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Abstract

Impossible differential (ID) cryptanalysis and impossible boomerang (IB) crypt-
analysis are two methods of impossible cryptanalysis against block ciphers. Since
the seminal work introduced by Boura et al. in 2014, there have been no sub-
stantial advancements in the key recovery process for impossible cryptanalysis,
particularly for the IB attack. In this paper, we propose a generic key recov-
ery framework for impossible cryptanalysis that supports arbitrary key-guessing
strategies, enabling optimal key recovery attacks. Within the framework, we pro-
vide a formal analysis of probabilistic extensions in impossible cryptanalysis for
the first time. Besides, for the construction of IB distinguishers, we propose a
new method for finding contradictions in multiple rounds.
By incorporating these techniques, we propose an Mixed-Integer Linear Program-
ming (MILP)-based tool for finding full ID and IB attacks. To demonstrate the
power of our methods, we applied it to several block ciphers, including SKINNY,
SKINNYee, Midori, and Deoxys-BC. Our approach yields a series of optimal results
in impossible cryptanalysis, achieving significant improvements in time and mem-
ory complexities. Notably, our IB attack on SKINNYee is the first 30-round
attack.

Keywords: Impossible differential cryptanalysis, Impossible boomerang cryptanalysis,
SKINNY, SKINNYee, Midori, Deoxys-BC

1 Introduction

The impossible differential (ID) cryptanalysis was first independently introduced by
Knudsen [1] and Biham [2]. As an important variant of differential cryptanalysis [3],
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the ID cryptanalysis uses a differential with a probability of zero to eliminate incorrect
keys. Research on impossible differential attacks primarily focuses on two objectives:
constructing ID distinguishers and mounting key recovery attacks.

The miss-in-the-middle technique [4] is one of the main methods for identifying
ID distinguishers. This approach involves identifying two differences that propagate
through the cipher, one forward and one backward, with certainty, but conflict at the
meeting point. For automated tools, Cui et al. [5] first proposed a Mixed-Integer Linear
Programming (MILP) model in 2016 to search for ID distinguishers. In 2017, Sasaki
and Todo [6] proposed another MILP-based tool targeting a broader range of block
ciphers. In [7], Sun et al. developed a constraint programming (CP)-based automatic
model to search for related-key ID distinguishers in several SPN ciphers.

Regarding the key recovery attacks, Lu et al. introduced the early-abort technique
in [8], which divides the key sieving phase into sequential steps. Boura et al. [9, 10]
proposed a general framework for formalizing the key recovery process and provided a
systematic complexity analysis within this framework. The previous automated tools
for ID cryptanalysis only targeted the ID distinguisher, in 2016, Derbez and Fouque
firstly [11] developed a computer-aided tool to search for a complete ID attack includ-
ing the key recovery phase. More recently, Hadipour et al. [12, 13] developed and
refined a CP-based tool for searching complete ID attacks. Additionally, while ID
distinguishers are typically extended with probability 1, some works [8, 14–16] have
explored probabilistic extension in their ID attacks. However, this approach has not
been systematically studied. Recently, Song et al. [17] incorporated the meet-in-the-
middle technique into the key recovery of ID cryptanalysis, which is typically useful
when the key size is at least the twice the block size.

The impossible boomerang (IB) attack is another impossible cryptanalysis by com-
bining the concepts of ID attacks and boomerang attacks, first introduced by Lu
in his PhD thesis [18] and later published in 2011 [19]. The IB attack relies on an
IB distinguisher, that is a boomerang distinguisher with probability zero. Since its
introduction in 2008, the IB attack had not received sufficient attention until 2024,
when several studies revisited this topic [20–22]. In [20, 21], the authors indepen-
dently explored the construction of contradictions using boomerang tools. They also
proposed two similar key recovery methods, along with a satisfiability modulo the-
ories (SMT)-based tool and a mixed-integer quadratically-constrained programming
(MIQCP)-based tool, respectively. In [22], Hu et al. provided a comprehensive the-
oretical analysis of the construction of IB distinguishers, and introduced a Boolean
satisfiability problem (SAT)-based tool for searching IB distinguishers. Recently, the
authors of [23] proposed a graph-based key-recovery technique and mounted the first
full-round impossible boomerang attack on ARADI.

Contributions. We propose a new generic key recovery framework for ID and IB
attacks that incorporates arbitrary key-guessing strategies. Notably, it is the first
generic key recovery framework for IB attacks, covering the two specific key recovery
methods introduced in [20, 21]. Our framework is proven to be effective in improving
the time and memory complexities. Besides, we provide a first systematic analysis of
probabilistic extensions in impossible key recovery attacks, which also proves effective
in improving the time and memory complexities. On the other hand, to complete the
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construction of IB distinguishers, we introduce a new approach called iUBCT/iLBCT
for identifying contradiction in multiple rounds, which can significantly reduce the
computational complexity compared to the existing methods. With the help of this new
approach, we obtained the upper bound of multi-rounds contradiction for the Sboxes
of SKINNY and Deoxys-BC. Specifically, for SKINNY-128-384, we obtained a 19-round
distinguisher based on iLBCT, which achieves one round more than the previously best
impossible distinguisher.

Combining all the techniques introduced, we aim to achieve the optimal impossible
cryptanalytic results for block ciphers. We propose a new generic MILP-based model
to find full ID and IB attacks. To show the usefulness of our method, we apply it
to SKINNY, SKINNYee, Midori, and Deoxys-BC. For SKINNYee, we obtained the first
30-round related-tweak IB attack, which is the best third-party cryptanalytic result
reported on SKINNYee to date, improving upon the previous best 29-round attack in
terms of data, time, and memory complexity. Tables 1 and 2 summarizes our results.

Table 1: Overview of our impossible differential cryptanalytic
results. STK=Single-tweakey. SK=Single-key. RTK=Related-tweakey.
Int.=Integral. MITM=Meet-in-the-Middle.

Target Setting #Rounds Data Time Memory Ref.

SKINNY-64-64
RTK 19 261.47 263.03 256 [24]

RTK 19 261.47 262.76 252 H.2

SKINNY-128-128
RTK 19 2122.47 2124.60 2112 [24]

RTK 19 2122.47 2124.43 2104 H.2

SKINNY-64-128

STK 19 260.86 2110.34 2104 [12]

STK 19 265.05 2104.90 268.05 H.3

Int. 22 258 2106 2104 [13]

SKINNY-128-256

STK 19 2117.86 2219.23 2208 [12]

STK 19 2126.05 2209.45 2133.05 H.3

Int. 22 2114 2213 2208 [13]

SKINNY-64-192

STK 21 262.43 2174.42 2168 [12]

STK 21 264.99 2169.38 2103.99 H.4

Int. 26 262 2166 2164 [13]

SKINNY-128-384

STK 21 2122.89 2347.35 2336 [12]

STK 21 2125.99 2338.65 2204.99 H.4

Int. 26 2122 2331 2328 [13]

Midori64

SK 11 260 2116.59 292 [25]

SK 11 261.33 299.94 256.33 I.2

MITM 12 255.5 2125.5 2109 [26]
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Table 2: Overview of our impossible boomerang cryptanalytic results.
RT=Related-tweak. Boom.=Boomerang. Rect.=Rectangle.

Target Setting #Rounds Data Time Memory Ref.

SKINNYee
RT 29 267.2 2119.2 [20]

RT 30 267.03 2123.61 258.05 Section 6

Deoxys-BC-256

RTK 10 2132.8 2186.66 2181.6 [21]

RTK 10 2132.9 2177.42 2101.79 J.2

Boom. 11 2122.4 2218.65 2128 [27]

Deoxys-BC-384

RTK 14 2130.9 2368 2320 [21]

RTK 14 2132.41 2343.05 2132.83 J.3

Rect. 15 2115.7 2371.7 2128 [28]

− We improve the 19-round related-tweakey ID attack on SKINNY-n-n. We dis-
cover a new 12-round ID distinguisher and reduce the memory complexity of
the attack with this new distinguisher. To the best of our knowledge, this is the
best attack against SKINNY-n-n under the related-tweakey setting.

− We improve the single-tweakey ID attack on SKINNY-n-2n and SKINNY-n-3n.
By using the same distinguisher as previously reported and thanks to our new
generic key recovery framework, we improved the time and memory complexity
of the attack.

− We improve the 11-round single-key impossible differential attack on Midori64
by leveraging the previously reported distinguisher and our generic key recovery
framework, achieving improvements in both time and memory complexities.

− For Deoxys-BC, we improve the related-tweakey IB attacks on 10-round
Deoxys-BC-256 and 14-round Deoxys-BC-384 in both time and memory com-
plexities.

Outline. We introduce the background in Section 2, including the ID cryptanalysis
and the IB cryptanalysis. In Section 3, we give an overview of the generic key guess-
ing strategy, then propose the generic key recovery frameworks for IB and ID attacks,
providing a detailed description of the attack procedure and complexity analysis. In
Section 4, we provide a formal analysis of probabilistic extensions in impossible crypt-
analysis for the first time, and introduce two dedicated tables iUBCT and iLBCT for
IB cryptanalysis. An automated search tool is introduced in Section 5. Finally, we
provide the applications in Section 6 and summarize this paper in Section 7.

2 Preliminaries

Impossible cryptanalysis, including ID and IB, exploits differential/boomerang distin-
guishers with probability 0 and discards the key candidates leading to such impossible
distinguishers.

Impossible cryptanalysis consists mainly of two steps. The first step is to identify
an impossible distinguisher (∆X ,∆Y ) such that the input difference ∆X propagates
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to the output difference ∆Y with probability 0. Then, the second step deals with
the key recovery by extending the impossible distinguisher by some rounds backward
and forward. Any key candidate involved in the extended rounds that allows a given
pair/quartet of data to satisfy the input and output of the impossible distinguisher is
eliminated.

The parameters of impossible cryptanalysis are illustrated in Figure 1. The impos-
sible distinguisher is denoted by ED, the input difference ∆X represents a state
difference and a pair of state differences for ID and IB, respectively (same for ∆Y ). The
difference ∆X (resp. ∆Y ) propagates backward (resp. forward) through E−1

B (resp.
EF ) to ∆B (resp. ∆F ) with probability 1. The notation cB (resp. cF ) is the number
of bit-conditions that should be verified for the transition from ∆B to ∆X (resp. from
∆F to ∆Y ). We use kB and kF to represent the subkey bits involved in EB and EF ,
respectively. Let rB and rF be the dimension of vector spaces ∆B and ∆F , respectively.

2−cB 2−cF

∆X ∆Y

EB EFED

×

kB kF

∆B ∆F

Fig. 1: Outline of impossible cryptanalysis.

2.1 Impossible Differential Cryptanalysis

Impossible differential cryptanalysis was independently proposed by Knudsen [1] and
Biham [2]. The ID attack can be divided into three steps, and the complexity has been
carefully analyzed in [9] and [10], which are summarized below.

Pairs Generation. Generate N pairs of data, for each of them its plaintext differ-
ence is in ∆B and its ciphertext difference is in ∆F . The data complexity as well as
the time complexity of this step is given by

D = max

{
min

rx∈{rB ,rF }

{√
N2n+1−rx

}
, N2n+1−rB−rF

}
.

Guess-and-Filter. For each of the N pairs, discard the subkeys in kB ∪ kF that
generates the input difference ∆X and the output difference ∆Y . With the early abort
technique [29], we can guess the subkeys step by step. Thus, the time complexity can
be bounded by

T1 + T2 = N + 2|kB∪kF | N

2cB+cF
.
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Note that this is the minimum number of partial encryptions/decryptions, which could
not be achieved in practice.

Exhaustive Search. Exhaustively search the remaining key candidates after
sieving. The probability that a trial key is kept in the candidate keys is

P = (1− 2−(cB+cF ))N .

Thus, the time complexity is T3 = P · 2|kB∪kF | · 2k−|kB∪kF | = 2k · P .
The memory complexity is

M = min{N, 2|kB∪kF |}

for storing the N pairs or the discarded key candidates.
In the rest of the paper, we will adopt another complexity representation introduced

in [12]. Let g be the number of key bits we can retrieve through the guess-and-filter
phase, i.e., P = 2−g, 1 < g ≤ |kB ∪ kF |. With the approximation (1− 2−(cB+cF ))N ≈
e−N ·2−(cB+cF )

, we haveN = 2cB+cF+log2(g)−0.53 = 2cB+cF+LG(g). Thus, the complexity
analysis of the ID attack can be reformulated as follows:

D = max

{
min

rx∈{rB ,rF }

{√
2cB+cF+n+1+LG(g)−rx

}
, 2cB+cF+n+1+LG(g)−rB−rF

}
, (1)

T1 = 2cB+cF+LG(g), T2 = 2|kB∪kF |+LG(g), T3 = 2k−g, (2)

M = min{2cB+cF+LG(g), 2|kB∪kF |}. (3)

2.2 Impossible Boomerang Cryptanalysis

The impossible boomerang (IB) cryptanalysis, first introduced by Lu in [18, 19], com-
bines the concepts of boomerang attacks and ID attacks. It relies on a boomerang
distinguisher with probability 0, referred to as the impossible boomerang distinguisher,
which is defined as follows.
Definition 1. Suppose E : {0, 1}n × {0, 1}k → {0, 1}n is a block cipher and K ∈
{0, 1}k is a key for E. If there exists a quartet of n-bit blocks (α, α′, δ, δ′) satisfying

∀X ∈ Fn
2 , Pr[E−1

K (EK(X)⊕ δ)⊕ E−1
K (EK(X ⊕ α)⊕ δ′) = α′] = 0,

then the combination of (α, α′, δ, δ′) is called an impossible boomerang distinguisher
for E, written (α, α′) ↛ (δ, δ′).

To build an IB distinguisher, following the notations in Figure 2, we need two
differentials α0 → α1 and α′

0 → α′
1 with probability 1 over E0, and two differentials

β2 → β1 and β′
2 → β′

1 with probability 1 over E−1
1 . Then, the condition that the four

differences in the middle satisfy α1⊕α′
1⊕β1⊕β′

1 ̸= 0 establishes an IB distinguisher. In
a very recent work [22], the authors use the same approach to identify IB distinguishers.
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α0

α1

β1

β2

E0

E1

β′
1

β′
2

E0

E1

α′
0

α′
1

E0

E1

E0

E1

α1 ⊕ α′
1 ⊕ β1 ⊕ β′

1 ̸= 0

α0

α1

β2

β3

E0

Em

E1

β3

E0

Em

E1

α0

α1

E0

Em

E1

E0

Em

E1

β2

P(α1
Em−→ β2) = 0

Fig. 2: Constructions of impossible boomerang distinguishers: using four different
differentials introduced in [19, 22] (left) and a specific case using two different differ-
entials adopted in [20, 21] (right).

On the other hand, an IB distinguisher can be built by two probability-1 differen-
tials, where both sides of the boomerang employ the same differential (Figure 2). This
approach is common in practice as demonstrated in the two recent works [20, 21]. More-
over, they also studied the possibility of extending contradictions to a middle layer Em

using boomerang tools, such as BCT [30] and DBCT [31, 32]. The most straightforward
way is to use BCT = 0 to ensure that the switching probability of single-round Em is 0.
As for the contradictions in multiple-rounds, [20, 21, 33] introduced the applications
and limitations of the DBCT, which will be discussed in Section 4.2.

Similar to the ID attack, the IB key recovery attack also consists of three phases,
where the difference is that it deals with quartets instead of pairs. Additionally, the
two works [20, 21] independently proposed two methods for IB key recovery attacks.
Details can be found in Appendix B.

3 Generic Key Recovery Framework for Impossible
Cryptanalysis

In this section, we will introduce a more generic key guessing strategy into the key
recovery attack for impossible cryptanalysis. Base on the new strategy, we propose
the generic key recovery frameworks and complexity analysis for ID attacks and IB
attacks separately.

3.1 Generic Key Guessing Strategy

In impossible cryptanalysis, the number of pair (quartet) candidates primarily deter-
mines the time complexity of the guess-and-filter phase and the memory complexity
in most cases, as described in Section 2.1. Inspired by the optimized rectangle attack
introduced in [27, 34], where most quartets can be filtered out before being constructed
by guessing some subkey bits, we explore whether a similar approach could be applied
to reduce the number of pair (quartet) candidates in impossible cryptanalysis.

Indeed, the recent works [20, 21] have applied similar ideas to IB attacks, indepen-
dently proposing a key recovery method where the subkey bits kB or kF are guessed
before the quartets generation, please refer to Appendix B for further details. This
approach enables the construction of pairs satisfying the input or output conditions of
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the IB distinguisher, which are subsequently used to form quartets. However, rather
than guessing full kB or full kF or both, a more generic key guessing strategy can be
explored, involving partial guesses of kB and kF , denoted as k′B or k′F , respectively.
Assuming that a c′B-bit condition and a c′F -bit condition can be verified in EB and
EF under this partial guess, let r∗B = rB − c′B and r∗F = rF − c′F . Consequently, the
number of pairs (resp. quartets) to be processed becomes N = 2c

∗
B+c∗F+LG(g) (resp.

22c
∗
B+2c∗F+LG(g)), where c∗B = cB − c′B and c∗F = cF − c′F . However, the time complex-

ity for processing these candidates becomes 2|k
′
B∪k′

F | ·N , thus the time complexity is
reduced only if |k′B ∪ k′F | < c′B + c′F for ID attacks (resp. |k′B ∪ k′F | < 2c′B +2c′F for IB
attacks). Additionally, this key guessing strategy could also affect memory and data
complexities, which requires further analysis.

By incorporating the key guessing strategy, we propose a generic key recov-
ery framework for impossible cryptanalysis and complexity analysis in the next two
subsections.

3.2 Generic Key Recovery Framework for Impossible
Differential Attacks

In the following, we propose the generic key recovery framework for ID attacks
incorporating the generic key guessing strategy.

1. Prepare 2y structures, each consists of 2rB plaintexts, and query their
ciphertexts. The data complexity is D = 2y+rB .

2. Guess |k′B ∪ k′F | bits of the involved subkeys kB ∪ kF .
(a) For each data (P,C), partially encrypt P and partially decrypt

C under the guessed subkey bits: P ∗ = EB(k
′
B , P ) and C∗ =

E−1
F (k′F , C). For each structure, we will get 2c

′
B sub-structures,

each of which contains 2r
∗
B plaintexts.

(b) For each sub-structure, insert C∗ into a hash table according to
n− r∗F bits of C∗. We will get

N = 2y · 2c′B · 22r∗B−1 · 2r∗F−n = D · 2r∗B+r∗F−n−1

pairs satisfying the c′B- and c′F -bit conditions.
(c) Guess the remaining subkey bits |k∗B ∪ k∗F | = |kB ∪ kF | − |k′B ∪ k′F |

involved in EB and EF that encrypt/decrypt a data pair satisfying
the c∗B and c∗F bit-conditions, respectively, and eliminate the guess
of kB ∪ kF .

3. Exhaustively search the remaining candidates of kB ∪ kF and the
unknown subkey bits of k\(kB ∪ kF ).

The probability that a wrong key survives through step (c) is P = (1−2−(c∗B+c∗F ))N .
Let P = 2−g, we have N = 2c

∗
B+c∗F+log2(g)−0.53 = 2c

∗
B+c∗F+LG(g).

Data Complexity. The data complexity can be divided into two cases.
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- When multiple structures are used, the data complexity is

D = N · 2n−r∗B−r∗F+1 = 2n+cB+cF−rB−rF+LG(g)+1.

Thus, the key guessing strategy does not affect the data complexity in this case.
- If less than one structure is used, let 2x1 be the number of sub-structures, each
contains 2x2 data on average. Then N = 2x1 · 22x2−1 · 2r∗F−n, which means that the
data complexity is

D = 2x1+x2 =
√

N · 2n−r∗F+x1+1

= 2
cB+cF +n+1−rF +LG(g)+x1−c′B

2 . (4)

Similarly, we can also launch the attack from the ciphertext side, the complexity
analysis is similar and is omitted here.

Time Complexity. The ID attacks can be divided into three phases:

- Pairs Collection. This phase consists of steps 1, 2(a) and 2(b). The time complexity
includes D encryptions and T0 = 2|k

′
B∪k′

F | ·D partial encryptions/decryptions.
- Guess-and-Filter. This phase consists of step 2(c). A pair satisfying the input dif-
ference ∆X and output difference ∆Y of the distinguisher needs to verify c∗B + c∗F
bit-conditions. The time complexity for this phase could be closely approximately
by

T1 + T2 = 2|k
′
B∪k′

F | · (N + 2|k
∗
B∪k∗

F | · N

2c
∗
B+c∗F

)

= 2|k
′
B∪k′

F |+c∗B+c∗F+LG(g) + 2|kB∪kF |+LG(g). (5)

- Exhaustive Search. This phase consists of step 3 and the time complexity of this
phase would be

T3 = 2k−|kB∪kF | · P · 2|kB∪kF | = 2k−g.

In summary, the time complexity of the ID attack is:

T = (D + (T0 + T1 + T2)CE′ + T3)CE ,

where CE denotes the cost of one encryption, and CE′ is the ratio of the cost for one
partial encryption to the full encryption.

Memory Complexity. The memory complexity would be

M = min{2c∗B+c∗F+LG(g), 2|kB∪kF |} (6)

for storing the N pairs or the discarded key candidates.
For the ID attack in the related-(twea)key setting, we refer to Appendix C.
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Advantages. We analyze the advantages of the generic key recovery framework as
follows.

- Time. Note that T1 corresponds directly to the total number of pairs used during
the guess-and-filter phase, it can be observed that when |k′B ∪ k′F | < c′B + c′F , the
term T1 in Equation (5) will be lower than the classical one in Equation (2), which
has the potential to reduce the overall time complexity of ID attacks. However, the
condition |k′B ∪ k′F | < c′B + c′F is rarely satisfied in most ID attacks, limiting its
impact, though special cases may exist where it proves advantageous.

- Data. In the case when less one structure is used in ID attacks, we have x1− c′B ≤ 0
in Equation (4), which means the data complexity could be potentially reduced
compared to the classical one in Equation (1).

- Memory. In practice, the inequality N < 2|kB∪kF | holds in most cases. With the
key guessing strategy, we have c∗B + c∗F < cB + cF , which means that the memory
complexity can be effectively reduced. The effectiveness can be exemplified by the
attacks on SKINNY and Midori64 in Appendices H.3, H.4 and I.2.

3.3 Generic Key Recovery Framework for Impossible
Boomerang Attacks

In the single-key scenario, an IB attack can be transformed into an ID attack, as
explained by [19], which renders it less interesting. On the other hand, in the related-
key scenario, IB attacks might have advantages over ID attacks due to the flexibility
in choosing related keys, as explained by [21]. Therefore, in this subsection, we present
the generic key recovery method for SPN block ciphers with a linear key schedule
under the related-key setting.

1. Prepare 2y structures, each consists of 2rB plaintexts. Query their
ciphertexts for each structure under the 4 related keys Ki, and the
corresponding plaintext-ciphertext sets are Li, i ∈ {1, 2, 3, 4}. Let
D′ = 2y+rB .

2. Guess |k′B ∪ k′F | bits of the involved subkeys kB ∪ kF
1.

(a) For each (Pi, Ci) in Li, partially encrypt Pi and partially decrypt
Ci under the guessed subkey bits: P ∗

i = EB(k
′
B , Pi) and C∗

i =

E−1
F (k′F , Ci). For each structure under Ki, we will get 2c

′
B sub-

structures, each of which contains 2r
∗
B plaintexts.

(b) If 2r
∗
B ≤ D′ · 2r∗F−n, go to step (i); else go to step (iv).

i. Construct two sets as

S1 = {(P ∗
1 , C

∗
1 , P

∗
2 , C

∗
2 ) | P ∗

1 and P ∗
2 have difference in r∗B bits}.

S2 = {(P ∗
3 , C

∗
3 , P

∗
4 , C

∗
4 ) | P ∗

3 and P ∗
4 have difference in r∗B bits}.

The size of each set is 2y · 2c′b · 22r∗B = D′ · 2r∗B .

1Since the key schedule is linear, we do not differentiate between the guessed subkeys of each key.
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ii. Insert S1 into a hash table indexed by the n− r∗F inactive bits
of both C∗

1 and C∗
2 . Insert S2 into a hash table indexed by the

n− r∗F inactive bits of both C∗
3 and C∗

4 .
iii. For each 2(n − r∗F )-bits index, we pick two distinct entries

(P ∗
1 , C

∗
1 , P

∗
2 , C

∗
2 ), (P

∗
3 , C

∗
3 , P

∗
4 , C

∗
4 ) to generate quartets. We will

get
Q = D′2 · 22r∗B+2r∗F−2n

quartets. Then go to step (c).
iv. Construct two sets as

S3 = {(P ∗
1 , C

∗
1 , P

∗
3 , C

∗
3 ) | C∗

1 and C∗
3 are colliding in n− r∗F bits}.

S4 = {(P ∗
2 , C

∗
2 , P

∗
4 , C

∗
4 ) | C∗

2 and C∗
4 are colliding in n− r∗F bits}.

The size of each set is D′2 · 2r∗F−n.
v. Insert S3 into a hash table indexed by the n− r∗B inactive bits

of both P ∗
1 and P ∗

3 . Insert S4 into a hash table indexed by the
n− r∗B inactive bits of both P ∗

2 and P ∗
4 .

vi. Since the data are generated from 2y+c′B sub-structures of 2r
∗
B

plaintexts each, the 2(n−r∗B)-bit index has (D′ ·2−n)2 ·22(n−r∗B)

values at most. For each index, we pick two distinct entries
(P ∗

1 , C
∗
1 , P

∗
3 , C

∗
3 ) and (P ∗

2 , C
∗
2 , P

∗
4 , C

∗
4 ) to construct quartets.

The number of quartets is

Q = D′2 · 22r∗B+2r∗F−2n.

(c) Guess the remaining subkey bits |k∗B ∪ k∗F | = |kB ∪ kF | − |k′B ∪ k′F |
involved in EB and EF that encrypt/decrypt a data quartet sat-
isfying the 2c∗B and 2c∗F bit-conditions, respectively, and eliminate
the guess of kB ∪ kF .

3. Exhaustively search the remaining candidates of kB ∪ kF and the
unknown subkey bits of k\(kB ∪ kF ).

In step (b), we can choose to first build pairs on either the plaintext side or the
ciphertext side before constructing quartets, the size of set Si determines which choice
is preferable.

The probability that a wrong key survives through step (c) is P = (1 −
2−2(c∗B+c∗F ))Q, thus we have Q = 22c

∗
B+2c∗F+LG(g) by letting P = 2−g.

Data Complexity. The data complexity can be divided into two cases.

- When multiple structures are used, the data complexity is

D = 4 ·D′ = 2n+cB+cF−rB−rF+LG(g)/2+2

The key guessing strategy does not affect the data complexity in this case.

11



- If less than one structure is used, let 2x1 be the number of sub-structures, each
contains 2x2 data on average. Then Q = 22x1+4x2 · 22r∗F−2n, which means that the
data complexity is

D = 4 · 2x1+x2 = 4 · 2
cB+cF +n−rF +LG(g)/2+x1−c′B

2 . (7)

Similarly, we can also launch the attack from the ciphertext side, the complexity
analysis is similar and is omitted here.

Time Complexity. The IB attack also consists of three phases:

- Quartets Generation. This phase consists of steps 1, 2(a) and 2(b). The time
complexity of this phase includes

1. Cost of data generation: D
2. Partial encryption/decryption: T0 = 2|k

′
B∪k′

F | ·D
3. The cost of producing sets: T1 = 2|k

′
B∪k′

F | · min{D′ · 2r∗B , D′2 · 2r∗F−n} memory
accesses (MAs).

- Guess-and-Filter. This phase consists of step 2(c). The time complexity of this
phase can be closely approximately by

T2 + T3 = 2|k
′
B∪k′

F |
(
Q+ 2|k

∗
B∪k∗

F | · Q

22(c
∗
B+c∗F )

)
= 2|k

′
B∪k′

F |+2c∗B+2c∗F+LG(g) + 2|kB∪kF |+LG(g)

- Exhaustive Search. This phase consists of step 3. T4 = 2k−g.

In summary, the time complexity of the IB attack is

T = (D + (T0 + T2 + T3)CE′ + T4)CE + T1 MAs.

Memory Complexity. The memory complexity of IB attacks is given by

M = min{22c∗B+2c∗F+LG(g), 2|kB∪kF |}.

Advantages. We analyze the advantages of the generic key recovery framework as
follows.

- Our framework considers all the key guessing strategies. The two key recovery
methods presented in [20, 21] are two special cases of our framework, that is when
k′B = k′F = 0 or k′B = kB , k

′
F = 0. As a demonstration, the attack on SKINNYee in

Section 6 uses the same distinguisher in [20], while we improve the attack by one
round using the generic key guessing strategy.

- Time. Note that T2 directly corresponds to the number of quartets used in the guess-
and-filter phase. Compared to the method 1 in Appendix B.1, we can reduce T2

when |k′B∪k′F | < 2c′B+2c′F , and then reduce the overall time complexity potentially.
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- Data. The data complexity can only be reduced when less one structure is used,
which occurs if x1 − c′B < 0 in Equation (7).

- Memory. With the key guessing strategy, we have c∗B + c∗F < cB + cF , which means
that the memory complexity can be effectively reduced when only the quartets
need to be stored, as exemplified by the attacks on SKINNYee and Deoxys-BC in
Sections 6, J.2 and J.3.

In Section 5, we will introduce an MILP model that can find the best attacking
parameters for the impossible cryptanalysis.

4 New Insights in Impossible Cryptanalysis

4.1 Probabilistic Extensions

In a classical key recovery attack for impossible cryptanalysis, the input and output dif-
ferences of the impossible distinguisher are propagated backward and forward through
E−1

B and EF both with probability 1. However, cases where the extensions propagate
probabilistically have not been systematically analyzed. As a reference, Song et al.
recently investigated such probabilistic extensions in rectangle attacks and differen-
tial attacks [28]. To address this gap, we provide a complexity analysis in this section,
comparing the probabilistic extensions to deterministic extensions in ID attacks.

The complexity analysis for deterministic extensions has been provided in
Section 2.1. To differentiate the notations, we add a bar to each symbol for the case
of probabilistic extensions, e.g., c̄F .

Allowing probabilistic extensions is likely to lead to more filtering power on the
plaintext/ciphertext side, which could affect the parameters r̄B , r̄F , k̄B , k̄F , etc. Thus,
the complexities could be changed according to the above comparison. The comparison
is as follows.

• Data complexity. D/D̄ = 2(cB+cF−rB−rF )−(c̄B+c̄F−r̄B−r̄F ). The data complexity is
likely to increase as we add constraints to the extensions, causing more bit-conditions
to be satisfied and a sparser plaintext/ciphertext difference pattern. When applying
probabilistic extensions in EB (resp. EF ), the value of c̄B − r̄B (resp. c̄F − r̄F )
would be larger than the value of cB − rB (resp. cF − rF ) when using deterministic
extensions. Examples in figures 3 and 4 will provide a direct demonstration of the
increase in data complexity.

• Time complexity.

– T1/T̄1 = 2cB+cF−c̄B−c̄F . With probabilistic extensions, the values of r̄B and r̄F
are reduced, leading to a corresponding reduction in the bit-conditions (c̄B and
c̄F ) that need to be verified. However, on the other hand, the addition of extra
constraints to the extension will increase the size of bit-conditions. Thus, the
affect on T1 should be analyzed within the context of specific attacks.

– T2/T̄2 = 2|kB∪kF |−|k̄B∪k̄F |. The involved subkey bits will be reduced in most cases
of probabilistic extensions, leading to a corresponding reduction in T2.
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• Memory complexity. M̄ = min{2c̄B+c̄F+LG(g), 2|k̄B∪k̄F |}. As we can reduce the
involved subkey bits and potentially decrease the number of pair candidates, the
memory complexity is also very likely to be reduced.

For the case of IB attacks, the complexity analysis is similar, so we omit it.
In the following, we use AES as an example to demonstrate the usefulness of

probabilistic extensions. For simplicity, we focus solely on the extension in EF .

Examples for Comparison. Figure 3 shows an example of EF where three rounds
are appended to the distinguisher with deterministic extensions, the corresponding
steps of guess-and-filter and the complexities are listed in Table 3.

∆Xr

SB

∆Yr

ARK

∆eZr

SR

∆eWr

MC

∆eSKr∆Xr+1

∆Xr+1

SB

∆Yr+1

ARK

∆eZr+1

SR

∆eWr+1

MC

∆eSKr+1∆Xr+2

∆Xr+2

SB

∆Yr+2

ARK

∆eZr+2

SR

∆eWr+2

MC

∆eSKr+2∆O

any any but nonzero involved key cells

Fig. 3: Deterministic extensions. eSKr = SR−1 ◦ MC−1(SKr). rF = 16c, cF =
14c, |kF | = 20c, where c = 8 represents the cell size.

Table 3: Guess-and-Filter phase for Figure 3

Steps Guess Filter Time

a) eSKr+2[0 − 15] ∆eWr+1[1 − 6, 8, 9, 11, 12, 14, 15] = 0
N12

4c + N12
−3c+8c + N12

−6c+12c+

N12
−9c+16c ≈ N12

7c

b) eSKr+1[0 − 3] ∆eWr[2, 3] = 0 N12
−12c+20c = N12

8c

N1 = 2cB+cF +LG(g) = 2cB+14c+LG(g) pairs satisfying the differences of plaintext and ciphertext.

Data: 2n+1+LG(g)+cB−rB−2c.

Time for this step: 2cB+22c+LG(g).

Memory: min{2cB+14c+LG(g), 2|kB |+20c}

When we apply probabilistic extensions, the updated trail is shown in Figure 4,
where the MC transition in round r happens with probability 2−c. The steps of guess-
and filter and the complexities are listed in Table 4.

As a result, the example of probabilistic extensions has an increase of data com-
plexity by 28, while its time complexity is reduced by 239 and the memory complexity
is reduced by 224 at least. The effectiveness of probabilistic extensions can also be
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∆Xr

SB

∆Yr

ARK

∆eZr

SR

∆eWr

MC

PF = 2−c

∆eSKr∆Xr+1

∆Xr+1

SB

∆Yr+1

ARK

∆eZr+1

SR

∆eWr+1

MC

∆eSKr+1∆Xr+2

∆Xr+2

SB

∆Yr+2

ARK

∆eZr+2

SR

∆eWr+2

MC

∆eSKr+2∆O

Fig. 4: Probabilistic extensions. The MC operation in round r happens with probability
2−c. r̄F = 12c, c̄F = 11c, |k̄F | = 15c.

Table 4: Guess-and-Filter phase for Figure 4

Steps Guess Filter Time

a) eSKr+2[0 − 3, 8 − 15] ∆eWr+1[1 − 3, 8, 9, 11, 12, 14, 15] = 0
N22

4c + N22
−3c+8c+

N22
−6c+12c ≈ N22

6c

b) eSKr+1[0 − 2] ∆eWr[2, 3] = 0 N22
−9c+15c = N22

6c

N2 = 2cB+11c+LG(g) pairs satisfying the differences of plaintext and ciphertext.

Data: 2n+1+LG(g)+cB−rB−c.

Time for this step: 2cB+17c+LG(g)+1.

Memory: min{2cB+11c+LG(g), 2|kB |+15c}

exemplified by the attacks on SKINNY-n-2n (see Appendix H.3) and SKINNY-n-3n (see
Appendix H.4).

4.2 Complete Contradiction Detection in Impossible
Boomerang Distinguishers

In this subsection, we first recall several boomerang tables and then introduce two
new tables: iUBCT and iLBCT for identifying multiple-round contradiction.

The DBCT is defined by the combination of the UBCT and the LBCT, with the def-
initions of UBCT and LBCT provided in Appendix A. The definition of DBCT is as
follows:
Definition 2 (DBCT [31, 32]). Let S be a bijective function over Fn

2 . The Double
Boomerang Connectivity Table (DBCT) of S is a two-dimensional table defined as

DBCT(α0, β2) =
∑
α1,β1

UBCT(α0, α1, β1) · LBCT(α1, β1, β2).

In [35], Li et al. proposed the generalized boomerang connectivity table (GBCT) to
characterize the asymmetric boomerang switch.
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Definition 3 (GBCT [35]). Let S be a bijective function over Fn
2 . The GBCT of S is a

four-dimensional table defined as

GBCT(α0, α
′
0;β1, β

′
1) = #{x ∈ Fn

2 |S−1(S(x)⊕ β1)⊕ S−1(S(x⊕ α0)⊕ β′
1) = α′

0}.

Wang et al. [36] proposed a variant of DBCT, called DBCT∗, aiming to calculate the
two-round propagation probability more accurately by considering all possibilities of
the middle differences.
Definition 4 (DBCT∗ [36]). Let S be a bijective function over Fn

2 . The DBCT∗ of S is
a two-dimensional table defined as

DBCT
∗(α0, β2) =

∑
α1,α′

1,β1,β′
1

(
#

 x ∈ Fn2
S(x)⊕ S(x⊕ α0) = α1,
S(x)⊕ β1 ⊕ S(x⊕ α0)⊕ β′

1 = α′
1,

S−1(S(x)⊕ β1)⊕ S−1(S(x⊕ α0)⊕ β′
1) = α0


)

×
(
#

 x ∈ Fn
2

x⊕ S−1(S(x)⊕ β2) = β1,
S(x⊕ α1)⊕ S(x⊕ α1 ⊕ β′

1) = β2,
S−1(S(x)⊕ β2)⊕ S−1(S(x⊕ α1)⊕ β2) = α′

1


)
.

Utilizing the BCT to enforce a contradiction in an IB distinguisher is straightforward
and effective, as demonstrated by the attacks in [20, 21] . On the other hand, it
is an intriguing challenge to exploit contradictions in multiple rounds. Zhang et al.
attempted to use the DBCT to construct a 3-round IB distinguisher of SKINNY [21]
based on zero entries of the DBCT. Nevertheless, this IB distinguisher was proven
invalid, as the probability is not 0, according to [33]. The underlying reason [20, 33] is
that the DBCT only covers quartets with equal differences on facing sides (α1 = α′

1 and
β1 = β′

1), missing the admissible set of middle differences (α1, α
′
1, β1, α1 ⊕ α′

1 ⊕ β1)
with α1 ̸= α′

1 that could potentially establish the connection. Therefore, it is suggested
to use either the DBCT∗ [36] or the GDBCT [21] (both cover all the possibilities for the
middle differences) to accurately analyze the switching probability in two rounds. Note
that the DBCT∗ covers the cases where the input and output differences are the same
on both sides, while the GDBCT covers the most generic case where even the input and
output differences have no specific structure [33].

However, the computational complexity of the DBCT∗ is very high, which has been
mentioned in [20, 36]. Specifically, the complexity would be O(25n) for an n-bit Sbox.
We conducted an experiment on an Intel Xeon Gold 5220R processor, and the results
indicate that for an 8-bit Sbox, the computation takes approximately 4 hours and
requires 33 GB of memory. This high resource demand could significantly impedes the
integration of the DBCT∗ into an automated searching tool for IB attacks.

Realizing that the IB distinguisher only concerns the zero entries of the DBCT∗, we
propose two tables specifically designed for IB attacks, named iUBCT and iLBCT. We
focus on the general configuration shown on the right in Figure 5, which considers the
linear layer between S-boxes. The corresponding definitions are as follows.
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Fig. 5: The cases of two consecutive Sbox layers in a boomerang covering all admissible
set of middle differences. The right one considers a linear layer in the middle, while it
is omitted in the left one.

Definition 5 (iUBCT, iLBCT). Let S be a bijective function over Fn
2 . The iUBCT and

iLBCT of S are defined as (see Figure 5):

iUBCT(α0, β2) = #

 (α1, α
′
1) ∈ (Fn

2 )
2

DDT(α0, α1) > 0
DDT(α0, α

′
1) > 0

GBCT(α1, α
′
1;β2, β2) > 0

 ,

iLBCT(α0, β2) = #

 (β1, β
′
1) ∈ (Fn

2 )
2

DDT(β1, β2) > 0
DDT(β′

1, β2) > 0
GBCT(α0, α0;β1, β

′
1) > 0

 .

Lemma 1. For any nonzero α0 and β2, if either iUBCT(α0, β2) = 0 or iLBCT(α0, β2) =
0, or both entries are 0, then DBCT∗(α0, β2) = 0.

Proof. Assume we have iUBCT(α0, β2) = 0. If DBCT∗(α0, β2) > 0, it means there exists
at least a pair of values satisfy the boomerang transition of the two rounds. Thus, we
can obtain the corresponding differences α1 and α′

1 for this pair, which contradicts
the assumption. The proof is similar for iLBCT.

From Definition 5 and the Lemma 1, it can be concluded that the iUBCT and the
iLBCT are not as comprehensive as the DBCT∗ in capturing two-round contradictions,
which means a non-zero entry in iUBCT and iLBCT could still be impossible. The
advantage of the two new tables lies in helping encode two-round contradictions into
the search model, enabling rapid identification of two-round zero-probability propa-
gation. The distinguisher in figure 11 is obtained by our model in Section 5 based on
iLBCT, while it is difficult to obtain this distinguisher using DBCT∗ directly. Note that
we only concerns zero entries in the iUBCT and the iLBCT, the efficient procedures
for identifying the zero entries and also the computational complexity are referred to
Appendix D. Compared to using DBCT∗ or GDBCT to find contradictions through two
consecutive rounds, we can significantly reduce the complexity from O(25n) to O(23n).

Analogous to the extension of DBCT to 3BCT in [32], we can similarly define
i3UBCT/i3MBCT/i3LBCT in Appendix F. Based on these newly proposed cryptanalytic
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tables and also the BCT, we can enforce

BCT = 0/iUBCT = 0 ∨ iLBCT = 0/i3UBCT = 0 ∨ i3MBCT = 0 ∨ i3LBCT = 0

to construct contradictions for consecutive 1/2/3 rounds in IB distinguishers.

Determine the boundary of contradictions in IB distinguisher. In this
work, we computed the iUBCT and iLBCT for all targeted ciphers. Based on iLBCT,
we found a new 19-round related-tweakey impossible boomerang distinguisher for
SKINNY-128-384 with two-round Em for the first time (see Appendix E). The new dis-
tinguisher exceeds one more round than the 18-round one based on BCT (introduced
in [21]), which illustrates the power of the new technique.

In addition, for the 4-bit Sbox of SKINNY-64 and the 8-bit Sbox of Deoxys-BC
(same as AES), none of their iUBCT/iLBCT contains any entries with a value of 0.
Consequently, for these ciphers, the maximum number of consecutive rounds that we
can enforce a contradiction does not exceed one round.

5 Automated Tool for Searching the Full Impossible
Cryptanalysis

In this section, we introduce an MILP-based tool for searching full ID and IB attacks.
This tool supports: (1) searching for a full attack including the distinguisher and
the key recovery; (2) searching for a standalone distinguisher; (3) optimizing attacks
for a given distinguisher. (4) single-key and related-key settings2. The constraints on
the components of the round function in this model are synthesized from the model
proposed in [21, 27, 28, 37], and the inequalities for each part are listed in Appendix
G. The source codes of this tool are publicly available at

https://github.com/ImpossibleCryptanalysis-2024/Tool
Suppose that the round function of the target cipher E = EF ◦ ED ◦ EB = EF ◦

E1 ◦ E0 ◦ EB consists of

Wr−1
⊕Kr−→ Xr

SB−→ Yr
SR−→ Zr

MC−→Wr.

The upper trail includes E0 and EB , while the lower trail includes E1 and EF . We use
Xup

r,i to denote the i-th cell in the internal state before the SB operation of the r-th

round in the upper trail, and X lo
r,i to denote the i-th cell in the internal state before

the SB operation of the r-th round in the lower trail. Similarly, Y up
r,i , Y

lo
r,i, K

up
r,i , K

lo
r,i,

etc. represent the various internal states and key cells.

2In this work, we have searched for distinguishers and attacks separately on all targeted ciphers, ensuring
that the distinguishers in all attacks are those with the longest rounds found. The distinguishers used in
the attacks in Section 6 and Appendices H.3, H.4 and I.2 are the same as those proposed in previous works,
which can be considered as the distinguishers that yield the optimal attacks. The distinguishers used in the
optimal attacks described in Appendices H.2, J.2 and J.3 are reported for the first time.
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5.1 Modeling the Difference Propagation in Distinguishers

With the miss-in-the-middle technique, we aim to search for one characteristic with
probability 1 over E0 and one characteristic with probability 1 over E−1

1 to construct
the impossible distinguisher. We define four types of difference status for the state
cells and key cells: 1) zero difference, 2) fixed nonezero difference, 3) any but nonzero
difference, and 4) any difference, using two binary variables s0, s1 to characterize the
different types. Let xs0 and xs1 denote the attributes s0 and s1 of a cell x, respec-
tively. The corresponding relationship between the values and the difference states is
as follows:

(xs0 , xs1) = (1, 1) zero difference (xs0 , xs1) = (0, 1)fixed nonezero difference

(xs0 , xs1) = (1, 0) any (xs0 , xs1) = (0, 0) any but nonezero

SubBytes. In SubBytes operation, the effects of the Sbox on the deterministic
propagation of each cell are as follows:

S

(1,1) (1,1)

S

(0,1) (0,0)

S

(1,0) (1,0)

S

(0,0) (0,0)

The constraints for SubBytes are listed in Appendix G.1.

MixColumns. The XOR operation is a commonly used component in MixColumns, and
the deterministic propagation of differences in the XOR operation can be categorized
as 3:

? ⊕ = ?
(a, b)(1, 1)(a, b)

? ⊕ =
(a, b)(1, 0)(1, 0)

⊕ =
(0,1) (0,0) (0, 1)

(1, 1)

⊕ =
(0, 1)
(0, 0)

(0,0) (1,0)

The constraints for MixColumns are listed in Appendix G.2.

Enforcing Contradictions. To enforce contradictions in an ID distinguisher, we
can set

15∨
i=0

 (Xup,s0
rm,i = 0 ∧Xup,s1

rm,i = 1 ∧ Y lo,s0
rm,i = 0 ∧ Y lo,s1

rm,i = 1)∨
(Xup,s0

rm,i = 0 ∧Xup,s1
rm,i = 0 ∧ Y lo,s0

rm,i = 1 ∧ Y lo,s1
rm,i = 1)∨

(Xup,s0
rm,i = 1 ∧Xup,s1

rm,i = 1 ∧ Y lo,s0
rm,i = 0 ∧ Y lo,s1

rm,i = 0)

 = 1,

where rm is set before running the model.
Let LE (resp. LD) be a binary 16 × 16 matrix to describe the linear layer (com-

bination of SR and MC (resp. SR−1 and MC−1)), LE(i) (resp. LD(i)) be the set of the
indexes j such that the coefficient LE

i,j = 1 (resp. LD
i,j = 1) in the matrix LE (resp.

LD). We provide the matrices LE and LD for SKINNY and AES in Appendix G.6.
Additionally, we denote Lt E (resp. Lt D) as the transpose of LE (resp. LD).

For enforcing contradictions in an IB distinguisher (as introduced in Section 4.2),
we can set

contr1 =

15∨
i=0

(Xup,s0
rm,i = 0 ∧Xup,s1

rm,i = 1 ∧ Y lo,s0
rm,i = 0 ∧ Y lo,s1

rm,i ) = 1

3(a, b) refers to any value including (0, 0), (0, 1), (1, 0), and (1, 1).
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for describing contradiction through single-round Em (BCT = 0),

contr2U =

15∨
i=0

 X
up,s0
rm,i = 0 ∧ X

up,s1
rm,i = 1∧ ∨

j∈LE(i)

Y
lo,s0
rm+1,j = 0 ∧ Y

lo,s1
rm+1,j = 1 ∧ (

∧
k∈ Lt E(j)\i

X
up,s0
rm,k = 1 ∧ X

up,s1
rm,k = 1)




and

contr2L =

15∨
i=0

 Y
lo,s0
rm+1,i = 0 ∧ Y

lo,s1
rm+1,i = 1∧ ∨

j∈LD(i)

X
up,s0
rm,j = 0 ∧ X

up,s1
rm,j = 1 ∧ (

∧
k∈ Lt D(j)\i

Y
lo,s0
rm+1,k = 1 ∧ Y

lo,s1
rm+1,k = 1)




for describing contradictions through two-round Em (contr2U for iUBCT = 0, contr2L
for iLBCT = 0), then set contr2 = contr2U∧contr2L. Figure 6 provides a toy example
with AES-like linear layer of contr2U when i = 0, j ∈ {0, 1, 2, 3}, k ∈ {5, 10, 15}, and
contr2L when i = 0, j ∈ {0, 5, 10, 15}, k ∈ {1, 2, 3}. Similarly, we can set constraints

X
up
rm

SB

DDT

GBCT

Y
up
rm

L

ARK

X
up
rm+1

SB

GBCT
Y

up
rm+1

Xlo
rm

SB

Y lo
rm

L

ARK

Xlo
rm+1

SB

DDT

Y lo
rm+1

Fig. 6: A toy example of the contradiction contr2 for two-round Em

for describing contradiction through three-round Em (i3UBCT/i3MBCT/i3LBCT = 0).
Finally, we impose

3∨
i=1

contri = 1

to specify that at least one contradiction must exist in the impossible boomerang
distinguisher.

5.2 Modeling the Difference Propagation in Key Recovery

In this model, we introduce probabilistic extensions into the search of key recovery
phase for EB and EF .

SubBytes. In SubBytes operation, the effects of the Sbox on the probabilistic
propagation of each cell are as follows.

S

(1,1) (1,1)

S

(0,0) (0, 1)
(0, 0)

S

(1,0) (1,0)

S

(0,0) (0,0)

The constraints for SubBytes are listed in Appendix G.3.
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MixColumns. The XOR operation is a commonly used component in MixColumns, and
the probabilistic propagation of differences in the XOR operation can be categorized as:

? ⊕ = ?
(a, b)(1, 1)(a, b)

⊕ =
(0, 1)(0, 1)(0, 1)

(1, 1)

⊕ =
(0,1) (0, 0)

(1, 0)
(0, 1)
(1, 1)
(1, 0)

⊕ =
(0, 0)
(1, 0)

(0, 0)
(1, 0)

(0, 1)
(1, 1)
(1, 0)

The constraints for MixColumns are listed in Appendix G.4.

Identifying cell conditions. The cell conditions that need to be verified in EB

will only exist in states Y and W , while the cell conditions that need to be verified in
EF will only exist in states X and Z. Taking EB as an example, the conditions in Y
can be identified by

Y up,c
r,i =⌝Y up,s0

r,i ∧ Y up,s1
r,i ,

and the conditions in W can be identified by

Wup,c
r,i = Wup,s1

r,i ∧ (
∨

j∈ Lt D(i)

⌝Xup,s1
r,j ),

thus we can obtain cB =
∑
r

∑
i

(Y up,c
r,i + Wup,c

r,i ) for the complexity calculations. The

constraints in EF are similar.

Identifying involved key cells and pre-guessed key cells. For the key cell Kr,i,
we set a binary variable Kg

r,i = 1 indicates that this key cell is involved in EB or
EF , and Kg

r,i = 0 indicates it is involved in EB or EF . We also set a binary variable
Kp

r,i = 1 indicates that this key cell would be pre-guessed to construct pairs (in ID
attacks) or quartets (in IB attacks), while Kp

r,i = 0 indicates that this key cell is not
used for data collection phase. Thus, there is a clear constraint

if Kp
r,i = 1, then Kg

r,i = 1

to describe the relationship between the two variables.
Continuing with EB as an example, the subkey cells involved in verifying the

conditions of Yr can be calculated by

if Y up,c
r,i = 1, then Kup,g

r,i = 1,

and the subkey cells involved in verifying the conditions of Wr can be calculated by

if
(
(Wup,c

r,i = 1) ∧ (Xup,s0
r,j +Xup,s1

r,j ≤ 1)
)
= 1, then Kup,g

r,j = 1 for ∀j ∈ Lt D(i).

In addition, we can backtrack to calculate all the involved subkey cells from round 0
using

if Kup,g
r,i = 1, then Kup,g

r−1,j = 1 for ∀j ∈ Lt D(i).

Thus, we can obtain kB =
∑
r

∑
i

Kup,g
r,i .

To calculate the subkey cells used for pairs (quartets) generation phase, we intro-
duce two variables Y v

r and W v
r to indicate that the conditions are verified under the
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pre-guessed keys Kp
r . The constraints among Y v

r , W
v
r , and Kp

r are similar to those
constraints among Y c

r , W
c
r , and Kg

r mentioned above, with the specific constraints
listed in Appendix G.5. The constraints in EF are similar and thus we can obtain r′B ,
r′F , c

′
B , c

′
F , k

′
B , and k′F .

Furthermore, we can add a characterization of the key-bridging technique to cal-
culate |kB ∪kF | and |k′B ∪k′F |. The detailed description of the key-bridging is referred
to [12, 27, 38].

Objective function. For the complexity calculation formulas introduced in Section
3, all parameters r′B , r

′
F , c

′
B , c

′
F , k

′
B , and k′F can be represented. Therefore, we set the

objective function of the model as min T to calculate the attack with the lowest time
complexity. Since all parameters are known, we can also define the objective function
with the data complexity or the memory complexity.

Instantiation and verification. In this model, the outputs of distinguishers and
attacks are truncated ones, i.e., the active status of each cell is known, while the
difference values of cells with fixed difference are unknown. This requires instantiation
with the specification of the targeted cipher. It is particularly important to consider
the properties of the Sbox when enforcing contradictions to find instantiations. The
optimization and verification procedure of this model is illustrated in Algorithm 3.

6 Applications

To demonstrate the advancements in impossible cryptanalysis achieved this work, we
apply our methods to SKINNY, SKINNYee,Midori, and Deoxys-BC in this paper. Due to
the page limit, we only present the attack on SKINNYee in this section, the remaining
attacks are referred to Appendices H.2, H.3, H.4, I.2, J.2 and J.3.

6.1 Specification of SKINNYee

SKINNYee is a tweakable block cipher derived from the SKINNY family [39], proposed
by Naito et al. at CRYPTO 2022 [40]. SKINNYee conforms to the new security scheme
HOMA proposed in [40], featuring a 64-bit block size, a 128-bit key size, a 259-bit
tweak size, and a total of 56 rounds. The design of SKINNYee is based on SKINNYe
(TK4 setting) [41]. The round function is quite similar to that of the SKINNY family,
but there are some differences in the operation AddRoundKey and the round constant
generation. Figure 7 provides the round transformation of SKINNYee, and for more
detailed specification please refer to the original design document.

The LFSR2, LFSR3, LFSR4 and the cell permutation PT are defined as:

LFSR2 : (x3 ∥x2∥x1∥x0)→ (x2 ∥x1∥x0∥x3 ⊕ x2)

LFSR3 : (x3 ∥x2∥x1∥x0)→ (x0 ⊕ x3 ∥x3∥x2∥x1)

LFSR4 : (x3 ∥x2∥x1∥x0)→ (x1 ∥x0∥x3 ⊕ x2∥x2 ⊕ x1)

PT : (0, ..., 15)→ (9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7)
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32

≪ 32 K1|K2|K3|K0
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SC
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Zr
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≫3

Wr Xr+1

Fig. 7: Round Transformation of SKINNYee

6.2 30-Round Impossible Boomerang Attack on SKINNYee

We propose a 30-round related-tweak IB attack against SKINNYee, which is obtained
by our automated tool. In this attack, we use a 21-round related-tweak IB distin-
guisher, which is the same distinguisher used in [20]:

(∆Y5,∆ST5) = ((0000|0a00|0000|0000), (0000|0a00))
↛

(∇Z26,∇ST26) = ((0000|000b|0000|0000), (0000|000b)),

where ∆ represents the difference in the upper characteristic and ∇ represents the
difference in the lower characteristic of the boomerang trail. We prefix 6 rounds at the
beginning and append 3 rounds at the end of the distinguisher to mount the attack,
as shown in Figure 8. From the figure, we can get the parameters used for this attack:
rB = 12c, cB = 12c, rF = 9c, cF = 9c, |kB ∪kF | = 26c, c′B = 5c, c′F = 9c, |k′B ∪k′F | =
15c. In the key-recovery extensions of this attack, it adopts deterministic extensions.

Quartets Collection. In this phase, we pre-guess 215c possible values of K0[0− 7],
K1[0, 3, 4, 5, 6, 7] and K3[0] to generate two sets as:

S1 = {(P ∗
1 , C

∗
1 , P

∗
3 , C

∗
3 ) | C∗

1 and C∗
3 are colliding in n− r∗F = 16c bits},

S2 = {(P ∗
2 , C

∗
2 , P

∗
4 , C

∗
4 ) | C∗

2 and C∗
4 are colliding in n− r∗F = 16c bits}.

According to the framework introduced in Section 3.3, the size of each set is
D′2 · 2r∗F−n = 2n+c∗F+LG(g) = 216c+LG(g). From the two sets, we can construct
Q = 22cB∗+2c∗F+LG(g) = 214c+LG(g) quartets for performing guess-and-filter phase.

Guess-and-Filter. For Q quartets under each pre-guessed subkey bits:
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Fig. 8: The related-tweak impossible boomerang attack against 30-round SKINNYee
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1. Satisfying the cell conditions in ∆X3. Guess K1[1] and we can compute ∆W2[3].
The condition ∆W2[3] = ∆W2[11] will lead to two c-bit filters on both sides of the
boomerang. The time complexity of this step is 216c ·Q · 4 · 1

30·16 = Q216c−6.91.
2. Satisfying the cell conditions in ∆X3. Guess K1[2] and we can compute ∆W2[10].

The condition ∆W2[2]⊕∆W2[10]⊕∆W2[14] = 0 will lead to two c-bit filters on both
sides of the boomerang. The time complexity of this step is 217c ·Q ·2−2c ·4 · 1

30·16 =
Q215c−6.91.

3. Satisfying the cell conditions in ∆X4. Guess K2[0] and compute ∆W3[8]. The con-
dition ∆W3[4] = ∆W3[8] will lead to two c-bit filters. Guess K2[2, 5] and compute
∆W3[0]. The condition ∆W3[0] = ∆W3[8] will also lead to two c-bit filters. The time
complexity of this step is 218c ·Q ·2−4c ·4 · 1

30·16 +220c ·Q ·2−6c ·4 · 2
30·16 = Q214c−5.32.

4. Satisfying the cell conditions in ∆X5. Guess K2[3] and K3[1]. The condition
∆W4[5] = ∆W4[9] will lead to two c-bit filters. The time complexity of this step is
222c ·Q · 2−8c · 4 · 2

30·16 = Q214c−5.91.
5. Satisfying the cell conditions in ∆X5 and ∆Y5. Guess K2[1, 6] and K3[3, 6]. The

conditions with ∆W4[1] = ∆W4[9] and the known difference value of Y5[5] will lead
to four c-bit filters. The time complexity of this step is 226c ·Q · 2−10c · 4 · 4

30·16 =
Q216c−4.91.

Complexity. The data complexity is D = 216c+
LG(g)

2 +2. The time complexity
primarily consists of partial encryption/decryption, generating sets in quartets col-

lection, guess-and-filter and exhaustive search, represented as 231c+
LG(g)

2 +2 · 15
30·16 +

231c+LG(g)+1 · 15
30·16 + 230c+LG(g)−5.12 + 232c−g. We set g = 6, then D = 267.03, T =

2123.61,M = 258.05.

7 Conclusion

We proposed a generic key recovery frameworks impossible cryptanalysis, support-
ing any form of key-guessing strategy. To further enhance the key recovery attacks,
we provided the first formal analysis of probabilistic extensions in impossible crypt-
analysis. Additionally, we also introduced a new approach for identifying multi-round
contradictions in IB distinguishers. Finally, we integrated all the techniques into a new
MILP-based model. This model enables us to discover the optimal impossible crypt-
analysis for block ciphers: SKINNY, SKINNYee, Midori, and Deoxys-BC. Our results
show significant improvements in both time and memory complexity compared to
previous results, demonstrating the effectiveness of the new techniques.

Currently, our framework only targets the SPN ciphers, we believe it is potential
to apply it to other types of ciphers.
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A Overview of Boomerang Attacks and Boomerang
Tables

The Boomerang attack is another major variant of differential cryptanalysis, first
introduced by Wagner [42]. From the Boomerang attack, some similar attack tech-
niques such as the amplified boomerang attack [43], the rectangle attack [44] and
the sandwich attack [45] have evolved. The main idea of the boomerang attack and
its variants is to concatenate an r0-round differential characteristic and an r1-round
differential characteristic to obtain an (r0 + r1)-round boomerang trail. The compati-
bility of two short differential characteristics is an important topic of research in the
study of boomerang attacks. Here, we introduce the dependency of two differential
characteristics and some boomerang tables based on the framework of the sandwich
attack.
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Fig. 9: Framework of sandwich attacks

Suppose that a block cipher E is treated as the composition of three sub-ciphers:
E = E1 ◦ Em ◦ E0, where there exists a short differential α0 → α1 with probability p
for E0 and a short differential β2 → β3 with probability q for E1. Then the probability
of an boomerang distinguisher is defined as:

P
(
E−1 (E(P )⊕ β3)⊕ E−1 (E (P ⊕ α0)⊕ β3) = α0

)
= PE0 · PEm · PE1 = p2 · r · q2,

in which r denotes the probability of a boomerang returns over Em for random input
x:

r = P
(
E−1

m (Em(x)⊕ β2)⊕ E−1
m (Em (x⊕ α1)⊕ β2) = α1

)
.

Boomerang Tables. When Em is composed of a single S-box layer, the Boomerang
Connectivity Table (BCT) would become an effective tool for calculating probability r.
Definition 6 (BCT [30]). Let S be a bijective function over Fn

2 , and α0, β1 ∈ Fn
2 . The

BCT of S is a two-dimensional table defined as:

BCT(α0, β1) = #{x ∈ Fn
2 |S−1(S(x)⊕ β1)⊕ S−1(S(x⊕ α0)⊕ β1) = α0}.

Later, based on the BCT, a series of tables such as UBCT were proposed to more
accurately calculate the probability r of the middle layer Em. These tables go beyond
the limitation of Em being composed of a single S-box layer.
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Definition 7 (UBCT, LBCT [46, 47]). Let S be a bijective function over Fn
2 , and

α0, α1, β0, β1 ∈ Fn
2 . The Upper BCT (UBCT) and the Lower BCT (LBCT) of S are

three-dimensional tables defined as:

UBCT(α0, α1, β1) = #

{
x ∈ Fn

2

∣∣∣∣∣ S(x)⊕ S(x⊕ α0) = α1

S−1(S(x)⊕ β1)⊕ S−1(S(x⊕ α0)⊕ β1) = α0

}
,

LBCT(α0, β0, β1) = #

{
x ∈ Fn

2

∣∣∣∣∣ S(x)⊕ S(x⊕ β0) = β1

S−1(S(x)⊕ β1)⊕ S−1(S(x⊕ α0)⊕ β1) = α0

}
.

In recent works, the authors of [21, 35, 48] respectively proposed a series of
boomerang tables, including FBCT [48], GBDT[35], and GDBCT[21], to more accurately
characterize the probability of the boomerang switch.

B Related-Key Impossible Boomerang Key
Recovery Attack proposed in [20, 21]

In Figure 10, we provide an outline of the impossible boomerang attack. Suppose
that ∆X ↛ ∆Y over ED is an impossible boomerang distinguisher and EB and EF

are added by extending the distinguisher backward and forward. Suppose the input
difference of the distinguisher ∆X propagates backward with probability 1 to ∆B over
E−1

B , the output difference of the distinguisher ∆Y propagates forward with probability
1 to ∆F over EF . Let VB be the space spanned by all possible ∆B where rB = log2 |VB |
denotes the dimension of the space. Let VF be the space spanned by all possible ∆F

where rF = log2 |VF | denotes the dimension of the space. Let cB and cF denote the
number of bit conditions satisfying ∆B → ∆X and ∆F → ∆Y , respectively. Let kB
and kF be the subkey bits involved in EB and EF to verify ∆B → ∆X and ∆F → ∆Y ,
respectively.

Here, we briefly recall the works in [20] and [21]; for detailed descriptions, please
refer to the original papers. Method 1 refers to the Key Recovery with Quartet Fil-
tering in [20] and the Impossible Differential Style in [21]. Method 2 refers to the Key
Recovery with Pair Filtering in [20] and the Boomerang Style in [21]. Both methods
are under related-key settings.

B.1 Method 1

Choose 2y structures of 2rB plaintexts each, we can construct 2y+2rB pairs satisfying
∆B . To go further, there would be Q = 22y+4rB+2rF−2n quartets satisfying ∆B and
∆F constructed.

Thus the data complexity of the related-key IB attack is given by

D = 2y+rB+2.

For the time complexity, it is composed of the time used for collecting quartets,
guess-and-filter, and exhaustive search. In the phase of quartets collection, the time
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Fig. 10: Outline of the impossible boomerang attack

complexity is:
T0 + T1 = D +Q.

With the early abort technique [29], the time complexity for guess-and-filter phase
would be bounded by

T2 = 2|kB∪kF | Q

22cB+2cF
.

The time complexity of the final phase, exhaustive search, is:

T3 = 2kP,

where P denotes the probability that a trial key is kept in the candidate keys:

P = (1− 2−(2cB+2cF ))Q.

Let g be the number of key bits we can retrieve through the guess-and-filter phase,

i.e., P = 2−g, 1 < g ≤ |kB ∪ kF |. Due to (1 − 2−2(cB+cF ))Q ≈ e−Q2−2(cB+cF )

. Then
we would have Q = 22cB+2cF+log2(g)−0.53. Let LG(g) = log2(g) − 0.53, thus the time
complexity of the IB attack can be reformulated as follows:

T0 = D,

T1 = 22cB+2cF+LG(g),

T2 = 2|kB∪kF |+LG(g),

T3 = 2k−g.

Then we would have the total time complexity of the IB attack:

T = (T0 + (T1 + T2)CE′ + T3)CE ,
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where CE denotes the cost of one encryption and CE′ is the ratio of the cost of partial
encryption to the full encryption.

B.2 Method 2

Choose 2y structures of 2rB plaintexts each, thus the data complexity of theattack is
given by

D = 2y+rB+2.

Guess 2|kB | possible values of kB , we can obtain 2y+rB pairs, which satisfy the differ-
ence ∆X after encryption over EB . To go further, there would be Q = 22y+2rB+2rF−2n

quartets under each guessed key satisfying ∆X and ∆F constructed. These Q quartets
will be used in the guess-and-filter phase to eliminate incorrect keys.

For the time complexity, it is composed of the time used for collecting quartets,
guess-and-filter, and exhaustive search. In the phase of quartets collection, the time
complexity is:

T0 = 2|kB |2D

and
T1 = 2|kB |Q.

With the early abort technique [29], the time complexity for guess-and-filter phase
would be bounded by

T2 = 2|kB∪kF | Q

22cF
.

The time complexity of the final phase, exhaustive search, is:

T3 = 2kP,

where P denotes the probability that a trial key is kept in the candidate keys:

P = (1− 2−2cF )Q.

Let g be the number of key bits we can retrieve through the guess-and-filter phase,
i.e., P = 2−g, 1 < g ≤ |kB ∪ kF |. Due to (1 − 2−2cF )Q ≈ e−Q2−2cF . Then we would
have Q = 22cF+log2(g)−0.53. Let LG(g) = log2(g) − 0.53, thus the time complexity of
the IB attack can be reformulated as follows:

T0 = 2|kB | · 2D,

T1 = 2|kB |+2cF+LG(g),

T2 = 2|kB∪kF |+LG(g),

T3 = 2k−g.

And the memory complexity of the IB attack would be determined by M =
min{Q, 2|kB∪kF |}.

Then we would have the total time complexity of the IB attack:

T = (D + (T0 + T1 + T2)CE′ + T3)CE ,
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where CE denotes the cost of one encryption and CE′ is the ratio of the cost of partial
encryption to the full encryption.

C Complexity Analysis of the Related-(Twea)key
ID Attack within the Generic Framework

In the related-(twea)key setting, the adversary has the ability to control the key dif-
ferences and perform encryption/decryption of plaintext/ciphertext data using two
keys, K0 and K1 = K0⊕∆K. For the related-(twea)key impossible differential attack,
due to the presence of key difference, plaintext data P in each plaintext structure
can generate two distinct pairs ((P,K0), (P ⊕∆B ,K1)) and ((P ⊕∆B ,K0), (P,K1))
(distinguishing it from the single-(twea)key impossible differential attack). Under the
related-(twea)key setting, the data complexity will include the ciphertext obtained
from plaintext under two related keys. For the complexity analysis of related-(twea)key
ID attacks, the data complexity and the time complexity of T0 will change, while other
terms remain.

The data complexity of the related-(twea)key ID attack would be:

D = max

{
2

cB+cF +n−rF +LG(g)+x1−c′B
2 +1, 2n+cB+cF−rB−rF+LG(g)+1

}
.

The time complexity of the related-(twea)key ID attack would be:

T0 = 2|k
′
B∪k′

F | ·D, T1 = 2|k
′
B∪k′

F |+c∗B+c∗F+LG(g), T2 = 2|kB∪kF |+LG(g), T3 = 2k−g.

The memory complexity of the related-(twea)key ID attack would be:

M = min{2c∗B+c∗F+LG(g), 2|kB∪kF |}

for storing the N = 2c
∗
B+c∗F+LG(g) pairs or the discarded key candidates.

D Algorithms for Fast Identification of Zero Entries
in iU/LBCT

In Algorithm 1, for a specific α0, a pair (α1, α
′
1) that simultaneously satisfy

DDT(α0, α
′
1) > 0 and DDT(α0, α1) > 0 would hold a probability of 2−2 approximately

under the assumption of an S-box with differential uniformity 2. And for a specific
β2, a pair (α1, α

′
1) satisfying GBCT(α1, α

′
1;β2, β2) > 0 would hold a probability of

2−1 approximately with an experimental result for the target ciphers in this work.
Then the computational complexity of the Algorithm 1 would be approximated by
23n. The computation of iLBCT in Algorithm 2 is similar to Algorithm 1. We have
experimentally verified it for 4-bit and 8-bit Sboxes.
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Algorithm 1: The algorithm for fast identification of zero entries in iUBCT

1 Construct the DDT with complexity of O(22n) and the GBCT(α, α′;β, β) with
complexity of O(23n) (refer to the construction for BCT in [49]);
Initialize an empty table iUBCT with all 0 entries.
for all values of α0 ∈ Fn

2 do
2 for all values of β2 ∈ Fn

2 do
3 flag = False;

for all values of α1 ∈ Fn
2 do

4 for all values of α′
1 ∈ Fn

2 do
5 if DDT(α0, α

′
1) > 0 ∧ DDT(α0, α1) > 0 ∧ GBCT(α1, α

′
1;β2, β2) > 0

then
6 iUBCT(α0, β2) = 1;

flag=True;
break;

7 if flag then
8 break;

Algorithm 2: The algorithm for fast identification of zero entries in iLBCT

1 Construct the DDT with complexity of O(22n) and the GBCT(α, α;β, β′) with
complexity of O(23n);
Initialize an empty table iLBCT with all 0 entries.
for all values of α0 ∈ Fn

2 do
2 for all values of β2 ∈ Fn

2 do
3 flag = False;

for all values of β1 ∈ Fn
2 do

4 for all values of β′
1 ∈ Fn

2 do
5 if DDT(β1, β2) > 0 ∧ DDT(β′

1, β2) > 0 ∧ GBCT(α0, α0;β1, β
′
1) > 0

then
6 iLBCT(α0, β2) = 1;

flag=True;
break;

7 if flag then
8 break;
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E New 19-Round Related-Tweakey Impossible
Boomerang Distinguisher for SKINNY-128-384

In this section, we provide a 19-Round related-tweakey impossible boomerang distin-
guisher for SKINNY-128-384 based on iLBCT in Figure 11. All of the zero entries in
the iU/LBCT of the SKINNY-128-384 S-box are listed in Appendix E.1.
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Fig. 11: 19-Round Related-Tweakey Impossible Boomerang Distinguisher for
SKINNY-128-384
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E.1 The entries with zero value in the iUBCT and iLBCT of the
SKINNY-128 S-box

Table 5: The entries with zero value in the iUBCT and iLBCT of the SKINNY-128 S-box

iUBCT(a, b) = 0 (Hex)

(a, 24), (a, 34), (a, a4), (a, b4), (20, 88), (20, 89), (20, 8c), (20, 8d), (20, a8), (20, a9), (20, ac), (20, ad),
(40, 12), (40, 13), (40, 16), (40, 17), (40, 32), (40, 33), (40, 36), (40, 37), (50, 12), (50, 13), (50, 16),
(50, 17), (50, 32), (50, 33), (50, 36), (50, 37), (60, 12), (60, 13), (60, 16), (60, 17), (60, 32), (60, 33),
(60, 36), (60, 37), (70, 12), (70, 13), (70, 16), (70, 17), (70, 32), (70, 33), (70, 36), (70, 37), (80, c2),
(80, c3), (80, d2), (80, d3), (90, c2), (90, c3), (90, d2), (90, d3), (c0, 12), (c0, 13), (c0, 16), (c0, 17),
(c0, 32), (c0, 33), (c0, 36), (c0, 37), (d0, 12), (d0, 13), (d0, 16), (d0, 17), (d0, 32), (d0, 33), (d0, 36),
(d0, 37), (e0, 12), (e0, 13), (e0, 16), (e0, 17), (e0, 32), (e0, 33), (e0, 36), (e0, 37), (f0, 12), (f0, 13),
(f0, 16), (f0, 17), (f0, 32), (f0, 33), (f0, 36), (f0, 37)

iLBCT(a, b) = 0 (Hex)

(2, 20), (2, 21), (2, 24), (2, 25), (4, 10), (4, 11), (4, 14), (4, 15), (5, 10), (5, 11), (5, 14), (5, 15), (12, 20),
(12, 21), (12, 24), (12, 25), (14, 10), (14, 11), (14, 14), (14, 15), (15, 10), (15, 11), (15, 14), (15, 15),
(17, 20), (20, 1), (20, 5), (20, 41), (20, 45), (20, 51), (20, 55), (20, c1), (20, c5), (20, d1), (20, d5), (22, 1),
(22, 20), (22, 21), (22, 24), (22, 25), (22, 41), (22, 51), (24, 10), (24, 11), (24, 14), (24, 15), (25, 10),
(25, 11), (25, 14), (25, 15), (32, 20), (32, 21), (32, 24), (32, 25), (34, 10), (34, 11), (34, 14), (34, 15),
(35, 10), (35, 11), (35, 14), (35, 15), (37, 20), (42, 20), (42, 21), (42, 24), (42, 25), (44, 10), (44, 11),
(44, 14), (44, 15), (45, 10), (45, 11), (45, 14), (45, 15), (4c, 10), (4c, 30), (4d, 10), (4d, 30), (4e, 10),
(4f, 10), (52, 20), (52, 21), (52, 24), (52, 25), (54, 10), (54, 11), (54, 14), (54, 15), (55, 10), (55, 11),
(55, 14), (55, 15), (5c, 10), (5c, 30), (5d, 10), (5d, 30), (5e, 10), (5f, 10), (62, 20), (62, 21), (62, 24),
(62, 25), (64, 10), (64, 11), (64, 14), (64, 15), (65, 10), (65, 11), (65, 14), (65, 15), (6c, 10), (6c, 30),
(6d, 10), (6d, 30), (6e, 10), (6f, 10), (72, 20), (72, 21), (72, 24), (72, 25), (74, 10), (74, 11), (74, 14),
(74, 15), (75, 10), (75, 11), (75, 14), (75, 15), (7c, 10), (7c, 30), (7d, 10), (7d, 30), (7e, 10), (7f, 10),
(82, 20), (82, 21), (82, 24), (82, 25), (84, 10), (84, 11), (84, 14), (84, 15), (85, 10), (85, 11), (85, 14),
(85, 15), (92, 20), (92, 21), (92, 24), (92, 25), (94, 10), (94, 11), (94, 14), (94, 15), (95, 10), (95, 11),
(95, 14), (95, 15), (a2, 20), (a2, 21), (a2, 24), (a2, 25), (a4, 10), (a4, 11), (a4, 14), (a4, 15), (a5, 10),
(a5, 11), (a5, 14), (a5, 15), (b2, 20), (b2, 21), (b2, 24), (b2, 25), (b4, 10), (b4, 11), (b4, 14), (b4, 15),
(b5, 10), (b5, 11), (b5, 14), (b5, 15), (c2, 20), (c2, 21), (c2, 24), (c2, 25), (c4, 10), (c4, 11), (c4, 14),
(c4, 15), (c5, 10), (c5, 11), (c5, 14), (c5, 15), (d2, 20), (d2, 21), (d2, 24), (d2, 25), (d4, 10), (d4, 11),
(d4, 14), (d4, 15), (d5, 10), (d5, 11), (d5, 14), (d5, 15), (e2, 20), (e2, 21), (e2, 24), (e2, 25), (e4, 10),
(e4, 11), (e4, 14), (e4, 15), (e5, 10), (e5, 11), (e5, 14), (e5, 15), (f2, 20), (f2, 21), (f2, 24), (f2, 25),
(f4, 10), (f4, 11), (f4, 14), (f4, 15), (f5, 10), (f5, 11), (f5, 14), (f5, 15)

F i3UBCT/i3MBCT/i3LBCT: Extending iUBCT/iLBCT to 3
rounds

Definition 8 (i3UBCT/i3MBCT/i3LBCT). Let S be a bijective function over Fn
2 , and

α0, β3 ∈ Fn
2 . The i3UBCT, i3MBCT and i3LBCT, with specific definitions provided as:

i3UBCT(α0, β3) = #

 (α1, α
′
1, α2, α

′
2) ∈ (Fn

2 )
4

DDT(α0, α1) > 0, DDT(α1, α2) > 0,
DDT(α0, α

′
1) > 0, DDT(α′

1, α
′
2) > 0,

GBCT(α2, α
′
2;β3, β3) > 0

 ,
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i3MBCT(α0, β3) = #

 (α1, α
′
1, β2, β

′
2) ∈ (Fn

2 )
4

DDT(α0, α1) > 0, DDT(β2, β3) > 0,
DDT(α0, α

′
1) > 0, DDT(β′

2, β3) > 0,
GBCT(α1, α

′
1;β2, β

′
2) > 0

 ,

i3LBCT(α0, β3) = #

 (β1, β
′
1, β2, β

′
2) ∈ (Fn

2 )
4

DDT(β1, β2) > 0, DDT(β2, β3) > 0,
DDT(β′

1, β
′
2) > 0, DDT(β′

2, β3) > 0,
GBCT(α0, α0;β1, β

′
1) > 0

 ,

G Supplementary Materials for the MILP Model
Introduced in Section 5

G.1 Constraints for Deterministic Propagations in SubBytes

Let y = S(x), then the constraints of deterministic propagation in the S-box can be
written as: 

xs0 − ys0 = 0
xs1 − ys1 ≥ 0
xs0 − ys1 ≥ 0
−xs0 − xs1 + ys1 ≥ −1

G.2 Constraints for Deterministic Propagations in MixColumns

Let z = x⊕y, then the constraints of deterministic propagation for the XOR operation
can be written as: 

−xs1 − ys1 + zs1 ≥ −1
xs1 − zs1 ≥ 0
ys1 − zs1 ≥ 0
−xs0 − ys0 + zs0 ≥ −1
xs1 + ys0 + zs0 ≥ 1
xs0 + ys1 + zs0 ≥ 1
−xs0 − xs1 + ys0 − zs0 ≥ −2
xs0 − ys0 − ys1 − zs0 ≥ −2

G.3 Constraints for Probabilistic Propagations in SubBytes

Let y = S(x), then the constraints of probabilistic propagation in the S-box can be
written as:  xs0 − ys0 = 0

−xs1 + ys1 ≥ 0
xs1 − ys0 − ys1 ≥ −1
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G.4 Constraints for Probabilistic Propagations in MixColumns

Let z = x⊕ y, then the constraints of probabilistic propagation for the XOR operation
can be written as: 

−2xs0 − xs1 − 2ys0 − ys1 + 2zs0 + zs1 ≥ −3
−xs1 − ys1 + zs1 ≥ −1
xs0 + ys1 + zs0 + zs1 − 1 ≥ 0
xs1 + ys0 + zs0 + zs1 − 1 ≥ 0
−xs0 − xs1 + ys0 − zs0 ≥ −2
−xs0 − xs1 + ys1 − zs1 ≥ −2
xs0 − ys0 − ys1 − zs0 ≥ −2
xs1 − ys0 − ys1 − zs1 ≥ −2

G.5 Constraints for Identifying Pre-guessed Keys in the Data
Collection Phase

The subkey cells need to be pre-guessed for verifing the conditions of Yr can be
calculated by

if Y up,v
r,i = 1, then Kup,p

r,i = 1,

and the subkey cells need to be pre-guessed for verifing the conditions of Wr can be
calculated by

if
(
(Wup,v

r,i = 1) ∧ (Xup,s0
r,j +Xup,s1

r,j ≤ 1)
)
= 1, then Kup,p

r,j = 1 for ∀j ∈ Lt D(i).

In addition, we can backtrack to calculate all the pre-guessed subkey cells from
round 0 using

if Kup,p
r,i = 1, then Kup,p

r−1,j = 1 for ∀j ∈ Lt D(i).
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G.6 Linear Layer Matrix LE and LD used in Section 5.1

For SKINNY-family,

LE =



1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1
1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0



LD =



0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0


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For AES and Deoxys-BC,

LE =



1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0



LD =



1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0
0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0
0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0
0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0


G.7 Algorithm for the optimization and verification procedure

of the model

The algorithm for the optimization and verification procedure of the model is provided
in algorithm 3.
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Algorithm 3: Optimizing Model and Verifying Contradictions

1: Input: model M, number of target rounds r, state variables
X0...Xr−1, Y0...Yr−1, Z0...Zr−1,W0...Wr−1, key variables K0...Kr−1, contradiction
variables contr1,2,3

2: Output: minimum time complexity T
3: Initialize: flag = 0
4: while flag = 0 do
5: Add constraints on the round functions to modelM
6: Add constraints on the involved subkey cells to modelM
7: Add constraints on the contradictions to modelM
8: Compute r′B , r

′
F , c

′
B , c

′
F , k

′
B , k

′
F and add to modelM

9: M← ∨3
i=1 contri = 1

10: T ←M.sol()
11: for each i do
12: if contri = 1 then
13: Verify the contradiction with BCT(contr1 = 1), iUBCT/iLBCT(contr2 = 1),

and i3UBCT/i3MBCT/i3LBCT(contr3 = 1)
14: if an instance exists then
15: flag = 1
16: break
17: else
18: M← contri = 0
19: end if
20: end if
21: end for
22: end while
23: return T

H Applications to SKINNY-family

H.1 Specification

SKINNY is a tweakable block cipher family following the TWEAKEY framework, first
proposed by Beierle et al. at CRYPTO 2016 [39]. SKINNY family has 6 versions,
denoted by SKINNY-n-t: n ∈ {64, 128} is the block size and t ∈ {n, 2n, 3n} is the
tweakey size. The cell size c is 4 for n = 64 and 8 for n = 128.

Xr

0 1 2 3

4 5 6 7

8 9 1011

12131415

SC

AC

Yr

ART

STKr Zr

≫1

≫2

≫3

Wr Xr+1

Fig. 12: Round function of SKINNY
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The SKINNY round function (see Figure 12) applies five transforma-
tions: SubCells (SC), AddConstants (AC), AddRoundTweakey (ART), ShiftRows (SR),
MixColumns (MC). The SC operation applies a 4-bit (resp. 8-bit) S-box on each cell for
SKINNY-64 (resp. SKINNY-128). The AC operation XORs the round constant to the
internal state. The ART operation XORs the first and second rows of subtweakey with
the corresponding cells in the internal state. The SR operation rotates the 4-cell i-th
row right by i positions, i = 0, 1, 2, 3. The MC operation multiplies the internal state

by a binary matrix M =


1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

.

The tweakey schedule of SKINNY is a linear algorithm, which divides the master
tweakey into z tweakey arrays (TK1, ..., TKz) with n-bit length each, where z =
t
n ∈ {1, 2, 3}. TK1, TK2 and TK3 follow three independent update functions. The
subtweakey used in r-th round STKr is generated from:

• STKr = TK1r if z = 1,
• STKr = TK1r ⊕ TK2r if z = 2,
• STKr = TK1r ⊕ TK2r ⊕ TK3r if z = 3,

where TK1r, TK2r, TK3r denote the tweakey arrays in round r and are generated
as follows. First, a permutation h is applied to each tweakey array as TKzr+1[i] ←
TKzr[h[i]]. Next, each cell of the first and second rows of TK2r and TK3r are indi-
vidually updated with an LFSR. For more details on the specification of SKINNY,
please refer to [39].

H.2 Related-Tweakey Impossible Differential Attack on
SKINNY-n-n

This section provides a 19-round related-tweakey impossible differential attack against
SKINNY-n-n. In this attack, we use a 12-round related-tweakey impossible differential
as:

(∆Y3,∆STK3) = ((00a0|0000|a000|00?0), (0000|0a00|0000|0000))
↛ (∆X16) = (0000|0000|0a00|0000),

where a denotes a fixed non-zero difference and ? denotes any difference. We prefix 4
rounds at the beginning and append 3 rounds at the end of the distinguisher to mount
the attack, as shown in Figure 13. From the figure, we can get the parameters used
for this attack: rB = 8c, cB = 7c, rF = 6c, cF = 6c, |kB ∪ kF | = 13c, c′B = 0, c′F =
0, |k′B ∪ k′F | = 0. In the key-recovery extensions of this attack, it adopts deterministic
extensions.

We use Lemma 2 in the complexity analysis of our attacks.
Lemma 2. For a given S-box and any nonzero input-output difference pair (δi, δo),
there would exist one solution x on average for the equation S(x) ⊕ S(x ⊕ δi) = δo
holds true.
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Fig. 13: The related-tweakey impossible differential attack against 19-round
SKINNY-n-n

Pairs Collection. In this phase, we need to collect N = 2cB+cF+LG(g) = 213c+LG(g)

pairs to eliminate the wrong keys.

Guess-and-Filter. For N pairs:

1. Satisfying the cell conditions in ∆W17. From the ciphertexts, we can know the
value of X18[8 − 15]. With the condition ∆W17[13] = ∆X18[1] ⊕ ∆X18[13] = 0,
we can deduce the difference value ∆X18[1]. With known ∆Y18[1] and Lemma
2, we can compute X18[1], Y18[1] and STK18[1]. Similarly, we can also compute
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X18[3, 7], Y18[3, 7] and STK18[3, 7]. The time complexity of this step is N ·2· 3
19·16 =

N2−5.66.
2. Satisfying the cell conditions in ∆W16. Guess 2c possible values of STK18[2]

and compute X17[15] and Y17[15]. With the condition ∆W16[15] = ∆X17[3] ⊕
∆X17[15] = 0, we can use Lemma 2 and known ∆Y17[3] to deduce STK17[3]. Sim-
ilarly, from the condition ∆W16[7] = ∆X17[11] ⊕ ∆X17[15] = 0, we can deduce
STK18[5]. The time complexity of this step is 2c ·N · 2 · 3

19·16 = N2c−5.66.
3. Satisfying the cell conditions in ∆X2. Due to eSTK0[4] = STK18[2], eSTK0[11] =

STK18[5], we can compute ∆W1[5, 9]. Checking whether ∆W1[5] = ∆W1[9] or not
would be a c-bit filter. With the condition ∆X2[13] = ∆W1[1] ⊕ ∆W1[9] = 0, we
can compute the value of ∆W1[1] and then compute X1[1], Y1[1] and eSTK0[1] by

Lemma 2. Time of this step is 2c ·N · 2−c · 2 · 1
19·16 ≈ N2−7.25.

4. Satisfying the cell conditions in ∆X2. Due to eSTK0[3] = STK18[7], eSTK0[12] =
STK18[2], we can compute ∆W1[3, 15]. With the condition ∆X2[3] = ∆W1[3] ⊕
∆W1[11]⊕∆W1[15] = 0, we can compute ∆W1[11] and deduce eSTK0[9] by Lemma
2. Similarly, we can also deduce eSTK0[6] from the condition ∆X2[11] = ∆W1[7]⊕
∆W1[11] = 0. The time complexity of this step is 2c ·N · 2−c · 2 · 4

19·16 = N2−5.25.
5. Satisfying the cell conditions in ∆X16. From the previous steps, we can get all

the values of STK18[1 − 5, 7], STK17[3] and thus Y17[15],∆Y17[7], Z17[7, 15]. Due
to ∆Y16[9] = ∆X17[15], we can deduce Y16[9] by Lemma 2, and then compute
STK17[7]. The time complexity of this step is 2c ·N · 2−c · 2 · 1

19·16 = N2−7.25.
6. Satisfying the cell conditions in ∆X3. Guess eSTK0[1]. With STK1[3] = STK17[3]

and STK1[7] = STK17[7], we can compute X2[8] and X2[3, 7, 15]. From the con-
dition ∆X3[10] = ∆W2[6] ⊕∆W2[10] = 0, we would have one solution X2[5] from
the equation of S-box by Lemma 2 and deduce STK1[1]. The time complexity of

this step is 22c ·N · 2−c · 2 · 2
19·16 = N2c−6.25.

7. Satisfying the cell conditions in ∆Y3. From the previous steps, we can get the values
of W2[4] and ∆X3[8]. With ∆Y3[8] = a, one solution X3[8] could be derived from
Lemma 2. Then we can computeW2[8] andX2[10]. Due toX2[10] = Z1[5]⊕Z1[8], we
would have the actual value of Z1[5] and then compute STK1[5]. Similarly, STK1[2]

could also be computed. The time complexity of this step is 22c ·N · 2−c · 2 · 2
19·16 =

N2c−6.25.

Complexity. The data complexity is D = 215c+LG(g)+1. The time complexity is
215c+LG(g)+1+214c−4.44+LG(g)+216c−g. Memory complexity is 213c. For SKINNY-64-64
with c = 4, we set g = 2, then D = 261.47, T = 262.76,M = 252. For SKINNY-128-128
with c = 8, we set g = 4, then D = 2122.47, T = 2124.43,M = 2104.

H.3 Single-Tweakey Impossible Differential Attack on
SKINNY-n-2n

In this section, we propose a 19-round single-tweakey impossible differential attack
against SKINNY-n-2n. In this attack, we use a 12-round single-tweakey impossible
differential as:

∆X3 = (0000|0000|0000|000?) ↛ ∆W14 = (0000|0000|0?00|0000).
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We prefix 3 rounds at the beginning and append 4 rounds at the end of the distin-
guisher to mount the attack, as shown in Figure 14. From the figure, we can get the
parameters used for this attack: rB = 7c, cB = 6c, rF = 13c, cF = 13c, |kB ∪ kF | =
25c, c′B = 0, c′F = 3c, |k′B ∪ k′F | = 8c. In the key-recovery extensions of this attack, it
adopts probabilistic extensions.
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Fig. 14: The single-tweakey impossible differential attack against 19-round
SKINNY-n-2n

Pairs Collection. In this phase, we need to collect N = 2c
∗
B+c∗F+LG(g) = 216c+LG(g)

pairs under 28c pre-guessed subkey bits to eliminate the wrong keys.
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Guess-and-Filter. For N pairs under each pre-guessed subkey bits:

1. Satisfying the cell conditions in ∆W16. With condition ∆W16[4] = ∆X17[4] ⊕
∆X17[12] = 0, we can compute STK17[4] and X17[4] by Lemma 2. Similarly,
we could deduce the value of STK17[3, 5, 7]. Time complexity of this step is

28c ·N · 2 · 4
19·16 = N28c−5.25.

2. Satisfying the cell conditions in ∆W15. Guess STK17[2], we will have a c-bit filter
for the condition ∆W15[7] = ∆X16[11] ⊕ ∆X16[15] = 0. Then with the condition
∆W15[15] = ∆X16[3] ⊕ ∆X16[15] = 0 and Lemma 2, we would derive the value
of STK16[3]. Similarly, we would compute the value of STK16[1, 5] by guessing

STK17[0, 6] and using Lemma 2. Time complexity of this step is 29c ·N · 2 · 1
19·16 +

211c ·N · 2−c · 2 · 4
19·16 ≈ N210c−5.25.

3. Satisfying the cell conditions in ∆X2. From previous steps, we have known the value
of STK16[1, 3, 5] and STK18[0, 3, 7]. With the tweakey schedule of SKINNY-n-2n, we
can compute STK0[1, 3, 5] = eSTK0[13, 10, 7]. Then we can compute Y1[7, 10, 13]
and the condition ∆W1[4] = ∆W1[8] = ∆W1[12] will lead to 2 c-bit filters. Time
cost of this step would be a negligible one compared with previous steps.

4. Satisfying the cell conditions in ∆W14. Guess STK16[0, 7], and we will know the
values of cells in Z15. The condition ∆W14[5] = ∆X15[9]⊕∆X15[13] = 0 will lead
to a c-bit filter. Meanwhile, we would determine STK15[1] by applying Lemma 2.

Time complexity of this step is 213c ·N · 2−3c · 2 · 2
19·16 = N210c−6.25.

5. Satisfying the cell conditions in ∆X2. We can compute eSTK0[5, 8] from the
tweakey schedule and known subtweakeys in previous steps, thus the condition
∆X2[10] = ∆Z1[5] ⊕ ∆Z1[8] will lead to a c-bit filter. Meanwhile, we would
determine eSTK0[2] by applying Lemma 2. Time complexity of this step is

213c ·N · 2−4c · 2 · 1
19·16 = N29c−7.25.

6. Satisfying the cell conditions in ∆X3. Guess eSTK0[11] and STK1[4]. From previ-
ous steps, we have known STK17[0] and STK15[1], thus we can compute STK1[1]
by tweakey schedule and Y2[12]. The condition ∆X3[3] = ∆Y2[9] ⊕ ∆Y2[12] = 0
will lead to a c-bit filter. With condition ∆Y2[6] = ∆Y2[12] and ∆X2[6] = ∆W1[2],
we can deduce X2[6] and STK1[2] by applying Lemma 2. Time complexity of this

step is 215c ·N · 2−5c · 2 · 2
19·16 = N210c−6.25.

Complexity. The data complexity is D = 215c+LG(g)+1. The time complexity
of this whole attack is 28c+15c+LG(g)+1 · 8

19·16 + 216c+10c+LG(g)−4.25 + 232c−g. For
SKINNY-64-128 with c = 4, we set g = 24, then D = 265.05, T = 2104.90,M = 268.05.
For SKINNY-128-256 with c = 8, we set g = 48, then D = 2126.05, T = 2209.45,M =
2133.05.

H.4 Single-Tweakey Impossible Differential Attack on
SKINNY-n-3n

In this section, we propose a 21-round single-tweakey impossible differential attack
against SKINNY-n-3n. In this attack, we use a 12-round single-tweakey impossible
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differential as:

∆X5 = (0000|0000|0000|000?) ↛ ∆W16 = (0000|0000|0?00|0000).

We prefix 5 rounds at the beginning and append 4 rounds at the end of the distin-
guisher to mount the attack, as shown in Figure 15. From the figure, we can get the
parameters used for this attack: rB = 16c, cB = 15c, rF = 13c, cF = 13c, |kB ∪ kF | =
41c, c′B = 0, c′F = 3c, |k′B ∪ k′F | = 8c. In the key-recovery extensions of this attack, it
adopts probabilistic extensions.

Pairs Collection. In this phase, we need to collect N = 2c
∗
B+c∗F+LG(g) = 225c+LG(g)

pairs under 28c pre-guessed subkey bits.

Guess-and-Filter. For N pairs under each pre-guessed subkey bits:

1. Satisfying the cell conditions in ∆W18. With condition ∆W18[4] = ∆X19[4] ⊕
∆X19[12], we can compute STK19[4] and X19[4] by Lemma 2. Similarly, we could

deduce the value of STK19[3, 5, 7]. Time complexity of this step is 28c ·N ·2 · 4
21·16 =

N28c−5.39.
2. Satisfying the cell conditions in ∆X2. Guess eSTK0[0− 3, 8− 11] and compute

∆W1. The conditions ∆W1[0] = ∆W1[4] = ∆W1[8], ∆W1[1] = ∆W1[9] and
∆W1[2] ⊕ ∆W1[10] = ∆W1[14] will lead to four c-bit filters. Time complexity of
this step is 216c ·N · 2 · 8

21·16 = N216c−4.39.
3. Satisfying the cell conditions in ∆X3. Guess STK1[0, 1, 2, 6] and compute

Y2[1, 4, 11, 14], and so ∆Y2[1, 4, 11, 14]. The conditions ∆Y2[4] = ∆Y2[11] and
∆Y2[1] = ∆Y2[11] ⊕∆Y2[14] will lead to two c-bit filters. Guess STK1[3, 4, 5] and
compute Y2[0, 3, 6, 9, 10]. The conditions ∆Y2[0] = ∆Y2[10] and ∆Y2[3] = ∆Y2[6] =
∆Y2[9] will lead to three c-bit filters. Guess STK1[7]. Time complexity of this step

could be approximated by 220c ·N · 2−4c · 2 · 4
21·16 + 223c ·N · 2−6c · 2 · 3

21·16 + 224c ·
N · 2−9c · 2 · 1

21·16 ≈ N217c−5.81.
4. Satisfying the cell conditions in ∆W17. Guess STK19[2] and compute ∆X8[11, 15],

which will lead to a c-bit filter. Guess STK19[0, 6]. With condition ∆W17[15] =
∆X18[3] ⊕ ∆X18[15] = 0, we can determine STK18[3] by applying Lemma 2.
Similarly, we can also derive STK18[1, 5]. Time complexity of this step could be

approximated by 225c ·N · 2−9c · 2 · 1
21·16 + 227c ·N · 2−10c · 2 · 5

21·16 ≈ N217c−5.07.
5. Satisfying the cell conditions in ∆X4. From the previous steps, we have known

STK20[0, 3, 7], STK18[1, 3, 5] and STK0[5, 6, 7]. With the tweakey schedule of
SKINNY-n-3n, we can determine STK2[1, 3, 5] and thus compute ∆W3[4, 8, 12]. The
conditions ∆W3[4] = ∆W3[8] = ∆W3[12] will lead to two c-bit filters.

6. Satisfying the cell conditions in ∆W16.Guess STK18[0, 7] and compute ∆X17[9, 13].
The condition ∆X17[9] = ∆X17[13] would act as a c-bit filter. Also, we can derive
STK17[1] with another condition ∆X17[1] = ∆X17[13] by applying Lemma 2. Time

complexity of this step is 229c ·N · 2−12c · 2 · 2
21·16 = N217c−6.39.

7. Satisfying the cell conditions in ∆X4. Deduce STK2[1, 7] from known STK20[0, 1],
STK18[1, 7] and STK0[3, 7]. Guess STK2[2]. Then we can compute ∆W3[2, 6, 10].
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Fig. 15: The single-tweakey impossible differential attack against 21-round
SKINNY-n-3n

The conditions ∆W3[2] = ∆W3[6] = ∆W3[10] will lead to two c-bit filters. Time
complexity of this step is 230c ·N · 2−13c · 2 · 1

21·16 = N217c−8.39.
8. Satisfying the cell conditions in ∆X5. Determine STK2[0] from STK0[1], STK18[0]

and STK20[2]. Guess STK2[6] and STK3[4]. With the condition ∆X5[11] =
∆W4[7] ⊕ ∆W4[11] = ∆Y4[6] ⊕ ∆Y4[9] = 0, we can determine X4[6] and thus
STK3[2] due to X4[6] = Y3[2] ⊕ STK3[2]. We can also determine STK3[0] from
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the knowledge of STK19[0], STK17[1] and STK1[1]. The condition ∆W4[11] =
∆W4[15] would act as a c-bit filter. Time complexity of this step is 232c ·N · 2−15c ·
2 · 3

21·16 = N217c−6.81.

Complexity. The data complexity is D = 215c+LG(g)+1. The time complexity
of this whole attack is 28c+15c+LG(g)+1 · 8

21·16 + 225c+17c+LG(g)−3.81 + 248c−g. For
SKINNY-64-192 with c = 4, we set g = 23, then D = 264.99, T = 2169.38,M = 2103.99.
For SKINNY-128-384 with c = 8, we set g = 46, then D = 2125.99, T = 2338.65,M =
2204.99.

I Application to Midori64

I.1 Specification

Midori is a lightweight block cipher proposed by Banik et al. at ASIACRYPT 2015 [50].
Midori-family includes two ciphers: Midori64 with 64-bit block size (4-bit cell size) and
128-bit key size, Midori128 with 128-bit block size (8-bit cell size) and 128-bit key size.

Midori is a variant of substitution-permutation network (SPN) and the number of
rounds is 16 forMidori64. The round function ofMidori consists of four transformations:
SubCell (SB), ShuffleCell (SC), MixColumn (MC) and KeyAdd (AK). In SB operation,
a 4-bit S-box is applied to every 4-bit cell of the internal state S of Midori64. In SC

operation, each 4-bit cell of the state S is permuted as follows:

(s0, s1, . . . , s15)← (s0, s10, s5, s15, s14, s4, s11, s1, s9, s3, s12, s6, s7, s13, s2, s8).

The MC operation applies an involutory matrix

M =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


to every column of the state. In AK operation, the n-bit round key is XORed to the
state S. The round function of Midori is shown in Figure 16.
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Fig. 16: Round function of Midori

Round Key Generation. ForMidori64, a 128-bit secret keyK is denoted as two 64-
bit keys K0 and K1 as K = K0∥K1. Then, WK = K0⊕K1 and RKi = K(i mod 2)⊕αi,
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where 0 ≤ i ≤ 14. The WK is used as the whitening key between the plaintext
and round 0, and as the round key in the final round (where there is no SC and MC

operations).

I.2 Single-Key Impossible Differential Attack on Midori64

This section provides a 11-round single-key impossible differential attack against
Midori64. In this attack, we use the same 6-round single-key impossible differential as
in [25]:

∆W1 = (0000|0000|00?0|0000) ↛ ∆Z7 = (0?00|0000|0000|0?00).

We prefix 2 rounds at the beginning and append 3 rounds at the end of the distin-
guisher to mount the attack, as shown in Figure 17. From the figure, we can get the
parameters used for this attack: rB = 9c, cB = 8c, rF = 14c, cF = 13c, |kB ∪ kF | =
23c, c′B = 6c, c′F = 2c, |k′B ∪ k′F | = 9c. In the key-recovery extensions of this attack,
it adopts deterministic extensions.

Pairs Collection. In this phase, we guess 29c possible values of
WK[0, 1, 4, 5, 6, 9, 10, 12, 14] to generate pairs. There will be N = 2c

∗
B+c∗F+LG(g) =

213c+LG(g) pairs need to be prepared.

Guess-and-Filter. For N pairs under each pre-guessed subkey bits:

1. Satisfying the cell conditions in ∆eW9. With condition ∆eW9[0] = ∆X10[1] ⊕
∆X10[2] = 0, we can get the value of ∆X10[2]. By applying Lemma 2, we can deduce
the value of Y10[2] and thus WK[2]. Similarly, we can derive WK[7, 8, 13, 15]. Time
complexity of this step would be approximated by 29c ·N · 2 · 5

11·16 = N29c−4.14.
2. Satisfying the cell conditions in ∆eW8. Guess eRK9[5, 11]. The condition ∆X9[4] =

∆X9[6] will lead to one c-bit filter. From the condition ∆X9[4] = ∆X9[7], we can
determine the value of eRK9[12]. Guess eRK9[4, 13]. The condition ∆X9[13] =
∆X9[14] will lead to one c-bit filter. From the condition ∆X9[13] = ∆X9[15], we
can determine the value of eRK9[3]. Time complexity of this step is 211c · N · 2 ·

2
11·16 + 213c ·N · 2−c · 2 · 2

11·16 = N212c−5.46.
3. Satisfying the cell conditions in ∆Z7. Due to eRK9[5] = K1[4] ⊕ K1[6] ⊕ K1[7],

WK[4] = K0[4]⊕K1[4],WK[6] = K0[6]⊕K1[6] and WK[7] = K0[7]⊕K1[7], we can
compute eRK8[5] = K0[4] ⊕ K0[6] ⊕ K0[7]. Similarly, we can compute eRK8[12].
The condition ∆X8[4] = ∆X8[7] will lead to one c-bit filter. Time complexity of
this step is 213c ·N · 2−2c · 2 · 2

11·16 = N211c−5.46.
4. Satisfying the cell conditions in ∆W1. Guess RK0[3]. We can derive RK0[6, 9] by

applying Lemma 2 with the condition ∆Y1[3] = ∆Y1[6] = ∆Y1[9]. Time complexity
of this step is 214c ·N · 2−3c · 2 · 3

11·16 = N211c−4.87.

Complexity. The data complexity is D = 214c+LG(g)+1. The time complexity is
29c+14c+LG(g)+1 · 9

11·16 +225c+LG(g)−5.46+232c−g. We set g = 29, then D = 261.33, T =
299.94,M = 256.33.
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Fig. 17: The single-key impossible differential attack against 11-round Midori64

J Applications to Deoxys-BC

J.1 Specification

Deoxys-BC [51], the core primitive of authenticated encryption scheme Deoxys (winner
of the CAESAR competition), is an 128-bit tweakable block cipher conforming to
the TWEAKEY framework [52]. Deoxys-BC has two main versions: Deoxys-BC-256 with
256-bit tweakey size and Deoxys-BC-384 with 384-bit tweakey size.

Deoxys-BC takes an AES-like design and adopts a SPN structure that transforms
the internal states through a round function similar to that of AES. Deoxys-BC-256
has 14 rounds, while Deoxys-BC-384 has 16 rounds.

The round function of Deoxys-BC consists of the four transformations in the order
specified below:

• AddRoundTweakey (ART): XOR the 128-bit round subtweakey to the internal
state.
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• SubBytes (SB): Apply the 8-bit AES S-box S to the 16 bytes of the internal
state.

• ShiftRows (SR): Rotate the 4-byte i-th row left by i positions, i = 0, 1, 2, 3.
• MixColumns (MC): Multiply the internal state by the 4× 4 MDS matrix of AES.

At the end of the last round, a final AddRoundTweakey operation is applied to the
internal state to produce the ciphertext. Figure 18 provides an overview of the round
function of Deoxys-BC.
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Zr
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Fig. 18: Round function of Deoxys-BC

Tweakey Schedule. Different from the key schedule of AES, Deoxys-BC used a
linear tweakey schedule under the TWEAKEY framework. We denote the concatenation
of the key K and the tweak K as KT , i.e. KT = K||T . For Deoxys-BC-256, the
size of KT is 256 bits with the first (most significant) 128 bits denoted as W1, the
second W2, while the 384 bits tweakey of Deoxys-BC-384 is divided into W1,W2 and
W3 per 128 bits sequentially. For Deoxys-BC-256, a subtweakey of i-th round is defined
as STKi = TK1

i ⊕ TK2
i ⊕ RCi while for the case of Deoxys-BC-384 it is defined as

STKi = TK1
i ⊕ TK2

i ⊕ TK3
i ⊕RCi.

The 128-bit words TK1
i , TK

2
i , TK

3
i are outputs produced by tweakey schedule

algorithm, initialized with TK1
0 = W1 and TK2

0 = W2 for Deoxys-BC-256 and with
TK1

0 = W1, TK
2
0 = W2 and TK3

0 = W3 for Deoxys-BC-384. The tweakey schedule
algorithm is defined as

TK1
i+1 = h(TK1

i ), TK
2
i+1 = h(LFSR2(TK

2
i )), TK

3
i+1 = h(LFSR3(TK

3
i )),

where the byte permutation h is defined as:(
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 6 11 12 5 10 15 0 9 14 3 4 13 2 7 8

)
.

The LFSR2 and LFSR3 functions are the application of an LFSR to each of the
16 bytes of a tweakey 128-bit word. The two LFSRs used are given in Table 6.

Table 6: Two LFSRs used in Deoxys-BC tweakey schedule

LFSR2 (x7 ∥x6∥x5 ∥x4∥x3 ∥x2∥x1∥x0) → (x6 ∥x5∥x4 ∥x3∥x2 ∥x1∥x0∥x7 ⊕ x5)

LFSR3 (x7 ∥x6∥x5 ∥x4∥x3 ∥x2∥x1∥x0) → (x0 ⊕ x6 ∥x7∥x6 ∥x5∥x4 ∥x3∥x2∥x1)
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For more details on the specification of Deoxys-BC, please refer to [51].

J.2 Related-Tweakey Impossible Boomerang Attack on
Deoxys-BC-256

In this section, we propose a new 10-round related-tweakey impossible boomerang
attack against Deoxys-BC-256. In this attack, we use a 7-round related-tweakey impos-
sible boomerang distinguisher, prefix one round at the beginning and append 2 rounds
at the end of the distinguisher to mount the attack, as shown in Figure 19. From
the figure, we can get the parameters used for this attack: rB = 2c, cB = 2c, rF =
9c, cF = 9c, |kB ∪ kF | = 13c, c′B = 2c, c′F = 3c, |k′B ∪ k′F | = 6c. In the key-recovery
extensions of this attack, it adopts deterministic extensions.
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Fig. 19: The related-tweakey impossible boomerang attack against 10-round
Deoxys-BC-256

Quartets Collection. In this phase, we guess 26c possible values of
STK10[3, 6, 9, 12] and STK0[8, 13] to generate quartets. There will be Q =
22c

∗
B+2c∗F+LG(g) = 212c+LG(g) quartets need to be prepared.
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Guess-and-Filter. For Q quartets under each pre-guessed subkey bits:

1. Satisfying the cell conditions in ∇X9. Guess STK10[11]. The condition with
known ∇X9[7] on both sides of the boomerang will lead to two c-bit filters. Time
complexity of this step is 27c ·Q · 4 · 1

10·16 = Q27c−5.32.
2. Satisfying the cell conditions in ∇X8. Guess eSTK9[11] and compute ∇X8[11].

The condition with known ∇X8[11] will lead to two c-bit filters. Time complexity
of this step is 28c ·Q · 2−2c · 4 · 1

10·16 = Q26c−5.32.
3. Satisfying the cell conditions in ∇X8. Guess STK10[0, 7, 10, 13]. The condition

∆eW8[12−14] = 0 will lead to six c-bit filter. Guess eSTK9[0]. The condition with
known ∇X8[0] on both sides of the boomerang will lead to two c-bit filters. Time
complexity of this step is 212c ·Q · 2−4c · 4 · 4

10·16 = Q28c−3.32.

Complexity. The data complexity is D = 216c+
LG(g)

2 +2. The time complexity is

26c+16c+
LG(g)

2 +2 · 6
10·16+26c+16c+

LG(g)
2 +1 · 6

10·16+220c+LG(g)−3.32+232c−g. We set g = 80,
then D = 2132.9, T = 2177.42,M = 2101.79.

J.3 Related-Tweakey Impossible Boomerang Attack on
Deoxys-BC-384

In this section, we propose a new 14-round related-tweakey impossible boomerang
attack against Deoxys-BC-384. In this attack, we use a 9-round related-tweakey impos-
sible boomerang distinguisher, prefix 3 rounds at the beginning and append 2 rounds
at the end of the distinguisher to mount the attack, as shown in Figure 20. From the
figure, we can get the parameters used for this attack: rB = 16c, cB = 16c, rF =
6c, cF = 6c, |kB ∪ kF | = 35c, c′B = 8c, c′F = 6c, |k′B ∪ k′F | = 26c. In the key-recovery
extensions of this attack, it adopts deterministic extensions.

Quartets Collection. In this phase, we guess 226c possible values of STK0[0− 15],
STK1[1−2], STK14[0, 1, 7, 10, 13, 14] and eSTK13[11, 15] to generate quartets. There
will be Q = 22c

∗
B+2c∗F+LG(g) = 216c+LG(g) quartets need to be prepared.

Guess-and-Filter. For Q quartets under each pre-guessed subkey bits:

1. Satisfying the cell conditions in ∆Y1. Guess STK1[7] and compute ∆Y1[7]. The con-
dition with known ∆Y1[7] will lead to two c-bit filters. Similarly, the conditions with
known ∆Y1[10, 11, 15] will lead to six c-bit filters by guessing STK1[10, 11, 15]. Time
complexity of this step would be approximated by 227c ·Q · 4 · 1

14·16 = Q227c−5.81.
2. Satisfying the cell conditions in ∆W1. Guess STK1[3, 4, 9, 14]. The condition with

known ∆W1[4] on both sides of the boomerang will lead to two c-bit filters. Time
complexity of this step is 234c ·Q · 2−8c · 4 · 4

14·16 = Q226c−3.81.
3. Satisfying the cell conditions in ∆Y2. We can determine STK2[5, 6] from known

STK0[3, 8], STK1[10, 15] and STK14[13, 14] by applying the tweakey schedule of
Deoxys-BC-384. Guess STK2[7]. The conditions ∆Y2[5−7] = 0 will lead to six c-bit
filter. Time complexity of this step would be a negligible one compared to previous
steps.
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Fig. 20: The related-tweakey impossible boomerang attack against 14-round
Deoxys-BC-384

Complexity. The data complexity is D = 216c+
LG(g)

2 +2. The time complexity of the

whole attack is 226c+16c+
LG(g)

2 +2 · 26
14·16+226c+16c+LG(g)+1 · 26

14·16+227c+16c+LG(g)−5.81+
248c−g. We set g = 41, then D = 2132.41, T = 2343.05,M = 2132.83.
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