
Subset sum, a new insight

Samir Bouftass

January 21, 2025

Abstract

In this paper, we show that subset sum problem consists on finding a solution over N2 of equa-
tion n = AX •U where A and n are given matrix and integer and U = [(20)(21)....(2d−2)(2d−1)].
We show that it can be subdivized into 2 solvable subproblems.

Keywords : Subset sum problem, Complexity, Polynomial time, NP complete.

E-mail : crypticator@gmail.com.

1 Introduction

Subset sum is a famous problem in computer science, shown to be NP complete [1], it consists on
deciding whether there is a substet of integers belonging to a set that sums to a given target sum
integer. In this paper we show that varient of subset sum in which all inputs are positive could be
solved in polynomial time, this varient is also NP complete [1][2].

2 (b,d) Vectors corresponding to numbers

Definition 2.1. A (b, d) vector corresponding to number n is a vector V satisfying the following
equality : n = V0b

0 ++ Vd−1b
d−1, where Vi (0 ≤ i < d) components of V are positive numbers.

Definition 2.2. Let (b, d) vector V [V0...Vi V(i+1). . . Vd−1] corresponding to number n.
Carry up ith component of V is defined by operations below
Vi = Vi – b.
V(i+1) = V(i+1) + 1.
Constrained Carry up requires Vi > b.

Carry down ith component of V is defined by operations below :
V(i+1) = V(i+1) − 1.
Vi = Vi + b.
Constrained Carry down requires V(i+1) > 1.

Definition 2.3. Let two vectors V1 and V2 . abs distance between V1 and V2 is
∑
i
|V 1i–V 2i|.

1

Definition 2.4. abs modulus of vector V is
∑
i
|Vi|.

Proposition 2.1. There is at least one (b, d) vector corresponding to a number n.

Proof.
Let [V0 V1 . . . Vd−1] be a (b, d) vector that corresponds to a number n.
n = V0b

0 + V1b
1 ++ Vd−1b

d−1, where V1 > 1.
By constrained carry down V0 , we get :
n = (V0 + b)b0 + (V1 − 1)b1 + + Vd−1b

d−1. Meaning [V0 + b V1 − 1 . . . Vd−1] is also a (b, d)
vector corresponding to n.

Proposition 2.2. It is easy to find a (b, d) vector corresponding to a number n.

Proof.
We will proceed by proving by construction
We represent n in base b.
We automatically get a (b,s) vector V corresponding to n, s being n size in base b.
if s < d, we extend V size to d by filling its components of which indexes are greater than s, by
zeroes.
if s < d, we replace V dth component value by n/2d−1.

Proposition 2.3. Let a (b,d) vector V, constrained carry down its components increases
resulting (b,d) vector Abs modulus. Conversely constrained carry up decreases it.

Proof.
Note, If we constrained carry up Vi , abs modulus decreases by :
b− 1 = |Vi − b|+ |V(i+1) + 1|.
If we constrained carry down Vi, abs modulus increases by :
b− 1 = |Vi + b|+ |V(i+1) − 1|.

Lemma 2.1. Let a (b,d) vector V1, there is only one (b,d) vector V2 corresponding to
a number n that minimizes Abs distance between V1 and V2.

Proof.
Let m be the number that V1 corresponds to.To find V 2, we choose a (b, d) vector V 3 corresponding
to |m− n| such as V 3i < b for i < d− 1.
Then compute V 2 = V 1–V 3 if n ≤ m, V 2 = V 1 + V 3 otherwise.
And carry down negative V2 components to fulfill (b,d) vector condition :
0 < V 2i for 0 ≤ i < d.
Observe, V3, (b,d) vector corresponding to |m− n| is the closest one can get to nil vector
(proposition 2.3) . Indeed, because all components of V3 are inferior to b where i < d− 1, we
can’t carry up nor carry down to decrease the abs distance.

2

Theorem 2.1. Let V1 and V2 be 2 different (b,d) vectors corresponding to the same
number n. There is a polynomial time algorithm that transforms V2 to V1.

Proof.
We will proceed by proving by construction, pseudo code below transforms V2 to V1.
Observe, this pseudo code transforms V2 components one by one, its complexity is O(n²).

Algorithm 1 Pseudo code 1
i← 0
while i < d do

if V 2i > V 1i then
repeat Carry up V 2i
until V 2i = V 1i

end if
if V 2i < V 1i then

repeat Carry down V 2i
until V 2i = V 1i

end if
i← i+ 1

end while

The following pseudo code complexity is also O(n²). it uses abs distance to adjust all the compo-
nents of V2 in one loop, whereas in the former, components of V2 are adjusted sequentially.

3

Algorithm 2 Pseudo code2. Input : V1, V2. Output : V2
i← 0
dist← abs dist(V 1, V 2)
updated dist← 0
while i < d do

V 3← V 2
constrained carry up V 3i
updated dist← abs dist(V 3, V 1)
if updated dist < dist then

V 2← V 3
dist← updated dist

end if
if dist < updated dist then

V 3← V 2
constrained carry down V 3i
updated dist← abs dist(V 3, V 1)
if updated dist < dist then

V 2← V 3
dist← updated dist

end if
end if
i← i+ 1
if dist = 0 then return V2
end if
if i = d then

i← 0
end if

end while

Theorem 2.2. Let V1 and V2 be 2 different (b,d) vectors, V2 corresponds to number
n. There is a polynomial time algorithm that finds V3 the closest (b,d) vector to V1,
corresponding to n.

Proof.
According to Lemma 2.1, we know that V3 exists. We adapt pseudo code 2 to find V3.
Observe, in a loop all possible carry ups and carry downs of components of V3 are performed,
meaning |V 1–V 2| is minimized if abs distance(V 1, V 2) don’t decrease after a loop.

4

Algorithm 3 Pseudo code 3. Input V1, V2. Output : V3
i← 0
dist← abs dist(V 1, V 2)
updated dist← 0
dist1← 0
while i < d do

V 3← V 2
constrained carry up V 3i
updated dist← abs dist(V 3, V 1)
if updated dist < dist then

V 2← V 3
dist← updated dist

end if
if dist < updated dist then

V 3← V 2
constrained carry down V 3i
updated dist← abs dist(V 3, V 1)
if updated dist < dist then

V 2← V 3
dist← updated dist

end if
end if
i← i+ 1
if i = d and dist ̸= 0 then

if dist = dist1 then return V3
end if
dist1← dist
i← 0

end if
end while

3 Solving Subset sum

Addition seen differently

Addition of 2 numbers can be performed by first adding their corresponding (b, d) vectors. b is the
base where they are represented . Carry propagation is realized by extending sum vector V size
and carry up its components until their values become inferior to b.

Definition 3.1 . Given a set S of (b,d) vectors and and a (b,d) target vector T. Subset sum without
carrying problem, consists on finding a subset of vectors Sb that sums to T.

5

Definition 3.2 . Let a vector V, abs distance to binary of V is
∑
i
||Vi–0.5| − 0.5|.

abs distance to binary of V equals 0, imply components of V are in N2.

Proposition 3.1 . Subset sum without carrying is solvable.

Proof.
Observe, solving subset sum without carry is equivalent to find solutions of following linear equation
AX = T where components of a column of matrix A are components of a vector in set S.
If subset Sb exists, components of solution X are in N2.
If Xi = 0, Si ith vector in S, is not in subset Sb.
If Xi = 1, Si ith vector in S, is in subset Sb.

Observe, Hardness of Subset sum resides mainly in carry propagation complexity, that’s sort of
hiding the target vector and showing a number it corresponds to. To Solve subset sum efficiently,
man had to find the right (b,d) vector T corresponding to target t such as X = A−1T components
are in N2 meaning :

∑
i
||(A−1T)i–0.5| − 0.5| = 0 .

NB : If matrix A is not invertible we use gaussian elimination to solve AX = T .

Proposition 3.2 . Let V : [V0 V1 . . . Vd−1] be a (b, d) vector corresponding to a number
n, and a number u ≤ Vd−1. (b,d) vector : [(V0+2×u) (V1+u) . . . (Vd−1−u)] corresponds
to n.

Proof.
Observe u carry downs V (d-1)th component gives also a (b,d) vector corresponding to n which is :
[V0 V1 . . . (Vd−2+2×u) (Vd−1−u)]. If we u carry downs remaining V ith components, 0 ≤ i ≤ d−2,
we get a (b,d) vector corresponding to n which is : [(V0 + u× 2) (V1 + u) . . . (Vd−1 − u)].

Theorem 3.1. Subset set sum is solvable.

Proof.
Let S be a set of numbers whose maximal size in bits is d and a target t.
Observe the binary representations of S elements are (2,d) vectors that corresponds to them.
Ts is a (2,s) vector corresponding to t where s is t size in bit. By proposition 3.2, it is easy
to show that T = [(Ts0 + 2 × (t/2d)) (Ts1 + (t/2d)) . . . (Tsd−1 + (t/2d))] is a (b,d) vector that
corresponds to t. A is a matrix which columns are (2,d) vectors corresponding to elements of S.

To find if a subset of S sums to t, we execute pseudo code 4 which is basically the same as pseudo
code 3, it transforms T to a (2,d) vector that is closest to vectors over N2 in basis A. Because
solving linear system of equation complexity is O(n3), according to theorems 2.1 & 2.2 Pseudo
code 4 complexity is O(n6). If final computed distant is nil, transformed T components in base A
(X components) are in N2, meaning there is a subset of S that sums to t, otherwise there is no
subset of S that sums to t.

6

Algorithm 4 Pseudo code 4. Inputs S : A, T. Outputs : T, X
Solve AX = T
dist← abs dist2binary(X)
updated dist← 0
dist1← 0
while i < d do

T1← T
constrained carry up T1i
Solve AX = T1
updated dist← abs dist2binary(X)
if updated dist < dist then

T ← T1
dist← updated dist

end if
if dist < updated dist then

T1← T
constrained carry down T1i
Solve AX = T1
updated dist← abs dist2binary(X)
if updated dist < dist then

T ← T1
dist← updated dist

end if
end if
i← i+ 1
if i = d and dist ̸= 0 then

if dist = dist1 then return T,X
end if
dist1← dist
i← 0

end if
end while

7

4 Conclusion :

Subset sum may be considered as equivalent to a two stage algorithm.

In the first stage :

Matrix A is a given, vector X over N2 is unknown. The first stage output is vector T = AX .

In the second stage :

Vector T which is also a (2,d) vector for some d, is transformed to integer n it corresponds to.
n = T • U where U is vector [(20)(21)....(2d−2)(2d−1)]

Solving subset sum consists on finding a solution over N2 of equation n = AX • U
where U = [(20)(21)....(2d−2)(2d−1)]

In this paper, we showed that it is easy to find a (b,d) vector corresponding to an integer n.

We equally showed transforming a (b,d) vetor corresponding to integer n to another vector, it
corresponds to can be performed in polynomial time by decreasing distance between them to zero.
(theorem 2.1 and 2.2).

In subset sum we dont know the final (2,d) vector V, we had to transform to, but we know that its
components are in N2 : they verify ||Vi − 0.5| − 0.5| = 0. To capture this proprety we introduced
abs 2 binary distance, and showed that the ”first stage” is also easy to invert. (theorem 3.1).

Declaration : Author declares that he have no conflict of interest regarding the publication of
this article.

References

[1] Stephen A. Cook The complexity of theorem-proving procedures, STOC (1971) : Proceedings
of the third annual ACM symposium on Theory of computing Pages 151 - 158

[2] Richard M Karp. Reducibility Among Combinatorial Problems, (1972), Complexity of Computer
Computations, Springer Verlag , Berlin Heidelberg .

8

