
Short Paper: A New Way to Achieve
Round-Efficient Asynchronous Byzantine

Agreement

Simon Holmgaard Kamp

CISPA Helmholtz Center for Information Security
simon.kamp@cispa.de

Abstract. We translate the expand-and-extract framework by Fitzi, Liu-
Zhang, and Loss (PODC 21) to the asynchronous setting. While they use
it to obtain a synchronous BA with 2−λ error probability in λ+1 rounds,
we make it work in asynchrony in λ + 3 rounds. At the heart of their
solution is a proxcensus primitive, which is used to reach graded agree-
ment with 2r + 1 grades in r rounds by reducing proxcensus with 2s − 1
grades to proxcensus with s grades in one round. The expand-and-extract
paradigm uses proxcensus to expand binary inputs to 2λ + 1 grades in
λ rounds before extracting a binary output by partitioning the grades
using a λ bit common coin. However, the proxcensus protocol by Fitzi et
al. does not translate to the asynchronous setting without lowering the
corruption threshold or using more rounds in each recursive step.
We solve this by attaching justifiers to all messages: forcing the adver-
sary to choose between being ignored by the honest parties, or sending
messages with certain validity properties. Using these we define vali-
dated proxcensus and show that it can be instantiated in asynchrony
with the same recursive structure and round complexity as synchronous
proxcensus. In asynchrony the extraction phase incurs a security loss of
one bit which is recovered by expanding to twice as many grades using
an extra round of communication. This results in a λ + 2 round and a
λ + 3 round BA, both with 2−λ error probability and communication
complexity matching Fitzi et al.

1 Introduction

Following the expand-and-extract paradigm by Fitzi, Liu-Zhang, and Loss [9] we
present a concretely round efficient asynchronous Monte Carlo style BA which
runs for a fixed number of rounds, λ+3, to reach agreement on a binary decision
with probability at least 1 − 2λ using signatures and a common coin.

The expand-and-extract paradigm generalizes Feldman and Micali [8] (FM)
in which the parties iteratively run crusader agreement, which outputs either
the input of an honest party or an inconclusive value “?” with the guarantee
that no two honest parties get different bits as output. Then they flip a coin and
parties that had output “?” use the coin as input to the next FM iteration. With
probability > 1/2 this makes the system enter a univalent configuration, in which

simon.kamp@cispa.de

honest parties input the same bit to all future iterations. While it is possible
to detect this univalent state and terminate in an expected constant number
of rounds; in order to enter this state and reach agreement with probability
1 − 2−λ, the protocol must run λ FM iterations which corresponds to 2λ rounds
of communication.

Fitzi et al. cut this worst case round complexity almost in half to λ + 1
by introducing proxcensus which generalizes crusader agreement and graded
agreement to any number of grades, while still requiring that all honest outputs
are distributed between two adjacent grades. They observe that you can remove
all but one of the coin flip rounds by first using proxcensus to expand to 2λ + 1
grades in λ rounds and then flip a single λ-bit coin to extract a bit decision based
on the value of the coin and each party’s grade in a manner that is consistent
with probability 1 − 2−λ. Their expansion technique is inherently synchronous,
but we adapt it to the asynchronous setting while matching the asymptotic
communication complexity and the concrete round complexity up to needing
one extra round to implement validated BA (VBA) as defined in [3] or two extra
rounds to implement a full-fledged BA.

To compare with the FM approach in the asynchronous setting: observe that
crusader agreement followed by a coin flip does not on its own solve BA in asyn-
chrony. This is because the adversary is assumed to learn the output of the coin
as soon as some honest party wishes to flip the coin. From a bivalent configu-
ration (where at least two honest parties have different inputs) the adversary
can make an honest party output “?” in order to learn the coin c and then let
other honest parties receive output 1 − c to maintain the bivalent configuration
indefinitely. This can be solved by using graded agreement with at least 4 grades,
which requires an extra round of communication before flipping the coin. The
resulting FM iterations use 3 rounds each and give a worst case round complex-
ity of 3λ. The expand and extract technique improves on the worst case round
complexity of this asynchronous BA by almost a factor 3 to λ + 3.

In the synchronous BA by Fitzi et al., the λ rounds spent on flipping a 1-bit
coin in each FM iteration are removed and then replaced with a single round
used to flip a λ-bit coin after expanding. The resulting round complexity is λ+1
instead of 2λ. In the same vein we can view our protocol as removing – from
each of the λ FM iterations – both the round spent on coin flipping and the
round spent on upgrading crusader agreement to graded consensus with more
grades. In the end a (worst case) total of 2λ rounds are replaced by just two
rounds after the expansion phase, that each functionally stand in for λ rounds
and in combination result in a round complexity of λ + 2 rather than 3λ.

Techniques. The expand-and-extract approach first expands to 2λ +1 grades and
then uses a λ-bit coin to extract a decision. In the expansion step the parties input
their bit to a proxcensus protocol which outputs a bit and a grade that serves as
an indicator of confidence in the bit. Crusader agreement and graded agreement
are well-known special cases of proxcensus with 3 and 5 grades respectively. If
all honest parties input the same bit 0 (or 1), their output must be the minimal
(or maximal) grade. All honest parties are guaranteed to have graded agreement

2

in the sense that they have adjacent integer outputs. After expanding to a large
space of 2λ + 1 grades, the output bit is extracted by splitting the space in two
using a random coin. If the obtained grade is strictly greater than the coin, the
output is 1, otherwise it is 0. This means that if a party has the minimal (or
maximal) grade, then they output 0 (or 1) regardless of the coin. Hence, the
validity of BA reduces to the validity of proxcensus.

When we enter the extraction phase, a more general version of the attack on
the FM approach in asynchrony described above also applies to asynchronous
expand-and-extract. As we cannot wait to flip the coin until all honest parties
are done expanding: each party must initiate the coin flip when they are done
expanding and this leaks the value of the common coin to adversary. The output
grades of proxcensus are guaranteed to be adjacent, but when the first honest
party gives output, there are still potentially two candidates for the adjacent
grade. This gives the adversary two shots at guessing the random coin instead of
one, doubling the error probability. However, adding an extra round to expand
to twice as many grades recovers this lost bit of security.

Finally, an additional round is used to reduce BA to by establishing a thresh-
old signature on the input bit as suggested in [3].

1.1 Preliminaries

We provide protocols for n parties P1, . . . , Pn where t < n/3 can be adaptively
Byzantine corrupted. We assume an asynchronous network where message de-
livery is handled by the adversary with no upper bound on the delay. Liveness
properties hold under eventual delivery of the messages.

Threshold Signatures and Common Coin. These primitives are standard and
we only give brief informal descriptions. For simplicity we treat them as un-
conditionally secure. We assume key shares of a threshold signature scheme for
multiple different thresholds have been setup between the parties. We will be
using thresholds n − t and t + 1 and assume that (partial) signatures have a
size of λ bits. We also assume the parties can run a common coin primitive ΠCC
that allow the parties to flip a λ bit coin which is unpredictable to the adversary
until the first honest party initiates the protocol. This can be instantiated from
threshold signatures following [4].

Justifiers. We use justifiers as defined in [11]. These are ways to demonstrate
some notion of validity of a protocol message by providing relevant context. A
simple example is justifying the input bit to protocol using threshold signatures
as suggested in [3].

Definition 1 (Justifier [11]). For a message identifier mid we say that Jmid

is a justifier if the following properties hold. Jmid is a predicate depending on the
message m and the local state of a party. When we write pseudo-code then we
write Jmid(m) to denote that the party P executing the code computes Jmid on m
using its current state. In definitions and proofs we write Jmid(m, P, τ) to denote
that we apply Jmid to m and the local state of P at time τ .

3

Monotone: If for an honest P and some time τ it holds that Jmid(m, P, τ) = ⊤
then at all τ ′ ≥ τ it holds that Jmid(m, P, τ ′) = ⊤.

Propagating: If for honest P and some point in time τ it holds that Jmid(m, P, τ) =
⊤, then eventually the execution will reach a time τ ′ such that Jmid(m, P′, τ ′) =
⊤ for all honest parties P′.

In our protocols all justifiers are explicit certificates based on threshold signa-
tures and some auxiliary information send along with the message. We therefore
omit the party and time from the justifiers. The following two definitions provide
a framework to reason about properties of justified messages.

Definition 2 (Possible Justified Messages [11]). Let Π be a protocol.
When we say that an ℓ-ary predicate P holds for all possible justified messages
we mean: Run the protocol Π under attack by the adversary. At some point
the adversary may output a sequence of triples (P1, mid1, m1), . . . , (Pℓ, midℓ, mℓ).
We say that the adversary wins if the message identifiers mid1, . . . , midℓ iden-
tify messages of Π, P1, . . . , Pℓ are honest (but not necessarily distinct) parties,
for j = 1, . . . , ℓ it holds that Jmidj (mj) = ⊤ at Pj, and P (m1, . . . , mℓ) = ⊥.
Otherwise the adversary looses the game. Any PPT adversary should win with
negligible probability.

Definition 3 (Possible Justified Outputs [11]). Let Π be a protocol with
output justifier J . When we say that an ℓ-ary predicate P holds for all possible
justified outputs we mean: Let Π ′ be the protocol Π with only change being that
each party on getting output, sends their output to all parties if this was not
already done. Run the protocol Π ′ under attack by the adversary. At some point
the adversary may output a sequence of triples (P1, mid1, m1), . . . , (Pℓ, midℓ, mℓ).
We say that the adversary wins if the mid1, . . . , midℓ are identified with outputs
of Π, P1, . . . , Pℓ are honest (but not necessarily distinct) parties, for j = 1, . . . , ℓ
it holds that Jmidj (mj) = ⊤ at Pj, and P (m1, . . . , mℓ) = ⊥. Otherwise the adver-
sary looses the game. Any PPT adversary should win with negligible probability.

The protocol in Fig. 1 corresponds to the procedure for justifying inputs in
[3]. The parties multicast their input bits and initially try to collect signature
shares on some input bit from t + 1 parties, implying that it is the input of an
honest party. At the same time (assuming n > 3t) it is guaranteed that parties
eventually receive t + 1 shares for one of the two inputs, since the bit input by
the majority of the honest parties will account for at least t + 1 shares. Using
the definition of justifiers from [11] we can say that the ΠIVG in Fig. 1 has
the liveness property that if all honest parties start running the protocol, then
eventually they receive a justified bit as output. It also has the safety property
that any possible justified output satisfying ΠIVG.Jout was the input of an honest
party.

2 Validated Proxcensus

In this section we define validated proxcensus, which is to the definition of prox-
census in [9] what [3] is to BA. To ease the notation in the protocol and proofs

4

Input validation gadget ΠIVG.

– On input bi, Pi multicasts bi with a signature and a partial signature
with threshold t + 1.

– On receiving b for some bit b from t+1 distinct parties: Pi combines the
shares of the t + 1 threshold signature scheme and outputs b justified
by the threshold signature.

Fig. 1. An input validation gadget reducing BA to VBA.

we define the output over the integers, such that V Prox − (G) has outputs in
{0, . . . , G − 1} rather than a bit (or ‘?’) with a grade up to ⌊G/2⌋.

We will follow the approach of reducing the problem of V Prox − (2s − 1) to
V Prox − (s) using one round of communication.

Definition 4 (Validated Proxcensus). Let ΠVProx−(G)(Jin) be a protocol for
n parties, parameterized by an input justifier Jin, and outputting y ∈ {0, . . . , G−
1} satisfying an output justifier Jout. We say that ΠVProx−(G)(Jin) solves VProx-
(G) if the following holds:

Liveness If every honest party Pi have justified input x ∈ {0, 1} where Jin(x) =
⊤, then eventually every honest party Pj will have justified output y ∈
{0, . . . , G − 1} where Jout(y) = ⊤.

Justified Graded Agreement For all possible justified outputs y and y′: |y −
y′| ≤ 1.

Justified Validity If b is the only possible Jin justified bit, then y = b · (G − 1)
for all possible justified outputs y.

Remark 1. It is easy to map from an output y ∈ [G] to the (b, g) representation
used in [9]. In our case G is always odd, so we can define a middle grade

G′ = ⌊G/2⌋ and map y to (b, g) where g = |G′ − y| and b =

? if y = G′

0 if y < G′

1 if y > G′
.

To motivate the definition and the use of justifiers, let us first consider the
simplest (non-trivial) version of proxcensus: Crusader Agreement. Parties have
input in {0, 1} and outputs in {0, 1, 2}. If we use the logic from Fitzi et al. in the
asynchronous setting we run into problems with validity, liveness or agreement
(unless we assume fewer corruptions or use more than one round). First, a
party should not output 2b unless it has seen n − t votes for b. Otherwise graded
agreement is easily broken. The validity property says that if all honest parties
have input b, then the only valid output is 2b. In order to make sure that you
pick a valid output you can only “trust” your own input, or the other input if it
is seen from at least t + 1 parties. But what do you do if you had input b, only
see n − t votes, and the majority but not all of these votes are on b? You do not
have enough information to know that 1 − b is an honest input and thus that 1
is a valid output, but neither do you have the n − t votes for b that would allow

5

outputting 2b. As the protocol is asynchronous, there is no way to wait for more
than n − t votes. While this is far from a formal lower bound, it illustrates the
problem which occurs because we cannot wait for all honest votes as you could
in the synchronous setting. It can be solved by assuming n > 4t, or by using two
rounds in each step of the recursion.1

In order to solve this problem, let us define a validated flavour of Crusader
Agreement which is to Crusader Agreement what is to BA. Namely, where inputs
are checked by a predicate and the validity property only holds with respect
to the predicate. We define Justified Validity to say that if only the input b is
justifiable, then 2b should be the only justifiable output bit. With this definition:
if you see a justifier for both possible input bits, then you can output bottom
without violating Justified Validity. You can also justify it by forwarding the 2
justifiers. To ensure agreement you can now simply wait until you see n− t votes
for the same bit b in order to output 2b. Finally, for Liveness observe that you
will eventually see n− t votes from honest parties. Either these n− t votes are on
the same bit, or you saw two that were different votes. In either case you obtain
an output.

Let us generalize this idea to solve validated proxcensus. We now reinterpret
the consensus rules as doubling an input that is seen n-t times, or taking the
double of the average of two different inputs. Note that after giving output: since
all justified outputs are on at most two different different adjacent integers, we
are in an abstract sense in the same situation as when we started with 0 and 1
being those two integers. If we apply this new interpretation of the consensus
rules to those integers and use the invariant that all justifiable outputs of an
iteration are adjacent integers, we can keep threading the justified outputs of the
each instance of validated crusader agreement into the next one. The maximum
grade doubles every round. To see why justified validity is maintained: there is
only something to show if the only justified input is ß. And in that case each
round just doubles the unique justified input and the only justified output after
r rounds will be 2r · b.

We describe the general protocol in detail in Fig. 2 as reducing VProx-(2s−1)
to VProx-(s). As a base case for the recursion, define ΠVProx−(2)(Jin) to output
its input with Jout = Jin. Rephrasing the above: the main insight is that all
possible justified outputs of VProx-(s) are on at most 2 adjacent grades, so we
can double the grade if we only receive the same grade from n − t parties, or
double the average of 2 justified grades.

We show that the protocol in Fig. 2 satisfies VProx-(2i + 1) as defined in
Definition 4 for any nonnegative integer i, using i rounds of communication.
For the base case i = 0 define ΠVProx−(2)(Jin) to be the zero round protocol
that just returns the input with output justifier Jout = Jin trivially satisfying
Definition 4. We show the induction step:

1 After we introduce the proxcensus protocol it should be clear how to combine it with
the protocol in Fig. 1 to obtain a recursive solution with to rounds in each step. But
also that the “extra” round is only needed in the beginning of the protocol.

6

Reduction from ΠVProx−(2s−1) to ΠVProx−(s) for s ≥ 2.

– On input xi where Jin(xi) = ⊤, Pi runs ΠVProx−(s)(Jin) with input xi.
– On output zi from ΠVProx−(s)(Jin), Pi multicasts (Proposal, zi) with

a signature and a partial signature with threshold n − t.
– On receiving justified (Proposal, z) and (Proposal, z + 1) Pi lets

yi = 2z + 1 and terminates with output yi justified by the justifiers for
z and z + 1.

– On receiving justified (Proposal, z) from n − t distinct parties, Pi lets
yi = 2z and terminates with output yi justified by a n − t threshold
signature on z.

Fig. 2. A recursive description of the validated proxcensus protocol.

Lemma 1. If ΠVProx−(s)(Jin) satisfies Definition 4, then ΠVProx−(2s−1)(Jin)
satisfies Definition 4

Proof. For liveness we observe that n − t honest parties ΠVProx−(s)(Jin).Jout
justified values zi which by Justified Graded Agreement are either all identi-
cal or split between two adjacent integers, so when these are propagated every
party has a set of n − t values that allow defining yi through one of the two
cases. Justified Validity follows from Justified Validity of ΠVProx−(s)(Jin), as
the input justifier is shared. So since all justified z are identical, every party gets
the same y. In particular, if the only justified input to the inner protocol is b
then the only ΠVProx−(s)(Jin).Jout-justified output is z = b · (s − 1), thus the
only ΠVProx−(2s−1)(Jin).Jout-justified output is 2b · (s − 1) = b · (2s − 2). For
Justified Graded Agreement we again rely on Justified Graded Agreement of the
ΠVProx−(s)(Jin)Jout-justified z values to say that and for any justified zi and zj

we have |zi − zj | ≤ 1. We only need to argue that there cannot be n − t parties
who send some zi and n−t parties who sent zj = zi −1. But such two sets would
overlap on at least one honest party as n > 3t. Thus, by definition of step 3 all
justified outputs yi and yj satisfy |zi − zj | ≤ 1. ⊓⊔

In Appendix A we show that the justifiers remain constant size which al-
lows our asynchronous validated proxcensus to match the complexity of the
synchronous proxcensus for n > 3t parties presented in [9].

Corollary 1. For any r ≥ 0, ΠVProx−(2r+1)(Jin) solves VProx-(2r + 1) with r
rounds of communication and O(rn2(λ + |Jin|)) bits of communication, where
|Jin| is the size of the input justifier. When using ΠIVG to establish Jin, it solves
Prox-(2r+1) as defined in [9] in r+1 rounds with O(rn2λ) bits of communication.

3 Validated BA

We give a brief description of the extraction phase, which largely follows [9]. The
expansion step requires an extra round of communication to expand to 2λ+1 + 1
grades and make up for the error probability being doubled in asynchrony. (In

7

contrast to the 2λ + 1 that suffice in the synchronous case.) As the proxcensus
is validated, the combined expand-and-extract procedure only yields a validated
BA protocol. A full BA protocol is given in Section 4. We first define validated
BA.
Definition 5 (Validated BA). Let ΠVBA(Jin) be a protocol for n parties pa-
rameterized by an input justifier Jin outputting y ∈ {0, 1} satisfying an output
justifier Jout. We say that ΠVBA(Jin) is a secure protocol if the following prop-
erties hold:
Liveness If every honest party Pi has justified input xi ∈ {0, 1} where Jin(xi) =

⊤, then eventually every honest party Pj will have justified output y ∈ {0, 1}
where Jout(y) = ⊤.

Justified Agreement For all possible justified outputs y and y′: y = y′.
Justified Validity If Jout(y) = ⊤, then Jin(y) = ⊤.

The protocol ΠVBA in Fig. 3 satisfies Definition 5 except with probability
2−λ. As mentioned the parties first expand to 2λ+1 + 1 grades. Then ΠCC is
run to obtain output c and the grades are compared with 2c. This mitigates the
security loss caused by the adversary being free to choose between more than
two grades at the time the coin is flipped. The adversary can still learn c when
the first honest party Pi gets their grade gi and then decide to give some Pj

grade gj ∈ {gi − 1, gi, gi + 1} based on the value of c. But note that since 2c is
even, agreement can only be broken if there are justified grades g and g′ = g + 1
where g is even. So even if the adversary has the ability to to choose between
gi − 1 and gi + 1 becoming justified grades after learning the value of c. At most
one of the two grades can result in conflicting bit decisions, so the adversary has
no chance of breaking agreement beyond guessing the exact value of c before
any honest party initiates ΠCC.

Validated BA protocol ΠVBA

– On input bi, Pi initiates ΠVProx−(2λ+1+1) with input bi.
– On output gi from ΠVProx−(2λ+1+1), Pi initiates ΠCC.
– On output ci from ΠCC, Pi lets di = 1 if gi > 2ci.

Fig. 3. A validated BA using expand-and-extract.

Theorem 1. ΠVBA (Fig. 3) is a secure as defined in Definition 5 except with
probability 2−λ. It uses λ + 2 rounds of communication and O(λn2(λ + |Jin|))
bits of communication, where |Jin| is the size of the input justifier.
Proof. Since we expand to 2λ+1 + 1 grades and double the value of the coin:
even if the adversary can choose between 3 different grades when the coin is
leaked, the adversary needs to guess the value of the coin to split agreement.
Justified validity reduces to justified validity of validated proxcensus: If b is the
only justified input, then the only justified possible justified grade is b · (G − 1)
and the only possible justified output is b.

8

4 Binary Agreement

We finally solve BA using the recipe from [3] where a justifier is formed using
a threshold signature before running . This resulting BA has a slightly stronger
security definition than usual: the output is justified and all possible justified
outputs are identical.

Binary Agreement protocol ΠBA.

– On input bi, Pi initiates ΠIVG with input bi.
– On output xi from ΠIVG, Pi initiates ΠVBA(ΠIVG.Jout) with input xi.
– On output yi from di ΠVBA(ΠIVG.Jout), Pi outputs di.

Fig. 4. A Binary Agreement protocol.

Definition 6 (BA). Let ΠBA be a protocol for n parties outputting y ∈ {0, 1}
satisfying an output justifier Jout. We say that ΠBA is a secure BA protocol if
the following properties hold:
Liveness If every honest party Pi has input xi ∈ {0, 1}, then eventually every

honest party Pj will have justified output yi ∈ {0, 1} where Jout(yi) = ⊤.
Justified Agreement For all possible justified outputs y and y′: y = y′.
Validity If Jout(y) = ⊤, then some honest party gave input y.

We give a protocol ΠBA in Fig. 4 which implements BA except with proba-
bility 2−λ. The security follows as a corollary from Theorem 1.
Corollary 2. ΠBA given in Fig. 4 implements a secure BA as defined in Defi-
nition 6 except with probability 2−λ. It uses λ + 3 rounds of communication and
O((nλ)2) bits of communication.

4.1 Related work
Expand-and-extract along with the notion of proxcensus were introduced in [9].
Proxcensus is in turn an adaption of the proxcast definition used in [5]. Justifiers
were introduced in [6], but we use the definitions from [11]. A very similar notion
of transferable justifiers that also considers a version of adversarially crafted jus-
tified outputs exist in [13], however we need to apply it to properties of messages
rather than just outputs, which matches the security game in [11]. The logic used
to get validated proxcensus draws on the partially synchronous BA in [12], al-
though the network model and definitions of justifiers are quite different. The
result of [9] has later been improved in [10], but the techniques do not appear to
be compatible with asynchrony. There has not been much recent progress on the
concrete round efficiency of Monte Carlo style BA in the asynchronous setting.
However, the recent work of Erbes and Wattenhofer [7] provides a 2λ graded
consensus protocol with 6(λ + 1) rounds and suggests that [1] and [2] can be
combined into a 2λ graded consensus using 3(λ+1) rounds. We improve on this
by a factor of 3 (see Corollary 1).

9

References

1. Attiya, H., Censor-Hillel, K.: Lower bounds for randomized consensus under a weak
adversary. SIAM J. Comput. 39(8), 3885–3904 (2010)

2. Bandarupalli, A., Bhat, A., Bagchi, S., Kate, A., Liu-Zhang, C., Reiter, M.K.:
Delphi: Efficient asynchronous approximate agreement for distributed oracles. In:
DSN. pp. 456–469. IEEE (2024)

3. Cachin, C., Kursawe, K., Petzold, F., Shoup, V.: Secure and efficient asynchronous
broadcast protocols. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 524–
541. Springer, Berlin, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 19–23,
2001). https://doi.org/10.1007/3-540-44647-8_31

4. Cachin, C., Kursawe, K., Shoup, V.: Random oracles in Constantinople: Practi-
cal asynchronous byzantine agreement using cryptography. Journal of Cryptology
18(3), 219–246 (Jul 2005). https://doi.org/10.1007/s00145-005-0318-0

5. Considine, J., Fitzi, M., Franklin, M.K., Levin, L.A., Maurer, U.M., Met-
calf, D.: Byzantine agreement given partial broadcast. J. Cryptol. 18(3), 191–
217 (2005). https://doi.org/10.1007/S00145-005-0308-X, https://doi.org/
10.1007/s00145-005-0308-x

6. Dinsdale-Young, T., Magri, B., Matt, C., Nielsen, J.B., Tschudi, D.: Afgjort: A
partially synchronous finality layer for blockchains. In: Galdi, C., Kolesnikov, V.
(eds.) SCN 20. LNCS, vol. 12238, pp. 24–44. Springer, Cham, Switzerland, Amalfi,
Italy (Sep 14–16, 2020). https://doi.org/10.1007/978-3-030-57990-6_2

7. Erbes, M.M., Wattenhofer, R.: Asynchronous approximate agreement with
quadratic communication (2024)

8. Feldman, P., Micali, S.: An optimal probabilistic protocol for synchronous byzan-
tine agreement. SIAM J. Comput. 26(4), 873–933 (1997)

9. Fitzi, M., Liu-Zhang, C.D., Loss, J.: A new way to achieve round-efficient byzan-
tine agreement. In: Miller, A., Censor-Hillel, K., Korhonen, J.H. (eds.) 40th
ACM PODC. pp. 355–362. ACM, Virtual Event, Italy (Jul 26–30, 2021). https:
//doi.org/10.1145/3465084.3467907

10. Ghinea, D., Goyal, V., Liu-Zhang, C.D.: Round-optimal byzantine agreement. In:
Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part I. LNCS, vol.
13275, pp. 96–119. Springer, Cham, Switzerland, Trondheim, Norway (May 30 –
Jun 3, 2022). https://doi.org/10.1007/978-3-031-06944-4_4

11. Kamp, S.H., Nielsen, J.B.: Byzantine agreement decomposed: Honest majority
asynchronous total-order broadcast from reliable broadcast. IACR Cryptol. ePrint
Arch. p. 1738 (2023)

12. Kamp, S.H., Nielsen, J.B., Thomsen, S.E., Tschudi, D.: Enig: Player replaceable
finality layers with optimal validity. Cryptology ePrint Archive, Report 2022/201
(2022), https://eprint.iacr.org/2022/201

13. Loss, J., Nielsen, J.B.: Early stopping for any number of corruptions. In: Joye,
M., Leander, G. (eds.) EUROCRYPT 2024, Part III. LNCS, vol. 14653, pp. 457–
488. Springer, Cham, Switzerland, Zurich, Switzerland (May 26–30, 2024). https:
//doi.org/10.1007/978-3-031-58734-4_16

A Proxcensus with constant sized justifiers of odd grades

The proof of Lemma 1 completes the induction proof as far as correctness and
round complexity goes. But notice that while each party only sends a single

10

https://doi.org/10.1007/3-540-44647-8_31
https://doi.org/10.1007/3-540-44647-8_31
https://doi.org/10.1007/s00145-005-0318-0
https://doi.org/10.1007/s00145-005-0318-0
https://doi.org/10.1007/S00145-005-0308-X
https://doi.org/10.1007/S00145-005-0308-X
https://doi.org/10.1007/s00145-005-0308-x
https://doi.org/10.1007/s00145-005-0308-x
https://doi.org/10.1007/978-3-030-57990-6_2
https://doi.org/10.1007/978-3-030-57990-6_2
https://doi.org/10.1145/3465084.3467907
https://doi.org/10.1145/3465084.3467907
https://doi.org/10.1145/3465084.3467907
https://doi.org/10.1145/3465084.3467907
https://doi.org/10.1007/978-3-031-06944-4_4
https://doi.org/10.1007/978-3-031-06944-4_4
https://eprint.iacr.org/2022/201
https://doi.org/10.1007/978-3-031-58734-4_16
https://doi.org/10.1007/978-3-031-58734-4_16
https://doi.org/10.1007/978-3-031-58734-4_16
https://doi.org/10.1007/978-3-031-58734-4_16

message in each round, the size of the odd justifiers a priori keep growing, because
they depend recursively on justifiers from the previous round. So, the size of the
output justifier of an odd grade in round i is O(iλ + |Jin|) bits, where |Jin| is the
size of the input justifier. Meanwhile the justifier of an even grade is compressing
in the sense that it comes with a threshold signature which was produced by a set
of parties including at least one honest party, and thus is of size O(λ) bits as it
does not need to include justifiers from previous rounds. Let Πi = ΠVProx−(2i+1)
for i ≥ 0. For Π0 the output justifier is the input justifier of size O(|Jin|). To
optimize the size of odd output justifiers to O(λ + |Jin|) for i > 0, observe that
the justifier of an odd grade is based on a justified even and odd grade from the
previous round. Consider an odd output y of Πi, which was calculated as 2z − 1
based on justified values z and z−1. We can think of this as y = 2 |z′+z′′|

2 for some
justified values z′ and z′′ = z′ ± 1. Assume W.L.O.G. that z′ is the even of the
two grades, then it was justified by an n− t threshold signature on z′/2 while z′′

was justified by the same threshold signature justifier for z′/2 in addition to the
justifier for the odd grade z′/2±1. Since the threshold signature justifying z′ has
contributions from honest parties who saw a justifier for z′/2, it guarantees the
existence of the justifier for z′/2. This means that – in the context of justifying y
– the justification of z′′ only needs to justify its z′/2±1 component. If z′/2±1 is
even, it is justified by a threshold signature on (z′/2 ± 1)/2 (or is 0 and justified
by Jin). Otherwise, z′/2 ± 1 is odd and we apply the above step until we hit
another threshold signature or an input justified bit. In summary, the output for
any grade at any level can be justified using O(λ + |Jin|) bits.

11

	 Short Paper: A New Way to Achieve Round-Efficient Asynchronous Byzantine Agreement

