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Abstract

The Deligne-Ogus-Shioda theorem guarantees the existence of isomorphisms between
products of supersingular elliptic curves over finite fields. In this paper, we present methods
for explicitly computing these isomorphisms in polynomial time, given the endomorphism
rings of the curves involved. Our approach leverages the Deuring correspondence, enabling
us to reformulate computational isogeny problems into algebraic problems in quaternions.
Specifically, we reduce the computation of isomorphisms to solving systems of quadratic
and linear equations over the integers derived from norm equations. We develop ℓ-adic
techniques for solving these equations when we have access to a low discriminant subring.
Combining these results leads to the description of an efficient probabilistic Las Vegas
algorithm for computing the desired isomorphisms. Under GRH, it is proved to run in
expected polynomial time.
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1. Introduction

Computing isogenies between elliptic curves has been a vast field of research in the last
decade, leading to the development of higher-dimensional techniques in cryptography [1, 2].
In particular, abelian varieties of dimension g ≥ 2 isogenous to a product of supersingular
elliptic curves play an important role in this setting [3, 4, 5, 6, 7] . An important feature
of such abelian varieties is that they are all isomorphic over an algebraic closure. Studying
the effectiveness of this result leads to interesting algorithmic questions.

Let Fq be a finite field of characteristic p > 0. An abelian variety defined over Fq is
superspecial if it is Fq-isomorphic to a product of supersingular elliptic curves defined
over Fq. The Deligne-Ogus-Shioda theorem [8] states that for all g > 1, all dimension-g
superspecial abelian varieties defined over Fq are Fq-isomorphic (as unpolarized abelian
varieties). The aim of this paper is to investigate computational aspects of this theorem.
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Problem 1.1 (Effective Deligne-Ogus-Shioda problem). Let g ≥ 2 be an integer. Given
supersingular elliptic curves E1, . . . , Eg and E′

1, . . . , E
′
g defined over Fq, compute an

Fq-isomorphism E1 × · · · × Eg → E′
1 × · · · × E′

g.

This appears to be a difficult computational problem. Indeed, computing the endomor-
phism ring of a supersingular curve is a computational problem which is considered hard,
and the security of several cryptographic constructions relies on it. Solving Problem 1.1
would provide non-trivial information about the endomorphism rings of the curves: From
an isomorphism E1 × E2 → E′

1 × E′
2, we can compute four isogenies φij : Ej → E′

i, and
the composition φ̂21φ22φ̂12φ11 : E1 → E1 is in general a non-trivial endomorphism of E1.

In this paper, we study Problem 1.1 in the context where the endomorphism rings
of the elliptic curves are given. In this setting, Deuring’s correspondence allows us to
translate Problem 1.1 into a problem about quaternion algebras.

Contributions. We focus on the case g = 2, which is the base case which serves as a
building block for the general case g ≥ 2. Therefore our main problem is the computation
of an isomorphism E1 × E2 → E′

1 × E′
2 between two products of supersingular elliptic

curves, assuming that their endomorphisms rings are known. Endomorphism rings are
given via an efficient representation of a Z-basis together with an explicit isomorphism
with a maximal order in the quaternion algebra Bp,∞. Our main contribution is a
polynomial-time algorithm that computes an isomorphism E1 × E2 → E′

1 × E′
2 between

products of maximal elliptic curves over Fp2 , assuming that e know the endomorphism
rings of the curves. This algorithm relies on two main subroutines. The first one describes
how to build a two by two matrix of isogenies which is an isomorphism, given its first
column. The second one allows us to compute isomorphisms of the form E2 → E′

1 × E
when we know a non-scalar low-discriminant endomorphism in End(E).

In order to design such algorithms, we need some new computational techniques. For
instance, we provide a quasi-linear quaternionic method to divide an endomorphism by
an isogeny, see Proposition 4.7. Our main theoretical tool is a necessary and sufficient
criterion to decide whether a pair of separable isogenies φ11 : E1 → E′

1, φ21 : E1 → E′
2

of coprime degrees can appear as the first column of a matrix (φij)i,j∈{1,2} describing
an isomorphism E1 × E2 → E′

1 × E′
2: this happens precisely when the direct sum of the

kernels of φ11 and φ21 is the kernel of an isogeny E1 → E2. This result is formalized in
Theorem 5.4.

This criterion is used in our algorithms for both subroutines. In the low-discriminant
case, we also use the fact that we can solve efficiently norm equations in low-discriminant
imaginary quadratic orders. Consequently we are able to find particular endomorphisms,
which allows us to apply our criterion. In both cases, we use Wesolowski’s variant [9] of
KLPT algorithm [10] as an important building block, whose complexity is proved under
GRH.

Finally, we provide a proof-of-concept implementation in the computer algebra software
Magma, which demonstrates some of the algorithms presented in this paper. In those files
we only provide the quaternionic part of the isomorphisms, meaning that we output four
ideals {Iij}1≤i,j≤2, which are kernel ideals of four isogenies φIij , which form a matrix that
represents an isomorphism. This implementation is available at the following url: https://
gitlab.inria.fr/superspecial-surfaces-isomorphisms/experiments. To recover
the isogenies, one can use IdealToIsogeny algorithms, described for example in [6, 11].
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Related works. Superspecial abelian varieties are central objects in the recent developments
of isogeny-based cryptography, as they are the main characters of the new high-dimensional
techniques, see e.g. [5, 12, 2]. Being able to compute isomorphisms between such objects
would be a useful computational tool. In particular, one typical setting is to consider a spe-
cial curve which has the property that its endomorphism ring contains a low-discriminant
imaginary quadratic order. For instance, when p ≡ 3 mod 4, the endomorphism ring of
the elliptic curve E0 defined over Fp2 by the equation y2 = x3 + x contains a subring
isomorphic to Z[i]. Being able to compute an isomorphism between a superspecial abelian
variety and Eg0 would give access to these low-discriminant subrings of endomorphisms.
Another application of our work is the representation of some polarized abelian varieties.
In particular, the Ibukiyama–Katsura–Oort correspondence shows that superspecial prin-
cipally polarized abelian surfaces (up to polarized isomorphisms) can be represented via
two by two matrices over the quaternions (modulo congruence). Algorithms have been
recently developed in [13] to perform efficient computations via this representation. Our
algorithms contribute to this toolbox since isomorphisms between products of supersingu-
lar elliptic curves can be used to compute the Ibukiyama–Katsura–Oort representation of
principally polarized abelian surfaces that are not Jacobians of genus-2 curves.

The proof of [14, Thm A.1] provides an explicit construction of an isomorphism
between the products E ×E/(K1 +K2) and E/K1 ×E/K2 for Ki finite étale subgroups
of coprime orders. This result has similarities with our Theorem 5.4, but it is not general
enough for our purposes.

Organization of the paper. First Section 2 describes the background on Deuring cor-
respondence, products of supersingular elliptic curves and efficient representations of
isogenies. We state our main results in Section 3. In Section 4, we develop theoretical and
computational tools that will be required in the main algorithms. Section 5 is devoted
to the computation of isomorphisms between products of supersingular elliptic curves
provided that we know their endomorphism rings.

Acknowledgements. We are grateful to Benjamin Wesolowski for providing the ideas that
led to the general algorithm in Section 5.4. We thank Jean Kieffer and Damien Robert
for fruitful discussions, and the isocrypt people for their interest. We thank Marc Houben
for pointing us to [14, Thm A.1].

2. Background

For an elliptic curve E over a field F , we denote by End(E) its ring of endomorphisms
defined over F , the algebraic closure of F . We also assume that the characteristic p
of finite fields is greater than 3. For p = 2 (resp. p = 3), the algorithmic questions
discussed in this paper are trivial since all supersingular elliptic curves over F4 (resp. F9)
are isomorphic.

Throughout this paper, we use the formalism of group schemes to describe kernels
of (non-necessarily separable) isogenies, so that any nonzero isogeny (even if it is purely
inseparable) has a non-trivial kernel. We refer to [15] for more details on this formalism.
In particular, for an elliptic curve E defined over Fp, there are bijections between proper
left-ideals in End(E), finite group subschemes in E, and isogenies with domain E up
to post-composition by isomorphisms. This follows from the fact that all left-ideals in
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End(E) are kernel ideals, see [15, Thm. 3.15] for the cases where End(E) has rank 1 or 4,
and [16, Thm. 20.(a)] for the CM-case. We also use the following convenient notation:
given a finite subgroup scheme K of an elliptic curve E, we let E → E/K denote the
geometric quotient of E by K, where K acts by translation. Therefore, an elliptic E′ is
isomorphic to E/K if and only if there exists an isogeny E → E′ whose kernel is K. We
call the map E → E/K the canonical isogeny with kernel K.

The main family of curves that we consider are maximal elliptic curves over Fp2 , i.e.
elliptic curves whose number of rational points equals the Hasse-Weil upper bound.

Definition 2.1. Let E be an elliptic curve over Fp2 . We say that E is maximal when
#E(Fp2) = (p+ 1)2.

Remark 2.2. Any supersingular curve E over a field k of characteristic p > 0 is k-
isomorphic to a curve defined over Fp2 , see [17, Prop. 42.1.7]. Therefore, for computational
purposes, it is convenient to consider supersingular curves defined over Fp2 . Moreover any
such curve is Fp-isomorphic to a maximal curve E′ (see [18, Lem. 4] and [19, Prop. 5.1]),
which has the convenient property that all endomorphisms and isogenies with domain E
are also defined over Fp2 , see [19, Lem. 5.7].

2.1. Deuring correspondence
We recall key concepts of the Deuring correspondence. For a more comprehensive

study of the subject, we refer to [20] and [17].

2.1.1. Quaternion algebras.
Let p be a prime. We focus on the (unique up to isomorphism) quaternion algebra

Bp,∞ over Q which ramifies at p and ∞. The algebra Bp,∞ is non-commutative, and it
has dimension 4 over Q. When p ≡ 3 mod 4 a Q-basis is 1, i, j, k, where

i2 = −1, j2 = −p and k = i j = −j i.

Any element α ∈ Bp,∞ can be encoded by coordinates (α0, α1, α2, α3) ∈ Q4, such
that α = α0 + α1i+ α2j + α3k. The conjugate of α = α0 + α1i+ α2j + α3k ∈ Bp,∞ is
α = α0−α1i−α2j−α3k. Its reduced trace is Trd(α) = α+α = 2α0 and its reduced norm
is Nrd(α) = α · α = α2

0 + α2
1 + p(α2

2 + α2
3) ∈ Q. Every nonzero α ∈ Bp,∞ is invertible, i.e.

there exists a unique β ∈ Bp,∞ such that α · β = β · α = 1.
We now focus on subrings in Bp,∞ involved in the Deuring correspondence:

Definition 2.3 (Quaternion order). An order in Bp,∞ is a subring which has rank 4 as
a Z-module. An order is maximal when it is not contained in a strictly larger order.

Example 2.4. Assume that p ≡ 3 mod 4. A non-maximal order of Bp,∞ is Z[i, j]. This
order is contained in Z[i, 1+k2 ] [10, Lem. 2], which is maximal.

Definition 2.5 (Left/Right Order). Let I be a rank-4 Z-module in Bp,∞. The left and
right orders of I are:

OL(I) = {α ∈ Bp,∞ : αI ⊂ I}, OR(I) = {α ∈ Bp,∞ : Iα ⊂ I}.

When I ⊂ OL(I) (or equivalently I ⊂ OR(I), see [17, Lem. 16.2.8]), we say that I is
an integral ideal.
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Integral ideals in maximal orders are actually locally principal [17, Cor. 17.2.3]. It
implies that the completion I ⊗ Zℓ of an ideal I ⊂ O at a prime ℓ unramified in Bp,∞
generates a principal ideal in O ⊗ Zℓ ∼= M2(Zℓ). We study localizations in more details in
Section 4.4.

Remark 2.6. An integral ideal I is a left-OL(I) ideal, and a right-OR(I) ideal. When
OL(I) (equivalently, OR(I)) is maximal, then I is called a connecting ideal for OL(I)
and OR(I). If O1,O2 ⊂ Bp,∞ are two maximal orders, we let Conn(O1,O2) denote all
integral connecting ideals.

Definition 2.7 (Ideal norm). [17, Thm. 16.1.3] Let I ⊂ Bp,∞ be an ideal. The reduced
norm of I is Nrd(I) = gcd({Nrd(α) : α ∈ I}). Moreover, Nrd(I)2 = [OL(I) : I] =
[OR(I) : I].

Proposition 2.8. [17, Lem. 16.3.7] Let O1,O2,O3 ⊂ Bp,∞ be three maximal orders. If
I ∈ Conn(O1,O2) and J ∈ Conn(O2,O3), then I · J ∈ Conn(O1,O3) and Nrd(I · J) =
Nrd(I) ·Nrd(J).

2.1.2. The correspondence.
Endomorphism rings of supersingular elliptic curves are isomorphic to maximal orders

in Bp,∞. The purpose of Deuring correspondence is to provide a set of tools for representing
geometric objects related to supersingular elliptic curves as algebraic objects in Bp,∞.

Theorem 2.9. [17, Thm. 42.1.9] Let E be a supersingular elliptic curve defined over Fp.
Then the endomorphism ring End(E) is isomorphic to a maximal order in Bp,∞.

Let O ⊂ Bp,∞ be a maximal order isomorphic to the endomorphism ring End(E) of
a supersingular elliptic curve E defined over Fq. We will implicitly use the isomorphism
End(E) → O in what follows. There is an anti-equivalence between the category of
supersingular elliptic curves over Fq and the category of invertible left O-modules. This
anti-equivalence is given explicitly via the contravariant functor Hom(_, E), see [17,
Thm. 42.3.2]. This equivalence establishes a dictionary between the geometric world of
supersingular elliptic curves and the algebraic world of quaternion orders.

On the one hand, let J be a left End(E)-ideal. It defines a subgroup scheme E[J ] :=
∩α∈J kerα in E, which is the kernel of an isogeny φJ : E → E/E[J ], see [17, 42.2.1].
If φJ is separable, then E[J ] = {P ∈ E(Fq) | ∀α ∈ I, α(P ) = 0}. On the other hand,
let φ : E → E′ be an isogeny. Then Iφ := Hom(E′, E)φ is a left End(E)-ideal which
connects the endomorphism rings of E and E′ ≃ E/ ker(φ), regarded as maximal orders
in Bp,∞ up to conjugation. Moreover, for a left-ideal J ⊂ O and ψ : E → E′, we have
that J = IφJ and ψ ∼= φIψ . In particular we have a bijection between isomorphism
classes (i.e. isogenies up to post-composition by isomorphisms) of isogenies from E, and
left-ideals I in O.

In Table 1 — which is adapted from [20, Table 2.1] — we summarize the main
dictionary in the Deuring correspondence.

2.2. Efficient representations of isogenies
In order to implement the constructions of this work, we have to define what is a good

representation of an isogeny. We will use the notion of efficient representation designed
in [21, 22].
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Supersingular j-invariants over Fp2 Isomorphism class of maximal order in Bp,∞
j(E) up to Galois conjugacy O ∼= End(E)

Isomorphism class of φ : E → E′ Iφ integral left O-ideal
α ∈ End(E) principal ideal of O generated by the image of α

deg(φ) Nrd(Iφ)

φ̂ Iφ
Composition ψ2 ◦ ψ1 : E1 → E2 → E3 Iψ2◦ψ1

= Iψ1
Iψ2

Table 1: Summary of the Deuring correspondence.

A representation of an isogeny φ : E → E′ between elliptic curves defined over Fq, is a
set of data that contains the domain, the codomain, the degree deg(φ), and an algorithm
to evaluate φ on any point P ∈ E(Fq′) for any finite extension Fq′/Fq. Notice that a
bound on the degree (instead of the actual degree) would be sufficient since the degree can
then be recovered via the CRT by using the Weil pairing in small torsion subgroups [22,
Lem. 6.2]. We say that a representation is efficient if this data enable us to compute the
image of a point P ∈ E(Fq′) in time polynomial in both log(deg(φ)) and log(q′). We say
that it is compact if the space needed to store the data is polynomial in log(deg(φ)) and
log(q′).

The representation we will use is the ideal representation which relies on the Deuring
correspondence.

2.2.1. Ideal representation.
The core idea of the ideal representation is to represent an isogeny φ : E → E′ via the

ideal Iφ ⊂ End(E) of all endomorphisms whose kernel contains kerφ, seen as an ideal in a
maximal order of Bp,∞ isomorphic to End(E). In order to use this representation, we first
need to fix an embedding End(E) ↪→ Bp,∞. Although this only encodes the isomorphism
class of φ, knowing the codomain E′ enables us to determine φ up to post-composition
by automorphisms. Consequently, in order to have a full representation of φ, we need a
bit more data to discriminate these automorphisms. We can disregard this subtlety in
the present work: the order of Aut(E′) is at most 24, so we can use exhaustive search
on the automorphism group when needed without harming the asymptotic complexity.
However, for efficient implementation and optimization, it might be useful to add to
the data structure representing the isogenies some information to remove the ambiguity,
for instance the action of the isogenies on some small torsion subgroup. Note that if
j(E′) ̸= 0, 1728 then the only automorphisms of E′ are ±1 [23, Appendix A, Prop. 1.2.(c)].

Theorem 2.10. Given an efficient representation of a Z-basis of End(E) and its image
via an embedding End(E) ↪→ Bp,∞, then a Z-basis of the ideal Iφ provides a compact
representation of φ. Assuming GRH, this representation is efficient.

For more details, see [22, Sec. 4.2 and C.1]. In this paper, we will work with 2 × 2
matrices whose entries are isogenies, which can conveniently be encoded via efficient
representations.

Proposition 2.11. Let E1, E2, E
′
1, E

′
2, E

′′
1 , E

′′
2 be elliptic curves defined over Fq. Let M =

(φij)i,j∈{1,2} (resp. N = (ψij)i,j∈{1,2}) be a 2×2 matrix of isogenies, where φij : Ej → E′
i
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(resp. ψij : E′
j → E′′

i ). Then M (resp. N) represents the isogeny E1 × E2 → E′
1 × E′

2

(resp. E′
1 × E′

2 → E′′
1 × E′′

2 ) defined as ϕM (P,Q) = (φ11(P ) + φ12(Q), φ21(P ) + φ22(Q))
(resp. ϕN (P,Q) = (ψ11(P ) + ψ12(Q), ψ21(P ) + ψ22(Q))). Moreover, the matrix product
N ·M = (

∑
k∈{1,2}Nik ◦Mkj)i,j∈{1,2} represents an isogeny E1 × E2 → E′′

1 × E′′
2 and

efficient representations of the entries of N ·M can be computed in polynomial-time from
efficient representations of the entries of M and N .

Proof. The only thing that we need to prove is that we can compute efficient repre-
sentations of compositions and sums of isogenies encoded with efficient representations.
Algorithms for doing so are described in [22, Sec. 6.1].

2.2.2. Knowing the endomorphism ring of a curve.
Throughout this paper, we often say that the endomorphism ring of a supersingular

elliptic curve E is “known” or “given”. By this, we mean that efficient representations
of a Z-basis b1, . . . , b4 of End(E) is given, and that we also have access to elements
β1, . . . , β4 ∈ Bp,∞ such that the Z-module O generated by β1, . . . , β4 in Bp,∞ is a
maximal order and the map End(E) → O sending bi to βi is a ring isomorphism.

2.3. Superspecial Abelian varieties
The key theoretical result we rely on is the following existential statement.

Theorem 2.12. (Deligne/Ogus/Shioda theorem) [8, Thm. 3.5] Let k be an algebraically
closed field of characteristic p > 0. Let E1, . . . , Eg and E′

1, . . . , E
′
g be supersingular elliptic

curves, where g ≥ 2. Then there exists an isomorphism:

E1 × · · · × Eg ∼= E′
1 × · · · × E′

g.

In other words, Theorem 2.12 states that there is only one superspecial abelian variety
of dimension g ≥ 2, up to isomorphisms. We emphasize that we do not take into account
the polarizations of the abelian varieties.

Definition 2.13. An abelian variety A is called superspecial when it is isomorphic to a
product of supersingular elliptic curve.

When p ≡ 3 mod 4, there is a convenient supersingular elliptic curve defined over Fp
by the equation y2 = x3 + x. We denote this special curve by E0 throughout this paper.
A useful feature of this curve is that End(E0) contains a subring isomorphic to Z[i]. A
direct consequence of Deligne/Ogus/Shioda theorem is that any superspecial variety of
dimension g defined over Fp is Fp-isomorphic to Eg0 .

Remark 2.14. Theorem 2.12 is false for g = 1, since for instance the curve defined
by E : y2 = x3 + 142x + 23 is isogenous to E0 over F3072 , but not isomorphic to E0.
However, E2

0
∼= E2.

If E1, E2, E′
1, E′

2 are supersingular elliptic curves defined over Fp2 , Theorem 2.12
implies that E1 × E2 and E′

1 × E′
2 are Fp-isomorphic. In fact, when E1, E2, E

′
1, E

′
2 are

maximal, this isomorphism is defined over Fp2 , see [19, Lem. 5.2].
In this work, we explore the problem of computing explicit isomorphisms between

products of supersingular elliptic curves. Moreover, as explained in Remark 2.2, we can
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choose maximal models for the supersingular elliptic curves we work with. The goal of
this article is thus to find an Fp2-isomorphism between the products E1 × · · · ×Eg and
E′

1 × · · · × E′
g, where the curves are maximal over Fp2 .

Remark 2.15. If the supersingular input curves are not maximal, we can start by
computing Fp-isomorphic maximal curves. This can be done efficiently and it does not
have any impact on our complexity bounds, see [18, Lem. 4].

3. Main Results

Our main algorithmic result is:

Theorem 3.1. Let E1, . . . , Eg and E′
1, . . . , E

′
g be maximal elliptic curves over Fp2 of

known endomorphism rings, where g ≥ 2. Assuming GRH, we give a probabilistic Las
Vegas algorithm which computes in linear time in g and polynomial time in log(p) an
Fp2-isomorphism of unpolarized abelian varieties:

E1 × · · · × Eg ∼= E′
1 × · · · × E′

g.

In fact, the key point is to prove the following theorem.

Theorem 3.2. Let E1, E2 and E′
1, E

′
2 be maximal elliptic curves over Fp2 of known

endomorphism rings. Assuming GRH, we give a probabilistic Las Vegas algorithm which
computes in polynomial time in log(p) an Fp2-isomorphism of unpolarized abelian surfaces:

E1 × E2
∼= E′

1 × E′
2.

The rest of the paper will be dedicated to the proof of Theorem 3.2. Let us explain
how to deduce Theorem 3.1 from Theorem 3.2.

Proof that Theorem 3.2 implies Theorem 3.1. We provide a proof by induction on g, as-
suming that the result is true for g = 2 by Theorem 3.2.

By Deligne-Ogus-Shioda theorem, an isomorphism E1 × · · · ×Eg → E′
1 × · · · ×E′

g can
be factored as a composition

E1 × · · · × Eg → E′
1 × · · · × E′

g−1 × Eg → E′
1 × · · · × E′

g.

This boils down to computing one (g−1)-dimensional isomorphism E1×· · ·×Eg−1 →
E′

1 × · · · × E′
g−1 and one 2-dimensional isomorphism E′

g−1 × Eg → E′
g−1 × E′

g. By
induction, this proves that computing a g-dimensional isomorphism can be reduced to
computing g − 1 isomorphisms in dimension 2.

4. Tools

In this section, we develop tools which will be useful for computing isomorphisms in
Section 5. In Section 4.1, we study algorithms for dividing endomorphisms by isogenies.
Section 4.2 proves a slight improvement of Kani’s formula for the degree of an isogeny
between products of elliptic curves; this is useful for proving that an isogeny is an
isomorphism. In Section 4.3, we show how to “transpose” isogenies between products of
elliptic curves: we provide an easy way to construct an isogeny E′

1 ×E′
2 → E1 ×E2 from

an isogeny E1 × E2 → E′
1 × E′

2, while preserving the degree. Finally, in Section 4.4, we
design algorithms for finding the generator of the localization of a left-ideal in a maximal
order of Bp,∞.
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4.1. Division of principal ideals in quaternion orders
The first tool that we need is a method for dividing efficiently an endomorphism by

an isogeny. More precisely, given an endomorphism ϕ ∈ End(E1), which factors by an
isogeny f : E1 → E2, we wish to compute an isogeny g : E2 → E1 (which is uniquely
defined up to composition by automorphisms) such that ϕ = g ◦ f . A general method
when isogenies are given via efficient representations is described in [22, Cor. 6.8]. A
detailed complexity analysis is provided in [24, Sec. 4] when g is a scalar multiplication.
We propose here an explicit complete algebraic solution to the quaternionic version of
the problem, i.e. when all isogenies are represented as ideals in Bp,∞. This factorization
problem is formalized in quaternion algebras as follows:

Problem 4.1 (Principal ideal division). Let O1,O2,⊂Bp,∞ be two maximal orders. Let
µ ∈ O1, I ∈ Conn(O1,O2), and J be a left O2-ideal such that O1µ = I · J . Given µ and
Z-bases of O1,O2, I, find a Z-basis of J .

Remark 4.2. If Nrd(I) and Nrd(J) are coprime, then [6, Lem. 6] allows us to recover I
more easily. However here we need to compute J , and the assumption that Nrd(I) and
Nrd(J) are coprime is too strong for our setting: in theory (and in experiments), this
hypothesis is not always satisfied. Therefore, we design a general algorithm which does
not require any such assumption on the input.

First we remark that Problem 4.1 is unambiguous.

Lemma 4.3. The solution of Problem 4.1 is unique.

Proof. Let J1 and J2 be two solutions of Problem 4.1. Then we have I · J1 = I · J2. By
multiplying on the left by I, we obtain that Nrd(I) · OR(I) · J1 = Nrd(I) · OR(I) · J2,
see [17, Sec. 16.6]. Moreover OR(I) = OL(J1) = OL(J2) = O2, and J1, J2 are left-ideals
in O2. Therefore, Nrd(I) · J1 = Nrd(I) · J2, which implies J1 = J2.

We first address the special case where µ ∈ Z.

Problem 4.4 (Integer ideal division). Let O1,O2,⊂Bp,∞ be two maximal orders. Let
d ∈ Z, I ∈ Conn(O1,O2), and J a left O2-ideal be such that O1d = I · J . Given d and
Z-bases of O1,O2, I, find a Z-basis of J .

Remark 4.5. The same argument as in the proof of Lemma 4.3 shows the unicity of the
solution of Problem 4.4. Moreover we can swap the roles of I and J via conjugation since
I · J = dO1 = J · I = dO1. It is easy to check that Problems 4.4 and 4.1 are equivalent:
the solution J of Problem 4.1 with input O1,O2, µ, I equals the solution of Problem 4.1
with input µ−1O1µ, O2, Nrd(µ), µI.

Now we propose an efficient method to solve Problem 4.4.

Proposition 4.6. With the same notation as in Problem 4.4, J = {s ∈ O1 ∩ O2 : Is ⊂
O1d}.

Proof. Set S := {s ∈ O1 ∩O2 : Is ⊂ O1d}. We must show that S is a left-ideal in O2 and
that IS = O1d.

First we show that S is a left-ideal of O2. Let s ∈ S, x ∈ O2. First, we notice that I is
a right-ideal in O2, thus Ix ⊂ I. Since s ∈ S, we get Ixs ⊂ Is ⊂ O1d, hence xs ∈ S.

Finally, we prove that IS = O1d. Notice that IS ⊂ O1d by construction. In order to
prove the other inclusion, we notice that J is included in S; hence, O1d = IJ ⊂ IS.

9



Proposition 4.6 reduces Problem 4.4 to Z-linear algebra. Let (e0, . . . , e3), (u0, . . . , u3),
(v0, . . . , v3) be Z-bases of O1, I,O1 ∩ O2 respectively. We need to solve the following
system over the integers of 4 equations in 20 unknowns {xi}0≤i≤3, {yij}0≤i,j≤3:

(Ej) : uj
∑

0≤i≤3

xivi = d
∑

0≤i≤3

yijei.

Let b(1), . . . , b(16) ∈ Z20 be a Z-basis of the solutions of this system. Then, writ-
ing b(i) = (x

(i)
0 , . . . , x

(i)
3 , y

(i)
00 , . . . , y

(i)
33 ), we compute a basis a(1), . . . , a(3) of the lattice

generated by {(x(i)0 , . . . , x
(i)
3 )}1≤i≤16. Finally, writing a(j) = (a

(j)
0 , . . . , a

(j)
3 ), the set

{
∑

0≤i≤3 a
(j)
i vi}0≤j≤3 is a Z-basis for J .

Proposition 4.7. With the same notation as in Problem 4.4, let γ be the maximum
of the numerators and denominators of the coefficients of the elements in the bases of
O1,O2, I, when written in the canonical basis 1, i, j, ij of Bp,∞. Then a Z-basis of J
(written in the basis 1, i, j, ij) can be computed in quasi-linear complexity Õ(log γ).

Proof. A Z-basis for J is obtained via linear algebra over the integers from the input
Z-bases. It can be computed via a sequence of Hermite Normal Forms of matrices with
dimensions bounded above by a constant. Our proposition follows from the fact that the
Hermite Normal Form of a nonzero matrix (Aij) with integer entries can be computed
with complexity quasi-linear in maxij(log|Aij |), see [25, Chap. 6].

Remark 4.8. The reduction in Remark 4.5 shows that Problem 4.1 can also be solved in
quasi-linear complexity.

4.2. An improvement of Kani’s formula for the degree of isogenies between products of
elliptic curves

The following statement is a slight improvement of Kani’s formula [26, Cor. 63] for the
degree of an isogeny between products of elliptic curves. This formula involves absolute
values, and our improvement shows that they are in fact unnecessary. In the following
statement, we use the convention that the zero morphism, that is not an isogeny, has
degree 0.

Proposition 4.9. Let E1, E2, E
′
1, E

′
2 be elliptic curves defined over Fp. For i, j ∈ {1, 2},

let φij ∈ Hom(Ej , E
′
i) be a morphism of degree dij ∈ Z≥0. Let ϕ ∈ Hom(E1×E2, E

′
1×E′

2)
be the morphism defined as ϕ(x1, x2) = (φ11(x1) + φ12(x2), φ21(x1) + φ22(x2)). Then

deg(ϕ) = (d11 + d21)(d12 + d22)− deg(φ̂12φ11 + φ̂22φ21).

Proof. Set µ := φ̂12φ11 and ν := φ̂22φ21. [26, Cor. 64] states that deg(ϕ) = |(d11 +
d21)(d12 + d22) − deg(µ + ν)|. Therefore, the only thing that we need to prove is that
deg(µ+ ν) ≤ (d11 + d21)(d12 + d22), so that the absolute value is not required.

We start with the following computation:

0 ≤ deg(d21µ− d11ν)
= (d21µ− d11ν)(d21µ̂− d11ν̂)
= d221 deg(µ) + d211 deg(ν)− d11d21(νµ̂+ µν̂).
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Next, we notice that deg(µ+ν)−deg(µ)−deg(ν) = (µ+ν)(µ̂+ ν̂)−deg(µ)−deg(ν) =
νµ̂+ µν̂. Replacing νµ̂+ µν̂ in the previous inequality, we obtain

d221 deg(µ) + d211 deg(ν) ≥ d11d21(deg(µ+ ν)− deg(µ)− deg(ν)).

Finally, we replace deg(µ) and deg(ν) by their respective values d12d11 and d22d21 to
obtain

d221d12d11 + d211d22d21 ≥ d11d21(deg(µ+ ν)− d12d11 − d22d21).

By dividing this inequality by d11d21 and by rearranging terms, we obtain the desired
inequality deg(µ+ ν) ≤ (d11 + d21)(d12 + d22).

We shall use Proposition 4.9 in order to compute degrees of isogenies between products
of elliptic curves. An important special case is that it can be used to check if such an isogeny
has degree 1, i.e. if it is an isomorphism. More precisely, a 2-dimensional isogeny between

products of elliptic curves can be given as a matrix of isogenies (φij) =

(
φ11 φ12

φ21 φ22

)
.

Such an isogeny is an isomorphism if and only if

(d11 + d21)(d12 + d22)− deg(φ̂12φ11 + φ̂22φ21) = 1.

We can reformulate this statement to obtain the following necessary and sufficient
condition:

Proposition 4.10. Let E1, E2, E
′
1, E

′
2 be four elliptic curves defined over Fp, and φij :

Ej → E′
i, i, j ∈ {1, 2} be four isogenies. Set µ = φ̂12φ11, ν = φ̂22φ21, and write

dij = deg(φij). Then deg(d21µ − d11ν) = d11d21 if and only if ϕ = (φij)i,j∈{1,2} ∈
Hom(E1 × E2, E

′
1 × E′

2) is an isomorphism.

Proof. By Proposition 4.9, we have deg(µ+ν) = (d11+d21)(d12+d22)−deg(ϕ). Therefore,
we obtain the equality

deg(µ+ ν)− deg(µ)− deg(ν) =
d11
d21

deg(ν) +
d21
d11

deg(µ)− deg(ϕ). (4.1)

By multiplying (4.1) by d11d21, we obtain

d11d21 deg(ϕ)
= d11(d11 + d21) deg(ν) + d21(d11 + d21) deg(µ)− d11d21 deg(µ+ ν)
= d211 deg(ν) + d221 deg(µ)− d11d21 Trd(µν̂)
= deg(d21µ− d11ν),

hence deg(ϕ) = 1 if and only if deg(d21µ− d11ν) = d11d21.

4.3. Transposing isogenies
In this section, we show how an isogeny ϕ : E1 ×E2 → E′

1 ×E′
2 can be transformed

into a transposed isogeny ϕ̃ : E′
1 × E′

2 → E1 × E2 of the same degree. Since we have not
fixed any polarization on the product surface, this transposed isogeny is not a dual of
ϕ in the usual sense. In particular, the composed endomorphism ϕ̃ · ϕ need not be the
multiplication by an integer. Still, the degree is preserved, i.e. deg(ϕ) = deg(ϕ̃).

11



Corollary 4.11. With the same notation as in Proposition 4.9, let ϕ̃ ∈ Hom(E′
1×E′

2, E1×
E2) denote the morphism defined as ϕ̃(x′1, x′2) = (φ̂11(x

′
1) + φ̂21(x

′
2), φ̂12(x

′
1) + φ̂22(x

′
2)),

i.e. in matrix notation
ϕ̃ =

[
φ̂11 φ̂21

φ̂12 φ̂22

]
.

Then deg(ϕ) = deg(ϕ̃).

Proof. Set dij = deg(φij) and ψ := φ21φ̂11 + φ22φ̂12, then

ϕϕ̃ =

(
(d11 + d12) ψ̂

ψ (d21 + d22)

)
.

Applying Proposition 4.9 to the composed endomorphism ϕϕ̃, we get

deg(ϕ) deg(ϕ̃) = deg(ϕϕ̃) = ((d11 + d12)(d21 + d22)− deg(ψ))
2
= deg(ϕ̃)2.

Therefore, deg(ϕ) = deg(ϕ̃).

4.4. Localization
In this section, we investigate algorithmic aspects of the ring M2(Zℓ) and of its left-

ideals. This will be useful during the study of localizations of quaternion algebras: when
O is a maximal order in a quaternion algebra over Q not ramified at ℓ, then O ⊗ Zℓ is
isomorphic to M2(Zℓ). The first thing to notice is that M2(Zℓ) is left-principal, and its
left-ideals correspond to matrices in Hermite Normal Form.

Proposition 4.12. [27, Chap. II, Thm. 2.3] The left-ideals in M2(Zℓ) are the (all
distinct) ideals of the form

M2(Zℓ) ·
(
ℓn r
0 ℓm

)
,

where n,m ∈ Z≥0 are positive integers, and r ∈ {0, . . . , ℓm−1}.

As M2(Zℓ) is left-principal, we can define the right-gcd of matrices A1, A2 ∈ M2(Zℓ)
as the Hermite Normal Form of a generator of the ideal M2(Zℓ) ·A1 +M2(Zℓ) ·A2. We
now consider the problem of computing this right-gcd, assuming that A1 and A2 are given
in Hermite Normal Form.

Proposition 4.13. Let A1, A2 ∈ M2(Zℓ) be two matrices in Hermite Normal Form:

Ai =

(
ℓni ri
0 ℓmi

)
, i ∈ {1, 2}.

We assume without loss of generality that n2 ≥ n1. Set m = min(m1,m2, valℓ(r2 −
ℓn2−n1r1)) (with the convention that valℓ(0) = ∞). Then the right-gcd of A1 and A2 is

rgcd(A1, A2) =

(
ℓn1 (r1 mod ℓm)
0 ℓm

)
.
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Proof. We have to prove that

M2(Zℓ) ·A1 +M2(Zℓ) ·A2 = M2(Zℓ) ·
(
ℓn1 (r1 mod ℓm)
0 ℓm

)
.

We notice that the left-ideal generated by a matrix correspond to the Zℓ-module generated
by its rows.

First we prove the inclusion

M2(Zℓ) ·A1 +M2(Zℓ) ·A2 ⊃ M2(Zℓ) ·
(
ℓn1 (r1 mod ℓm)
0 ℓm

)
.

The vector (0, ℓm) clearly belongs to the Zℓ-module generated by the rows of A1 and A2

since (0, ℓm1), (0, ℓm2) and (0, r2 − ℓn2−n1r1) belongs to it. Hence, (ℓn1 , r1 mod ℓm) also
lies in this Zℓ-module.

Let us now prove the other inclusion:

M2(Zℓ) ·A1 +M2(Zℓ) ·A2 ⊂ M2(Zℓ) ·
(
ℓn1 (r1 mod ℓm)
0 ℓm

)
.

The only non-trivial thing that we need to prove is that (ℓn2 , r2) belongs to the Zℓ-module
generated by (ℓn1 , r1) and (0, ℓm). We notice that valℓ(r2 − ℓn2−n1r1) ≥ m, hence there
exists x ∈ Zℓ such that r2 − ℓn2−n1r1 = x ℓm. Therefore (ℓn2 , r2) = ℓn2−n1 · (ℓn1 , r1) + x ·
(0, ℓm), which concludes the proof.

The main application of Proposition 4.13 shall appear in the following setting. Let
O ⊂ Bp,∞ be a maximal order, and I ⊂ O be a left-ideal given by a Z-basis b1, b2, b3, b4 ∈
O. Assume that we can compute an isomorphism ϕ : O ⊗Zℓ → M2(Zℓ). Then a generator
of I ⊗ Zℓ is ϕ−1(rgcd(ϕ(b1), ϕ(b2), ϕ(b3), ϕ(b4))), so we can compute this generator by
using Proposition 4.13.

5. Computing 2-dimensional isomorphisms

In this section, which contains our main algorithms, we start by noticing that the
problem of finding automorphisms of surfaces is pretty easy to solve. Then, in the general
case, we give a criterion for an isomorphism to exist, if we fixed two isogenies of its matrix
representation. This criterion can be made effective, and it will then be used to compute
(in polynomial time) isomorphisms between product of curves.

5.1. The case of automorphisms
Proposition 5.1. Let E1, E2 be two elliptic curves defined over Fp, φ : E1 → E2 be
an isogeny, and a, b, c, d ∈ Z be integers such that ad − bcdeg(φ) = ±1. Then the

endomorphism F =

(
a bφ̂
cφ d

)
∈ End(E1 × E2) is an automorphism.

Proof. By Proposition 4.9,

deg(F ) = (a2 + c2 deg(φ))(b2 deg(φ) + d2)− deg(bφa+ dcφ)
= (a2 + c2 deg(φ))(b2 deg(φ) + d2)− (ba+ dc)2 deg(φ)
= a2d2 + c2b2 deg(φ)2 − 2abcddeg(φ)
= (ad− bcdeg(φ))2

= 1.
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Remark 5.2. Direct computations show that the inverse of the automorphism F =(
a bφ̂
cφ d

)
is F−1 =

(
d −bφ̂

−cφ a

)
.

Proposition 5.1 implies that if we are able to compute an isogeny φ : E1 → E2, then

the 2-dimensional morphism
(
1 + deg(φ) φ̂

φ 1

)
is an isomorphism. Thus knowing the

endomorphism rings of E1 and E2 is enough to compute automorphisms of the surface
E1 × E2, thanks to [9, Algo. 5].

5.2. Completion of matrices of isogenies
In this section, we investigate the following question: given two isogenies φ11, φ21, can

we compute isogenies φ12, φ22 such that the matrix (φij) is an isomorphism. First, we
give a necessary and sufficient criterion for the existence of such isogenies φ12, φ22. When
this criterion is satisfied, we provide an algorithm to compute them. First we state a
useful lemma.

Lemma 5.3. Let F,E,E1, E2 be elliptic curves over Fp, ψ : F → E be a (non-necessarily
separable) isogeny, and φ1 : E → E1, φ2 : E → E2 be separable isogenies of coprime
degrees. Write K := ker(φ1)⊕ ker(φ2). Then

deg(φ2)Hom(E1, F )φ1ψ + deg(φ1)Hom(E2, F )φ2ψ = Hom(E/K,F )πKψ.

where πK : E → E/K is the canonical separable isogeny with kernel K.

Proof. Set d1 := deg(φ1), d2 := deg(φ2), I1 := d2 Hom(E1, F )φ1ψ, I2 := d1 Hom(E2, F )φ2ψ
and IK := Hom(E/K,F )πKψ. Direct computations show that

ker(d2φ1ψ) ∩ ker(d1φ2ψ) = ψ−1(ker(d2φ1)) ∩ ψ−1(ker(d1φ2))
= ψ−1 (ker(d2φ1) ∩ ker(d2φ1)) = ψ−1 ((kerφ1 + E[d2]) ∩ (kerφ2 + E[d1]))
= ψ−1(kerφ1 ⊕ kerφ2) = ψ−1(ker(πK))
= ker(πKψ).

Noticing that I1 + I2 = Iker(d2φ1ψ)∩ker(d1φ2ψ) and Hom(E/K,F )πKψ = Iker(πKψ)
concludes the proof.

We are now ready to state a key result of the paper.

Theorem 5.4. Let E1, E2, E
′
1, E

′
2 be four isogenous elliptic curves defined over Fp, and

φ11 : E1 → E′
1, φ21 : E1 → E′

2 be separable isogenies with coprime degrees. There exist
isogenies φ12 : E2 → E′

1, φ22 : E2 → E′
2 such that ϕ = (φij)i,j∈{1,2} ∈ Hom(E1×E2, E

′
1×

E′
2) is an isomorphism if and only if E1/ (ker(φ11)⊕ ker(φ21)) and E2 are isomorphic.

Proof. Let ψ : E1 → E2 be an isogeny. Let K denote the subgroup ker(φ11) ⊕
ker(φ21) of E1. Let πK : E1 → E1/K be the associated canonical isogeny. Set
J11 := Hom(E′

1, E2)φ11ψ̂, J21 := Hom(E′
2, E2)φ21ψ̂, and JK := Hom(E1/K,E2)πK ψ̂,

which are left-ideals in End(E2).
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By Proposition 4.10, there exist isogenies φ12 : E2 → E′
1, φ22 : E2 → E′

2 such
that ϕ = (φij)i,j∈{1,2} ∈ Hom(E1 × E2, E

′
1 × E′

2) is an isomorphism if and only if there
exist isogenies µ, ν : E1 → E2 which factors respectively by φ11 and φ21 and such that
deg(d21µ − d11ν) = d11d21, where d11 = deg(φ11) and d21 = deg(φ21). Equivalently,
deg((d21µ− d11ν)ψ̂) = d11d21 deg(ψ), with µψ̂ ∈ J11, νψ̂ ∈ J21. Since Lemma 5.3 implies
that JK = d21J11 + d11J21, it is equivalent to the existence of a σ ∈ JK such that
deg(σ) = d11d21 deg(ψ). Remark that by definition, such a σ ∈ JK would factor as
σ = τπK ψ̂ for some τ ∈ Hom(E1/K,E2). Thus the equation deg(σ) = d11d21 deg(ψ) is
equivalent to deg(τ) deg(πK) deg(ψ) = d11d21 deg(ψ) by multiplicativity of the degree,
which reduces to deg(τ) = 1, since deg(πK) = d11d21.

We conclude that there exist isogenies φ12 : E2 → E′
1, φ22 : E2 → E′

2 such that
ϕ = (φij)i,j∈{1,2} ∈ Hom(E1 × E2, E

′
1 × E′

2) is an isomorphism if and only if there exists
τ ∈ Hom(E1/K,E2) with deg(τ) = 1, i.e. if and only if E1/K and E2 are isomorphic.

Theorem 5.4 is actually effective, provided that we know the endomorphism rings of
the curves. Algorithm 1 computes such an isomorphism.

Proposition 5.5. Assuming GRH, Algorithm 1 is correct and it runs in time polynomial
in log(p) and in the size of the input.

Proof. First we prove that Algorithm 1 is correct. In fact, Algorithm 1 follows the proof
of Theorem 5.4. An isogeny associated to the ideal Iψ plays the role of ψ in the proof
of Theorem 5.4. The ideals I11, I21 correspond to the isogenies φ11, φ21 in Theorem 5.4,
and the ideals J11 and J21 play the same role as in the proof of Theorem 5.4. We now
prove that the endomorphism ξ computed in Step 5 satisfies the requirements of σ in the
proof of Theorem 5.4, namely that Nrd(ξ) = d11d21 Nrd(Iψ). By the same argument as
in the proof of Theorem 5.4, JK is a principal left-ideal (because E1/K ≃ E2) of reduced
norm d11d21 Nrd(Iψ), so it contains an element with this reduced norm; this proves that
Nrd(ξ) = d11d21 Nrd(Iψ). Theorem 5.4 also asserts that at least one of the matrices
computed at Step 8 is an isomorphism.

Let us now prove that the complexity is polynomial with respect to the input size. Most
steps reduce to linear algebra over Z; this boils down to computing Hermite Normal Forms,
which can be done in time polynomial in the input size. Step 5 involves computing the
shortest vector in a lattice of dimension 4, with respect to the positive definite quadratic
form (x1, x2, x3, x4) 7→ x21 + x22 + p(x23 + x24). This can be achieved in time polynomial
in the input size and in log(p), see [28, Thm. 4.2.1]. The combinatorial factor in Step 8
does not increase the complexity since the number of possible isogenies E → E′ that are
represented by the same left-ideal in End(E) equals the order of Aut(E). For most elliptic
curves, Aut(E) = {1,−1}, and in any case |Aut(E)| ≤ 24 [23, Appendix A, Prop. 1.2.(c)].
Assuming GRH, converting the ideal representation to an efficient representation can be
done in polynomial-time, see e.g. [22, Appendix C].

Experiments. Now we present the first part of our experimental results. Those are de-
scribed in the file ExperimentResults_part1.mgm available at https://gitlab.inria.fr/
superspecial-surfaces-isomorphisms/experiments. In this proof-of-concept imple-
mentation we illustrate Algorithm 1, i.e we compute an isomorphism E0 ×E → E′

1 ×E′
2,
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Algorithm 1: IsomorphismCompletion
Input: Four maximal curves E1, E

′
1, E2, E

′
2 over Fp2 ; Z-bases of maximal orders

O1,O2 ⊂ Bp,∞ and isomorphisms O1
∼= End(E1), O2

∼= End(E2); Z-bases
of left-ideals I11, I21 ⊂ O1 of coprime degrees which correspond to isogenies
φ11 : E1 → E′

1, φ21 : E1 → E′
2 such that E2

∼= E1/ (ker(φ11)⊕ ker(φ21)).
Output: An efficient representation of a 2× 2 matrix of isogenies (φij)

representing an isomorphism E1 × E2 → E′
1 × E′

2 such that
Hom(E2, E1)φ11

∼= I11 and Hom(E′
2, E1)φ21

∼= I21.
1 Compute d ∈ Z such that dO1O2 ⊂ O1 ∩ O2 and set Iψ := dO1O2, which is a

connecting ideal between O1 and O2;
// see [29, Algo. 3.5]

2 Compute Z-bases of J11 := IψI11 and J21 := IψI21;
3 Set d11 := Nrd(I11) and d21 = Nrd(I21);
4 Compute a Z-basis of JK = d21J11 + d11J21;
5 Compute an element ξ in JK whose reduced norm is minimal;
// Lattice reduction in dimension 4

6 Using linear algebra over Z, compute ξ11 ∈ J11, ξ21 ∈ J21 such that
d21ξ11 − d11ξ21 = ξ;

7 Compute left-ideals I12 and I22 in the right-orders of I11 and I21 respectively,
such that IψI11I12 = O2ξ11 and IψI21I22 = O2ξ21;

// Prop. 4.7 and Remark 4.8
8 Compute efficient representations of all possible matrices (φij) such that

φij ∈ Hom(Ej , E
′
i) and Hom(E′

i, Ej)φij
∼= Iij as End(Ej) left-modules;

9 Using Proposition 4.9, find a matrix among them which is an isomorphism and
return it;
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given isogenies φ11 : E0 → E′
1 and φ21 : E0 → E′

1 of coprime degree. Those isogenies are
given by left O0-ideals, denoted I11 and I21 respectively.

First we let the user choose the following parameters: a lower bound for the prime
p, and the norm of the two ideals I11 and I21. Then we randomly compute such
ideals, that determine (the isomorphism class of) E according to Theorem 5.4. We
then recover the corresponding order O ≃ End(E) as the right order of the left O0-ideal
IK := d11I21+d21I11, by application of Lemma 5.3. We conclude by computing the ideals
I12 and I22, with a call to Algorithm 1. We can finally check that the ideals Iij represent
an isomorphism, thanks to the following lemma.

Lemma 5.6. Let E1, E2, E
′
1, E

′
2 be elliptic curves defined over Fp. For i, j ∈ {1, 2}, let

φij ∈ Hom(Ej , E
′
i) be a morphism of degree dij ∈ Z≥0. Denote Φ : E1 × E2 → E′

1 × E′
2

the 2-dimensional morphism given by the matrix (φij)ij. Let ψ : E2 → E1 be a nonzero
morphism. Then

deg

(
φ11 ◦ ψ φ12

φ21 ◦ ψ φ22

)
= deg(ψ) deg(Φ).

Proof. This is a direct consequence of Proposition 4.9.

Example 5.7. We report on experimental results obtained by running Magma version
V2.28-3 with seed 12345 on the file ExperimentResults_part1.mgm. In this example, p = 503
and ℓ11 = 3, m11 = 6 and ℓ21 = 5, m21 = 4. We denote by iq, jq, kq the usual generators of
Bp,∞. The input ideals are I11 = ⟨729, 729 iq, 603/2+652 iq+kq/2, 652+855 iq/2+jq/2⟩
of norm ℓm11

11 , and I21 = ⟨625, 625 iq, 759/2 + 527 iq + kq/2, 527 + 491 iq/2 + jq/2⟩ of
norm ℓm21

21 . Then IsomorphismCompletion returns

I12 =⟨3196396279123748125/2 − 2330172887481212383125 kq/2,

511423404659799700 − 127855851164949925 iq/1458 − 30046125023763232375 jq/486

− 289953417109640914163875 kq/729,

11442125762113937/2 − 9726906334344569 iq/243 − 2285822988570975740 jq/81

− 7553805339181120102415 kq/486,

386746255666051731/2 − 9746968804698626 iq/729 − 2290537669104179054 jq/243

− 211071083520127178104733 kq/1458⟩.
I22 =⟨57091554482520078 − 35682221551575048750 kq,

19030518160840026 − 38061036321680052 iq/625 − 27670373405861397804 jq/625

− 26018924070381861187746 kq/625,

30532858451621568 − 4151933667041628 iq/625 − 3018455775939278556 jq/625

− 13954278738413774634144 kq/625,

43446906184660068 − 31874160047168274 iq/625 − 23172514354291335198 jq/625

− 32535536331095026982652 kq/625⟩.

Then using Lemma 5.6, we check that the four ideals Iij represent an isomorphism.

5.3. Computing isomorphisms E2
0 → E′

1 × E0

In this section, we focus on a special 2-dimensional instance of Problem 1.1: we
assume that the endomorphism rings of all curves are known, and that we also know
subrings of End(E1) and End(E′

1) which are isomorphic to a low-discriminant imaginary
quadratic order. In this case, we provide a fast algorithm to compute the corresponding
isomorphism, described in Algorithm 3. In order to simplify the exposition, we assume
that E1 = E2 = E′

2. In fact, this assumption does not lose any generality, see Remark 5.17.
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Also, for the sake of simplicity, we assume throughout this section that the curve for
which we know a subring of endomorphisms isomorphic to a low-discriminant imaginary
quadratic order is the curve E0 defined over Fp2 (with p ≡ 3 mod 4) by the equation
y2 = x3 + x. Its endomorphism ring contains a subring isomorphic to Z[i]. However, all
the results presented in this section can be generalized without any major difficulty to
other curves. In particular, when p ≡ 1 mod 4, a curve with a low-discriminant can also
be explicitly computed, see [18, Sec. 3.1].

In summary, our objective in this section is to provide a fast algorithm for the following
problem:

Problem 5.8 (Low-discriminant Deligne-Ogus-Shioda problem). Given a maximal su-
persingular elliptic curve E′

1 defined over Fp2 and its endomorphism ring, compute an
Fp2-isomorphism E0 × E0 → E′

1 × E0.

The following statement gives sufficient conditions to use the strategy of Theorem 5.4.

Proposition 5.9. Let E, E′
1 be elliptic curves defined over Fp and let φ : E → E′

1

be a separable isogeny. Let α, ν ∈ End(E) be endomorphisms of coprime degrees such
that deg(α) = deg(φ) and αν ∈ Hom(E′

1, E)φ. Then ker(ν)⊕ ker(φ) is the kernel of the
endomorphism αν : E → E.

Proof. Since αν ∈ Hom(E′
1, E)φ, we have ker(φ) ⊂ ker(αν). Consequently, ker(φ) +

ker(ν) ⊂ ker(αν). The co-primality of the degrees of ν and φ implies that the intersection
of the kernels is trivial. Since α and ν are separable, so is αν and therefore |ker(αν)| =
deg(α) deg(ν) = deg(φ) deg(ν) = |ker(φ)⊕ ker(ν)|, which shows that the inclusion is in
fact an equality.

Proposition 5.9 tells us that if are able to compute φ, α and ν, then Algorithm 1 can
compute an isomorphism E × E → E′

1 × E. Our strategy will be to first fix φ, then to
compute the endomorphisms α and ν that satisfy the conditions of Proposition 5.9. As
explained above, we specialize to the case E = E0, and p ≡ 3 mod 4, to perform those
computations. The low-discriminant quadratic order will help us find the endomorphism
α ∈ End(E0) of prescribed degree deg(α) = deg(φ) by solving low-discriminant norm
equations with Cornacchia’s algorithm. Algorithm 2 provides a fast method for computing
such α, ν upon input of the ideal I corresponding to the isogeny φ.

We start with a few technical lemmas which state that computing α, ν in Proposition 5.9
is actually related to computing a generator of a localization of the ideal I associated to
φ at a prime ℓ.

Lemma 5.10. Let O ⊂ Bp,∞ be a maximal order, I ⊂ O be a left ideal, α ∈ O such
that Nrd(α) = Nrd(I), and ℓ ̸= p be a prime number. Then the following statements are
equivalent:

(a) There exists x ∈ O, such that αx ∈ I and Nrd(x) is not divisible by ℓ;

(b) There exists an invertible y ∈ O ⊗ Zℓ such that αy ∈ I ⊗ Zℓ.

Proof. First, we notice that all elements x ∈ O with reduced norm not divisible by ℓ
are invertible in O ⊗ Zℓ; Indeed, x · (x/Nrd(x)) = 1, hence the inverse of x in O ⊗ Zℓ is
x/Nrd(x). This proves the implication (a)⇒(b).
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We now prove (b)⇒(a). Let y be as in (b). Let b1, . . . , b4 be generators of I seen as a
free rank-4 Z-module. Then αy = z1 · b1 + · · ·+ z4 · b4, with z1, . . . , z4 ∈ Zℓ. Next, pick
integers z′1, . . . , z′4 ∈ Z such that z′i ≡ zi mod ℓe, where e is the ℓ-valuation of Nrd(α).
Then set y′ = α−1(z′1 · b1 + · · ·+ z′4 · b4) ∈ Bp,∞. We prove now that x := Nrd(α)y′/ℓe

satisfies the desired properties. First, we show that x = ℓ−eα(z′1 · b1+ · · ·+ z′4 · b4) belongs
to O. Notice that x clearly belongs to localized orders O ⊗ Zℓ′ for primes ℓ′ ̸= ℓ, so we
only have to prove that x ∈ O ⊗ Zℓ. To do so, we use the fact that zi ≡ z′i mod ℓe, hence
there exists z′′1 , . . . , z′′4 ∈ Zℓ such that zi = z′i + ℓez′′i , which gives

x = ℓ−eα(z1 · b1 + · · ·+ z4 · b4)− α(z′′1 · b1 + · · ·+ z′′4 · b4)
= yNrd(α)/ℓe − α(z′′1 · b1 + · · ·+ z′′4 · b4),

which shows that x ∈ O ⊗ Zℓ. Then we notice that Nrd(x) = (Nrd(α)/ℓe)2 Nrd(y′) is not
divisible by ℓ since Nrd(y′) ≡ Nrd(y) ̸≡ 0 mod ℓ. Finally, since Nrd(α) = Nrd(I) ∈ I, we
notice that αx = Nrd(α)(z′1 · b1+ · · ·+ z′4 · b4) belongs to I, which concludes the proof.

Definition-Proposition 5.11. Let M ∈ M2(Zℓ) be a matrix. We say that the ℓ-type
of M is the pair of valuations (in Z2

≥0) of the invariant factors of M , sorted in non-
decreasing order. More explicitly, using the Smith Normal Form, this means that M has
ℓ-type (d1, d2) if d1 ≤ d2 and if there exist invertible matrices S, T ∈ GL2(Zℓ) such that

S ·M · T =

(
ℓd1 0
0 ℓd2

)
.

Since M2(Zℓ) is left-principal, we define the ℓ-type of a left-ideal I ⊂ M2(Zℓ) as the
ℓ-type of a generator.

Let I ⊂ O be a left-ideal of a maximal order in Bp,∞, and ℓ ̸= p be a prime number.
By [27, Cor. I.2.4], O ⊗ Zℓ is isomorphic to M2(Zℓ), so we define the ℓ-type of I as the
ℓ-type of I ⊗ Zℓ regarded as an ideal in M2(Zℓ); this definition does not depend on the
choice of the isomorphism O ⊗ Zℓ ∼= M2(Zℓ). If α ∈ O is an element in a maximal order,
its ℓ-type is defined as the ℓ-type of the left-ideal Oα.

Proof. The only thing that we need to prove is that the definition of the ℓ-type of a left
ideal I ⊂ O ⊗ Zℓ ∼= M2(Zℓ) does not depend on the choice of the isomorphism. In fact,
this is a consequence of the fact that automorphisms of M2(Zℓ) preserve the ℓ-type of
matrices in M2(Zℓ), which can be seen on the Smith Normal Form since automorphisms
act as conjugations by invertible matrices.

Lemma 5.12. With the same notation as in Lemma 5.10, the ℓ-types of I and α are the
same if and only if there exists an invertible y ∈ O ⊗ Zℓ such that αy ∈ I ⊗ Zℓ.

Proof. In this proof, we fix an isomorphism O ⊗ Zℓ ∼= M2(Zℓ) and we use it implicitly.
Let β ∈ M2(Zℓ) be a generator of I ⊗ Zℓ.

To prove the “only if” part of the statement, we notice that if the matrices α and
β have the same invariant factors then there exist invertible matrices U, V ∈ GL2(Zℓ)
such that U · β = α · V . This implies that α · V belongs to the left-ideal generated by
β. Writing y ∈ (O ⊗ Zℓ)× for the element corresponding to the matrix V ∈ GL2(Zℓ), we
obtain that αy ∈ I ⊗ Zℓ.
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We now prove the “if” part of the statement. Under the fixed isomorphism, the
assumption αy ∈ I ⊗ Zℓ translates to the existence of U ∈ M2(Zℓ) such that αy = Uβ.
By the multiplicativity of the determinant, we deduce that U ∈ GL2(Zℓ). Therefore
β = U−1αy and hence β and α have the same invariant factors.

Lemma 5.13. With the same notation as in Lemma 5.10, if α ∈ O has ℓ-type (i, j),
then there exists α′ ∈ O with ℓ-type (0, j − i) such that α = ℓi α′. Similarly, if I ⊂ O is a
left-ideal which has ℓ-type (i, j), there exists a left-ideal I ′ ⊂ O with ℓ-type (0, j − i) and
I = ℓi · I ′.

Proof. Using 5.11, we just need to prove this property for matrices in M2(Zℓ). Let
M ∈ M2(Zℓ) be a matrix with ℓ-type (i, j), i.e. there exists S, T ∈ GL2(Zℓ) such that

S ·M · T =

(
ℓi 0
0 ℓj

)
.

Then set M ′ = S−1 ·
(
1 0
0 ℓj−i

)
· T−1. By construction, M ′ has ℓ-type (0, j − i) and

M = ℓiM ′.

We are now ready to prove the main algorithmic result of this section. It will relies on
the fact that we can efficiently solve norm equations in O0, if we assume that the norm
to reach is big enough.

Algorithm 2: LocalGenerator
Input: A prime ℓ, a left ideal I ⊂ O0 not divisible by ℓ, with reduced norm

Nrd(I) = ℓm.
Output: Returns elements α, x ∈ O0 such that Nrd(α) = ℓm and αx generates

I ⊗ Zℓ.
1 Check that m log(ℓ) > log(p)c and compute α ∈ O0 such that Nrd(α) = ℓm ;
// Use [9, Corollary 5.8]; the constant c is the one of this

reference.
2 Using the isomorphism ϕ : O0 ⊗ Zℓ → M2(Zℓ), compute

Mα := ϕ(α0 + α1i+ α2j + α3ij) mod Z/ℓmZ ∈ M2(Z/ℓmZ);
3 Compute a generator β ∈ O ⊗ Z/ℓmZ of I ⊗ Z/ℓmZ;
// This is done by computing the right-gcds of the four generators

of I ⊗ Z/ℓmZ ∼= M2(Z/ℓmZ), see Proposition 4.13
4 Set Mβ := ϕ(β) ∈ M2(Z/ℓmZ);
5 Using the Smith Normal Form, compute two matrices S, T ∈ GL2(Z/ℓmZ) such

that S ·Mα · T =Mβ ;
6 By lifting coordinates from Z/ℓmZ to representatives in Z, set x an element of O

such that x ≡ ϕ−1(T ) mod Z/ℓmZ;
7 Return (α, x) ∈ O2

0 ;

Theorem 5.14. Assuming GRH, there exists a constant c > 0 such that on input an
ideal I with log(Nrd(I)) > log(p)c, Algorithm 2 is correct and terminates in expected
polynomial time in log(p) and log(Nrd(I)).
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Proof. Let c be the constant given by [9, Corollary 5.8], so that the corresponding
algorithm can be run on input Nrd(I). In [9], the algorithm is proved to be correct and
polynomial time under GRH. Therefore α can be correctly computed at Step 1.

Hence the correctness of Algorithm 2 is a direct consequence of Lemma 5.13 (to prove
that the ℓ-types of I and α are the same) and of the proof of Lemma 5.12 which explains
how to construct x.

The complexity is a consequence of the polynomial time computation of α, and
of the fact that computing the Hermite Normal Forms (for computing the generator
of I ⊗ Z/ℓmZ) and Smith Normal Forms of matrices in M2(Z/ℓmZ) can be done in
quasi-linear complexity Õ(m log(ℓ)) [25, Chap. 8].

Finally, we put all the pieces together and we give a complete algorithm (Algorithm 3)
to compute an isomorphism E2

0 → E1 ×E0 upon input of E1 and its endomorphism ring.
In the following, c0 will denote the constant given by Theorem 5.14.

Algorithm 3: LowDiscriminantIsomorphism
Input: A maximal elliptic curve E′

1 defined over Fp2 , a maximal order O ′
1 together

with an isomorphism O ′
1
∼= End(E′

1), a prime ℓ ̸= p.
Output: Returns an efficient representation of an isomorphism E2

0 → E′
1 × E0.

1 Compute a left O0-ideal I11 with norm ℓm for some m ∈ Z≥0 such that its
right-order is conjugated to O ′

1 and that m log(ℓ) > log(p)c0 ;
// use KLPT [10] or [9, Algo. 5]

2 Set α, ν1 := LocalGeneratorc0(ℓ, I11);
3 Return IsomorphismCompletion(E0, E

′
1, E0, E0,O0,O1, I11,O0ν1);

Theorem 5.15. Algorithm 3 is correct and, under GRH, it requires an expected number
of operations which is polynomial in log(p).

Proof. The correctness is a direct consequence of Theorem 5.4 and Proposition 5.9,
together with the correctness of the subroutines, see Theorem 5.14 and Proposition 5.5.
The complexity also follows from the complexities of the subroutines (Theorem 5.14 and
Proposition 5.5), together with the fact that the output size of Wesolowski’s algorithm [9,
Algo. 5] is polynomial in log(p).

The following corollary shows that by running twice Algorithm 3, we can compute
isomorphisms E1 × E0 → E2 × E0.

Corollary 5.16. Let E1, E2 be two maximal elliptic curves defined over Fp2 , with known
endomorphism rings O1

∼= End(E1) and O2
∼= End(E2). Assuming GRH we can compute

an efficient representation of an Fp2-isomorphism from E1 × E0 to E2 × E0 with a Las
Vegas probabilistic algorithm running in expected polynomial time.

Proof. Running twice Algorithm 3 provides us with efficient representations of two
isomorphisms ξ1 : E2

0 → E1 × E0 and ξ2 : E2
0 → E2 × E0. By transposing ξ2 as in

Section 4.3, we get an efficient representation of an isomorphism ξ′2 : E2 × E0 → E2
0 .

Finally, computing a efficient representation of ξ1◦ξ′2 provides the desired isomorphism.
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Remark 5.17. In fact, all results in this section generalize if we replace E0 by an
elliptic curve E for which we know a subring of End(E) isomorphic to a low-discriminant
imaginary quadratic order. Corollary 5.16 can actually be generalized as follows: given
E1, E2, E

′
1, E

′
2 supersingular elliptic curves defined over Fp2 with their endomorphism

rings, and given low-discriminant endomorphisms in End(E1) and End(E′
1), we can

efficiently compute an isomorphism E1 × E2 → E′
1 × E′

2 by computing isomorphisms
E1 × E2 → E2

1 , E2
1 → E1 × E′

1, E1 × E′
1 → (E′

1)
2, and (E′

1)
2 → E′

1 × E′
2. Each

isomorphism can be computed by using the low-discriminant technique described in this
section.

Experiments. Let us describe an implementation of instances of Algorithm 3 we pro-
pose in the file ExperimentResults_part2.mgm available at https://gitlab.inria.fr/
superspecial-surfaces-isomorphisms/experiments. As in the previous experiment
paragraph, the user can choose the parameters p, ℓ and m. Then we build a random ideal
I11 such that Nrd(I11) = ℓm. Next we recover α and ν1 with the function LocalGenerator,
where we compute α thanks to Cornacchia’s algorithm. Those computations allow us to
set I21 := O0ν1. Finally, as described in Algorithm 3, we recover the two last ideals I12
and I22 by a call to IsomorphismCompletion. The function RepresentIsomorphism ensures
us that the computed ideals represent an isomorphism.
Example 5.18. We report on experimental results obtained by running Magma version
V2.28-3 with seed 12345 on the file ExperimentResults_part2.mgm. In this example,
p = 103, ℓ = 3, m = 5. We choose a prime smaller than in previous experiments, so that
the coefficients of the basis fit in one page. We denote by iq, jq, kq the usual generators
of Bp,∞. The input ideal I11 has norm ℓm and is given by the basis: ⟨243, 243 iq, 61/2 +
4 iq+kq/2, 4+425 iq/2+jq/2⟩. Computations give α = 6+ iq+jq−kq, and ν1 = 1075/2+
1577 iq+244 jq+625 kq/2. We set I21 := O0ν1. Then the function IsomorphismCompletion
returns the ideals:
I12 =⟨2776501206157462210287679682279/2 − 674689793096263317099906162793797/2 kq,

− 2776501206157462210287679682279/243 iq − 1285520058450905003363195692895177/243 jq

− 317798328056783124589527816433654340/243 kq,

410283165714898218197798754379 − 33740396212048598511942896029/486 iq

− 15621803446178501111029560861913/486 jq − 26157773527514566179200310587074475/243 kq,

1067427526507683005787990720283/2 − 989536726875556767470832148525/243 iq

− 458155504543382783338995284767075/243 jq − 289555275529104629018197959482570063/486 kq⟩.
I22 =⟨46276391134351722289065914865/2 − 877707512315267346981522276317359005/2 kq,

− 15425463711450574096355304955/37933274 iq − 321419168743862407850401877278243555/37933274 jq

− 4883533054528825167547240492465180139329460/18966637 kq,

41759783165084856705939206451/2 − 7448314846448813646367258682/18966637 iq

− 155199948038581060493609428604527415/18966637 jq

− 24454605381976538232598154967499148986000315/37933274 kq,

15145446823711167882959064733 − 14521079224050332265634834729/37933274 iq

− 302574580626278073443494629377735133/37933274 jq

− 10045536674889360291212172974169232448115892/18966637 kq⟩

We finally check that RepresentIsomorphism returns True on those inputs.

5.4. Computing an isomorphism in the general case
For simplicity, we focus on the case p ≡ 3 mod 4 where we can use the curve E0 defined

over Fp2 by the equation y2 = x3 + x which admits a low-discriminant endomorphism. If
22
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p ≡ 1 mod 4, we can use instead the construction described in [18, Sec. 3.1].
First we provide an algorithm to solve a special case of Theorem 3.2.

Algorithm 4: IsomorphismE0
Input: Two maximal elliptic curves E1, E2 defined over Fp2 , maximal orders

O1,O2 together with isomorphisms O1
∼= End(E1), O2

∼= End(E2)
Output: Returns an efficient representation of an isomorphism E2

0 → E1 × E2.
1 Compute isogenies φ1 : E0 → E1 and φ2 : E0 → E2 of coprime degree, and their

ideals I1, I2 ;
// use KLPT [10] or [9, Algo. 5]

2 Set IK := deg(φ1)I2 + deg(φ2)I1, and compute its right order O3 along with an
elliptic curve E3 such that End(E3) ∼= O3 ;

// Lemma 5.3 ensures that E3 ≃ E0/(ker(φ1)⊕ ker(φ2))
3 Compute an isomorphism F : E0 × E3 → E1 × E2 by running

IsomorphismCompletion(E0, E3, E1, E2,O0,O3, I1, I2) ;
4 Choose a prime ℓ ̸= p, and compute an isomorphism G : E2

0 → E0 × E3 by
running LowDiscriminantIsomorphism(E3,O3, ℓ), and post-composing by the
isomorphism (P,Q) 7→ (Q,P ) ;

5 Return the composition F ◦G : E2
0 → E1 × E2;

Theorem 5.19. Algorithm 4 is correct and assuming GRH it requires an expected number
of operations which is polynomial in log(p).

Proof. First we prove that the algorithm is correct. Since we know the endomorphism
rings of E0, E1, E2 we can compute the isogenies φi : E0 → Ei of coprime degree by [9,
Algo. 5]. Applying Lemma 5.3 with ψ = IdE0 leads to the construction of the ideal
IK representing an isogeny E0 → E0/(ker(φ1) ⊕ ker(φ2)). The correctness is then a
consequence of Proposition 5.5 and Theorem 5.15.

The complexity follows from the same results, using the fact that [9, Algo. 5] requires
polynomial time assuming GRH, and that constructing IK is standard Z-linear algebra.

We finally present a proof of Theorem 3.2.

Proof of Theorem 3.2. By two calls to Algorithm 4, we compute two isomorphisms Φ :
E1×E2 → E2

0 and Ψ : E′
1×E′

2 → E2
0 . Then by Corollary 4.11 we compute the tranposed

isomorphism Ψ̃ : E2
0 → E′

1 × E′
2. Computing the composition Ψ̃ ◦ Φ leads to the desired

isomorphism E1 × E2 → E′
1 × E′

2.
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