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Abstract. We present the first complete adaptively secure asynchronous MPC protocol for the YOSO
(You Speak Only Once) setting. In contrast to many previous MPC constructions in the YOSO model,
we provide a full stack implementation that does MPC, role assignment and total order broadcast.
Therefore, our construction is also the first to provide adaptively secure asynchronous total order
broadcast and MPC that is sub-quadratic in the number of parties and does not require threshold fully
homomorphic encryption. Instead, our protocols rely on threshold additively homomorphic Paillier
encryption. Our total-order broadcast protocol has complexity optimal in the message length. This
optimality also implies that the amortized complexity of handling a secure multiplication is linear in
the number of parties.
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1 Introduction

In multiparty computation (MPC), a set of parties want to compute an agreed function on
a set of privately held inputs such that the intended output is computed, but this is the only
new information released. A very special case is Total Order Broadcast (TOB), where the
goal is to provide a public “ledger” that all parties can write to, and agreement is guaranteed
on what was written and the order in which data arrived. Security guarantees hold assuming
at most some maximal number of parties are corrupted by an adversary.

In this paper, we focus on MPC and TOB secure against adaptive corruption, where
the adversary decides during the protocol who to corrupt, and we assume an asynchronous
network where any message sent is eventually delivered, but the delay is arbitrary and
decided by the adversary. In this model, it is possible to do information theoretically secure
MPC based on secret sharing, but in any such construction, parties must maintain a large
secret state corresponding to the size of the entire computation. In this paper, we will
instead focus on constructions using public-key cryptography, where the secret state can be
reduced. In particular, the so-called CDN paradigm [CDN01] is based on threshold additively
homomorphic encryption. Here, the only secret state parties need to maintain is a set of
shares of the private key, the state of the computation is contained in public ciphertexts.
In [CDN01] it was shown that synchronous MPC with adaptive security can be obtained
from the CDN paradigm using the Paillier cryptosystem.

The YOSO (You Speak Only Once) paradigm [GHK+21] is a more recent promising
paradigm for MPC for a large set of M parties, where the work is done by a sequence of
small committees of size n≪M . Each committee only speaks once, and is anonymous until
it speaks to hide from an adaptive adversary. Because the committee size is much smaller
than M , one can hope to have better complexity than conventional solutions for M parties.
It was shown in [GHK+21] how to adapt the CDN paradigm for the YOSO setting: each
committee hold shares of the secret key, that are handed down from the previous committee.
This remains the most efficient approach to YOSO MPC. For this to work, a construction for
Role Assignment (RA) is required. In a nutshell, RA provides a way to choose anonymous
committees and a way for one committee to send secret messages to the next. A popular
approach is to base this on private information retrieval (PIR), see [GHM+21] for instance.

Some caveats remain, however, in the previous YOSO literature: MPC protocols for this
setting require RA and TOB but often assume they are given for free. More seriously, they
are not proven secure against a fully adaptive adversary, even though the motivation for
YOSO is adaptive attacks. Instead they use a model where the adversary corrupts a set of
parties initially and then committees are chosen randomly from the set of parties. Moreover,
to the best of our knowledge, no YOSO MPC has been shown secure in the asynchronous
setting.

A different line of research has instead focused on adaptively secure and asynchronous
consensus, in particular [BKLZL20] presents the first Byzantine agreement protocol in this
model that is subquadratic in the number of parties. As a building block they implement
a protocol for Agreement on a Core Set (ACS) used to reach agreement on a set of inputs
and often used to construct a TOB by sequentially running instances of ACS. However, the
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protocol is based on quite heavy machinery: it makes non-blackbox use of threshold fully
homomorphic encryption. It in particular runs key generation for FHE inside FHE.

1.1 Our Contribution

In this paper, we bring together the two lines of research mentioned above and present
the first full-stack implementation of adaptively secure YOSO MPC for an asynchronous
network. We present protocols in this setting for TOB, RA and MPC that are secure assuming
at most (1/3−c)M of theM parties are corrupted, where c can be any constant. Our protocols
are based on threshold Paillier/Damg̊ard-Jurik encryption and integer commitments based on
factoring. We make black-box use of these tools in the sense that we exploit only the algebraic
properties they natively possess and our communication complexity does not depend on the
circuit complexity of the primitives we use.

Our TOB is the first asynchronous and adaptively secure sub-quadratic TOB that does
not need threshold FHE. It is also communication optimal, in that for long enough mes-
sages to broadcast, the cost is linear in the number of parties. This improves on recent
work [BLZLN22] by giving a simplified and more efficient extension protocol for the asyn-
chronous setting that avoids the use of cryptographic accumulators.

Our RA protocol is based on a new PIR protocol that makes black-box use of Pail-
lier/Damg̊ard-Jurik encryption and hence is well suited for implementing the client side of
the PIR in MPC. In comparison, the RA protocol from [GHM+21] (that was also based on
PIR) makes non-blackbox use of threshold FHE. The amortized communication complex-
ity for creating an anonymous committee is O(M poly(λ, logM)) where λ is the security
parameter.

Our MPC protocol is based on the CDN paradigm, so we have a sequence of committees
where each committee reshares the secret Paillier key for the next committee. We show a
new technique for this that keeps the size of the shares constant. In contrast, in all previous
YOSO protocols based on CDN, the share sizes grew for every resharing. Finally, because
the TOB is optimal, the amortized communication complexity of our secure multiplication
is linear in the number of parties, if sufficiently many multiplications are done in parallel.

1.2 Technical Overview

Asynchronous YOSO from Paillier Encryption The YOSO MPC uses a version of the
CDN [CDN01] paradigm adapted to the asynchronous model. We work in the random oracle
model and assume we are given set-up data, such as the public key for the Paillier scheme.

Once we have an asynchronous MPC we follow the idea from [GHM+21] of doing YOSO
role assignment by simulating a PIR client in MPC. As a main technical contribution we
show how to do this without heavy machinery such as threshold FHE: we first propose a
novel 2-message PIR protocol based on Damg̊ard-Jurik/Paillier encryption. It has overhead
logarithmic in the size of the database, and has the major advantage that its client part
is very well suited for implementation in a CDN MPC based on Paillier, since the message
from the server is effectively a Paillier encryption of the database item the client wants. With
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this machinery, we sample a random party to be member of a committee as follows: intially,
each party Pi publishes Paillier encryptions of a random tag tagi and a one-time pad otpi.
We consider sets of pairs of encryptions as the database, retrieve a random one of these via
PIR, randomize them inside MPC, and finally output the randomized pair of ciphertexts.
We decrypt the tag, allowing the selected party Pi to recognize his tag. Using the encrypted
one-time pad, we can send results computed inside MPC anonymously to Pi. We simply add
result and one-time pad inside the encryption and then we decrypt.

Using a variant of this idea, we get a major simplification compared to previous YOSO
protocols. Any such protocol needs to enable secret data to be sent from one committee to
the next. Earlier protocols do this by assigning a (randomized) public key anonymously to
each committee member, a so-called role key and the previous committee can then encrypt
data for the next one.

In our approach, we do not need role keys at all. Instead, we do as follows: say Pi needs
to send a secret message to Pj. We compute and decrypt the sum of one-time pads chosen
by the two players, otpi + otpj. Once this value is public, Pi can compute otpj and use it to
one-time-pad encrypt the message she is to send to Pj, without knowing the identity of Pj.

We need to use this idea for sending shares of the secret Paillier key from one committee
to the next. As can be seen, this approach creates a circular situation where (shares of) the
secret Pailler key are encrypted using one-time pads that are in turn protected under Paillier
encryption3. So, we need to assume that our cryptosystem is secure despite this. We believe
this non-standard assumption is a fair price to pay for achieving our goal of making black-box
use of the primitives and avoiding generic techniques. It is also one that is not easily avoided:
It would be extremely inefficient and non black-box to generate new key set-up for Paillier
inside MPC. So, the modulus N we are given as set-up must be used for the entire protocol.4
Moreover, the shares of the secret key must be protected under some form of encryption as
they need to be communicated to the parties who need them. The encryption scheme we
have available is Paillier, so some form of circularity must result.

In our protocol, we need to generate many random encrypted bits. We cannot use the
trick from [DFK+06], at it relies on computing square roots modulo a prime which cannot be
done efficiently modulo N . So we propose the novel idea of deriving the bit from the Jacobi
symbol of a random encrypted number modulo N . This has the added advantage of giving
us a straight-line simulatable coin-flip in the random oracle model.

We achieve adaptive security using techniques similar to those used in [DN03] where a
synchronous, adaptive secure, but non-YOSO CDN-style protocol was presented. A chal-
lenge, however, is that the UC simulator needs to be given a trapdoor allowing it to fake
decryptions of ciphertexts that contain incorrect values, and the solution from [DN03] is in-
compatible with YOSO. We suggest a new solution exploiting that we have a random oracle.
In adapting [DN03] we also adapt the single inconsistent party technique to work in the
asynchronous YOSO setting for the first time.

3 The issue does not come from the use of one-time pads, the circularity would also be there if we used role keys.
4 Using class group based encryption is not an option, this would make generation of new set-up easy, but would

require us to use a generic PIR protocol for role assignment.
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Efficient Subquadratic Total Order Broadcast for the YOSO Model As part of our overall
YOSO MPC protocol, we present a highly efficient total order broadcast (TOB) protocol with
subquadratic communication complexity for adaptive corruptions in a hybrid model assuming
a perfect coin flip functionality. We use our YOSO MPC to implement the coin-flip with
subquadratic communication complexity. Our protocol relies on the [BKLZL20] paradigm of
having an initial setup that allows flipping λ coins to run a TOB, and then using the TOB
to recompute a new setup for future iterations. While [BKLZL20] is the first work to break
the n2 communication barrier for binary Byzantine agreement (BBA) in the asynchronous
setting with adaptive corruptions, it is concretely quite heavy on communication and does
not explain how to obtain an efficient TOB from BBA. We improve on the state of the art by
taking the protocol for Agreement on a Core Set from [KN23] and adapting it to the YOSO
framework. This allows us to get subquadratic communication with adaptive corruptions, by
moving to the setting with suboptimal resilience against T < (1−ϵ)M/3 corruptions studied
in [BKLZL20,BLZLN22] where we can sample a fresh committee with honest supermajority
for every round of the protocol. In this setting, we instantiate the RB protocol by [DXR21]
for committees by using Reed-Solomon codes with reconstruction thresholds linear in n
over a field of size at least M . This results in a subquadratic extension protocol to attain
RB with optimal complexity in the message length, similar to the work of Banghale et al.
[BLZLN22]. However, our protocol appears to be substantially simpler and more efficient,
as it requires neither accumulators nor any application of advanced concentration bounds
such as McDiarmid’s inequality. Finally, we add some machinery to reach agreement on how
much setup was consumed by the protocol. This allows the TOB to only consume expected
constant number of RA committees per block, as opposed to the worst case λ.

2 Preliminaries

Paillier and Damg̊ard-Jurik encryption Most of the material in this subsection is taken
from [DJN10] where more details and proofs of the facts stated here can also be found.

We use several variants of the Paillier cryptosystem. It works with an RSA modulus
N = pq where the prime factors p, q are of form p = 2p′ + 1, q = 2q′ + 1 and p′, q′ are also
primes. We use the Damg̊ard-Jurik generalization of Paillier, where the plaintext space is
N s for s ≥ 1, and the basic form of an encryption of a message m ∈ ZNs with randomness
r ∈ Z∗

N is (N + 1)mrNs mod N s+1. This encryption scheme is well-known to be additively
homomorphic modulo N s. Moreover, it is CPA-secure under the well-known Decisional Com-
posite Residuosity Assumption (DCRA). It can be shown that this assumption for s = 1
implies the same assumption for any polynomial size s. To simplify matters in the follow-
ing, we will assume that the randomness for the encryption is always chosen to have Jacobi
symbol +1. It can be shown that this variant is CPA secure under the same assumption.

A lossy version. We will make use of a variant where the element (N + 1) is replaced by
an encryption of 1, denoted by ws, and determined as follows. We consider values of s up
to some maximum value S. We set wS = (N + 1)uNS

S mod NS+1, for random uS. We then
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set ws = wS mod N s+1 for s < S. It is easy to see that all ws are encryptions of 1. We will
consider wS as part of the public key. Using this notation, we define

EN,ws(m; r) = wm
s r

Ns mod N s+1 .

It is easy to see that EN,ws(m; r) is actually an encryption of m according to the basic scheme
above, it therefore also inherits the homomorphic property of the basic scheme. Concretely,
we have for plaintexts m1,m2, a and randomness r1, r2 that

EN,ws(m1; r1)a · EN,ws(m2; r2) mod N s+1 = EN,ws(am1 +m2 mod N s; ra
1r2 mod N)

The point of the variant using ws is that it is a possibly lossy encryption scheme. Namely, if
we replace wS by a random encryption w̄S of 0, then an “encryption” of any m, EN,w̄s(m; r) =
w̄m

s r
Ns mod N s+1 will actually be an encryption of 0. However, given only the public key,

the two forms cannot be distinguished, as an encryption of 0 is indistinguishable from an
encryption of 1.

How to decrypt For decryption, we define a decryption exponent dS constructed by the
Chinese remainder theorem such that dS ≡ 0 mod ϕ(N) and dS ≡ 1 mod NS. We can use
dS to decrypt any EN,ws(m; r) where s ≤ S, as we have:

EN,ws(m; r)dS = (N + 1)mdS ((rus)Ns)dS mod N s+1 = (N + 1)m mod N s+1.

We can then get the message by exploiting the fact that discrete logs modulo (N + 1) are
easy to compute. Later, we will define a threshold version of the cryptosystem where dS is
shared among a set of parties, who can then collaborate to raise a ciphertext to power dS,
thus effectively decrypting it. In the following, we will sometimes suppress the randomness
from the notation for readability, and write EN,ws(m) instead of EN,ws(m; r).

Commitment Scheme We will need a commitment scheme allowing commitment to integers.
We will use the scheme suggested by Fujisaki and Okamoto [FO99], for a formal treatment,
see [DF02]. Here, we describe the properties we need informally. The scheme is based on a
modulus N ′ of the same form as our Paillier modulus, but chosen independently. The public
key for the scheme is now ck = (N ′, α, β) where α, β are random squares mod N ′, and we
assume ck is given as set-up. A commitment to integer x using randomness r is denoted
Comck(x; r) = αxβr mod N ′. Here, x is an integer in an interval [0..2b], and r is chosen
uniformly from an interval [0..2K ]. We return to the choice of K below. The commitment
scheme is clearly homomorphic over both inputs to the commitment function, that is, we
have

Comck(x; r) · Comck(x′; r′) = Comck(x+ x′; r + r′) .
It is well known that this is statistically hiding. Computationally binding and soundness of
the standard Σ-protocol for proving that you know how to open a commitment follow from
the strong RSA assumption.

Moreover, the scheme is equivocable: the public key can be generated together with a
trapdoor td, namely the discrete log of α base β, and there is an PPT algorithm Eq(td) that
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will first output a commitment c, and then on input x ∈ [0..2b] will produce r such that
c = Comck(x; r) where the distribution of c, r is statistically close to the one generated by an
honest committer that commits to x and then opens the resulting commitment.

Non-Interactive Zero-Knowledge Proofs In several cases, we will require non-interactive
zero-knowledge proofs of knowledge. They allow a prover to prove, for a predicate P and a
given (public) value x that they know a witness w such that P (x,w) = 1. We will denote
such a proof by NIZK(w : P (x,w) = 1). These proofs need to be unconditionally simulation
sound, statistical zero-knowledge and on-line extractable, i.e., there is an efficient extractor
that can extract a witness from a successful prover without rewinding. In all cases, we can
achieve this in the random oracle model: we first construct a Σ-protocol for the relation
in question using standard techniques, and then we apply the Fishlin transformation to
get non-interactive proofs. More details can be found in Appendix F. With one exception,
all Σ-protocols introduce only a constant factor overhead in communication which means
that after the Fischlin transformation, we get an overhead factor of λ/ log λ, where λ is
the security parameter. The exception is the protocol for so-called 2-level ciphertexts from
Appendix D, which is a double discrete log type protocol that inherently seems to require
binary challenges and therefore gives us an overhead factor λ.

Linear Integer Secret Sharing The secret decryption exponent will be secret-shared
among the members of a committee using Linear Integer Secret Sharing (LISS) [DT06]. For
details on LISS and the verifiable secret sharing scheme we build on top, see Appendix E.
We list here some notation and properties we will need in the main text.

A sharing vector vd has c entries and contains the secret d as its first entry. The other
entries are randomness used for the sharing. sh(d,vd) is the vector of ℓ shares resulting from
applying the sharing algorithm to vd which concretely means multiplying vd by a public
matrix Mshare with integer entries, to get the vector of shares. As is well known, a secret
sharing scheme comes with an access structure, a family of subsets of the players that are
qualified to reconstruct the secret. A valid sharing vector vd is one where the random entries
are sufficiently large compared to d, more precisely, the bit-length of random numbers in
the sharing vector required to share a δ-bit number is δ′ = δ + k where k is a statistical
security parameter. In the appendix it is shown that as long as the sharing vector is valid,
the scheme is statistically secure. That is, for any unqualified set A and any δ-bit value d
that is shared, the shares given to A have distribution statistically indistinguishable from a
shares of a default value, say 0.

Computational Assumption We now specify the computational assumption our protocol
is based on. As explained in the introduction it is a circular security type assumption.

On a high level, we define a game between the adversary and an interactive agent we call
a privacy preserving box denoted PPBox. The box generates a Paillier key pair, gives the
public parameters to the adversary and then sets its initial state d to be the secret Pailler key.
The public data contains a ciphertext wS and the goal of the adversary is to decide whether
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Game CSObenc,bsk
A

Init: benc, bsk are assumed to be bits. Initially generate (N,wS , dS) ← Gen and give (N,wS) to A. Let
wS = EN,wS (benv). Send wS to A. Delete the randomness used for the encryption. If bsk = 1 set st = dS ,
else set st = 0. Set a counter i = 0. The box is parametrized by a sequence of randomized polynomial
time computable functions f1, f2, . . . and a predicate ω.

Update State. The adversary A issues this query with an auxiliary input x, the box sets st = fi(st, x) and
sets i = i+ 1.

Encryption queries The adversary issues this query with the specification of polynomial time computable
functions ϕ, ψ. The box returns EN,wS (ϕ(st)) (and deletes the randomness used for the encryption).

Leakage Queries The adversary issues this query with the specification of a polynomial time computable
function g. The box returns g(st).

Guess: At any time, the adversary may end the game by outputting a guess g ∈ {0, 1}.

Fig. 1. The Circular Selective Opening Game

wS contains 0 or 1. The box maintains state which equals dS initially. The adversary can
issue three types of queries to the box:

– A state update query comes with an input x. The box will update its state by setting
st = fi(x, st) where fi is a randomized function used for the i’th update. The sequence of
functions f1, f2, . . . is fixed and part of the definition of the box.

– An encryption query comes with the specification of efficiently computable function ϕ.
The box returns EN,wS

(ϕ(st)) to the adversary. The encryption is a variant of Paillier
encryption that comes with the definition of the box, and is essentially the same as
Paillier, in a sense defined below. The randomness used for the encryption is not part the
state and is deleted.

– A leakage query that comes with the specification of a function (denoted gi for the i’th
query). The box returns gi(st) to the adversary. However, the functions gi cannot be
chosen freely. The sequences of functions g1, g2, . . . , ψ1, ψ2, . . . must be admissible, which
by definition means that for all j it must be the case that ω(g1, . . . , gj) = 1 where ω is
a fixed predicate that is part of the definition of the box. Loosely speaking, ω should be
designed such that the extra information released does not help the adversary, we define
this more precisely below.

Definition 1. We say that PPBox is encryption secure if its encryption scheme EN,wS
(·)

uses the same public key N,wS as Paillier encryption, is CPA secure under the DCRA
assumption (like Paillier) and is lossy if wS is an encryption of 0.

As an example of an encryption scheme that would satisfy this definition, one can think
of EN,wS

(m) = (EN,wS
(R), R+m) where R is a random one-time pad. So, when the bit benc

in the CSO game is 0, the encryptions returned from the box are lossy, they are independent
of the input state.

Some notation: Let DA,dS
be the distribution of the responses to the leakage queries when

running CSO0,1
A , and let the DA,0 be the distribution of the responses when running CSO0,0

A .
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The idea here is to define a fixed distribution that is independent of dS, and then we want
the leakage to look like this distribution.

Definition 2. An adversary A is admissible with respect to PPBox if it always issues an
admissible sequence of queries when talking to PPBox. PPBox is said to be privacy preserving
if it is the case that when A is admissible, the distribution DA,dS

is statistically independent
of the secret input dS. More precisely, DA,dS

and DA,0 are statistically indistinguishable.

The following assumption essentially says that even if the PPBox uses the secret key dS

internally, the encryptions are CPA secure, specifically, one cannot tell if wS contains 0 or 1.

Definition 3 (Circular Selective Opening Security). We say that Paillier/Damg̊ard-
Jurik encryption is CSO secure if for any encryption secure and privacy preserving PPBox
and any PPT adversary A admissible with respect to PPBox, it holds that CSO1,1

A is compu-
tationally indistinguishable from CSO0,1

A .

We will assume in the following that Paillier/Damg̊ard-Jurik encryption is CSO secure.
As evidence in favour of this assumption we can note the following lemma:

Lemma 1. For any encryption secure and privacy preserving PPBox, and any admissible
adversary A, CSO0,1

A is statistically indistinguishable from CSO0,0
A,0, and CSO0,0

A is computa-
tionally indistinguishable from CSO1,0

A assuming standard CPA security of Paillier encryp-
tion.

Proof. The first conclusion follows because the ciphertexts are lossy in both cases and PPBox
is privacy preserving. The second one follows by an easy reduction because CSO0,0

A or CSO1,0
A

can be simulated perfectly given wS and the public Paillier key, as the secret Paillier key is
not used in any of these games. ⊓⊔

Given Lemma 1, our assumption is equivalent to claiming that CSO1,1
A is computation-

ally indistinguishable from CSO1,0
A . The only difference between these two games is that the

encryptions sent from the box contain information related to the secret key dS in one case
and not in the other. If one is willing to believe that this difference does not matter to the
adversary (note the randomness for encryptions is never revealed) then the adversary is left
with the leakage which should not help, as the box is privacy preserving. Put differently, to
break the assumption, one needs to exploit in some highly non-trivial way that the encryp-
tions one is given relate to the secret key. To the best of our knowledge, no such approach is
known.

It is worth noting that we do not actually need the assumption in full generality. We
only need one specific version of PPBox that updates its state by generating a sequence of
fresh secret sharings of dS, the encryption queries return encryptions of the shares generated,
and the leakage queries are only allowed to reveal an unqualified subset of any set of shares.
However, as we believe the more general version is true, we chose it for better readability.

We emphasize that even though our assumption is interactive and non-standard, this
does not trivializes the proof: the actual protocol contains many ingredients that are not
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present in the game, such as commitments, zero-knowledge proofs, one-time pad encryption
etc. So we are very far from claiming that the protocol is secure under the assumption that
it is secure.

Protocol PIR, to be executed by a client C and a server S.
S has a database consisting of numbers in ZN , y0, . . . , yL−1, and we assume for simplicity that L is a two-
power, L = 2λ. C wants to retrieve yt for some 1 ≤ t ≤ L.

1. C writes t in binary as t0, t1, ..., tλ−1 where t0 is the most significant bit. C sends the following to S:

c0 = EN,w1 (t0), . . . , cλ−1 = EN,wλ (tλ−1) .

2. S sets (y0
0 , ..., y

0
L1 ) = (y0, ..., yL−1), and now executes the following loop for i = 0 to λ− 1:

(a) Set c̄i = EN,wi (1) · c−1
i mod N i+1, where EN,wi (1) is an encryption of 1 with default randomness 1.

Note that c̄i is an encryption of the bit 1− ti.
(b) Define Li = L/2i. This step takes as input the list (yi

0, ..., y
i
Li−1), and outputs a list (yi+1

0 , ..., yi+1
Li/2−1).

Namely, for j = 0 to Li/2− 1, set

yi+1
j = c

yi
j

i · c̄
yi

j+Li/2
i mod N i+1.

Note that yi+1
j is an encryption of ti · yi

j + (1− ti) · yi
j+L/2i , and hence the loop produces encryptions

of the first or the second half of the incoming list, depending on ti.
3. The list output by the last loop step above has lenght Lλ = L/2λ = 1. S sends the single ciphertext on

the list yλ
0 to C.

4. Note that we have
yλ

0 = EN,wλ−1 (EN,wλ−2 (. . . EN,w1 (yt))),
so by doing λ− 1 decryption steps, C can retrieve yt, as desired.

Fig. 2. The PIR protocol.

3 A PIR protocol based on Damg̊ard-Jurik encryption

In this section, we present a PIR protocol (Fig. 2), in the standard form with a single
client and server, where we assume that the client has the secret key for an instance of the
Damg̊ard-Jurik scheme as defined above. In a later section we show how to transplant it to
a multiparty setting, where several parties play the role of both server and client and we will
see how this can be used to do role assignment.

A first important observation that will come in handy is the following: the plaintext
space of the encryption function EN,ws(·; ·) is Zs

N , but this is also the ciphertext space of
EN,ws−1(·; ·). Therefore, given ciphertexts EN,ws−1(m), EN,ws(m′) and the public key, one can
compute EN,ws(m′)EN,ws−1 (m) mod N s+1 = EN,ws(m′ · EN,ws−1(m) mod N s).

The PIR protocol is clearly secure based on CPA security: S cannot distinguish C’s
message from a set of random encryptions, and if S is semi-honest, C will always get correct
output. The protocol requires only 2 messages which is clearly optimal.
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Note that we can allow the input yi’s to be longer than the modulus, say numbers in
ZNv , we just need to define C’s message to be

c0 = EN,wv(t0), . . . , cλ−1 = EN,wv+λ
(tλ−1),

and adjust S’s part accordingly. If we denote the length of a data item by k and the length
of N by κ, one finds that the communication complexity is O(λk + λ2κ). Thus, for large k,
the overhead over just sending a data item in the clear is only a factor λ, logarithmic in the
size of the database.

4 UC Modelling

We use the UC framework in [CCL15] as it is asynchronous, allows to model interactive
functionality and is simple and sufficient for our study, as we work with a fixed set of parties
P = {P1, . . . , PM}. We model functionalities for total-order broadcast (FTOB) and YOSO
MPC and coin-flip (FMPC+CF). We also have a helper Fsetup for setting up values. As the
underlying model of communication we assume authenticated point-to-point communication
with atomic send, where a party in one instruction can send messages to several users, and
it is guaranteed that all messages be delivered even if the party gets corrupted right after
the sending. See [BKLZL20] for further discussion. For completeness an ideal functionality is
given in Fig. 28. When formulating ideal functionalities we talk about the adversary having
to eventually deliver certain values to guarantee liveness. We discuss in Appendix G.1 how
this is formalized, but the exact formulation is not consequential for the security of our
protocols.

Functionality FTOB

Init: Let L = ϵ be the empty ledger. For each party P let ℓP = 0 be the number of blocks delivered at P .
Let b = 0 be the number of blocks produced so far. Let bP be the number of blocks requested by P .

Broadcast: On input (Broadcast,mid,m) from party P (mid) add (mid,m) to Accepted and leak
(Broadcast,mid,m) to the adversary.

Set Wait Predicate: On input (wait,W ) from honest party P let bP ← bP + 1 and let W bP = W . We
require that all honest parties agree on W bP .

Next Batch: On input B = ((mid1,m1), . . . , (midℓ,mℓ)) from the adversary where W b+1 is defined and
where (midj ,mj) ∈ Accepted for j = 1, . . . , ℓ and W b+1(L,B) = ⊤, update L ← L∥B and remove each
(midj ,mj) from Accepted. Update b← b+ 1.

Deliver: On input (Deliver, P ) from the adversary where ℓP < |L| update ℓP = ℓP + 1 and output L[ℓP ]
to P .

Eventual Liveness: If bP > b for all honest parties and W b+1(L,Accepted) = ⊤ then eventually the ad-
versary must produce block number b + 1. Furthermore, if (mid,m) ∈ Accepted and P (mid) is honest,
then eventually (mid,m) must be added to a block. Finally, if ℓP < |L| then eventually the adversary will
deliver a new message to P .

Fig. 3. Total-Order Broadcast
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Total Order Broadcast Our ideal functionalities will have a notion of batches, which is
just one “round” of broadcast or function evaluation. To not confuse with the synchronous
notion of round we call them batches. In a fully asynchronous network not all parties can
be guaranteed to give inputs to each batch. We introduce a notion of a wait predicate W
which tells the ideal functionality when it can produce the next batch. For TOB this is
formulated via a notion of blocks of messages and such a block being a valid extension of
the current ledger. A block B is a non-empty sequence of bit-strings B and a ledger L is
a sequence of blocks. A wait predicate W (L,B) ∈ {⊤,⊥} judges if B may extend L. We
require that if W (L,B) = ⊤ then W (L,B∥B′) = ⊤ for all blocks B′ and W (L, π(B)) = ⊤
for all permutations of the messages in B. Messages are named by a message identifier mid.
We assume that mid contains the name of the party allowed to send it, and we denote this
party by P (mid). We assume that P (mid) uses mid at most once. The ideal functionality is
given in Fig. 3. The formalisation is straightforward and uses known design patterns. For
completeness there is a motivation in Appendix G.3

YOSO MPC The functionality in Fig. 4 for MPC also proceeds in batches, each evaluating
one function f . Since the network is asynchronous we cannot ensure that all parties can
give input. We therefore again give a wait predicate W . This is a monotone predicate—if
W (Q) = ⊤ then W (Q ∪ Q′) = ⊤—judging whether we may evaluate f after having seen
inputs from parties in Q. All parties are assumed to agree on W in a given round and the
function f to compute. In each batch a secret uniformly random permutation π : Q → Q is
chosen, assigning party P to play role R = π(P ). Each P gives two inputs xP and zP . We
think of xP as its input as the party P and zP as its input as role R = π(P ). Note that f is
not given π.5 Instead we give f the inputs zP sorted on roles.

Each batch has a public output y as well as a secret output yR for role R. Only parties who
gave input can get a secret output. The reason we need to hear from a party to give it secret
output is that we want adaptive security, so the secret key needs to grow linear in the amount
of data which can be sent under a fixed public key [Nie02]. So, parties would occasionally
need to refresh their public keys under which we send them secret outputs. We opted for a
simple solution establishing a non-committing encryption channel between the MPC and P .
When generating a new batch P will pick a fresh one-time pad otpb

P and send E(N,wS)(otpb
P )

on the TOB. It then deletes all randomness used to compute E(N,wS)(otpb
P ) and keeps only

otpb
P . The YOSO MPC takes E(N,wS)(otpb

P ) as input and post cb
R = yb

R + otpb
P mod N on the

TOB. In the simulation we can equivocate by lying about otpb
P .

Note that when a party P is corrupted leakage of the secret output yb
R only happens

between batch b being ordered by the first honest party, where yb
R may be generated by

the adversary in Generate Batch, and batch b being delivered at P . It models that in
the implementation, from when cb

R is posted on the TOB and until it was delivered at P , a
corruption of P will leak otpb

P and hence yb
R. Once cb

R was delivered to P it will delete otpb
P

and yb
R in the implementation.

5 In the implementation we do not pass information on π to the MPC evaluating f . If f leaked information on π in
y it would destroy our simulation strategy.
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Functionality FPal,γ
MPC+CF for MPC and coin-flip. Parametrised by a number of coin-flips γ.

Init: When activated the first time do the following.
1. Generate ((N,wS), dS)← Pal.Gen and output (N,wS) to all parties.
2. Leak dS to the adversary.
3. Let b = 0 be the number of batches produced.
4. For P ∈ P let boP = 0 and bdP = 0 be the number of batches ordered by respectively delivered at P .

Order Next Batch: On input (NextBatch, f,W, xP , zP ∈ ZN ) from honest party P where boP = bdP do
the following:
1. Leak (NextBatch, f,W, P ) to the adversary.
2. Update boP ← boP + 1.
3. Let fboP = f , W boP = W , xboP

P = xP , and zboP
P = zP . We assume that honest parties agree on fb

and W b for a given b.
Generate Batch: We call Q qualified for some batch b if boP ≥ b for all honest P ∈ Q and W b(Q) = ⊤. On

input (NextBatch,Q ⊆ P, {vkP , (xb+1
P , zb+1

P ))}P ∈C) from the adversary, where Q is qualified for batch
b + 1 and C is the set of corrupted parties in Q, do:
1. Update b← b + 1.
2. Let Pb = Q.
3. Let Rb = Pb and pick a uniformly random permutation πb : Pb → Rb. We say that party P ∈ Pb has

role Rb
P = πb(P ) ∈ Rb.

4. Sample (yb, {(R, yb
R)}R∈Rb ) ← fb (

{(P, xb
P )}P ∈Pb , {(Rb

P , z
b
P )}P ∈Pb

)
, where {(P, xb

P )}P ∈Pb is given as
a vector sorted on P and {(Rb

P , z
b
P )}P ∈Pb is sorted on Rb

P .
5. Give (yb, {(P,Rb

P , y
b
Rb

P

}P ∈Cb ) to the adversary.
6. For j = 1, . . . , γ sample uniformly random coinb

j ∈ {0, 1}λ.
Deliver Batch: On input (DeliverBatch, P ) from the adversary, where bdP < b, update bdP = bdP + 1

and output ybdP to P . If P ∈ PbdP then also output (R = πbdP (P ), ybdP
R ) to P .

Flip Coin: On input (Flip, b, j) from P where b ≤ bdP and j ∈ [γ] record (Flip, P, b, j) and output coinb
j

to the adversary.
Deliver Coin: On input (DeliverCoin, P, b, j) from the adversary, where b ≤ b and j ∈ [γ] output

(Flip, b, j, coinb
j) to P .

Eventual Liveness: If boP ≥ b for all honest P ∈ P, then the adversary must eventually input a
valid (NextBatch, ·, · · · ). If bdP < b for some honest P then the adversary must eventually input
(DeliverBatch, P ). If for some (b, j) the value (Flip, Q, b, j) is recorded for all honest Q ∈ P and P is
honest, then the adversary must eventually input (DeliverCoin, P, b, j).

Corruption: On corruption of P output yb
R=πbdP (P ) to the adversary for all b where bdP < b ≤ b.

Fig. 4. The Ideal Functionality for MPC and Coin-Flip
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Note that we leak dS to the adversary. This means that encryption under (N,wS) is not
secure in a context where FMPC+CF is used as hybrid functionality. This is fine, as we only
need that encryption under (N,wS) is secure when we implement FMPC+CF. The reason why
we leak dS is that when we prove security we need the simulator to know dS to be able to
do straight-line simulation.

Functionality Fsetup for setup parametrised by a number of parties M , commitment key generator Gen,
Paillier encryption Pal = (Gen, E,D), committee size n, initial number of committees eno.

1. Generate ((N,wS), dS)← Pal.Gen, ck← Gen, c∗ ← EN,w1 (0), where S = 2 log(M), wS = (N+1)uNS

mod
NS+1. Output ((N,wS), ck, c∗) to all parties.

2. Run internally the generation of one batch of RoleBatcheseno protocol, letting all (virtual) parties play
honestly and delivering all messages instantaneously, generating public and private data for the first batch
of committees. Use the wait predicate |Q| = M such that all parties get output. Output the public data
to all parties and hand the private data to the relevant committee members.

3. Let P c
1 , . . . , P

c
2n be the parties selected for the first committee pair in the previous step. Sample

(pvc, svc
1, . . . , svc

2n)← VSS(dS).a Output pvc to all parties and svc
i to P c

i .

a The VSS produces a public part pv and a secret part sv for each party, see Section 5.1 for details.

Fig. 5. Setup for implementing FMPC+CF

Setup In our implementation we use RA and MPC to implement threshold decryption, and
threshold decryption to implement RA and MPC. To get off the ground we need that the
Pailier public and secret keys have been generated, that there are some initial RA committees
and that an initial committee is given a secret sharing of dS. We assume this is all done in
a setup phase modelled by Fsetup. To simplify the specification, we let Fsetup do the set-up
for the committees by running one batch of RoleBatcheseno producing one batch of RA in its
head and output the resulting data to the relevant parties. This is just a compact way of
saying that we want set-up data in the same format that RoleBatcheseno generates them, as
this is also the format of the setup data that it consumes. This protocol is found in Fig. 12
and is used in the global protocol for setting up data for the next batch of committees.

Once the setup is done, all committee members share one-time pad key material with all
parties they need to communicate with secretly, and these one-time pads are committed to
the sending and receiving party. This allows committees to verifiably reshare dS for the next
committees.

5 Implementing FMPC+CF

In this section we give an implementation of FMPC+CF. In the following we will define several
protocols of similar form: all members of a committee send a message of some form to FTOB.
This message must include a zero-knowledge proof that the message was computed correctly,
and a proof that the given party was indeed assigned the role that involves sending the
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message. Looking ahead, this last proof will be an opening of a ciphertext that the party
published earlier, and the proof is considered valid if the ciphertext contains a tag that was
assigned to the role in question.

In all such cases, the wait predicate will say that FTOB should wait for at least n − t
messages from the committee, of the correct form, where the proofs verify. Here, t < n/2 is
the bound we assume on the number of corrupted players in the committee. In the protocol
descriptions “the message is sent to FTOB” tacitly implies the above.

We use some basic subprotocols for secure computation on ciphertexts of form EN,ws(m; r).
They include protocols for secure multiplication on encrypted values and creating random
encrypted numbers and bits. As these are mostly standard, we list them in Appendix H. We
will use the following notation.

– Multiply(EN,ws(x1), . . . , EN,ws(xl)) = EN,ws(x) is shorthand for invoking the multiplica-
tion protocol a number of times on the ciphertexts EN,ws(xi) to obtain EN,ws(x) where
x = ∏

i xi mod N s.

5.1 Protocols for Threshold Decryption and Resharing

The secret decryption exponent will be verifiable secret-shared among the members of a
committee using Linear Integer Secret Sharing (LISS). Using LISS instead of the integer
version of Shamir sharing will allow us to keep the size of shares from growing. For details
on LISS and the VSS we use, see Appendix E.

A secret d will always be shared among the members of a pair of committees, namely it
is additively shared among the members of the additive committee, and each additive share
is shared with threshold t among the members of the threshold committee. The shares are
computed from a sharing matrix Msh and a sharing vector vd. This vector contains the secret
as its first entry and the other entries are the randomness used for the sharing. The vector
of shares will then be sh(d,vd) = Msh · vd.

We number the shares in sh(d,vd) such that the first n entries are the additive shares.
Further, for 1 ≤ i ≤ n and a qualified set A of the threshold committee, we let ri

A denote
the reconstruction vector that players in A can use to reconstruct the additive share si =
sh(d,vd)[i], while rA is the reconstruction vector used to reconstruct the secret itself. Ii

contains the set of indices of elements in sh(d,vd) that are threshold shares of the additive
share si. Finally, each player in the threshold committee gets several shares, we therefore use
u(i) to denote the index of the player holding the i’th share.

We say that a committee pair holds dS if it is the case that all honest players in the
committees have valid shares of dS, according to some sharing vector vdS

, and if every share
si has been committed to by Pu(i) using a commitment αi (this must hold even if Pu(i) is
corrupt).

Discussion of the Decryption Protocol For the implementation of threshold decryption, we
assume a committee pair assigned to handle each batch of ciphertexts to decrypt. We main-
tain the invariant that when a committee pair is about to decrypt a batch, it holds dS. This
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Protocol RandomizeCiphertext Recall that c∗ is the ciphertext from the global setup and H is the random
oracle, here assumed to output a random number from ZNs+1 . Also, we assume L is a unique label assigned to
this batch of ciphertextsa. When a batch to decrypt appears on the ledger, do the following for each ciphertext
c̄ to decrypt (in parallel):

1. Call the DecryptNoRandomize protocol on input H(L) and let R be the resulting plaintext.
2. Output c = c̄ ·Multiply(c∗, H(c̄, R)) mod Ns+1.

a No randomness is required here, L could just be a counter, for instance.

Fig. 6. The RandomizeCiphertext protocol.

Protocol Decrypt
When a batch to decrypt appears on the ledger, the committee pair assigned to do the batch will execute the
operations below. The committee pair is assumed to hold dS .

1. For each ciphertext c̄ in the batch, set c = Randomize(c̄).
2. For each member of the additive committee Pi, each c = EN,ws (m) in the batch and share si =

sh(dS , vdS )[i], Pi sets:

dc,i = csi mod Ns+1

πc,i = NIZK(si, vi : dc,i = csi mod Ns+1, αi = Comck(si; vi)) ,

and send the decryption message (dc,i, πc,i) to all parties.
3. All parties: Once n− t decryption well-formed decryption messages have been received, run ΠGather (cf.

Fig. 15) with the received set as input. The input is justified by consisting of at least n − t well-formed
decryption shares.

4. For each member Pu of the threshold committee: Let D be the set of all decryption messages finally
received via ΠGather. Send D to all parties. In addition, for each additive share si for which a decryption
message was not received, for each share sj where j ∈ Ii, u(j) = u, and for each ciphertext c in the batch,
set:

dc,i,j = csj mod Ns+1 ,

πc,i,j = NIZK(sj , vj : dc,i,j = csj mod Ns+1, αj = Comck(sj ; vj))

and send the back-up message (dc,i,j , πc,i,j) to all parties.
5. All parties: Once messages from a subset A (of size at least n− t parties) of the threshold committee have

been received, then do the following for each ciphertext c = EN,ws (m) in the batch: For each additive
share si where a decryption message dc,i was not received, use the reconstruction vector ri

A to compute

dc,i =
∏

j,Pu(j)∈A

d
ri

A[j]
c,i,j mod Ns+1,

then compute
n∏

i=1

dc,i = (N + 1)m mod Ns+1

and compute m from this result.

Fig. 7. The Decrypt protocol.
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is ensured for the first pair by Fsetup, and later by using the resharing protocol we discuss
below.

We prove in Appendix I that the invariant is maintained and that hence the decryption
protocol outputs correct plaintexts. The idea for decryption is that each member of the
additive committee issues a decryption message by raising the ciphertext to its share. These
messages are distributed to all parties using a protocol called Gather.6 It ensures than when
a set of n parties (of which at most t are corrupt) all try to send a message to all parties, all
receivers will get messages from at least n− t senders, and there will be a set of at least n− t
senders that all receivers have heard from, the so-called core. The parties might not agree
on the core, as some parties might have heard from more parties than those in the core. For
details, see Section B.6. Once the Gather protocol is done, we let the threshold committee
supply back-up messages that allow reconstruction of all missing decryption messages. We
use this set-up, rather than a single threshold committee, for technical reasons, in order to
be able to show adaptive security using the so-called single inconsistent party technique.

Also for the sake of adaptive security a subprotocol RandomizeCiphertext (Fig. 6) is
included. When decrypting values that serve as output from the global protocol, we call
RandomizeCiphertext on the ciphertext to be decrypted before the actual decryption. This
is a trick that allows us to “correct” the ciphertext that appears in the simulation. The
simulation was run on dummy inputs, so the ciphertext likely contains the wrong plaintext.
When simulating RandomizeCiphertext we let c∗ be an encryption of 1 and we program the
random oracle H(c̄, R) to output an encryption of the correction we need to add. If course,
in the protocol c∗ be an encryption of 0 and nothing is added.

For all other decryption operations, the call to RandomizeCiphertext is omitted, we denote
this by DecryptNoRandomize. For input c̄, Randomize(c̄) will denote the ciphertext output
from this protocol7.

The Reshare protocol. This protocol is described in detail in Appendix E. Here we sketch
the main ideas. We want a committee pair C1 that holds dS to send secret messages to a
receiving committee pair C2 such that C2 ends up holding dS. For each threshold share si

held by Pu(i) in C1, we ask Pu(i) to verifiably secret share si among the members of C2. This
is possible because Pu(i) is committed to si, so Pu(i) will also commit to entries in a sharing
vector and send resulting shares to each member in C2 using one-time pad encryption (which
we show later how to set up). Because the one-time pad is also committed, it can be shown
in zero-knowledge that the shares sent are correct. Since the receiver is also committed to
the one-time pad she can commit to the received share and prove that the commitment is
correct.

We can assume that VSS messages are delivered on the ledger from at least n− t parties
and this is enough that receiving parties can do reconstruction on the received shares of the

6 For efficiency, the decryption protocol does not use FTOB to communicate its output, instead we borrow a more
efficient subprotocol from the implementation of FTOB.

7 This subprotocol uses the multiplication protocol, which in turn uses decryption. In order for this not to become
circular, the decryptions in the multiplication protocol are done without the randomization step.
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si’s to get shares of dS. By the homomorphic property of the commitment scheme we can
get commitments to the new shares of dS and so C2 now holds dS.

Note that for privacy, the shares of si need to be larger than si which in turn needs to be
larger than dS. So if we naively continue resharing this way, the size of the shares will grow
indefinitely. But, as we show in the appendix, this can be solved by involving an auxiliary
committee Caux that will VSS a random sufficiently large value R to both C1 and C2. Then
members of C1 will publicly reconstruct dS −R using linearity which allows the members of
C2 to adjust their shares of R into shares of dS. Since the size of shares sent to C2 only need
to depend on the size of dS, this keeps the share size constant.

5.2 Role Assignment

In this section we first show some basic building blocks and at the end of the section we
show how to put them together to get role assignment.

The MPC version of the PIR Protocol. For our implementation of assigning roles to ran-
dom parties, we will use a version of the PIR protocol where the client side is executed in
YOSO MPC. For this, we make a useful observation: Say we are given 2 ciphertexts of form
EN,ws(EN,ws−1(m1; r1);u1) and EN,ws(EN,ws−1(m2;2 r);u2). If we apply the multiplication pro-
tocol to these two ciphertexts, we get:

EN,ws(EN,ws−1(m1; r1) · EN,ws−1(m2; r2) mod N s;u3) = EN,ws(EN,ws−1(m1 +m2; r1r2);u3),

thus implicitly adding the two underlying plaintexts.

Protocol MPCPIR

1. Take the next available set of encrypted bits

c0 = EN,ws+1 (t0), . . . , cλ−1 = EN,ws+λ (tλ−1)

from the ledger. Let t be the number represented by the bits t0, . . . , tλ−1, where t0 is the most significant
bit.
Let h1, . . . , hM′ be the input list of ciphertexts, all with Ns as plaintext space, i.e., they are all contained
in Z∗

Ns+1 .
2. All parties executes the server side of the PIR protocol using h1, . . . , , hM′ as the database. The output

is a ciphertext c = EN,wλ+s (EN,wλ+s−1 (. . . EN,ws+1 (ht))).
3. Set c̃λ+s = c and execute the following loop, for i = λ+ s, λ+ s− 1, . . . , s:

(a) Take the next di−1 = EN,wi (EN,wi−1 (0; r); r′) available on the ledger, and set ui = Multiply(c̃i, di−1).
(b) Send ui to the Decrypt protocol and let c̃i−1 be the result. We have c̃i−1 = EN,wi−1 (0; r) · pi mod N i,

where pi is the plaintext contained in c̃i. However, pi is itself a ciphertext, so c̃i−1 is a random
ciphertext with the same content as pi.

4. The final ciphertext produced by the loop is a random ciphertext c̃s containing the same plaintext as ht.
Output c̃s.

Fig. 8. The MPCPIR protocol.
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We now design a protocol outputting a random and randomized ciphertext, taken from a
global set of ciphertexts h1, ..., hM ′ , where each ciphertext has been broadcast by some party,
and where each hi ∈ ZNs+1 for some s.

We will ensure that the communication complexity is sublinear in M ′. We do this by
modifying the PIR protocol from Section 3, so it can be executed by a set of committees,
where we think of the hj’s as the database, and a (set of) committees play the role of the
client.

More concretely, the high-level idea is that we first use the protocol for encrypted random
bits to get what corresponds to the client’s first message in the PIR protocol,

c0 = EN,ws+1(t0), . . . , cλ−1 = EN,wλ+s
(tλ−1) ,

where the ti’s are random bits and in this application λ = logM ′. Note that we need the
encryptions of the ti’s to have large enough plaintext space to accomodate the size of the
hj’s. See Appendix H for the protocol for generating encrypted random bits.

Given that these ciphertexts are on the ledger, any party can consider the h1, . . . , hM ′

to be the database and locally execute the server’s part of the PIR. This will result in a
ciphertext EN,wλ+s

(EN,wλ+s−1(. . . EN,ws+1(ht))), containing a randomly chosen ht. Since the
server side of the PIR is deterministic, any honest party will arrive at the same ciphertext.
However, it would be insecure to decrypt this, even partially. For instance, if we directly
remove all but one layer of encryption, to get EN,ws+1(ht), this would reveal information
on which element is chosen, as this encryption was computed in the first stage of the loop.
Concretely, it is of form EN,ws+1(ht) = c

hj

0 c̄
hj+M′/2
0 , for some j, where ht is either hj or hj+M ′/2.

An adversary can just try all possibilities for j.
We therefore need to randomize the encryption at each level ht before decrypting any-

thing. For this purpose, we assume that we have available on the ledger a sufficient number of
random “two level” encryptions of 0, concretely random ciphertexts of form EN,wi+1(EN,wi

(0))
for i = s + 1, . . . , λ + s. Such a set of ciphertexts can be used to randomize the involved
ciphertexts before decryption.

Looking ahead, there will be several lists of ciphertexts coming from the same set of
parties and we will need to select from each list, using the same random index for all of
them. This is easy, by simply using the same set of encrypted index bits each time.

The CreateInputData protocol Our role assignment protocol below needs to start from the
assumption that, for each player P in a set {P1, . . . , PM ′}, we are given a set of cipher-
texts and commitments that have been published on the ledger by P . For this, we use the
CreateInputData protocol, Fig. 9.

The predicate predsnd(otpsnd
i , vi, ri, c

snd
i , hsnd

i ) is satisfied if

hsnd
i = EN,wS

(otpsnd
i ; vi), csnd

i = Comck(otpsnd
i ; ri)

Likewise, predrec(otprec
i , vi, ri, c

rec
i , hrec

i ) is satisfied if

hrec
i = EN,wS

(otprec
i ; v′

i), crec
i = Comck(otprec

i ; r′
i) .
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Protocol CreateInputData
Each party P :

1. Choose tag at random in ZNS . For i = 1, . . . ,max choose random otprec
i , otpsnd

i ∈ ZNS .
2. Form ciphertexts h = EN,wS (tag),

{hsnd
i = EN,wS (otpsnd

i ; vi), hrec
i = EN,wS (otprec

i ; v′
i)| i = 1, . . . ,max}

3. Form commitments

{csnd
i = Comck(otpsnd

i ; ri), crec
i = Comck(otprec

i ; r′
i)| i = 1, . . . ,max}.

4. Compute proofs π0, {πsnd
i , πrec

i | i = 1, . . . ,max} w.r.t. predicates predsnd, predrec:

π0 = NIZK(tag, rP : h = EN,wS (tagP ; rP ))
πsnd

i = NIZK(otpsnd
i , vi, ri : predsnd(otpsnd

i , vi, ri, c
snd
i , hsnd

i ))
πrec

i = NIZK(otprec
i , v′

i, r
′
i : predrec(otprec

i , vi, ri, c
rec
i , hrec

i ))

5. Let IP = InputData(tagP , {otpsnd
i , otprec

i | i = 1, . . . ,max}) denote the ordered set of ciphertexts, commit-
ments and zero-knowledge proofs created abovea. Erase the vi, v

′
i (but keep the otp’s, tagP , rP and the

ri, r
′
i).

6. Send IP to FTOB. Let the wait predicate be that M −T such IP appeared from distinct parties with valid
proofs.

a for better readability, we suppress in the InputData function the randomness used in creating the data set.

Fig. 9. The CreateInputData protocol.

To explain the data created by P : If P is chosen for a role, P ’s tag will be decrypted,
allowing P to detect that it has the role. The otpsnd

i , otprec
i ’s are randomly chosen one-time

pads that will allow P to send and receive data anonymously. The parameter max is chosen
such that there are enough one-time pad material to accommodate the data to be sent to
and from P . We fix max later, but we note already here that asymptotically it only depends
on the size of the committees, and not on the total number of players.

The party P will later need to prove that it uses the pads correctly, and we will use the
commitments for this, which is why P keeps the randomness for the commitments. We can
maintain adaptive security since they can be equivocated. But the ciphertexts cannot, so
the randomness for these is erased (except for the encryption of tag that never has to be
equivocated).

The NewRole protocol. The NewRole protocol assumes that CreateInputData has been exe-
cuted, and a set of M ′ parties have had their data delivered on the ledger, so we have as
input data sets I1, . . . , IM ′ .

It then uses the MPCPIR protocol to select a party Pt at random and output random-
ized versions of the ciphertexts published by Pt. This is done by running MPCPIR max + 1
times in parallel with the same encrypted index bits, where the j’th call will use as database
the list formed by taking the j’th ciphertext from each party. We get randomized cipher-
texts h̃, {h̃snd

i , h̃rec
i | i = 1 . . .max}, where the first one contains Pt’s tag. Finally, this tag is
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Protocol SecretChannels(C1, C2)
The protocol assumes that we have outputs from NewRole for all members of committee pairs C1, C2. For each
member Pj of the threshold committee in C1 and each member Pu in C2, let (tagj , {h̃snd

i,j , h̃
rec
i,j | i = 1, . . . ,max})

be the output data for Pj and (tagu, {h̃snd
i,u , h̃

rec
i,u | i = 1, . . . ,max}) the output data for Pu. Then execute as

follows:

Set up one time pads The following steps are repeated maxpad + 1 times in parallel:
1. Take the next unused ciphertexts h̃snd

i,j , h̃rec
i,u from the two sets of data and decrypt h̃snd

i,j ·h̃rec
i,u mod NS+1

to get a number sumj,u.
2. Pj locally looks up the ciphertext h in its original data set from CreateInputData that corresponds to

h̃snd
i,j (based on that ciphertext’s position in the ordered list) and sets otpsnd

i,j to be the otp in h.
3. Pu locally looks up h in its original data set from CreateInputData that corresponds to h̃rec

i,u and sets
otprec

i,j to be the otp in h.
4. All parties store sumj,u as associated to the channel from Pj to Pu. Pu computes locally otpsnd

i,j =
sumj,u − otprec

i,u mod NS , where otprec
i,u is the one-time pad contained in h̃rec

i,u . Note that otpsnd
i,j is also

held by Pj , and so can be used for secret communication.
5. Pj assigns the commitment csnd

i,j to otpsnd
i,j that it created earlier to the channel from Pj to Pu. Pu

creates a commitment Comck(otpsnd
i,j ; ri,j) and assigns it to the channel from Pj to Pu, as well as a

ZK proof πi,j that the commitment was correctly formed. This proof may be used later when Pu

executes its role.
Select one-time pad Let otp1 be the first shared pad set up previously. Both Pj and Pu call the random

oracle to compute H(otp1) and use this to select a random subset of the remaining maxpad one-time
pads. The size of the subset equals the number of shares Pu holds in our secret-sharing scheme. Erase all
one-time pads except the ones selected by H(otp1).

Fig. 10. The SecretChannels protocol.

decrypted. As shorthand for a call to this protocol we write:

NewRole(I1, . . . , IM ′) = (tag, {h̃snd
i , h̃rec

i | i = 1, . . . ,max}) .

The SecretChannels protocol We now specify the SecretChannels protocol, see Figure 10, used
for setting up key material so that data can be sent secretly from one committee to another.
The protocol assumes that two committee pairs C1, C2 have been formed by calling NewRole
a sufficient number of times, such that for each committee member we have a set of outputs
from that protocol: a tag and a set of encrypted one-time pads. The goal is to set up key
material such that a message can be sent from each member of the threshold committee in
C1 to all members of C2. More precisely, for each Pj in the threshold committee in C1 and
and each Pu in C2, the two parties share some secret one-time pads and both parties are
committed to the pads.

Note that, at the time the protocol is executed, the commitments will only be known
to the involved parties, but when a party executes a role, it will become known which
original data set InputData(tag, {otpsnd

i , otprec
i | i = 1..max}) it created and now all parties

can compute the relevant commitment.
The parameter maxpad is O(n), the precise value is discussed in Appendix E. The protocol

sets up many shared one-time pads and then deletes all but a subset of them. This seems
strange but is done for technical reasons, to be able to prove adaptive security. As discussed
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Protocol ExecuteRole
Each party P :

1. When the GenerateInputData is to be executed P generates a data set IP as specified there and sends it
to FTOB. In particular, IP contains a ciphertext cP = EN,wS (tagP ; rP ).

2. If IP is delivered on FTOB, then for each execution of NewRole generating public output outtag =
(tag, {h̃snd

i , h̃rec
i | i = 1, . . . ,max}), check if tagP = tag. If so, store a pointer to outtag, as P now has

the corresponding role.
3. When the SecretChannels protocol is executed, if it enters a state where tagj = tag or tagu = tag, then

execute the local computation specified in SecretChannels for Pj or Pu. As a result, P has a number of
one-time pads for each connection to another party that it will need (for receiving shares of the secret
Paillier key, or for sending it to the next committee), as well as a commitment to the pad.

4. When the data on the ledger indicates that P should execute its role, P first computes a proof rP that
it has the role associated to tag. The proof can be verified by anyone by checking that the ciphertext cP

as found in IP on the ledger satisfies cP = EN,wS (tag; rP ).
5. P executes its part of the Reshare protocol (from appendix E) in the role of a receiving party, that is,

it uses its known one-time pads to decrypt ciphertexts sent by a previous committee and computes its
shares of the secret key and commitments to them, as well as ZK proofs that the commitments contain
correct shares.

6. P computes Dec, its contribution according to the Decrypt protocol for the set of ciphtertexts to be
decrypted by the current commitee. If needed, P computes Contr, its contribution to MPC subprotocols
such as Multiply.

7. Finally P computes a VSSmessage, as its contribution to the Reshare protocol in the role of the sending
party. Here, the commitments from the SecretChannels protocol will be used.

8. P send (tag, rP ,Dec,Contr,VSSmessage) to FTOB.

Fig. 11. The ExecuteRole protocol.
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above, we use a single inconsistent party technique based on rewinding, implying that during
the proof the channel between two players may be used several times. To avoid reusing one-
time pads, the simulator reprograms the random oracle after rewinding to select different
one-time pads.

The Execute Role Protocol. The final ingredient we need is the specification of how parties
execute roles, i.e., how a party should prepare for playing a role, and how the single message
to be sent should be put together. This is described in the ExecuteRole protocol, Fig. 11. For
better readability, we do not specify all parts in full detail. These details can be found in the
other protocols referred to in ExecuteRole.

Protocol RoleBatcheseno parametrised by a number M of parties, Pal = (Gen, E,D), and a number eno which
is an upper bound on the number of committees needed to run one batch of RoleBatcheseno.

Init: 1. Let c > 0 be a constant, called the honesty gap.
2. Let M = (3 + c)T be the number of parties, where T is the maximal tolerable corruption.
3. Let n = λ and let ϕ = ℓ2n be the largest multiple of 2n such that ϕ ≤ (c/2)T . Assume that ℓ = eno.

We later discuss how to handle when this is not the case.
4. Learn (N,wS) from Fsetup.
5. As below, define eno committees each with a secret sharing of dS from the output of Fsetup.
6. Each P ∈ P lets boP = 0 and bdP = 0.

Next Batch: On input (NextBatch) to P , where boP = bdP , update boP ← boP + 1 and:
1. Run CreateInputData to have each P send IP on FTOB.
2. Wait for valid IP to appear from P ∈ Q with |Q| = M − T .
3. Let PboP ← Q. Let PboP = {P1, . . . , PM′}.
4. For j = 1, . . . , ℓ = λ|Q|, run (tagj , {h̃snd

i , h̃rec
i | i = 1, . . . ,max})← NewRole(I1, . . . , IM′ ).

5. If there are not |Pb| unique values tagj , then terminate. Otherwise, sort the outputs of NewRole
lexicographically on tag and for each unique tag map the first occurrence (tag, ·) unto a unique role
R ∈ Pb.

6. The above gives M − T roles R with unique (tagR, {h̃snd
R,i, h̃

rec
R,i | i = 1, . . . ,max}). Take the first ϕ of

these roles and use them to form ℓ = eno committees CbdP
1 , . . . , CbdP

eno of size 2n. Break each into a
threshold committee and an additive committee of sizes n.

7. Run SecretChannels(CbdP −1
eno , CbdP

1 ) and for c = 1, . . . , eno− 1, run SecretChannels(CbdP
c , CbdP

c+1).
8. Let bdP ← bdP + 1.

Fig. 12. The protocol for one batch of Role Assignment.

Iterative Role Assignment We finally describe the protocol RoleBatcheseno for assigning roles
for our MPC protocol. For each batch, we first run CreateInputData, so each party P creates a
data set IP containing ciphertexts, commitments and zero-knowledge proofs and broadcasts
it. Later, when P executes its role by sending a message, it will include the randomness for
the ciphertext h in IP so it can be verified that tagi contained in h is indeed the tag assigned
to the role in question. Intuitively, this prevents corrupt parties from taking over someone
else’s role. To do this, you must make a ciphertext containing someone else’s tag, and for
any given batch, nothing is decrypted until all relevant ciphertexts are on the ledger.
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While running CreateInputData, we wait only for M ′ = M − T contributions to not
deadlock. Let Q be the set of parties that got their contributions delivered. We then do
λ(M − T ) calls to NewRole. Each call selects implicitly a random anonymous party P in Q,
and the call also outputs a tag tag which cannot be linked to P but was chosen randomly
by P in the previous phase. Since honest parties will choose colliding tags with negligible
probability, we can use this to throw away duplicates, such that each P gets one role. If there
are less than M −T unique tags, then we abort. The probability that any given P ∈ Q is not
hit after λ(M −T ) tries is the negligible (1− (M −T )−1)λ(M−T ))→ e−λ, so we can ignore it.

Note that we let n = λ and let ϕ = ℓ2n be the largest multiple of 2n such that ϕ ≤ (c/2)T .
If ℓ < eno this will not give use eno committees. In this case we simply run the five first
steps m times in parallel for mℓ ≥ eno. When we run a protocol like NewRole some m times
in parallel we use the same committees in each run, so it consumes a number of committees
constant in m. Ergo, RoleBatcheseno consumes a number of committees constant in eno. We
can therefore set eno large enough to generate enough committees for running the next batch
without circularity in how we compute eno. In fact, we set eno sufficiently larger than for this
to have sufficiently many committees left over in order to do the batches of MPC function
evaluation in FMPC+CF.

The reason why we only use (c/2)M out of M − T roles to form committees is that once
we used and executed (c/2)M − 1 roles and revealed which parties were behind them, there
are still (M − T ) − (c/2)T ≥ (2 + (c/2))T parties left unrevealed. So, even if the adversary
concentrates its corruptions on this set it can corrupt the party behind the last unrevealed
role of the last committee with probability at most 1/(2+(c/2)). Therefore, by a Chernoff bound,
the probability that ≥ (1/2)λ parties out of the n = λ parties on a committee are corrupted
before they executed their role is negl(λ). Hence each committee has honest majority of
executed roles except with negligible probability, as required for all our sub-protocols.

5.3 Putting the Pieces Together

Let FMPC be FMPC+CF with the Flip Coin and Deliver Coin commands removed. To imple-
ment FMPC parties run a number of RoleBatches. Some of the generated roles are used for
running the next RoleBatches, while some are used for running the MPC part of FMPC. To
supply input to FMPC we extend CreateInputData such that parties contribute their party
input and role input by sending EN,w1(xi) and EN,w1(zi) along with the usual encryptions
of tag and otp’s. All encryptions are augmented by proofs of plaintext knowledge. The role
inputs EN,w1(zi) are permuted along with the encryptions of otp’s by running NewRole with
the same random index on the set of encryptions EN,w1(zi). The encrypted inputs xi and
permuted encryptions of tag, otp, and zi now enter the MPC. The order of the encryptions
of tag, otp and zi define how they are mapped onto roles and therefore the permutation π in
FMPC. We then use the sub-protocols for random bits, adding, and multiplying to compute
a circuit evaluating fb on the contributed inputs, producing encrypted outputs. The public
output yb is decrypted. For private output going to a role, we add the output to the relevant
otp inside the encryption and decrypt. This defines a protocol πMP C implementing FMPC,
the proof of this fact is found in Appendix I.
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We the construct a protocol πCF implementing FMPC+CF in the FMPC-hybrid model. This
is done by securely computing a function f which divides the parties into committees and
robustly secret shares a random value onto each committee. To flip the coin the committee
members all send their shares and verification values to all other parties. Details and proof
are found in Appendix J. By UC composition we then have an implementation of FMPC+CF.

In this implementation, we assume we have access to an instance of FTOB. In Section 6
we show how to implement FTOB from an ideal functionality FCF for coin-flip, which in
turn will just be the coin-flip part of FMPC+CF. This seems cyclical, but importantly, since
we open coin-flips by reconstructing robust secret sharings, the implementation of openings
of coin-flips on FMPC+CF does not use FTOB. We can therefore let FMPC+CF implement a
surplus of coin-flips in batch b. During the implementation of batch b + 1 these can be used
to implemented the instance of FTOB used in b + 1. The implementation of FMPC+CF works
equally well if each batch uses a separate FTOB. This finally gives a protocol which we call
MPCCFPal, and from the theorems proved in Appendix I and J, we get:

Theorem 1. When for a constant c at most T < M/(3 + c) parties are adaptive corrupted
and we set n = λ then for a large enough constant eno we have that if Pal is CSO-secure (Def-
inition 3), then MPCCFPal securely implements FPal,1/3,γ

MPC+CF in the (Fsetup,FTOB,Fatomic-send)-
model with a random oracle. Here γ can be any polynomial. If M ≥ 2eno and we use the
FTOB implementation from Section 6 then the amortized communication in bits to generate
one committee of size n = λ is M poly(λ, logM). If Ω(M poly(λ, logM)) multiplication gates
are handled in parallel, the amortized complexity of a secure multiplication is M poly(λ).

As for the communication note that in each basic run we generate (c/2)T = Θ(M) roles.
To do this we use a number of committees which is poly(λ, logM) as we have a constant
number of runs of parallel protocols each with poly(λ, logM) rounds. Each committee con-
sists of λ parties, so we consume poly(λ, logM) roles. To generate Θ(M) roles a total of
O(M) poly(λ, logM) group elements are posted on FTOB. Therefore the amortized num-
ber of group elements posted on FTOB per generated committee is O(λ) poly(λ, logM) =
poly(λ, logM), and the same holds for generating eno ∈ poly(λ, logM) committees. Since
our implementation of FTOB uses communication O(ML) + poly(λ, logM) to broadcast L
bits to all parties, the amortized number of bits sent and received by each party to generate
eno committees is poly(λ, logM).

Handling one multiplication gate uses a constant number of committees and requires
broadcasting poly(λ) bits. If sufficiently many multiplications are done in parallel in the
theorem, the broadcasts require communication O(M poly(λ)) bits and the cost of generating
the committees will “amortize away”.

The reason why we generate ℓ = λ|Q| roles in Item 4 in Next Batch is that we need
each party to be sampled at least once for roles which are outputs of FMPC. For roles only
used for committee formation to run RoleBatches, this is an overkill, as we throw away
M − T − ϕ = Θ(M) roles. It is enough to ensure that ϕ roles are hit at least once. When
M = Θ(λ) this allows to reduce the overhead from λ to O(1) using a simple concentration
bound. We discuss this in Appendix A.
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6 Consensus

We present a protocol ΠTOB securely implementing FTOB. For implementing FTOB we need
an ideal functionality for asynchronous coin-flip FCF. Like for the coin related sub-interface
of FMPC+CF, when the first honest party asks for the next coin it is flipped and shown to
the adversary, and after the last honest party asks for the next coin, the adversary must
eventually deliver the coin to all honest parties. For later convenience we assume FCF has a
command (coin-index) telling a party Pi how many coins it received from FCF so far.

6.1 Implementing FTOB from FCF

We give a high-level description of the protocol ΠTOB instantiating FTOB. It sequentially
runs instances of an Agreement on Core Set (ACS) protocol ΠACS where the inputs of each
party satisfies the wait predicate. The ACS protocol is heavily inspired by the one in [KN23],
but with several changes to make it YOSO. The protocol ΠTOB uses small committees, but
we do not use role assignment to sample these committees. The role assignment establishes
private channels to future roles which is are not needed by ΠTOB. We therefore use simple
self-nomination from VRFs as in [GHM+17]. This is concretely much more efficient. We
elaborate in Appendix B.1. The decentralized nature of sampling the roles for ΠTOB via
self-nomination means that the committees will be of variable size, and that there is no
straightforward way to talk about the index of a role on the committee. Since the ACS
protocol in [KN23] uses the fact that each party corresponds to an integer in [M ] to describe
its causal past via M -bit vectors and to elect a leader using a logM -bit coin, it cannot simply
be instantiated with the self-nominated committees without some structural changes.

6.2 Agreement on Core Set

In Appendix B we present a modified version of the protocol for ACS from [KN23]. Beyond
some syntactical changes, we make the following three changes:

1. For each instance of an activation rule the set of parties who “speak” is a committee
specifically elected for that role. This is implemented using sortition on a unique identifier
associated with that instance of the activation rule as described in Appendix B.1. We do
not explicitly define the identifiers, but a natural choice is to concatenate the protocol
name, session identifier, and a unique activation rule name.

2. The underlying Causal Cast (CC) primitive is instantiated using a novel RB protocol in
Appendix B.3. This allows the CC protocol to give output to all parties, as we by design
do not know who is in the next committee.

3. Leader election is separated from CC and implemented directly in the context of graded
block selection (Appendix B.7) using an extra round of communication and the coin-flip
functionality FCF in Fig. 29. The resulting protocol has the property that if a party
selects a block with grade 2, then all possible justified outputs (cf. Appendix B.2) in the
following round have grade 2.
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4. By using the justified grade of the block selected in the preceding round, as justifier that
we did not yet terminate, we make sure that all parties terminate in adjacent rounds,
and that the round number becomes a justified output of the protocol.

The first three changes make the ACS protocol YOSO and compatible with self-nominated
committees. The final change allows a substantial optimization in the amount of setup that
needs to be recomputed when instantiating FCF with a YOSO protocol that requires setup
for each coin flip.

Many natural instantiations of the coin flip requires a setup to be computed for each round
of the protocol. The number of rounds can be bounded by O(λ) but only an expected constant
number of setups are actually used. So there is a multiplicative factor O(λ) overhead on the
communication and computation required to compute setups. We cannot a priori repurpose
the unused setups for later rounds, because a party cannot determine from its local view,
whether another honest party requested a coin and thus leaked it to the adversary. Exposing
the justified output round will allow us to reach agreement on an upper bound on the number
of setups that could have been used in each iteration by supplying them as input to the next
round. This will in turn allow reducing the number of coin flipping setups being consumed
by each decision of ΠTOB to expected constant.

6.3 Total-Order Broadcast
We present a protocol ΠTOB implementing FTOB with ledgers, blocks and wait predicates as
defined in Section 4. A straightforward implementation would be to have parties who want to
broadcast a message on the TOB send the message to all parties, have an elected committee
collect these messages and then, when their local blocks satisfy the wait predicate, propose
them in ΠACS. But as each message could be included by multiple proposers this would result
in a worst-case multiplicative communication overhead of O(n). Instead we will have each
party who wants to broadcast a message on the TOB send the message through reliable
broadcast with a O(logM) bit message identifier, mid, and then have the proposers include
the message in their block by referring to the message using mid. Each block proposer will
also add the round number it got as part of the output of ΠACS in the previous round to
its block. After agreement on a subset of the blocks is reached, we can take the minimum
output round, r, included in the set of blocks and via Adjacent Output Round property
conclude that no honest party participated in round r + 2 or later. Thus the corresponding
coins remain unpredictable to the adversary and their setups can be repurposed.

We require that all blocks have the same size up to a constant factor. Otherwise, the
communication in each round could be dominated by a large block which does not make
it into the core. To get around this issue, we require that all blocks include references to
between (max(α,W#)) and 2(max(α,W#)) messages, which means that the size of blocks
that get included in the core in each epoch is not asymptotically dominated by the remaining
blocks. For the concrete complexity analysis in Theorem 3 we assume that α is at least λ.
Theorem 2. When for a constant c at most T < M/(3 + c) parties are adaptive corrupted
and we sample committees as in Lemma 2, then we have that ΠTOB implements FTOB in the
FCF-model.
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Protocol ΠTOB described from the view of party P. We use the definitions of ledger, blocks and wait predicates
from Section 4.

Init: Each party P initialises the empty ledger LP = ϵ, a broadcast index keeping track of how many messages
were broadcast by P, cP = 0, a batch index keeping track of how many wait predicates are set for P,
bP = 0, and a set of dispersed messages pending inclusion in L, PendingP = ∅. It also initialises two
instances of the coin functionality F0

CF and F1
CF and corresponding coin counters coin0 = 0 and coin1 = 0.

Broadcast message: On input (Broadcast,mid,m) party P (mid) starts an instance of ΠRB on the message
m with session identifier (Broadcast,mid, cP) with the input justifier that ΠRB has given output for all
sessions (Broadcast,mid, c) with c ∈ [1; cP). Finally, it lets cP = cP + 1.

Schedule message: On output m from an instance of ΠRB with session identifier (Broadcast,mid, c) add
(P (mid), c,m) to PendingP.

Set Wait Predicate: On input (wait,W ) let bP ← bP + 1 and let W bP = W .
Deliver: When P has output (C, r) from ΠACS with session identifier |L| + 1 and for each pair (P′, c) ∈ C

there is a an entry in PendingP of the form (P′, c,m) it does the following: Adds each of the messages m
(ignoring duplicates) in order to a block which is added to LP and removes the corresponding entries from
PendingP. Lets LocalOutputRound|L|+1 = r, and lets r′ be the minimal justified output round included in
C. It then adds r′ + 1 to coin|L|+1 mod 2 and inputs (next-coin) to F |L|+1 mod 2

CF until querying it for
input (coin-index) returns coin|L|+1 mod 2.a

Propose Block: When |PendingP| ≥ max(W |LP|+1
# , α) and W |LP|+1(LP,PendingP) = ⊤, P starts running

ΠACS with session id |LP|+1. The input block is defined as follows: We say an element (P′, c,m) ∈ PendingP
is referenced by (P′, c). Party P computes a block B consisting of references to at most W |LP|+1

# messages
in PendingP where W |LP|+1(LP, B)b and remove those messages from PendingP. Then add references to the
max(W |LP|+1

# , α,PendingP) oldest messages from PendingP to a block B′ and remove those messages from
PendingP. Finally let B′′ be a block including only the locally observed output round from the previous
batch, LocalOutputRound|LP| and let B′′′ = B∥B′∥B′′ be the input to ΠACS. The block is justified by
consisting of a justified output round number from the previous iteration of ΠACS and references to
messages that are sent through RB in the step above, these messages satisfying the wait predicate and
the number of references being in the interval [max(W |LP|+1

# , α); max(W |LP|+1
# , α)].

a In plain English, it uses the agreement on how many coins were consumed in past iterations to skip past
any coins that it has not used but which potentially could have been used by other parties, so that all
parties are synchronised when they start flipping coins in the next instance of ΠACS.

b This can be computed efficiently as described in Section 4.

Fig. 13. Total-Order Broadcast

Proof. Follows from Theorem 4, Theorem 3, and Lemma 2.
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A Concrete Optimisations

The reason why we generate ℓ = λ|Q| keys in Item 4 in Next Batch in Fig. 12 is that
we insist that each P ∈ Q needs to be sampled at least once in the PIR so that it gets a
role. This gives a clearer analysis but is very wasteful. We run NewRole ℓ = λ|Q| times to
output only |Q| roles, an overhead of λ. Note, however, that if one generates |Q| keys instead
of λ|Q| keys, then a given P gets a role with constant positive probability. An honest and
corrupted parties in Q are hit with equal probability. Furthermore, we can use the tags to
compute how many parties got a role key. Repeating this in sequence until there are |Q|
unique parties which got a role key will take expected O(log |Q|) rounds. And we have that
O(log |Q|) = O(logM) = O(log λ), as M is polynomial in λ. This replaces an overhead λ
by log λ. Furthermore, for the roles used to form committees in Renew Setup we only use
ϕ ≤ (c/2)T roles out of the M − T = (2 + (c/2))T roles generated. There is no reason to
generate role keys for the parties in Q which are not used to form committees. If we generate
|Q| = M − T random role keys, then by a Chernoff bound, we will have (c/2))T unique roles
except with negligible probability, saving an additional logM factor for internal committees.

B Justified ACS with Adjacent Output Rounds and Player
Replaceable Committees

We adapt the protocol ACS protocol from [KN23] to the YOSO setting. The high-level
changes are described in Section 6.2.

B.1 Sampling Committees using Cryptographic Sortition

Our TOB protocol does not rely on private channels and the committees can simply self-
nominate using the cryptographic sortition implementation from [GHM+17], which is de-
scribed in terms of parties who each have a weight w and where the sum of corrupted weight
must be less than a third of the total weight W by some constant fraction. In short a party Pi

who has wi units of the total weight W computes (h, π, j) = Sortition(ski, seed, n, role, w,W )
to privately check how many parties they are emulating on the committee for role, and other
parties can verify this using VerifySort(pki, h, π, seed, n, role, w,W ). Assuming the seed was
chosen before the secret key of each user, the probability that each unit of weight gets to
emulate a role is n

W
. We present the protocol in the standard setting of M parties of equal

weight, by simply fixing wi := 1 for all Pi and W := M . Since the assignment of each party
(or equivalently unit of weight) to a role is drawn independently from a Bernoulli distribution
we can apply lemma 24 from [BKLZL20] which we restate (slightly simplified).

Lemma 2 (Lemma 24 from [BKLZL20]). If n ≤M , 0 < ϵ < 1/3, and T ≤ (1−2ϵ)M/3
bounds the number of corruptions, then a committee Crole sampled as above satisfies the
following except with probability negligible in n:

1. Crole contains fewer than (1 + ϵ) · n parties.
2. Crole contains more than ((1 + ϵ/2) · 2 · n)/3 honest parties.
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3. Crole contains fewer than (1− ϵ) · n/3 corrupted parties.

In the following protocols we will be using P ∈ Crole as shorthand for a party P who was
elected for the committee of role and who implicitly sends proofs of this along with messages.
This does not affect communication complexity as the parties are already sending a O(λ) bit
hash. Additionally we use n as the expected size of Crole, and assume that t := (1− ϵ) · n/3
is an upper bound on the number of corrupted parties on Crole. We can think of n as a
statistical security parameter. Additionally, except for the committees used to implement
RB, the committees only need to have honest majority, so we can have concretely smaller
committees in those instances. For simplicity we let n be security parameter λ.

B.2 Eventual Justifiers

We will use the definition of Eventual Justifiers from [KN23]. An eventual justifier is a
predicate evaluated on a message and a party’s local view. They are required to be monotone
and propagating. Monotone in the sense that a party seeing a message as justified in their
view, does not at some later point consider it to not be justified. Propagating in the sense
that a message being justified at one party means that it will eventually be justified at all
honest parties. A recent example of justifiers being used in a synchronous model include
[LN23].

Definition 4 (Justifier [KN23]). For a message identifier mid we say that Jmid is a
justifier if the following properties hold.

Monotone: If for an honest P and some time τ it holds that Jmid(m,P, τ) = ⊤ then at all
τ ′ ≥ τ it holds that Jmid(m,P, τ ′) = ⊤.

Propagating: If for honest P and some point in time τ it holds that Jmid(m,P, τ) = ⊤,
then eventually the execution will reach a time τ ′ such that Jmid(m,P′, τ ′) = ⊤ for all
honest parties P′.

The justifiers are often used as an explanation for why a party sent a particular message.
It is natural to implement this by considering the predicate satisfied when a subset of the
messages you received would prompt you to send the same message if you were performing
the same role as the sender. Most of the protocol definitions in this section will have justifiers
on inputs and outputs, meaning that all inputs and outputs can be guaranteed to have certain
properties. This holds even for adversarial inputs and outputs, in the sense that if they are
accepted as justified in the view of an honest party, then they satisfy some predicate. We say
in that case that all possible justified outputs of a protocol satisfy the predicate. Similarly,
most protocol messages will come with justifiers which are used to reason about all possible
justified messages of some type satisfying some property. In many cases this means that an
adversary might lie about what message they should have sent in the protocol, but it will still
be a message that can be explained as something an honest party would have sent based on
a valid sequence of events, and therefore a message that is as good as what an honest party
would have sent. We refer to [KN23] for a formal definition of possible justified messages
and outputs. Combining justifiers with RB means that Byzantine parties cannot equivocate

32



and have to give a explanation for why they send each message, which in many cases can
combine to make an adversarial message have all the relevant properties we require of an
honest one.

B.3 Reliable Broadcast for long messages

We present a protocol for reliable broadcast (RB) it has the usual properties of Bracha’s
RB[Bra87].

Definition 5 (Reliable Broadcast). A protocol for M parties P1, . . . ,PM , where all par-
ties have input mid. The message identifier mid contains the identity of a sender Ps.
Validity: If honest Ps has input (mid,m) and an honest Pi has output (mid,m′) then m′ =

m.
Agreement: For all honest outputs (mid,m) and (mid,m′) it holds that m = m′.
Eventual Output 1: If Ps is honest and has input (mid, ·), and all honest Pj start running

the protocol, then eventually all honest Pi have output (mid, ·).
Eventual Output 2: If an honest Pj has output (mid, ·), and all honest parties start run-

ning the protocol, then eventually all honest Pi have output (mid, ·).

Our protocol for subquadratic and message length optimal RB follows the blueprint
of algorithm 4 by Das et al. [DXR21], but relies on a distinct self-nominated committee to
perform each activation rule. At a high level: after receiving the message from the designated
sender the remaining parties essentially run Bracha’s RB protocol on a hash of the message
while distributing shares of a Reed-Solomon encoding of the message. Each party Pi is
supposed to receive the ith share of the encoding from each party sending an echo message.
So if all honest parties receive the same message from the sender, then they forward a
matching hash and shares to each other party. It follows that if any message is supported by
the echo messages of a supermajority (making it unique), then any honest party Pi who sends
a ready message includes the ith share of that message. We restate it in Fig. 14 to illustrate
how it can have subquadratic communication when T < (1− ϵ)M/3 by instantiating it with
committees.

We only need to observe that it is YOSO (i.e., each committee member sends only one
message) and that when T < (1 − ϵ)M/3 we can by Lemma 2 sample committees of size
O(λ) where at most n parties are corrupted and more than twice as many are honest. Then
lowering the degrees of the polynomials used in the Reed-Solomon code to t means that
from any set of distinct shares greater than 3t of which at most t shares are incorrect one
can reconstruct the message. To be able to send a distinct share to all M parties we need
to pick the polynomials of the Reed-Solomon code to be over a field that is larger than M .
Concretely the messages just need to be of size log(M) · λ to dominate the total combined
sized of the points sent by the committee, resulting in message length optimality, but since
all parties will be including a cryptographic hash, a signature, and the output of a VRF
from sortition in their messages, the dominating cost will be λ parties sending λ bits to M
parties. This lowers the communication complexity of broadcasting an |m| bit message from
O(M(|m|+Mλ)) in [DXR21] to O(M(|m|+ λ2)).
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Protocol ΠRB

Send: Ps sends m to all parties.
Echo: On receiving the first valid message mi from Ps each party Pi ∈ Cecho computes the Reed-Solomon

encoding and hash of their value Di = (s1, . . . , sn) = Encode(mi), hi = H(mi), and sends (echo, sj , hi) to
each party Pj ∈ P.

Ready 1: On receiving messages of the form (echo, s1
i , h) with the same values of s1

i and h from n−t distinct
parties in Cecho each party Pi ∈ Cready who has not yet sent a ready message sends (ready, s1

i , h) to all
parties.

Ready 2: On receiving messages of the form (ready, ·, h) from t + 1 distinct parties in Cready and messages
of the form (echo, s2

i , h) from t + 1 distinct parties Cecho with the same hash h and share s2
i , each party

Pi ∈ Cready who has not yet sent a ready message sends (ready, s2
i , h) to all parties.

Output: On receiving messages of the form (ready, s′
j , h) from at least n−t distinct parties each party P tries

to reconstruct from the shares received. To reconstruct, P first removes any shares from parties sending
more than one share and then, if reconstruction using the remaining shares is successful, outputs the
result and terminates. This step is repeated each time a new ready message is received, until successful
reconstruction.

Fig. 14. Reliable Broadcast

The main insight is that if two committees with honest supermajority perform the echo
and ready roles, and the reconstruction threshold of the Reed-Solomon code is less than a
third of the committee size, the proof still goes through: If an honest party, P, terminates
because they saw n− t ready messages, then (as in Bracha’s original protocol) t + 1 honest
parties sent ready, and at least one of them, P′, did so because they saw n− t echo messages.
At least t + 1 of matching echo messages seen by P′ came from honest parties, and the
messages of these t+ 1 honest parties will eventually arrive at the remaining honest parties
(with a different set of matching shares). So now every honest party will eventually see t+ 1
echo messages (from the parties who sent echo to P’) with the same hash and same share,
t + 1 ready messages (from the honest parties who sent ready to P) with the same hash,
allowing them to reconstruct the message from the shares in the consistent ready messages,
and send their own share in a ready message. All honest parties sending a ready message in
turn allows every honest party to terminate.

B.4 Causal Cast

The concept of Causal Cast (CC)[KN23] is an abstraction over DAG based protocols that
utilize the structure of a DAG to infer what a party would have said in a protocol that they
are in an abstract sense running without directly sending the messages. It can be thought of
as a tool to describe protocols in this paradigm (notable examples include [Bai16,KKNS21])
without needing to explicitly consider the structure of the DAG. Using the terminology of
CC a message of a party in the protocol is a computed message when it can be inferred by
pointing to previous messages instead of explicitly sending the message. This concept was
pioneered and dubbed “virtual voting” in [Bai16]. If a message, such as a message in a block,
needs to be introduced to the DAG, then it is instead a free-choice message. For motivation
of the remaining concepts we refer to [KN23]. What is important for our purposes is that
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CC is used black box in [KN23] and that we can implement it in the YOSO model by giving
YOSO implementations of Reliable Broadcast and FCF, which are in turn used black box to
implement CC in [KN23]. We provide a YOSO RB in Appendix B.3 and assume access to an
ideal coin functionality FCF. However, there is the caveat that the ideal coin functionality
does not immediately provide an implementation of Leader Election, because the committees
are sampled using sortition. We show how to get around this hurdle in Appendix B.7.

Definition 6 (Causal Cast[KN23]). A protocol for M parties P1, . . . ,PM is called a
Causal Cast (CC) if it has the following properties.

Free-Choice Send: A party Pi can have input (cc-send,mid,m) where mid is a free choice
identifier Pi = Pmid and Jmid

in (m) = ⊤ at Pmid at the time of input.
Computed-Message Send: A party Pi can have input (cc-send,mid,m,mid1, . . . ,midℓ),

where mid is a computed-message identifier, Pi = Pmid, Pi earlier gave outputs (cc-del,midj,mj)
for j = 1, . . . , ℓ, and

⊥ ≠ m = NextMessagemid((mid1,m1), . . . , (midℓ,mℓ)) .

Constant Send: A party Pi can have input (cc-send,mid,m) where mid is a constant
identifier. In that case it is guaranteed that all parties eventually have the same input
(cc-send,mid,m).

Free-Choice Validity: A party Pi can have output (cc-del,mid,m), where mid is a free-
choice identifier. It then holds that Jmid

in (m) = ⊤ at Pi at the time of output. Furthermore,
if Pj = Pmid is honest, then Pj had input (cc-send,mid,m).

Coin Flip Validity: A party Pi may output (cc-del,mid,m) where mid is a coin-flip iden-
tifier mapping to an instance of FCF as defined in Fig. 29 and the index of a coin: ℓ. In
that case Pi has previously received output FCF.L[ℓ] from FCF.

Computed-Message Validity: A party Pi can have output (cc-del,mid,m,mid1, . . . ,midℓ),
where mid is a computed-message identifier. In that case Pi earlier gave outputs (cc-del,midj,mj, . . .)
for j = 1, . . . , ℓ, and ⊥ ≠ m = NextMessagemid((mid1,m1), . . . , (midℓ,mℓ)).

Constant Validity: A party Pi can have output (cc-del,mid,m). In that case it immedi-
ately before had input (cc-send,mid,m).

Liveness: If an honest party Pi had input (cc-send,mid, . . .) or some honest party had
output (cc-del,mid, . . .) and all honest parties are running the system, then eventually
all honest parties have output (cc-del,mid, . . .).

Agreement: For all possible justified outputs (cc-del,mid,m, . . .) and (cc-del,mid,m′, . . .)
it holds that m′ = m.

We will also be using the notion of Justified Causal Cast protocols ([KN23]) in which
outputs are associated with a message identifier mid and can be sent as a computed message
(cc-send,mid,m,mid1, . . . ,midℓ), in which case the message identifiers mid1, . . . ,midℓ justify
the output. For a Justified Causal Cast protocol Π we will use Π.Jout to denote its output
justifier. This will be useful for reporting justified outputs of subprotocols.
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Remark 1 (Honest Majority Committees). For the remaining protocols in this section we
only need “honest majority” committees, by which we mean that the following holds except
with probability negligible in n:

1. Crole contains fewer than (1 + ϵ) · n parties.
2. Crole contains more than ((1 + ϵ) · n)/2 honest parties.
3. Crole contains fewer than (1− ϵ) · n/2 corrupted parties.

This is implied by the bounds in Lemma 2, but in practice allows sampling committees that
are concretely smaller by picking an appropriately smaller n and letting t := (1− ϵ) · n/2.

B.5 Justified Gather

We restate the definition Justified Gather (Definition 7) and the protocol ΠGather (Fig. 15)
which implements it. Nothing changes from [KN23] apart from notation and each activa-
tion rule being performed by parties who self-nominate using sortition as described in Ap-
pendix B.1.

Definition 7 (Justified Gather). A protocol for M parties P1, . . . ,PM . There is an input
justifier Jin and an output justifier Jout specified by the protocol. All honest Pi have an input
Bi for which Jin(Bi) = ⊤ at Pi at the time the input is given.

Liveness: If all honest parties start running the protocol with a Jin-justified input then
eventually all honest parties have a Jout-justified output.

Justified Blocks: For all possible justified outputs U and all (potentially corrupt) Pi and
all (Pi, Bi) ∈ U it holds that Jin(Bi) = ⊤.

Validity: For all possible justified outputs U and all honest Pi and all (Pi, Bi) ∈ U it holds
that Pi had input Bi.

Agreement: For all possible justified outputs U and U ′ and all (Pi, Bi) ∈ U and (Pi, B
′
i) ∈

U ′ it holds that Bi = B′
i.

Large Core: For all possible justified outputs (U1, . . . , Um) it holds that |⋂m
k=1 U

k| ≥ n− t.

The proof that ΠGather is a Justified Gather protocol is presented in [KN23]. The only
change is that the dimensions of the table T and the combinatorial argument changes from
using a fixed committee size nC and corruption bound tC with tC < nC/2 to reasoning about
committees of random but bounded size elected using sortition. Concretely, let nGather;2 be
the number of parties in CGather;2 and nGather;3 be the number of parties in CGather;3, then the
table will have nGather;2 rows and nGather;3 columns. But this does not change the conclusion,
as in either case the n− t sets included in the unions will (except with negligible probability)
be more than half than the maximal actual committee size for all other committees in the
protocol. This holds even with the bounds in Remark 1.

B.6 Justified Graded Gather

We restate the definition of a Justified Graded Gather protocol from [KN23] in Definition 8
and the protocol, ΠGradedGather implementing it in Fig. 16.
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1. The input of Pi is Bi with Jin(Bi) = ⊤. Party Pi lets U0
i = {(Pi, Bi)}. The singleton set is justified by

Bi satisfying Jin.
2. For r ∈ [1; 3] each party Pi ∈ CGather;r-1 causal casts Ur−1

i as a computed message. Then each party Pi

collects incoming Ur−1
j from parties Pj ∈ CGather;r-1, lets P r

i be the set of Pj it heard from, waits until
|P r

i | ≥ n− t and lets
Ur

i =
⋃

Pj ∈P r
i

Ur−1
j .

The message is justified by being computed from the set P r
i where |P r

i | ≥ n− t.
3. Finally, Pi outputs U3

i .

Fig. 15. Protocol ΠGather.

Definition 8 (Justified Graded Gather). A protocol for M parties P1, . . . ,PM . There
is an input justifier Jin and an output justifier Jout specified by the protocol. All honest Pi

have an input Bi for which Jin(Bi) = ⊤ at Pi at the time the input is given.

Liveness: If all honest parties start running the protocol with a Jin-justified input then
eventually all honest parties have a Jout-justified output.

Justified Blocks: For all possible justified outputs (U, T ) and all (potentially corrupt) Pi

and all (Pi, Bi) ∈ U it holds that Jin(Bi) = ⊤.
Sub Core: For all possible justified outputs ((U1, T 1), . . . , (Um, Tm)) it holds that T i ⊆⋂m

k=1 U
k for all i ∈ [m].

Validity: For all possible justified outputs (U, T ) and all honest Pi and all (Pi, Bi) ∈ U it
holds that Pi had input Bi.

Agreement: For all possible justified outputs (U, T ) and (U ′, T ′) and all (Pi, Bi) ∈ S and
(Pi, B

′
i) ∈ U ′ it holds that Bi = B′

i.
Large Sub Core: For all possible justified outputs ((U1, T 1), . . . , (Um, Tm)) it holds that
|⋂m

k=1 T
k| ≥ n− t.

As in Appendix B.5 besides the committee being self-nominating nothing substantial
changes, and the proof follows from the one in [KN23] because the bounds in Remark 1
imply intersection between any two subsets of the committee of size n− t.

1. The input of Pi is Bi with Jin(Bi) = ⊤. All parties run ΠGather with Pi inputting Bi justified by Jin. Let
the output of Pi be U ′

i . If Pi ∈ CGradedGather it then causal casts U ′
i as a computed-message justified by

ΠGather.Jout.
2. Party Pi collects U ′

j from parties Pj ∈ CGradedGather, lets Pi be the set of Pj it heard from and waits until
|Pi| ≥ n− t.

3. Party Pi outputs
(Ui, Ti) =

( ⋃
Pj ∈Pi

U ′
j ,

⋂
Pj ∈Pi

U ′
j

)
.

The outputs are justified by being computed as above from justified sets.

Fig. 16. ΠGradedGather

37



B.7 Justified Graded Block Selection

Justified Graded Block Selection as defined in [KN23] allows a set of parties to input a
justified block and get one as output alongside a grade with the following properties:

Definition 9 (Justified Graded Block Selection[KN23]). A protocol for M parties
P1, . . . ,PM . There is an input justifier Jin and an output justifier Jout specified by the proto-
col. All honest Pi have an input Bi for which Jin(Bi) = ⊤ at the time the input Bi is given.
The output of the protocol is a block Ci justified by Jout.

Liveness: If all honest parties start running the protocol with a Jin-justified input then
eventually all honest parties have a Jout-justified output.

Justified Output: Jin(Ci) = ⊤ holds for all possible Jout-justified outputs Ci.
Graded Agreement: For all possible justified outputs (Ci, gi) and (Cj, gj) it holds that
|gi − gj| ≤ 1. Furthermore, if both gi, gj > 0 then Ci = Cj.

Positive Agreement: There exists α > 0 such that with probability at least α − negl all
possible justified outputs of at least n− t parties will have grade gi = 2.

Stability: If there are possible justified outputs (Ci, gi) and (Cj, gj) with Ci ̸= Cj then there
exist two justified inputs Bi and Bj with Bi ̸= Bj.

We will start out by presenting a protocol, ΠWeakGradedSelectBlock, with a weakened version
of the Positive agreement property:

Weak Positive Agreement There exists α > 0 such that with probability at least α−negl
some honest Pi will have output (Ci, gi) with gi = 2.

This will in turn be used to implement a full fledged Justified Graded Block Selection protocol
with a strengthened Stability property in Appendix B.8.

ΠWeakGradedSelectBlock is presented in Fig. 17. It is using the core principles from the cor-
responding primitive in [KN23] but needs a few modifications to function in our setting
where the committees are self-nominated. The main challenge is that parties do not have
a description of the committee. They do not even know its exact size, so we cannot in a
straightforward manner map a random string to a member of the committee. We will in-
stead for each committee member we have seen in our accumulated set, feed the coin output
together with their party identifier through the random oracle, H, and obtain a string which
was unpredictable before the core of the accumulated sets were fixed. We will locally regard
the party who has the lexicographically least string as a leader candidate and then gossip
candidates to get graded agreement on a leader and their block. If it happens that the com-
mittee member with the least string is in a sub core, Ti, then Pi gets a grade 2 output. Due to
the Large Sub Core property of ΠGradedGather this happens with good constant probability
as at least one honest Ti is fixed when the first honest party initiates gives input to FCF.

When instantiating this ΠWeakGradedSelectBlock as shown in Fig. 17 with FCF from Fig. 29,
then it satisfies Definition 9 with Weak Positive Agreement.

Lemma 3. ΠWeakGradedSelectBlock satisfies Justified Graded Block Selection Definition 9 with
Weak Positive Agreement.
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1. The input of Pi is Bi with Jin(Bi) = ⊤.
2. The parties run ΠGradedGather with input Bi and input justifier Jin. Let the output of Pi be (Ui, Ti).
3. After getting output from ΠGradedGather the parties input next-coin to FCF and then coin-index to get

the corresponding coin identifier ℓ.
4. On output (ℓ, coin) from FCF if Pi ∈ CFirstRoundCandidate: for each Pj ∈ Ui let ticketj = H(Pj∥coin), let Pk

be the one with the lexicographically least ticketk value, and send (FirstRoundCandidate,Pk) as a Causal
Cast message computed from the set Ui and coin.

5. On receiving n − t (FirstRoundCandidate,Pk) messages from parties in CFirstRoundCandidate each Pi ∈
CSecondRoundCandidate: If all the relayed Pk are identical lets bi = ⊤, and otherwise bi = ⊥ and finally
sends (SecondRoundCandidate,Pk) as a Causal Cast computed message based on the set of received
FirstRoundCandidate messages.

6. On receiving n− t (SecondRoundCandidate, bj) messages from parties in CSecondRoundCandidate each Pi: lets ni

be the number of messages where bj = ⊤, if ni > 0 lets Pk be a party included in n−t FirstRoundCandidate
messages, and outputs

(Ci, gi) =


(Bk, 2) if ni ≥ n− t ∧ ∃(Pk, Bk) ∈ Ti

(Bk, 1) if ni > 0 ∧ ∃(Pk, Bk) ∈ Ui \ Ti

(Bi, 0) if ∄(Pk, ·) ∈ Ui ∨ ni = 0 .

and if it is on the committee CGradedSelectBlock Causal Casts (Ci, gi). The output is justified by being
computed as above from justified values.

Fig. 17. ΠWeakGradedSelectBlock

Proof. Liveness and Justified Output are trivial. Stability holds because the output justifi-
cation transitively refers to a justified input through computed messages. We argue Graded
Agreement: Assume a party Pi has output (Bk, 2). Then ni ≥ n− t and Bk ∈ Ti. Now for any
other party Pj the Sub Core property of ΠGradedGather ensures that Bk ∈ Uj, and because all
second round messages were sent through CC (i.e. without equivocations) ni ≥ n− t implies
nj ≥ n−2t > 0. So, we have taken care of |gi−gj| ≤ 1 as Pj must now have grade at least 1. (If
no party has grade 2 there is nothing to show.) Now consider any party Pi with output grade
at least 1. This party had ni > 0, and thus received at least one (SecondRoundCandidate,⊤)
message justified by n− t (FirstRoundCandidate,Pk) messages on the same party Pk which by
intersection and the messages being sent through CC implies that no other party Pl can be
included in n− t FirstRoundCandidate messages, which in turn means that only Bk can get a
grade of 1 or 2. We finally argue Weak Positive Agreement: When modelling H as a random
oracle: except with negligible probability there are no collisions among the outputs of H,
and the probability that the party, Pi, which has the lexicographically least ticketi value
globally in a set S, is in any subset of size c|S| where the subset is independent from coin
is c− negl. Let Pj be the first honest party to give input next-coin to FCF. In particular Pj

already had output (Tj, Uj) from ΠGradedGather while the value of coin was unpredictable, so
an adversary cannot have chosen Tj to correlate with coin. By the Large Sub Core property
of ΠGradedGather the intersection of all possible justified T values has size at least n − t.
In particular, the probability that Pi has the lexicographically least ticketi value is in Tj is
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at least n−t
t
− negl.8 Assume Pi ∈ Tj. Then by Sub Core Pi ∈ Uk for all possible justified

Uk and thus (FirstRoundCandidate,Pi) is the only justifiable FirstRoundCandidate message,
which means that (SecondRoundCandidate,⊤) is the only justifiable SecondRoundCandidate
message and the output of Pj must be (Bi, 2).

B.8 Justified Strongly Stable Graded Block Selection

For our construction it will be useful to make sure that when instances of a Justified Graded
Block Selection are run sequentially with the outputs being fed back as justified inputs
to the next iteration, then whenever a party gets an output with grade 2 all other parties
receive grade 2 in the next iteration. This is ensured by adding the following Strong Stability
property.
Definition 10 (Justified Strongly Stable Graded Block Selection). A Justified
Graded Block Selection protocol that additionally satisfies the following Strong Stability prop-
erty.
Strong Stability: If there is a possible justified output (Ci, gi) with gi < 2 then there exist

two justified inputs Bi and Bj with Bi ̸= Bj.
Given a protocol ΠWeakGradedSelectBlock satisfying Definition 9 with Weak Positive Agree-

ment we construct ΠStronglyStableGradedSelectBlock by adding two rounds of Causal Cast in Fig. 18
and show that it satisfies Definition 10.

Protocol ΠStronglyStableGradedSelectBlock

1. The input of Pi is Bi with Jin(Bi) = ⊤.
2. Party Pi runs ΠWeakGradedSelectBlock with Bi as input using Jin(Bi) as justifier, and gets output (B1

i , ·).
If Pi ∈ CUpgrade1 it causal casts (Upgrade1, B1

i ) justified by ΠWeakGradedSelectBlock.Jout.
3. Party Pi collects justified messages (Upgrade1, B1

j ) from at least n− t parties Pj ∈ P 1
i ⊆ CUpgrade1 and lets

(B1
i , hi) =

{
(B, 1) if ∃B : |{P ∈ P 1

i |P sent (Upgrade1, B)}| ≥ n− t
(⊥, 0) otherwise.

If Pi ∈ CUpgrade2 it causal casts (Upgrade2, B2
i , hi) justified by P 1

i .
4. Party Pi collects justified messages (Upgrade2, B2

j , hj) from at least n− t parties Pj ∈ P 2
i ⊆ CUpgrade2.

(Ci, gi) =


(B, 2) if ∀P ∈ P 2

i : P sent (Upgrade2, B, 1)
(B, 1) if ∃P ∈ P 2

i : P sent (Upgrade2, B, 1)
(Bi, 0) if ∀P ∈ P 2

i : P sent (Upgrade2,⊥, 0) .

Output (Ci, gi) with output justifier P 2
i .

Fig. 18. ΠStronglyStableGradedSelectBlock

8 Note that while we informally refer to the committees as having honest majority, Remark 1 in fact specifies that
the honest parties outnumber the adversary by a number which is a constant fraction of the committee size, so
the probability of terminating is constant in every round.
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Lemma 4 (Strong Stability). ΠStronglyStableGradedSelectBlock is a Justified Strongly Stable
Graded Block Selection protocol.

Proof. Liveness and Justified Output is trivial. To get soft grade h = 1 one has to see the
same block from a majority. Since all block are sent through RB, at most one block can have
votes from a majority. It follows that blocks with grade g > 0 are identical as they justified
by at least one block with soft grade h = 1. It is impossible for one party to get grade g = 0
and another to get grade g = 2 as each requires a majority of votes on soft grades h = 0 and
h = 1 respectively. Finally the strong stability follows from the input values being justified,
so if only one block is justified by Jin, then all parties get h = 1 and g = 2. Note that the
Justified output property means that the inner protocol ΠWeakGradedSelectBlock preserves the
input justifier. For the same reason positive agreement holds, in fact a stronger statement
holds: a single party getting grade g = 2 in the ΠWeakGradedSelectBlock results in everyone getting
grade g = 2.

B.9 Justified Block Selection with Adjacent Output Round Agreement

We now present a modified version of the Justified Block Selection primitive from [KN23]. It
satisfies all of the properties of the original primitive, but adds a round number to the output
and the guarantee that all parties give output in adjacent rounds. As in the original protocol
the parties repeatedly execute a Justified Graded Block Selection protocol until a block is
selected with grade 2 which guarantees that all other parties selected the same block with
at at least grade 1. Because we are using a version with Strong Stability, all honest parties
will output in adjacent rounds, and moreover it is impossible to cook up a justification for
outputting in a round where an honest party could not have given output.

Definition 11 (Justified Block Selection with Adjacent Output Round Agree-
ment). A protocol for M parties P1, . . . ,PM . There is an input justifier Jin and an output
justifier Jout. All honest Pi have an input Bi for which Jin(Bi) = ⊤ at the time the input
was given. The output of the protocol is a block (Ci, ri) justified by Jout.
Liveness: If all honest parties start running the protocol with a Jin-justified input then

eventually all honest parties have a Jout-justified output.
Justified Output: Jin(Ci) = ⊤ holds for all possible Jout-justified outputs Ci.
Agreement: For all possible justified outputs (Ci, ri) and (Cj, rj) it holds that Ci = Cj.
Adjacent Output Round Agreement: For all possible justified outputs (Ci, ri) and (Cj, rj)

it holds that |ri − rj| ≤ 1, and if (·, r) is a justified output then no honest party sent a
message in any round r′ > r + 1.

The protocol ΠSelectBlock is identical to the protocol in [KN23] except it is adapted to use
committees, it has a round number added to its output, and it uses Strongly Stable Graded
Block Selection as subprotocol instead of Graded Block Selection9. So it still implements
Justified Block Selection by the proof in [KN23]. We only need to argue that it additionally
satisfies the Adjacent Output Round Agreement property.

9 Note that the former is just a special case of the latter
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Protocol ΠSelectBlock

1. Each party Pi initialises GaveOutputi = ⊥.
2. Each party Pi ∈ CSelectBlockInput with input Bi where Jin(Bi) = ⊤, lets B0

i = Bi and g0
i = 0 and Causal

Casts (B0
i , g

0
i ), which is justified by Jin(B0

i ) = ⊤ and g0
i = 0.

3. For rounds r = 1, . . . each part Pi with GaveOutputi = ⊥ runs ΠStronglyStableGradedSelectBlock where:
(a) Pi has input Br−1

i .
(b) The input of Pi is justified by a justified (Br−1

i , gr−1
i ) with gr−1

i < 2.
(c) Pi eventually gets justified output (Br

i , g
r
i ).

4. In addition to the above loop each Pi runs the following echo rules:
– In the first round r where GaveOutputi = ⊥ and gr

i = 2, set GaveOutputi = ⊤ and output (Ci, ri) =
(Br

i , r). The output justifier is the justifier for (Br
i , g

r
i ).a If Pi ∈ CEchoOutput it causal casts (Br

i , g
r
i )

with justifiers as a computed message.
– In the first round r where GaveOutputi = ⊥ and where some justified (Bρ

j , g
ρ
j ) propagated from

Pj ̸= Pi with gρ
j = 2, set GaveOutputi = ⊤, and output (Ci = Bρ

j , ρ). The output justifier is the
justifier for (Bρ

j , g
ρ
j ).

a Note that as the inputs had grade less than 2 this justifies the protocol not terminating earlier, forcing
even corrupt parties to output a round number in which an honest party could have terminated.

Fig. 19. ΠSelectBlock

Lemma 5 (Adjacent Output Round Agreement). For all possible justified outputs of
ΠSelectBlock (Ci, ri) and (Cj, rj) it holds that |ri − rj| ≤ 1.
Proof. Consider any output (Ci, ri) justified by the justifier for (Bri

i = Ci, g
ri
i = 2), and any

output (Cj, rj) justified by the justifier (Brj

j = Cj, g
rj

j = 2). If ri = rj we are done, so assume
they are different and without loss of generality that ri ≤ rj. Since the output in round ri

was justified by a grade 2, then by Graded Agreement all possible justified outputs from
ΠWeakGradedSelectBlock in round ri contain the same block. Which in turn by Strong Stability
implies that all justified outputs in round ri + 1 have grade 2, and thus that there are no
justified input to ΠWeakGradedSelectBlock in round ri+2. It follows that if (·, r) is a justified output
of ΠSelectBlock, then no honest party initiated ΠWeakGradedSelectBlock for any round r′ > r + 1.

B.10 Justified Agreement on Core Set with Adjacent Output Round
Agreement

We present a YOSO protocol for ACS ΠACS, which again is almost identical to the protocol in
[KN23], except that it is adapted to use YOSO committees and and adds a round number to
its output. Since this is just the output from ΠSelectBlock, ΠACS inherits the Adjacent Output
Round Agreement property. This just adds some auxiliary information to the output and
has no effect on the validity of the proofs showing that it satisfies the remaining properties
of ACS. In conclusion ΠACS satisfies Definition 12 which is identical to the ACS definition
from [KN23], except that it includes the Adjacent Output Round Agreement property.:
Definition 12 (Justified ACS with Adjacent Output Round Agreement). A pro-
tocol for M parties P1, . . . ,PM with input and output justifiers Jin and Jout. All honest Pi

have an input Bi for which Jin(Bi) = ⊤ at the time of input.
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Liveness: If all honest parties start running the protocol with a Jin-justified input then
eventually all honest parties have a Jout-justified output.

Validity: For all possible Jout-justified outputs (U, ·) and all honest Pi and all (Pi, Bi) ∈ U
it holds that Pi had input Bi.

Justified Blocks: For all possible justified outputs (U, ·) and all (potentially corrupt) Pi

and all (Pi, Bi) ∈ U it holds that Jin(Bi) = ⊤.
Agreement: For all possible justified outputs (Ui, ·) and (Uj, ·) it holds that Ui = Uj.
Large Core: For all possible justified outputs (U, ·) it holds that |S| ≥ n− t.
Adjacent Output Round Agreement: For all possible justified outputs (Ui, ri) and (Uj, rj)

it holds that |ri − rj| ≤ 1 and if (·, r) is a justified output then no honest party sent a
message in any round r′ > r + 1.

Protocol ΠACS

1. The input of Pi is Bi with Jin(Bi) = ⊤.
2. If Pi ∈ CACSPropose is causal casts Bi. This message is justified by Jin(Bi) = ⊤ and Bi having been reliably

broadcast by Pi.
3. Party Pi collects at least n−t justified Bj from parties Pj ∈ Collectedi and lets Ui = {(Pj , Bj)}Pj ∈Collectedi .

This value is justified by each Bj being justified and |Ui| ≥ n− t.
4. Run ΠSelectBlock where Pi inputs Ui. The input justifier of ΠSelectBlock is to check that Ui is justifiable as

defined in the above step.
5. Party Pi gets output (Ci, ri) from ΠSelectBlock and outputs (Ci, ri). The output justifier is that (Ci, ri) is

a justified output from the above ΠSelectBlock.

Fig. 20. ΠACS

C Proofs for Total-Order Broadcast

In this section we will switch from simulation based security to game-based security and
prove that the protocol ΠTOB defined in Fig. 13 satisfies the following definition.

Definition 13 (Game-based TOB). We say that a protocol for M parties ΠTOB is a
game-based secure TOB if for all PPT environments corrupting at most T < (1 − ϵ)M/3
parties the following properties hold except with negligible probability for at random run
ExecΠTOB,E in the (FCF,Fatomic-send)-hybrid model. Each party P holds a ledger LP.

Agreement For any honest P and P′, either LP ⊑ LP′ or LP′ ⊏ LP.
Validity For each honest party P with ledger LP. If (mid,m) is in a block in LP and

P (mid) = Pi and Pi is honest, then Pi sent (mid,m). Additionally, when looking at LP
as a sequence of blocks B1, . . . , Bb, the wait predicate W is satisfied for each prefix, i.e.
W i(B1|| . . . ||Bi−1, Bi) for each batch i.
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Liveness Assuming new wait predicates W i and messages satisfying them are continuously
input to the protocol and that all honest parties get the same wait predicates in the same
batches, then all messages input to the protocol are eventually added to LP for all honest
parties P.

The UC and game based definitions are equivalent as long as there are no secret inputs
to simulate, only correctness properties. Appendix C.1 elaborates.

Theorem 3. The protocol ΠTOB described in Fig. 13 satisfies the game-based definition of
Total-Order Broadcast in Definition 13. Assuming block size, α = Ω(λ) it uses expected
O(M(β+ ιλ2)) bits of communication to order ι messages of combined size β in the coin flip
hybrid model, and additionally needs setup for expected amortized O(1) coin flips per batch
to be computed to instantiate the coin flip.

Proof. Agreement follows immediately from agreement of ACS and RB. Validity with respect
to the individual messages in the block follows from the validity of RB, while the validity
with respect to the wait predicate follows from all blocks input to ACS being justified by
individually satisfying the wait predicate and the fact that a list of messages that satisfy
the wait predicate will still satisfy it after permuting it or adding more message to it (cf.
Section 4). Finally liveness follows from liveness of the subprotocols. Note that unless ΠTOB
is continuously updated with new wait predicates that all parties agree on, the liveness
property is an empty statement. ΠSelectBlock terminates in expected constant rounds, and
since the protocol repurposes unused setups at most an expected constant number of new
setups needs to be computed per batch. Each batch of the TOB consists of reliable broadcasts
of the messages referenced in the block and one instance of ΠACS to agree on which messages
makes it into each batch and in which order. To produce new batch ΠTOB runs one instance
of ΠACS to agree on a set of blocks which references messages that were previously RBed.
We first account for the cost RBing messages across all batches which for ι messages of
combined size β is O(M(β + ιλ2)) when using ΠRB. In each batch a committee of expected
λ parties RB a block which references within a constant of max(α,W#) messages, which
has communication complexity O(λM(max(α,W#) logM + λ2)). Even if they all happen
to reference the same same set of messages, this gives a per message cost of O( Mλ3

max(α,W#)),
which since we assumed α = Ω(λ) is O(Mλ2) and thus dominated by the cost of RBing the
message we accounted for above. Finally to run ΠACS on the proposed blocks, a sequence of
an expected constant number of committees of expected size λ need to send descriptions of
subsets of the preceding committee through RB. This can again be done by each committee
member sending a λ2 bit list of public keys through the RB protocol which for each list
has communication complexity O(Mλ2). So, each invocation of ΠACS contributes O(Mλ3)
bits of communication. Again since we assumed at least α = Ω(λ) messages per epoch this
O(Mλ2) per message and dominated by the RB of the messages. In conclusion we get a
communication complexity of O(M(β + ιλ2)) to add ι messages of combined size β to the
ledger, which is optimal if the average message size if Ω(λ2).
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C.1 Equivalence Between Game Based and UC TOB
The following theorem shows that game-based security implies simulation based security for
TOB.
Theorem 4. If ΠTOB is a game-based TOB then ΠTOB UC security implements FTOB in
the (FCF,Fatomic-send)-hybrid model against T < (1− ϵ)M/3 adaptive corruptions.
Proof. We have to prove that there exists a PPT simulator S such that ExecΠTOB,E ≈
ExecFTOB,S,E for all PPT environments E doing at most T < (1 − ϵ)M/3 adaptive corrup-
tions. The simulator S proceeds as follows. Note that whenever an input is given to FTOB
information is leaked which allows S to compute this input. The simulator will run ΠTOB
on these inputs including copies of FCF and Fatomic-send. It lets the environment E interact
with FCF and Fatomic-send as in ExecΠTOB,E . Whenever the copy of ΠTOB run by S produces
an output then S uses its influence over FTOB to make the copy of FTOB in ExecFTOB,S,E
produce the same outputs to the same parties as ΠTOB. To be able to do this it is clearly
enough that ΠTOB is a game-based TOB, as this ensures its outputs are always possible
outputs of FTOB. ⊓⊔

When we work with game-based security definitions for sub-protocols, in all cases the
properties are tacitly meant to hold hold except with negligible probability for all PPT
environments corrupting at most T < (1 − ϵ)M/3 parties and for a random run ExecΠTOB,E
in the (FCF,Fatomic-send)-hybrid model.

D Two-level ciphertexts
In this section, we show how parties in a committee can generate random ciphertexts of form
EN,wi+1(EN,wi

(0)) for i = 1, . . . , λ − 1 and prove they are correctly formed. These can then
be combined to get a random two-level encryption of 0, and such a ciphertext can in turn
be used to randomize encryptions in the multiparty version of the PIR protocol.

For this purpose, we will need that a party P , can publish a “two-level” encryption of 0:
c = EN,wi+1(EN,wi

(0)) and give a non-interactive zero-knowledge proof that the ciphertext
was correctly formed. We will denote such a proof for the above relation by NIZK((r, s) : c =
EN,wi+1(EN,wi

(0; r); s)). Below, we present and analyse a Σ-protocol for this relation which
can then be made non-interactive in the random oracle model, as usual. The protocol is
novel, and is an application of techniques known from so-called double discrete log proofs.

Random Two-level Encryptions The protocol in Fig. 21 produces a random two-level
encryption of 0. Several instances can be run in parallel to create any desired number of
outputs.

For correctness of RandTwoLevel, note that the plaintext inside the output ciphertext d
is the product of the plaintexts inside the du’s which are themselves ciphertexts. Hence, d is
an encryption of

t∏
u=0

EN,wi
(0; su) mod N i+1 = EN,wi

(0;
t∏

u=0
su mod N) .
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Protocol RandTwoLevel

1. On input i, where 0 ≤ i < S, each member Pu of the current committee computes du =
EN,wi+1 (EN,wi (0; ru); su) and sends du, πu to FTOB, where

πu = NIZK((ru, su) : du = EN,wi+1 (EN,wi (0; ru); su)) .

2. Once h ≥ n − t valid contributions (d1, π1), . . . , (dh, πh) are delivered from FTOB, output d =
Multiply(d1, . . . , dh)

Fig. 21. The protocol for generating random two-level encryptions of 0

So, d is itself a two-level encryption of 0, where at least one contribution to the randomness
comes from an honest player since there are t + 1 contributions. We can therefore think of
the protocol as implementing a functionality that produces random two-level encryptions of
0.

The protocol in Fig. 22 allows a party, here denoted by P , to publish a two-level en-
cryption of 0: EN,wi+1(EN,wi

(0)) and convince a verifier V in (honest verifier) zero-knowledge
that is correctly formed. This protocol can then be turned into a non-interactive proof using
standard tools (see Appendix F), to form the proof needed in the RandTwoLevel protocol.

Protocol TwoLevel.

1. P sends the ciphertext c = EN,wi+1 (EN,wi (0; r); s) to V , and then the proof below is executed k times in
parallel.

2. (a) P computes EN,wi (0; r′) for random r′ and sends to V

a = cEN,wi
(0;r′)s′Ni+1

mod N i+2 = EN,wi+1 (EN,wi (0; rr′ mod N); ss′ mod N)

(b) V sends a random bit e to P .
(c) If e = 0, P sends z1 = r′ and z2 = s′ to V . If e = 1, P sends z1 = rr′ mod N and z2 = ss′ mod N .
(d) If e = 0, V checks that a = cEN,wi

(0;z1)zNi+1
2 mod N i+2.

If e = 1, V checks that a = EN,wi+1 (EN,wi (0; z1); z2).

Fig. 22. The Σ-protocol for two-level ciphertexts

Theorem 5. For any i = 0, . . . , S−1, the TwoLevel protocol is a Σ-protocol for the relation

{((N,wi, wi+1, c), (r, s)) | c = EN,wi+1(EN,wi
(0; r); s)},

i.e., P knows r, s such that c = EN,wi+1(EN,wi
(0; r); s) and the protocol is complete and perfect

honest verifier zero-knowledge.

Proof. Completeness is clear from inspection of the protocol. For special soundness (which is
well-known to imply standard knowledge soundness), we assume we are given two accepting

46



conversations (a, e, z1, z2) and (a, e′, z′
1, z

′
2) with e ̸= e′, and must show that we can efficiently

find valid values for r, s. Assume without loss of generality that e = 0. Then we have

cEN,wi
(0;z1)zN i+1

2 mod N i+2 = a = EN,wi+1(EN,wi
(0; z′

1); z′
2)

which implies
cEN,wi

(0;z1) = EN,wi+1(EN,wi
(0; z′

1); z′
2z

−1
2 mod N)

One can now compute EN,wi
(0; z1)−1 mod N i+1, and observe that for some integer w we have

EN,wi
(0; z1)−1 ·EN,wi

(0; z1) = 1 +wN i+1. Now, by raising both side of the above equation to
EN,wi

(0; z1)−1, we get

c = EN,wi+1(EN,wi
(0; z′

1z
−1
1 mod N); z′

2z
−1
2 c−w mod N) .

Thus we see that we can compute valid values for r, s given the two conversations.
Finally, for honest verifier zero-knowledge, we show a simulator which first chooses ran-

dom bit e and random z1, z2 ∈ Z∗
N . Then, if e = 0 it sets a = cEN,wi

(0;z1)zN i+1
2 mod N i+2. If

e = 1 it sets a = EN,wi+1(EN,wi
(0; z1); z2), and finally, it outputs (a, e, z1, z2). It is clear that

e, z1 and z2 have the right distribution, and a is set to be the only correct value, given e, z1
and z2. Hence the simulation is perfect. ⊓⊔

E Linear Integer Secret Sharing

The material on linear integer secret sharing in this section is taken from [DT06], while the
later section on non-interactive VSS is a contribution of this paper.

We will need to secret share the secret decryption exponent which of course “lives in the
exponent”. So, the natural choice would be a sharing scheme that uses arithmetic modulo
the order of the group. However, all parties need to be able to run the scheme and the group
order is not public knowledge, so we resort to secret-sharing over the integers instead. Earlier
work[GHK+21] has used integer variants of Shamir’s scheme, but this leads to technical
difficulties due to the fact that the Lagrange coefficients needed for interpolation are not
integers. In earlier work, this implies that the size of the shares grow each time the secret
key is re-shared. We will instead use a linear integer sharing scheme (LISS), which allows
us to avoid this problem and simplify the protocols, at the cost of a larger share size in the
beginning.

A LISS is defined by a sharing matrix M with integer entries, c columns and ℓ rows (one
can think of M as replacing the Van der Monde matrix from Shamir’s scheme). One can
share a secret number s ∈ [0, 2b] for a publicly known upper bound b among n players. To
do this, choose a column vector vs with s as the first entry and sufficiently large random
numbers in the other entries (we make this precise in a moment). Shares are computed as
the product M · vs. This corresponds to evaluating the polynomial in a number of points in
Shamir’s scheme.

Each row of M is labelled with an index in [1, n], we say that each row is owned by a
player. Our notation for this is that row i is owned by player number u(i). Each entry in

47



M · vs corresponds to a row, and the entry is handed to the player who owns that row. We
will refer to an entry in M · vs as a share, but note that each player may receive several
shares.

For each player set A we let MA denote the matrix we obtain by selecting from M only
the rows owned by players in A. If A is qualified to reconstruct the secret, there exists a
reconstruction vector rA with the property that

rA · (MA · vs) = s,

this corresponds to the interpolation in Shamir’s scheme.
If A is not qualified to reconstruct, there exists a sweeping vector wA, which has 1 as it’s

first entry, and further has the property that MA · wA is the all-0 vector. It can be shown
that the existence of wA implies statistical privacy of the scheme. Namely, we define wmax

to be the maximal numeric value of any entry occurring in any wA. Then, a valid sharing
vector for s ∈ [0, 2b] is a vector vs with s in the first entry, and with the other entries chosen
uniformly from [0, 2b+log2(wmax)+k], where k is the security parameter.

Lemma 6. For any two secrets s, s′ ∈ [0, 2b], the distributions of shares seen by A from
sharing s or s′, with valid sharing vectors, are statistically indistinguishable.

Proof. (Sketch) if s was shared using vs, one could instead have shared s′ using vs+(s′−s)wA,
and the players in A would receive exactly the same shares. But the numbers in vs are a
factor 2k larger than those in (s′− s)wA, so vs + (s′− s)wA is statistically indistinguishable
from a valid sharing vector for s′, so the lemma follows.

It has been shown [DT06] that LISS schemes with polynomial share size exist for the
threshold case, where any majority of the players are qualified to reconstruct, this follows
from the fact that polynomial size monotone formulae exist for computing the majority
function. We let Mth denote such a scheme for n players. It is also straightforward to see
that simple additive secret sharing can be realized in this formalism, using a matrix Madd

with n+1 columns and n rows. namely, Madd is the identity matrix, except that the first row
has −1 in the last n entries. Notably, for these schemes, all entries in all sweeping vectors
are 1 or −1, so the numbers in a valid sharing vector just need to be k bits longer than the
secret.

In this paper, we will need to share a secret among the members of two committees,
that we will call the additive committee and the threshold committee. This is needed for
technical reasons, to obtain adaptive security. The idea is to share the secret additively
among the members of the additive committee, and then each additive share is shared among
the members of the threshold committee. It is not hard to see that this can be phrased as
one LISS scheme using a matrix M that we can build from Madd and Mth. We will not do
the straightforward (but very tedious) details of this.

Note that, in the scheme defined by M the sets qualified to reconstruct the secret will
be, either all members of the additive committee, or a majority of the threshold committee.
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Verifiable Secret Sharing We require a verifiable LISS scheme that can be used to do
distributed exponentiation in the groups Z∗

Ns+1 , for s = 1, . . . , S. We will use a Pedersen-style
construction for this, where the idea is that the secret and the sharing vector are committed
to using the integer commitment scheme Comck(·; ·) we described in the preliminaries. We
then define the algorithm VSSshare, in figure 23.

Algorithm VSSshare.

1. To share a secret d, choose a valid sharing vector vd and compute sh(d, vd) = M · vd.
2. Choose a vector r containing randomness values for the commitment scheme and compute commitments

to each entry vd[j] as βj = Comck(vd[j]; r[j]) as well as ra(r) := M · r.
3. Output

VSS(d, vd, r) = (sh(d, vd), ra(r), β1, . . . βc).

Fig. 23. The VSSshare algorithm.

Note that β1 = Comck(d; r[1]) serves as a commitment to the secret.
From the output produce by the VSS, anyone can compute commitments αi to the i’s

share si = sh(d,vd)[i], and if the dealer has executed the VSS correctly, she can also open the
αi’s. To see this, let mi be the ith row of M , then sh(d,vd)[i] = mi ·vd, and ra(r)[i] = mi ·r.
Then αi := Comck(sh(d,vd)[i]; ra(r)[i]) is indeed a commitment to si that an honest dealer
can open, and we claim that

αi =
c∏

j=1
β

mi[j]
j (1)

This holds by the homomorphic property of the commitments. Indeed, we have:

αi =
c∏

j=1
β

mi[j]
j (2)

=
c∏

j=1
(Comck(vd[j]; r[j]))mi[j] (3)

= Comck(mi · vd; mi · r) (4)
= Comck(sh(d,vd)[i]; ra(r[i])). (5)

Non-interactive VSS In the usual form of a VSS, players would receive shares and opening
information for the αi’s and complain if they fail verification. However, we will need a non-
interactive VSS, i.e., a possibly corrupt dealer can broadcast a single message to a set of
n players and as a result they obtain valid shares of the secret the dealer had in mind, or
they all conclude that the dealer is corrupt. To ensure that the receivers are committed to
their shares, we do the following: the dealer will compute VSS(d,vd), encrypt the individual
shares for each player, and attach non-interactive zero-knowledge proofs that the correct
shares are encrypted. The global protocol calling the VSS will make sure that the receiver
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will be committed to the decryption key and can therefore commit to the received share and
prove in zero-knowledge that the commitment is correct.

We will be using a variant of one-time pad encryption in our VSS, the keys for this
are assumed to have been set up by the SecretChannels protocol, Fig. 10. That protocol
only supports one-time pads of limited length due to the fact that we can only do Pailler
ciphertexts of a certain size. Using a single pad you can encrypt κ bits where κ = log2(NS)−k
where k is a statistical security parameter. Shares in our VSS will be too large to encrypt
using a single pad, so we will be using a tuple consisting of several pads as keys. A second
issue is that for our proof of adaptive security to go through, the encryption needs to make
a fresh random choice of the one-time pad actually added to the message at the time of
encryption. This has to do with a step in the proof where we need rewinding. To cater
for this, we will assume several pads have been set up and committed for each message to
encrypt, and the sender will choose one of them for the actual encryption.

The notation for this is that a single one-time is denoted otp while a tuple of pads is
denoted

→
otp. In order to not clutter up the notation, we do not include the number of pads in

a tuple explicitly but simply assume that there enough to cater for the share to be encrypted.
In practice we will need O(n) pads.

Concretely, for a message (an integer) m and one-time pad tuple
→

otp, the encryption
E→

otp
(m) is done by first breaking m in pieces of κ bits each and encrypting each piece

individually. We will use Comck(
→

otp; v) as shorthand for a tuple of individual commitments
to the pads in

→
otp. Then, to encrypt one κ-bit message a under a pad otp, you output the

ciphertext E→
otp

(a) = (a+ otp).

Finally, we write m = ∑w
ν=0 aν2νκ, assume we have a long enough tuple

→
otp and define

the encryption by c = E→
otp

(m) = (Eotp1(a1), . . . , Eotpw
(aw)). Decryption is denoted D→

otp
(c)

and is trivial by subtracting the pads.
Given α = Comck(m; v), δ = Comck(

→
otp; r) and a ciphertext c = E→

otp
(m), we require a

non-interactive zero-knowledge proof of knowledge of the data m,v, otp, r used for forming
α, δ, that the ciphertext contains m, and also that m is in a bounded interval [0, 2a]. We
denote such a proof by

NIZK(m, v,
→

otp, r : α = Comck(m; v), δ = Comck(
→

otp; r), c = E→
otp

(m), m ∈ [0..2a]) .

In the following we will use this proof in a case where m is a share of some secret. The secret
will be verified to be at most 2b, so it follows that the entries in the sharing vector should
be chosen from a bounded size interval as explained above, and given the sharing matrix M
this implies an upper bound on the size of any share, we denote this bound by 2sh(b), and
will use it as the bound 2a in the proof.

We also require a non-interactive zero-knowledge proof of knowledge that the prover
knows how to open a set of commitments β1, . . . , βc, and that the integer committed to in
β1 is in the interval [0, 2b], recall that the secret is committed to via β1. We denote such a
proof by

NIZK({aj, bj}c
j=1 : {βj = Comck(aj; bj)}c

j=1, a1 ∈ [0, 2b]) .
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We will assume that the proof systems are statistical zero-knowledge, on-line extractable
and unconditionally simulation sound, as explained in Section 2. A dealer in our VSS will
proceed using the NonIntVSSshare algorithm, in Fig. 24.

Algorithm NonIntVSSshare
This protocol assumes that the dealer has committed to one-time pad tuples

→
otpi, i = 1, . . . , ℓ, as δi =

Comck(
→

otpi; ri), and that the δi’s are already published to all parties.

1. To share a value d ∈ [0, 2b], first compute VSS(d, vd, r) = (sh(d, vd), ra(r), β1, . . . βc) as defined above.
2. Compute

π0 = NIZK({vd[j], r[j]}c
j=1 : {βj = Comck(vd[j]; r[j])}c

j=1, vd[1] ∈ [0, 2b]).
3. For i = 1, . . . , ℓ, let si = sh(d, vd)[i] and vi = ra(r)[i], and let αi = Comck(si; vi). Compute a ciphertext

ci = E→
otpi

(si).
4. For i = 1, . . . , ℓ compute

πi = NIZK(si, vi, otpi, ri : αi = Comck(si; vi), δi = Comck(
→

otpi; ri),

ci = E→
otpi

(si), si ∈ [0..2sh(b)])

5. Output NonIntVSSshare(2b, d, vd, r, {
→

otpi, ri| i = 1, . . . , ℓ}) := (β1, . . . , βc, {ci, πi| i = 1 . . . ℓ}).

Fig. 24. The NonIntVSSshare algorithm.

Anyone can then use the algorithm VSSverify, in Fig. 25, to check what the dealer sent.

Algorithm VSSverify(2b)

1. Given NonIntVSSshare(2b, d, vd, r, {
→

otpi, ri | i = 1, . . . , ℓ}) := (β1, . . . , βc, {ci, πi| i = 1 . . . ℓ}), verify π0
against public values β1, . . . , βc. For i = 1, . . . , ℓ compute αi using equation (1), verify the proof πi

against public values αi, ci and δi. Reject if any proof fails, otherwise accept.

Fig. 25. The VSSverify algorithm.

If the dealer’s message verifies, the intended receivers will be able to obtain valid shares of
the committed secret, by decrypting the relevant ciphertexts, and constructing commitments
to the resulting shares. This assumes that receivers are committed to the same one-time
pads that were used to form the VSS message, and our global protocol does this via the
SecretChannels protocol. The details are given in protocol VSSreceive, Fig. 26.

After executing VSSreceive, we say that the player set holds VSS(d,vd) with share bound v
if there exists d,vd such that for all players, a share si has been committed to via commitment
α̃i, and we have si = sh(d,vd)[i], and si ≤ 2v.

Note that, by the linearity property of the sharing scheme and the commitments, if
a set of parties holds both VSS(d,vd) = (sh(d,vd), β1, . . . βc, α̃1, . . . , α̃ℓ) and VSS(d,vd) =
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Protocol VSSreceive
This protocol is to be executed by a set of parties to compute committed shares of a secret. Input is a VSS
message NonIntVSSshare(2b, d, vd, r, {otpi, ri | i = 1, . . . , ℓ}) := (β1, . . . , βc, {ci, πi | i = 1 . . . ℓ}) that passes the
check in VSSverify(2b). Also we assume that for every share index i, party Pu(i) has committed to the one-time
pad tuple

→
otpi via the commitment ρi = Comck(

→
otpi; ui).

1. Given NonIntVSSshare(2b, d, vd, r, {
→

otpi, ri | i = 1, . . . , ℓ}) := (β1, . . . , βc, {ci, πi | i = 1 . . . ℓ}), set si =
D→

otpi

(ci). Set α̃i = Comck(si; rsi ) to be a commitment to si and compute a zero-knowledge proof π̃i

containing si based on the public VSS message and ρi.

Fig. 26. The VSSreceive protocol.

(sh(d′,vd′), β′
1, . . . β

′
c, α̃

′
1, . . . , α̃

′
ℓ), we can define linear operations on these, for a public integer

γ, as
VSS(d,vd) + γ · VSS(d′,vd′) =

(sh(d,vd) + γ · sh(d′,vd′), β1(β′
1)γ, . . . βc(β′

c)γ, α̃1(α̃′
1)γ, . . . , α̃ℓ(α̃′

ℓ)γ) .

Clearly this new object is also a VSS, we have

VSS(d,vd) + γ · VSS(d′,vd′) = VSS(d+ γd′,vd + γvd′) .

It follows that if a committee pair holds several VSS objects, it also holds (by local operations
on shares) a VSS containing a given linear function applied to the underlying secrets, with
a share bound that is easy to compute using the coefficients in the linear function.

We now show that the VSSreceive protocol works as expected:

Lemma 7. Assume we are given otpi, ri, ui such that for i = 1, . . . , ℓ, ρi = Comck(otpi;ui),
δi = Comck(otpi; ri), and an adversary creating a dealer’s VSS message

NonIntVSSshare(2b, d,vd, r, {
→

otpi, ri | i = 1, . . . , ℓ}).

If the event that the VSS messages verifies but the receiving players do not hold VSS(d,vd)
with share bound sh(b), happens with non-negligible probability, then we can construct an
algorithm that breaks the binding property of the commitment scheme.

Proof. Suppose we are given an adversary that can make the event specified in the lemma
happen with non-negligible probability. We take a public commitment key ck as input and
run the adversary with this key. Note that the zero-knowledge proofs given are straight-
line extractable. This concretely means that if the dealer’s message verifies, then (except
with negligible probability) from the dealer’s oracle calls and the proof π0, one can extract
opening information for all the βj’s, to get a sharing vector vd. In particular we can extract
d from β1. Then, from Eq. (1), one can compute opening information for all the αi’s and by
construction of Eq. (1) this will show how to open the αi’s to reveal a set of valid shares
{si} of d, where si = sh(d,vd)[i]. On the other hand, from the proof πi one can extract the
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content s′
i of ci as well as a way to open αi, to get s′

i. The assumption that we are given
otpi, ri, ui clearly implies that the commitment α̃i constructed by the receiver contains s′

i.
Thus, if the adversary’s attack is successful, it must be that for some i si ̸= s′

i. We can then
output the two ways to open αi and break binding. ⊓⊔

Note that the reduction from the above proof can be used in context of our global protocol
because the commitment key is given as setup, and is chosen independently from everything
else—provided that the global protocol ensures that even corrupt parties know the otp-values
and randomness used for the relevant commitments. This is done by the SecretChannels
protocol, where the commitments to the otp-values are done and parties must prove that
they know the committed values.

We note that we will not require an explicit reconstruction protocol for the VSS, instead
the shares held by the players will be used for decryption as detailed in the main protocol.
Basically, all (honest) players in the additive committee will contribute to the decryption of
a given ciphertext. Since contributions from the entire additive committee would be required
to decrypt, we have the threshold committee fill in for the those additive players that do not
contribute.

As for privacy, the intuition is clear: an unqualified set of shares reveals essentially noth-
ing about the secret, and the commitments and zero-knowledge proofs leak (statistically) no
additional information. However, we will need to show adaptive security of the global proto-
col, so we need to be careful. To this end, we will use in our security proof given elsewhere
the so-called single inconsistent player (SIP) technique. Here, the idea is that the simulator
is set up such that it knows a complete set of shares for players in the additive and threshold
committees, however, these shares determine some dummy value. The simulator selects at
random a player from the additive committee to be the SIP. When simulating decryption, it
can fake the contribution from the SIP to make the output plaintext be correct. Therefore, as
long as the SIP is not corrupted and its contribution is delivered on time, the simulation will
be statistically indistinguishable. This happens with probability at least 1/n. The reason why
we need the SIP it to be delivered on time is that parties that do not have their contribution
delivered on time will have their contribution computed by the threshold committee, which
for the SIP would reveal the inconsistency.

op0opi

The Reshare Protocol We are now ready to specify the protocol for resharing. Basically all
threshold members in committee pair C1 holding VSS(dS,vdS

) will VSS their shares among
all members of committee pair C2. They can then use a reconstruction vector to get new
shares of dS. In the protocol, the receiving committee waits for non-interactive VSS messages
from C1 to be delivered from FTOB. We can assume that these messages pass the check in
the VSSverify algorithm, as otherwise they would be rejected by FTOB.
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Protocol Reshare
In this protocol, committee pair C1 holding dS will reshare to committee pair C2 such that C2 eventually
holds dS . It is assumed that for each share sj held by C1, Pu(j) shares a one-time pad tuple

→
otp

j

i with

Pu(i) in C2. Furthermore Pu(j) has commitment δj
i = Comck(

→
otp

j

i ; rj
i ) to

→
otp

j

i , while Pu(i) has commitment

ρj
i = Comck(

→
otp

j

i ;uj
i )

1. For each member Pu of the threshold committee in C1, and each share sj for which u(j) = u, Pu sets
βj

1 = αj , where αj is the commitment to sj . Then compute and send to FTOB:

NonIntVSSshare(2sh(b), sj , vsj , rj , {
→

otp
j

i , r
j
i | i = 1, . . . , ℓ})

2. Once VSS messages from a subset A of size at least n − t are delivered from FTOB, parties in C2 run
VSSreceive for each VSS message. C2 now holds VSS(sj , vsj ) for j such that Pu(j) ∈ A. The committee
uses the reconstruction vector rA to compute

VSS(dS ,
∑

j

rA[j] · vsj ) =
∑

j

rA[j] · VSS(sj , vsj ) .

Fig. 27. The Reshare protocol.

F Σ-protocols and Non-interactive Zero-Knowledge Proofs

In this section we sketch the (well-known) techniques one can use to get Σ-protocols for the
relevant relations. Once we have these, we can get NIZK’s in the random oracle model, using
the Fischlin transform [Fis05].

For the case of two-level Paillier ciphertexts, the required protocol was already described
and analysed in appendix D.

Otherwise, we use two main types of proofs in our protocols, namely those that are used
in the MPC protocols, and those that are used in the Role Assignment, Decryption and
Reshare protocols.

The first type of proofs work only on Paillier ciphertexts, and the protocols we need for
this can be found in [DJN10], they can be used here with no essential change.

The second type of proofs work with integer commitments, Paillier ciphertexts, and in
some cases one-time pad encrypted values, where message and one-time pad have been
committed to.

Recall that a commitment to integer x is of form αxβr mod N ′, where r is randomly
chosen in a large enough interval (we do not need the low-level details of the scheme for
this discussion). We will later use Com(z) as shorthand for a commitments to z. Note that
commitments are linearly homomorphic, we have Com(z) ·Com(z′)f = Com(z+fz′ mod N ′).

Consider now the type of proof we require in the Reshare protocol where we are given
commitments Comck(otp; r1),Comck(z; r2) and one-time pad ciphertext c = otp + z for some
otp, z and we require a non-interactive zero-knowledge proof of knowledge of otp, z, r1, r2
such that commitment and ciphertext are of the claimed form. This is straightforward by
giving a standard proof of knowledge for the commitments to otp and z, multiplying the
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commitments to get a commitment to the sum z + otp and proving that this commitment
contains c.

In most cases the message to encrypt in the Reshare cannot be encrypted securely using
just one one-time pad as these are only generated as numbers with a fixed bit length, so
only κ-bit number are encrypted in one go. So the protocol splits the message (share) m to
encrypt in w chunks of κ-bits such that m = ∑w

ν 2νwzν . To handle this, the prover commits
to m and all individual mν ’s, proves using a standard range proof that 0 ≤ mν ≤ 2κ for each
ν and any one can use the homomorphic property of commitments to verify that m and the
mν ’s satisfy m = ∑w

ν 2νwzν . Finally, given commitments to w one-time pads, the method
above can be used to encrypt each mν and prove that the ciphertexts are correctly formed.
All the sigma protocols can be done in parallel.

We also need, for the Create Input Data protocol, a proof that given commitment Com(x)
and Paillier ciphertext EN,wS

(x) contain the same value. For this, the prover uses a standard
range proof to show that x is in the plaintext space of the encryption scheme, so 0 ≤ x < NS

and then, since x sits in the exponent both for the commitment and the ciphertext, a standard
equality of discrete log protocol can be used to show that the two contain the same value.

For the Decrypt protocol, we need a proof that for a committed value si, Paillier ciphertext
c, and csi mod N s, that the committed value si has indeed been used to compute the last
value. Again, since si sits in the exponent, this is case of equality of discrete logs.

For the Secret Channels protocol we need a proof for the following scenario: the prover has
committed to Com(otp1), we are given sum = otp1 + otp2 mod NS and the prover commits
to otp2 = sum− otp1 mod NS and we want a proof that this commitment is correct. This is
a standard case of proving modular relations inside commitments and the techniques from
[DF02] can be used here.

There is, however, one technicality we need to address: we want, of course, that the
protocol has negligible soundness error, and we want to avoid having to use binary challenges
and repeat protocols many times. For this to work out, it needs to be the case that all
group elements involved in the statement to prove are in a group with only exponentially
large prime factors in the order. This is potentially an issue as these elements may be
adversarially generated in some cases. For elements coming from the set-up we are fine, as
they are generated honestly by the set-up. But this is not the case for Paillier ciphertexts to
decrypt, for instance. We would be fine if we knew that the values in question were in the
subgroup of squares in Z∗

N . But we cannot verify membership in this subgroup efficiently. To
solve this, we simply square the elements of the ciphertext and do the proof on the result.
This has the effect of multiplying the plaintext by 2, but since 2 is relatively prime to N ,
this factor can be divided out after decryption.

G Supplementary UC Formalization

G.1 Eventual Liveness

When modelling asynchronous security we will as usual have to talk about an event eventually
happening, for instance saying that if a message is sent then it is eventually delivered. We

55



now discuss how we model this. When specifying an ideal functionality we will as usual let
the adversary specify when certain events E happen. We sometimes say that under certain
preconditions C the adversary must eventually make E happen. This means that whenever
C becomes true it holds at some future point in time that either C stopped being true
or E became true. As an example we might say that if m was sent from an honest party
which is still honest, then eventually m will be delivered, where C is “m was sent by an
honest party which is still honest and” and E is “m was delivered by the adversary”. We call
this an eventual event. We say that a protocol π using ideal functionalities F1, . . . ,Fℓ and
implementing F is live if it holds that when all eventual events on F1, . . . ,Fℓ happened, then
π made all eventual events of F happen. This way we do not need to define what it means
for an event to eventually happen, rather we just require that protocols are “eventuality-
preserving”. As an example, if F1 is a functionality for sending messages on point-to-point
channels and F the ideal functionality for broadcast then eventuality-preserving liveness
could be of the form “if all messages sent on the point-to-point channels by honest parties
in π have been delivered then all messages broadcast by honest parties via π have been
delivered”. This is a crude model but good enough for our study.

G.2 Ideal Functionality for Atomic Send

The ideal functionality for atomic send is given in Fig. 28.

Functionality Fatomic-send

Init: Let Accepted = ∅.
Broadcast: On input (atomic-send, (mid1,m1, P1), . . . , (midℓ,mℓ, Pℓ)), where P (midi) = P for i = 1, . . . , ℓ,

add each (midi,mi, Pi) to Accepted and leak (atomic-send, (mid1,m1), . . . , (midℓ,mℓ)) to the adversary.
We assume that honest parties use each mid at most once.

Deliver: On input (Deliver, (mid,m,R)), where (mid,m,R) ∈ Accepted or P (mid) is currently corrupted,
remove (mid,m,R) from Accepted and output (mid,m) to R.

Eventual Liveness: If (mid,m,R) ∈ Accepted the adversary must eventually input (Deliver, (mid,m,R)).

Fig. 28. Atomic Send

G.3 Discussion of FTOB

For each batch the parties input a wait predicate indicating which messages should be col-
lected. We assume that all honest parties agree on the wait predicate W for each block.
That means that we only prove an implementation secure under this condition and that, on
the other hand, when we use FTOB in a protocol π then π must guarantee that all honest
parties input the same W to FTOB. We cannot guarantee that all messages attempted to
be sent are delivered in a given round, as the network is asynchronous. We therefore let
the adversary choose which messages are delivered. This happens in Next Batch, where
it picks the next block. However, the adversary is only allowed to pick a block valid by W .
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Note that this means that if the messages input by the honest parties do not satisfy W then
FTOB might deadlock. This is a feature. It is the obligation of the protocol using FTOB to
pick W and send messages m such that W gets satisfied in each round. On the other hand
this allows an implementation of FTOB to wait until it saw messages satisfying W . Note that
FTOB is guaranteed to produce the next block once all honest parties requested it and their
messages satisfy W . It might, however, produce the block before all honest parties ordered
the block. We could not possibly wait for all honest parties to have ordered the block in an
asynchronous network. Notice, however, that at least one honest party must have ordered
the next block before it can be produced as W b+1 needs to be defined. The wait predicate
W b+1 can therefore be used to control that the block is not produced too early—it might
for instance say that the next block is valid only if there are messages from enough parties
that at least one must be honest. Notice, finally that even though we cannot ensure that a
message sent in round b will make it into block b + 1 we do require that any message sent
will eventually make it into some block. Finally, we require that all blocks are eventually
delivered to all honest parties. This all in all means that all messages broadcast by honest
parties are eventually delivered to all honest parties.

Looking forward, the implementation for FTOB will use small committees and YOSO role
assignment. It might seem puzzling that this is not reflected in FTOB. However, the commit-
tees are an implementation detail, not a part of the specification of total-order broadcast.

G.4 Threshold Coin-Flip

The ideal functionality for coin-flip is given in Fig. 29. It can trivially be implemented given
FMPC+CF. We introduce it as a separate ideal functionality to not use FMPC+CF in its full
glory when implementing FTOB from coin-flip.

Functionality FCF for coin flip.

Init: For each party P let ℓP = 0 be the number of coins delivered at P and let bP = 0 be the number of
coins ordered by P . Let b = 0 be the number of coins flipped so far. Let L be the empty ledger.

Order next coin: On input (next-coin) from honest P leak (next-coin, P ) to the adversary, let bP =
bP + 1, flip uniformly random cbP ∈ {0, 1}

κ if cbP was not already flipped, and give cbP to the adversary.
Coin Index: On input (coin-index) from honest P output bP to P .
Next coin: On input (next-coin) from the adversary where bP > b for some honest P , let b← b+ 1, and

let L = L∥cb.
Deliver: On input (Deliver, P ) from the adversary where ℓP < |L| update ℓP = ℓP + 1 and output

(ℓP , L[ℓP ]) to P .
Eventual Liveness: If bP > b for all honest P the adversary eventually calls Next coin again. Furthermore,

if ℓP < |L| then eventually the adversary inputs (Deliver, P ) again.

Fig. 29. Threshold Coinflip
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H Basic Protocol for Secure Computation
This section contains some basic protocols for secure computation that we will need for the
implementation of FMPC. Many of these are standard, but we incorporate some new ideas,
as accounted for in the text below.

Before we dive into the protocols, a remark on the committees used for the execution.
In the RoleBatches protocol we discussed how to set the parameter eno large enough that
we have sufficiently many committee pairs for running one batch of RoleBatches. But we do
not just want to run RoleBatches, we also want to do MPC to implement FMPC+CF. For any
polynomial γ we can set eno sufficiently larger to form γ additional committees. Some of
these will be used in Decrypt and will be committee pairs as the ones used for role assignment.
However, some of them do not need a secret sharing of the secret key as they do not perform
decryption, we will call these MPC committees. The MPC committees will consist of just
n parties, so when we say that all parties on an MPC committee acts, only n parties do
something. They will perform one round in some sub-protocol and post their messages on
FTOB. If these messages need decryption some double committee will handle it via Decrypt.

Secure Multiplication. For secure multiplication, we use the standard idea of producing
multiplication triples and using one triple later for each multiplication. The protocol for
making triples is in Fig. 30. It lets all parties compute the output triple locally from data
on the ledger. Once a triple is produced it is placed on an ordered list, and when we say in
the following that we use the next available triple, we mean that all parties take the next
unused triple on the list.

Protocol Triple.
This protocol is parametrized by s, and will produce ciphertexts in ZNs+1 .

1. Each member Pu of the MPC committee assigned to do this protocol instance chooses random au, ru,
computes cu = EN,ws (mu; ru) and sends to FTOB the pair

(cu,NIZK(au, ru : cu = EN,ws (au; ru)) .

2. Once n− t valid pairs appear on the ledger, all parties compute ca =
∏

u
cu mod Ns+1 where the product

is over the u’s that appeared. We have ca = EN,ws (a) where a =
∑

u
au mod Ns.

Each member Pv of the next MPC committee chooses random bv, rv, sv. They compute cv = EN,ws (bv; rv)
and c′

v = cbv
a · EN,ws (0; sv) mod Ns+1. They send to FTOB the tuple:

(cv, c
′
v,NIZK(bv, rv, sv : cv = EN,ws (bv; rv), c′

v = cbv
a · EN,ws (0; sv) mod Ns+1).

3. Once n − t valid tuples appear on the ledger, all parties compute cb =
∏

v
cv mod Ns+1 and cab =∏

v
c′

v mod Ns+1, where the product are over the v’s that appeared. We have cb = EN,ws (b) where
b =

∑
v
av mod Ns.

And, because each c′
v contains bva mod Ns, we have cab = EN,ws (ab mod Ns) where d = ab mod Ns.

All parties output (ca, cb, cab).

Fig. 30. The Triple protocol.
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Protocol Multiply.
This protocol is parametrized by s, and will do secure multiplication on ciphertexts in ZNs+1 . The input
consists of two ciphertexts cx = EN,ws (x), cy = EN,ws (y).

1. Let (ca, cb, cab) be the next available triple. All parties compute cϵ = cx(ca)−1 mod Ns+1 and cδ =
cy(cb)−1 mod Ns+1. Send cϵ, cδ to the DecryptNoRandomize protocol for decryption.

2. Once the decryption results ϵ, δ are returned, all parties compute and output

cxy = cab · cϵ
b · cδ

a · (N + 1)ϵδ mod Ns+1.

It is straightforward to see that cxy = EN,ws (xy mod Ns).

Fig. 31. The Multiply protocol.

The Triple and Multiply protocols can be run in parallel as many times as we want. In the
following, we use c = Multiply(c1, . . . , ca) as shorthand for invoking Multiply an appropriate
number of times on ciphertexts c1 = EN,ws(x1), . . . , ca = EN,ws(xa) to obtain c = EN,ws(x1 ·
· · · · xa mod N s). This can be done in a standard tree structure and will then consume log a
consecutive commitees, but one can also use the well-known Bar-Ilan and Beaver constant
round technique to use only a constant number of MPC committees. We will not go into
details with this.

The Multiply protocol uses a decryption step when it consumes a triple. For this case, the
decryption protocol (Fig. 7) is run without calling the RandomizeCiphertext subprotocol. We
refer to this as DecryptNoRandomize. This is done because RandomizeCiphertext itself calls
Multiply and we need to avoid circularity.

The first part of the Triple protocol where the random ciphertext ca is created can be
used stand-alone, and based on this we can do inversion using a well-known trick, also from
Bar-Ilan and Beaver. Namely, given a ciphertext c = EN,ws(x), let an MPC committee create
ca = EN,ws(a) for a random a, and then decrypt Multiply(c, ca), to get e = xa mod N s. Finally
all players compute ce−1

a mod N s+1 = EN,ws(x−1 mod N s). We will refer to this ciphertext as
Inverse(c).

Creating Random Encrypted Bits To make a random encrypted bit, we call the random
oracle on input a label for this instance of the protocol, which produces an encryption of
a random value x. The idea is now to compute securely a new encryption containing the
Jacobi symbol

(
x
N

)
of x modulo N which can easily be converted to a random bit. All

parties compute the output ciphertext locally from data on the ledger. Once an encrypted
bit is produced it is placed on an ordered list, and when we say in the following that we use
the next available encrypted bit, we mean that all parties take the next unused ciphertext
on the list. The protocol is found in Fig. 32.

The required zero-knowledge proof in the RandBit protocol is easy to construct by observ-
ing that the two ciphertexts in question are either of form cu = EN,ws(1; ru), c′

u = EN,ws(1; r′
u)

(if bu = 0) or cu = EN,ws(α; ru), c′
u = EN,ws(−1; r′

u) (if bu = 1). Either case can be proved by
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Protocol RandBit.
This protocol is parametrized by s, and will create a random bit inside a ciphertext in ZNs+1 . The random
oracle H is here assumed to output a random value modulo Ns+1. Also, we assume a fixed number α ∈ ZNs

has been chosen such that it’s Jacobi symbol mod N is −1.

1. Let ℓ be a unique label for this instance of the protocol, and let cx = H(ℓ), then for some x we have
cx = EN,ws (x).

2. Each party Pu on the first MPC committee assigned to this protocol instance will choose a random bit
bu, random ru, r

′
u and compute cu = EN,ws (αbu ; ru), c′

u = EN,ws ((−1)bi ; r′
u). Note that if this is correctly

done, c′
u contains the Jacobi symbol of the number inside cu, and this Jacobi symbol is random. and send

to FTOB the triple:

(cu, c
′
u,NIZK(bu, ru, r

′
u : cu = EN,ws (αbu ; ru), c′

u = EN,ws ((−1)bi ; r′
u)).

3. Once h = n− t valid triples (cuj , c
′
uj
πuj ) appear on the ledger, set ca = Multiply(cu1 , . . . , cuh ) and c′

a =
Multiply(c′

u1 , . . . , c
′
uh

). Since the Jacobi symbol is multiplicative, we will have that ca = EN,ws (a), c′
a =

EN,ws (( a
N

)) for an a which is not random, but its Jacobi symbol is.
4. Decrypt Multiply(cx, ca) to get xa mod Ns, and decrypt Multiply(cx, ca) to get σ = ( x

N
)( a

N
) = ( xa

N
).

Therefore c′
x := (c′

a)σ mod Ns+1 = EN,ws (( x
N

)).
5. All parties compute and output

cb = (c′
x · (N + 1))2−1 mod Ns

mod Ns+1.

This operation ensure that cb will contain (( x
N

) + 1)/2 which is indeed a 0/1 value.

Fig. 32. The RandBit protocol.

an efficient standard Σ protocol for proof of plaintext knowledge, so a standard or-protocol
construction based on this will give a sound protocol that does not reveal the choice of bu.

I Proofs of Security for the YOSO MPC Protocol

In section 5.3 we specified a protocol πmpc for implementing FMPC. The goal in this section
is to show the following:
Theorem 6. When for a constant c at most T < M/(3 + c) parties are adaptive corrupted
and we set n = λ then for a large enough constant eno we have that if Pailler encryption
is CSO-secure, then πmpc securely implements FPal,1/3,γ,m

MPC in the (Fsetup,FTOB,Fatomic-send)-
model with a random oracle. Here γ and m can be any polynomials.

We prove the theorem for m = 1 for notational convenience. The proof trivially adapts
to m > 1.

We first prove a technical lemma for a common proof pattern, where we argue that a
property holds in all hybrids if it holds in one of the hybrids. We argue this from the hybrids
being indistinguishable. But we at the same time argue that the hybrids are indistinguishable
by the property holding in all hybrids. This seeming circularity can be broken when the
violation of the property can be detected in polynomial time by the adversary.

Lemma 8 (Everywhere from Anywhere). Consider two processes D0 and D1 which
each run through a number of steps. Let A be a PPT adversary being shown a view of D = Db
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and having to guess b. Let Ab and Ba be events defined on both processes. Think of Ba(Db)
as something bad happening. We let Ab(Db) (about to happen) denote the event that Ba(Db)
did not happen yet, but it will happen in the next step. Let Db

→Ab denote the process where we
run Db up until Ab(Db) happens and then stops. So, A(Db

→Ab) would have to make its guess
using its view at this step just before Ba happens. Assume that A(Db) can detect Ab(Db)
in poly-time from its view in the game with Db. Assume furthermore that we can prove the
following for all PPT A:

1. |Pr[A(D0
→Ab) = 0]− Pr[A(D1

→Ab])| = negl.
2. Ba(D0) happens with negligible probability in A(D0).

Then for all PPT A

1. |Pr[A(D0) = 0]− Pr[A(D1) = 0]| = negl.
2. Ba(D1) happens with negligible probability in A(D1).

Proof. We prove that last conclusion first. To see this observe that if Pr[Ba(D1)] ̸= negl then
because Ba(D1) implies Ab(D1) and A can detect Ab(D1) in poly-time, we can consider the A
outputting 1 when Ab(Db) happens and outputs 0 if the execution ends without Ab(Db) hap-
pening. From Pr[Ba(D0)] = negl we have that Pr[Ab(D0)] = negl, so Pr[Ab(D0)] = negl. As-
sume that for the sake of contradiction that it is not the case that Ba(D1) happens with negli-
gible probability in A(D1). From Pr[Ba(D1)] ̸= negl we get that Pr[Ab(D1)] ̸= negl. But then
Pr[Ab(D0)] = negl and Pr[Ab(D1)] ̸= negl. But by construction Pr[A(D0)] = Pr[A(D0)→Ab]
and Pr[A(D1)] = Pr[A(D1)→Ab]. This contradicts |Pr[A(D0) = 0]− Pr[A(D1) = 0]| = negl.
Now since for all PPT A we have proven that Ba(D1) happens with negligible probability in
both A(D0) and A(D1) and we have assumed that that |Pr[A(D0

→Ab) = 0]−Pr[A(D1
→Ab])| =

negl, we have that |Pr[A(D0) = 0]− Pr[A(D1) = 0]| = negl, as desired. ⊓⊔

We start by showing that the Decrypt and Reshare protocols in Figs. 7 and 27 produce
correct outputs. Recall that there is a committee pair assigned to handle each batch of
ciphertexts to decrypt. We maintain the invariant that when a pair is about to decrypt a
batch, it holds VSS(dS,vdS

) with share bound 2b, where dS is the decryption exponent. This
is ensured for the first pairs by Fsetup, and later by resharing dS for the next committee
pairs. At all times, we will use αi to denote the commitment by which the player holding
share si is committed to si.

Note that we have no issue of ciphertexts to decrypt being ill-formed: any number is an
encryption of some message.

Regarding the share bound after resharing, assume we use the specific sharing scheme
mentioned in Appendix E, where the share matrix is of size polynomial in n, say we have
at most na rows and columns, and where all entries in the sharing matrix, sweeping and
recombination vectors are 1 or −1. Then, by inspection of the operations done, one obtains
that if the share bound is 2b before resharing, it will be 22a log n+b+2k after the resharing
where k is the statistical security parameter. Namely, resharing a number with at most b
bits first results in additive shares of size at most b + k bits. These are now in turn shared
using the threshold scheme. For this we need sharing vectors with (b + k) + k = b + 2k
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bits entries, resulting in threshold shares with a log n + b + 2k bits10. These are combined
using a recombination vector, which adds another a log n bits. This is already better than the
approach using the integer version of Shamir’s scheme, as here one gets a factor n! multiplied
on shares for each resharing, so that we add Ω(n log n) + k bits to the share size for each
resharing. We also sketched a protocol that even allows us to reduce the share size to a fixed
amount.

For later use in the argument for security of our role assignment and MPC protocol, we
want to argue that the decryption and reshare protocols work correctly. These proofs and
many of the ones to follow make the following assumption:

Assumption HCNF (Honest committees, no forgeries): all committees used have honest
majority and no corrupt player gets to execute a role she was not assigned, i.e., no corrupt
player successfully forges the message an honest player was supposed to send to execute a
role.

If this assumption does not hold the protocol may, for instance, abort early or a corrupt
player can send a message for a role she does not hold. In a hybrid we construct later we will
be able to show that the assumption holds, namely at that point, all ciphertexts are lossy and
so the adversary cannot know the information she would need to break the HCNF. One now
wants to say that if the assumption failed in the protocol, we could distinguish the protocol
from the hybrid. But on the other hand, we have used HCNF to argue indistinguishability
of protocol and hybrid, so it seems the argument is circular. But this is not really the case:
if HCNF does fail in the protocol, there is a first time where this happens and up to that
point, there is no difference. So we can use this first offending event to distinguish. This line
of reasoning was formalized in Lemma 8.

A remark on the use of commitments. In the following, we will use the binding property of
the commitment scheme and soundness of the zero-knowledge proofs to argue correctness of
the protocols for decryption and resharing. The arguments for this are always of the same
type: a party proves in zero-knowledge that the message she sends is correctly computed
from public information and private data she is committed to. By knowledge soundness we
can extract the committed information. However, we know by the invariant that the party is
committed to correct shares of the secret key and other data, so if the extracted information
is different, we can break the binding property by a straightforward reduction. This type of
argument was also used in Lemma 7, and we will not repeat it below, but simply state the
soundness of the zero-knowledge proofs implies what we want.

In later hybrids we construct, we will generate the public commitment key with associated
trapdoor information so we can equivocate the commitments of honest players. However, we
can still assume that corrupt players cannot break the binding property. This is because we
show that protocol and hybrid are either statistically indistinguishable or computationally
indistinguishable under an assumption unrelated to the commitments. Therefore a break of
the binding property could be used to distinguish and must occur with negligible probability.
10 Note that all players must prove in zero-knowledge that the shares they encrypt are in range, so corrupt players

cannot force shares to be too large.
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Correctness of Decryption. We have:

Lemma 9. Under HCNF, the invariant is maintained by protocol Reshare except with negli-
gible probability. That is, the j’th committee doing decryption holds VSS(dS,vdS

) with share
bound 2(S+1) log N+k+(j−1)(a log n+2k).

Proof. The fact that the committee pair holds a VSS of dS follows for the first pair from the
fact that it receives shares and commitments from the ideal functionality. For subsequent
committee pairs, note that the reshare protocol only considers VSS’s that pass the check
in VSSverify, and the proof of Lemma 7 implies that, except with negligible probability,
for each received VSS all players in the receiving committee are committed to shares of a
well-defined value with a well-defined share vector. So such a VSS for player Pi is indeed of
form VSS(z,vz) for some z,vz. Moreover, this value is equal to the original share si held by
the sending player, as αi defining that share is used as βi

1 in the VSS. Since there is honest
majority in the sending committee by assumption, at least n − t > t players will send a
valid VSS message, and no corrupt messages can successfully claim to play the same roles,
so the receiving committee can wait for n− t VSS messages, and so reconstruction is always
possible. The share bound follows immediately from the discussion above, and the fact that
dS it self is a number with at most (S + 1) logN bits. ⊓⊔

Lemma 10. Under HCNF, the decryption protocol outputs correct plaintexts except with
negligible probability.

Proof. We first consider a ciphertext c that is output by the initial call to RandomizeCipertext.
Since the committee holds a VSS of the correct dS, by Lemma 9, each αi is a commitment
containing the correct i’th share si of dS. Hence, by soundness of the zero-knowledge proof
πc,i, we can assume that, except with negligible probability, each decryption message dc,i

that is delivered from the Gather protocol (and relayed by the threshold committee) is of
form dc,i = csi mod N s+1, where si is the corresponding additive share of dS.

Consider now some fixed but arbitrary receiving party, and assume that there is some
decryption message dc,i that this party did not receive in any of the messages coming from
a set A of parties in the threshold committee. This means that all parties in A (claim they)
did not get dc,i and so, for their last step message to be valid, they must have included a
valid back-up message for dc,i. We therefore have back-up messages {dc,i,j |Pu(j) ∈ A}. Again
by soundness of the zero-knowledge proofs, we can assume that dc,i,j = csj mod N s+1. So,
since A is a qualified set (by the assumption on honest majority in the committee), by the
properties of the reconstruction vector ri

A, it follows immediately that
∏

j,Pu(j)∈A

d
ri

A[j]
c,i,j = dc,i = csi mod N s+1 ,

and so we can conclude that the final product computed satisfies
n∏

i=1
dc,i = c

∑n

i=1 si = cdS mod N s+1
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resulting in correct decryption of c.
Considering the randomization step, recall that it outputs

c = c̄ ·Multiply(c∗, H(c̄, R)) mod N s+1 ,

where c̄ is the original input ciphertext. The Multiply protocol relies for correctness on the
decryption protocol without the randomization, but this is what we just proved is correct.
By the homomorphic property, we can therefore assume that the plaintext contained in c
is of form m + α · β mod N s, where m,α, β are the plaintexts contained in c̄, H(str) and
c∗, respectively. In the set-up for the protocol, c∗ is generated such that β = 0, and so we
conclude that c also contains m and the decryption is correct. ⊓⊔

Main idea for proof of security We now outline the idea for the proof of security of πmpc:
We first show a UC simulator UCsim, it will do a straight-line simulation (as required for
UC) which is possible because it knows the factorization of N and hence can do most of
its job by simply following the protocol. The only caveat occurs when the protocol decrypts
an output corresponding to an output from FMPC, such as a public key for a role. In such
a case, the ciphertext produced in the simulation cannot be assumed to contain the right
value. UCsim fixes this by changing the ciphertext c∗ from the set-up such that it contains 1
instead of 0. This allows it to engineer the randomization step in the decryption such that
the “randomized” ciphertext that is actually decrypted contains the correct value. Therefore,
at the end of the day, the only difference between simulation and real protocol is that some
of the Paillier ciphertexts that are never decrypted contain different values in the two cases.

However, since UCsim knows the factorization of N (it gets it from FMPC), we cannot
directly appeal to CPA security of Paillier to say that this difference cannot be detected.
Instead, we exploit the fact that when proving indistinguishability of simulation and protocol,
we are no longer doing UC simulation, so rewinding is allowed. We show that, even without
the factorization of N , we can emulate both the real protocol and the simulation using
rewinding and a variant of the single inconsistent player (SIP) technique. This way, we define
two processes called ProtRewind and SimRewind producing views for the environment that
are information theoretically indistinguishable from the protocol and from the simulation,
respectively. Note that in doing this, we are rewinding the environment. This is allowed as
we do it as a proof technique. The UC simulator itself is straight line. Finally, skipping many
details, we use the fact that the SIP technique allows us to simulate decryption without
knowing the secret Paillier key and the computational assumptions we make to argue that
ProtRewind and SimRewind are computationally indistinguishable.

The UC Simulator The high-level approach of UCsim, shown in Figure 33, is standard:
emulate the honest parties by following the protocol, and when output is generated or a new
party is corrupted, adjust the internal state so it matches what the functionality requires.
We will use the variant of the UC framework where there is no explicit adversary, and the
environment Z acts also as adversary.

Towards understanding the simulator, we note a few points: decryption of Paillier ci-
phertext occurs in two cases: one case is when a ciphertext is decrypted as a part of the
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multiplication subprotocol, where we consume a multiplication triple, or when the decryp-
tion corresponds to a private output for an honest player. The other case is called an output
decryption where decryption occurs, corresponding to an output that FMPC leaks to the
simulator; either a public output or a private output for a corrupt player. Here, the result
of the decryption is dictated by FMPC, and the simulator takes measures to ensure that the
correct output is generated.

When an honest player is corrupted, the player may possess several different types of
data as listed below. Note that, in general, a player always deletes data that is no longer
needed, so the only data found in memory are the latest one-time pads and shares to be used
for a role that is not executed yet.
– Private output: the player may hold private output from the MPC.
– One time pads: the player may hold some one-time pads to be used for receiving shares

from a previous committee or sending shares to the subsequent one. The player may also
hold a one-time pad, if it is waiting for private output from the MPC.

– Shares: the player may hold shares of the Paillier decryption key.

It can be seen in the simulation that the simulator handles corruptions in a very simple
way: it has a simulated state sti for the corrupted player Pi containing simulated output that
the player has, and has not yet been deleted. Now, the simulator receives the correct output
outi from FMPC, and it simply replaces the simulated output in sti by outi and hands the
resulting state to Z. Let us explain intuitively why this does not create any inconsistencies
that Z could use to tell it is in the simulation: In the real protocol, Pi gets output by first
broadcasting an encrypted one-time pad otpi, and then later the value outi + otpi mod N is
decrypted in public, allowing Pi to compute outi. In the simulation, some random value rndi

was decrypted, so when the simulation claims that the output was outi, it implicitly claims
that the original one-time pad was rndi− outi mod N . This is most likely not the value used
for the simulated encryption of the pad, but Z cannot detect that the claim is false, as it only
knows the encryption of the pad, and the randomness for the encryption has been deleted
by Pi by construction.

Finally, the simulator can fail, if it is not able to program the oracle as needed. Intuitively,
this should not happen, as the programming is done beforeR is decrypted, so the environment
would have to guess R from EN,ws(R) to make an offending call. As the secret Paillier key
is used in the simulation we cannot immediately argue that failure happens with negligible
probability, but we will do so later, in a hybrid that is shown indistinguishable without
assuming that offending calls are unlikely.

As a consequence of these observation and Lemma 10, we get:

Lemma 11. Under HCNF, the ΠMPC protocol and the protocol instance run by UCsim pro-
duce correct outputs, except with negligible probabilty.

Proof. In the protocol, one sees by simple inspection of the subprotocols, that as long as the
decryption produces correct results, each subprotocol works correctly. This is because they
all consist of homomorphic evaluation on ciphertexts, inputs supported by zero-knowledge
proofs of plaintext knowledge and decryption. Further, the supply of random bits comes
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Simulator UCsim for the Role Assignment protocol.

Intialize. Receive N and the factors of N from FMPC. Use this to emulate Fsetup, with one adjustment: the
ciphertext c∗ is generated as an encryption of 1 instead of 0. Initialize a copy of all honest players and
give them the simulated set-up data from Fsetup. Send all private set-up data meant for corrupted players
to Z. Initialize a copy of FTOB.

Main Process Execute the code of the honest players according to the protocol (while Z plays for the
corrupted players). The interface of the internal emulation of FTOB is connected to Z and the honest
players as in the real protocol.

– The random oracle H is emulated using standard lazy sampling of random values, however, certain
inputs are handled in a special way as detailed below.

– Whenever a corrupt player supplies a ciphertext, it is always accompanied by a zero-knowledge proof,
from which the simulator straight-line extracts the corresponding secret data used to generate the
message. As a result, the simulator knows plaintext and randomness for all ciphertexts in the global
state, as well as all shares of the secret Paillier key held by the committees.

– When an output decryption occurs, execute the decryption subroutine below.
– When a corruption occurs, execute the corruption handling subroutine below.

Output Decryption Let c̄ ∈ Z∗
Ns+1 be the ciphertext to be decrypted, and let z be the output generated

by FMPC. Let m be the plaintext contained in c̄, which most likely is different from z. To fix this, the
simulator does the following:
1. Let L be the label of the relevant batch of ciphertexts to decrypt. The simulator chooses R at random

and programs H(L) to be an encryption of R. Once the batch appears on the ledger, the simulator
programs H(c̄, R) to be a random encryption of z −m. If the random oracle has been called before
with an input containing R, the simulator fails and aborts.

2. Since c∗ contains 1, the output c = c̄ · Multiply(c∗, H(c̄, str)) mod Ns+1 from RandomizeCiphertext
contains z. The simulator can therefore let the rest of the decryption proceed honestly.

Corruption Handling When a player Pi is corrupted, the simulator is given whatever output outi that
FMPC has given to Pi and has not yet been deleted. The simulator also has the internal state sti of Pi

as generated in the simulation so far. Note that sti will contain output values generated for Pi in the
simulation. The simulator replaces these values by outi and hands the resulting state to Z.

Fig. 33. The UCsim simulator.
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from the random oracle, so is correctly distributed. For the simulation, UCsim engineers the
output ciphertexts so they contain the correct values, and Lemma 10 guarantees that these
values are actually decrypted. ⊓⊔

Processes. In the following, a process is an algorithm that runs the environment Z is its head,
as well as some number of other parties. The output of a process is whatever Z outputs.
The Protocol process runs the protocol composed with Z and the resource functionalities the
protocol requires, random oracle H, Fsetup and FTOB. The Simulation process is the standard
ideal process in the UC framework, it runs UCsim composed with Z and FMPC.

We first define Simulationzksim and Protocolzksim, which are exactly the same as Simulation
and Protocol, respectively, except that all ZK proofs done by honest parties are simulated.

We proceed to define two new processes ProtRewind(dS) and SimRewind(dS). Both take
the secret Paillier key dS as input.

To give a precise description, we recall that both simulation and protocol proceed in
batches: in a batch, the first step is that all parties create input data for the role assignment
and some parties may give input to whatever secure computation is specified to start in
this batch. We then think of the protocol execution in the batch after this point as being
split into epochs. There is an epoch for every committee pair that is active during the batch.
An epoch starts at the time the sending committee reshares the secret Paillier key for the
next receiving committee, or more precisely, at the time where the first honest party in the
sending committee starts executing the Reshare protocol. Note that the first epoch will not
start until all inputs for the batch have been specified. The receiving committee pair C, that
receives shares of the secret key, will be the sending committee in the next epoch. The epoch
ends when the first member of C starts executing the Reshare protocol. This will not happen
until it can be seen on the ledger that the previous committee has done its work.

As a final prerequisite, note that there is an initial committee pair C1 that receives from
Fsetup a VSS of the secret Paillier key dS. Fsetup is executed in both protocol and simulation
(with a change in the simulation that is irrelevant here). The ProtRewind(sec) process can
be found in Figure 34.

We then define the SimRewind(sec) process. We get it by modifying the simulation in
exactly the same way as we modified the protocol to get ProtRewind(sec). More precisely,
UCSim works by directly executing the protocol. In SimRewind(sec), we will modify the
execution of each epoch to use rewinding exactly as in ProtRewind.

By various lemmas proved below, we will first be able to conclude the following

Protocol ≈s Protocolzksim ≈p ProtRewind(dS)

SimRewind(dS) ≈p Simulationzksim ≈s Simulation ,

where ≈p denotes perfect indistinguishability and ≈s denotes statistical indistinguishability.
And then, using the computational assumptions we make we will, via a number of interme-
diate hybrids, conclude that ProtRewind(dS) ≈c SimRewind(dS), which implies the result we
want. Here ≈c denote computational indistinguishability.
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Process ProtRewind(sec).

Intialize. It is assumed that sec is a number chosen from the same domain as the secret Pailier key dS .
Emulate Fsetup, with one modification: Choose a valid sharing vector vsec and give VSS(sec, vsec) to C0.
Now, execute the protocol composed with Z and random oracle H, as specified, except that each epoch is
done differently, as specified below. For every zero-knowledge proof from a corrupt player, extract on-line
the witness used. As a result of this, and because the actions of honest players can be observed, the
process knows the content of every Pailler ciphertext and every VSS share computed in the protocol.

Epochs execution. We specify how each epoch is done:
1. At the start of the epoch, let the sending committee execute the Reshare protocol as specified. For

the receiving committee pair (Cadd, Cth) receiving a VSS in this epoch, where Cadd is the additive
committee and Cth is the threshold one, do as follows:
(a) Pick a random member of Cadd to be the single inconsistent player (SIP).
(b) When the committee pair does decryption of a batch of ciphertexts, execute the Decrypt protocol

as is, except that the decryption messages of the SIP are computed in a special way. Let c be
a ciphertext to decrypt after the randomization step (see Fig. 7), and note that the decryption
result m is known. Let Pu be the SIP. Let the (correctly computed) decryption messages of the
other parties in Cadd be {dc,i| i ̸= u} and set

dc,u = (N + 1)m
∏
i ̸=u

d−1
c,i mod Ns+1.

Let Pu send dc,i, πc,u using the Gather protocol, where πc,u is a simulated proof.
2. If at any point, the SIP in the additive committee is corrupted, or is not in the core set after the

Gather protocol is done, rewind the entire process to the state it had at the start of the epoch, and
go to step 1. If the epoch ends without rewinding happening, consider the set of honest parties that
are in the core set after Gather (since we assume honest majority in committees, and the core has
size at least n− t, there must be at least 1 such party). Select a random party P in this set. If P is
not the SIP, rewind.
If no rewind took place, continue to the next epoch.

Fig. 34. The ProtRewind process.
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Lemma 12. We have
Protocol ≈s Protocolzksim,

Simulationzksim ≈s Simulation.

Proof. This is immediate by statistical zero-knowledge of the proofs we use—even under
adaptive corruption—as an honest party always deletes randomness and witness immediately
after sending its single message. ⊓⊔

Lemma 13. Under HCNF, we have

Protocolzksim ≈p ProtRewind(dS),

SimRewind(dS) ≈p Simulationzksim,

and each of the two processes run in expected polynomial time.

Proof. We argue that Protocolzksim ≈p ProtRewind(dS): Note that the only difference between
the two processes is that the decryption step is executed differently in the two cases, while
the output plaintext is always the correct one that is actually contained in the ciphertext to
decrypt.

Moreover, note that when ProtRewind(dS) creates an execution of an epoch, it has exactly
the same distribution as in Protocolzksim. The decryption message from the SIP is computed
in a different way, but its distribution remains the same, namely we maintain, even in the
rewinding process that the decryption messages for ciphertext c and plaintext m are com-
puted correctly from the corresponding shares for all parties except the SIP, and then the
SIP’s message is fixed by the equation ∏

i dc,i = (N+1)m mod N s+1. Note that we do not get
the decryption messages from the parties when they send them, which would give a prob-
lem with rushing. We compute them from the corresponding shares, which are known as we
know the contents of all encryptions sent by corrupted parties. We are merely computing
the correct decryption messages for the SIP in an indirect way from the result and the share
of all other parties. This will perfectly give the same decryption message. In particular, this
means that Z has no information on which party we choose as the SIP, all parties in Cadd

behave the same probability in the view of Z. This in turn implies that all decisions that
lead to the choice of the player P at the end of an epoch are taken independently of the
choice of SIP. Therefore, the probability that we do not rewind and keep the view for Z that
we generated is exactly 1/n, and the decision to rewind or not is independent of the actual
view. This, and the fact that each view we make going forward has the right distribution,
implies the first conclusion.

The second conclusion follows by essentially the same argument, we leave the details to
the reader.

Finally, the claim on the expected run time follows from the fact that everything in the
protoocol is polynomial time so the only question is regarding the expected number of times
we rewind. Since there is one sending committees in an epoch, then since each decryption
avoids rewinding with an independent probability 1/n, the probability we get a complete
simulation of an epoch is 1/n and hence the expected number of rewinds is n. ⊓⊔
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PPBox(b).
After the initialize step where the Paillier key is generated, this PPBox will compute a series of sharings and
resharings of dS or a default value, according to the value of b. On request, it will output Paillier encryptions
related to the shares. On getting a leakage query it will output a subset of the shares it has generated. The
sequence of corruption commands is required to be admissible: only an unqualified set of each committee pair
can be corrupted. Moreover, it is not allowed to call the Rewind command more than 2n times for any value
of iV SS (see definition below).

Intialize. When asked to initialize, generates the public and secret Paillier key N, dS , as well as wS =
EN,wS (1). Return N,wS , and if b = 1, set d = dS , else set d = 0.
Define initial committee pair C1 and mark all members as honest. Compute a set of shares sh(d, vd) and
assign it to the members of C1.
iV SS will be the index of the committee pair who will reshare it state next time. Set iV SS = 1.

New Committee This command makes the box define a new committee. Committees are numbered se-
quentially.

One-time pad encryption This command points to an existing committee pair Ci. For each honest mem-
ber of Ci, choose random one-time pads as in the CreateInputData protocol. Paillier encrypt each pad and
return the ciphertexts. Note that in the protocol each pad will be used for communicating with a specific
party from a different committee. If that party is corrupt, return also the pad in clear.

Reveal sums This command points to two consecutive committees Ci, Ci+1 For each pair of honest members
Pj , Pu of Ci, Ci+1, consider the set of one-time pads that would be used when doing the SecretChannels
protocol for Pj , Pu. It consists of set of maxpad pairs otpsnd, otprec held by Pj , Pu respectively. For each
pair, return otpsnd +otprec. Choose a random subset Sj,u of the pairs as in SecretChannels. If one of Pj , Pu

are corrupt accept the set Sj,u as input.
Keep storing all the pairs, but now list only the pads in Sj,u as assigned to Pj and Pu.

Fig. 35. The PPBox we use, Part I. See also Fig. 36
.
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PPBox(b) (cont.).

Reshare On receiving this command, for every share si held by an honest member Pj of the threshold
committee in CiV SS , compute a set of sub-shares sh(si, vsi ), and let Pu be the receiver of the sub-share.
For the encryption of sub-shares to be sent between Pj and Pu, use the pads in the set Sj,u. Specifically,
for each individual sub-share sh(si, vsi )[v], let

→
otpi,v be the one-time pad tuple assigned for encryption

of the share. Return E→
otpi,v

(sh(si, vsi )[v]).
Choose a new unused subset and set Sj,u to be this subset. List the otp’s in the new subset as assigned
to Pj , Pu.

Recombine Assumes that Reshare has been called. Input is a qualified set A of parties in the threshold
committee of CiV SS , and for each si assigned to a corrupt member in A, a set of shares of form sh(si, vsi )
must be supplied. Let rA be the recombination vector for A and compute a new set of shares of d as∑

i,Pu(i)∈A

rA[i) · sh(si, vsi ).

Assign these shares to CiV SS+1.
Rewind Assumes that Recombine has been called. Delete the shares defined for CiV SS+1, and delete the

sub-shares generated for CiV SS . Mark all members of CiV SS+1 as honest.
Advance VSS index Let iV SS = iV SS + 1.
Corrupt This command points to a member of an existing committee pair. Mark the member P as corrupt.

Return all shares and otp’s currently assigned to P . If P was in the additive committee holding share si,
return also all threshold shares of si held by members in the threshold committee.

Fig. 36. The PPBox we use, Part II. See also Fig. 35.

In the proof of the following lemma, we will use a PPBox specified in Fig. 35. It is designed
to allow emulation of the resharing and decryption steps in the protocol. The defined com-
mands are syntactically a bit different from those defined in the generic version in Section 2.
However, the commands defined can be understood as special types of encryption, state
update or leakage queries. Namely, the New Committee, Recombine, Rewind and Advance
VSS index are state update queries, the One-time pad encryption and Reshare commands
are encryption queries, while the Corrupt Command is a leakage query. Moreover the box
assigns a set of one-time pads that can be used for encryption of each sub-share (when doing
the Reshare command). However, it uses a new set of pads from the set for every Rewind
command and the set is assumed to be large enough to allow for 2n rewind commands with-
out reusing any pad. It will refuse to do more Rewinds. In addition the box also releases
an encryption of a one-time pad for the receiver and the sum of the pads for sending and
receiving. Therefore, the encryption of a share s used by the box effectively is of form

EN,wS
(otpsnd), EN,wS

(otprec), otprec + otpsnd, otpsnd + s .

Since the pads are chosen uniformly, this is clearly as secure as Paillier encryption itself,
and so the box is encryption secure, as defined in Section 2. Finally, since the corruption
queries cannot corrupt more than an unqualified set, the box is privacy preserving. Note that
rewinding makes all members of the affected committee honest again so new corruptions can
be done, but all shares are deleted, so this not a problem. Note also that corruption of
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someone in an additive committee returns the threshold shares of the party’s additive share,
even if some that are held by members that are still honest. This is also not a problem since
the threshold shares tell you nothing about the secret that was not already present in the
additive share. So, as long as not all members of the additive committee are corrupted, the
information returned is statistically independent of the secret.

Therefore if one plays the CSO game with this PPBox, CSO-security will imply that one
cannot efficiently distinguish PPBox(0) from PPBox(1).

In the proof of the following lemma, we will also use an assumption saying that during
protocol or simulation, Z does not call the random oracle on a certain input:

The No Random Oracle Call assumption (NROC): Assume that the SecretChannels protocol
has been used to set up otp’s for sending from Pj to Pu, and let H(otp1) be the output they
use for selecting the subset of otp’s to retain. If both parties are honest immediately after
they are done with SecretChannels, then Z never calls H on input otp1.

Intuitively, this is reasonable, because the assumed honesty of parties implies that in
the view of Z, otp1 is only known in encrypted form and if any of the parties is corrupted
later, otp1 has been erased. We will assume NROC for now and later use CSO security and
Lemma 8 to prove it.

Lemma 14. Under HCNF and NROC, and assuming Paillier encryption is CSO-secure we
have

ProtRewind(dS) ≈c ProtRewind(0),

SimRewind(dS) ≈c SimRewind(0).

Proof. We will show that ProtRewind(dS) ≈c ProtRewind(0), the proof of the other conclusion
is essentially the same. We will use the CSO game with the PPBox specified in Figure 35.

We define a process Hybrid that interacts with Z and also plays the CSO game with
PPBox(b). It runs in the same way as Protrewind, with the following modifications

1. Instead of emulating the set-up itself, it calls Intitialize on PPBox and gives the resulting
N,wS to all players. The rest of the set-up is done by following the RoleBatcheseno protocol,
so it is enough to describe how Hybrid emulates that protocol, which is done in the next
steps.

2. To emulate an instance of RoleBatcheseno, recall that the NewRole protocol uses a set
of random encrypted bits to select a player for a role. These bits are determined by
the random oracle, it outputs a random ciphertext where the bit is determined by the
Jacobi symbol of the plaintext. For all calls of this type to the random oracle, the process
programs the oracle to output a ciphertext contaińıng a random plaintext chosen by the
process. The process now knows the entire vector b of bits that determine which players
are selected for which roles, but b is still correctly distributed.

3. Call New Committee on PPBox enough times that the box has defined eno committee
pairs.
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4. For each Ci in the new set of committee pairs, call One-time pad encryption. For each
pair Ci, Ci+1 call Reveal sums. For each pair the process now has encryptions of one-time
pads for Ci when acting as sender Esnd

i , encrypted pads chosen for Ci+1 when acting as
receiver Erec

i+1 , and finally the sums of corresponding pads Si.
5. For each committee pair Ci we now have Erec

i , Esnd
i , and for each member of this com-

mittee pair note that the set of encryptions contain exactly the encryptions of one-time
pads that the party having the corresponding role would publish in the CreateInputData
protocol. Since the process knows b, it knows which party, say P , will be assigned to the
role. If P is corrupt, call Corrupt on PPBox and let Z decide the actions of P . If P is
honest construct its input data IP as follows:

(a) Choose a random tag and add EN,wS
(tag) to IP .

(b) Add the relevant encrypted pads from Erec
i , Esnd

i to IP .
(c) Add commitments in a form so they can be equivocated and add simulated zero-

knowledge proofs as required to IP

The process publishes the constructed IP on behalf of P .
6. The process lets the NewRole executions run according to the protocol.
7. In the executions of SecretChannels, the sum of a set of pairs otpsnd, otprec is decrypted.

Note that the process knows the sum. If both sender and receiver were honest when the
input data was created, the sum is one of the entries in one of the Si’s released from
the box. If one of the parties were corrupt, we get from PPBox the summand, say otp,
it chose for the corrupted player, and we can extract from the zero-knowledge proofs the
value otp′ chosen by the adversary. Then the sum from PPBox can be adjusted by adding
otp′ − otp.
Therefore, the process knows what is decrypted during SecretChannels, and this holds
for all other ciphertexts decrypted, as argued when we specified ProtRewind. With this
knowledge, the process can emulate the Decrypt protocols, happening in each epoch, as
described next.

8. An epoch is done as follows:
(a) At the start of an epoch the process calls Reshare on PPBox. This returns, for all

honest members of the sending committee CiV SS
a set of encrypted (sub)shares. For

each such member, the process extends this to a properly formatted VSS message
by adding equivocable commitments and simulated zero-knowledge proofs as needed.
Then include this in the message sent by the honest party.

(b) Let A be the set of parties whose VSS messages are delivered on the ledger. Extract
from the zero-knowledge proofs in the VSSs from corrupt players the (sub)shares they
have chosen. Call Recombine on PPBox with input A and the extracted sets of shares.
PPBox now has a valid sharing of the master secret assigned to CiV SS+1.

(c) Select a SIP in CiV SS+1 as in ProtRewind and corrupt on PPBox all additive members
in CiV SS+1 except for the SIP. Using the shares returned, the process can now emulate
the execution of decryption exactly as in ProtRewind.

(d) If the SIP is corrupted, a rewind is required. If 2n rewinds were done already, give up
and stop. Else, call Rewind on PPBox and go to Step 8a.
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(e) If the epoch is completed, call Advance VSS index on PPBox and proceed to the next
epoch, or next batch if all epochs are done.

9. If a party is corrupted at a point where it has supplied input data in the beginning of a
batch, but has not yet executed its role, corrupt this party on PPBox to get its one-time
pads and (perhaps) shares, equivocate the commitments created for the party earlier to
hold the (now known) values and return the resulting data to Z

10. Once the process has ended, output the bit that Z outputs.

It is now easy to verify that if the game with PPBox is played when the secret bit to
guess is 1, we get a process that is statistically indistinguishable from ProtRewind(dS). While
if the bit is 0 we are statistically indistinguishable from ProtRewind(0).

Namely, PPBox prepares otp’s and shares exactly as it would be done in the real pro-
tocol and Hybrid adds commitments and zero-knowledge proofs to match the format in the
protocol. There are only two differences. First, when a rewind occurs, PPBox switches to
a new subset of one time pads for share encryption, while ProtRewind does not. However,
under NROC this difference cannot be detected: The issue only occurs if the sender and
receiver we consider are both honest when the epoch starts, so they were also honest when
SecretChannels was executed, so NROC applies. And, PPBox’s selection of subset always
has the right distribution. While the choice of subset may not match the value that would
come from the random oracle, if Z has not called the oracle on the relevant input, it has no
information on the output.

The second difference is that Hybrid never does more than 2n rewinds in an epoch, but
since ProtRewind stops at every iteration with probability 1/n it clearly does more than 2n
rewinds with negligible probability.

Hence Z’s distinguishing advantage equals (except for a negligible amount) the advantage
we have in winning the game, which is negligible by assumption. So the lemma follows. ⊓⊔

For the next two lemmas, we note that CPA security of Paillier encryption clearly follows
from CSO-security, which we assume throughout.

We define a modification of SimRewind(0): SimRewindprot(0), where we make the pro-
cess look more like the protocol: we set the ciphertext c∗ from the set-up used in the
RandomizeCiphertext protocol so it contains 0 as in the protocol and we drop the program-
ming of the random oracle that UCSim uses.

Lemma 15. Under HCNF, NROC and CPA security of Paillier, we have

SimRewind(0) ≈c SimRewindprot(0).

Moreover an offending call to the random oracle that would make UCSim fail, occurs with
negligible probability in SimRewind(0).

Proof. Follows immediately by CPA security of Paillier, as the only effect of the changes
occur inside Paillier ciphertexts that we can control by programming the setup or the ran-
dom oracle. Moreover, to make an offending call, Z would need to guess the value inside a
ciphertext before it is opened. ⊓⊔
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From the above lemma and the previous ones, we can now conclude that the offending call
also must occur with negligible probability in Simulation (and the intermediate processes).
By Lemma 8 this means that it holds in all hybrids that there is a negligible probability that
there are offending calls to the random oracle.

We define processes ProtRewindlossy(0) and SimRewindprot
lossy(0) where we replace the ci-

phertext wS from the set-up by a ciphertext containing 0. This means that all ciphertexts
generated by parties or in set-up are lossy, i.e., they actually contain 0, instead of the plain-
text the party had in mind. Note, however, that it is still possible to extract witnesses from
zero-knowledge proofs, showing how a ciphertext was formed, and hence which plaintext the
party had in mind.

Lemma 16. Under HCNF, NROC and CPA security of Paillier, we have

SimRewindprot(0) ≈c SimRewindprot
lossy(0),

ProtRewind(0) ≈c ProtRewindlossy(0).

Proof. Follows immediately from CPA security of Paillier, as the only effect of the changes
occur inside a Paillier ciphertext from the setup. ⊓⊔

In both SimRewindprot
lossy(0) and ProtRewindlossy(0), all information about random bits

used for selecting parties for roles has been removed. Also, all one-time pads and tags chosen
by honest parties are information theoretically hidden from Z until they are (possibly)
decrypted. Therefore the corruptions done by Z are decided independently of the distribution
of roles to parties, and the tags chosen by corrupt parties in CreateInputData are chosen
independently of the tags of honest players, and will therefore collide with those tags with
negligible probability. Finally, Z has no information on which value two honest players use
in selecting the subset of one-time pads to use in the Secretchannels protocol. We therefore
conclude that the HCNF and NROC assumptions hold in these processes, and by Lemma 8,
we conclude that they also holds in all other processes, except with negligible probability.

It therefore follows by Lemma 11 that the original Protocol process generates correct
outputs and this is preserved over the processes we have derived from the protocol. The
same can be concluded for the processes derived from Simulation. We conclude that the
output generated by SimRewindprot

lossy(0) and ProtRewindlossy(0) have statistically indistin-
guishable distributions, i.e., indistinguishable from correct outputs from the MPC. Further,
even though Simulation and processes derived from it use dummy inputs for honest players
to the MPC, this cannot be detected once ciphertexts are lossy. Also observe that, except for
the choice of inputs, the protocol is executed in exactly the same way in SimRewindprot

lossy(0)
and ProtRewindlossy,(0). We conclude that

Lemma 17. SimRewindprot
lossy(0) ≈s ProtRewindlossy(0)

This concludes the proof of Theorem 6.
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J Secure Coinflips Based on MPC

In this section we show how to implement FMPC+CF based on FMPC. Thus, we need to de-
scribe a protocol that runs assuming FMPC is available. The only new thing we need to im-
plement is the coin flip, and this is done by asking FMPC to evaluate an appropriate function
and give the output to a number of committees. Concretely, the function fRSS(P1, . . . , Pn)
creates a standard robust secret sharing of a random value modulo N , playing the role of the
coin. The members of the committee P1, . . . , Pn each learn a share and can then later reveal
the value of the coin by sending shares to all players. Here, P1, . . . , Pn should be understood
as roles, that map to n random actual parties in the set Pb receiving output from FMPC in
the given batch. The function fb just outputs to n consecutive roles in Rb, as these roles are
already randomly permuted using πb.

We first describe the function to compute:
1. fRSS(R1, . . . , Rn) chooses random values coin, a1, . . . , at ∈ Z∗

N , defines a polynomial

p(X) = coin + a1X + · · ·+ atX
t mod N

and sets shj = p(j), j = 1, . . . , n.
2. For i = 1, . . . , n, chooses αi ∈ Z∗

N at random. For i, j = 1, . . . , n, choose βi,j ∈ Z∗
N at

random. Set maci,j = αishj + βi,j mod N .
3. Define the output outj, for i = j, . . . , n as follows:

outj = shj, αj, βj,1, . . . , βj,n,mac1,j, . . . ,macn,j,

and output outj to Pj.
The idea is that shj is the actual share of coin, the αj and βj,i are keys that can verify
authentication codes for other shares, and the maci,j-values are authentication codes for shj

that can be verified using key material from other players. It is well known that these macs
are information theoretically secure: given shj,maci,j, producing a different pair sh′

j,mac′
i,j

satisfying αish′
j + βi,j = mac′

i,j requires that you guess αi, which happens with negligible
probability 1/N .

In the protocol below, players will receive a subset of the outj’s, some of which may be
incorrect. Given a received value shj, we will say that shj has support from Ri if it is the case
that maci,j = αishj + βi,j, where αi, βi,j are the values received from Ri.

In addition to the above, when party P gives input to FMPC they also give a role input
zP = vkP , where (vkP , skP ) ← Sig.Gen is a key-party for an EUF-CMA secure signature
scheme. Party P keeps the signing key skP . The function fRSS computes the identity function
on the vkP , i.e., it outputs {(RP = π(P ), vkP )}P ∈Q sorted on RP . When P sends its message
as role RP it signs with skP and the receivers use the role name RP to look up (RP , vkP ) and
verifies with vkP . This ensure that only the genuine P can act as RP . We skip these details
below and just assume that one P can send in the name of RP .

The protocol to implement FMPC+CF in Figure 37 is very simple and is only described
for a single coin, the extension to several coins is trivial.

We first show that the protocol has liveness and outputs the correct value.
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Protocol Coinflip.

1. The protocol connects the interface of FMPC+CF directly to the corresponding interface of FMPC, except
for the part relating to coinflip.

2. If a coinflip ordered in the current batch, ask FMPC to compute fRSS(R1, . . . , Rn), where R1, . . . , Rn stands
for the next n available roles.

3. The Flip Coin command is implemented by having Pj who has role Rj send outj to all players and signing
using skPj . The receivers look up (Rj , vkPj ) in vk and uses vkPj to verify the signature.

4. Each player waits until it has received n− t shares that have support from at least n− t roles. Interpolate
a value coin from the first t+ 1 such shares and outputs coin.

Fig. 37. Protocol for Coin-Flip

Lemma 18. Except with negligible probability, each player in the Coinflip protocol eventually
outputs the correct value of coin.

Proof. It follows from the above security property of the macs that (with overwhelming
probability) no incorrect share can have support from more than t players. Thus, a share
having support from n − t > t players can be assumed to be correct. On the other hand, a
correct share will eventually have support from all n− t honest players, since all n− t honest
messages are eventually delivered. So, a player can safely wait until it gets n− t shares with
enough support, and since these shares can be assumed correct, the output is correct. ⊓⊔

Theorem 7. The Coinflip protocol implements FMPC+CF in the FMPC-hybrid model.

Proof. We describe a simulator for the protocol. When a coin is ordered, the simulator
evaluates fRSS but sets coin = 0. It hands the resulting outj-values to Pj for corrupt Pj and
stores the honest values. Until the coin is to be revealed, if a new player Pj is corrupted,
hand outj to Pj. When coin is leaked from FMPC+CF, interpolate a polynomial g(X), such
that g(0) = coin and g(j) = 0 for all corrupt Pj. For each honest Ri, update outi as follows:
set shi = shi + g(i), and update all macj,i values such that the new value of shi and the
new macs verify against all the key material. This is trivial by solving n linear equations.
Send the resulting outi values on behalf of the honest players. When enough messages are
delivered to honest player P , send a Deliver command to FMPC+CF.

It is straightforward to verify that this simulation is statistically indistinguishable from
the protocol. The data from honest players and resource functionality seen by the envi-
ronment have exactly the same distribution as in the real protocol, so by (the proof of)
Lemma 18, the only source of error is when a corrupt player successfully forges a share,
which happens with negligible probability. ⊓⊔
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