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Abstract. We construct the first tightly secure signature schemes in the multi-user setting with adap-
tive corruptions from static search assumptions, such as classical discrete logarithm, RSA, factoring,
or post-quantum group action discrete logarithm assumptions. In contrast to our scheme, the previous
tightly secure schemes are based on decisional assumptions (e.g., (group action) DDH) or interactive
search assumptions (e.g., one-more CDH). The security of our schemes is independent of the numbers
of users, signing queries, and random oracle queries, and forging our signatures is as hard as solving the
underlying static search problems. Our signature schemes are based on an identification scheme with
multiple secret keys per public key and “second-key recovery resistance,” difficulty of finding another
secret key of a given public and secret key pair (e.g., Okamoto identification (CRYPTO’92) and Parallel-
OR identification (CRYPTO’94)). These properties allow a reduction in solving a search problem while
answering signing and corruption queries for all users in the signature security game. To convert such
an identification scheme into a signature scheme tightly, we employ randomized Fischlin transformation
introduced by Kondi and shelat (Asiacrypt 2022) that provides improved straight-line extraction. Intu-
itively, the transformation guarantees the tight security of our signature scheme in the programmable
random oracle model, but we successfully prove its tight security in the non-programmable random
oracle model. Also, as a side contribution, we point out a flaw in the proof for the zero-knowledge prop-
erty of randomized Fischlin transformation by Kondi and shelat. This paper summarizes what they
overlooked in the proof of zero-knowledge property of the transformation, the difficulty of correcting
their proof, and how to overcome it.
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1 Introduction

1.1 Background

Digital signature. Signature schemes are fundamental cryptographic tools to authenticate the sender of
messages. The basic security notion for signature schemes is existential unforgeability against chosen message
attacks (UF-CMA) [18]. It guarantees that an efficient adversary, given a single verification key, cannot forge
a valid signature for any new message under that key. UF-CMA security considers a single-user setting,
but in real-world scenarios, multiple users possess individual signing keys derived from a common public
parameter, and some of these keys may occasionally be compromised. To address a more realistic context,
Bader et al. [3] defined the notion of UF-CMA in the multi-user setting with adaptive corruption (MU-UF-
CMA-C). This framework extends UF-CMA by allowing adversaries to obtain multiple users’ verification keys
and adaptively corrupt users to access their secret signing keys. Notably, MU-UF-CMA-C security precisely
captures the requirements of practical applications that rely on digital signatures, such as authenticated key
exchange [3,27,28,19] and identity-based signature [25].

Tight security. The security of cryptographic primitives is proved by constructing a reduction algorithm
that transforms an efficient adversary who breaks the security of the scheme (e.g., the UF-CMA security
of the signature scheme) into an algorithm that solves an assumed-to-be-hard computational problem (e.g.,
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discrete logarithm problem). In general, the success probability of the reduction and that of the adversary
have some gap called reduction loss, representing the theoretical difference between the hardness of breaking
the scheme’s security and the hardness of solving the computational problem. If the reduction has the same
success probability as the adversary, the reduction is said to be tight, and the scheme is said to be tightly
secure. This means the primitive’s security is independent of the adversary’s behavior (e.g., the number of
hash computations and the number of signing queries) and the number of users in the system. Tight security
is important in both theory and practice. A tight reduction reveals the connection between the hardness of
breaking the security and that of solving computational problems. Since computational problem hardness
is generally well-studied, we can easily understand the security level of tightly secure schemes. In addition,
tightly secure schemes allow for optimal parameter selection that meets the desired security level based on
cryptoanalysis against underlying computational problems. As a result, data size (e.g., key and signature
sizes) and computation cost (e.g., signing and verification) can be minimized, obtaining more efficient than
non-tight schemes with large parameter sets considering reduction loss.

Tight MU-UF-CMA-C secure signature. It is known that EU-CMA security implies MU-UF-CMA-C
security, albeit with a reduction loss proportional to the number of users. In other words, such signature
schemes require a larger parameter to be selected to satisfy sufficient security level to account for reduction
loss. To mitigate this loss, researchers have focused on developing tightly MU-UF-CMA-C-secure signature
schemes, where the security remains independent of the number of users and other factors such as the numbers
of signing and random oracle queries [2,3,17,34,10], summarized in Table 1. We notice that they are based on
decisional assumptions (e.g., (group action) DDH, DLIN, SXDH, φ-hiding) or interactive search assumptions
(e.g., one-more CDH), and no tightly MU-UF-CMA-C-secure signature scheme has been constructed under
static search assumptions (e.g., CDH or DL). At the same time, several impossibility results regarding tightly
MU-UF-CMA-C-secure signatures have been established [4,30,35]. These results identify specific conditions
under which tightly MU-UF-CMA-C-secure signatures cannot exist. However, they do not completely rule
out the possibility of constructing such schemes under static search assumptions.

This literature leads to the following research question3:

Can we construct a tightly MU-UF-CMA-C secure signature
from static search assumptions?

1.2 Our Contributions

We provide an affirmative answer to the open question above. Specifically, we construct the first signature
schemes achieving tight (strong) MU-UF-CMA-C security under static search assumptions such as (group
action) discrete logarithm, RSA, or factoring assumptions in the (classical) random oracle model (ROM).
The security of our schemes is independent of the number of users, signing queries, and random oracle (RO)
queries, and forging a signature is provably as hard as solving static search problems.

Our signature is a generic construction based on a specific identification scheme that allows multiple
secret keys per public key, such as Okamoto identification scheme [26] and the Parallel-OR identification
scheme [8]. To tightly convert such an identification scheme into a signature scheme, we utilize randomized
Fischlin transformation introduced by Kondi and shelat [22], which improves Fischlin’s transformation [15].
While the transformation guarantees tight security in the programmable ROM, we advance this result by
proving the tight security of our signature scheme in the non-programmable ROM.

By instantiating the underlying identification scheme appropriately, we obtain tightly MU-UF-CMA-C
secure signature schemes based on various static search assumptions such as classical DL, RSA, or factoring
assumptions and post-quantum group action DL (GADL) assumption, as shown in Table 1. It is worth noting
that we obtain the first tightly MU-UF-CMA-C secure signature from computational assumptions that are
not random self-reducible (e.g., RSA assumption). Further, our group action-based scheme is superior to
the scheme by Pan and Wagner [30] regarding efficiency, security level, and computational assumption.
Further, our signature gives us the first tightly secure authenticated key exchange protocol, tightly secure
identity-based signature [25] and tightly secure certificates signature [20] based on search assumptions.

3 Some previous works [29,27,28] raised the same question as an open problem.
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Table 1: Existing tightly secure signatures in the multi-user setting with corruptions and our result.
The column “Settings” indicates whether pairings/the Programmable Random Oracle (PRO)/the Non-
Programmable Random Oracle (NPRO) is used. The column “SUF” indicates whether the scheme is strongly
unforgeable. λ denotes the security parameter, t denotes the bit-length of the challenge space, and ρ denotes
the number of repetitions, which satisfy ρt = ω(λ). |X| denotes the bit-length of the elements in the set X.

(a) Classical group-based schemes. Let G be a multiplicative group with order q.

Scheme Public key Signature Assumptions Settings SUF?

Bader [2] |G| 6|G| SXDH Pairing, PRO —
BHJKL [3] O(λ)|G| O(λ)|G| DLIN Pairing —
GJ [17] 2|G| 2|G|+ 4|Zq|+ 2λ CDH & DDH PRO —
WLGSZ [34] |G| 2|G|+ 1 OM-CDH Pairing, PRO —
DGJL [10, Sec. 5.1] 4|G| 3|Zq| DDH NPRO ✓

Ours (based on [26]) |G| ρ(2|Zq|+ t) DL NPRO ✓

(b) Classical factoring-based and RSA-based schemes. Let N be an integer such that N = pq for some primes p and
q.

Scheme Public key Signature Assumptions Settings SUF?

DGJL [10, Sec. 5.2] 2|ZN | 2|ZN |+ λ/4 φ-hiding NPRO ✓

Ours (based on [26]) |ZN | ρ(2|ZN |+ t) RSA NPRO ✓

Ours (based on [16]) |ZN | ρ(2|ZN |+ 2t+ poly(λ)) FACT NPRO ✓

(c) Group action-based schemes. Let G be a group that acts on a set E (i.e., there exists a group action ⋆ : G×E → E).

Scheme Public key Signature Assumptions Settings SUF?

PW [30, Sec. 4.2] 4|E| 2λ(2|E|+ |G|) GADDH PRO —
Ours (based on [7,5,33]) 2|E| 2ρt(|G|+ 1) GADL NPRO ✓

1.3 Technical Overview

This section provides a technical overview of our main result and a side contribution.

Intuition of our signature scheme. Our construction starts with a specialized identification scheme with
multiple secret keys per public key and a property called “second-key recovery resistance.” This property
means that for a given key pair (pk, sk), computing another valid secret key sk′ with respect to pk can be
reduced to breaking a search assumption. To tightly convert such an identification scheme into a signature
scheme, we utilize the randomized Fischlin transformation [22]. In this transformation, the prover, given a
statement x and a witness w, first generates a commitment of the underlying Sigma protocol com. Then, the
prover searches a challenge ch in a random order such that the hash value h = H(com, ch, resp) is the all-zero
string where resp is the response under com and ch. The proof is the transcript (com, ch, resp), i.e., a valid
transcript of the Sigma protocol that yields the all-zero hash value.4 This mechanism realizes straight-line
extraction in the ROM, since the prover is imposed to query the RO for multiple valid transcripts that share
the same commitment until getting the all-zero answer. That is, the extractor can obtain sufficient valid
transcripts to extract a witness by observing the RO queries.

Now, let us explain how the reduction B from the MU-UF-CMA-C security of the obtained scheme to
a search assumption works. B first generates key pairs (ski, pki) for all users by itself, and runs MU-UF-
CMA-C adversary A. Indeed, B can simulate the singing oracle and the corruption oracle perfectly using
the secret keys ski. If A outputs a valid signature under a public key pki, B can extract a secret key sk′i
corresponding to pki due to the straight-line extractability of randomized Fischlin transformation. If the

4 To balance the soundness error and the efficiency, in the actual protocol, the prover does this process in parallel,
but this is not important for the moment.
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extracted key sk′i is different from ski generated by B, B succeeds in breaking the search assumption from
the second-key recovery resistance of the underlying identification scheme. Now, we hope sk′i 6= ski holds
with high probability, but our concern is that A might be able to get some information about ski from
the answers of the signing oracle (i.e., signatures) simulated with ski and make sk′i = ski. (Of course, A is
disallowed to get ski from the corruption oracle.) Roughly, signatures of our scheme are non-interactive zero-
knowledge (NIZK) proofs obtained by randomized Fischlin transformation, but, unfortunately, we cannot
conclude easily that signatures give no information about the used key ski, since the transformation does
not necessarily provide perfect zero-knowledge property. (See below for details.) Instead, we prove that A
actually has no information about ski unless A issues special queries to the random oracle, and that it is
infeasible to make such special queries for PPT adversaries.

Interestingly, the tight security of our signature scheme is shown in the non-programmable ROM, although
the transformation guarantees (possibly computational) zero-knowledge property in the programmable ROM.
This is because the programmability of RO is only used to showA has no information about ski in our security
proof, and the reduction B does not need to program RO.

Randomized Fischlin transformation, reconsidered. As a side contribution, we point out a flaw in the
proof for the zero-knowledge property of randomized Fischlin transformation by Kondi and shelat [23, Proof
of Theorem 6.4]. Here, we summarize what Kondi and shelat overlooked in the proof of ZK property of their
transformation, the difficulty of correcting their proof, and how to overcome it.

We first briefly review two worlds, the real world and a simulated world, used to define the ZK property
for NIZK in the ROM [15,12]. In both worlds, an adversary D first outputs a statement x and a witness
w, receives a challenge proof, and tries to guess which world it lives in accessing the RO. In the real world,
the challenge proof is generated by an honest prover having (x,w). On the other hand, in the simulated
world, the challenge proof is generated by a simulator Sim having only x, and the random oracle D accesses
to is controlled by Sim. The important point is that Sim has to not only simulate a proof (typically while
programming the RO) but also mimic the behavior of the real RO (considering the programmed parts in
response to queries issued by the honest prover when generating the simulated proof as if it were honestly
generated.

We observe that, although each answer of the RO in the real world is uniformly distributed, its distribution
conditioned on the fact that the challenge proof is the first transcript that the honest prover would find yielding
the all-zero hash value is not necessary the uniform distribution; while the hash value of the transcript in the
challenge proof is guaranteed to be all-zero, the hash values of other valid transcripts that the honest prover
would query are less likely to be all-zero, and those to the other queries are uniformly distributed. (We will
give a tiny concrete example in Section 6.) However, as far as we understand, Kondi and shelat overlooked
this point. In their proof, the simulator honestly simulates the random oracle, with the only exception that
the simulator programs the all-zero hash value to simulate a challenge proof.

To prove the ZK property of randomized Fischlin transformation correctly, the simulator needs to recog-
nize RO queries that the honest prover would make and respond to them differently than other RO queries.
However, difficulties arise due to the two facts: RO queries issued by the honest prover depend on the hon-
est prover’s witness, and the simulator does not know the honest prover’s witness. We elaborate on this
difficulty using an example of a Parallel-OR protocol. In a Parallel-OR protocol for two statements, the
transcript consists of two “sub-transcripts”, each proving the knowledge of each witness, and the sum of the
two sub-challenges is equal to the challenge of OR protocol. If an honest prover knows a witness of the
first statement w.l.o.g., the second sub-transcript is first simulated and fixed, and the first sub-transcript is
honestly generated based on the challenge. Thus, to generate a proof of randomized Fischlin transformation,
the prover repeatedly queries the RO for transcripts with different first sub-transcripts but the common
second sub-transcripts. That is, the sequence of queries issued by the honest prover is completely different
depending on the witness that the prover has. In the simulated world in the proof of the ZK property, the
simulator has to simulate the RO differently depending on whether the query would be issued by the honest
prover or not, but it seems impossible for the simulator to distinguish them.
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We overcome this difficulty by requiring the underlying Sigma protocol to have three properties in addition
to perfect ZK and high commitment entropy: Strong 2-special soundness5, witness collision resistance6, and
a property that we call “re-simulatability.”7 The key observation here is that once an adversary issues an RO
query that looks like a query that the honest prover would make, the simulator can extract a witness from
the challenge transcript and the queried transcript, due to the strong 2-special soundness. Furthermore,
due to the witness collision resistance, this extracted witness should be equal to the witness specified by
the adversary. Finally, using the re-simulatability, the simulator can generate the transcript that would be
queried by the honest prover. Using these facts, the simulator can distinguish which RO queries the honest
prover would make, and then the simulator can simulate the real experiment.

1.4 Future Work and Open Problem

We leave the following interesting future works.

Regarding tight MU-UF-CMA-C secure signature. First, our scheme’s signature size is not constant;
it is proportional to the security parameter. Constructing a tight MU-UF-CMA-C secure signature with a
constant signature size from search assumptions is an important future work to improve efficiency. Second,
proving or disproving the existence of tight MU-UF-CMA-C secure signatures based on static search assump-
tions in the standard model is an interesting theoretical question. Finally, the security of randomized Fischlin
transform in the quantum ROM (QROM) has not been shown, so the tight security of our construction is
not guaranteed in the QROM either. A promising alternative approach to achieve a tight MU-UF-CMA-C
signature from post-quantum search assumption (e.g., GADL) in the QROM is the use of Pass’s transfor-
mation [31], i.e., a Sigma protocol is first transformed into a commit-then-open type interactive protocol
and then it is converted to a non-interactive protocol using Fiat-Shaimr (FS) transformation [13], since
the recent result by Don et al. [11] allows us to convert commit-then-open type protocols into NIZK via
FS transformation in the QROM tightly. A drawback of Pass’s transformation is its inefficiency. The proof
length is O(λ) times longer than the total length of a transcript in the underlying Sigma protocol. However,
it is comparable to our group action-based scheme in which the signature consists of O(λ) group elements.

Regarding randomized Fischlin transformation. To correct the proof for the ZK property of random-
ized Fischlin transformation, we require three additional properties to the underlying Sigma protocol: strong
2-special soundness, witness collision resistance, and re-simulatability. At this point, it is unclear whether
all of them are necessary for the ZK property, and we leave the analysis for future work. Especially as-
suming witness collision resistance prevents us from converting Parallel-OR protocols into NIZKs because
Parallel-OR protocols do not have witness collision resistance (cf. Remark 6). Thus, relaxing the underlying
assumption is an important work to expand the applicability of randomized Fischlin transformation.

2 Preliminaries

This section reviews basic notations and definitions of cryptographic primitives used in this paper.

2.1 Notations

λ ∈ N denotes a security parameter. ⊕ denotes the bit-wise exclusive-or operation. poly(·) and negl(·) are
any polynomial function and negligible function, respectively. e denotes the base of the natural logarithm

5 Intuitively, strong 2-special soundness requires that a witness can be efficiently extracted from two different tran-
scripts that share the same commitment.

6 Witness collision resistance ensures that it is hard to find two different witnesses for the same statement. It was
known as the hardness of representation problem [9].

7 Intuitively, re-simulatability requires that given a witness w, a transcript (com, ch, resp) honesty generated from
w and a (unknown) random coin r, and any challenge ch′, one can efficiently compute a response resp′ that the
prover would compute using the same w and r to respond to ch′ instead of ch.
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(i.e., Napier’s constant). For n ∈ N, we define [n] := {1, 2, . . . , n} as the set of the first n natural numbers.
For a finite set S, we use s ←$ S to denote the uniformly random sampling of an element s from S. A
probabilistic algorithm A is said to be PPT (probabilistic polynomial time) if its running time TA can be
bounded by a polynomial in its input size. The notation y ← A(x) means that the variable y is assigned to
the output of the algorithm A on input x. We write y ∈ A(x) to state that y is a possible output of A on
input x. Whenever we deal with statistically negligible terms, we denote them by Greek letters, e.g., ǫXX; for
computationally negligible terms, we use notation like Adv

game
A,Π (λ).

2.2 Signature Schemes

We recall the syntax and security notions of signature schemes.

Definition 1 (Signature scheme). A signature scheme SIG is a tuple of the following algorithms.

– Setup(1λ) → par: On input the security parameter 1λ, the setup algorithm outputs a public parameter
par. We assume the following algorithms implicitly take par as input.

– KGen(par) → (svk, ssk): On input a public parameter par, the key generation algorithm outputs a public
key svk and a secret key ssk.

– Sign(ssk,m)→ σ: On input a secret key ssk and a message m, the signing algorithm outputs a signature
σ.

– Vf(svk,m, σ)→ 1/0: On input a public key svk, a message m, and a signature σ, the verification algorithm
outputs 0 or 1.

Definition 2 (Correctness). We say that a signature scheme SIG is (1− β)-correct if for any λ ∈ N, any
par ∈ Setup(1λ), any key pair (svk, ssk) ∈ KGen(par), and any message m, it holds that

Pr[Vf(svk,m, Sign(ssk,m)) = 1] ≥ 1− β.

In this work, we focus on strong existential unforgeability against adaptive chosen-message attacks in the
multi-user setting with adaptive corruptions [10, Definition 2].8 We call it MU-SUF-CMA-C security in short.

Definition 3 (N-MU-SUF-CMA-C Security [10]). Let N = poly(λ) be a natural number. We say a signa-
ture scheme SIG is N -MU-SUF-CMA-C secure if for any PPTadversary A, it holds that

AdvMU-SUF-CMA-C
A,SIG (λ) := Pr[N -MU-SUF-CMA-C(λ)⇒ 1] ≤ negl(λ),

where the game N -MU-SUF-CMA-C is depicted in Figure 1.

2.3 Canonical Identification Schemes

We follow the syntax of canonical identification schemes in [21].

Definition 4 (Canonical Identification Schemes). A canonical identification scheme ID is a tuple of
the following four algorithms.

– ISetup(1λ) → par: The setup algorithm takes the security parameter 1λ and outputs a public parameter
par. We assume that par defines the set of challenges ChSet and the following algorithms implicitly take
par as input.

– IGen(par) → (pk, sk): The key generation algorithm takes a public parameter par as input and outputs
public and secret keys (pk, sk). We assume the secret key sk is chosen uniformly and randomly from the
secret key space.

8 As mentioned in [10], strong unforgeability is useful for constructing cryptographic protocols such as authenticated
key exchange.
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N -MU-SUF-CMA-C(λ)

1 : Lcorr, Lsig ← ∅

2 : par← Setup(1λ)

3 : foreach i ∈ [N ] do

4 : (svki, sski)← KGen(par)

5 : O := (OSign,OCorr)

6 : SVK := {svki}i∈[N ]

7 : (i∗,m∗, σ∗)← AO(par, SVK)

8 : if i∗ ∈ Lcorr then return 0

9 : if (i∗,m∗, σ∗) ∈ Lsig then

10 : return 0

11 : ok := Vf(svki∗ ,m
∗, σ∗)

12 : return ok

OSign(i,m)

1 : if i ∈ Lcorr then

2 : return ⊥

3 : σ ← Sign(sski,m)

4 : Lsig := Lsig ∪ {(i,m, σ)}

5 : return σ

OCorr(i)

1 : Lcorr := Lcorr ∪ {i}

2 : return sski

Fig. 1: Security game for signature scheme.

– P = (P1,P2): The prover algorithm is split into two algorithms. P1 takes as input a key pair (pk, sk) and
returns a commitment com and a state st; P2 takes as input a challenge ch and a state st, and returns
a response resp.

– V(pk, com, ch, resp) → 1/0: The verifier algorithm takes a public key pk and a conversation transcript
(com, ch, resp) as input and outputs 1 or 0.

Let K := |{sk : (pk, sk) ∈ IGen(par)}| denote the number of valid secret keys w.r.t. a public key pk. We
say that an identification scheme ID has K-multiple secret keys if each pk has K secret keys. When K = 1,
we say that ID has a single secret key.

We require that identification schemes ID satisfy the following properties.

Definition 5 (Correctness). We say that ID is correct if for all λ ∈ N, all par ∈ ISetup(1λ), all (pk, sk) ∈
IGen(par), all (com, st) ∈ P1(pk, sk), all ch ∈ ChSet and all resp ∈ P2(ch, st), we have V(pk, com, ch, resp) = 1.

We say a transcript (com, ch, resp) is valid w.r.t. pk if V(pk, com, ch, resp) = 1.

Definition 6 (Key Verifiability [30]). We say that ID is key verifiable if there exists a deterministic
polynomial time algorithm VerKey such that for all λ ∈ N, all par ∈ ISetup(1λ) and any (pk, sk),

VerKey(par, pk, sk) = 1⇐⇒ (pk, sk) ∈ IGen(par).

Definition 7 (Min-Entropy of Commitments [21]). We say that ID has κ-bits of commitment min-
entropy, if for all (pk, sk) ∈ IGen(par), the commitment generated by the prover algorithm is chosen from a dis-
tribution with at least κ-bits of commitment min-entropy. That is, for all strings com′, we have Pr[com′ = com] ≤
2−κ if (com, ∗)← P1(pk, sk) was honestly generated by the prover.

Given ID as above, we define transcript generation algorithm Tran as follows:

Tran(pk, sk, ch)

1 : (com, st)← P1(pk, sk)

2 : resp← P2(ch, st)

3 : return (com, ch, resp)

7



Definition 8 (Special Honest-Verifier Zero-Knowledge (HVZK) [30]). We say that ID is perfect
special honest-verifier zero-knowledge (perfect HVZK) if there exists a PPTalgorithm Sim, a simulator, such
that for all par ∈ ISetup(1λ) and all (pk, sk) ∈ IGen(par), the following distributions are identical:

{(com, ch, resp)← Tran(pk, sk, ch)|ch←$ ChSet}

and

{(com, ch, resp)|ch←$ ChSet; (com, resp)← Sim(pk, ch)}.

Kondi and shelat [22] introduced strong special soundness, which is a stronger version of special soundness
in the sense that the extractor can extract a secret key of pk from two valid transcripts (com, ch, resp) and
(com, ch′, resp′) such that (ch, resp) 6= (ch′, resp′). That is, the extractor works even in the case ch = ch′ and
resp 6= resp′. In this work, we define computational strong special soundness as follows.

Definition 9 (Computational Strong Special Soundness). We say that ID is strong special sound if
there exists a PPTalgorithm Ext, an extractor, such that for all PPT adversaries A, it holds that

AdvSSSA,ID(λ)

:= Pr













(ch, resp) 6= (ch′, resp′)
∧ok = ok

′ = 1
∧(pk, sk∗) /∈ IGen(par)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

par← ISetup(1λ),
(pk, com, ch, resp, ch′, resp′)← A(par),

ok ← V(pk, com, ch, resp),
ok

′ ← V(pk, com, ch′, resp′),
sk∗ ← Ext(pk, com, ch, resp, ch′, resp′)













≤ negl(λ).

Remark 1. Kondi and shelat introduced strong special soundness to relax the requirement, “special soundness
plus quasi-unique response” required for the underlying protocol in the original Fischlin transformation [15].
Their original definition does not specify “who” generates two transcripts, does not take into account the
failure probability of Ext, and leaves no room for computational assumptions. However, it is clear that special
soundness plus quasi-unique response does not imply unconditional strong special soundness. Since they said
“Okamoto’s identification protocol satisfies strong special soundness,” they are probably considering the
computational one as our definition.

We introduce a variant of key recovery resistance. The following second-key recovery resistance ensures
that when ID has multiple secret keys, given a key pair (pk, sk), it is difficult to find another secret key
sk∗ 6= sk with respect to pk. For our purpose of constructing a tightly secure signature in the multi-user
setting, we define second-key recovery resistance in the multi-user setting.

Definition 10 (Second-Key Recovery in the Multi-User Setting). Let N = poly(λ) be some natural
number. We say that ID is second-key recovery resistant in the multi-user setting if for all adversaries A, it
holds that

Adv2
ndKR

A,ID (λ) := Pr





(pki∗ , sk
∗) ∈ IGen(par)

∧sk∗ 6= ski∗

∣

∣

∣

∣

∣

∣

par← ISetup(1λ),
(pki, ski)← IGen(par) ∀i ∈ [N ],

(i∗, sk∗)← A(par, {(pki, ski)}i∈[N ])





≤ negl(λ).

3 Signature Scheme via Randomized Fischlin Transformation

In this section, we describe the signature scheme from an identification scheme via randomized Fischlin
transformation [22]. Then, we prove that the signature scheme tightly archives MU-SUF-CMA-C security.
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Setup(1λ)

1 : par
′ ← ISetup(1λ)

2 : return par := par
′

KGen(par)

1 : (pk, sk)← IGen(par)

2 : return (svk, ssk) := (pk, (pk, sk))

VfH(svk,m, σ)

1 : (comj , chj , respj)j∈[ρ] := σ

2 : ~com := (com1, . . . , comρ)

3 : pfx := (pk,m, ~com)

4 : foreach j ∈ [ρ] do

5 : if H(pfx, j, chj , respj) 6= 0γ then

6 : return 0

7 : if V(pk, comj , chj , respj) = 0 then

8 : return 0

9 : endfor

10 : return 1

SignH(ssk,m)

1 : foreach τ ∈ [T ] do

2 : foreach j ∈ [ρ] do

3 : (comτ,j , stτ,j)← P1(pk, sk)

4 : endfor

5 : ~comτ := (comτ,1, . . . , comτ,ρ)

6 : pfxτ := (pk,m, ~comτ )

7 : foreach j ∈ [ρ] do

8 : Sj := ∅

9 : while Sj 6= {0, 1}
t
do

10 : ch←$ {0, 1}t \ Sj

11 : respτ,j,ch ← P2(ch, stτ,j)

12 : hτ,j,ch := H(pfxτ , j, ch, respτ,j,ch)

13 : if hτ,j,ch = 0γ then

14 : chτ,j := ch

15 : break // proceed to next j

16 : else

17 : Sj := Sj ∪ {ch}

18 : endwhile

19 : endfor

20 : if ∀j ∃ch : hτ,j,ch = 0γ then

21 : break // succeed in signing

22 : if τ = T then

23 : return ⊥

24 : endfor

25 : τ̂ := τ

26 : σ := (comτ̂ ,j , chτ̂ ,j , respτ̂ ,j,chτ̂,j
)j∈[ρ]

27 : return σ

Fig. 2: The signature scheme SIG[ID,H].

3.1 Proposed Signature Scheme

Let ID = (ISetup, IGen,P = (P1,P2),V) be a canonical identification scheme with the challenge space ChSet.
Define the parameters t, ρ, γ for the bit-length of the challenges, the number of repetitions, and the length
of the hash value such that ρ · γ = ω(λ), t− γ = ω(λ), t, ρ, γ = O(λ) and γ ≤ t ≤ ⌊log |ChSet|⌋. Also, let
T be the maximum number of retrying the signing algorithm. Let H : {0, 1}∗ → {0, 1}γ be a hash function
modeled as a random oracle. The signature scheme SIG[ID,H] := (Setup,KGen, SignH,VfH) (in the ROM) is
depicted in Figure 2.

We prove that SIG[ID,H] is correct and MU-SUF-CMA-C secure.

Theorem 1. If ID is correct, then the signature scheme SIG[ID,H] is (1−β)-correct for β = 2(−2t−γ log e+log ρ)T .

Proof. Randomization of Fischlin transformation does not affect correctness errors, so we can refer to the ex-
isting correctness analysis for the original Fischlin transformation. According to [6, Section 3], the probability

that Sign outputs ⊥ is at most (ρ · e−2t−γ

)T = 2(−2t−γ log e+log ρ)T . Since ID is perfectly correct, SIG[ID,H] is

(1− β)-correct for β = 2(−2t−γ log e+log ρ)T .
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Theorem 2. If ID has κ-bits of commitment min-entropy, K -multiple secret keys for K ≥ 2, perfect HVZK,
strong special sound, and second-key recovery resistant in the multi-user setting, then the signature scheme
SIG[ID,H] is MU-SUF-CMA-C secure in the non-programmable random oracle model.

In particular, if there is an adversary A that breaks the MU-SUF-CMA-C security of SIG[ID,H] in time
TA with success probability AdvMU-SUF-CMA-C

A,SIG[ID,H] (λ), then there is an algorithm B1 breaking the strong special

soundness of ID in time TB1
= O(TA) with probability AdvSSSB1,ID

(λ) and an algorithm B2 breaking the second-

key recovery resistance of ID in the multi-user setting in time TB2
= O(TA) with probability Adv2

ndKR
B2,ID

(λ) such
that

AdvMU-SUF-CMA-C
A,SIG[ID,H] (λ) ≤

K

K − 1
Adv2

ndKR
B1,ID

(λ) + AdvSSSB2,ID
(λ)

+
QRO + 1

2ρκ
+

T ·Qsig(QRO + T ·Qsig)

2ργ
. (1)

Here, QRO and Qsig are the maximum numbers of RO queries and signature queries issued by A, respectively.

This theorem shows that the MU-SUF-CMA-C security of our signature scheme is tightly reduced to
the security against the second-key recovery resistance and the strong special soundness of ID in the non-
programmable ROM. Here, we provide a proof sketch. The full proof is provided in Appendix A.

Proof sketch. For simplicity, assume that the underlying ID scheme has perfect strong special soundness
(AdvMU-SUF-CMA-C

A,SIG[ID,H] (λ) = 0), honestly generated ~com is always fresh (i.e., 1/2ρκ ≈ 0), and the adversary cannot
find chj that yields the hash value 0γ for each j ∈ [ρ] with one oracle query (i.e., 1/2ργ ≈ 0).

Consider the following reduction R that reduces the MU-SUF-CMA-C security of SIG[ID,H] to the second-
key recovery resistance. On input (pki, ski)i∈[N ], R runs A with input (pki)i∈[N ]. R simulates the sign-
ing and the corruption oracles using ski. On the simulation of the RO, R always returns a random hash
value (without programming), and maintains the query-answer list L as usual. In addition, for each query
(pki,m, ~com, ch, resp), R checks if (comj , ch, resp) is a valid transcript w.r.t. pki, i.e., V(pki, comj , ch, resp) = 1
holds, and if there is another valid query (pki,m, ~com, ch′, resp′) that shares the same (pki,m, ~com) but

(ch′, resp′) 6= (ch, resp) in L. If exists, R sets the flag Ffind and computes ŝk = Ext(pki, comj , ch, resp, ch
′,

resp′). The perfect strong special soundness ensures that ŝk is a valid secret key w.r.t. pki, and R successfully

finds the second secret key if ŝk 6= ski.

Next, we estimate the probability that ŝk = ski holds. If randomized Fischlin transformation preserves

the perfect (HV)ZK property of ID, we can conclude that ŝk = ski holds with probability 1/K, that implies
R’s success probability is (K−1)/K times that of A. However, as we will see in Section 6, the transformation
does not preserve the perfect (HV)ZK property. More precisely, simulated signatures themselves never leak
information about the used secret key ski, but the responses of the RO for special queries depend on ski. Let
(com, ch, resp) be a valid transcript included in a signature generated by R. During the singing process, R
internally issues not only (pki,m, ~com, ch, resp) but also other queries (pki,m, ~com, ch′( 6= ch), resp′) to the RO,
and the conditional probability distribution of H(pki,m, ~com, ch′, resp′) under the condition “(comi, ch

′, resp′)
was not included in the signature” is different from the uniform distribution. Furthermore, the set of such
(pki,m, ~com, ch′, resp′) that has a biased probability distribution depends on the used secret key. Therefore,
A may get some information about ski by asking to the RO for such (pki,m, ~com, ch′, resp′).

We avoid this situation using the observation that once (pki,m, ~com, ch′, resp′) that may leak the infor-
mation about ski is queried to the RO, the flag Ffind is set. In other words, A’s view up to the point of

issuing a query that triggers the flag to be set is independent of ski. Thus we can conclude that ŝk extracted
from the trigger query is equal to ski with probability 1/K.

Remark 2. In [22], the ZK property of the randomized Fischlin transformation is shown in the programmable
ROM. Unfortunately, the proof has a flaw as shown in Section 6, and its ZK property is conditional. That
is, randomized Fischlin transformation has conditional ZK property in the PROM. In contrast, we have
successfully proven the security of the signature scheme in the non-programmable ROM (NPROM). This is
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because, rather than using the computational ZK property of the transformation straightforwardly, we take
advantage of the fact that its ZK property holds unconditionally until a query is requested to the RO that
triggers the flag Ffind to be set, and use the unconditional ZK property to show that no information about
ski is leaked to A before requesting such a query.

3.2 Improving Efficiency

If the verifier algorithm of the underlying ID scheme can be represented as

V(pk, com, ch, resp) = 1 ⇐⇒ com = fV(pk, ch, resp) (2)

for some efficiently computable function fV, we can eliminate ~com in the signature as in Schnorr signature.
In this case, VfH(svk = pk,m, σ = (chj , respj)j) first reconstructs comj := fV(pk, chj , respj), ~com := (comj)j ,
and then checks if H(pk,m, ~com, j, chj , respj) = 0γ holds for all j ∈ [ρ].

4 Instantiations of Signature Schemes

In this section, we provide concrete instantiations of tightly MU-SUF-CMA-C-secure signatures from our
framework. We consider an instantiation from classical groups based on the Okamoto identification [26] and
an instantiation from isogenies based on Couveignes-Stolbunov identification [7,5,33] with the Parallel-OR
technique [8].

4.1 Instantiation from Classical Groups

Okamoto identification scheme. Okamoto protocol [26, Scheme 1], which is based on discrete-logarithm
assumption, is one of the most important instantiations of our framework. Let GGen be a PPT algorithm
that on input 1λ generates a prime q, a multiplicative group G with order q, and a generator g ∈ G, and
outputs (G, q, g). Okamoto protocol IDOka := (ISetupOka, IGenOka,POka,VOka) is defined in Figure 3.

For completeness, we show that IDOka has correctness, multiple secret keys, perfect HVZK, strong special
soundness, and second-key recovery resistance in the multi-user setting. To this end, we recall discrete
logarithm assumption.

Definition 11 (Discrete Logarithm (DL) Assumption). We say that DL assumption holds for GGen

if for all PPT adversaries A, it holds that

AdvDL
A,GGen(λ) := Pr









gα
′

= g1

∣

∣

∣

∣

∣

∣

∣

∣

(G, q, g)← GGen(1λ),
α←$ Zq,
g1 := gα,

α′ ← A(G, q, g, g1)









≤ negl(λ).

We now prove IDOka’s properties.

Theorem 3. IDOka is correct, and it has log q-bits of commitment min-entropy and q-multiple secret keys.

Proof. The correctness of IDOka is clear (proved in [26]). The commitment of IDOka consists of a randomly
chosen group element over G with order q. Thus, IDOka has log q-bits of commitment min-entropy. Finally,
for each pk, there are q pairs of (s1, s2) such that pk = gs1gs21 . Thus, IDOka has q-multiple secret keys.

Theorem 4. Under the DL assumption, IDOka is strong special sound. More precisely, there exists an
extractor Ext such that, for any adversary A breaking strong special soundness of IDOka with advantage
AdvSSSA,IDOka

(λ), there exists a DL solver B whose advantage is

AdvDL
B,GGen(λ) = AdvSSSA,IDOka

(λ).

This means that AdvSSSA,IDOka
(λ) is upper bounded by maxB AdvDL

B,GGen(λ).
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ISetupOka(1
λ)

1 : (G, q, g)← GGen(1λ)

2 : α←$ Zq; g1 ← gα

3 : ChSet := Zq

4 : return par := (G, q, g, g1)

IGenOka(par)

1 : sk := (s1, s2)←$ (Zq)
2

2 : pk := gs1gs21

3 : return (pk, sk)

VOka(par, pk, com, ch, resp)

1 : (y1, y2) := resp

2 : if com = gy1gy21 /pkch then

3 : return 1

4 : else return 0

POka,1(pk, sk)

1 : (r1, r2)←$ (Zq)
2

2 : R := gr1gr21

3 : com := R

4 : st := (sk, r1, r2)

5 : return (com, st)

POka,2(st, ch)

1 : y1 := r1 + ch · s1 mod q

2 : y2 := r2 + ch · s2 mod q

3 : resp := (y1, y2)

4 : return resp

Fig. 3: The Okamoto protocol IDOka.

Proof. We define the extractor Ext as follows. Let (pk, com, ch, resp, ch′, resp′) be Ext’s input. If ch 6= ch′, Ext
computes

s∗1 := (y1 − y′1)/(ch− ch′) mod q,

s∗2 := (y2 − y′2)/(ch− ch′) mod q

and outputs sk∗ := (s∗1, s
∗
2). Otherwise, Ext outputs ⊥.

When ch 6= ch′, it is easy to see that Ext outputs a valid secret key. So, AdvSSSA,IDOka
(λ) is the probability

that A outputs (pk, com, ch, resp, ch′, resp′) such that ch = ch′, resp 6= resp′, and V(pk, com, ch, resp) = V(pk,
com, ch′, resp′) = 1. Note that (ch = ch′ ∧ resp 6= resp′) implies y2 6= y′2 if V(pk, com, ch, (y1, y2)) = V(pk, com,
ch′, (y′1, y

′
2)) = 1.

Now we construct a PPT algorithm B that solves the DL problem by using A. Upon receiving a DL

instance (G, q, g, g1), B executes A on input par := (G, q, g, g1). If A outputs pk and two valid transcripts
(com, ch, resp) and (com, ch′, resp′) with respect to pk such that ch = ch′ and y2 6= y′2, B can compute a DL

of g1 as

α := (y1 − y′1)/(y
′
2 − y2).

Clearly, AdvDL
B,GGen(λ) = AdvSSSA,IDOka

(λ) holds. In addition, the running time of B is A’s running time plus
poly(λ).

Theorem 5. IDOka is perfect HVZK.

Proof. Consider the following simulator: On input (pk, ch), choose y1, y2 ←$ Zq, compute R := gy1gy2

1 /pkch,
and output (R, (y1, y2)).

It is easy to confirm that the simulator’s output has the same distribution as the real transcript between
an honest prover and an honest verifier.

Theorem 6. Under the DL assumption, IDOka satisfies the second-key recovery resistance. In particular, if
there is an adversary A that breaks the second-key recovery resistance in time TA with success probability
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Adv2
ndKR

A,ID (λ), then there is an algorithm B solving the DL problem in time TB = TA+N ·poly(λ) with probability

AdvDL
B,GGen(λ) = Adv2

ndKR
A,ID (λ).

Proof. Let A be an adversary that breaks the second-key recovery resistance. Consider the following DL

solver B that uses A as a subroutine: Upon receiving a DL instance (G, q, g, g1), B sets par := (G, q, g, g1) and
generates (pki, ski) ← IGen(par) for each i ∈ [N ]. B executes A on input (par, {(pki, ski)}i∈[N ]) and receives

(i∗, sk∗) from A such that sk∗ = (s∗1, s
∗
2) 6= ski∗ = (s1,i∗ , s2,i∗) and gs

∗

1g
s∗
2

1 = pki∗ = gs1,i∗ g
s2,i∗

1 . Then, B
computes

α := (s∗1 − s1,i∗)/(s2,i∗ − s∗2) mod q,

and outputs α as the solution of the DL instance.
We can verify that if A breaks the second-key recovery resistance, B solves the given DL instance.

Therefore, we have AdvDL
B,GGen(λ) = Adv2

ndKR
A,ID (λ). Note that the running time of B is TB = TA + N · poly(λ)

since B executes A once and prepares N key pairs.

By instantiating SIG[ID,H] with IDOka, we obtain a signature scheme, SIG[IDOka,H], whose MU-SUF-CMA-C
security is tightly implied from the DL assumption.

Corollary 1. Under the DL assumption, SIG[IDOka,H] is MU-SUF-CMA-C secure in the non-programmable
random oracle model. In particular, for any adversary A that breaks the MU-SUF-CMA-C security of SIG[IDOka,H]
in time TA with probability AdvMU-SUF-CMA-C

A,SIG[IDOka,H]
(λ), there is an algorithm B solving the DL problem in time

TB = O(TA) with probability AdvDL
B,GGen(λ) such that

AdvMU-SUF-CMA-C
A,SIG[IDOka,H]

(λ) ≤ 3AdvDL
B,GGen(λ) +

QRO + 1

2ρ log
2
q

+
T ·Qsig(QRO + T ·Qsig)

2ργ
.

Remark 3 (Variants of Okamoto identification). It is worth noting that there are versions of Okamoto iden-
tification based on RSA assumption [26, Scheme 2] and Factoring assumption [14]. Using these identification
schemes, we can obtain tightly MU-SUF-CMA-C-secure signatures from RSA and Factoring assumptions,
respectively.

4.2 Instantiation from Group Action

We will show a group action-based tightly MU-SUF-CMA-C-secure signature derived from our framework. We
first show that the so-called Parallel-OR identification scheme [8] meets the requirements of our framework.
Then, we provide a concrete instantiation of the Parallel-OR identification scheme based on group action.

Parallel-OR identification scheme. Let ID = (ISetup, IGen,P,V) be a canonical identification scheme
with ℓ bits challenges and let Sim be a special honest verifier zero-knowledge simulator of ID. Then the
Parallel-OR identification scheme IDOR[ID] := (ISetupOR, IGenOR,POR,VOR) is defined as shown in Figure 4.

For completeness, we show that IDOR[ID] has all properties required for the underlying identification
scheme to apply our framework in Section 3, if ID has correctness, single secret key, perfect HVZK, strong
special soundness, second-key recovery resistance in the multi-user setting, and the following basic properties.

Definition 12 (Key Recovery [21, Definition 2.3]). We say that ID is key recovery resistant if for all
PPTadversaries A, it holds that

AdvKRA,ID(λ) := Pr



(pk, sk∗) ∈ IGen(par)

∣

∣

∣

∣

∣

∣

par← ISetup(1λ),
(pk, sk)← IGen(par),
sk∗ ← A(par, pk)



 ≤ negl(λ).

Definition 13 (Random Self-Reducibility [21, Definition 2.5]). We say that ID is random self-
reducible if there is a PPT algorithm ReRand and a deterministic algorithm DeRand such that, for all
(pk, sk) ∈ IGen(par):

13



IGenOR(par)

1 : b←$ {0, 1}

2 : (pk0, sk0)← IGen(par)

3 : (pk1, sk1)← IGen(par)

4 : pk := (pk0, pk1); sk := (b, skb)

5 : return (pk, sk)

VOR(pk, com, ch, resp)

1 : ch1 := ch⊕ ch0

2 : b0 ← V(pk0, com0, ch0, resp0)

3 : b1 ← V(pk1, com1, ch1, resp1)

4 : if b0 = 1 ∧ b1 = 1 then

5 : return 1

6 : else return 0

POR,1(pk, sk)

1 : ch1−b ←$ {0, 1}ℓ

2 : (com1−b, resp1−b)← Sim(pk1−b, ch1−b)

3 : (comb, stb)← P1(pkb, skb)

4 : com := (com0, com1)

5 : st := (stb, ch1−b, resp1−b)

6 : return (com, st)

POR,2(st, ch)

1 : chb := ch⊕ ch1−b

2 : respb ← P2(chb, stb)

3 : resp := (ch0, resp0, resp1)

4 : return resp

Fig. 4: The Parallel-OR identification scheme IDOR[ID] constructed from an identification scheme ID, where
ISetupOR := ISetup.

– pk′ and pk′′ have the same distribution, where (pk′, td′) ← ReRand(par, pk) is the rerandomized public
key and (pk′′, sk′′)← IGen(par) is a freshly-generated key pair.

– For all (pk′, td′) ∈ ReRand(par, pk), for all (pk′, sk′) ∈ IGen(par), and sk∗ ← DeRand(pk, pk′, sk′, td′), we
have (pk, sk∗) ∈ IGen(par). That is, DeRand returns a valid secret key sk∗ with respect to pk, given any
valid secret key sk′ for pk′.

We now show IDOR[ID]’s properties.

Theorem 7. If ID has correctness and κ-bits of commitment min-entropy, then IDOR[ID] also has correctness
and 2κ-bits of commitment min-entropy. If ID has a single secret key, ID has 2-multiple secret keys.

Proof. The correctness of IDOR[ID] is clear. The commitment of IDOR[ID] consists of two independent commit-
ments of ID. Thus, IDOR[ID] has 2κ-bits of commitment min-entropy. Finally, if the underlying identification
scheme ID has a single secret key per public key, there are two secret keys (0, sk0) and (1, sk1) for each pk of
IDOR[ID]. Thus, IDOR[ID] has 2-multiple secret keys.

Theorem 8. If ID is strong special sound, IDOR[ID] is also strong special sound. More precisely, if there exists
an extractor ExtID such that, for any adversary A, its advantage is at most AdvSSSID (λ), then there exists an
extractor ExtIDOR[ID] such that, for any adversary B, its advantage is at most AdvSSSIDOR[ID](λ) = AdvSSSID (λ).

Proof. Let ExtID be an extractor of ID. Consider the extractor ExtIDOR[ID] of IDOR[ID] as follows. Given two
valid transcripts

((com0, com1), ch, (ch0, resp0, resp1)),

((com0, com1), ch
′, (ch′0, resp

′
0, resp

′
1))

with respect to pk = (pk0, pk1),

– if ch0 6= ch′0 or resp0 6= resp′0, ExtIDOR[ID] outputs

(0,ExtID(pk0, com0, ch0, resp0, ch
′
0, resp

′
0)).
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– Otherwise, ch1 6= ch′1 or resp1 6= resp′1 must hold, where ch1 := ch ⊕ ch0, ch
′
1 := ch′ ⊕ ch′0. In this case,

ExtIDOR[ID] outputs

(1,ExtID(pk1, com1, ch1, resp1, ch
′
1, resp

′
1)).

Let B be an arbitrary algorithm that breaks strong special soundness of IDOR[ID]. In order to esti-
mate B’s advantage, consider AB that works as follows: On input par, AB runs B and obtains B’s out-
put (pk0, pk1), (com0, com1), ch, (ch0, resp0, resp1), ch

′, (ch′0, resp
′
0, resp

′
1). If ch0 6= ch′0 or resp0 6= resp′0, AB

outputs (pk0, com0, ch0, resp0, ch
′
0, resp

′
0), otherwise outputs (pk1, com1, ch1, resp1, ch

′
1, resp

′
1), where ch1 :=

ch⊕ ch0, ch
′
1 := ch′ ⊕ ch′0.

From the assumption, for this AB, ExtID successfully extracts a valid secret key with probability at
least 1 − AdvSSSID (λ). On the other hand, the distribution of ExtID’s input come from AB is identical to the
distribution of ExtID’s input when ExtID is used as a subroutine of ExtIDOR[ID]. Therefore, ExtIDOR[ID] obtains a

valid sk0 or sk1 with probability at least 1− AdvSSSID (λ). That is, B’s advantage is at most AdvSSSID (λ).

Theorem 9. If ID is perfect HVZK, IDOR[ID] is also perfect HVZK.

Proof. Let Sim be a simulator for ID. We can easily construct a simulator SimOR for IDOR[ID] by using Sim

as follows: SimOR’s input is pk = (pk0, pk1) and ch ∈ {0, 1}ℓ. First, choose ch0 randomly from {0, 1}ℓ and set
ch1 := ch⊕ch0. Run (comb, respb)← Sim(pkb, chb) for each b ∈ {0, 1}, and output com := (com0, com1), resp :=
(ch0, resp0, resp1). It is easy to see SimOR’s simulation is perfect from the fact that ID is perfect HVZK.

Theorem 10. If ID is key recovery resistant, random self-reducible, and has a single secret key, then IDOR[ID]
is the second-key recovery resistant in the multi-user setting. In particular, if there is an adversary A that

breaks the second-key recovery resistance in time TA with success probability Adv2
ndKR

A,IDOR[ID](λ), then there is
an algorithm B breaking the key recovery resistance of ID in time TB = TA + N · poly(λ) with probability

AdvKRB,ID(λ) = Adv2
ndKR

A,IDOR[ID](λ).

Proof. Let A be an adversary that breaks the second-key recovery resistance of IDOR[ID]. We show a reduction
B that breaks the key recovery resistance of ID by using A. The description of B is as follows.

Upon receiving a parameter par and a public key pk, B generates (pki, ski) for each i ∈ [N ] as follows:

1. Sample bi ←$ {0, 1}.
2. Generate (pki,bi , ski,bi)← IGen(par).
3. Generate (pki,1−bi

, tdi)← ReRand(par, pk).
4. Set pki := (pki,0, pki,1) and ski := (bi, ski,bi).

Then, B executes A on input (par, {(pki, ski)}i∈[N ]) and receives (i∗, (b′, sk′i∗,b′)) from A. Then, B computes

sk∗ ← DeRand(pk, pki∗,1−bi∗
, sk′i∗,b′ , tdi∗) and outputs sk∗.

B perfectly simulates the second-key recovery resistance game, since the random self-reducibility ensures
that the randomized public key embedded in each pki,1−bi

is distributed identically to a fresh public key.

Moreover, if A breaks the second-key recovery resistance, its output (i∗, (b′, sk′i∗,b′)) must satisfy b′ = 1− bi∗

and (pki∗,b′ , sk
′
i∗,b′) ∈ IGen(par) since IDOR[ID] has exactly two valid secret keys. Therefore, B extracts the

secret key of given pk, and we have AdvKRB,ID(λ) = Adv2
ndKR

A,IDOR[ID](λ). The running time of B is TB = TA +N ·
poly(λ) since B executes A once and prepares N key pairs.

Remark 4. Let ID be an identification scheme whose verifier algorithm is represented as in Eq.(2) using a
function fV, and let define the function fV

OR as

fV
OR(pkOR, chOR, respOR) :=

(

fV(pk0, ch0, resp0), f
V(pk1, chOR ⊕ ch0, resp1)

)

,

where pkOR = (pk0, pk1), respOR = (ch0, resp0, resp1). Then, the verifier algorithm of IDOR[ID] is also repre-
sented as in Eq.(2) by using fV

OR. It means that ~com can be eliminated in the signature of SIG[IDOR[ID],H].
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ISetupCouSto(1
λ)

1 : (G, E , E0, ⋆)← GAGen(1λ)

2 : ChSet := {0, 1}t

3 : return par := (G, E , E0, ⋆)

IGenCouSto(par)

1 : a1 ←$ G

2 : sk := a1

3 : pk := E1 = a1 ⋆ E0

4 : return (pk, sk)

VCouSto(pk, com, ch, resp)

1 : if com = (respi ⋆ Echi)i∈[t] then

2 : return 1

3 : return 0

PCouSto,1(pk, sk)

1 : foreach i ∈ [t] do

2 : bi ←$ G

3 : Êi := bi ⋆ E0

4 : com := (Ê1, . . . , Êt)

5 : st := (sk, (b1, . . . , bt))

6 : return (com, st)

PCouSto,2(ch, st)

1 : (a1, (b1, . . . , bt)) := st

2 : a0 := 1G

3 : (ch1, . . . , cht) := ch

4 : foreach i ∈ [t] do

5 : ri := bi · a
−1
chi

6 : return resp := (r1, . . . , rt)

Fig. 5: The Couveignes-Stolbunov identification scheme IDCouSto.

Couveignes-Stolbunov identification scheme. To instantiate the Parallel-OR identification scheme from
group action, we will use Couveignes-Stolbunov identification scheme IDCouSto [7,5,33], depicted in Figure 5.
(The details of group action are provided in Appendix B.) Let GAGen be an efficient algorithm that generates
a description of group action. The original protocol has 1 bit challenge. To extend it to t bits challenge, we
simply repeat the protocol t times.

For completeness, we show that IDCouSto has correctness, high commitment entropy, single secret keys,
perfect HVZK, strong special soundness, the key recovery resistance in the multi-user setting, and random
self-reducible under the GADL assumption.

Theorem 11. IDCouSto has correctness, t log|G|-bits of commitment min-entropy, and a single secret key.

Proof. The correctness of IDCouSto is clear. The commitment of IDCouSto consists of t random elements over
G. Thus, IDCouSto has t log|G|-bits of commitment min-entropy. Also, since the group action is regular, for
each pk, there exists a unique secret key sk. Thus, IDCouSto has a single secret key.

Theorem 12. IDCouSto is strong special sound. More precisely, AdvSSSA,IDOR[ID](λ) = 0 for all (including com-
putationally unbounded) adversaries A.

Proof. We define the extractor Ext as follows. On input (pk, com, ch, resp, ch′, resp′), if ch = ch′, Ext outputs
⊥. If ch 6= ch′, there must exist an index I such that the I’th bit of them are different, i.e., {chI , ch

′
I} = {0, 1}.

For such an I, Ext outputs (resp′I · (respI)
−1)chI−ch′I .

It is sufficient to show that Ext can extract a1 when (ch, resp) 6= (ch′, resp′) and both (pk, com, ch, resp)
and (pk, com, ch′, resp′) are accepted by VCouSto. Further, from the regularity of group action and the fact
that com and ch uniquely determine resp, we can assume ch 6= ch′.

When ch 6= ch′, define I as above. Since Eb = ab1 ⋆ E0 holds for both bit b ∈ {0, 1}, we have comI =

respI ⋆ EchI = (respI · a
chI
1 ) ⋆ E0 and comI = (resp′I · a

ch′I
1 ) ⋆ E0. Thus, we have (resp′I · (respI)

−1)chI−ch′I =

(a
chI−ch′I
1 )chI−ch′I = a1. Therefore, Ext succeeds in extracting a1 as desired.

Theorem 13. IDCouSto is perfect HVZK.
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Proof. Consider the following simulator: On input (pk = E1, ch), choose respi ←$ G, compute comi :=
respi ⋆ Echi for all i ∈ [t], and output com = (com1, . . . , comt) and resp = (resp1, . . . , respt).

It is easy to confirm that the simulator’s output has the same distribution as a real transcript between
an honest prover and an honest verifier.

Theorem 14. Under the GADL assumption, IDCouSto satisfies the key recovery resistance. In particular,
if there is an adversary A that breaks the key recovery resistance in time TA with success probability
AdvKRA,IDCouSto

(λ), then there is an algorithm B solving GADL problems in time TB = TA with probability

AdvGADL
B,GAGen(λ) = AdvKRA,IDCouSto

(λ).

Proof. Let A be an adversary that breaks the key recovery resistance. Consider the following GADL solver
B that uses A as a subroutine: Upon receiving a GADL instance (G, E , E0, ⋆, E1), B sets par := (G, E , E0, ⋆)
and pk := E1. B executes A on input (par, pk) and receives sk ∈ G from A. B outputs sk as the solution of
the GADL instance.

We can verify that if A breaks the key recovery resistance, B solves the given GADL instance since A’s
output sk satisfies pk = sk ⋆ E0, meaning that sk is the GADL of pk = E1 w.r.t. E0. Therefore, we have
AdvGADL

B,GAGen(λ) = AdvKRA,IDCouSto
(λ). Note that the running time of B is TB = TA since B executes A once.

Theorem 15. IDCouSto is random self-reducible.

Proof. ReRand and DeRand are defined as follows:

ReRand(par, pk): Let E1 := pk. Choose c1 ←$ G and output pk′ := c1 ⋆ E1 and td′ := c1.
DeRand(pk, pk′, sk′, td′): Let a′1 := sk′ and c1 := td′. Output sk∗ := a′1 · (c1)

−1.

We have that, for all (pk, sk) ∈ IGen(par), pk′ output from ReRand(par, pk) is uniformly distributed and
has the same distribution as a freshly-generated key pair. Also, for all (pk′, td′) ← ReRand(par, pk) and
sk∗ ← DeRand(pk, pk′, sk′, td′), if pk′ = a′1 is a valid secret key of pk′ = c1 ⋆ E1, we have sk∗ ⋆ E0 =
(a′1 · (c1)

−1) ⋆ E0 = (c1)
−1 ⋆ (a′1 ⋆ E0) = (c1)

−1 ⋆ (c1 ⋆ E1) = E1. Therefore, sk∗ is a valid secret key of
pk = E1.

By instantiating SIG[ID,H] with ID = IDOR[IDCouSto], we obtain a signature scheme, SIG[IDOR[IDCouSto],H],
whose MU-SUF-CMA-C security is tightly implied from the GADL assumption.

Corollary 2. Under the GADL assumption, SIG[IDOR[IDCouSto],H] is MU-SUF-CMA-C secure in the non-
programmable random oracle model. In particular, for any adversary A that breaks the MU-SUF-CMA-C
security of SIG[IDOR[IDCouSto],H] in time TA with probability AdvMU-SUF-CMA-C

A,SIG[IDOR[IDCouSto],H]
(λ), there is an algorithm

B solving a GADL problem in time TB = O(TA) with probability AdvGADL
B,GAGen(λ) such that

AdvMU-SUF-CMA-C
A,SIG[IDOR[IDCouSto],H]

(λ)

≤ 2AdvGADL
B,GAGen(λ) +

QRO + 1

2ρt log|G|
+

T ·Qsig(QRO + T ·Qsig)

2ργ
.

5 Efficiency Evaluation

In this section, we evaluate the efficiency of the classical group-based scheme SIG[IDOka,H] and that of the
isogeny-based instantiation derived from SIG[IDOR[IDCouSto],H]. Here, we consider 128-bit classical security
(i.e., NIST Level-I).

Parameters for Fischlin transformation. For the choice of parameters used in randomized Fischlin
transformation, we recall the recent result by Chen and Lindell [6] for the original version since their result
is also valid for the randomized one. To achieve λ-bit security, the parameters must satisfy the following
conditions: ρ · γ = ω(λ) and t − γ = ω(λ). Chen and Lindell suggest that for any value of γ, for ρ ≤ 64 set
t = γ + 5 and for ρ > 64 set t = γ + 6. They also proved the correctness error probability and the expected
number of hash computations summarized below:
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Table 2: Efficiency of SIG[IDOka,H] in 128-bit security. We set T = 3.
ρ γ t β #hash |svk| |σ|

32 4 9 2−123 512 32 B 2084 B
22 6 11 2−123 1241 32 B 1444 B
16 8 13 2−126 4096 32 B 1050 B

Table 3: Efficiency of SIG[IDOR[IDCouSto],H] with CSIDH-512 parameter. We set T = 3.
ρ γ t β #hash |svk| |σ|

32 4 9 2−123 512 128 B 18.5 KB
22 6 11 2−123 1241 128 B 15.5 KB
16 8 13 2−126 4096 128 B 13.4 KB

– Probability of correctness error: β = 2−(2t−γ log ê+log ρ)T .
– Expected number of hash computations: #hash= ρ · 2γ/(1− β).

Parameters for classical groups and efficiency of SIG[IDOka,H]. For the choice of a multiplicative group,
we can use the NIST P-256 curve with log|G| = 256, which achieves 128-bit security since SIG[IDOka,H] is
tightly secure. Thus, |resp| = 512 bits and the total signature size is |σ| = ρ(t+ |resp|) = ρ(t+ 512) bits for
128-bit security. Note that we can remove com from the signature because IDOka’s verifier algorithm can be
represented as follows. (See Section 3.2.)

V(pk, com, ch, (y1, y2)) = 1 ⇐⇒ com = fV
Oka(pk, ch, (y1, y2)) = gy1gy2

1 /pkch.

We give in Table 2 the efficiency estimations for SIG[IDOka,H] in 128-bit security in some parameter sets. As
observed, there is a trade-off between the signature sizes and the signing times. Spending more computational
cost on signature generation can shorten the signature size. The signature size of SIG[IDOka,H] is about 1.5
KB, but the DDH-based tight MU-SUF-CMA-C signature scheme [10, Sec. 5.1] has only 96 B signature.
Thus, while SIG[IDOka,H] relies on weaker DL assumption, the signature is about 15 times larger than the
DDH-based scheme. This can be viewed as a trade-off between the strength of the assumptions on which
security is based and the efficiency, but improving the efficiency of DL-based schemes is a future challenge.

Parameters for isogeny and efficiency of SIG[IDOR[IDCouSto],H]. We use the CSIDH-512 prime p and
define the group action g ⋆ E exactly as in CSI-FiSh [5]. According to [5, Sec. 2], the group elements require
roughly 256 bits, and elements in E require about 512 bits. Thus, the public key size is 2|E| = 1024 bits and
the signature size is |σ| = 2ρt(|G| + 1) = 514ρt bits in the CSIDH-512 parameter set. Note that, similar to
SIG[IDOka,H], we can remove com’s from the signature because SIG[IDOR[IDCouSto],H]’s verifier algorithm can
be represented as follows. (See Section 3.2.)

V(pk, com, ch, resp) = 1 ⇐⇒ com = fV
CouSto(pk, ch, resp) = (respi ⋆ Echi)i∈[t].

We give in Table 3 the efficiency estimations for SIG[IDOR[IDCouSto],H] in some parameter sets. The concrete
signature size of SIG[IDOR[IDCouSto],H] instantiated with CSIDH-512 parameter is about 15 KB. On the other
hand, the signature size of Pan and Wagner’s group action-based scheme [30] with CSIDH-512 parameter is
2λ(2|E| + |G|) = 40.96 KB. Thus, our signature is about 75 % shorter than Pan and Wagner’s. Moreover,
our signature is tightly MU-SUF-CMA-C secure based on GADL assumption in the NPROM while Pan and
Wagner’s one is tight MU-UF-CMA-C secure based on stronger GADDH assumption in the PROM. Therefore,
SIG[IDOR[IDCouSto],H] is superior to Pan and Wagner’s scheme in terms of the efficiency, the achieved security
level, and the underlying computational assumptions on which security is based.

6 Zero-Knowledge of Randomized Fischlin Transformation, Reconsidered

In [23, Theorem 6.4] (which is the full version of [22]), Kondi and shelat showed that randomized Fischlin
transformation preserves the zero-knowledge property of the underlying Sigma protocol. Especially their proof
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only depends on the existence of a perfect ZK simulator and the property that the entropy of commitments
is λ, which is large enough. Here, we will show a flaw in their proof and provide a new proof.

Flaw in the proof by Kondi and shelat. In their proof of ZK, they construct a simulator and show that
simulated proofs and real proofs are indistinguishable using a sequence of hybrid experiments. Starting from
the real proof, the change to Hybrid H1 is merely syntactic. Each transcript in H1 is generated using the
prover’s algorithm, i.e., the prover searches for a “good” challenge by asking many transcripts to the random
oracle, and the random oracle honestly answers a random value to each query. In Hybrid H2, a “good”
challenge is no longer searched for; instead, the first chosen challenge is made a good one by programming
the random oracle. Thus, in this experiment, the prover asks only ρ queries to the modified random oracle.
Concretely, the modified random oracle H is implemented as follows:

1. For the first ρ queries by the prover Q1, . . . , Qρ, return 0 as a response.
2. Emulate H as a random oracle honestly for every other query.

To show the difference between H1 and H2 is negligibly small, the authors first claimed that each “good”
challenge ei appeared in the proof is distributed uniformly in {0, 1}t in both H1 and H2. Next, they said
“the only distinguishing event corresponds to the programming of H, i.e., if the adversary is able to query
H on some index that H2 subsequently programs to a different value.” “this distinguishing event happens
with probability no greater than |Q|/2λ, where |Q| is the number of queries made by the adversary to the
random oracle.”

It is true that each ei is distributed uniformly in {0, 1}t in both H1 and H2. However, even if the above-
mentioned distinguishing event never occurs, the random oracle simulation in H2 is not perfect, as shown
below.

We give a tiny example in which t = 1 (i.e., the challenge is 0 or 1), the hash length is 1 (i.e., hash values
are 0 or 1), ρ = 1 (i.e., the proof includes only one transcript). Let tr0 and tr1 be the potential transcripts
corresponding to challenge 0 and 1, respectively, and h0 := H(tr0), h1 := H(tr1) be their hash values chosen
by the random oracle (or simulated values).

Let c be the challenge first chosen to search for a “good” one, e be the “good” challenge actually put in
the proof in H1. Then, the following 8 cases occur with equal probability in H1.

– (h0, h1, c, e) = (0, 0, 0, 0).
– (h0, h1, c, e) = (0, 0, 1, 1).
– (h0, h1, c, e) = (0, 1, 0, 0).
– (h0, h1, c, e) = (0, 1, 1, 0).
– (h0, h1, c, e) = (1, 0, 0, 1).
– (h0, h1, c, e) = (1, 0, 1, 1).
– (h0, h1, c, e) = (1, 1, 0,⊥).
– (h0, h1, c, e) = (1, 1, 1,⊥).

Ignoring the last two cases, indeed, e is 0 or 1 with the same probability.
On the other hand, in H2, e is first chosen randomly, and fix he = 0, while the hash value h1−e is chosen

randomly. Then, the following 4 cases occur with probability 1/4.

– (h0, h1, c, e) = (0, 0,−, 0).
– (h0, h1, c, e) = (0, 1,−, 0).
– (h0, h1, c, e) = (0, 0,−, 1).
– (h0, h1, c, e) = (1, 0,−, 1).

Now assume e = 0 appears in a proof. Then, PrH1
[h1 = 0 | e = 0] = 1/3,PrH1

[h1 = 1 | e = 0] = 2/3
hold in H1, while PrH2

[h1 = 0 | e = 0] = PrH2
[h1 = 1 | e = 0] = 1/2 hold in H2. This fact leads to the

conclusion that the adversary may take the following strategy to distinguish two hybrid experiments; ask
h1−e = H(tr1−e) to the random oracle, and distinguish two experiments based on h1−e = 0 or not. Note
that the adversary knows the witness w used by the honest prover, thus can compute tr1−e from w and tre
in the proof.
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We have to emphasize that using a biased coin rather than a fair coin to decide the value h1−e = H(tr1−e)
cannot solve the above problem. This is because tr1−e may depend on the witness and random coins the
prover used. E.g., the transcript corresponding to challenge 1 − e is tr if w is used as a witness, but the
transcript corresponding to challenge 1− e is tr′( 6= tr) if w′( 6= w) is used. In such cases, it is impossible to
emulate a random oracle for a simulator that correctly matches both witnesses because the simulator does
not know which witness the prover uses.

New proof for ZK property. We solve this problem by requiring the underlying Sigma protocol to have
the following properties.

– Strong 2-special soundness (cf. Definition 9), i.e., there exists an extractor that can extract a witness
with overwhelming probability from two valid transcripts generated by a PPT adversary if the transcripts
share the same commitment.

– A property we call “witness collision resistance”, that guarantees it is hard to find a statement x and its
two different witnesses w,w′. 9

– The existence of an efficient algorithm ReSim that realizes re-simulatability; it requires that given a
witness w, a transcript (com, ch, resp) honesty generated from w and a (unknown) random coin r, and
any challenge ch′, one can efficiently compute a response resp′ that the prover would compute using the
same w and r to respond to ch′ instead of ch.10

To correct Kondi and shelat’s proof, we only change the second hybrid experiment H2 to H′
2. In H′

2, the
modified random oracle returns 0 for the first ρ queries by the honest prover as in the original H2, but for
other queries by the adversary, uses fair coins and biased coins depending on the query described as follows.

First, we note the fact that the only difference between the random oracle simulation in H2 (by Kondi
and shelat) and the real random oracle is the behavior of how to respond to queries an honest prover would
issue to search for a good challenge. Considering that such queries are valid transcripts that share the same
commitment with the transcript in the (simulated) proof, the query allows a witness to be extracted from
strong 2-special soundness. Further, the extracted witness can be assumed to be the witness the honest
prover has; otherwise, witness collision resistance would be broken. From the extracted witness, the efficient
ReSim algorithm can reproduce transcripts an honest prover would compute to search for a good challenge, so
we can confirm that the issued query is indeed a query that an honest prover would issue. If so, the modified
random oracle uses a biased coin to respond; otherwise, it uses a fair coin.

Consequently, the difference between H1 and H′
2 is bounded by |Q|/2λ plus negligible terms if the

underlying Sigma protocol has strong 2-special soundness and the witness collision resistance.

Remark 5. The above proof for the ZK property of randomized Fischlin transformation requires three ad-
ditional properties to the underlying Sigma protocol. At this point, it is unclear whether all of them are
necessary for the ZK property, and we leave the analysis for future work.

Remark 6 (Witness collision resistance of existing ID schemes). If ID has a single secret key as in Schnorr
identification scheme, it satisfies perfect witness collision resistance. Okamoto identification scheme satisfies
witness collision resistance under DL assumption [9], since, if both sk = (s1, s2) and sk′ = (s′1, s

′
2) are valid

secret keys of pk, the discrete logarithm of h based on g can be obtained as −(s1 − s′1)/(s2 − s′2).

On the other hand, the Parallel-OR identification scheme does not have witness collision resistance,
because it is easy to generate a public key and two valid secret keys, pk = (pk0, pk1), sk = (0, sk0), sk

′ =
(1, sk1). In contrast, as shown above, the Parallel-OR identification scheme has second-key recovery resistance
(cf. Theorem 10), which can be seen as a weaker notion of witness collision resistance. This means that
Parallel-OR protocols can be tightly converted into signature schemes but it is unclear whether it can be
converted into NIZKs via randomized Fischlin transformation.

9 Witness collision resistance was previously formalized as the hardness of representation problem [9].
10 Re-simulatability is also used to prove Theorem 2 (the detail is in Appendix A). For the proof of Theorem 2, i.e.,

proof for our signature scheme, (possibly inefficient) algorithm is sufficient.
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Remark 7 (Re-simulatability of existing ID schemes). Here, we note that Schnorr, Okamoto, and Paralell-OR
identification schemes have an efficient algorithm ReSim realizing re-simulatability.

Schnorr ID: Upon receiving w = x ∈ Zq, com = gr, ch, resp = r+ch ·x and another ch′ ∈ Zq, the algorithm
outputs resp′ := resp+ (ch′ − ch) · x mod q.

Okamoto ID: Upon receiving w = (s1, s2) ∈ (Zq)
2, com = (gr1hr2), ch, resp = (r1 + ch · s1, r2 + ch · s2) and

another ch′ ∈ Zq, the algorithm outputs resp′ := resp+ ((ch′ − ch) · s1, (ch
′ − ch) · s2).

Parallel-OR ID: Assume the underlying ID scheme ID has ReSimID. The ReSimIDOR
works as follows: It

receives w = (b, wb), com = (com0, com1), ch, resp = (ch0, resp0, resp1) and another ch′ as input. If b = 0,
it computes ch′0 := ch0 ⊕ ch ⊕ ch′ and resp′0 ← ReSimID(w0, com0, ch0, resp0, ch

′
0) and outputs resp′ :=

(ch′0, resp
′
0, resp1); Else if b = 1, it computes ch′1 := ch0⊕ch

′ and resp′1 ← ReSimID(w1, com1, ch1, resp1, ch
′
1)

and outputs resp′ := (ch0, resp0, resp
′
1).
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A Proof of Theorem 2

This section provides the full proof of Theorem 2.

Proof. Let A be a PPT adversary against the MU-SUF-CMA-C security of SIG[ID,H] and C be a challenger
managing the security game. To prove the theorem, we consider the following sequence of games.

Game0. This is the original MU-SUF-CMA-C game. By definition, we have

Pr[Game0 ⇒ 1] = AdvMU-SUF-CMA-C
A,SIG[ID,H] (λ).

In the following, for a query (pk,m, ~com, j, ch, resp) to the RO, we call (pk,m, ~com) a prefix of the query. If
V(pk, comj , ch, resp) = 1, the query is called a “valid transcript”, otherwise, it is called an “invalid transcript.”

Game1. In this game, C simulates RO using three lists Lvalid
RO , Linvalid

RO , Lignore
RO , and simulates OSign(i,m) as in

Figure 6 (without boxed lines). In the simulation of OSign, C computes the responses and the hash values
for all j and ch instead of computing them individually.

On the other hand, C simulates RO(pk,m, ~com, j, ch, resp) as follows: C first checks if the same query has
already been issued based on LRO := Lvalid

RO ∪L
invalid
RO ∪Lignore

RO . If so, C returns the consistent value. Otherwise,
chooses h ←$ {0, 1}γ , adds a query-answer tuple (pk,m, ~com, j, ch, resp, h) to one of three lists according to
the following conditions, and returns h as the hash value.

– When the query is issued by A:
• if it is a valid transcript, the tuple (pk,m, ~com, j, ch, resp, h) is added to Lvalid

RO .
• if it is an invalid transcript, the tuple is added to Linvalid

RO .
– When the query is issued internally in the simulation of OSign(i,m) :
• if ~com and (comj , j, ch, resp) are used in the signature, then the tuple (pki,m, ~com, j, ch, resp, h) is

added to Lvalid
RO ,

• if ~com is used in the signature, but (comj , j, ch, resp) is not, then the tuple is added to Lignore
RO ,

• if ~com is not used in the signature, 2t queries (pfx, j, ch′, resp′, h′) with the same (pfx, j) must be
asked. From these queries, one query and its answer, chosen at random in Line 29, is added to Lvalid,
and the rest are added to Lignore

RO .
– When C verifies the forged signature, we consider A makes hash queries (pki∗ ,m

∗, ~com∗, j, ch∗j , resp
∗
j ) for

all j. According to these queries, Lvalid
RO or Linvalid

RO are updated depending on V(pki∗ , com
∗
j , ch

∗
j , resp

∗
j ) = 1

or not.

The function UpdateLists in Figure 7 specifies the concrete way to update Lvalid
RO and Lignore

RO . Note that the
way chτ,j is determined depends on τ = τ̂ or not. From this process, for any (pki,m, ~com, j), at most one
tuple (pki,m, ~com, j, ∗, ∗, ∗) is added to Lvalid

RO in the process of OSign.
This change does not affect A’s view. Therefore, we have

Pr[Game1 ⇒ 1] = Pr[Game0 ⇒ 1].

Game2. In this game, the simulation of OSign is further changed as follows. After setting pfxτ in Line 9 of
Figure 6, C browses the list Lvalid

RO to find a tuple whose prefix is pfxτ . If such a tuple exists, skip Lines 11
to 31, i.e., move on to the next τ . Otherwise, C proceeds the signing process as in Game1.

Because honestly generated commitments ~com has ρκ bits min-entropy and the number of varieties of
~com in Lvalid

RO is at most QRO + T · QSIG, the difference between Game1 and Game2 is upper bounded by
T ·QSIG × (QRO + T ·QSIG)/2

ρκ. Therefore,

|Pr[Game2 ⇒ 1]− Pr[Game1 ⇒ 1]| ≤ T ·QSIG(QRO + T ·QSIG)2
−ρκ.

Game3. In this game, we introduce a flag Ffind which is initialized as Ffind := false. The simulation of RO
is changed as follows: When (pki,m, ~com, j, ch, resp, h) is added to Lvalid

RO as the response of A’s query and
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OSign(i,m)

1 : if i ∈ Lcorr then

2 : return ⊥

3 : endif

4 : foreach τ ∈ [T ] do

5 : foreach j ∈ [ρ] do

6 : (comτ,j , stτ,j)← P1(par, pki, ski)

7 : endfor

8 : ~comτ := (comτ,1, . . . , comτ,ρ)

9 : pfxτ := (pki,m, ~comτ )

10 : if (pfxτ , ∗, ∗, ∗) /∈ Lvalid
RO then // Check if pfxτ was not generated before

11 : foreach j ∈ [ρ] do

12 : foreach ch ∈ {0, 1}t do

13 : respτ,j,ch ← P2(ch, stτ,j)

14 : hτ,j,ch ← H(pfxτ , j, ch, respτ,j,ch)

15 : endfor

16 : endfor

17 : if ∀j ∃ch : hτ,j,ch = 0γ then

18 : foreach j ∈ [ρ] do

19 : let π be a random permutation over {0, 1}t

20 : k := π

(

min
k∈{0,1}t

{k | hτ,j,π(k) = 0γ}

)

21 : chτ,j := k

22 : UpdateLists(pfxτ , j, {respτ,j,ch, hτ,j,ch}ch∈{0,1}t , chτ,j)

23 : endfor

24 : τ̂ := τ

25 : σ := (comτ̂ ,j , chτ̂ ,j , respτ̂ ,j,chτ̂,j
)j∈[ρ]

26 : break

27 : else

28 : foreach j ∈ [ρ] do

29 : chτ,j ←$ {0, 1}t

30 : UpdateLists(pfxτ , j, {respτ,j,ch, hτ,j,ch}ch∈{0,1}t , chτ,j)

31 : endif

32 : endif

33 : if τ = T then σ := ⊥

34 : endfor

35 : Lsig := Lsig ∪ {(i,m, σ)}

36 : return σ

Fig. 6: The sign oracle in Game1 (without boxed lines) and Game2 (with boxed lines).
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UpdateLists(pfxτ , j, {respτ,j,ch, hτ,j,ch}ch∈{0,1}t , chτ,j)

1 : foreach ch ∈ {0, 1}t

2 : if ch = chτ,j then

3 : add (pfxτ , j, ch, respτ,j,ch, hτ,j,ch) to Lvalid
RO

4 : else

5 : add (pfxτ , j, ch, respτ,j,ch, hτ,j,ch) to Lignore
RO

6 : endif

7 : endfor

Fig. 7: Function UpdateLists used in OSign.

i /∈ Lcorr and Ffind = false hold, C browses the list Lvalid
RO and finds a tuple (pki,m, ~com, j, ch′, resp′, h′) such

that (ch′, resp′) 6= (ch, resp). If such a tuple exists, C sets

pair := (pki, comj , ch, resp, ch
′, resp′),

Ffind := true.

Further, we add a condition “Ffind = true” to the requirements that the game outputs 1.
Because A cannot see Ffind and pair , the change of RO simulation does not affect A’s view. Thus,

|Pr[Game3 ⇒ 1]− Pr[Game2 ⇒ 1]| is bounded by the probability that A’s final outputs is valid and Ffind =
false at the end of Game2. Let Lucky be the event that both of these two conditions hold. We will evaluate
Pr[Lucky] in the following three cases. Let σ∗ = (com∗

j , ch
∗
j , resp

∗
j )j∈[ρ] be A’s forged signature, and pfx∗ :=

(pki∗ ,m
∗, ~com∗).

(1) pfx∗ was used in OSign and the oracle returned a signature including it.
(2) pfx∗ was used in OSign but the oracle returned a signature that does not include pfx∗.
(3) pfx∗ was not used in OSign.

Due to the condition that Ffind is set to true and the fact that Lvalid
RO includes all transcripts in the signatures

returned from OSign and one transcript per each j whose prefix was considered in OSign but discarded, in
cases (1) and (2), query-answer tuples (pfx∗, j, ch∗j , resp

∗
j , hj) for all j should have been added in the process

of OSign. In case (1), if all transcripts in σ∗ are valid and Ffind = false, then (i∗,m∗, σ∗) ∈ LSIG holds.
Therefore, Pr[Lucky] = 0. In case (2), if all transcripts in σ∗ are valid and Ffind = false, then there should
exist j such that hj = H(pfx∗, j, ch∗j , resp

∗
j ) 6= 0γ . Therefore, Pr[Lucky] = 0.

On the other hand, in case (3), the event Lucky occurs only if A obtains valid transcripts (com∗
j , chj , respj)

such that hj = H(pki∗ ,m
∗, ~com∗, j, chj , respj) = 0γ for all j ∈ [ρ] with a single hash computation. Since hash

values are chosen independently and uniformly at random from {0, 1}γ , the probability hj = 0γ is 2−γ for
each j ∈ [ρ]. Thus, for a fixed (pki∗ ,m

∗, ~com∗), the probability hj = 0γ for all j ∈ [ρ] is bounded by 2−ργ .
Since A issues QRO RO queries with any prefix (pk,m, ~com) and finally outputs (pki∗ ,m

∗, ~com∗) as a part
of the forged signature, Pr[Lucky] is bounded by (QRO + 1)/2ργ , and we have

|Pr[Game3 ⇒ 1]− Pr[Game2 ⇒ 1]| ≤ (QRO + 1)2−ργ .

In the following, let î be the index of the first element of pair = (pkî, . . .).

Game4. In this game, C computes the following when Ffind is set to true.

sk∗ ← Ext(pair) = Ext(pkî, comj , chj , respj , ch
′
j , resp

′
j).

Further, we add a condition “VerKey(par, pkî, sk
∗) = 1” to the requirements that the game outputs 1. (Note

that if Ffind = false, the game outputs 0.)
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|Pr[Game4 ⇒ 1]− Pr[Game3 ⇒ 1]| is bounded by the probability that pair is assigned but the extractor
Ext fails to find a valid secret key. We will evaluate this probability of failure. From the condition of setting
Ffind, pair = (pkî, comj , chj , respj , ch

′
j , resp

′
j) satisfies

V(pkî, comj , chj , respj) = V(pkî, comj , ch
′
j , resp

′
j) = 1

and (chj , respj) 6= (ch′j , resp
′
j). Therefore, the probability of this failure is at most AdvSSSB1,ID

(λ) for some
algorithm B1. Formally, we can construct an adversary B1 that breaks the strong special soundness by using
A as follows: Upon receiving a parameter par, B1 simulates Game4 against A. If B1 obtains pair , it outputs
pair . We can see B1 breaks the strong special soundness when Ext fails extraction. Thus, we have

|Pr[Game4 ⇒ 1]− Pr[Game3 ⇒ 1]| ≤ AdvSSSB1,ID
(λ).

We also evaluate the running time of B1. It executes A once and answers oracle queries from A. Since each
oracle query can be answered in the time of poly(λ), the running time of B1 is TB1

= TA + (QRO + Qsig +
Qcorr) · poly(λ), where QRO, Qsig, Qcorr denote the maximum numbers of each oracle query A makes. Since
QRO, Qsig, Qcorr are about O(TA), we conclude that TB1

= O(TA).

Game5. This game outputs 1 if (Ffind = true) ∧ (VerKey(par, pkî, sk
∗) = 1) holds regardless of whether the

forgery was successful or not.

Since the conditions (Ffind = true) and (VerKey(par, pkî, sk
∗) = 1) are already included in the requirements

that Game3 outputs 1, clearly,

Pr[Game5 ⇒ 1] ≥ Pr[Game4 ⇒ 1]

holds.

Game5′ . We add a condition sk∗ 6= skî to the requirements that the game outputs 1. Intuitively, from
the perfect HVZK of ID, A cannot know which secret key C has among K secret keys corresponding pki.
Therefore, we hope

Pr[Game5′ ⇒ 1] ≈
K − 1

K
Pr[Game5 ⇒ 1].

Actually, we can prove the following lemma.

Lemma 1. If ID is perfect HVZK,

Pr[Game5′ ⇒ 1] =
K − 1

K
Pr[Game5 ⇒ 1].

Before proving Lemma 1, we will upper-bound Pr[Game5′ ⇒ 1] and conclude the proof. We can con-
struct an adversary B2 against the second key recovery resistance of ID using A. B2 receives a public
parameter par and key pairs of ID {(pki, ski)}i∈[N ]. It sets (svki, sski) := (pki, (pki, ski)), initializes the lists

Lvalid
RO , Linvalid

RO , Lignore
RO , Lcorr and Lsig and executes A on input (par, {svki}i∈[N ]) and answers A’s oracle queries

as in Game5′ . If B2 obtains a pkî’s valid secret key sk∗( 6= skî), B2 outputs (̂i, sk∗).

We can verify that B2 perfectly simulates Game5′ against A. In addition, due to the modifications we
made in the previous games, Game5′ outputs 1 only if Ffind = true and sk∗ is a valid secret key w.r.t. pkî
that is different from skî. Thus, B2 breaks the second key recovery resistance in the multi-user setting of ID.
Therefore, we have

Pr[Game5′ ⇒ 1] ≤ Adv2
ndKR

B2,ID
(λ).

We also evaluate the running time of B2. It executes A once and answers oracle queries from A. Since each
oracle query can be answered in the time of poly(λ), the running time of B2 is TB2

= TA + (QRO + Qsig +
Qcorr) · poly(λ), where QRO, Qsig, Qcorr denote the maximum number of each oracle query A made. Since
QRO, Qsig, Qcorr are about O(TA), we conclude that TB2

= O(TA).
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Combining everything, we have

AdvMU-SUF-CMA-C
A,SIG[ID,H] (λ) ≤ AdvSSSB1,ID

(λ) +
K

K − 1
Adv2

ndKR
B2,ID

(λ)

+
(QRO + 1)

2ρκ
+

T ·Qsig(QRO + T ·Qsig)

2ργ
.

Our remaining task is proving Lemma 1. To do so, we use two game sequences started at Game5 and
Game5′ . In the following, GameX′ is exactly the same as GameX except the condition sk∗ 6= skî is added to
the requirements that the game outputs 1.

Game6 and Game6′ . These games are the same as Game5 and Game5′ expect that Lines 13 to 14 in Figure 6
are replaced with

hτ,j,ch ←$ {0, 1}γ

and the following lines are inserted before Line 3 and Line 5 in Figure 7:

respτ,j,ch ← P2(ch, stτ,j)

H(pfxτ , j, ch, respτ,j,ch) := hτ,j,ch // program RO

This is a conceptual change. Thus, we have

Pr[Game6 ⇒ 1] = Pr[Game5 ⇒ 1],

Pr[Game6′ ⇒ 1] = Pr[Game5′ ⇒ 1].

Game7 and Game7′ . In this game, we introduce another list, Ltmp. We delete the line before Line 5 that was
added in Game6, and replace Line 5 in Figure 7 with the next one.

add (pfxτ , j, ch, respτ,j,ch, hτ,j,ch) to Ltmp

Further, if OCorr(i) is queried, for each tuple (pki,m, ~com, j, ch, resp, h) ∈ Ltmp, C programs the RO as
H(pki,m, ~com, j, ch, resp) := h and moves the tuple to Lignore

RO . That is, C programs only one hash value for
each (pfxτ , j) at the time of OSign simulation, and others will be programmed when ski is revealed.
A’s views in Game6 and Game7 (resp. Game6′ and Game7′) are exactly the same until A makes a

query whose hash value is programmed in Game6 (resp. Game6′) but not in Game7 (resp. Game7′). Let
(pfx, j, ch′, resp′) be such a query. Then, there must exist a pair (ch′′, resp′′) such that (pfx, j, ch′′, resp′′)
has been programmed and added to Lvalid

RO , and ch′′ 6= ch′. This means that when A issues such a query
for the first time, Ffind is set to true and pair and sk∗ are assigned values. Therefore, the probability that
(Ffind = true)∧ (VerKey(pki, sk

∗) = 1) holds is the same in Game6 (resp. Game6′) and Game7 (resp. Game7′).
Thus, we have

Pr[Game7 ⇒ 1] = Pr[Game6 ⇒ 1],

Pr[Game7′ ⇒ 1] = Pr[Game6′ ⇒ 1].

Game8 and Game8′ . In this game, Line 21 in Figure 6 is replaced with

chτ,j ←$ {0, 1}t

swap(hτ,j,k, hτ,j,chτ,j )

where swap(a, b) exchanges the values of variables a and b.
The modification changes how the values of (hτ,j,ch)ch∈{0,1}t and chτ̂ ,j are determined. However, we can

prove that the distribution of ((hτ,j,ch)ch∈{0,1}t , chτ̂ ,j) is not changed. It is enough to show the distributions
of ((hk)k∈{0,1}t , ch) in Experiment A and B defined below are identical.
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Experiment A:

h = (hk)k∈{0,1}t ←$ ({0, 1}γ)2
t

if hk 6= 0γ for all k ∈ {0, 1}t

return ⊥
ch←$ {k ∈ {0, 1}t | hk = 0γ}
output (h, ch)

Experiment B:

h
′ = (h′

k)k∈{0,1}t ←$ ({0, 1}γ)2
t

if h′
k 6= 0γ for all k ∈ {0, 1}t

return ⊥
ch′ ←$ {k ∈ {0, 1}t | h′

k = 0γ}
ch←$ {0, 1}t

define h = (hk)k∈{0,1}t as

hk =











h′
ch if k = ch′

h′
ch′ if k = ch

h′
k otherwise

output (h, ch)

In the following, if hk = 0γ for some k ∈ {0, 1}t, we say “h is good”, and define W (h) := |{k ∈ {0, 1}t |
hk = 0γ}|. Then, we have the following facts:

– The probability that good h is chosen in Experient A and that good h
′ is chosen in Experiment B are

the same.
– For any good ĥ, the probability that h = ĥ holds in Experiment A and that h′ = ĥ holds in Experiment

B are constant, say p.
– In Experiment A, for any good ĥ and any ĉh ∈ {0, 1}t, it holds that

Pr[(h, ch) = (ĥ, ĉh)] =

{

p

W (ĥ)
if ĥ

ĉh
= 0γ

0 otherwise.

– For any good ĥ and any ĉh, ĉh
′
∈ {0, 1}t, define ĥ(ĉh⇔ ĉh

′
) as

ĥ(ĉh⇔ ĉh
′
)k =











ĥ
ĉh

if k = ĉh
′

ĥ
ĉh

′ if k = ĉh

ĥk otherwise

Then, in Experiment B, we have

Pr[(h, ch) = (ĥ, ĉh)]

=
∑

ĉh
′

∈{0,1}t

Pr[h′ = ĥ(ĉh⇔ ĉh
′
) ∧ ch′ = ĉh

′
]× Pr[ch = ĉh].

The first probability on the right side is estimated as above:

Pr[h′ = ĥ(ĉh⇔ ĉh
′
) ∧ ch′ = ĉh

′
] =

{

p

W (ĥ)
if ĥ

ĉh
= 0γ

0 otherwise,

since W (ĥ(ĉh ⇔ ĉh
′
)) = W (ĥ) holds. On the other hand, the second probability on the right side is

Pr[ch = ĉh] = 1
2t . Thus,

Pr[(h, ch) = (ĥ, ĉh)] =

{

∑

ĉh
′

∈{0,1}t

p

W (ĥ)
× 1

2t if ĥ
ĉh

= 0γ
∑

ĉh
′

∈{0,1}t 0×
1
2t otherwise

=

{

p

W (ĥ)
if ĥ

ĉh
= 0γ

0 otherwise,

which is the same as in Experiment A.
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Therefore, we have

Pr[Game8 ⇒ 1] = Pr[Game7 ⇒ 1],

Pr[Game8′ ⇒ 1] = Pr[Game7′ ⇒ 1].

Now, chτ,j is chosen randomly and uniformly independent from the choice of hτ,j,ch and the value of τ̂ .

Game9 and Game9′ . In this game, OSign and UpdateLists are further modified as in Figure 8 and Figure 9,
respectively. The difference is that the challenge chτ,j is chosen and respτ,j,ch for ch = chτ,j is calculated
immediately after comτ,j is computed.

This change is completely conceptual. Thus, we have

Pr[Game9 ⇒ 1] = Pr[Game8 ⇒ 1],

Pr[Game9′ ⇒ 1] = Pr[Game8′ ⇒ 1].

Game10 and Game10′ . Now, let us consider the following (possibly inefficient) function ReSim.

– ReSim takes a valid key pair (pk, sk) and a valid transcript (com, ch, resp) ∈ Tran(pk, sk, ch) as input,
– chooses r ←$ {r | (com, ch, resp) ← Tran(pk, sk, ch; r)}, where r is the random coins used to compute P1

in Tran algorithm,
– regenerates (com, st)← P1(pk, sk; r),
– computes resp′ch′ ← P2(st, ch

′) for all ch′ ∈ {0, 1}t \ {ch}, and
– outputs a list (resp′ch′)ch′∈{0,1}t\{ch}.

If the identification scheme is perfect HVZK, there exists r such that (com, ch, resp)← Tran(pk, sk, ch; r) for
any transcript (com, ch, resp) simulated by Sim and for any valid sk. Thus, ReSim can generate the response
resp′ that would be computed by an honest prover having the specified secret key sk as the response to the
different challenge ch′.

In games Game10 and Game10′ , Lines 6 to 8 in Figure 8 are replaced with the following.

chτ,j ←$ {0, 1}t

(comτ,j , respτ,j,chτ,j )← Sim(pki, chτ,j)

Further, insert the next line

{resp′ch}ch∈{0,1}t\{chτ,j} ← ReSim(pki, ski, comτ,j , chτ,j , respτ,j,chτ,j )

at the beginning of Figure 9, and Line 6 is replaced with

respτ,j,ch := resp
′
ch

If the identification scheme is perfect HVZK, A’s view does not change from the definition of ReSim.
Thus,

Pr[Game10 ⇒ 1] = Pr[Game9 ⇒ 1],

Pr[Game10′ ⇒ 1] = Pr[Game9′ ⇒ 1].

In Game10 and Game10′ , ski is used only in UpdateLists to compute resp′, and the tuple including resp′ is
added to Ltmp which is perfectly hidden to A until i is corrupted. From the definition of î, by the time Ffind

is set true and pair is assigned, î has not been corrupted and A has no information about skî. Thus we have

Pr[Game10′ ⇒ 1] = Pr[Ffind = true ∧ VerKey(par, pkî, sk
∗) = 1 ∧ skî 6= sk∗]

= Pr[Ffind = true ∧ VerKey(par, pkî, sk
∗) = 1]

× Pr[skî 6= sk∗ | Ffind = true ∧ VerKey(par, pkî, sk
∗) = 1]

= Pr[Game10 ⇒ 1]×
K − 1

K
.

This completes the proof of Lemma 1.
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OSign(i,m)

1 : if i ∈ Lcorr then

2 : return ⊥

3 : endif

4 : foreach τ ∈ [T ] do

5 : foreach j ∈ [ρ] do

6 : (comτ,j , stτ,j)← P1(par, pki, ski)

7 : chτ,j ←$ {0, 1}t

8 : respτ,j,chτ,j ← P2(chτ,j , stτ,j)

9 : endfor

10 : ~comτ := (comτ,1, . . . , comτ,ρ)

11 : pfxτ := (pki,m, ~comτ )

12 : if (pfxτ , ∗, ∗, ∗) /∈ Lvalid
RO then // Check if pfxτ was not generated before

13 : foreach j ∈ [ρ] do

14 : foreach ch ∈ {0, 1}t do

15 : hτ,j,ch ←$ {0, 1}γ

16 : endfor

17 : endfor

18 : if ∀j ∃ch : hτ,j,ch = 0γ then

19 : foreach j ∈ [ρ] do

20 : let π be a random permutation over {0, 1}t

21 : k := π

(

min
k∈{0,1}t

{k | hτ,j,π(k) = 0γ}

)

22 : swap(hτ,j,k, hτ,j,chτ,j )

23 : UpdateLists(pfxτ , j, {respτ,j,ch, hτ,j,ch}ch, chτ,j)

24 : endfor

25 : τ̂ := τ

26 : σ := (comτ̂ ,j , chτ̂ ,j , respτ̂ ,j,chτ̂,j
)j∈[ρ]

27 : break

28 : else

29 : foreach j ∈ [ρ] do

30 : UpdateLists(pfxτ , j, {respτ,j,ch, hτ,j,ch}ch, chτ,j)

31 : endif

32 : endif

33 : if τ = T then σ := ⊥

34 : endfor

35 : Lsig := Lsig ∪ {(i,m, σ)}

36 : return σ

Fig. 8: The sign oracle in Game9 and Game9′ .
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UpdateLists(pfxτ , j, {respτ,j,ch, hτ,j,ch}ch, chτ,j)

1 : foreach ch ∈ {0, 1}t

2 : if ch = chτ,j then

3 : H(pfxτ , j, ch, respτ,j,ch) := hτ,j,ch // program RO

4 : add (pfxτ , j, ch, respτ,j,ch, hτ,j,ch) to Lvalid
RO

5 : else

6 : respτ,j,ch ← P2(ch, stτ,j)

7 : add (pfxτ , j, ch, respτ,j,ch, hτ,j,ch) to Ltmp

8 : endif

9 : endfor

Fig. 9: Function UpdateLists used in Game9.

B Cryptographic Group Action

Here, we recall cryptographic group action.

Definition 14 (Group Action). A group G is said to act on a set E if there is a map ⋆ : G × E → E that
satisfies the following two properties:

1. Identity: If 1G is the identity element of G, then for all E ∈ E, we have 1G ⋆ E = E.
2. Compatibility: For any g, h ∈ G and any E ∈ E, we have (gh) ⋆ E = g ⋆ (h ⋆ E).

We may denote a group action by using the abbreviated notation (G, E , ⋆). For cryptographic purposes,
we need the following properties.

Definition 15. A group action (G, E , ⋆) is said to be

1. transitive if, for every E1, E2 ∈ E, there exists a unique g ∈ G such that E2 = g ⋆ E1,
2. free if, for all E ∈ E, E = g ⋆ E implies g = 1G.

If a group action is transitive and free, it is said to be regular.

Note that if a group action is regular, then for any E ∈ E , the map fE : g → g ⋆ E defines a bijection
between G and E ; especially if G or E is finite, then we must have |G| = |E|.

To construct feasible cryptographic primitives from group action, we require some efficient PPT algo-
rithms. We recall the effective group action framework introduced in [1].

Definition 16 (Effective Group Action [1]). A group action (G, E , E0, ⋆) is effective if the following
properties are satisfied:

1. The group G is finite, and there exist PPT algorithms for (1) the membership testing, (2) equality testing,
(3) group operations, (4) element inversions, and (5) random sampling over G. The sampling method is
required to be statistically indistinguishable from the uniform distribution over G.

2. The set E is finite, and there exist PPT algorithms for (1) the membership testing and (2) generating a
unique bit-string representation for every element in E.

3. There exists a distinguished element E0 ∈ E and its bit-string representation is publicly known.
4. There exists a PPT algorithm that given any (g,E) ∈ G × E outputs g ⋆ E.

An effective group action is denoted using the abbreviated notation (G, E , E0, ⋆). Let GAGen be a PPT

algorithm that takes 1λ as input and outputs a description of effective group action (G, E , E0, ⋆). The next
hardness assumption on group action is often used.
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Definition 17 (Group Action Discrete Logarithm (GADL) Assumption [24, Definition 16]). We
say that GADL assumption holds for GAGen if for all PPT adversaries A, it holds that

AdvGADL
A,GAGen(λ) := Pr



α ⋆ E0 = E

∣

∣

∣

∣

∣

∣

(G, E , E0, ⋆)← GAGen(1λ),
E ←$ E ,

α← A(G, E , E0, ⋆, E)



 ≤ negl(λ).

32



Table of Contents

Signatures with Tight Adaptive Corruptions from Search Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Keitaro Hashimoto , Wakaha Ogata , and Yusuke Sakai

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Future Work and Open Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Signature Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Canonical Identification Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Signature Scheme via Randomized Fischlin Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1 Proposed Signature Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Improving Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Instantiations of Signature Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.1 Instantiation from Classical Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Instantiation from Group Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Efficiency Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6 Zero-Knowledge of Randomized Fischlin Transformation, Reconsidered . . . . . . . . . . . . . . . . . . . . . . . 18
A Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
B Cryptographic Group Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

https://orcid.org/0000-0002-2232-9443
https://orcid.org/0000-0002-4671-4485
https://orcid.org/0000-0002-5115-8292

	Signatures with Tight Adaptive Corruptions from Search Assumptions

