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Abstract. Homomorphic signatures for NP (HSNP) allow proving that
a signed value is the result of a non-deterministic computation on signed
inputs. At CCS’22, Fiore and Tucker introduced HSNP, showed how
to use them for verifying arbitrary computations on data streams, and
proposed a generic HSNP construction obtained by efficiently combining
zkSNARKs with linearly homomorphic signatures (LHS), namely those
supporting linear functions. Their proposed LHS however suffered from
an high verification cost.
In this work we propose an efficient LHS that significantly improves on
previous work in terms of verification time. Using the modular approach
of Fiore and Tucker, this yields a verifier-efficient HSNP. We show that
the HSNP instantiated with our LHS is particularly suited to the case
when the data is taken from consecutive samples, which captures im-
portant use cases including sliding window statistics such as variances,
histograms and stock market predictions.

1 Introduction

We consider the problem of verifiable computation on data streams (VCS) in
which a data provider D streams a large amount of data to a server S, which
later computes on portions of this stream in order to reply to the queries of a
client C. This problem emerges in a variety of applications that require the con-
tinuous monitoring and analysis of vast, dynamically generated, data. Notable
examples include financial data (e.g., stock-market, blockchains transactions),
health or environmental sensors, network traffic, and smart metering – all fields
that demand efficient and reliable solutions.

More in detail, cryptographic solutions for VCS aim to achieve five main
properties: (1) Workflow: the communication from D to S is unidirectional and
the stream is ordered, and C can verify the queries without having to follow the
stream (i.e., it does not need to stay online). (2) Security: the client accepts the
correct result while trusting the data provider but not trusting the server. (3)
Efficiency: the communication from S to C is at most logarithmic in the size of the
stream, and C’s cost to verify the queries is smaller than the cost of running the
computation. (4) Privacy-preserving: the verifier does not learn any information
about the input stream beyond the received output. (5) Non-deterministic: the
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server can execute and prove non-deterministic computations of the form Dw :
y “ fpx,wq.

In a recent work [9], Fiore and Tucker proposed a solution to VCS through a
new primitive that they called homomorphic signatures for NP (HSNP). HSNP
essentially generalize classical homomorphic signatures [2,12], mainly to support
non-deterministic computation (i.e., statements in NP as opposed to P) and
efficient verification. The application of HSNP to VCS is natural and proceeds
as follows. The data provider D uses a secret key to sign each element xi of the
stream and gives pxi, σiq to the server. Upon a client’s request of computing a
function f on a portion Q of the stream, the HSNP scheme enables the server to
derive a short signature σy that vouches for the correctness of statements of the
form Dw such that y “ fptxjujPQ, wq and for the fact that each input txjujPQ is
legitimately signed by D. Then any client can publicly check the correctness of y
by using pf,Q, y, σyq and D’s public key. Notably, this configuration satisfies the
workflow property of VCS. Also, HSNP signatures are guaranteed to be short
and can be efficiently verified without knowledge of the inputs, which satisfies
the efficiency requirement of VCS.

Fiore and Tucker [9] proposed a generic HSNP construction based on a com-
bination of commit-and-prove (CaP) SNARKs and linearly-homomorphic signa-
tures for committed outputs (ComLHS)3, and then proposed and implemented
an efficient pairing-based instantiation, dubbed SPHinx. In their experiments,
they confirm that SPHinx features a proof generation that, depending on the ap-
plication, is between 15ˆ and 1 300ˆ faster than a straw-man approach in which
one uses a general-purpose SNARK to prove the correctness of the computation
and the validity of the signatures. However, the fast prover of SPHinx comes at
the price of high verifier’s costs. For a computation on a stream’s portion of t
values, verification is largely dominated by a multi-exponentiation of length t.
Concretely, for t « 1, 000, 000 verification approaches 20 seconds whereas the
SNARK solution enjoys a cheap verification of 11ms.

1.1 Our Results

In this work we continue this line of research on efficient HSNP for verifiable
computation on data streams. Our main result is the construction of two new
HSNP solutions that achieve fast proof generation without the need of sacrificing
the verification. Our new schemes feature a verification time that is up to 88ˆ

faster than SPHinx. Therefore our HSNP solutions improve over the SNARK-
based one on all fronts, without any tradeoff.

More in detail, our contributions are the following. Our first (and main tech-
nical contribution) is a new ComLHS scheme that can be replaced in the SPHinx
construction. Indeed, it turns out that the slow verification process of SPHinx
is entirely due to slow verification in their ComLHS scheme which requires the

3 ComLHS are LHS for the non-deterministic computation that checks that a com-
mitment opens to the result of a linear function s on signed messages x, i.e.,
Dr : c “ Commitpxx, sy; rq.
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verifier to perform a multi-exponentiation of length t. We solve this issue by
proposing the first pairing-based (Com)LHS in which the verifier needs to per-
form only Optq field operations, which are way faster than exponentiations. More
precisely, our scheme supports two verification profiles: (A) when verifying the
output of an arbitrary linear function verification costs Optq field operations and
constant group operations and pairings; (B) for structured linear functions de-
scribed by a vector of powers p1, s, s2, . . . , st´1q verification costs Oplog tq. Our
technique to enable verification based on field operations requires the prover to
hold an auxiliary information with which it can help the verifier. Interestingly,
this condition comes for free in the streaming setting where the signer streams
signed elements in order to the prover. We formally call this model streaming-
friendly correctness. We refer to Section 3 for more details.

An immediate application of our ComLHS (with (A)-type verification) is to
replace the ComLHS in SPHinx. We dub the resulting scheme SPHinx` and show
that it has 2 to 88 times faster verification than SPHinx, at the small price of
7% more expensive prover.

Next, we revisit the generic HSNP construction of [9] in order to be instan-
tiated with our new ComLHS with (B)-type verification and thus to achieve
even an asymptotic exponential speedup in verification, from Optq to Oplog tq.
Their generic HSNP requires a CaP SNARK in which committed vectors are
encoded with polynomials based on (univariate or multivariate) interpolation
techniques. In Section 4 we generalize this construction to work with any vector
encoding. This generalization allows us to capture the case where the vectors is
encoded in the coefficients of a polynomial (so-called monomial-base encoding).
Thanks to this change we can instantiate the HSNP generic construction with
(monomial-base) (CaP) SNARKs and our new LHS with (B)-type verification.
We dub this scheme SPHinx``. On the other hand, for the techniques underly-
ing both verification (A) and (B) to work, we need to assume that the portion
of inputs txiuiPQ to compute over is consecutive, i.e. Q “ tδ ` 1, . . . , δ ` tu
for a fixed δ. Even though this seems a restriction at the application level, it
captures important use cases like sliding window statistics over data streams
(histograms, variance, stock prices predictions), where one is interested in an-
alyzing the ”window” of the last t items of the stream. Importantly, these use
cases with consecutive labels arise in several application scenarios where a faster
verification can be of crucial importance, e.g., whenever signatures must be ver-
ified in real time. Concretely, consider for example a scenario where a medical
device receives statistics computed from values streamed by health sensors which
can be labeled using consecutive time instants, hence consecutive labels. In such
cases, verifying the authenticity of the data and computation results is essential
for security, while fast and efficient verification ensures that critical decisions
can be made on-the-fly.

Finally, as the last contribution, we implement our schemes and evaluate
them experimentally on the set of applications of HSNP for sliding window
statistics.
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2 Preliminaries

2.1 Notation

For a n P N, rns denotes the set t1, . . . , nu. Vectors are in bold. We denote by
vi the i-th coefficient of the vector v. The inner product between two vectors x
and y is denoted by xx,yy. Let D be a distribution over a set X. For a x P X,
we say x Ð D to say that the element x is sampled from X according to D. All
algorithms are assumed to be PPT machines.

A universal relation R is a set of triples pR, y, wq where R is a relation over
Y ˆ W, y is called the instance and w the witness. We write py, wq P R to
denote that R holds on the pairs py, wq, otherwise py, wq R R. When discussing
schemes that prove statements on committed values, the witness can be a pair
px,wq P X ˆ W, with x being the value committed into y. We sometimes use a
finer grained specification of X , assuming it splits over ℓ domains X1 ˆ ¨ ¨ ¨ ˆ Xℓ

for some arity ℓ.

2.2 Bilinear groups

We denote by G1,G2,GT cyclic groups of prime order and e : G1 ˆ G2 Ñ GT is
a bilinear map that is non-degenerate and efficiently computable. For the formal
definition and the d-Power-DLog assumption we refer the reader to Sec. A.2.

Assumption 2.1 Given a group generator G, any polynomial p, and any PTT
adversary A making t “ ppλq queries, and for large enough λ:

Pr

»

—

—

—

–

ppG “ pG1,G2,GT , e, pq Ð Gp1λq,

ga1 Ð A

˜

ppG ,ω, g1, tgc
i

1 uiPrts, tg
apci`ωiq

1 uiPrts,

h, ha, g2, tgc
i

2 uiPrts, g
1{a
2

¸

g1 Ð G1, h Ð G1, g2 Ð G2,

ω Ð Zt
p, c Ð Zp, a Ð Zp

fi

ffi

ffi

ffi

fl

“ neglpλq.

In Sec. A.2 we prove that assumption 2.1 holds in the Algebraic group model
(AGM) [10].

2.3 Commitment schemes

A commitment scheme Com is a tuple pSetup,Commit,VerComq where ck Ð

Setupp1λq generates a commitment key; pcm, oq Ð Commitpck, xq generates a
commitment cm and an opening o, given a input message x; b Ð VerCompck,
cm, x, oq checks if o is a valid opening for cm to x. In this work, unless otherwise
specified, we use commitments that are computationally binding - it is hard to
open the same cm to two distinct messages - and statistically hiding - cm leaks
no information about the message x.

A succinct argument of knowledge (SNARK) with specializable universal SRS
for a universal relationR is a tuple of algorithmsΠ “ pSetup,Derive,Prove,Verifyq,
where srs Ð Setupp1λ,Rq outputs a universal structured reference string srs;
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pekR, vkRq Ð Derivepsrs,Rq takes a universal srs and a relation R P R, and out-
puts a specialized SRS consisting of an evaluation key and a verification key;
π Ð ProvepekR,R, y, wq takes an evaluation key for a relation R, a relation
R, an instance y, and a witness w such that py, wq P R, and returns a proof
π; b Ð VerProofpvkR, y, πq takes a specialized verification key, an instance y,
and a proof π, and accepts pb “ 1q or rejects pb “ 0q. A SNARK satisfies the
properties of completeness, succinctness, knowledge soundness and composable
zero-knowledge, that we define in Sec.A.4.

2.4 Homomorphic signature for NP relations

HSNP extend classical homomorphic signatures (HS) to support the evaluation
of non-deterministic computations on signed data. Informally, this means that
anyone who knows inputs x1, . . . , xn and signatures σ1, . . . , σn on them, can
compute y “ fpx1, . . . , xn, wq where w is a non-deterministic input, and then
derive a signature σ̂ on y which guarantees that there exists a w and validly
authenticated x1, . . . , xn such that y “ fpx1, . . . , xnq. For an HSNP we con-
sider a privacy notion which guarantees that pσ, yq leaks no information about
px1, . . . , xnq beyond what can be inferred from the result of the computation y.

An interesting feature of HSNP is that they can prove statements about
signed inputs that are committed to. For example, one can authenticate com-
mitments to outputs of functions on signed data, i.e., authenticate cmy which
commits to y “ fpx,wq. This property plays an important role for composing
building blocks in large protocols, see for example Sec. 2.4 and Sec. 3.

An important class of HSNP are those for linear relations, namely when the
function f is a linear function of the inputs x. To emphasize the commit-and-
proof feature, we will refer to these as ComLHS.

Labelled relations . In the context of homomorphic signatures it is important
that inputs are labelled. Such a technicality was introduced in [6] for the sake
of verifying computations on datasets. Concretely, any data element xi is signed
with respect to the position τi it occupies within the stream or dataset. The
verifier knows the labels pτ1, . . . , τnq (e.g. the locations of the data in the stream
or database) corresponding to the actual data px1, . . . , xnq which are unknown
to it, yet it wants to be assured that a computation y “ fpx1, . . . , xn, wq was
done on the inputs associated with the labels pτ1, . . . , τnq. To give an intuition on
why when computing on authenticated data just signing inputs is not enough,
suppose that one needs to compute a linear function a “ pa1, . . . , anq on signed
inputs x1, . . . , xn as

řn
i“1 aixi. If it happens that xi “ xj for some i ‰ j then

this might lead to ambiguity.
Let R “ tR : R Ă Y ˆ Mt ˆ Wu be a universal relation, for some t P N.

A labelled relation is a tuple pR, pτ1, . . . , τtqq, where R P R and τi is a label for
the i-th slot of Mt. We will denote by Rid :“ px, x,Hq the identity relation on
Y ˆ Mt ˆ W.

Definition 2.1 (HSNP). A homomorphic signature scheme for NP consists of
the following PPT algorithms:
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psk, vkq Ð KeyGenp1λ,L,Rq: on input λ P N, a set of labels4 L, and a universal
relation R, outputs a secret signing key sk, and a public key vk.
σ Ð Signpsk, τ,mq : on input the signing key sk, a label τ , and a message m,
outputs a signature σ.
σ Ð Evalpvk,R, y, σ1, . . . , σt, wq : on input the verification key vk, a relation R P

R over YˆMtˆW for some t ď |L|, a statement y P Y, signatures tσ1, . . . , σtu,
and a witness w P W, outputs a new signature σ.
b Ð Verifypvk, pR, τ1, . . . , τtq, y, σq : on input a verification key vk, a labelled re-
lation pR, τ1, . . . τtq where R P R is over Y ˆ Mt ˆ W, a statement y P Y, and
a signature σ, outputs 0 (reject) or 1 (accept).

These algorithms must satisfy the following properties (see also Sec. A.6 for the
formal definitions):

Definition 2.2 (Authentication correctness). For any pvk, skq Ð KeyGenp1λ,
L,Rq, τ P L, x P M, if στ Ð Signpsk, τ, xq then Verifypvk, pRid, τq, x, στ q “ 1.

Definition 2.3 (Evaluation correctness). Consider any pvk, skq Ð KeyGenp1λ,
L,Rq, any R P R, and any set of label/message/signature triples tτi, xi, στiu

t
i“1

satisfying Verifypvk, pRid, τiq, xi, στiq “ 1. If py, pxτi , . . . , xτiq, wq P R, and σ “

Evalpvk,R, y, στ1 , . . . , στt , wq then Verifypvk, pR, τ1, . . . , τtq, y, σq “ 1.

Definition 2.4 (Succinctness). The size of the evaluated signatures depends
at most logarithmically on the size of the signed and non-deterministic inputs.

Definition 2.5 (Efficient verification). After a preprocessing step that de-
pends on the size of the relation being proved, the verification algorithm can be
efficiently run independently on the input size.

Definition 2.6 (Adaptive security). This definition can be seen as an adap-
tation of the standard notion of unforgeability for HSNP. Intuitively, the evalu-
ator should only be able to compute valid signatures for statements y for which
it received signatures for data items x1, . . . , xt and knows a witness w satisfying
py, px1, . . . , xtq, wq P R. The idea is to have an adversary A which can adap-
tively query signatures for labelled messages of its choice. Now assume that A
outputs a valid signature σ for a statement y as output of some labelled relation
pR, τ1, . . . , τtq for some t ě 1. Then with overwhelming probability (i) A must
have queried signatures for each label τi; and, denoting these queries tτi, xiuiPrts

(ii) the adversary A must know a witness w such that py, px1, . . . , xtq, wq P R.

Definition 2.7 (Zero-knowledge). The zero-knowledge property guarantees
that evaluated signatures do not reveal anything about the signed inputs and the
non-deterministic input beyond the fact that the signed statement satisfies the
relation. The intuition is the following. The adversary queries the Sign algorithm
on labelled messages on its choice. Then it chooses a statement y, a labelled
relation pR, τ1, . . . , τtq (where each τi must have been queried along with an input

4 In our construction in Sec 3, we do not need to specify in advance the labels
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xi resulting in the signature στi) and a witness w satisfying py, px1, . . . , xtq, wq P

R. Then A is given a signature σ for the statement y, which is either the result
of the computation of the relation R on the signatures στ1 , . . . , στt or the output
of the simulator that receives the secret key sk and y, pR, τ q but does not have
access to the signed inputs. The scheme is zero-knowledge if it is hard for A to
tell which is the case.

A generic HSNP from ComLHS In [9] Fiore and Tucker construct a generic
HSNP using a commit-and-prove zkSNARK, a polynomial commitment and a
ComLHS as building blocks. Here we sketch the idea behind their construc-
tion (with a simple generalization of it that enables more instantiations). For a
complete description, we refer the reader to Sec. B.

Let T “ tτ1, . . . , τtu be a set of labels. Let Dec : FrX1, . . . , Xns Ñ Ft be a de-
coding function and χpX1, . . . , Xnq be a list of t n-variate polynomials satisfying
the following properties:

- Dec is F-linear and Decpχiq “ ei, where ei is the ith vector of the canonical
basis of Ft;

- degpχipX1, . . . , Xnqq{|F| is negligible for all i “ 1, . . . , t;
- @r P Fn then χiprq is computable in Optq F-operations.

We define x̃pX1, . . . , Xtq “ xx,χpX1, . . . , Xnqy as the polynomial encoding of a
vector x.

The first condition, the existence of a decoding function Dec, is our gener-
alization. In SPHinx, it is instead assumed the existence of a public set H “

th1, . . . , htu such that χiphjq “ 1 if i “ j and 0 otherwise. Namely, the polyno-
mials χi are the Lagrange polynomials corresponding to the set H. For instance,

in the univariate case χipXq “
hipX|H|

´1q

|H|pX´hiq
, and thus x “ Decpx̃pXqq.

The building blocks for their generic HSNP are:

1. A commitment scheme Com “ pKeyGen,Commit,Open,VerComq for commit-
ting to n-variate polynomials with coefficients in F.

2. A universal commit-and-prove (CaP) zkSNARK CPR for Com and relation
R. Specifically, given a statement y and a commitment cmx̃, CPR proves the
existence of witnesses x̃pX1, . . . , Xnq P FrX1, . . . , Xns, ox̃ and w such that

py,Decpx̃q, wq P R ^ VerCompck, cmx̃, x̃, ox̃q “ 1.

3. A universal CP zkSNARK CPev for committed polynomial evaluations. Specif-
ically, given a statement r P Fn and commitments cmx̃, cmz to x̃ P FrX1, . . . , Xns

and z P F, it proves that

z “ x̃prq ^ VerCompck, cmx̃, x̃, ox̃q “ 1 ^ VerCompck, cmz, z, ozq “ 1

4. A ComLHS scheme ComLHS “ pKeyGen,Sign,Eval,Verifyq for the relation

Rcom-ip “ tRt,s
com-ip :“ tpcm,x, oq : VerCompck, cm, xx, sy, oq “ 1u : t ď N, s P Ftu
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For a relation R that can be encoded as a circuit F : Ft`|w| Ñ F, given t signed
inputs x1, . . . , xt with labels τ1, . . . , τt, to compute a signature on the output
y “ F px1, . . . , xt, wq, where w is a witness, the evaluator proceeds as follows. It
commits to the polynomial x̃, say cmx̃. It then computes a proof π using CPR
for the relation R to prove that the computation was performed correctly on
the inputs x “ Decpx̃pXqq with witness w. Then it proves that these inputs are
signed. For this, it gets a random challenge r, computes z “ x̃prq “ xx,χprqy,
commits to z in, say, cmz, and uses CPev to prove this committed evaluation.
Finally, the ComLHS is used to prove that cmz opens to the signed result of the
linear function xx,χprqy of the signed inputs x.

3 Linearly homomorphic signature

We present our construction of a linearly-homomorphic signature for committed
outputs (ComLHS), which is an HSNP for the family of relations

Rcom-ip :“ tR
pt,sq

com-ip :“ pc,x, oq : VerCompck, c, xx, sy, oq “ 1, t ď N, s P Ftu

where Com “ pSetup,Commit,Open,VerComq is a commitment scheme.
Our scheme supports labels that are integers, without an a-priori fixed upper

bound, and has streaming-friendly correctness. Namely, when evaluating on a
set of labels T “ tτ1, . . . , τtu P Nt, it achieves correctness if the evaluator has
received (a stream of) signatures with labels 1, 2, . . . , τt.

We construct our scheme in bilinear groups, and we additionally make use of a
secure (EUF-CMA) signature Σ “ pΣ.KG, Σ.Sign, Σ.Verifyq, and a proof system
NIZK “ pK, P, V q for the relation Rc “ tpy, pz, wqq : y “ gz1h

wu. Concretely,
we will instantiate Σ with Schnorr’s signature and NIZK with Okamoto’s sigma
protocol [15].

We describe our ComLHS in Fig. 1. Below we provide an intuition of the
construction, comparing it to the scheme proposed in [9].

Previous LHS. First, we will sketch the LHS proposed in [9]. We will only include
the parts that are important to understand our improvement. A key generation
phase produces secret keys a, b along with a public key consisting among other

things of Γ1 “ ha
1 , Γ2 “ g

1{a
2 , B “ gb1. To sign an input x with label τ , the signer

first hashes the label τ to obtain Cτ Ð Hpτq. It computes Λτ “ pCτg
brτ `x
1 qa,

where rτ is obtained from applying a PRF to τ . The signature on x, τ is then
pΛτ , rτ q. To compute a linear function with public coefficients s P Zt

p on signed

inputs px1, . . . , xtq with labels τ1, . . . , τt, given a commitment y “ g
xx,sy

1 hw, the
evaluator first applies the linear function to the pseudo-randomness prτ1 , . . . , rτtq

resulting in r “ xr, sy. It then computes the product Λ Ð Γw
1

śt
i“1pΛiq

si . The
evaluated signature then includes py, Λ, rq. To verify the above signature with
the public key, the verifier computes C Ð

śt
i“1pHpτiqqsi and then checks that

epyBrC, g2q “ epΛ, Γ2q.
From the above description, it appears that the cost for both evaluating

and verifying an evaluated signature is dominated by the computation of C “
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śt
i“1 Hpτiq

si which is a multi-exponentiation of t factors, namely tG1-operations.
This is the main bottleneck for SPHinx, making its verification orders of magni-
tude slower than that from a solution using general purpose SNARKs due to both
hashing into the group t times and then computing the multi-exponentiation.

Our algebraic LHS Our idea to speed up verification is to delegate the computa-
tion of the term C to the prover and let it provide a proof of correct computation
which is fast to verify. Notably, the challenge of achieving this is that we simul-
taneously want to keep the prover’s cost in the same order of magnitude, that
is we cannot use a general purpose delegation scheme which would likely need
to encode the multi-exponentiation in a circuit, with prohibitive overhead.

Therefore, to achieve our goal we change the ComLHS scheme in such a way
that the terms Cτ have a convenient algebraic form which leads more naturally
to an efficient and succinct proof of correct computation. Our starting point is
to replace the random oracle in the terms Cτ with gc

τ

1 for a secret c that is part
of the secret key. This way, the term C “

śt
i“1pgc

τi

1 qsi can be interpreted as

a commitment to the polynomial
řt

i“1 siX
τi , for which the prover can provide

a succinct proof using a KZG-style proof (see Sec. A.5). The issue is that the
terms Cτi in the product C depend on the size of the whole stream, while we
want the computation as well as the verification to depend only on the size of
the sample T. To avoid this we need to make some restriction on the sample set
T. For simplicity, we focus on the case when the label set T “ tτ1, . . . , τtu can be
represented a as consecutive labels5, namely tδ ` 1, . . . , δ ` tu for a δ P N which
is possibly OpNq, where N is the size of the whole stream.

The key generation produces secret keys a, b, c along with a public key consist-

ing among other things of Γ1 “ ha, Γ2 “ g
1{a
2 , B “ gb1, with G1 “ pg1q,G2 “ pg2q

and h being a random element from G1, and a PRF key κ.

To sign a data element x with label τ , the signer now computes C
p1q
τ :“ gc

τ

1 .
It then computes rτ from a PRF Fκ applied to τ and then computes the element

Λτ “ pC
p1q
τ gbrτ `x

1 qa as before. Note that this uniquely binds the Λτ to the label

τ as long as c is secret. The signature στ then includes C
p1q
τ , C

p2q
τ :“ gc

τ

2 , rτ , Λτ .

To compute a linear function with public coefficients s P Zt
p on signed inputs

pxδ`1, . . . , xδ`tq with labels δ`1, . . . , δ`t, given a commitment y “ g
xx,sy

1 hw, the
evaluator proceeds as follows. As before, the evaluator applies the linear function

on the pseudo-randomness r, resulting in r “ xr, sy. The goal is to compute g
S̄pcq

1

where S̄pXq “
řt

i“1 siX
δ`i and provide a succinct proof of this. Define the

polynomial SpXq :“
řt

i“1 siX
i´1. Note that S̄pXq “ Xδ`1SpXq and that SpXq

does not depend on δ. The evaluator first computes CS :“
śt´1

i“0pC
p1q

i qsi`1 and

CS̄ :“
śt

i“1pC
p1q

δ`iq
si . It then computes a KZG-like proof πS :“ g

qpuq

1 where qpXq

5 In fact, in order to make the prover depend only on the size of T one can even allow
gaps between labels provided they are of constant size. We will argue that both
cases are enough to capture realistic use cases, for example the important case of
sliding-window statistics.
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is the polynomial defined by qpXq “
SpXq´Spuq

X´u for a random point u, derived

e.g. from a random oracle. Then it computes the product Λ Ð Γw
1

śt
i“1pΛiq

si .
The outputed evaluated signature then includes CS , CS̄ , πS , r, Λ.

To verify the above signature, the verifier first derives the random point u
from the RO. It then computes Spuq “

řt
i“1 siu

i´1 and checks that epyBrCS̄ , g2q “

epΛ, Γ2q and that epπS , g2q “ epCSg
´Spuq

1 , gc´u
2 q and epCS̄ , g2q “ epCS , C

p2q

δ`1q,

the latter check testing that S̄pXq “ Xδ`1SpXq. Note that the verifier cannot,

in principle, check that the term C
p2q

δ`1 is indeed gc
δ`1

2 . To ensure this, we let the
signer include as part of the output a signature, e.g. Schnorr’s, that the value

C
p2q
τ correspond to the label τ . The signature corresponding to the label δ ` 1

is then appended to the evaluated signature from the evaluator so the verifier

just needs to check the validity of the signature on the element C
p2q

δ`1 under the
signer’s public key, which it trusts.

It is clear that in our LHS now the verification only involves Optq field op-
erations. We will later introduce further optimizations that allow reducing the
verification cost to Oplog tq field operations.

Further comments Here we explain some technical details in our LHS that we
omitted in the above intuitive description.

In both [9] and our ComLHS, the evaluator uses a succinct NIZK for proving
that y “ gz1h

w, where z “ xx, sy. This is needed in the proof of adaptive security
to extract the witness w.

In our ComLHS, the evaluator needs to compute the element C 1
S̄

“ g
αS̄pcq

1

so as to allow the extraction of the polynomial S̄pXq in the security proof. To
do this, we include the elements gα1 , g

α
2 in the verification key, and let the signer

produce and send the element gαc
τ

1 for each label τ . A final pairing is needed to
check that C 1

S̄
“ Cα

S̄
.

To sign labelled inputs, we make use of a PRF Fκ : N Ñ Zp to generate the
randomness rτ . This is needed for proving the zero-knowledge property of the
ComLHS. This makes the value r “ xr, sy a deterministic function of the labels,
the relation Rt,s

com-ip and the secret key. All this information being known to the
simulator, it can simulate r.

Theorem 3.1. If NIZK is a proof of knowledge for Rc, Σ is a EUF-CMA sig-
nature, RO is modelled as a random oracle and F is a secure PRF, then the
ComLHS scheme in Fig. 1 satisfies authentication correctness, evaluation cor-
rectness and adaptive security under assumption 2.1. Furthermore, if NIZK is
zero-knowledge, then the LHS is zero-knowledge.

The proof of Theorem 3.1 is in Sec. C.

3.1 Cost of our ComLHS

Here we give the costs for our ComLHS in Fig. 1 and compare it with the one
in Table 1 of Fiore and Tucker [9].

https://orcid.org/0009-0004-3977-617X
https://orcid.org/0000-0001-5289-3769
https://orcid.org/0000-0001-7274-6600
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KeyGenp1λ,Rcom-ipq:

1 ppG :“ pG1 “ pg1q,G2 “ pg2q,GT , e, pq Ð Gp1λq, h Ð G1;
2 ck :“ pppG , hq;
3 skΣ , pkΣ Ð Σ.KeyGenp1λq;
4 crs Ð NIZK.Kp1λ, ckq;
5 κ Ð K;
6 a, b, c Ð Zp, α Ð Zp;

7 Γ1 Ð ha, Γ2 Ð g
1{a
2 , B Ð gb1;

8 Return sk :“ ppa, b, cq, α, κ, skΣq, vk :“ pck, crs, Γ1, Γ2, B, gc1, g
c
2, g

α
1 , g

α
2 , pkΣq;

Signpsk, τ, xq

1 C
p1q
τ Ð gc

τ

1 , C 1
τ Ð gαcτ

1 , C
p2q
τ Ð gc

τ

2 ;
2 rτ Ð Fκpτq;

3 Λτ Ð

´

C
p1q
τ gx`brτ

1

¯a

;

4 sigτ Ð Σ.SignpskΣ , C
p2q
τ }τq;

5 Return στ “ pxτ , Λτ , rτ , C
p1q
τ , C 1

τ , C
p2q
τ , sigτ ,Hq;

Evalpvk,Rt,s
com-ip, δ, y, tστuτPrNs, wq:

1 Parse s P Zt
p from Rpt,sq

com-ip;
2 For i P rts do:

2.1 Parse pxδ`i, Λδ`i, rδ`i, C
p1q

δ`i, C
1
δ`i, C

p2q

δ`i, sigδ`i,Hq “ σδ`i;

2.2 Parse pxi, Λi, ri, C
p1q

i , C 1
i, C

p2q

i , sigi,Hq “ σi;
3 Set x “ pxδ`1, . . . , xδ`tq, r “ prδ`1, . . . , rδ`tq;
4 z Ð xx, sy, r Ð xr, sy;
5 πNIZK Ð NIZK.P pRc, crs, y, pz, wqq;
6 Λ Ð Γw

1 ¨
ś

iPrts
pΛδ`iq

si ;

7 Set SpXq :“
řt´1

i“0 si`1X
i, S̄pXq :“

řt
i“1 siX

δ`i;

8 CS Ð gs11 ¨
ś

iPrts
pC

p1q

i´1q
si`1 , CS̄ Ð

ś

iPrts
pC

p1q

δ`iq
si , C 1

S̄ Ð
ś

iPrts
pC 1

δ`iq
si ;

9 u Ð ROpvk,Rpt,sq

com-ip, δ, sigδ`1, y, Λ, r, CS , CS̄ , C
1
S̄ , C

p2q

δ`1, πNIZKq;

10 Compute qpXq “
řt´2

i“0 qiX
i :“ SpXq´Spuq

X´u
;

11 πS Ð
śt´2

i“0

´

C
p1q

i

¯qi
;

12 Return σ :“ py, Λ, r, CS , CS̄ , C
1
S̄ , C

p2q

δ`1, sigδ`1, πNIZK, πSq

Verifypvk,Rpt,sq

com-ip, δ, σq:

1 If σ “ στ “ px,Λτ , rτ , C
p1q
τ , C 1

τ , C
p2q
τ , sigτ ,Hq:

1.1 If Σ.VerifyppkΣ , sigτ , C
p2q
τ }τq “ 1 ^ pepgx1B

rτ , g2q “ epΛτ , Γ2qq: return
1;

1.2 Else: return 0;
2 Else if σ “ py, Λ, r, CS , CS̄ , C

1
S̄ , C

p2q

δ`1, sigδ`1, πNIZK, πSq:

2.1 u Ð ROpvk,Rpt,sq

com-ip, δ, y, Λ, r, CS , CS̄ , C
1
S̄ , C

p2q

δ`1, πNIZK, πSq;

2.2 ρ Ð
řt´1

i“0 si`1u
i;

2.3 If Σ.VerifyppkΣ , sigδ`1, C
p2q

δ`1}δ ` 1q ‰ 1: return 0;

2.4 If epπS , g
c
2g

´u
2 q ‰ epCSg

´ρ
1 , g2q _ epCS , C

p2q

δ`1q ‰ epCS̄ , g2q: return 0;
2.5 If epC 1

S̄ , g2q ‰ epCS̄ , g
α
2 q: return 0;

2.6 If pNIZK.V pRc, crs, y, πNIZKq “ 1q ^ epyBrCS̄ , g2q “ epΛ, Γ2q: return 1;
2.7 Else: Return 0;

Fig. 1. Our new ComLHS
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Table 1. Comparison of our LHS with the one in [9]. Our construction improves on
the verification cost by removing the expensive group operations that were the main
bottleneck of previous work. At the cost of adding a constant overhead in the proving
time and signature size. The values of the last column refer to our instantiation with
the BLS12-381 curve. For evaluation and verification we do not include the costs that
do not depend on t. Verification requires performing a constant number of pairings.
These do not affect the efficiency of the scheme, as shown our experiments, see Sec. 5.

Scheme Evaluation Verifier
Evaluated Evaluated
sig. size sig. size (in Bytes)

[9]
t G1-operations

t G1-operations
2G1

255
2t F-operations 4F

This work
arbitrary linear functions

5t G1-operations t F-operations 8G1, 1G2 478
3t F-operations 4F

This work
structured linear functions

4t G1-operations log t F-operations 8G1, 2G2 557
2t F-operations 5F

(A)-type verification: arbitrary linear functions. This is the case where the vector
s is arbitrary. The cost for the evaluator is dominated by the computation of the
elements Λ,CS , CS̄ , C

1
S̄
, πS , each one being a multi-exponentiation of size t. Using

Pippenger’s algorithm this takes around t logpqq{ logpt logpqqq group operations.

The cost for the verifier is dominated by the computation of the term ρ, which
is an inner product of two vectors of size t. This requires Optq field operations.

An evaluated signature consists of the proof πNIZK which counts for one group
element and two field elements, the field elements r, and the group elements

y, Λ,CS , CS̄ , C
1
S̄
, C

p2q

δ`1, πS and the signature sigδ`1.

Faster prover It is possible to verify πS without the need of communicating

CS . Notice that line 2.4 of Verify checking that qpXq “
SpXq´Spuq

X´u and S̄pXq “

Xδ`1SpXq can be replaced by checking that S̄pXq ´ SpuqXδ`1 “ qpXqpX ´

uqXδ`1 “
SpXq´Spuq

X´u pX ´ uqXδ`1. This can be checked by replacing line 2.4

with the check epCS̄ , g2qepg
´Spuq

1 , C
p2q

δ`1q “ epπS , C
p2q

δ`2pC
p2q

δ`1q´uq. For this, the

Eval algorithm should also send the element C
p2q

δ`2 along with a signature. This
saves one multi-exponentiation for the prover (since CS is not needed) and one
pairing for the verifier.

(B)-type verification: structured linear functions. If we assume now that the
vector s has additional structure, for example s “ p1, s, s2, . . . , st´1q, then we
can further reduce the cost for both the prover and the verifier.

By exploiting the structure of s, the evaluator does not have to produce the
proof πS . The only two modifications in Fig. 1 are the following. In Eval the
evaluator sends pgc

t

2 , sigtq. In Verify the verifier needs to additionally check the

signature sigt and that epCS , g2pgc2q´sq “ epg1, g2pgc
t

2 q´stq which tests Spcq “
1´pscq

t

1´sc . This saves the computation of u, qpXq, πS in Eval (lines 9, 10, 11) and

of u, ρ and the check epπS , g
c
2g

´u
2 q ‰ epCSg

´ρ
1 , g2q (lines 2.1, 2.2 and first part of

line 2.4) in Verify.

https://orcid.org/0009-0004-3977-617X
https://orcid.org/0000-0001-5289-3769
https://orcid.org/0000-0001-7274-6600
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In particular, the cost for the verifier is then dominated by computing the
exponent st, which can be done in Oplog tq field operations. Therefore, in this
special case the verifier is succinct in the size of the sample set T.

4 Application to efficient HSNP

Here we use our ComLHS to obtain efficient HSNP schemes.

4.1 Our SPHinx` instantiation with our ComLHS and Marlin

Fiore and Tucker [9] give an efficient instantiation of their generic HSNP (see also
sec. 2.4, called SPHinx, obtained by instantiating the building blocks as follows:
χipXq are univariate Lagrange polynomials; Com is KZG (see Sec. A.5); CPR
is a commit-and-prove variant of Marlin that they propose; CPev is a version of
KZG with committed outputs, optmized from [8]; ComLHS is instantiated with
their own scheme.

In our paper we exploit the modularity of the SPHinx scheme, by taking
the same instantiation as above except that we replace their ComLHS with our
new, verifier-efficient ComLHS scheme in Fig. 1. The rest of the building blocks
remains the same. We dub this instantiation SPHinx`. As we confirm in Section
5, the faster verification algorithm of our ComLHS based on field operations
makes the SPHinx` HSNP very efficient for the verifier, removing the drawback
of SPHinx.

4.2 Our SPHinx`` instantiation with our ComLHS and VOMarlin

We show a second HSNP instantiation, dubbed SPHinx``, obtained using our
ComLHS with the (B)-type verification. However, this requires the public linear
function to be structured. To this end, to build SPHinx`` we set χpX1, . . . , Xnq “

χpXq univariate with χipXq “ Xi´1. The polynomial x̃pXq encoding the inputs
x is then just the polynomial having x as coefficients, namely x̃pXq “ fxpXq :“
řt

i“1 xiX
i´1.

To support this choice, though, we should replace CP.Marlin with a zkSNARK
that is commit-and-prove w.r.t. a polynomial commitment with such monomial-
basis encoding of vectors. Recently, several PIOPs have been proposed that can
be compiled with polynomial commitments in the monomial basis, for example
Claymore [16] and the ones from vector oracles [17]. We focus on the latter,
specifically those for R1CS relations (see Sec. D), that we name VOMarlin for
the sake of clarity. To use this scheme in the HSNP construction, we make it
commit-and-prove, following an approach similar to the one used in [9] forMarlin.
We give the construction in the Appendix D.

5 Applications and experiments

HSNPs yield a natural application to verifiable computation on data streams. In
this domain, most concrete use cases fall into so called sliding-window statistics,
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a method for continuously updating statistical measures over a subset of data,
focusing on the t most recent items. They are essential for real-time data anal-
ysis across various applications as they provide dynamic and efficient insights
into evolving data streams with limited computational resources. They are par-
ticularly valuable for continuous monitoring in fields such as finance, network
security, and sensor data management.

Sliding-window statistics fit the requirements of our HSNP realizations in
which the data owner can stream values with consecutive labels, and compu-
tation occurs on a portion of consecutive data. In this section, we evaluate the
performance of our HSNP realizations using three benchmarks, that are the
following three sliding-window statistics considered in [9]:

Variance: Measures the spread of a set of points from their average value
within a given window. For example, this is useful in financial data analysis
or sensor data monitoring, where sudden changes in variance could indicate
important shifts or anomalies. Variance can be expressed by an R1CS circuit of
t ` 2 variables and 2t ` 2 constraints.

Histogram: Is useful for visualizing and understanding the distribution of
data within each window. For example by plotting the frequency of data points
in predefined intervals, histograms can reveal patterns or trends that evolve over
time in the data stream. Denoting by k the number of intervals, histograms can
be expressed by an R1CS circuit with 36tk constraints and 96tk variables.

Multi-linear regression: Is a generalisation of linear regression that allows
to take into account multiple factors before outputting a prediction. This is
particularly relevant in scenarios where relationships between variables need to
be analyzed dynamically as new data arrives. Previous work [9] showed that for n
days, computing both k additional features and the prediction of the model can
be represented by an R1CS with np2k2 `8k`4q `k3 `5k2 `9k`6 constraints,
and n

`

3
2k

2 ` 15
2 k ` 4

˘

` k3 ` 4k2 ` 7k ` 4 variables.

5.1 Implementation and experimental setup

The implementation of our scheme extends the previous SPHinx library. It is done
in Rust and based on the arkworks6 libraries. Pairing-friendly curves are instan-
tiated with BLS12-381 [3]. The experiments were run on a Debian GNU/Linux
virtual machine running with 8 cores Xeon-Gold-6154 clocked at 3GHz and with
128 GB of RAM. All the reported timings correspond to the median of measure-
ments over 10 executions.

We evaluate the performance of our implementation of SPHinx` on the three
benchmarks above, comparing it with SPHinx and SigMarlin. The latter is a
generic HSNP that uses Marlin to prove both the computation and that the
corresponding inputs were signed. We simulate SigMarlin by running Marlin on
R1CS with an additional 5,000 constraints per signed input to include the cost of
verifying signatures. As explained in [9] it is important to note that the addition
of 5,000 constraints per signed input is a lowered estimation, with state-of-the-art
suggesting that the actual costs could be double this amount.

6 https://github.com/arkworks-rs

https://orcid.org/0009-0004-3977-617X
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https://orcid.org/0000-0001-7274-6600
https://github.com/arkworks-rs
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To benchmarks SPHinx and SPHinx` we executed all components of our
HSNP protocol on the specified R1CS instance and include the associated costs.

5.2 Evaluation

Signing For SPHinx` signing takes 1.7ms which is around 3 times slower than
SPHinx signing time as a result of few more group operations. However we ar-
gue that this trade off is worth in order to improve the verification time and
unnoticeable in practice. The signature still remains of constant size.

Proving and verification time Figure 2 shows the verification time for his-
tograms with 4 buckets and variance computation over varying input sizes. Ver-
ification time for MLR with 30 additional features is similar to the one of his-
tograms and for lack of space is not included as a plot.

Our experiments show that SPHinx` improves significantly on SPHinx perfor-
mances from 2 times for histograms and MLR with k “ 4 and t “ 212 to 88 times
faster for the biggest instance we tested (variance with t “ 220), staying under a
quarter of a second. The additional proving cost stays constant through any in-
put size and is of around 7%, which is negligible compared to the cost of running
Marlin. It is worth mentioning that the implementation does not currently use
any batching or preprocessing of the pairings. We argue that this would further
reduce the verification time bringing it closer to SigMarlin without inheriting its
limitations on proving time and RAM usage. Compared to SPHinx`, the advan-
tage of SPHinx`` in terms of verification time is in the order of milliseconds,
and t had to be increased significantly to see a noticeable difference. For this
reason and for lack of space, we do not include it here.
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A Preliminary material

A.1 Schwartz-Zippel Lemma

Lemma A.1 (Schwartz-Zippel). Let f be a non-zero polynomial in n vari-
ables of total degree d over a field F. Let S be a finite subset of F, and let
r1, r2, . . . , rn be selected uniformly and independently at random from S. Then
the probability that f evaluates to zero at the point pr1, r2, . . . , rnq is bounded by:

Prrfpr1, r2, . . . , rnq “ 0s ď
d

|S|
.

A.2 Bilinear groups

Let G be a group generator which takes as input a security parameter λ. A
bilinear group is a tuple pG1,G2,GT , e, pq Ð Gp1λq where:

- G1 and G2 are cyclic groups of prime order p.
- GT is a cyclic group of the same order p.
- e : G1 ˆG2 Ñ GT is a bilinear map, which satisfies the following properties:

1. Bilinearity: For all g1, g2 P G1 and a, b P Zp, epga1 , g
b
2q “ epg1, g2qab.

2. Non-degeneracy: There exist g P G1 and h P G2 such that epg1, g2q ‰

1GT
, where 1GT

is the identity element of GT .
3. Computability: There is an efficient algorithm to compute epg1, g2q for

any g1 P G1 and g2 P G2.

A.3 Computational assumptions

Assumption A.1 (d-Power-DLog) Given a degree bound d P N, the d-Power
Discrete Logarithm assumption [14] holds for a bilinear group generator G if for
any PPT adversary A:

Pr

«

c1 “ c :
ppG Ð Gp1λq, c Ð F

c1 Ð ApppG , tgc
i

1 uiPrts, tgc
i

2 uiPrtsq

ff

“ neglpλq. (1)

https://orcid.org/0009-0004-3977-617X
https://orcid.org/0000-0001-5289-3769
https://orcid.org/0000-0001-7274-6600


19

Security of assumption 2.1 To show that assumption 2.1 holds in the AGM.
we will prove that it falls into the Über assumption family of [1, 4] for a given
algebraic adversary A and a bilinear group generator G. Note that as the target
element in our assumption is ga1 and that we are using type 3 bilinear group, the
adversary will not be able to use any elements from G2 or GT and therefore we
define the simplified Game 3.

Definition A.2. Let R P ZprX1, . . . , Xmsr be a vector of r m-variate polyno-
mials over Zp and let W P ZprX1, . . . , Xms be an m-variate polynomial over
Zp. We say that W is linearly independant on R if there exist no coefficients
taiuiPrrs P Zr

p such that:

W “

r
ÿ

i“1

aiRi

Here we will define an adapted algebraic game.

Input: R P ZprX1, . . . , Xms
r a vector of m-variate polynomials, R1

P

ZprX1, . . . , Xms the targeted polynomial.
- pp,G1,G2,GT , eq Ð Gp1λq

- pg1q Ð G1

- x Ð Zm
p

- U Ð pg
R1pxq

1 , . . . , g
Rrpxq

1 q

- A Ð ApUq

Output: A “ g
R1pxq

1

Fig. 3. Game pR,Rq ´ UberAG p1λq

Definition A.3. (Non-triviality). For a type 3 billinear group, a vector of poly-
nomials R P ZprXsr and a target element R1 P ZprXs, we will say that the tuple
pR, R1q is non-trivial if R1 is linearly independent from R.

As shown by Bauer and al. [1], for a type 3 pairing, if the tuple pR, R1q is non
trivial and as long as pq1, q2q ´dlogG assumption holds, then the corresponding
Uber assumption holds for any algebraic adversary. Furthermore the security
loss of the reduction will only depend on the degree of the involved polynomials,
i.e. the maximum degree of R1 and the polynomials of R and the components of
R.

Lemma A.4. Assumption 2.1, is secure under the uber assumption.

Proof. Let us suppose there is an algorithm A that solves assumption 2.1 out-
putting A “ ga for a random integer a. We will show that A also outputs a
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non trivial tuple for a family pR, R1q ´ uberAG p1λq game. Let’s first fix a ran-
dom ω Ð Zt

p for an integer t. We will call Rω P ZrXs2tp a vector distribution
parametrize with ω as follow:

Rω “ pX, . . . ,Xt, Y pX ` ω1q, . . . , Y pXt ` ωtqq

Then it follows that we can use this vector of bivariate polynomials in an
pR, R1q ´ uberAG p1λq game with the polynomial R1pX,Y q “ Y which result
in a non trival tuple as any monomial of a polynomial R P Rω is of degree
at least 1 in X. To finish, it is easy to notice that this observation is true
for any value taken by ω with overwhelming probability as long as t ! p, i.e.

Pr
”

Ťt
i“1 x

i ` ω “ 1|X “ x
ı

ď t
p by the union bound.

According to lemma A.4, assumption 2.1 holds in the Algebraic group model
[10].

A.4 Universal zkSNARKs

We recall the definition of (pre-processing) zero-knowledge succinct non-interactive
arguments of knowledge (zkSNARK) with specializable universal structured ref-
erence string (SRS) [11]. In this work, we use the term zkSNARK to refer to a
universal zkSNARK.

Definition A.5. A SNARK with specializable universal SRS for a universal
relation R is a tuple of algorithms Π “ pSetup,Derive,Prove,Verifyq satisfying
completeness, succinctness, knowledge soundness and composable zero-knowledge
and defined as follows:
srs Ð Setupp1λ,Rq: takes security parameter λ and a universal relation R, and
outputs a universal structured reference string srs.
pekR, vkRq Ð Derivepsrs,Rq: a deterministic algorithm that takes a universal SRS
srs and a relation R P R, and outputs a specialized SRS consisting of an evalua-
tion key and a verification key.
π Ð ProvepekR,R, y, wq: takes an evaluation key for a relation R, a relation R,
an instance y, and a witness w such that py, wq P R, and returns a proof π.
b Ð VerProofpvkR, y, πq: takes a specialized verification key, an instance y, and
a proof π, and accepts pb “ 1q or rejects pb “ 0q.

Completeness. For all λ P N, R P R and py, wq P R, if srs Ð Setupp1λ,Rq

pekR, vkRq Ð Derivepsrs,Rq and π Ð ProvepekR, y, πq then VerifypvkR, y, πq “ 1.
Succinctness. Verification runs in time polypλqpλ ` |y| ` logp|w|qq and |π| “

polypλqpλ ` logp|w|qq.
Knowledge soundness. Let Rgp1λq be a relation generator outputting the de-
scription of a universal relation that contains R. A SNARK is knowledge sound
for Rg, if for any prover producing a valid proof π for some pR, yq, there is an effi-
cient extractor Ext that can extract a valid witness w, i.e. satisfying pR, y, wq P R.
Composable zero-knowledge. A SNARK satisfies composable zero-knowledge
for relation generator Rg if there exists a simulator Sim that without access to
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the witness can generate a SRS and a proof (using a trapdoor included in the
trapdoor) such that no PPT adversary can tell if it is given an honest SRS and
honest proofs, or a simulated SRS and simulated proofs. If a SNARK satisfies
this property is referred to as zkSNARK.

A.5 KZG polynomial commitment

The Kate-Zaverucha-Goldberg (KZG) polynomial commitment scheme [13] al-
lows committing to a polynomial of a fixed degree and later provide a proof of an
evaluation of the polynomial in a given point. Although we do not make explicit
use of KZG in this work, nevertheless we include it here as we will use techniques
that are similar. The KZG polynomial commitment is defined for a type 3 bilinear
group as a tuple of algorithms KZG “ pKZG.Setup,KZG.Com,KZG.Open,KZG.Verifyq:

- KZG.Setupp1λ, dq: Given a security parameter λ and a maximum degree
bound d, for some secret s P Zp and g1 P G1 it outputs a structured reference

string as commitment key ck “ tgs
i

1 uiPrds and verification key vk “ gs2.
- KZG.Commitpck, ppXqq: given ck and a polynomial ppXq of degree d, it out-
puts a commitment C “ gP psq.

- KZG.Openpck, cmp, z, y; ppXqq: for an evaluation point z and value y, com-

pute the quotient polynomial qpXq “
ppXq´y
X´z and output the proof π “ g

qpsq

1 .
- KZG.Verifypvk, cm, d, z, y, πq: Given a verification key vk, a commitment cm
it outputs 1 if and only if epπ, g2q “ epcmgy1 , g

s
2g

´z
2 q.

On the extractability of KZG It is possible to make KZG extractable by including
in the SRS elements tgα2 , tgαs

i

1 uiPrdsu for a secret α known to the verifier. The

algorithm Commit then must return the element Cα :“ g
αppsq

1 . The verification
algorithm must check that Cα “ Cα using a pairing operation. Extractability
follows by the power knowledge of exponent assumption, see [7].

A.6 Security properties of HSNP

Here we provide the formal definitions of the security properties of a HSNP.

Definition A.6 (Authentication correctness). For any pvk, skq Ð KeyGenp1λ,
L,Rq, τ P L, x P M, if στ Ð Signpsk, τ, xq then Verifypvk, pRid, τq, x, στ q “ 1.

Definition A.7 (Evaluation correctness). Consider any pvk, skq Ð KeyGenp1λ,
L,Rq, any R P R, and any set of label/message/signature triples tτi, xi, στiu

t
i“1

satisfying Verifypvk, pRid, τiq, xi, στiq “ 1. If py, pxτi , . . . , xτiq, wq P R, and σ “

Evalpvk,R, y, στ1 , . . . , στt , wq then Verifypvk, pR, τ1, . . . , τtq, y, σq “ 1.

Definition A.8 (Succinctness). Consider any pvk, skq Ð KeyGenp1λ,L,Rq,
any τi P L, xτi P M @i P rts, any relation R P R over Y ˆMt ˆW and any w P

W. If for all i P rts στi Ð Signpsk, τi, xτiq and σ Ð Evalpvk,R, y, στ1 , . . . , στt , wq,
then it holds |σ| ď polypλq ¨ logpt ` |w|q.
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Definition A.9 (Amortized efficiency). There is a pair of algorithms pVerPrep,
EffVerq such that for any relation R P R and any tuple of labels τ we have:

- for any y, σ such that Verifypvk, pR, τ q, y, σq “ 1, it holds that EffVerpVerPreppvk,
Rq, τ , y, σq “ 1;

- given vkR Ð VerPreppvk,Rq, the running time of EffVerpvkR, τ , y, σq “ 1 does
not depend on |R|.

Definition A.10 (Adaptive security). This definition can be seen as an
adaptation of the standard notion of unforgeability for HSNP. Intuitively, the
evaluator should only be able to compute valid signatures for statements y for
which it received signatures for data items x1, . . . , xt and knows a witness w sat-
isfying py, px1, . . . , xtq, wq P R. The idea is to have an adversary A which can
adaptively query signatures for labelled messages of its choice. Now assume that
A outputs a valid signature σ for a statement y as output of some labelled relation
pR, τ1, . . . , τtq for some t ě 1. Then with overwhelming probability (i) A must
have queried signatures for each label τi; and, denoting these queries tτi, xiuiPrts

(ii) the adversary A must know a witness w such that py, px1, . . . , xtq, wq P R. We
formalize the knowledge of w similarly to the knowledge soundness of SNARKs,
namely via an efficient extractor Ext which, given A’s s view, can output such
a witness w. Precisely, since A is an adversary that interacts with the signing
oracle of the HSNP scheme, we also give to Ext the transcript (i.e., inputs and
outputs) of the signing queries made by A.

More formally, let Rg be a relation generator and let Z be an auxiliary input
distribution. Let AdvUF

A,Ext be the advantage of A on winning the experiment in
Fig. 4. An HSNP scheme is adaptively secure for Rg and Z if for all PPT
adversaries A, there is a PPT extractor Ext such that

AdvUF
A,Extpλq “ neglpλq.

We say that an HSNP is adaptively secure if there are benign Rg and Z for which
the HSNP is adaptively secure.

Definition A.11 (Zero-knowledge). An HSNP scheme is zero-knowledge if
for any large enough λ, any label space L and PPT adversary A there is a PPT
simulator Sim “ pSim1,Sim2q such that

AdvzkA :“ |Pr
”

ZKreal
A pλq

ı

´ Pr
“

ZKsim
A,Simpλq

‰

| “ neglpλq,

where ZKreal
A pλq,ZKsim

A,Simpλq are the experiments in Fig. 5 and Fig. 6 respectively.
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Key generation The challenger proceeds as follows:
- Initialize an empty list T “ tu.
- pR, auxRq Ð RGp1λq; pvk, skq Ð KeyGenp1λ,L,Rq

- auxZ Ð ZpR, auxR, crsq
- ppR1, τ 1

q, σ1, x1
q Ð ASignpsk,¨,¨q

pR, vk, auxR, auxZq

- w Ð ExtpR, vk, auxR, auxZ , T q

Signing queries A adaptively submits queries pτ, xq, τ P L, and x P M. The
challenger proceeds as follows:
- If Dσ, pτ, x, σq P T (i.e., A has previously queried pτ, xq), then return σ to A.
- If pτ, x1, ¨q P T , but x ‰ x1 (i.e., A has previously queried pτ, x1

q), then ignore
the query.

- Else compute σ Ð Signpsk, τ, xq, update T Ð T Y pτ, x, σq and return σ to
A.

Experiment output Return

VerSigpvk, pR1, τ 1
q, x1, σ1

q ^
`

pDj P rts : pτ 1
j , ¨ , ¨q R T q _ py1, px1, . . . , xtq, wq R R1

˘

where px1, . . . , xtq are such that @j P rts : pτ 1
j , xj , ¨q P T .

Fig. 4. Experiment UFRg,Z,A,Extp1
λ

q
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Key generation:
- Initialize an empty list T “ tu

- psk, vkq Ð KeyGenp1λ,L,Rq

- Send vk to A
Signing queries: A adaptively submits polypλq many queries pτ, xq, τ P L, and
x P M. The challenger proceeds as follows:
- If Dσ, pτ, x, σq P T (i.e., A has previously queried pτ, xq), then return σ to A.
- If pτ, x1, ¨q P T , but x ‰ x1 (i.e., A has previously queried pτ, x1

q), then ignore
the query.

- Else compute σ Ð Signpsk, τ, xq, update T Ð T Y pτ, x, σq and return σ to
A.

Choose:
- A outputs y P Y, pR, τ1, . . . , τtq and w P W
- If Dj P rts such that pτj , ‚, ‚q R T˚ return K

- For i P rts denote by pxi, σiq the pairs such that pτi, xi, σiq P T˚

- If py, τ1, . . . , τt, wq R R return K

Challenge:
- σ Ð Evalpvk, pR, τ1, . . . , τtq, yq

- Send σ to A
Experiment output: A outputs a bit b

Fig. 5. Experiment ZKreal
A p1λq

Key generation:
- Initialize an empty list T “ tu

- psk, vkq Ð Sim1p1λ,L,Rq

- Send vk to A
Signing queries: as in Fig. 5
Choose: as in Fig. 5
Challenge:
- σ Ð Sim2psk, vk, pR, τ1, . . . , τtq, yq

- Send σ to A
Experiment output: A outputs a bit b

Fig. 6. Experiment ZKsim
A,Simp1λq
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B A generic HSNP scheme

Our construction is adapted from the one of Fiore and Tucker [9]. Let xi be
data items in a finite field F, and let N P N be a positive integer specifying the
maximum number of data items to be processed. In this section, we introduce
a generic HSNP scheme for the universal relation R, where each relation R Ď

Dy ˆ Ft ˆ Dw for some positive integer t ď N .
Our construction builds upon the following components:

- A Commitment Scheme Com “ pSetup,Commit,Verifyq: This scheme allows
committing to vector of sizeN by using a polynomial basis χ “ pχipX1, . . . , XnqqiPrts

of total degree less than N with coefficients in F. To be more specific, it can
be used to commit to a vector x “ px1, . . . , xtq P Ft, the corresponding com-
mited polynomial will be x̃pXq “

řt
i“1 xiχipX1, . . . , Xnq. Com as well allows

committing to scalars in F.
- A Universal CP-SNARK CPR for the Commitment Com and the universal
relation R: Specifically, since Com commits to polynomials, given a state-
ment y and a commitment cmx, CPR proves the existence of witnesses x̃ P

FrX1, . . . , Xns, an opening ox, and w P Dw, such that:
py, x̃, wq P R^Com.Verifypck, cmx, x̃, oxq “ 1. For our construction, we assume
that one can define a decoding function Dec : FrX1, . . . , Xns Ñ Ft and given
χpX1, . . . , Xnq, a list of t n-variate polynomials, they both satisfy the following
properties:
- Dec is F-linear and Decpχiq “ ei, where ei is the ith vector of the canonical
basis of Ft;

- degpχipX1, . . . , Xnqq{|F| is negligible for all i “ 1, . . . , t;
- @r P Fn then χiprq is computable in Optq F-operations.

- A universal CP-SNARK CPev for the commitment Com and the universal
relation Rev such that each Rev P Rev is parametrized by an integer t ď N
and Rev Ă Fn ˆ FrX1, . . . , Xns ˆ F is such that pr, x̃pX1, . . . , Xnq, zq P Rev if
and only if z “ x̃prq. Given a public statement r P Fn, and commitments cmx

and cmz, CPev proves the existence of committed values x̃ P FrX1, . . . , Xns

and z P F (and opening values ox, oz) such that:

z “ x̃prq ^Com.Verifypck, cmx, x̃pX1, . . . , Xnq, oxq “ 1 ^ Com.Verifypck, cmz, z, ozq “ 1.

- A random oracle RO : t0, 1u˚ Ð F that is used to generate randomness for
the proofs.

- An HSNP scheme ComLHS “ pKeyGen,Sign,Eval,Verifyq for:

R :“
!

Rpt,sq :“ tpcm, px1, . . . , xtq, oq : Com.Verifypck, cm, xx, sy, oqu : t ď N, s P Ft
)
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KeyGenp1λ,Rq:

1 ck Ð Setupp1λq;
2 pvkcom-ip, skcom-ipq Ð ComLHS.KeyGenp1λ,Rcom-ipq;
3 srsev Ð KeyGenevpck,Revq;
4 srsR Ð KeyGenRpck,Rq;
5 Return vk :“ pck, srsev, srsR, vkcom-ip, ROq and sk :“ skcom-ip;
Signpsk, τ, xq

1 σ Ð ComLHS.Signpskcom-ip, τ, xq;
2 Return σ̂ :“ px, σq;
Evalpvk,R, y, δ, tσ̂τuτPrNs, wq:

1 Parse pxi, σiq “ σ̂δ`i For all i P rts; Let x :“ px1, . . . , xtq;
2 pekR, vkRq Ð DeriveRpsrsR,Rq;
3 pekev, vkevq Ð Deriveevpsrsev,Revq;
4 x̃pX1, . . . , Xnq Ð xx,χpX1, . . . , Xnqy;
5 pcmx, oxq Ð Commitpck, x̃pxqq;
6 πy Ð ProveRpekR,R, y, cmx, x̃, ox, wq;
7 pcmsum, osumq Ð Commitpck,1⊺

¨ xq

8 σcom-ip
sum Ð ComLHS.Evalpvkcom-ip,R

pt,1q

com-ip, cmsum, tσiuiPrts, osumq;

9 r Ð ROpvk,R, y, cmx, πy, δ, cmsum, σcom-ip
sum q;

10 z Ð xx,χprqy;
11 pcmz, ozq Ð Commitpck, zq;
12 πz Ð Proveevpekev, r, pcmx, czq, px̃, zq, pox, ozqq;

13 σcom-ip
Ð ComLHS.Evalpvkcom-ip,R

pt,Bprqq

com-ip , cmz, tσiuiPrts, ozq;

14 Return σ̂ :“ pcmx, πy, cmsum, σcom-ip
sum , cmz, πz, σ

com-ip
q;

VerPreppvk,Rq:

1 pekR, vkRq Ð DeriveRpsrsR,Rq;
2 pekev, vkevq Ð Deriveevpsrsev,Revq;
3 Return vkR :“ pck, vkev, vkR, vkcom-ip, ROq;
EffVerpvk, δ, y, σ̂q:

1 Parse pcmx, πy, cmsum, σcom-ip
sum , cmz, πz, σ

com-ip
q “ σ̂;

2 r Ð ROpvk,R, y, cmx, πy, δ, cmsum, σcom´ip
sum q;

3 s Ð χprq

4 If pVerifyRpvkR, y, cmx, πyq “ 0q _ pVerifyevpvkev, r, pcmx, cmzq, πzq “ 0q:
1 Return 0;

5 If pComLHS.Verifypvkcom-ip,R
pt,1q

com-ip, δ, σ
com-ip
sum q “ 0q _

pComLHS.Verifypvkcom-ip,R
pt,sq

com-ip, δ, σ
com-ip

q “ 0q:
1 Return 0;

6 Return 1;

Fig. 7. Our Generic HSNP
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C Proof of Theorem 3.1

Let sk, vk Ð Kgp1λq, where

sk “ ppa, b, cq, α, skΣq, vk :“ pck, crs, Γ1, Γ2, B, gc1, g
c
2, g

α
1 , g

α
2 , pkΣq

with h P G1, Γ1 :“ ha, Γ2 :“ g
1{a
2 and B :“ gb1.

Perfect authentication correctness For any τ P N, and x P Zp, let στ “ pxτ , Λτ , rτ , C
p1q
τ , C 1

τ , C
p2q
τ , sigτ ,Hq

be the output of Signpsk, τ, xq. By the correctness of the signature Σ, we have

Σ.VerifypskΣ , C
p2q
τ }τ, sigτ q “ 1. And because Λτ “ pgc

τ
`x`brτ

1 qa “ pC
p1q
τ gx1B

rτ qa,

thus epgx1B
rτCp1q, g2q “ eppgx`brτ `cτ

1 qa, g
1{a
2 q “ epΛτ , Γ2q, and Verifypvk, τ,Rpt,sq

com-ip, στ q “

1.

Perfect evaluation correctness Consider any t P rN s and s P Zt
p, and any set of la-

bel/message/signature triples tδ`i, xδ`i, σδ`iu
t
i“1, where σδ`i “ pxδ`i, Λδ`i, rδ`i, C

p1q

δ`i, C
p2q

δ`i, sδ`i,Hq.
For these to be valid signatures, it must hold that for i P rts:

epg
xδ`i

1 Brδ`iC
p1q

δ`i, g2q “ epΛδ`i, g
1{a
2 q.

Let z “
řt

i“1 xδ`isi, r “
řt

i“1 rδ`isi, and, for any w P Zp let:

σ :“ py, Λ, r, CS , CS̄ , C
1
S̄ , C

p2q

δ`1, sigδ`1, πNIZK, πSq Ð Evalpvk,Rt,s
com-ip, y, δ, tστuτPrNs, wq.

In particular, y “ gz1h
w, Λ “ phaqw

śt
i“1pΛδ`iq

si , and πNIZK “ NIZK.P pRc, crs, y, pz, wqq.

Let πS “ g
qpcq

1 where qpXq “
SpXq´Spuq

X´u where SpXq “
řt

i“1 siX
i´1 and let

C
p2q

δ`1 “ gc
δ`1

2 , CS̄ “
śt

i“1pgc
δ`i

1 qsi , CS “ g
Spcq

1 .

This implies that epπS , g
c
2 ¨ g´u

2 q “ epCS ¨ g
´Spuq

1 , g2q and that epCS , C
p2q

δ`1q “

epCS̄ , g2q. By correctness of the signature Σ, one has that Σ.VerifypskΣ , C
p2q

δ`1}δ`

1, sδ`1q “ 1. By correctness of the proof system, NIZK.V pRc, crs, y, πNIZKq “ 1,
and

e

˜

yBr
t

ź

i“1

Csi
δ`i, g2

¸

“ e

˜

hw
t

ź

i“1

`

g
xδ`i

1 Brδ`iCδ`i

˘si
, g2

¸

“ e

¨

˝phaqw
ź

iPrts

Λsi
δ`i, g

1{a
2 q

˛

‚

“ e pΛ, Γ2q .

It follows that Verifypvk,Rpt,sq

com-ip, δ, σq “ 1.
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Adaptive security The scheme’s adaptive security relies on assumption 2.1 and
assumption A.1. Let’s consider a PPT adversary A for the adaptive security
of the LHS that will make t “ polypλq signing queries. A can forge signatures
with probability ϵ. We will construct an algorithm B that will use A to break
assumption 2.1 with probability at most ϵ.

The main idea of the security proof is that any A breaking our scheme can be
reduced to an adversary B against assumption 2.1. However, for this reduction
to go through we have to rule out the occurrence of some bad events, which can
in turn be reduced to the knowledge soundness of the NIZK, the use of AGM and
ROM, and the power dlog assumption. In what follows we focus on presenting
the reduction to Assumption 2.1, and along its presentation we describe how to
handle these cases.

Key generation: B is given pω, g1, tgc
i

1 uiPrts, tg
apci`ωiq

1 uiPrts, h, h
a, g2, tgc

i

2 uiPrts, g
1{a
2 q P

Zt
p ˆ G2t`3

1 ˆ Gt`2
2 with a, c Ð Z˚

p as input. We will simulate Kg as follow:

- α, b Ð Zp

- Γ1 Ð ha;Γ2 Ð g
1{a
2 ;B Ð gb1

- skΣ , pkΣ Ð Σ.KGp1λq

- pcrs, ξq Ð Ext1p1λq

- ck “ pppG , hq

B will then send the simulated verification key vk :“ pck, crs, Γ1, Γ2, B, gc1, g
c
2, g

α
1 , g

α
2 , pkΣq

toA. Considering that our proof of knowledge scheme NIZK is perfectly knowledge
extractable, vk follows the same distribution as if it would have been generated
by Kg, making it indistinguishable from a real execution from A’s point of view.

Signing queries. To simulate the signing query for a given label/message pair
pi, xiq, B will compute:

- r Ð pωi ´ xiqb
´1 mod p

- Λi Ð g
pci`ωiqa
1

- sigi Ð Σ.SignpskΣ , C
p2q

i }iq

The simulated signature σi “ pxi, Λi, r, g
ci

1 , gαc
i

1 , gc
i

2 , sigi,Hq is then sent to

A. Notice that Λi “ gc
i
`xi`br

1 making it indistinguishable for A from a signature
coming from a real execution.

Forgery. After t “ polypλq queries, A outputs pR, t, σ̄q where R specifies t and
s P pZ˚

p qt.
From the double commitments CS̄ , C

1
S̄
and CS , C

1
S the extractor is able to

extract polynomials S̄˚pXq satisfying S̄˚pXq “ XδS˚pXq (checked through the
pairing equation). The KZG proof πS also guarantees that S̄˚pXq “ S̄pXq and
S˚pXq “ SpXq otherwise it would be possible to construct an efficient algorithm
that solves the t-Power-DLog assumption A.1. The reduction works as follows.
Suppose that we have an algorithm C that takes as input the string tgc

i

1 , gc
i

2 uti“0

and returns two polynomials p1pXq, p2pXq with the property that p1pcq “ p2pcq
but p1pXq ‰ p2pXq. Then an adversary D trying to break the t-Power-DLog
assumption would simply forward the challenge to C, set ppXq :“ p1pXq´p2pXq,
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where p1, p2 are the polynomials output by D, and find c by factoring ppXq,

which can be done efficiently. Therefore we can assume that CS̄ “ g
S̄pcq

1 and

CS “ g
Spcq

1 .
As in definition A.10 there are two cases. Case 1) is when pȳ,Rt,s, σ̄,Tq is

a signature where one of the indexes was not submitted to the Sign algorithm.
Case 2) is when one cannot extract pz̄, w̄q such that pȳ,x, w̄q P Rt,s.

Case 1). Notice that πNIZK ‰ H, because otherwise this would correspond to
the case t “ 1, which can be ruled out thanks to the unforgeability of Σ. This

guarantees that C
p2q
τ must be equal to gc

τ

2 and that Eval must have been queried
on label τ . Therefore we can assume πNIZK ‰ H. Now we argue that this case
can be reduced to the case 2) forgery. Assume that there is an index j such that
label τj was not signed. We can assume that this is the last label, namely j “ t.

Assume that A1 returns a forgery pȳ,Rt,s, σ̄, δ ` 1, . . . , δ ` tq for case 1).
The extractor extracts pz̄, w̄q. It samples a uniformly random x˚

δ`t Ð F. Set
x˚ :“ px1, . . . , xt´1, x

˚
t q. It then queries the Sign oracle on label δ ` t, and gets

σδ`t. Then pȳ,Rt,s˚

, σ̄, δ ` 1, . . . , δ ` tq is a forgery of type 2), since all labels
have been queried and z̄ ‰ xs,x˚y.

Case 2). Then B can use Ext to extract pz̄, w̄q but for which ȳ ‰ g
xx,sy

1 hw̄.
Then B computes an honest signature σ on σδ`1 . . . , σδ`t using w̄ as witness.
Therefore, it can compute:

e pyBrCS̄ , g2q “ e
´

Λ, g
1{a
2

¯

e pȳBr̄CS̄ , g2q “ e
´

Λ̄, g
1{a
2

¯

,

/

.

/

-

ùñ
gz1h

wBrCS̄

gz̄1h
w̄Br̄CS̄

“

ˆ

Λ

Λ̄

˙1{a

Assuming that Λ{Λ̄ ‰ 1G1
:

gz´z̄
1 Br´r̄ “

ˆ

Λ

Λ̄

˙1{a

ô

´

g
z´z̄`bpr´r̄q

1

¯a

“
Λ

Λ̄

With respect to the hardness of computing the discrete logarithm in G1, z ´

z̄ ´ bpr ´ r̄q ‰ 0 mod p otherwise it would be easy for A to compute b “ z̄´z
r´r̄

mod p. From the above B can compute:

ga1 “

ˆ

Λ

Λ̄

˙pz´z̄`bpr´r̄qq
´1

Breaking assumption 2.1.

Zero-knowledge Let A be a PPT adversary for the zero-knowledge property of
the LHS. In the experiment ZKreal

A the challenger runs psk, vkq Ð KeyGenp1λ,Rcom-ipq

and gives vk to A. During the signing queries A adaptively sends queries pτ, xq to
the challenger, that honestly computes a signature στ on them and sends στ toA.
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In the choose phase, the adversary chooses and outputs a tuple py, pRt,s
com´ip, δ `

1, . . . , δ` tq, wq. If such a tuple causes the challenger to abort, then this happens
with the same probability in both the real and simulated case. Thus we assume

that for each i “ 1, . . . , t there exists a σδ`i “ pxδ`i, Λδ`i, rδ`i, C
p1q

δ`i, C
1
δ`i, C

p2q

δ`i, sigδ`i,Hq

such that pδ ` i, xδ`i, σδ`iq P T and py, pRt,s
com´ip, δ ` 1, . . . , δ ` tq, wq P Rt,s

com-ip.
We prove the zero-knowledge property by a sequence of games. G0 is the

experiment ZKreal
A in Fig. 5 and G2 is the experiment ZKsim

Sim,A in Fig. 6. We
denote by Ei the event that the adversary A outputs 1 in Gi. Thus, Pr rE0s “

Pr
”

ZKreal
A

ı

“ 1 and Pr rE2s “ Pr
”

ZKsim
A,Sim

ı

“ 1. By proving that the chain of

games is indistinguishable from A’s point of view we prove that the LHS is zero-
knowledge. The changes in going from one game to the next one are highlighted.

From game 0 to game 1. Since the NIZK scheme is ZK, there exists an
efficient simulator NIZK.Sim “ pNIZK.Sim1,NIZK.Sim2q. We thus replace in G0

the set-up and proving algorithm of NIZK with NIZK.Sim1 and NIZK.Sim2. The
ZK property in particular says that these changes are indistinguishable from A’s
point of view. Thus we have

|Pr rE0s ´ Pr rE1s | “ neglpλq.

Note that in G1 the proof does not depend on the witness anymore.
From game 1 to game 2 In Game 2 we do not provide the signatures σi.

To compute the signature σ, Game 2 either uses the public information or it
uses the secret key. In particular, it computes the values Γ,CS , CS̄ , C

1
S̄
, sigδ`1

using a, b, c, α, κ, skΣ . By construction, these values are identical to those in the
previous game G1. Thus

Pr rE2s “ Pr rE1s .

This concludes the proof as

ˇ

ˇ

ˇ
Pr

”

ZKsim
Sim,A “ 1

ı

´ Pr
”

ZKreal
A “ 1

ı
ˇ

ˇ

ˇ
“ |Pr rE2s´Pr rE0s | “ |Pr rE1s´Pr rE0s | “ neglpλq.
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Key generation:
- ppG Ð Gp1λq, h Ð G1

- skΣ , pkΣ Ð Σ.KeyGenp1λq

- ck Ð pppG , hq

- crs Ð NIZK.Setupp1λ, ckq

- a, b, c Ð Zp, α Ð Zp

- κ Ð K
- Γ1 Ð ha, Γ2 Ð g

1{a
2 , B Ð gb1

- sk Ð ppa, b, cq, α, κ, skΣq

- vk Ð pck, crs, Γ1, Γ2, B, gc1, g
c
2, g

α
1 , g

α
2 , pkΣq

- Send vk to A.
Challenge:
- σδ`i :“ pxδ`i, Λδ`i, rδ`i, C

p1q

δ`i, C
1
δ`i, C

p2q

δ`i, sigδ`i,Hq Ð Signpsk, δ ` i, xδ`iq,
i P rts;

- σi :“ pxi, Λi, ri, C
p1q

i , C 1
i, C

p2q

i ,Sigi,Hq Ð Signpsk, i, xiq, i P rts;
- z “ xx, sy, r “ xr, sy;
- πNIZK Ð NIZK.P pRc, crs, y, pz, wqq

- Λ Ð Γw
1 ¨

ś

iPrts
pΛδ`iq

si

- Compute SpXq “
řt´1

i“0 si`1X
i, S̄pXq “

řt
i“1 siX

δ`1

- CS “ gs11
śt

i“1pC
p1q

i´1q
si , CS̄ “

śt
i“1pC

p1q

δ`iq
si , C 1

S̄ “
śt

i“1pC 1
δ`iq

si

- u Ð ROpvk,Rpt,sq

com-ip, δ, sigδ`1, y, Γ, r, CS , CS̄ , C
1
S̄ , C

p2q

δ`1, sigδ`1, πNIZKq

- Compute qpXq “
SpXq´Spuq

X´u
, πS “ g

qpcq

1

- σ Ð py, r, πNIZK, Λ, CS , CS̄ , C
1
S̄ , C

p2q

δ`1, sigδ`1, πSq

- Send σ to A
- A outputs b1

Fig. 8. Game 0
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Key generation:
- ppG Ð Gp1λq, h Ð G1

- skΣ , pkΣ Ð Σ.KeyGenp1λq

- ck Ð pppG , hq

- pcrs, tdq Ð NIZK.Sim1p1λ, ckq

- a, b, c Ð Zp, α Ð Zp

- κ Ð K
- Γ1 Ð ha, Γ2 Ð g

1{a
2 , B Ð gb1

- sk Ð ppa, b, cq, α, κ, skΣq

- vk Ð pck, crs, Γ1, Γ2, B, gc1, g
c
2, g

α
1 , g

α
2 , pkΣq

- Send vk to A.
Challenge:
- σδ`i :“ pxδ`i, Λδ`i, rδ`i, C

p1q

δ`i, C
1
δ`i, C

p2q

δ`i, Sigδ`i,Hq Ð Signpsk, δ ` i, xδ`iq,
i P rts;

- σi :“ pxi, Λi, ri, C
p1q

i , C 1
i, C

p2q

i , Sigi,Hq Ð Signpsk, i, xiq, i P rts;
- z “ xx, sy, r “ xr, sy;
- πNIZK Ð NIZK.Sim2pRc, crs, y, tdq

- Λ Ð Γw
1 ¨

ś

iPrts
pΛδ`iq

si

- Compute SpXq “
řt´1

i“0 si`1X
i, S̄pXq “

řt
i“1 siX

δ`1

- CS “ gs11
śt

i“1pC
p1q

i´1q
si , CS̄ “

śt
i“1pC

p1q

δ`iq
si , C 1

S̄ “
śt

i“1pC 1
δ`iq

si

- u Ð ROpvk,Rpt,sq

com-ip, δ, sigδ`1, y, Γ, r, CS , CS̄ , C
1
S̄ , C

p2q

δ`1, sigδ`1, πNIZKq

- Compute qpXq “
SpXq´Spuq

X´u
, πS “ g

qpcq

1

- σ Ð py, r, πNIZK, Λ, CS , CS̄ , C
1
S̄ , C

p2q

δ`1, sigδ`1, πSq

- Send σ to A
- A outputs b1

Fig. 9. Game 1
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Key generation:
- ppG Ð Gp1λq, h Ð G1

- skΣ , pkΣ Ð Σ.KeyGenp1λq

- ck Ð pppG , hq

- pcrs, tdq Ð NIZK.Sim1p1λ, ckq

- a, b, c Ð Zp, α Ð Zp

- κ Ð K
- Γ1 Ð ha, Γ2 Ð g

1{a
2 , B Ð gb1

- sk Ð ppa, b, cq, α, κ, skΣq

- vk Ð pck, crs, Γ1, Γ2, B, gc1, g
c
2, g

α
1 , g

α
2 , pkΣq

- Send vk to A.
Challenge:
- rδ`i Ð Fκpδ ` iq @i P rts

- sigδ`1 Ð Σ.SignpskΣ , gc
δ`1

2 }δ ` 1q

- C
p2q

δ`1 “ gc
δ`1

2

- r “ xr, sy;
- πNIZK Ð NIZK.Sim2pRc, crs, y, tdq

- Λ “ yaBar śt
i“1pgc

δ`i

1 q
asi

- Compute SpXq “
řt´1

i“0 si`1X
i, S̄pXq “

řt
i“1 siX

δ`1

- CS “ gs11
śt

i“1pgc
i´1

1 q
si , CS̄ “

śt
i“1pgc

δ`i

1 q
si , C 1

S̄ “
śt

i“1pgαcδ`i

1 q
si

- u Ð ROpvk,Rpt,sq

com-ip, δ, sigδ`1, y, Γ, r, CS , CS̄ , C
1
S̄ , C

p2q

δ`1, sigδ`1, πNIZKq

- Compute qpXq “
SpXq´Spuq

X´u
, πS “ g

qpcq

1

- σ Ð py, r, πNIZK, Λ, CS , CS̄ , C
1
S̄ , C

p2q

δ`1, sigδ`1, πSq

- Send σ to A
- A outputs b1

Fig. 10. Game 2
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Sim1p1λ,Rcom-ipq:
- ppG Ð Gp1λq, h Ð G1

- skΣ , pkΣ Ð Σ.KeyGenp1λq

- ck Ð pppG , hq

- pcrs, tdq Ð NIZK.Sim1p1λ, ckq

- a, b, c Ð Zp, α Ð Zp

- Γ1 Ð ha, Γ2 Ð g
1{a
2 , B Ð gb1

- sk Ð ppa, b, cq, α, κ, skΣq

- vk Ð pck, crs, Γ1, Γ2, B, gc1, g
c
2, g

α
1 , g

α
2 , pkΣq

- Send vk to A.
Sim2psk, vk,Rt,s

com-ip, pδ ` 1, . . . , δ ` tq, yq :
- rδ`i Ð Fκpδ ` iq @i P rts

- sigδ`1 Ð Σ.SignpskΣ , gc
δ`1

2 }δ ` 1q

- C
p2q

δ`1 “ gc
δ`1

2

- r “ xr, sy;
- πNIZK Ð NIZK.Sim2pRc, crs, y, tdq

- Λ “ yaBar śt
i“1pgc

δ`i

1 q
asi

- Compute SpXq “
řt´1

i“0 si`1X
i, S̄pXq “

řt
i“1 siX

δ`1

- CS “ gs11
śt

i“1pgc
i´1

1 q
si , CS̄ “

śt
i“1pgc

δ`i

1 q
si , C 1

S̄ “
śt

i“1pgαcδ`i

1 q
si

- u Ð ROpvk,Rpt,sq

com-ip, δ, sigδ`1, y, Γ, r, CS , CS̄ , C
1
S̄ , C

p2q

δ`1, sigδ`1, πNIZKq

- Compute qpXq “
SpXq´Spuq

X´u
, πS “ g

qpcq

1

- σ Ð py, r, πNIZK, Λ, CS , CS̄ , C
1
S̄ , C

p2q

δ`1, sigδ`1, πSq

- Return σ

Fig. 11. The simulators Sim1, Sim2 for the ZK of the LHS

https://orcid.org/0009-0004-3977-617X
https://orcid.org/0000-0001-5289-3769
https://orcid.org/0000-0001-7274-6600


35

D A commit-and-prove version of VOMarlin

We start from the observation that VOMarlin in [17] is a commit-carrying zk-
SNARK for the following relation

RR1CS “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

n,m,
`

A B C
˘

y, cmw

w

:

A,B,C P Fnˆm,y P Fℓ,w P Fm´ℓ´1

Az ˝ Bz “ Cz

Com.Verifypck, cmw, fw, owq “ 1

where z “ p1}y}wq, fwpXq “
ÿ

iPrm´ℓ´1s

wiX
i´1

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

.

As defined in [5], commit-carrying means that the scheme is like a commit-and-
prove except that the commitment to the witness is generated by the prover
algorithm and returned as part of the proof, instead of being taken as an input.

Below we describe a method for turning VOMarlin into a (full fledged) commit-
and-prove zkSNARK, dubbed CPR.VOMarlin, for the following relation

RCP
R1CS “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

n,m,
`

A B C
˘

y, cmx

w “ px,w1q

:

A,B,C P Fnˆm,y P Fℓ,w P Fm´ℓ´1

Az ˝ Bz “ Cz

Com.Verifypck, cmx, fx, oxq “ 1

where z “ p1}y}x}w1q, fxpXq “
ÿ

iPrt´1s

xiX
i´1

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

.

VOMarlin is the result of compiling a HVZK PIOP via the KZG polynomial
commitment that encodes vectors using the monomial basis encoding. Specif-
ically, VOMarlin’s proof consists, among other things, of a KZG commitment

cmw “ g
fwpsq

1 to the polynomial fwpXq defined in RR1CS , i.e., whose coeffi-
cients are the elements of the witness w of the R1CS relation. Note that this
commitment is not hiding, as the underlying PIOP is already HVZK even if fwpsq

is revealed. In order to achieve knowledge soundness, the commitment should be

extractable which can be achieved by adding a “double commitment” g
αfwpsq

1 to
the proof [7], where α is a secret value in the CRS.

The idea is to make VOMarlin a CaP SNARK for subvector relations. Specifi-
cally, given the commitment cmw to the witness produced by VOMarlin’s prover,
we additionally prove that cmw is a commitment to a vector of the form w “

px,w1q, given a commitment cmx to the polynomial fxpXq representing the sub-
vector x.

A commit-and-proof SNARK for subvector relations Let t ă n and let

Rsubvec : tpw,vq P Ft ˆ Fn : v “ w}z, z P Fn´tu (2)

We present a CaP SNARK for the relation above, when the vectors are com-
mitted using KZG, as polynomials with a monomial-base encoding. Namely, we
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give a zkSNARK CPsubvec for the relation

Rsubvec “

$

’

’

’

’

&

’

’

’

’

%

cmg, cmf

gpXq, fpXq, hpXq, rg
:

gpXq P FrXst´1, fpXq P FrXsn´1,

hpXq P FrXsn´t´1

fpXq “ gpXq ` XthpXq,

cmg “ g
gpsq

1 h
rg
1 , cmf “ g

fpsq

1

,

/

/

/

/

.

/

/

/

/

-

. (3)

Note that, for the sake of our application, we assume cmg to be a hiding com-
mitment. We present the scheme CPsubvec in Fig. 12.

Setuppckq :

- Output ptgs
i

1 , gαsi

1 , hsi

1 , hαsi

1 u
n´1
i“0 , g

α
2 q as universal SRS.

Derivepck, tq :

- Set vk :“ pg1, h1, g2, g
α
2 , g

β
2 , g

s
2, g

st

2 q

- Output ek “ ck and vk.
Provepek, pcmg, cm

1
g, cmf , cm

1
f q, ppgpXq, fpXq, rf pXqqqq:

- Define ḡpXq :“ Xn´tgpXq and compute cmḡ “ g
ḡpsq

1 h
sn´trg
1 ;

- Define hpXq :“ fpXq´gpXq

Xt

- Sample rhpXq Ð FrXs2

- Compute cmh :“ g
hpsq

1 h
rhpsq

1 and cm1
h :“ g

αhpsq

1 h
αrhpsq

1 ;
- Set r0pXq :“ ´rf pXq ´ XtrhpXq;

- Compute cm0 :“ h
r0psq

1 and cm1
0 :“ h

αr0psq

1 ;
- ρ Ð Hpcmg, cm

1
g, cmf , cm

1
f , cmḡ, cmh, cm

1
h, cm0, cm

1
0q;

- Compute qpXq :“ r0pXq´r0pρq

X´ρ
;

- Compute cmq “ h
qpsq

1 ;
- Return π :“ pcmḡ, cmh, cm

1
h, cm0, cm

1
0, cmq, r0pρqq

Verifypvk, pcmḡ, cmg, cm
1
g, cmf , cm

1
f q, πq:

- Compute ρ Ð Hpcmg, cm
1
g, cmf , cm

1
f , cmḡ, cmh, cm

1
h, cm0, cm

1
0q;

- Return 1 if and only if all the following equations hold:

epcmḡ, g2q “ epcmg, g
sn´t

2 q

epcm1
f , g2q “ epcmf , g

α
2 q, epcm1

g, g2q “ epcmg, g
α
2 q

epcm1
h, g2q “ epcmh, g

α
2 q, epcm1

0, g2q “ epcm0, g
α
2 q

e

ˆ

cmf

cmgcm0
, g2

˙

“ e
´

cmh, g
st

2

¯

epcm0h
´r0pρq

1 , g2q “ epcmq, g
s´ρ
2 q

Fig. 12. CPsubvec

The scheme is knowledge sound in the AGM and ROM, under the pn ´ 1q-
Power-DLog assumption. Here we provide an intuition of the security proof.

Consider an algebraic adversary who produces commitments and a valid proof
that passes the verification above. By the algebraic property, the adversary also
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returns vectors of coefficients explaining each group element that it produces.
From the verification equations in the second and third line, we get polynomials

f˚pXq, r˚
f pXq, g˚pXq, r˚

g pXq, h˚pXq, r˚
hpXq, f˚

0 pXq, r˚
0 pXq

such that

cmf “ g
f˚

psq

1 h
r˚
f psq

1 , cmg “ g
g˚

psq

1 h
r˚
g psq

1 , cmh “ g
h˚

psq

1 h
r˚
h psq

1 , cm0 “ g
f˚
0 psq

1 h
r˚
0 psq

1

By the validity of the last verification equation and the independence of the
random point ρ we can conclude that f˚pXq “ 0. The first equation instead
gives us that g˚pXq is of degree ă t, while the fourth equation instead shows that
f˚pXq´g˚pXq “ h˚pXqXt, which concludes the proof. Above every implication
holds computationally, under the pn ´ 1q-Power-DLog assumption.

Putting everything together We give a description of the CP version of
VOMarlin in Fig. 13.

Derivepckq :
- pek1, vk1

q Ð VOMarlin.Derivepckq;
- peksvec, vksvecq Ð CPsvec.Derivepckq;
- Return ek “ pek1, eksvecq, vk “ pvk1, vksvecq;
Provepek,y, cmx, cm

1
x,x, rx,wq :

- π1
Ð VOMarlin.Provepek1,R,y, px,wqq;

- Parse π1
“ pcmfw1 , cm

1
fw1

, π2
q, where cmfw1 “ g

fw1 psq

1 , cm1
fw1

“ g
αfw1 psq

1 ;

- πsvec Ð CPsvec.Provepeksvec, pcmx, cm
1
x, cmfw1 , cm

1
fw1

q, px,w1
q, rxq;

- Return π “ pπ1, πsvecq;
Verifypvk,y, cmx, πq :
- Parse π “ pπ1, πsvecq and π1

“ pcmfw1 , π
2
q;

- Output 1 if and only if VOMarlin.Verifypvk1,y, π1
q “ 1 and

CPsvec.Verifypvksvec, cmx, cm
1
x, cmfw1 , cm

1
fw1

, πsvecq “ 1.

Fig. 13. CPR.VOMarlin
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