.1 for clarity and easier adaptation, our new approach
addresses gaps between two non-empty sets of mask values by incorporating
sign changes directly into automorphism evaluations. This integration reduces
the average gap size between automorphism applications, enhancing efficiency,
particularly for smaller window sizes. Compared to the original method, our
traversal algorithm achieves consistent reductions in the number of automor-
phism key switches, with typical gains of up to 8% depending on the param-
eters, though converging to comparable efficiency for larger windows. Detailed
algorithms highlight the work-flow and key-switching optimizations.

When combined with our automorphism-parametrized external product, the
proposed traversal method yields the so-called S-Parametrized Method, formal-
ized in Algorithm 4.1. Depending on a set S of admissible automorphisms that
can be leveraged using the new parametrized external product, it provides flex-
ible trade-offs between key size, which is linearly linked to ♯S, and performance
and noise growth, which both improve when ♯S grows, i.e., when the number of
required key switches is lowered. To illustrate the benefits of these techniques,
we experimentally evaluate its impact on several parameter sets:

– parameter sets from [LMK+23, LLW+24], designed for Gaussian keys and
boolean messages, enabling direct comparisons with previous works;

– a parameter set specified in the TFHE-rs library [Zam22], primarily tailored
for binary keys and 4-bit payloads, reflecting practical application scenarios.

With only a moderate increase in bootstrapping key sizes, as in [LLW+24], we re-
duce the number of key switches by approximately 49.1% (resp. 46.4%) compared
to [LMK+23], significantly surpassing an adaptation of [LLW+24], which would
achieve only an 18.5% (resp. 17.0%) reduction. By allowing a slightly larger in-
crease in bootstrapping key sizes—2.5 times that of [LMK+23] (compared to 2
times in [LLW+24])—we achieve a 59.4% (resp. 55.5%) reduction in key switches
relatively to [LLW+24] and 66.9% (resp. 63.1%) compared to [LMK+23].

Notably, the additional keys can be pre-selected according to the mask com-
ponents, minimizing the impact on memory bandwidth. When the keys are just 9
times larger than those in [LMK+23], the number of key switches drops to as few
as 2 or 3 on average, far outperforming AP bootstrapping which for comparable
performance requires key that are more than 2 orders of magnitude larger.

In summary, our new techniques not only offer substantial reductions in key-
switching overhead but also provide flexible trade-offs to meet varying perfor-
mance and resource requirements. Although primarily presented for the TFHE
cryptosystem, our methods and techniques are adaptable to other FHE schemes,
such as FHEW [DM15] and FINAL [BIP+22], offering versatile and practical im-
provements for bootstrapping ciphertexts in FHE.

Finally, as a last contribution, we provide a thorough analysis of the complex-
ity and noise growth of automorphism-based blind rotation algorithms, focusing

4

on the impact of key switches and external products. We develop a theoreti-
cal framework that reduces the problem to studying the distribution of gaps in
random divisions of an interval. Our new automorphism-parametrized methods
demonstrate fewer key switches and improved efficiency compared to existing
approaches. Numerical experiments validate these improvements, highlighting
significant computational and practical benefits for bootstrapping algorithms.

Outline of the paper The rest of this paper is organized as follows. Section 2
reviews relevant background and introduces essential notations. Section 3 refor-
mulates the [LMK+23] blind rotation algorithm using automorphisms and pro-
poses an improved variant. Section 4 introduces a parametrized external product
alongside a modified GLWE⊛-like ciphertext format and explores its application
to the enhanced blind rotation algorithm. Finally, Section 5 presents the study
framework and numerical experiments.

2 Definitions and Notations

Let q, t < q, and k be positive integers, and let∆ =
⌊
q
t

⌋
. For them-th cyclotomic

polynomial Φm, define the cyclotomic field of conductor m, for m ̸≡ 2 mod 4, as
K = Q[x]

/〈
Φm(x)

〉
. The degree of Φm is N = φ(m), where φ is Euler’s totient

function. Common values for m include m a power of two, a prime p > 2, or of
the form pk, 4pk, 2a3b [JW22]. Let alsoR = Z[x]

/〈
Φm(x)

〉
be the ring of integers

of K, and Rq = R
/
qR. The Galois group of K

/
Q is isomorphic to (Z

/
mZ)×

and consists of automorphisms τu defined by τu(x) = xu, for u ∈ (Z
/
mZ)×; the

identity automorphism τ1 is also denoted as id.

GLWE ciphertexts GLWE stands for generalized-LWE and LWE refers to Learning
with Errors [Reg09]. GLWE-type encryption appears for example in [SSTX09,
LPR10, LS15]. Cleartext messages in a GLWE encryption scheme are polynomials
in R with coefficients in

q
0, t− 1

y
. Prior to encryption, a cleartext message m

is first encoded as a plaintext µ = ∆ ·m ∈ Rq. The GLWE encryption of µ ∈ Rq
under private key s=

(
s1, . . . ,sk

)
∈ Rk is given by

GLWEs(µ)←
(
a1, . . . ,ak, b =

∑k
j=1 aj · sj + µ + e

)
∈ Rk+1

q

where a1, . . . ,ak are polynomials randomly drawn in Rq and e ∈ R is some
random noise polynomial with small coefficients. Vector

(
a1, . . . ,ak

)
is called

the mask and b is called the body. The error e present in GLWEs(µ) is denoted
by Err

(
GLWEs(µ)

)
.

Gadget-GLWE ciphertexts and extended-GLWE ciphertexts GGSW encryption
generalizes the GSW encryption [GSW13]. Following the presentation of [MP21],
the simplest way to view GGSW ciphertexts is through gadget decomposition
of GLWE ciphertexts. Gadgets decompose elements as vectors of small pieces
whose inner product with the gadget vector reconstructs (an approximation of)

5

the original elements. Applied to a polynomial f ∈ Rq, the gadget decomposi-
tion of f with respect to gadget vector g =

(
g1, . . . ,gℓ

)
∈ Rℓq is given by a

vector ∇f ∈ Rℓ such that
〈
∇f,g

〉
≈ f; see e.g., [CGGI20, BJ24]. When there

is equality, the gadget decomposition is termed exact.
The corresponding gadget-GLWE ciphertext (indicated with a ∇ superscript)

of a plaintext µ̄ ∈ Rq under private key s=
(
s1, . . . ,sk

)
∈ Rk is defined as

GLWE∇
s (µ̄)←

(
GLWEs(g1 · µ̄), . . . ,GLWEs(gℓ · µ̄)

)
.

This leveled encryption gives rise to an extended-GLWE ciphertext

GLWE⊛
s (µ̄)←

(
GLWE∇

s (−s1 · µ̄), . . . ,GLWE∇
s (−sk · µ̄),GLWE∇

s (µ̄)
)
,

whose definition coincides with the definition of a GGSW ciphertext.

External product A GLWE ciphertext GLWEs(µ) can be combined with an ex-
tended GLWE ciphertext GLWE⊛

s (µ̄) to yield another GLWE ciphertext through
external product. Specifically, their external product, denoted by ⊛, is defined as

GLWEs(µ)⊛GLWE⊛
s (µ̄) :=〈
∇b,GLWE∇

s (µ̄)
〉
+
∑k
j=1

〈
∇aj ,GLWE∇

s (−sj · µ̄)
〉
.

In certain cases (e.g., [BCG+23, Theorem 3]), different gadget decomposition
levels are used for the mask and the body of the ciphertext, denoted respectively
by ℓ1 and ℓ2. This is indicated by writing the individual decompositions as ∇ℓ1
and ∇ℓ2 , with the overall decomposition given by ∇ = ∇ℓ1,ℓ2 .

It can be verified that GLWEs(µ) ⊛ GLWE⊛
s (µ̄) ← GLWEs(µ · µ̄), provided

that (i) the gadget decomposition is sufficiently exact and (ii) e · µ̄ is sufficiently
small, where e= Err

(
GLWEs(µ)

)
[CGGI20, Theorem 3.13 and Corollary 3.14].

Proposition 2.1. Assume m is a power of two. Let ∇ = ∇ℓ1,ℓ2 be a gadget
decomposition of quality β∇ =

(
β1, β2

)
and precision ε∇ =

(
ε1, ε2

)
, whose output

values are uniform and centered around 0. Let ein and ē represent the error
associated with valid samples GLWEs

(
µ
)
and GLWE⊛

s

(
µ̄
)
, respectively. Then,

GLWEs

(
µ
)
⊛GLWE⊛

s

(
µ̄
)
is a sample of GLWEs

(
µ·µ̄
)
with an error Eof variance

σ2
⊛ ≤

∥∥µ̄∥∥2
2
· σ2

in +N
(
ℓ2
β2
2

12 + kℓ1
β2
1

12

)
· σ2

∇ +
∥∥µ̄∥∥2

2

(
ε22
12 + kN

ε21
12 · E[s

2
j,i]
)
.

Proof. This is a special case of the generalized result presented in Proposition 4.3,
obtained by taking ψ = id and C∞ = 1. In particular, the exact expression of
the error term E= B−

〈
A,s

〉
− µ · µ̄ is given by

E= µ̄ · ein +
(〈
∇ℓ2b, ē0

〉
+
∑

1≤j≤k

〈
∇ℓ1aj , ēj

〉)
+ µ̄ ·

(
e∇ℓ2

(
b
)
−
∑

1≤j≤k

sj · e∇ℓ1
(
aj
))

,

where e∇ℓu (w) :=
〈
∇ℓuw,gu

〉
− w for u ∈ {1, 2} and any w ∈ Rq. ⊓⊔

6

AP blind rotation An important application of the external product is the eval-
uation of an inner product in the exponent, or the related task of performing a
blind rotation. Given an LWE ciphertext c̃ =

(
ã1, . . . , ãn, b̃

)
∈ (Z

/
mZ)n+1 under

a private key s =
(
s1, . . . , sn

)
and a so-called test polynomial v ∈ Rq, the blind

rotation consists in evaluating x−b̃+
∑n
i=1 ãisi · v(x) homomorphically. Additional

key material known as bootstrapping keys is made available for the computation,
namely the encryption of the key digits s1, . . . , sn. In its generic version, the AP
blind rotation requires a set of n(m− 1) bootstrapping keys,

bskAP :=
{
bskAP[i, u]← GLWE⊛

s (x
usi)

∣∣∣ i ∈ q
1, n

y
and u ∈

q
1,m− 1

y}
.

Let q0 = x−b̃ ·v. The AP method makes use of an accumulator ACC ∈ Rk+1
q that

successively contains a GLWE encryption of qi ← qi−1 ·xãisi = x−b̃+
∑i
j=1 ãjsj ·v,

for i ∈
q
1, n

y
. At the end of the iteration, the accumulator indeed contains a

GLWE encryption of x−b̃+
∑n
i=1 ãisi · v. In an algorithmic form, this writes as:

ACC← (0, . . . , 0, x−b̃ · v)
for i = 1 to n do

if ãi ̸= 0 then ACC← ACC⊛ bskAP[i, ãi]

return ACC

Note that the accumulator is initialized with (0, . . . , 0, x−b̃ · v) which is a trivial

GLWE encryption of q0 = x−b̃ · v, i.e., with an all-zero mask.

Automorphism-based methods The use of automorphisms aims at reducing the
size of the additional key material in the blind rotation while containing the com-
putational overhead. Without loss of generality, automorphism-based methods
assume that each mask component ãi of the input LWE ciphertext, i ∈ J1, nK, is
either 0 or belongs to (Z

/
mZ)×, so that when non-zero, each indeed corresponds

to an automorphism τãi : x 7→ xãi . Different strategies from [BDF18, MKMS24,
LMK+23, WWL+24] are detailed in Appendix A to reduce to this setting.

Given an automorphism τu : x 7→ xu for some unit u ∈ (Z
/
mZ)× and a GLWE

ciphertext GLWEs(µ) ←
(
a1, . . . ,ak, b

)
∈ Rk+1

q of plaintext µ := µ(x) under

private key s=
(
s1, . . . ,sk

)
, automorphism-based methods observe that

τu
(
GLWEs(µ)

)
←
(
τu(a1), . . . , τu(ak), τu(b)

)
∈ GLWEτu(s)(τu(µ))

is a GLWE ciphertext of plaintext τu(µ) := µ(xu) under key τu(s) = (τu(s1), . . . ,
τu(sk)), provided that τu(e) with e = Err

(
GLWEs(µ)

)
stays sufficiently small.

Now let aku := kskτu(s)→s be an automorphism key, i.e., a key-switching key
that converts a ciphertext under key τu(s) back to a ciphertext under key s.
Specifically, aku is defined as aku ←

(
GLWE∇

s (−τu(s1)), . . . ,GLWE∇
s (−τu(sk))

)
.

Then, a subsequent key-switching KSaku on τu
(
GLWEs(µ)

)
with aku yields the

ciphertext GLWEs(τu(µ)). The composition of these two operations, application
of τu and key-switching KSaku , will be denoted by HomAutu(·, aku):

HomAutu
(
GLWEs(µ), aku

)
← KSaku ◦ τu(GLWEs(µ)) ∈ GLWEs(τu(µ)) .

7

Correctness supposes that the resulting noise keeps below a certain threshold.

Proposition 2.2. Assume m is a power of two. Let ∇ℓks be a gadget decom-
position of quality βks and precision εks, whose output values are uniform and
centered around 0. Let ein and ēks,j, where j ∈ J1, kK, represent the error associ-

ated with valid samples GLWEs

(
µ
)
and GLWE∇

s

(
−τu(sj)

)
, respectively. Then,

HomAutu
(
GLWEs(µ), aku

)
is a GLWE sample of GLWEs

(
τu(µ)

)
with error E

of variance

σ2
aut ≤ σ2

in +N
(
kℓks

β2
ks

12

)
· σ2

ks + kN
(

E[s2] · ε
2
ks

12

)
.

Proof. The exact expression of the error term E= B−
〈
A,s

〉
−τu

(
µ
)
is given by

E= τu(ein) +
∑

1≤j≤k

〈
∇ℓksτu(aj), ēks,j

〉
−
∑

1≤j≤k

τu(sj) · e∇ℓks
(
τu(aj)

)
,

where e∇ℓks (w) :=
〈
∇ℓksw,gks

〉
− w for any w ∈ Rq. ⊓⊔

As described above, a loop iteration of the AP blind rotation consists in
computing a GLWE ciphertext c(i) of qi(x) = qi−1(x) · xãisi from a GLWE
ciphertext c(i−1) of qi−1(x). Using automorphisms as in [BDF18, Algorithms 5
and 6],1 this can be achieved in three consecutive steps as

(1) c(i) ← HomAut1/ãi(c
(i−1), ak1/ãi) ∈ GLWEs

(
qi−1(x

1/ãi)
)

(2) c(i) ← c(i) ⊛GLWE⊛
s (x

si) ∈ GLWEs

(
qi−1(x

1/ãi) · xsi
)

(3) c(i) ← HomAutãi(c
(i), akãi) ∈ GLWEs

(
qi−1(x) · xãisi

)
where the inverses are taken modulo m. Define J0 =

{
i ∈

q
1, n

y ∣∣ ãi ̸= 0
}
.

The resulting blind rotation algorithm (depicted in Figure 2.1(a)) requires the
following key material:

bskAUT :=
{
bskAUT[i]← GLWE⊛

s (x
si)
∣∣∣ i ∈ q

1, n
y}

(2.1)

and

akAUT :=
{
akAUT[u]← kskτu(s)→s

∣∣∣ u ∈ (Z
/
mZ)× \ {1}

}
. (2.2)

The number of homomorphic automorphism evaluations must not be over-
looked as each involves a key switch. As noted e.g., in [XZD+23, Algorithm 1]
or [MKMS24, Algorithm 2, inner loop], the two automorphisms of each loop it-
eration can be combined together, halving the number of required key switches.
This trick is applied and detailed in Figure 2.1(b) (telescoping method). We
stress that when u = 1, HomAutu is the identity map and so is always skipped.
Hence, by re-arranging J0 the ãi’s can be regrouped by values, so that if the
set
{
ãi
∣∣ i ∈ q

1, n
y}
\ {0, 1} has cardinality α, at most α < φ(m) homomorphic

automorphism evaluations and key switches are performed.

1 Originally in the circulant setting, however conceptually it is exactly the same.

8

ACC← (0, . . . , 0, x−b̃ · v)
for i ∈ J0 do

u← 1/ãi mod m
ACC← HomAutu(ACC, ak

AUT[u])
ACC← ACC⊛ bskAUT[i]
ACC← HomAutãi(ACC, ak

AUT[ãi])

return ACC

(a) Basic method.

ãold ← 1, ACC← (0, . . . , 0, x−b̃ · v)
for i ∈ J0 do

u← ãold/ãi mod m, ãold ← ãi
ACC← HomAutu(ACC, ak

AUT[u])
ACC← ACC⊛ bskAUT[i]

u← ãold
ACC← HomAutu(ACC, ak

AUT[u])
return ACC

(b) Telescoping method.

Fig. 2.1: Automorphism-based methods.

Table 2.2: Generic vs. automorphism-based methods.

Blind rotation (BR)
Key material

♯Key switches
(♯GLWE∇)

Generic AP method n(k + 1)(m− 1) n/a
Telescoping method n(k + 1) + k(φ(m)− 1) min{n, φ(m)}

Compared to the generic, non automorphism-based AP blind rotation pre-
sented earlier, the telescoping method already behaves much nicer; see Table 2.2.
The key material drops from n(m− 1) GLWE⊛ ciphertexts (i.e., n(k+1)(m− 1)
GLWE∇ ciphertexts) to n GLWE⊛ ciphertexts plus k(φ(m)− 1) GLWE∇ cipher-
texts. Computation-wise, at most min{n, φ(m)} extra key switches are required;
the number of external products nevertheless remains equal to n.

3 Enhanced Blind Rotation Algorithms

In this section, we present a Hörner-like method for the blind rotation, which is
a minor variation of [LMK+23, Algorithm 7]. Our reformulation primarily offers
the advantage of providing a simpler basis for analyzing the results of Section 4.
We also propose a new method derived from it—the traversal windowed Hörner-
like method—which consistently outperforms [LMK+23]. These methods aim to
reduce both the size of the keys and the number of automorphism applications.

3.1 Windowed Hörner-like Method

The idea of re-arranging the mask components ãi ∈ (Z
/
mZ)× has been ex-

tended in [LMK+23, Section 3], where the ãi’s are not only regrouped by values,
but also ordered according to the group structure of (Z

/
mZ)×. The immediate

consequence is a reduction of the number of automorphism keys down to the
number of cyclic components of (Z

/
mZ)×.

9

As an illustration, following [LMK+23], we focus on the power-of-two con-
ductor case.2 Let m = 2N with N = 2ν , ν ≥ 2, so that (Z

/
mZ)× =

〈
−1
〉
×
〈
g
〉

using e.g., g = 5. Then, every element ãi ∈ (Z
/
mZ)× can be written as

ãi = (−1)ϵi · gti mod m, ϵi ∈
{
0, 1
}
, 0 ≤ ti < 2ν−1 .

The high-level core idea of [LMK+23, Section 3.1] can be alternatively expressed
as adapting the ordering of the mask components so as to ensure that the quo-
tient ãold/ãi in the telescoping method (Figure 2.1(b)) is always a small power
of g. In order to formalize this, it is useful to introduce the sets

I+t :=
{
i ∈

q
1, n

y ∣∣∣ ãi = gt mod 2N
}

(3.1)

and

I−t :=
{
i ∈

q
1, n

y ∣∣∣ ãi = −gt mod 2N
}
. (3.2)

Then the computation of
〈
ã, s

〉
=
∑n
i=1 ãisi can be reordered as

n∑
i=1

(−1)ϵigti · si =
N/2−1∑
t=0

gt ·
(∑

i∈I+t
si

)
−
N/2−1∑
t=0

gt ·
(∑

i∈I−t
si

)
, (3.3)

which is naturally computed in a Hörner-like fashion as

∑
i∈I+0

si + g

(∑
i∈I+1

si + · · ·+ g

(∑
i∈I+

N/2−1
si

− g
(∑

i∈I−0
si + g

(∑
i∈I−1

si + · · ·+ g
(∑

i∈I−
N/2−1

si
)))))

. (3.4)

This results in Algorithm 3.1, which is an almost (see Remark 3.1) equivalent
rewriting of [LMK+23, Algorithm 7], reorganized so as to follow the work-flow
of Figure 2.1(b). Thus, starting from ãold = −1 = −gN/2 mod 2N , it iterates
on non-empty sets I±t so that for i ∈ I±t , ãold/ãi is always the smallest possible
power of g. Gaps, when some of the I±t are empty, are filled using a jumping
strategy defined by a window size w and automorphism keys

akHORN :=
{
akHORN[0]← kskτ−g(s)→s

}
∪{

akHORN[u]← kskτgu (s)→s

∣∣∣ u ∈ q
1, w

y}
. (3.5)

Using w = 1 simply corresponds to repeated applications of τg, one per empty
set I±t ; a larger value for w decreases the number of calls to HomAut() at the
expense of larger key material. Practical experiments from [LMK+23, Figure 3]
suggest a rather small optimal window value of w = 10.

2 Although only the power-of-two conductor case is treated in [LMK+23], their core
result readily applies to e.g., the simpler case of prime-conductor cyclotomic fields.

10

Algorithm 3.1: Blind rotation w/automorphisms —Windowed Hörner

Input: c̃← (ã1, . . . , ãn, b̃) ∈ (Z
/
2NZ)n+1, ãi ∈ (Z

/
2NZ)× ∪ {0}; v ∈ Rq

Data: bskAUT and akHORN as defined in Equations (2.1) and (3.5) for a
window size w ≥ 1

Output: c← GLWEs(x
−µ̃ · v) ∈ Rk+1

q with µ̃ = b̃−
∑n
i=1 ãisi

1. told ← 0, ACC←
(
0, . . . , 0, xb̃ · v(x−1)

)
/* i.e., ãold = −gN/2 = −1 */

2. for t = N/2− 1 down to 0 such that I−t ̸= ∅ do
3. δ ← (told − t) mod N/2, told ← t

/* Homomorphically apply τgδ using jumps of size at most w */
4. qδ ←

⌊
δ/w

⌋
, rδ ← δ mod w

5. for qδ times do ACC← HomAutgw
(
ACC, akHORN[w]

)
6. if rδ ̸= 0 then ACC← HomAutgrδ

(
ACC, akHORN[rδ]

)
/* Compute all external products for I−t */

7. for i ∈ I−t do
8. ACC← ACC⊛ bskAUT[i]

/* Apply τ−g as in second line of Equation (3.4), see Remark 3.1 */
9. told ←

(
told − 1

)
mod N/2, ACC← HomAut−g

(
ACC, akHORN[0]

)
/* Same loop as the first loop, but for (non-empty) sets I+t */

10. for t = N/2− 1 down to 0 such that I+t ̸= ∅ do
11. δ ← (told − t) mod N/2, told ← t
12. qδ ←

⌊
δ/w

⌋
, rδ ← δ mod w

13. for qδ times do ACC← HomAutgw
(
ACC, akHORN[w]

)
14. if rδ ̸= 0 then ACC← HomAutgrδ

(
ACC, akHORN[rδ]

)
15. for i ∈ I+t do
16. ACC← ACC⊛ bskAUT[i]

17. δ ← told, qδ ←
⌊
δ/w

⌋
, rδ ← δ mod w

18. for qδ times do ACC← HomAutgw
(
ACC, akHORN[w]

)
19. if rδ ̸= 0 then ACC← HomAutgrδ

(
ACC, akHORN[rδ]

)
20. return ACC

Remark 3.1. In [LMK+23], a “flush” homomorphically applying τgδ is required
before moving to the second loop, as shown by the condition “[. . .] or ℓ = 1” in
[LMK+23, Algorithm 3, Line 7]. Our rewriting and proof (Appendix B) makes
visible that τ−g can be applied at any time after handling the last non-empty
set I−t , whereas filling the gap with τgδ can be deferred to the second loop, simply
adjusting told as in Line 9. This often saves one HomAut() evaluation.

3.2 A New Traversal Windowed Hörner-like Method

Since n is typically small w.r.t. 2N , many sets I+t or I−t are empty, which implies
that It := I−t ∪I+t is often equal to either I+t or I−t . This suggests a better strategy
to enumerate (Z

/
2NZ)×, where closing the gap between two non-empty sets It’s

11

Algorithm 3.2: BR w/automorphisms — Traversal Windowed Hörner

Input: c̃← (ã1, . . . , ãn, b̃) ∈ (Z
/
2NZ)n+1, ãi ∈ (Z

/
2NZ)× ∪ {0}; v ∈ Rq

Data: bskAUT and akTRAV as defined in Equations (2.1) and (3.6) for a
window size w = 2w′

Output: c← GLWEs(x
−µ̃ · v) ∈ Rk+1

q with µ̃ = b̃−
∑n
i=1 ãisi

1. ϵold ← +1, told ← N/2, ACC←
(
0, . . . , 0, x−b̃ · v(x)

)
2. for t = N/2− 1 down to 0 do

/* First consider same sign as ϵold, then flip if I−ϵoldt is not empty */
3. for ϵ ∈

{
ϵold,−ϵold

}
such that Iϵt ̸= ∅ do

/* Compute σ · gδ = ϵold · gtold/(ϵ · gt), update tracking values */
4. δ ← told − t, told ← t, σ ← ϵold/ϵ, ϵold ← ϵ

/* Apply τu for u = σ · gδ, see Remark 3.2 */
5. if δ = 0 then ACC← HomAut−1

(
ACC, akTRAV[0]

)
6. else
7. Write δ = qδ · w′ + rδ with rδ ∈

q
1, w′y and qδ ≥ 0

8. for qδ times do ACC← HomAutgw′
(
ACC, akTRAV[w′]

)
9. ACC← HomAutσ·grδ

(
ACC, akTRAV[σ · rδ]

)
/* Compute all external products for Iϵt */

10. for i ∈ Iϵt do
11. ACC← ACC⊛ bskAUT[i]

/* Finally, apply τu for u = ϵold · gtold */
12. if told = 0 and ϵold = −1 then ACC← HomAut−1

(
ACC, akTRAV[0]

)
13. else if told ̸= 0 then
14. Write δ = told = qδ · w′ + rδ with rδ ∈

q
1, w′y and qδ ≥ 0

15. for qδ times do ACC← HomAutgw′
(
ACC, akTRAV[w′]

)
16. ACC← HomAutϵold·grδ

(
ACC, akTRAV[ϵold · rδ]

)
17. return ACC

can be directly combined with a sign change. The main effect is to reduce E
[
δ
]
,

the average size of the gaps. As will be demonstrated, this enhances efficiency,
especially for smaller window sizes.

Doing so yields Algorithm 3.2, which exchanges the loops of Algorithm 3.1
by including the sign change, whenever needed, directly inside a unique loop
on t. The required automorphism keys are defined as

akTRAV :=
{
akTRAV[0]← kskτ−1(s)→s

}
∪{

akTRAV[±u]← kskτ±gu (s)→s

∣∣∣ u ∈ q
1, w′y

}
. (3.6)

Remark 3.2. We chose to always combine a possible sign change with the appli-
cation of τgrδ . When δ ̸= 0, it implies to modify the definition of qδ to

⌊
δ−1
w′

⌋
and rδ = δ − qδ · w′ to ensure rδ ∈

q
1, w′y so that akTRAV[σ · rδ] exists. Further,

the case δ = 0 can only occur when ϵ = −ϵold, i.e., σ = −1 inside the loop.

12

Proposition 3.3. Algorithm 3.2 is correct.

Proof. For t ∈
q
0, N/2

y
, define recursively q̃t ∈ Rq by q̃N/2 = v · x−b̃ and

q̃t = q̃t+1 · x
gt·
(∑

i∈I+t
si−

∑
i∈I−t

si

)
.

We inductively show that after each iteration, ACC contains a GLWE encryption
of τϵold·g−told

(
q̃t
)
.

First, ACC is initialized to a (trivial) GLWE encryption of x−b̃ · v(x), which is
indeed equal to τ+gN/2

(
q̃N/2

)
. Inside the loop, the induction hypothesis is pre-

served as long as both I+t and I−t are empty, since in this case q̃t = q̃told . Assume
now, forN/2 > t ≥ 0, that ACC contains a GLWE encryption of τϵold·g−told

(
q̃t+1

)
,

and exactly one Iϵt is non-empty for ϵ ∈ {ϵold,−ϵold}. Then, τσ·gδ (δ ≥ 1) is ho-
momorphically applied to ACC to obtain a GLWE encryption of τϵg−t

(
q̃t+1

)
, and

the following external products finally yield as expected a GLWE encryption of

τϵg−t
(
q̃t+1

)
· x

∑
i∈Iϵt

si = τϵg−t
(
q̃t+1 · x

gt
∑
i∈Iϵt

ϵsi
)
= τϵg−t

(
q̃t
)
.

When both I±t are non-empty, the previous reasoning is first applied on Iϵoldt ;
then for ϵ = −ϵold, we have δ = 0 so τ−1 is applied to ACC and external products
corresponding to indices in Iϵt finally yield a GLWE encryption of

τ−ϵold·g−t
(
q̃t+1 · x

ϵold·gt
∑
i∈I

ϵold
t

si
)
· x

∑
i∈Iϵt

si

= τϵg−t
(
q̃t+1 · x

gt
(∑

i∈Iϵt
ϵsi+

∑
i∈I−ϵt

(−ϵ)si
))

= τϵg−t
(
q̃t
)
,

which again is the induction hypothesis with Line 4 adjustments on ϵold and told.

Hence, after the loop, ACC contains a GLWE encryption of τϵold·g−told
(
q̃0

)
,

implying the result since the last lines of the algorithm apply τϵold·gtold . ⊓⊔

For completeness, we provide in Tables 3.1(a) and 3.1(b) a numerical com-
parison of the expected number of automorphism key switches in Algorithm 3.1
(similar to [LMK+23, Algorithm 7]) vs. Algorithm 3.2 under two different pa-
rameter sets. The first set is taken from [LMK+23, Table 2] and the second set is
PARAM MESSAGE 2 CARRY 2 KS PBS GAUSSIAN 2M643 from TFHE-rs [Zam22], with
parameters (n,N, k) = (458, 1024, 1) and (n,N, k) = (834, 2048, 1), respectively.
For an easier comparison, we assume w = 2w′ so that in both cases the key
material includes w + 1 automorphism keys. These tables show that, although
both methods roughly converge to the same optimum, the new traversal method
always shows superior performance due to its ability to combine smaller jumps
on average with sign changes; in particular, for small values of w = 2w′.

3 Git commit 400ce27beb5bea8fdc68826ad437099ec62680d0, Sept. 25, 2024.

13

Table 3.1: Measured expected number of automorphism key switches for Algo-
rithms 3.1 and 3.2 under two different parameters sets.

(a) For n = 458 and N = 1024.

w = 2w′ Alg. 3.1 Alg. 3.2 Ratio (%)

w = 2 625 578 92.5
w = 4 445 431 96.7
w = 6 396 390 98.4
w = 8 380 377 99.3
w = 10 373 371 99.5
w = 12 372 370 99.6
w = 14 372 370 99.7

(b) For n = 834 and N = 2048.

w = 2w′ Alg. 3.1 Alg. 3.2 Ratio (%)

w = 2 1232 1139 92.5
w = 4 857 827 96.5
w = 6 755 743 98.4
w = 8 721 715 99.2
w = 10 702 698 99.4
w = 12 698 696 99.7
w = 14 692 691 99.8

4 Automorphism-Parametrized Techniques

We propose a generalized external product that seamlessly incorporates a ho-
momorphic automorphism evaluation on the input ciphertext. Specifically, by
using a modified GLWE⊛-like ciphertext, we show how the key switch associated
with the homomorphic automorphism evaluation can be absorbed within the ex-
ternal product. In essence, our new operator enables in a single step and at the
cost of a single external product, the execution of a homomorphic automorphism
evaluation—including its key switch—followed by an external product.

4.1 Automorphism-Parametrized External Product

We generalize the extended-GLWE (GLWE⊛, aka. GGSW) ciphertexts, which are
used for computing external products, to embed information about the image of
the key under a given automorphism ψ; i.e., ψ = τu for a fixed u ∈ (Z

/
mZ)×.

Definition 4.1. An Automorphism-Extended-GLWE ciphertext relatively to au-
tomorphism ψ and to gadget decomposition ∇ = ∇ℓ1,ℓ2 of a plaintext µ̄ ∈ Rq
under key s ∈ Rkq is denoted by GLWE⊛,ψ

s

(
µ̄
)
and defined as{

GLWE
∇ℓ1
s

(
−ψ(s1) · µ̄

)
, . . . ,GLWE

∇ℓ1
s

(
−ψ(sk) · µ̄

)
,GLWE

∇ℓ2
s

(
µ̄
)}

.

In particular, for a given decomposition ∇, it holds that GLWE⊛,id
s = GLWE⊛

s .

Such ciphertexts GLWE⊛,ψ enable the combination of a homomorphic eval-
uation of ψ on a GLWE input with an external product, without requiring an
intermediate key switch, as demonstrated below.

Definition 4.2 (Automorphism-parametrized external product). The
automorphism-parametrized external product, relatively to the automorphism ψ
and gadget decomposition ∇ = ∇ℓ1,ℓ2 , is denoted by ⊛ψ and defined as

⊛ψ : GLWEs

(
µ
)
×GLWE⊛,ψ

s

(
µ̄
)
−→ GLWEs

(
ψ(µ) · µ̄

)
,

14

where, for GLWEs

(
µ
)
=
(
a1, . . . ,ak, b

)
, the result is computed as

〈
∇ℓ2ψ(b),GLWE

∇ℓ2
s

(
µ̄
)〉

+

k∑
j=1

〈
∇ℓ1ψ(aj),GLWE

∇ℓ1
s

(
−ψ(sk) · µ̄

)〉
.

In particular, for a given decomposition ∇, ⊛id coincides with ⊛.

The noise associated to this new operation is given by Proposition 4.3, which
essentially highlights a gain due to the removal of the key switch. It depends on
a constant C∞ which is set to 1 when m is a power of two. In the general case
where m is not a power of two, C∞ > 1 corresponds to the expansion factor
of Φm(x), e.g., C∞ = 2 when m is a prime p > 2 [MKMS24] or m = 3a [JW22],
and C∞ = 4 when m = 2b3a for b ≥ 2 [JW22]. Notably, for any automorphism ψ
and all w ∈ Rq, it holds that

∥∥ψ(w)
∥∥
∞ ≤ C∞ ·

∥∥w∥∥∞.

Proposition 4.3. Let ∇ = ∇ℓ1,ℓ2 be a gadget decomposition of quality β∇ =(
β1, β2

)
and precision ε∇ =

(
ε1, ε2

)
, whose output values are uniform and cen-

tered around 0. Let ein and ē represent the error associated with valid samples
GLWEs

(
µ
)
and GLWE⊛,ψ

s

(
µ̄
)
, respectively. Then GLWEs

(
µ
)
⊛ψ GLWE⊛,ψ

s

(
µ̄
)

is a sample of GLWEs

(
ψ(µ) · µ̄

)
with an error E of variance

σ2
⊛ψ ≤ C∞ ·

(∥∥µ̄∥∥2
2
· σ2

in +N
(
ℓ2
β2
2

12 + kℓ1
β2
1

12

)
· σ2

∇ +
∥∥µ̄∥∥2

2

(
ε22
12 + kN

ε21
12 ·E[s

2
j,i]
))

.

Proof. Let L0 ∈ Rk×ℓ2q s.t. GLWE
∇ℓ2
s

(
µ̄
)
=
(
L0, b0

)
, i.e., the ℓ2 columns of L0

are the respective masks of each GLWEs(g2,iµ̄), and b0 = s · L0 + µ̄ · g2 + ē0.

Similarly, let for j ∈
q
1, k

y
, Lj ∈ Rk×ℓ1q s.t. GLWE

∇ℓ1
s

(
−ψ(sj) · µ̄

)
=
(
Lj , bj

)
,

where bj = s · Lj − ψ(sj) · µ̄ · g1 + ēj . For GLWEs

(
µ
)
=
(
a, b

)
, the resulting

ciphertext of the above-defined operation is
(
A,B

)
with{

A= ∇ℓ2ψ(b) · L
⊺

0 +
∑

1≤j≤k∇ℓ1ψ(aj) · L
⊺

j ∈ Rkq
B=

〈
∇ℓ2ψ(b), b0

〉
+
∑

1≤j≤k
〈
∇ℓ1ψ(aj), bj

〉
∈ Rq

.

Rearranging terms after expanding the definition of the bj ’s yields

B=
〈
A,s

〉
+ µ̄ ·

(〈
∇ℓ2ψ(b),g2

〉
−
∑

1≤j≤k ψ(sj) ·
〈
∇ℓ1ψ(aj),g1

〉)
+
(〈
∇ℓ2ψ(b), ē0

〉
+
∑

1≤j≤k
〈
∇ℓ1ψ(aj), ēj

〉)
,

hence the exact expression of the error term E= B−
〈
A,s

〉
−ψ(µ) · µ̄ is given by

E= µ̄ · ψ(ein) +
(〈
∇ℓ2ψ(b), ē0

〉
+
∑

1≤j≤k
〈
∇ℓ1ψ(aj), ēj

〉)
+ µ̄ ·

(
e∇ℓ2

(
ψ(b)

)
−
∑

1≤j≤k ψ(sj) · e∇ℓ1
(
ψ(aj)

))

15

where e∇ℓu (w) :=
〈
∇ℓuw,gu

〉
− w for u ∈ {1, 2} and any w ∈ Rq.

Polynomials output by the decomposition are supposed uniform and centered
around 0, independently of ψ, and uncorrelated with error polynomials ēj . Thus,

the variance of e.g.,
〈
∇ℓ1ψ(aj), ēj

〉
is upper-bounded by ℓ1 ·C∞N · β

2
1

12σ
2
∇. Sim-

ilarly, the variance of the coefficients of µ̄ · ψ(ein) is given by
∥∥µ̄∥∥2

2
· C∞σ

2
in.

By hypothesis, the coefficients of e∇ℓu
(
w
)
have variance upper-bounded by

ε2u
12 .

Specifically, for the terms of the form µ̄ · ψ(sj) · e∇ℓ1
(
ψ(aj)

)
, the final variance

is
∥∥µ̄∥∥2

2
· C∞

(
σ2
sj
+ E[sj]2

)
·N ε21

12 . Bringing all these components together yields
the final result. ⊓⊔

4.2 Reducing Automorphism Key Switches in Blind Rotation

We now demonstrate how this new automorphism-parametrized external product
can be utilized to reduce the number of key switches in the Traversal Windowed
Hörner method.

In Algorithm 3.2, the transition from Iϵoldtold
to Iϵt involves a homomorphic au-

tomorphism evaluation, which includes at least one automorphism key switch.
Roughly speaking, the new operation combines this homomorphic automorphism
evaluation with the first external product in Iϵt . In effect, this narrows the dis-
tance between two consecutive sets by eliminating the associated key switch.

For each gap addressed in this manner, e.g., corresponding to an automor-
phism ψ = τ±gδ , additional GLWE⊛,ψ-ciphertexts are required. This creates a
trade-off between the size of the keys (i.e., the size of the set of admissible gaps)
and reduced performance and increased noise growth (i.e., more key switches).
However, as shown in Section 5, around 63% of the gaps in Algorithm 3.2 are
covered by

{
τ−1, τ±g

}
and around 84% by

{
τ−1, τ±g, τ±g2

}
.

Formal description Let S denote the set of admissible automorphisms, and as-
sume that id ∈ S.4 For convenience, a dual set S∗ :=

{
(δ, ϵ)

∣∣ ϵ ∈ {±1}, τϵ·gδ ∈ S}
is defined, which encodes S in (Z

/
2NZ)×. In particular, by the assumption on S,

it follows that (0, 1) ∈ S∗. The associated keys are defined by

bskS-AUT :=
{
bskS-AUT

ψ [i]← GLWE⊛,ψ
s (xsi)

∣∣∣ i ∈ q
1, n

y
, ψ ∈ S

}
, (4.1)

and

akS-AUT :=
{
akS-AUT[0]← kskτ−1(s)→s

}
∪{

akS-AUT[±u]← kskτ±gu (s)→s

∣∣∣ u ∈ q
1, w′′y

}
. (4.2)

For a fixed i ∈
q
1, n

y
, it is important to note that bskS-AUT

ψ [i], ψ ∈ S, all share
the common term GLWE

∇ℓ2
s

(
xsi
)
. Although this term is repeated for notational

clarity, it implies that the size of each bskS-AUT[i] is
(
♯S · k + 1

)
Gadget-GLWE

ciphertexts, rather than ♯S · (k + 1) Gadget-GLWE ciphertexts.

4 While not strictly necessary, including id in S always yields similar or better trade-
offs and simplifies both the presentation and the description of automorphism keys.

16

Algorithm 4.1: Blind Rotation: S-parametrized method

Input: c̃← (ã1, . . . , ãn, b̃) ∈ (Z
/
2NZ)n+1, ãi ∈ (Z

/
2NZ)× ∪ {0}; v ∈ Rq

Data: bskS-AUT and akS-AUT as defined in Equations (4.1) and (4.2) for a
window size w′′ and a set S of admissible automorphisms

Output: c← GLWEs(x
−µ̃ · v) ∈ Rk+1

q with µ̃ = b̃−
∑n
i=1 ãisi

1. ϵold ← +1, told ← N/2, ACC←
(
0, . . . , 0, x−b̃ · v(x)

)
/* see Remark 4.4 */

2. for t = N/2− 1 down to 0 such that I+t ∪ I−t ̸= ∅ do
3. ϵfirst ← ϵold if (told − t,+1) ∈ S∗ else −ϵold /* see Remark 4.5 */
4. for ϵ ∈

{
ϵfirst,−ϵfirst

}
such that Iϵt ̸= ∅ do

/* Compute σ · gδ = ϵold · gtold/(ϵ · gt), update tracking values */
5. δ ← told − t, told ← t, σ ← ϵold/ϵ, ϵold ← ϵ

/* Jumping strategy: find (δ∗, ϵ∗) ∈ S∗ alphabetically closest to (δ, σ) */
6. δ∗ ← max

{
(δ∗, ·) ∈ S∗

∣∣ δ∗ ≤ δ}, ϵ∗ ← σ if (δ∗, σ) ∈ S∗ else −σ
/* Jumping strategy: apply τv for v = σ · gδ/(ϵ∗ · gδ∗) */

7. if (δ − δ∗, σ/ϵ∗) = (0,−1) then ACC← HomAut−1

(
ACC, akS-AUT[0]

)
8. else if (δ − δ∗) ̸= 0 then
9. Write δ − δ∗ = qδ · w′′ + rδ with rδ ∈

q
1, w′′y and qδ ≥ 0

10. for qδ times do ACC← HomAutgw′′
(
ACC, akS-AUT[w′′]

)
11. ACC← HomAutσ/ϵ∗·grδ

(
ACC, akS-AUT[σ/ϵ∗ · rδ]

)
/* Jumping strategy: first external product parametrized by ψ = τϵ∗·gδ∗ */

12. ACC← ACC⊛ψ bskS-AUT
ψ

[
Iϵt [0]

]
/* Compute all remaining external products for Iϵt */

13. for i ∈ Iϵt \ {Iϵt [0]} do
14. ACC← ACC⊛ bskS-AUT

id [i]

/* Finally, apply τu for u = ϵold · gtold (see Remark 4.6) */
15. if ϵold = −1 then ACC← HomAut−1

(
ACC, akS-AUT[0]

)
16. if told ̸= 0 then
17. Write told = qδ · w′′ + rδ with rδ ∈

q
1, w′′y and qδ ≥ 0

18. for qδ times do ACC← HomAutgw′′
(
ACC, akS-AUT[w′′]

)
19. ACC← HomAutgrδ

(
ACC, akS-AUT[rδ]

)
20. return ACC

The new jumping strategy is formalized in Algorithm 4.1. For a gap u = σ·gδ,
the approach involves finding the closest pair (δ∗, ϵ∗) ∈ S∗, going forward, and
thereafter decomposing the automorphism τu as ψ ◦ τv, where ψ = τϵ∗·gδ∗ ∈ S
and v = u · (ϵ∗ · gδ∗)−1. When the component τv is non-trivial, it is homomor-
phically applied to ACC with the windowed method as in Algorithm 3.2, which
requires at least one automorphism key switch, whereas ψ ∈ S is applied as part
of the new automorphism-parametrized external product ⊛ψ.

Remark 4.4. As with any other automorphism-based blind rotation, the first au-
tomorphism evaluation on ACC is entirely free. Therefore, in practice, know-

17

ing the first (t0, ϵ0) in the loop s.t. Iϵ0t0 ̸= ∅, we can modify the initialization

step by directly setting ϵold = ϵ0, told = t0 and ACC =
(
0, . . . , 0, x−ub̃ · v(xu)

)
for u = ϵ0 · g−t0 .

Remark 4.5. In the specific case where both I±t are non-empty, δ∗ = told−t, and
the set S is not symmetric, i.e., it contains τu for some ±u = gtold−t but does
not necessarily include τ−u, it is preferable to first consider the sign ϵfirst that
will lead to the automorphism in S, which is not always ϵold, as done in Line 3.

Remark 4.6. It is also worth noting that, when S \
{
τ±1

}
is symmetric, then

during the main loop only non-negative indices of akS-AUT are necessary. Con-
sequently, we modified the final steps of Algorithm 4.1, in particular Line 15,
in order to ensure they also only require akS-AUT[0] ∪ akS-AUT[1 . . . w′′]. Thus, in
many cases, akS-AUT can be made twice shorter than indicated in Equation (4.2).

Proposition 4.7. Algorithm 4.1 is correct.

Proof. The iteration invariant is the same as in Algorithm 3.2, i.e., after iter-
ation t, ACC contains a GLWE encryption of τϵold·g−told

(
q̃t
)
under key s. The

output is HomAutu(ACC) for u = ϵold · gtold, which yields GLWEs

(
v · x⟨a,s⟩

)
by

induction. Note that the modified inner loop initialization (see Remark 4.5) only
modifies adaptively its order, but has no impact on correctness. ⊓⊔

Noise analysis The noise growth of Algorithm 4.1 is directly linked to the num-
ber of external products (whether automorphism-parametrized or not), which
is always n, and the number κ(w′′) of remaining automorphism key switches,
which gets smaller as ♯S grows.

Proposition 4.8. Let κ(w′′) be the number of automorphism key switches re-
quired by Algorithm 4.1. Then, using the same notations and gadget decomposi-
tions hypotheses as in Propositions 4.3 and 2.2, the error term of the output of
Algorithm 4.1 has variance

σ2
S-AUT ≤ n · s2⊛S

+ κ(w′′) · s2aut ,

where


s2⊛S
≤ C∞

(
N
(
ℓ2
β2
2

12 + kℓ1
β2
1

12

)
· σ2

∇ +
(
ε22
12 + kN

ε21
12 · E[s

2
j,i]
))

s2aut ≤ C∞

(
N
(
kℓks

β2
ks

12

)
· σ2

ks + kN
(

E[s2j,i] ·
ε2ks
12

))
.

Proof. We first prove the result in the (unlikely) case κ(w′′) = 0, i.e., when the
algorithm consists of a series of (automorphism-parametrized or not) external
products ⊛ψt , t ∈

q
1, n

y
,where ψt = τut ∈ S and ψn ◦ · · · ◦ψ1 = id. Without any

loss of generality, we assume that the LWE key indexes have been reordered so
that the t-th operation ⊛ψt involves bsk

S-AUT

ψt [t] = GLWE⊛,ψt
s

(
xst
)
.

18

We proceed by expressing directly the final error term.5 Let Et be the error
term of ACC =

(
a1, . . . ,ak, b

)
after ⊛ψt . Using the same notations as in the

proof of Proposition 4.3, Et = xst · ψt
(
Et−1

)
+
(
E

(t)
⊛ + xst · E(t)

∇,ψt

)
, where E

(t)
⊛ =

〈
∇ℓ2ψt(b), ē

(t)
0

〉
+
∑

1≤j≤k

〈
∇ℓ1ψt(aj), ē

(t,ψt)
j

〉
E

(t)
∇,ψt = e∇ℓ2

(
ψt(b)

)
−
∑

1≤j≤k
ψt
(
sj
)
· e∇ℓ1

(
ψt(aj)

)
,

with e∇ℓu (w) :=
〈
∇ℓuw,gu

〉
− w for u ∈ {1, 2} and any w ∈ Rq. A simple

induction then yields, from E0 = 0 and E1 = E
(1)
⊛ , i.e., E

(1)
∇,ψ1

= 0,

En =

n∑
t=1

(n∏
a=t+1

xsaua+1···un
)
· τun···ut+1

(
E

(t)
⊛ + xst · E(t)

∇,ψt

)
.

We continue by looking at the case of one single automorphism key switch.
For a given t ∈

q
1, n

y
, assume ψt /∈ S can be decomposed as ψ∗

t ◦τvt where ψ∗
t ∈ S

and akS-AUT contains a key corresponding to τvt ̸= id. From Proposition 2.2, the

noise term after HomAutτvt is then given by τvt
(
Et−1

)
+
(
E

(t)
ks +E

(t)
∇ks,τvt

)
, where E

(t)
ks =

∑
1≤j≤k

〈
∇ℓksτvt(aj), ē

(vt)
ks,j

〉
E

(t)
∇ks,τvt

= −
∑

1≤j≤k
τvt
(
sj
)
· e∇ℓks

(
τvt(aj)

)
,

with e∇ℓks (w) :=
〈
∇ℓksw,gks

〉
− w for any w ∈ Rq. After applying the ⊛ψ∗

t

operation, the formula for obtaining Et from Et−1 becomes (note the ψ∗
t stars)

Et = xst · ψt
(
Et−1

)
+
(
E

(t)
⊛ + xst · E(t)

∇,ψ∗
t

)
+ xst · ψ∗

t

(
E

(t)
ks + E

(t)
∇ks,τvt

)
.

In the general case, let A =
{
t ∈ J1, nK

∣∣ ψt /∈ S}. Then, for any fixed t ∈ A,
Algorithm 4.1 decomposes ψt as ψ

∗
t ◦τvt◦τ qtgw′′ where ψ∗

t ∈ S, τvt ̸= id (⇔ vt ̸= 1),

and akS-AUT contains a key corresponding to τvt . Adapting the previous discus-
sion to the case qt > 0, it is easy to verify that for such t ∈ A we have

Et = xst · ψt
(
Et−1

)
+ E

(t)
⊛ + xst · E(t)

∇,ψ∗
t
+ xst · ψ∗

t

(
E(t)ks

)
,

where E(t)ks,vt,qt
:=
(
E

(t)
ks +E

(t)
∇ks,τvt

)
+
∑qt
a=1 τvtτ

a−1
gw′′

(
E

(t,a)
ks +E

(t,a)
∇ks,τgw′′

)
captures

the errors from the required automorphism key switches when t ∈ A. By abuse
of notation, we let ψ∗

t = ψt also when t /∈ A, i.e., when ψt ∈ S. This allows us
to prove by induction that the final error term of ACC is given by

En =

n∑
t=1

(n∏
a=t+1

xsaua+1···un
)
·τut+1···un

(
E

(t)
⊛ +xst ·E(t)

∇,ψ∗
t
+1t∈A·xst ·ψ∗

t

(
E(t)ks,vt,qt

))
.

5 In the general case where C∞ > 1, applying n times Proposition 4.3 would result in
an artificially large factor Cn∞ in the upper bound. Indeed, as opposed to the claim
of [MKMS24, Page 11], applying an automorphism alone does affect the error by a
factor C∞.

19

It remains to bound the variance of En from this closed form.

First of all, the E
(t)
⊛ ’s (resp. E

(t,a)
ks) can be considered as independent random

samples of a random variable E⊛ (resp. Eks), since the output distribution of
the gadget decomposition is independent of the automorphism ψ∗

t , and the de-
composed elements are combined with the bootstrapping keys errors. The same
argument applies for the decomposition error terms e∇ℓu (w) for any w ∈ Rq
and u ∈

{
1, 2, ks

}
, however the images of the GLWE key ψ

(
sj) are not indepen-

dent when t varies. In order to deal with this, we rewrite each ψ
(
sj
)
· e∇ℓu (w)

as ψ
(
sj · ψ−1

(
e∇ℓu (w)

))
. The second key point is to notice that all subsequent

automorphism applications (resp. multiplications by some power of x) are actu-
ally permutations (resp. rotations) of the error coefficients modulo xm − 1, so
that their variance is only multiplied once by C∞ when reducing modulo Φm.

Thus, it is sufficient to bound the variance of
〈
∇uw, ē

〉
and sj ·ψ

(
e∇ℓu (w)

)
,

for any u ∈
{
1, 2, ks

}
and w ∈ Rq. The result now follows from arguments

similar to those in the proof of Proposition 4.3. ⊓⊔

Comparison with [LLW+24] In [LLW+24, Section 4], the authors describe an
improved automorphism-based blind rotation, originally for NTRU and identi-
fied as “merging the symmetric sets.” Their method doubles the size of the keys,
using both GLWE⊛

s (x
±si) for each i ∈

q
1, n

y
. Algorithmically, this corresponds

to the traversal method where the loop on ϵ ∈ {±ϵold} is replaced by a choice
of operand in the external product conditioned on ϵ. This removes all homo-
morphic applications of complex conjugation in the traversal method, which
account for approximately 18% of the total number of the key switches when us-
ing an optimal window size. By contrast, the new S-parametrized method with
S = {id, τ−1} also allows removing all complex conjugations, thus using less
keys to achieve the same performance level. For instance, when k = 1, it needs
(2k + 1) · n = 3n Gadget-GLWE ciphertexts, whereas following the approach
of [LLW+24] would require 2(k + 1) · n = 4n Gadget-GLWE ciphertexts. More
notably, setting S = {id, τ±g} allows removing about 46% of the key switches
from [LMK+23] for about the same key size as what is needed in [LLW+24] to
remove only 18% of those. This highlights that our automorphism-parametrized
external product provides a more effective solution than simply generalizing the
approach in [LLW+24].

Furthermore, aiming for a method similar to the S-parametrized approach
with S =

{
τ±1, τ±g

}
, generalizing the approach of [LLW+24] would require not

only the keys GLWE⊛(x±si) as in [LLW+24], but also at least additional keys
GLWE⊛(x±g·si). For k = 1, this already amounts to 8n Gadget-GLWE cipher-
texts vs. 5n for the S-parametrized method. However, even with this allowed,
it still does not reach the performance of the S-parametrized method: since no
automorphism is applied during the external products, the generalized method
cannot handle more than two consecutive gaps of type ±g without key switch. On
average in this setting, our measurements show that this generalization brings
only 60% of the performance gains provided by the S-parametrized method.

20

5 Analysis and Experiments

The complexity and noise analysis of the algorithms of this paper primarily re-
duce to evaluating the number of automorphism key switches performed, in ad-
dition to the n external products (whether automorphism-parametrized or not).

In previous works, this has been achieved using a rather loose worst-case up-
per bound (derived from) [LMK+23, Section 4.1], and with Monte Carlo simula-
tions as in [WWL+24, Section 4.2] or [LLW+24, Figure 2]. In this work, we pro-
pose a theoretical framework for assessing the performance of our new automor-
phism-parametrized blind rotation, as well as prior automorphism-based algo-
rithms. This framework is thoroughly validated through numerical experiments.

5.1 On Random Divisions of an Interval

We propose to reduce the problem of evaluating the number of automorphism key
switches to analyzing the distribution of gaps in a random cut (with repetitions)
of

q
0, B

y
,6 approximated by the continuous case

[
0, B

]
.

Consider n uniformly random variables X1, . . . , Xn sampled from
[
0, B

]
, and

denote their ordered values by X(i), such that 0 ≤ X(1) ≤ · · · ≤ X(n) ≤ B. For
convenience, define X(0) = 0 and X(n+1) = B, capturing the starting and final

points of the blind rotation loop. A random cut of
[
0, B

]
is given by the (n+1)

random gaps ∆i = X(i+1) −X(i), for i ∈
q
0, n

y
, constrained by

∑n
i=0∆i = B.

Average maximum distance In this context (see e.g., [DN03, Section 6.4]), the
joint probability density function of ∆i1 , . . . ,∆ir , for any r ∈

q
1, n

y
and choice

of the ij ’s, is known to be, for
∑
dij ≤ B,

f
(
di1 , . . . , dir

)
=

n!

Br(n− r)!
·
(
1− di1 + di2 + · · ·+ dir

B

)n−r
.

This yields, by integrating r-times on 0 ≤
∑r
j=1 cj ≤ B [DN03, Equation 6.4.3],

Pr
[
∆i1 ≥ c1, . . . ,∆ir ≥ cr

]
=

(
1−

∑r
j=1 cj

B

)n
.

The probability of the maximum to be greater than c ≤ B is given by the union
of all events ∆i ≥ c. By the inclusion/exclusion principle, this writes

Pr
[
max0≤i≤n

{
∆i

}
≥ c
]
=

∑
1≤u≤n+1
s.t. uc≤B

(−1)u−1 ·
(
n+ 1

u

)(
1− uc

B

)n
. (5.1)

6 For instance, B = N in Algorithm 3.1 and B = N/2 in Algorithms 3.2 and 4.1.

21

The expectation is obtained by integrating this over all possible values of c, i.e.,

E
[
max0≤i≤n

{
∆i

}]
=

n+1∑
u=1

(−1)u−1 ·
(
n+ 1

u

)∫ B/u

0

(
1− ux

B

)n
dx

=
B

n+ 1
·
n+1∑
u=1

(
n+ 1

u

)
(−1)u−1

u
=

B

n+ 1
·
n+1∑
u=1

1

u
. (5.2)

The last equality may be proven by induction. Therefore, the average maximum
gap can be approximated by B

n+1

(
ln(n+ 1) + γ

)
, where γ ≈ 0.577 is the Euler–

Mascheroni constant, perfectly matching our experiments in the discrete case.

Average number of gaps of a given size Furthermore, we also need a more precise
estimation of the number Nt of gaps of size t ∈

q
0, B

y
. This can be obtained

from the continuous case as follows.

Let
(
Ut
)
for t ∈

q
0, B

y
be a partition of

[
0, B

]
enclosing integers with some

offset ω = ωn,B ∈
]
0, 1
[
,7 i.e., U0 :=

[
0, ω

]
, Ut :=

[
t−1+ω, t+ω

]
for t ∈

q
1, B−1

y

and finally UB :=
[
B − 1 + ω,B

]
. In addition, let Ñt = ♯

{
i ∈

q
0, n

y ∣∣ ∆i ∈ Ut
}
;

we heuristically assume that Ñt follows the same distribution as its discrete
counterpart Nt. We rely on the following result, scaled from

[
0, 1
]
to
[
0, B

]
.

Proposition 5.1 ([Dar53, Equation 4.2]). Let W =
∑n
j=0 h(∆j) for any

integrable function h on
[
0, B

]
. Then

E
[
W
]
= (n+ 1) ·

∫ B

0

n
(
1− r

B

)n−1

h(r)
dr

B
.

Applying Proposition 5.1 for ht(r) = 1Ut(r), noting that Ñt =
∑n
j=0 1Ut

(
∆j

)
,

we derive the following heuristic approximation of E
[
Nt
]
, where Ut = [ut, vt]:

E
[
Nt
]
≈ E

[
Ñt
]
= (n+ 1) ·

[(
1− ut

B

)n − (1− vt
B

)n]
. (5.3)

This approximation is close to (n+1) ·
(
e−n·ut/B − e−n·vt/B

)
, which is generally

easier to work with in practice due to its simpler exponential form.

It remains to determine the appropriate offset ω. To do so, we calibrate it so
that the above-computed heuristic E

[
Ñ0

]
= (n+ 1)− (n+ 1)

(
1− ω

B

)n
matches

the formally proven E
[
N0

]
. In the discrete case, the average number of distinct

values for sampling n integers amongst B values is given by B−B(1− 1
B)n. This

is equivalent to having E
[
N0

]
= n−B +B(1− 1

B)n collisions. Hence, we get

ω = B −B
(
1 +B −B(1− 1/B)n

n+ 1

)1/n

. (5.4)

7 Intuitively, ω is expected to be close to 1
2
. See also Remark 5.2.

22

(a) For n = 465 and B = 1024. (b) For n = 834 and B = 1024.

Fig. 5.1: Expectation for Nt, averaged over 104 samples of n (discrete logarithms)
values modulo B vs. theoretical expectations obtained from Eqn. (5.3). Displayed
values stop after the first t s.t. E

[
Nt
]
< 1.

Remark 5.2. Using instead the approximations E
[
Ñ0

]
≈ (n+ 1) ·

(
1− e−nω/B

)
and E

[
N0

]
≈ n − B

(
1 − e−n/B

)
, we can obtain a simpler expression for ω.

Specifically, we get (n+1)·e−n/B·ω ≈ 1+B(1−e−n/B), so that ω ≈ − 1
x ln
(
1−e−x

x

)
for x = n

B . Assuming x = o(1), its Taylor expansion writes

ω ≈ 1
2 −

1
24 ·

n
B + 1

2880 ·
(
n
B

)3 − . . . ,
which provides an indication of how close ω is to 1

2 .

Numerical validation We experimentally measured E
[
Nt
]
for two sets of param-

eters (n,B): the ratio n
B in Figure 5.1(a) is relevant for analyzing Algorithm 3.1,

whereas the ratio n
B in Figure 5.1(b) pertains to the analysis of Algorithms 3.2

and 4.1. In both cases, the observed results closely match the theoretical pre-
dictions, exhibiting the same shape. In particular, the results clearly show the
exponential decay in the number of large gaps, which explains why a small set
of automorphism keys suffices for automorphism-based blind rotations.

In addition, we observe significantly more gaps of size 1 compared to colli-
sions. In practice, it is therefore more effective to handle gaps of size 1, e.g., with
the S-parametrized method using S =

{
id, τg

}
, rather than gaining (roughly

half of) the gaps of size 0 using complex conjugation.

5.2 Theoretical Analysis of Automorphism-based Methods

We now apply the above discussion to analyze the average number of automor-
phism key switches required by Algorithms 3.1, 3.2 and 4.1. This readily provides
average-case estimations of their computational complexity and noise growth.

Let κ := κ(w) denote the random variable representing the number of key
switches for a given window size w. Although κ also implicitly depends on n

23

and B = N or N
2 , we omit these parameters since n and N are fixed across all

methods. Using a maximal window size w = B gives a lower bound on the average
number of automorphism key switches required by the method, denoted by κ∞.

In this section, we provide explicit formulas closely approximating E
[
κ(w)

]
and E

[
κ∞
]
for all algorithms. We also discuss which choice of the window value w

is optimal. In general, each algorithm is associated with a cost function h(w, t),
which represents the number of automorphism key switches required for a gap
of size t ∈ J0, BK using a window parameter w. Consequently, κ(w) is simply

computed as
∑B
t=0 h(w, t) ·Nt, where Nt denotes the number of gaps of size t.

Average number of key switches for Windowed-Hörner methods The easiest case
is that of the Windowed-Hörner method, as the sets I±t can be modeled directly8

as sampling n random values in J0, NK with the cost function h(w, t) =
⌈
t
w

⌉
.

Proposition 5.3. The expected number of automorphism key switches for a
window of size w in Algorithm 3.1 using akHORN satisfies

E
[
κHORN(w)

]
≈
(
1 +N

(
1− e−n/N

))
· 1

1− e−n/N ·w .

In particular, the best possible average value is E
[
κHORN
∞

]
≈ 1 +N(1− e−n/N).

Proof. For a gap of size t, exactly
⌈
t
w

⌉
automorphism key switches must be per-

formed, thus E
[
κHORN(w)

]
is given by

∑N
t=0

⌈
t
w

⌉
·E
[
Nt
]
, i.e., by Equation (5.3),

E
[
κHORN(w)

]
≈ (n+ 1) ·

N∑
t=1

⌈ t
w

⌉
·
((

1− ut
N

)n − (1− vt
N

)n)
.

Grouping the terms by values of
⌈
t
w

⌉
, and after canceling successive terms using

that ut = vt−1 for t ∈
q
1, N

y
(the last term with vN being 0), eventually yields

E
[
κHORN(w)

]
≈ (n+ 1) ·

⌈N/w⌉−1∑
k=0

(
1− vkw

N

)n
≈ (n+ 1)e−n/N ·ω · 1− e−n/N ·w·⌈N/w⌉

1− e−n/N ·w .

The last expression is obtained by plugging vkw = kw + ω and approximating
each

(
1 − vkw

N

)n
by e−n/N ·vkw = e−n/N ·ωe−n/N ·wk. The numerator is bounded

by
(
1− e−n

)
and

(
1− e−n(1+w/N)

)
, both of which are astronomically close to 1.

Finally, the offset ω is precisely defined so that (n+1)·e−ωn/N equals the expected
number of distinct values plus one, i.e., E

[
κHORN
∞

]
≈ 1 +N(1− e−n/N). ⊓⊔

For the Traversal Windowed-Hörner method, the sets It = I+t ∪ I−t can be
modeled as sampling n random values in

q
0, N2

y
, ignoring the signs. Since gap

jumps always combine with possible sign changes, all gaps of size t > 0 in this

8 Formally, using the bijection ga 7→ a ∈
q
0, N

2
− 1

y
and −ga 7→ a+ N

2
∈

q
N
2
, N − 1

y
.

24

model can be handled with exactly h(w′, t) =
⌈
t
w′

⌉
automorphism key switches,

regardless of which Iϵ is non-empty or processed first.
However, when both I+t and I−t are non empty, we must account for addi-

tional sign changes. Luckily, the expected number of occurrences of this event is
exactly given by the difference between the expected number of distinct values
for n samples amongst N values vs. N/2, i.e., N

(
1− e−n/N

)
− N

2

(
1− e−2n/N

)
.

This leads to the following proposition.

Proposition 5.4. The expected number of automorphism key switches for a
window of size w′ in Algorithm 3.2 using akTRAV satisfies

E
[
κTRAV(w′)

]
≈ N

2
·
(
1− e−n/N

)2
+
(
1 +

N

2

(
1− e−2n/N

))
· 1

1− e−n/N ·2w′ .

In particular, the best possible average value is E
[
κTRAV
∞

]
≈ 1 +N(1− e−n/N).

As shown by Propositions 5.3 and 5.4, both methods converge to the same
optimum. However, we can theoretically quantify the improvement brought by
the Traversal method for a (fixed) equivalent amount of automorphism keys,
i.e., for w = 2w′. In that case, the difference simplifies to

E
[
κHORN(w)

]
− E

[
κTRAV(w′)

]
≈ N

2

(
1− e−n/N

)2 · (1

1− e−n/N ·w − 1
)
,

which is strictly positive and decreases towards 0, as expected. This allows the
corresponding ratio to be expressed directly as

E
[
κTRAV(w′)

]
E
[
κHORN(w)

] ≈ 1− 1

2
· N(1− e−n/N)2

1 +N(1− e−n/N)
· e−n/N ·w

≈ 1− 1

2
·
(
1− e−n/N

)
· e−n/N ·w ,

which perfectly aligns with the experimental results presented in Table 3.1.

Average number of key switches for the automorphism-parametrized method As
for the automorphism-parametrized method, the number of automorphism key
switches depend on the specific set S of automorphisms utilized.

We first consider the simplest case where S contains all automorphisms τgk
up to k = K ≥ 0, and is symmetric, i.e., τa ∈ S ⇒ τ−a ∈ S. This basically
means that all gap jumps of size at most K, including those involving possible
sign changes, can be handled using our new parametrized external product.

Proposition 5.5. Suppose S =
{
τ±1, τ±g, . . . , τ±gK

}
for K ≥ 0. The expected

number of automorphism key switches for a window of size w′′ in Algorithm 4.1
using akS-AUT[0] ∪ akS-AUT[1 . . . w′′] satisfies

E
[
κS-AUT(w′′)

]
≈ 1

2
+
(
1 +

N

2

(
1− e−2n/N

))
· e−K·2n/N · 1

1− e−n/N ·2w′′ .

This tends towards E
[
κS-AUT
∞

]
≈ 1

2 +
(
1 + N

2 (1− e−2n/N)
)
· e−K·2n/N with w′′.

25

In other words, Proposition 5.5 shows that increasing K by 1 essentially
reduces the number of automorphism key switches by a factor of e2n/N , which
is approximately 2.26 for n = 834 and N = 2048 (resp. 2.48 for n = 465 and
N = 1024). This matches the measurements presented in Table 5.4.

Remark 5.6. The case K = 0, corresponding to S =
{
id, τ−1

}
, is computation-

ally equivalent to (though requiring less keys than) the proposal in [LLW+24]. In-
deed, both settings eliminate precisely the homomorphic complex conjugations.

Proof (of Proposition 5.5). The modeling is the same as for the Traversal method
with B = N

2 . Due to the shape of S, all gaps of size t ≤ K, including a possible

sign change, incur no cost. For gaps of size t > K,
⌈
t−K
w′′

⌉
automorphism key

switches are required (followed e.g., by a new external product parametrized
by τ±gK). Thus, the expected number of automorphism key switches is

E[κS-AUT(w′′)] ≈ (n+ 1) ·
N/2∑

t=K+1

⌈
t−K
w′′

⌉
·
((

1− ut
N/2

)n
−
(
1− vt

N/2

)n)
.

Using the same reasoning as before, this simplifies to the right-hand side of the
result. Finally, since only the “positive” part of akS-AUT is used, applying a sign
change using akS-AUT[0] (Algorithm 4.1, Line 15) is required half of the time. ⊓⊔

We also explore various tradeoffs where S is not symmetrical. In particular,
if S only lacks τ−1 to be symmetrical, the situation is similar to Proposition 5.4
for the Traversal method: automorphism key switches using akS-AUT[0] are only

required when both I±t are non-empty, so N
2 ·
(
1− e−n/N

)2
is simply added.

The situation is trickier in general. We focus on the case S =
{
id, τg

}
, as other

cases appear to be of limited interest. Notably, this is the first scenario where
both the “negative” and “positive” parts of akS-AUT are required. As before, we

must add the complex conjugation count, i.e., N
2 ·
(
1 − e−n/N

)2
. However, we

also must account for size-1 gaps that necessitate a sign change. Empirically, we
observed that θ ≈ 60% of these size-1 gaps incur an additional sign change cost.

On the optimal window size In previous works, the optimal window size is
guesstimated as the point where some experimental graph sufficiently flattens.
For instance, [LMK+23, Figure 3] suggests using w = 10, while in an equivalent
setting [LLW+24, Figure 2(b)] instead suggests using w = 20.

We propose a more robust definition of this optimal window size. Intuitively,
the optimal window size should be set such that no greater gaps occur on aver-
age. More formally, we define wopt as the smallest w s.t. E

[
κ(w)

]
≤ E

[
κ∞
]
+α,

where 0 < α ≤ 1 is fixed. Thus, let wopt (resp. w
′
opt, w

′′
opt) denote the correspond-

ing optimal window value w.r.t. Algorithm 3.1 (resp. Algorithm 3.2, resp. Al-
gorithm 4.1 for a symmetric set of automorphisms S = {τ±gk | 0 ≤ k ≤ K}).
Solving directly the condition for wopt, w

′
opt using Propositions 5.3 and 5.4 yields

the equivalent expression

w
(′)
opt =

⌈
B

n
· ln
(
1 +

1 +B
(
1− e−n/B

)
α

)⌉
, (5.5)

26

(a) For n = 465 and B = N = 1024. (b) For n = 465 and B = N/2 = 512.

(c) For n = 834 and B = N = 2048. (d) For n = 834 and B = N/2 = 1024.

Fig. 5.2: Optimal window size wopt, depending on the average distance α to κ∞.
Using B = N corresponds to Algorithm 3.1 and [LMK+23], whereas B = N/2
captures Algorithm 3.2 (w′

opt), Algorithm 4.1 for S =
{
τ±1

}
and [LLW+24].

where B = N for wopt and B = N/2 for w′
opt. Likewise, using Proposition 5.5,

we obtain that for a given K ≥ 0, w′′
opt verifies

w′′
opt =

⌈
N

2n
ln

(
1 +

1 +N/2(1− e−2n/N)

α
· e−K·2n/N

)⌉
≈ w′

opt −K . (5.6)

Curves for w
(′)
opt (ommitting the ceiling) are given in Figure 5.2. We remark

that w′′
opt = w′

opt when K = 0, so that the figures with B = N/2 (w′
opt) also

encompass optimal window sizes for Algorithm 4.1 (w′′
opt) with S =

{
τ±1

}
as

well as [LLW+24] (see Remark 5.6). For example, for n = 465 and N = 1024,
Figure 5.2(a) shows that choosing wopt = 20 ensures α ≥ 0.043, whereas Fig-
ure 5.2(b) indicates that setting w′

opt = 8 as in [LLW+24] only yields α ≥ 0.215.
Conversely, targeting α = 0.25 yields resp. wopt = ⌈16.1⌉ and w′

opt = ⌈7.8⌉, ac-
cording to Equation (5.5). This also supports the intuition that wopt ≈ 2w′

opt,

since the average maximum gap is roughly halved from N/2
n/2 ln(n/2) to N/2

n lnn.

27

Table 5.3: Comparison of automorphism-based blind rotations w.r.t. evaluation
key material and best average number of automorphism key switches. For con-
cision, An/N denotes e−n/N , and experimental observations suggest θ ≈ 60%.

Keys size (♯GLWE∇) Avg. number of aut. key switches

bsk ak (E[κ∞], i.e., using w
(′,′′)
opt)

Telescoping (Fig. 2.1(b)) (k + 1)n kN min{n,N}
Wind Hörner (Alg. 3.1) (k + 1)n k(w + 1) N · (1−An/N)
Traversal (Alg. 3.2) (k + 1)n k(2w′ + 1) N · (1−An/N)
[LLW+24, Alg. 2] 2(k + 1)n kw′ N

2
· (1−A2

n/N)

S-Aut, S = {τ±1} (2k + 1)n k(w′ + 1) N
2
· (1−A2

n/N)

S-Aut, S = {id, τg} (2k + 1)n k(2w′ − 1) N ·(1−An/N)− N
2
·θ
(
1−A2

n/N)2

S-Aut, S = {id, τ±g} (3k + 1)n kw′ N
2
·
(
A2
n/N−A4

n/N+(1−An/N)2
)

S-Aut, S = {τ±1, τ±g} (4k + 1)n kw′ N
2
· (1−A2

n/N) ·A2
n/N

S-Aut, S = {τ±1, τ±g, τ±g2} (6k + 1)n k(w′ − 1) N
2
· (1−A2

n/N) ·A4
n/N

S-Aut, S = {τ±gk | k < K} (2Kk + 1)n k(w′−K+2) N
2
· (1−A2

n/N) ·A2(K−1)

n/N

Remark 5.7. Using the approximation 1 + B(1 − e−n/B) ≈ (n + 1) · e−nωn,B/B
(see Remark 5.2), and assuming ωn,B < 1

2 and n < B, we easily obtain much
simpler—though not fully accurate—expressions:

wopt ≈
⌈
N
n · ln

n+1
α

⌉
, w′

opt ≈
⌈
N
2n · ln

n+1
α

⌉
,

w′′
opt ≈

⌈
N
2n · ln

n+1
α

⌉
−K .

As expected, these values are close to the average maximum gap when α = 1.
This yields a direct explanation of why small window sizes suffice in practice and
clearly shows that the optimal window grows logarithmically as α approaches 0.

Theoretical summary The performance of automorphism-based blind rotation al-
gorithms is summarized in Table 5.3 according to Propositions 5.3, 5.4 and 5.5.
As throughout this paper, the results are given for null or invertible mask
components. We also consider in the ak column that w′ = w/2 = w′′ + K
(see Remark 5.7) in order to ease comparisons. The number of (automorphism-
parametrized) external products is always exactly n and is therefore omitted.

5.3 Numerical Measurements

To demonstrate the impact of our techniques on automorphism-based blind ro-
tations, we conducted experiments to measure the average number of (extended
and classical) external products and automorphism key switches required by each
of our new variants, comparing their performance against [LMK+23, LLW+24].

28

Table 5.4: Experimentally measured number of regular (⊛), automorphism-
parametrized (⊛S) external products, and automorphism key switches (KS) for
automorphism-based blind rotations, averaged over 104 samples. The optimal

window values w
(′,′′)
opt are computed for α = 0.25.

(a) Parameters n = 465 and N = 1024, k = 1.

Method w
(′,′′)
opt

Keys
♯(⊛) ♯(⊛S) ♯(KS)

(♯GLWE∇)

Windowed-Hörner (Alg. 3.1, [LMK+23]) 17 2n+ 18 465 0 375.8
Traversal Windowed-Hörner (Alg. 3.2) ±8 2n+ 17 465 0 375.0
[LLW+24, Alg. 2] 8 4n+ 8 465 0 306.1

S-Aut, S = {τ±1} 8 3n+ 9 210 255 306.6
S-Aut, S = {id, τg} ±7 3n+ 15 306 159 263.1
S-Aut, S = {id, τ±g} 7 4n+ 8 159 306 192.5
S-Aut, S = {τ±1, τg} ±7 4n+ 15 91 374 195.4
S-Aut, S = {τ±1, τ±g} 7 5n+ 8 91 374 124.3
S-Aut, S = {id, τ±g, τ±g2} 6 6n+ 7 159 306 118.8
S-Aut, S = {τ±1, τ±g, τ±g2} 6 7n+ 7 91 374 50.6
S-Aut, S = {τ±gk | 0 ≤ k ≤ 3} 5 9n+ 6 91 374 20.9
S-Aut, S = {τ±gk | 0 ≤ k ≤ 4} 4 11n+ 5 91 374 9.0
S-Aut, S = {τ±gk | 0 ≤ k ≤ 5} 3 13n+ 4 91 374 4.3
S-Aut, S = {τ±gk | 0 ≤ k ≤ 6} 3 15n+ 4 91 374 1.9
S-Aut, S = {τ±gk | 0 ≤ k ≤ 7} 2 17n+ 3 91 374 1.5

(b) Parameters n = 834 and N = 2048, k = 1.

Method w
(′,′′)
opt

Keys
♯(⊛) ♯(⊛S) ♯(KS)

(♯GLWE∇)

Windowed-Hörner (Alg. 3.1, [LMK+23]) 20 2n+ 21 834 0 688.5
Traversal Windowed-Hörner (Alg. 3.2) ±10 2n+ 21 834 0 686.4
[LLW+24, Alg. 2] 10 4n+ 10 834 0 571.4

S-Aut, S = {τ±1} 10 3n+ 11 376 458 571.9
S-Aut, S = {id, τg} ±9 3n+ 19 264 570 495.5
S-Aut, S = {id, τ±g} 9 4n+ 10 264 570 368.7
S-Aut, S = {τ±1, τg} ±9 4n+ 10 149 685 380.8
S-Aut, S = {τ±1, τ±g} 9 5n+ 10 149 685 254.0
S-Aut, S = {id, τ±g, τ±g2} 8 6n+ 9 263 571 227.2
S-Aut, S = {τ±1, τ±g, τ±g2} 8 7n+ 9 149 685 112.5
S-Aut, S = {τ±gk | 0 ≤ k ≤ 3} 7 9n+ 8 149 685 50.1
S-Aut, S = {τ±gk | 0 ≤ k ≤ 4} 6 11n+ 7 149 685 23.0
S-Aut, S = {τ±gk | 0 ≤ k ≤ 5} 5 13n+ 6 149 685 10.9
S-Aut, S = {τ±gk | 0 ≤ k ≤ 6} 4 15n+ 5 149 685 5.4
S-Aut, S = {τ±gk | 0 ≤ k ≤ 7} 3 17n+ 4 149 685 3.1
S-Aut, S = {τ±gk | 0 ≤ k ≤ 8} 2 19n+ 3 149 685 1.9

29

The results are summarized in Table 5.4 for the two different parameter
sets, corresponding to those in Section 3—with n = 465 for the first set, as
in [LLW+24], instead of n = 458. The optimal window values are computed
from Equations (5.5) and (5.6) under the rather stringent9 requirement that the

distance between κ
(
w

(′,′′)
opt

)
and the corresponding κ∞ does not exceed α = 0.25

on average. The number of automorphism key switches and operation counts are
then averaged over 104 random mask components in (Z

/
2NZ)×. We stress that

although there are separate counts for ⊛ and ⊛S to highlight the use of the new
parametrized external product, both operations are strictly equivalent regarding
their computational cost.

The results indicate that, with the same increase of the bootstrapping keys
as in [LLW+24], Algorithm 4.1 with S =

{
id, τ±g

}
already requires 37.1%

(resp. 35.5%) fewer key switches compared to [LLW+24] and 49.1% (resp. 46.4%)
fewer compared to [LMK+23]). More strikingly, with keys that are 25% smaller
than in [LLW+24], Algorithm 4.1 using the asymmetric set S =

{
id, τg

}
already

outperforms [LLW+24] by over 14.0% (resp. 13.3%). In particular, this clearly
demonstrates an advantage over using S =

{
τ±1

}
, as predicted from Figure 5.1.

Further trade-offs are also possible. With only a moderate increase of the
size of bskS-AUT, i.e., multiplied by 2.5 compared to [LMK+23] instead of 2 as
in [LLW+24], Algorithm 4.1 with S =

{
τ±1, τ±g

}
achieves a reduction of the

number of key switches of more than 59.4% (resp. 55.5%) relative to [LLW+24]
and 66.9% (resp. 63.1%) relative to [LMK+23]). Moreover, the last rows of the
tables illustrate the capability of our new S-parametrized method to approach
the computational efficiency of AP bootstrapping while maintaining reasonably
sized keys. Indeed, considering keys only up to 9 times larger w.r.t. [LMK+23],
the average number of key switches can be squeezed down to only 2 or 3, whereas
AP keys are more than 2 orders of magnitude larger for comparable performance.
As the convergence is quite fast, the set S =

{
τ±1, τ±g, τ±g2

}
yields an appealing

middle ground: with a 3.5× increase in bskS-AUT compared to [LMK+23], it
eliminates 86.5% (resp. 83.6%) of the key switches of the Traversal Windowed-
Hörner method.

As a final remark, we emphasize that while the proposed variants imply in-
creasing the size of the bootstrapping keys compared to [GINX16] or [LMK+23],
only (k + 1) GLWE∇ ciphertexts are ever needed for computing each external
product, whether parametrized or not. Those can easily be prefetched as soon
as the (mod-switched) mask components are known and sorted, therefore the
bandwidth requirements for our methods remain unchanged.

9 E.g., the choice w′′ = 8 made in [LLW+24] could correspond to any α ∈
[
0.22, 0.53

]
.

30

References

AP14. Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with polyno-
mial error. In J. A. Garay and R. Gennaro, editors, Advances in Cryptology
— CRYPTO 2014, Part I, volume 8616 of Lecture Notes in Computer Sci-
ence, pages 297–314. Springer, 2014. doi:10.1007/978-3-662-44371-2_

17.
BCG+23. Mariya Georgieva Belorgey, Sergiu Carpov, Nicolas Gama, Sandra Guasch,

and Dimitar Jetchev. Revisiting key decomposition techniques for FHE:
Simpler, faster and more generic. Cryptology ePrint Archive, 2023. URL:
https://ia.cr/2023/771.

BDF18. Guillaume Bonnoron, Léo Ducas, and Max Fillinger. Large FHE gates from
tensored homomorphic accumulator. In A. Joux, A. Nitaj, and T. Rachidi,
editors, Progress in Cryptology — AFRICACRYPT 2018, volume 10831 of
Lecture Notes in Computer Science, pages 217–251. Springer, Cham, 2018.
doi:10.1007/978-3-319-89339-6_13.

BIP+22. Charlotte Bonte, Ilia Iliashenko, Jeongeun Park, Hilder V. L. Pereira,
and Nigel P. Smart. FINAL: Faster FHE instantiated with NTRU
and LWE. In S. Agrawal and D. Lin, editors, Advances in Cryptol-
ogy — ASIACRYPT 2022, Part II, volume 13792 of Lecture Notes in
Computer Science, pages 188–215. Springer, Cham, 2022. doi:10.1007/

978-3-031-22966-4_7.
BJ24. Olivier Bernard and Marc Joye. Approximate CRT-based gadget decompo-

sition and application to TFHE blind rotation. Cryptology ePrint Archive,
Report 2024/909, 2024. URL: https://ia.cr/2024/909.

BJSW24. Olivier Bernard, Marc Joye, Nigel Smart, and Michael Walter. Drift-
ing towards better error probabilities in fully homomorphic encryption
schemes. Cryptology ePrint Archive, Report 2024/1718, 2024. URL:
https://ia.cr/2024/1718.

CGGI20. Ilaria Chilotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
TFHE: Fast fully homomorphic encryption over the torus. Journal of Cryp-
tology, 33(1):34–91, 2020. doi:10.1007/s00145-019-09319-x.

CJP21. Ilaria Chillotti, Marc Joye, and Pascal Paillier. Programmable bootstrap-
ping enables efficient homomorphic inference of deep neural networks. In
S. Dolev et al., editors, Cyber Security Cryptography and Machine Learn-
ing (CSCML 2021), volume 12716 of Lecture Notes in Computer Science,
pages 1–19. Springer, 2021. doi:10.1007/978-3-030-78086-9_1.

Dar53. Donald A. Darling. On a class of problems related to the random division
of an interval. The Annals of Mathematical Statistics, 24(2):239–253, 1953.
doi:10.1214/aoms/1177729030.

DM15. Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping homomorphic
encryption in less than a second. In E. Oswald and M. Fischlin, editors,
Advances in Cryptology — EUROCRYPT 2015, Part I, volume 9056 of
Lecture Notes in Computer Science, pages 617–640. Springer, Berlin, Hei-
delberg, 2015. doi:10.1007/978-3-662-46800-5_24.

DN03. Herbert A. David and Haikady N. Nagaraja. Order Statistics. Wiley Series
in Probability and Statistics. John Wiley & Sons, Inc., 3rd edition, 2003.
doi:10.1002/0471722162.

Gen10. Craig Gentry. Computing arbitrary functions of encrypted data. Commu-
nications of the ACM, 53(3):97–105, 2010. doi:10.1145/1666420.1666444.

31

https://doi.org/10.1007/978-3-662-44371-2_17
https://doi.org/10.1007/978-3-662-44371-2_17
https://ia.cr/2023/771
https://doi.org/10.1007/978-3-319-89339-6_13
https://doi.org/10.1007/978-3-031-22966-4_7
https://doi.org/10.1007/978-3-031-22966-4_7
https://ia.cr/2024/909
https://ia.cr/2024/1718
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/978-3-030-78086-9_1
https://doi.org/10.1214/aoms/1177729030
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1002/0471722162
https://doi.org/10.1145/1666420.1666444

GINX16. Nicolas Gama, Malika Izabachène, Phong Q. Nguyen, and Xiang Xie. Struc-
tural lattice reduction: Generalized worst-case to average-case reductions
and homomorphic cryptosystems. In M. Fischlin and J.-S. Coron, editors,
Advances in Cryptology — EUROCRYPT 2016, Part II, volume 9666 of
Lecture Notes in Computer Science, pages 528–558. Springer, Berlin, Hei-
delberg, 2016. doi:10.1007/978-3-662-49896-5_19.

GSW13. Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryp-
tion from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based. In R. Canetti and J. A. Garay, editors, Advances in
Cryptology — CRYPTO 2013, Part I, volume 8042 of Lecture Notes
in Computer Science, pages 75–92. Springer, Berlin, Heidelberg, 2013.
doi:10.1007/978-3-642-40041-4_5.

HKLS24. Deokhwa Hong, Young-Sik Kim, Yongwoo Lee, and Eunyoung Seo. A
new fine tuning method for FHEW/TFHE bootstrapping with IND-CPAD

security. Cryptology ePrint Archive, 2024. URL: https://ia.cr/2024/
1052.

Joy22. Marc Joye. SoK: Fully homomorphic encryption over the [discretized] torus.
IACR Transactions on Cryptographic Hardware and Embedded Systems,
2022(4):661–692, 2022. doi:10.46586/tches.v2022.i4.661-692.

JP22. Marc Joye and Pascal Paillier. Blind rotation in Fully Homomorphic
Encryption with extended keys. In J.Katz S. Dolev and A. Meisels,
editors, Cyber Security, Cryptology, and Machine Learning: 6th Inter-
national Symposium (CSCML 2022), volume 13301 of Lecture Notes in
Computer Science, pages 1–18. Springer, Cham, 2022. doi:10.1007/

978-3-031-07689-3_1.
JW22. Marc Joye and Michael Walter. Liberating TFHE: Programmable boot-

strapping with general quotient polynomials. In M. Brenner, A. Costache,
and K. Rohloff, editors, WAHC’22: Proceedings of the 10th Workshop on
Encrypted Computing & Applied Homomorphic Cryptography, pages 1–11.
Association for Computing Machinery, New York, 2022. doi:10.1145/

3560827.3563376.
LLW+24. Zhihao Li, Xianhui Lu, Zhiwei Wang, Ruida Wang, Ying Liu, Yinhang

Zheng, Lutan Zhao, Kunpeng Wang, and Rui Hou. Faster NTRU-based
bootstrapping in less than 4 ms. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2024(3):418–451, 2024. doi:10.46586/

tches.v2024.i3.418-451.
LMK+23. Yongwoo Lee, Daniele Micciancio, Andrey Kim, Rakyong Choi, Maxim

Deryabin, Jieun Eom, and Donghoon Yoo. Efficient FHEW bootstrap-
ping with small evaluation keys, and application to threshold homomor-
phic encryption. In C. Hazay and M. Stam, editors, Advances in Cryp-
tology — EUROCRYPT 2023, Part III, volume 14006 of Lecture Notes in
Computer Science, pages 227–256. Springer, Cham, 2023. doi:10.1007/

978-3-031-30620-4_8.
LPR10. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and

learning with errors over rings. In H. Gilbert, editor, Advances in Cryp-
tology – EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer
Science, pages 1–23. Springer, 2010. doi:10.1007/978-3-642-13190-5_1.

LS15. Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions
for module lattices. Designs, Codes and Cryptography, 75:565–599, 2015.
doi:10.1007/s10623-014-9938-4.

32

https://doi.org/10.1007/978-3-662-49896-5_19
https://doi.org/10.1007/978-3-642-40041-4_5
https://ia.cr/2024/1052
https://ia.cr/2024/1052
https://doi.org/10.46586/tches.v2022.i4.661-692
https://doi.org/10.1007/978-3-031-07689-3_1
https://doi.org/10.1007/978-3-031-07689-3_1
https://doi.org/10.1145/3560827.3563376
https://doi.org/10.1145/3560827.3563376
https://doi.org/10.46586/tches.v2024.i3.418-451
https://doi.org/10.46586/tches.v2024.i3.418-451
https://doi.org/10.1007/978-3-031-30620-4_8
https://doi.org/10.1007/978-3-031-30620-4_8
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/s10623-014-9938-4

MKMS24. Gabrielle De Micheli, Duhyeong Kim, Daniele Micciancio, and Adam Suhl.
Faster amortized FHEW bootstrapping using ring automorphisms. In
Q. Tang and V. Teague, editors, Public-Key Cryptography — PKC 2024,
Part IV, volume 14604 of Lecture Notes in Computer Science, pages 322–
353. Springer, Cham, 2024. doi:10.1007/978-3-031-57728-4_11.

MP21. Daniele Micciancio and Yuriy Polyakov. Bootstrapping in FHEW-like
cryptosystems. In M. Brenner, R. Player, and K. Rohloff, editors, 9th
Workshop on Encrypted Computing & Applied Homomorphic Cryptogra-
phy (WAHC 2021), pages 17–28. ACM Press, 2021. doi:10.1145/3474366.
3486924.

RAD78. Ronald L. Rivest, Len Adleman, and Michael L. Dertouzos. On data banks
and privacy homomorphisms. In R. A. DeMillo et al., editors, Foundations
of Secure Computation, pages 169–179. Academic Press, 1978. Available
at https://people.csail.mit.edu/rivest/pubs.html#RAD78.

Reg09. Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. Journal of the ACM, 56(6):34:1–34:40, 2009. doi:10.1145/
1568318.1568324.

SSTX09. Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Effi-
cient public key encryption based on ideal lattices. In M. Matsui, editor,
Advances in Cryptology — ASIACRYPT 2009, volume 5912 of Lecture
Notes in Computer Science, pages 617–635. Sprinber, Berlin, Heidelberg,
2009. doi:10.1007/978-3-642-10366-7_36.

WWL+24. Ruida Wang, Yundi Wen, Zhihao Li, Xianhui Lu, Benqiang Wei, Kun Liu,
and Kunpeng Wang. Circuit bootstrapping: Faster and smaller. In M. Joye
and G. Leander, editors, Advances in Cryptology — EUROCRYPT 2024,
Part II, volume 14652 of Lecture Notes in Computer Science, pages 342–
372. Springer, Cham, 2024. doi:10.1007/978-3-031-58723-8_12.

XZD+23. Binwu Xiang, Jiang Zhang, Yi Deng, Yiran Dai, and Dengguo Feng. Fast
blind rotation for bootstrapping FHEs. In H. Handschuh and A. Lysyan-
skaya, editors, Advances in Cryptology — CRYPTO 2023, Part IV, volume
14084 of Lecture Notes in Computer Science, pages 3–36. Springer, Cham,
2023. doi:10.1007/978-3-031-38551-3_1.

Zam22. Zama. TFHE-rs: A pure Rust implementation of the TFHE scheme for
boolean and integer arithmetics over encrypted data, 2022. URL: https:
//github.com/zama-ai/tfhe-rs.

A Dealing With Arbitrary Mask Components

In the general case, the modulus switching, as part of the (programmable) boot-
strapping, does not directly yield mask components ãi ∈ (Z

/
mZ)× correspond-

ing to automorphisms, or ãi = 0. Several techniques have been proposed to
circumvent this:

1. changing the base ring to a circulant ring [BDF18] or a prime conductor
cyclotomic ring of integers [MKMS24];

2. rewriting
∑
i ãisi as

∑
i ã

∗
i s

∗
i , where ã

∗
i ∈ (Z

/
mZ)× ∪ {0}, plus a correcting

step implementing a trade-off between noise growth/performance and key
material [LMK+23, Sections 3.2.1 and 3.2.2];

33

https://doi.org/10.1007/978-3-031-57728-4_11
https://doi.org/10.1145/3474366.3486924
https://doi.org/10.1145/3474366.3486924
https://people.csail.mit.edu/rivest/pubs.html#RAD78
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-031-58723-8_12
https://doi.org/10.1007/978-3-031-38551-3_1
https://github.com/zama-ai/tfhe-rs
https://github.com/zama-ai/tfhe-rs

3. adapting the modulus switch to round to either 0 or directly to invertible
elements [LMK+23, Section 3.3], or further, directly to elements of a cyclic
subgroup thereof [WWL+24].

The first approach eludes the problem altogether. We therefore focus below
on the two latter approaches, viewed as pre-conditioning algorithms for the LWE
input ciphertext and keys before entering the blind rotation. They both suppose
m = 2N is a power of two so that every odd integer has an inverse modulo m.

A.1 Rewriting the inner product

Two reorganizations of the inner product are given in [LMK+23, Sections 3.2.1
and 3.2.2].

The first method [LMK+23, Algorithm 4] simply consists in setting the new
mask components as ã∗i = ãi − 1 if ãi ̸= 0 is even, and ãi otherwise; then,
additional external products, one per even value ãi, need to be applied to the
accumulator.10 This incurs on average a significant computational overhead of
about n/2 external products, which can be strictly limited to n/2 + 1 using
an extra bootstrapping key bskAUT

nsum encrypting x−
∑
i si and allowing to flip the

parity of all mask components at once.
The second method [LMK+23, Algorithm 5] approximately doubles the size

of the bootstrapping keys by including

bskAUT∗ :=
{
GLWE⊛

s (x
si+si+1)

∣∣∣ i ∈ q
1, n− 1

y}
.

Assuming without loss of generality that ã1 is odd, then iteratively when ãi+1

is even, ã∗i+1 is set to
(
ãi+1 − ã∗i

)
and the bootstrapping key for position i is

modified to bskAUT∗[i]. Finally, Algorithm 3.1 (or Algorithm 3.2) is called with
these adjusted mask components and bootstrapping keys.

A.2 Rounding to multiplicative (sub-)groups

A different strategy, described in [LMK+23, Section 3.3], involves modifying the
modulus switching so that its outputs directly lie in (Z

/
2NZ)× ∪ {0}. This

rounding to odd values (or to zero) can be expressed as11

⌊
x
⌉
odd

:=

{
0 if

∣∣x∣∣ ≤ 1
2 ,

1 + 2 ·
⌊
x
2

⌋
otherwise .

10 In [LMK+23, Algorithm 4], this is a post-processing step due to the initial value of

the accumulator to τ−g
(
x−b̃ · v(x)

)
. In the setting of Algorithm 3.2 though, this can

be readily moved in the “pre-conditioning” phase.
11 Rounding small values to 0 is a free optimization using that null (more generally,

small, see e.g., [HKLS24]) mask components can be skipped entirely in the blind
rotation loop.

34

Hence, the modulus switching of an LWE ciphertext
(
a1, . . . , an, b

)
∈ (Z

/
qZ)n+1

with the above rounding operator outputs
(
ã1, . . . , ãn, b̃

)
with

ãi =
⌊
2N
q ai

⌉
odd

for i ∈
q
1, n

y
, and b̃ =

⌊
2N
q b
⌉
.

This technique has been further extended in a recent work by Wang et
al. [WWL+24] where the modulus switching gives elements of some predeter-
mined cyclic subgroup of (Z

/
2NZ)× ≃

〈
±1
〉
×
〈
g
〉
. Formally, for θ ∈

q
1, log2N

y

with N ≥ 4, let Gθ be the following cyclic subgroup

Gθ :=
〈
g2
θ−1〉

=
{
u ∈ (Z

/
2NZ)× | u ≡ 1 mod 2θ+1

}
≃ Z

/
N
2θ

Z .

The corresponding rounding to the nearest element in Gθ ∪ {0} is defined as

⌊
x
⌉
θ
:=


0 if x ∈

[
1
2 − 2θ, 12

]
,

1 + 2θ+1 ·
⌊
x−1
2θ+1

⌉
otherwise .

(A.1)

Note
⌊
x
⌉
odd

=
⌊
x
⌉
0
corresponds to rounding to the (however non-cyclic) entire

group G0 := (Z
/
2NZ)×. The modulus switching then outputs

ãi =
⌊
2N
q ai

⌉
θ
for i ∈

q
1, n

y
, and b̃ =

⌊
2N
q b
⌉
.

Since Gθ is a sparser cyclic subgroup of G0 of cardinal N
2θ
, the mask values

after modulus switching are concentrated on a smaller set. As a result, the num-
ber of automorphism key switches is reduced, as are the gaps between distinct

values in terms of jumps by g2
θ−1

. However, and crucially, the modified modulus
switching procedure induces an increased drift, leading to a higher overall fail-
ure probability (see e.g., [WWL+24, Table 4]). This shall be accounted for when
designing parameters and makes it a lot harder to get a fair comparison in terms
of performance or key size between works such as [LMK+23] and [WWL+24].
We refer the reader to [BJSW24] for a detailed discussion on the drift.

B Correctness of Algorithm 3.1

For completeness, we provide a proof of the correctness of Algorithm 3.1 below.
While the algorithm essentially builds on [LMK+23], the proof differs noticeably
from [LMK+23, Section 3.1].

Proposition B.1. Algorithm 3.1 is correct.

Proof. Let qi = x−b̃+
∑i
j=1 ãjsj · v. For t ∈

q
0, N/2

y
, consider the polynomials

q̃±
t ∈ Rq recursively defined by q̃−

N/2 = q0 = v · x−b̃, q̃+
N/2 = q̃−

0 , and for all

N/2 > t ≥ 0,

q̃±
t = q̃±

t+1 · x
±gt·

∑
i∈I±t

si
,

35

where all ± choices are identical. By Equations (3.1), (3.2) and (3.3), it fol-
lows that q̃+

0 = qn. We now inductively show that after each iteration of the
respective loops on I±, ACC contains a GLWE encryption of τ±g−told

(
q̃±
t

)
.12

First, ACC is initialized to a (trivial) GLWE encryption of τ−1

(
q0

)
, which

is indeed equal to τ−g−N/2
(
q̃−
N/2

)
. Inside the loop, the induction hypothesis is

preserved as long as I±t is empty, since in this case q̃±
t = q̃±

told
. Assume now that

I±t is non-empty for some N/2 > t ≥ 0 and ACC contains a GLWE encryption of
τ±g−told

(
q̃±
t+1

)
. Then, τgδ is homomorphically applied to ACC to obtain a GLWE

encryption of τ±g−t
(
q̃±
t+1

)
, and the following external products finally yield as

expected a GLWE encryption of

τ±g−t
(
q̃±
t+1

)
· x

∑
i∈I±t

si
= τ±g−t

(
q̃±
t+1 · x

±gt
∑
i∈I±t

si
)
= τ±g−t

(
q̃±
t

)
.

After the first loop, ACC contains an encryption of τ−g−told
(
q̃−
0

)
, which after

evaluating τ−g on Line 9 becomes an encryption of τg−told+1

(
q̃−
0

)
. Decreasing

told by 1, this initializes correctly the second loop. Likewise, after the second
loop ACC contains a GLWE encryption of τg−told

(
q̃+
0

)
, implying the result since

the last lines of the algorithm apply τgtold . ⊓⊔

12 Actually, told encodes logg ±ãold where ãold is as in Figure 2.1(b), with the masks ãi’s

reordered according to I±t .

36

	Bootstrapping (T)FHE Ciphertexts via Automorphisms: Closing the Gap Between Binary and Gaussian Keys
	1 Introduction
	2 Definitions and Notations
	3 Enhanced Blind Rotation Algorithms
	3.1 Windowed Hörner-like Method
	3.2 A New Traversal Windowed Hörner-like Method

	4 Automorphism-Parametrized Techniques
	4.1 Automorphism-Parametrized External Product
	4.2 Reducing Automorphism Key Switches in Blind Rotation

	5 Analysis and Experiments
	5.1 On Random Divisions of an Interval
	5.2 Theoretical Analysis of Automorphism-based Methods
	5.3 Numerical Measurements

	References
	A Dealing With Arbitrary Mask Components
	A.1 Rewriting the inner product
	A.2 Rounding to multiplicative (sub-)groups

	B Correctness of Algorithm 3.1

