
Additive Randomized Encodings
from Public Key Encryption

Nir Bitansky1,2, Saroja Erabelli1, and Rachit Garg1

1New York University
2Tel Aviv University

nbitansky@gmail.com, saroja.erabelli@gmail.com,
rg5134@cims.nyu.edu

Abstract

Introduced by Halevi, Ishai, Kushilevitz, and Rabin (CRYPTO 2023), Additive randomized encod-
ings (ARE) reduce the computation of a 𝑘-party function 𝑓 (𝑥1, . . . , 𝑥𝑘) to locally computing encodings
𝑥𝑖 of each input 𝑥𝑖 and then adding them together over some Abelian group into an output encoding
𝑦 =

∑
𝑥𝑖 , which reveals nothing but the result. The appeal of ARE comes from the simplicity of the

non-local computation, involving only addition. This gives rise for instance to non-interactive secure
function evaluation in the shuffle model where messages from different parties are anonymously shuf-
fled before reaching their destination. Halevi, Ishai, Kushilevitz, and Rabin constructed ARE based on
Diffie-Hellman type assumptions in bilinear groups.

We construct ARE assuming public-key encryption. The key insight behind our construction is that
one-sided ARE, which only guarantees privacy for one of the parties, are relatively easy to construct,
and yet can be lifted to full-fledged ARE. We also give a more efficient black-box construction from the
CDH assumption.

1 Introduction

Additive randomized encodings (ARE), introduced by Halevi, Ishai, Kushilevitz, and Rabin [HIKR23],
reduce the task of securely computing complex multi-party functions to simply computing addition over an
Abelian group. Specifically, in an ARE for a 𝑘-party function 𝑓 (𝑥1, . . . , 𝑥𝑘), each party 𝑖 locally computes a
randomized encoding 𝑥𝑖 of their input 𝑥𝑖 over an Abelian group G. These encodings are then added together
in G to yield an encoding 𝑧 = 𝑥1 + · · · +𝑥𝑘 of the result 𝑧 = 𝑓 (𝑥1, . . . , 𝑥𝑘). A server, given the encoding 𝑧 can
decode the result 𝑧, but learns no additional information.

Such ARE can be seen as a variant of multi-party randomized encodings [AIK06, ABT21] where the
simplicity of the joint encoding function is taken to an extreme. In the shuffle model [IKOS06], where
parties can simultaneously send (multiple) anonymous messages to the server, ARE protocols give rise to
non-interactive secure function computation [HIKR23]. This makes them especially appealing as a setup-
less alternative to other models of non-interactive secure computation that do require trusted setup such as
correlated randomness or public-key infrastructure (c.f. [FKN94, BGI+14, HIJ+17, AAP19]).

So far the only existing constructions of ARE for general functions rely on either the Decision Squar-
ing XDH Assumption in bilinear groups [HIKR23], or on Indistinguishability Obfuscation and DDH/LWE

1

mailto:nbitansky@gmail.com
mailto:saroja.erabelli@gmail.com
mailto:rg5134@cims.nyu.edu

[BF24].1 Constructing ARE under weaker assumptions, as well as post-quantum assumptions, is posed as
an open question in [HIKR23].

1.1 This Work

We show a generic construction of ARE based on any public-key encryption (PKE) scheme.

Theorem 1.1 (Informal). Assuming public-key encryption, every efficient function has a computationally
secure ARE.

Public-key encryption schemes are as old as modern cryptography [DH76, RSA83, GM82], and are known
by now based on a variety of number-theoretic assumptions, or code/lattice based assumptions that are
conjectured to be post-quantum (see for instance Barak’s survey [Bar17]).

Main Conceptual Contribution: One-Sided ARE. Our key idea is to consider a relaxed notion of one-
sided ARE. Here for a two-party function 𝑓 (𝑥,𝑦), an ARE for 𝑓 may leak 𝑥 , but hides 𝑦 (formally, the ARE
can be simulated from 𝑥, 𝑓 (𝑥,𝑦)). Assuming one-way functions, we show that any 𝑓 has such a one-sided
ARE (alternatively, we can get an information-theoretic security with an inefficient ARE or if 𝑓 ∈ 𝑁𝐶1).

Assuming public-key encryption, we then show how to lift any one-sided ARE to (two-sided) ARE,
which yields our main result.

A Simpler Construction Under CDH. Our lifting transformation from one-sided ARE to ARE uses
the underlying PKE protocol in a non-black-box way. We also give a simpler construction based on the
CDH assumption (without any non-black-box use of cryptographic primitives). This is still an improvement
compared to Square XDH in [HIKR23], and may be more practical than our main construction.

See further details in the technical overview below.

1.2 More Related Work

There is a long line of work concerning randomized encodings [IK00, AIK06] where the theme is to replace
a possibly complex function 𝑓 with a simpler randomized encoding 𝑓 of 𝑓 (see surveys [Ish13, App17]).
ARE can be viewed as a randomized encoding, where the encoding is as simple as adding local functions.

ARE can also be viewed as variant of multi-party randomized encodings (MPRE) [ABT21]. In such
encodings the goal is to simplify the global encoding function that aggregates the local encodings of parties’
inputs. In the case of ARE, the global encoding is just addition, however, the security guarantee is inher-
ently weaker than that of a MPRE. Indeed, MPRE may withstand corruption of parties whereas ARE only
guarantees security against an external server.

The work of [HIKR23] also introduces the notion of robust ARE which offers security against cor-
ruptions as well. However, unlike MPRE where only the output is leaked, in robust ARE a set 𝐶 of
corrupted parties may (inherently) learn the residual function 𝑓 (𝑥𝐻 , ·) where the honest parties’ 𝐻 inputs
are fixed. Such robust ARE turn out to be equivalent to obfuscation. In [HIKR23] a heuristic construc-
tion of simulation-based robust ARE is shown based on ideal obfuscation. Subsequently, in [BF24] an
indistinguishability-based robust-ARE is constructed based on indistinguishability obfuscation and either
DDH or LWE.

1The latter construction in fact achieves a stronger notion of robust ARE. See the related work subsection.

2

1.3 Technical Overview

We now explain the main ideas in our work. As mentioned above, the main enabler of our construction
is the notion of one-sided ARE (OSARE). Our construction roughly consists of three main steps: (1) An
information-theoretic construction of OSARE for the equality function. (2) A reduction of OSARE for
general functions to OSARE for equality. (3) A lifting theorem from OSARE to full-fledged ARE.

The first step turns out to be an easy exercise, and the second step is a rather direct adaptation of a similar
reduction for (two-sided) ARE in [HIKR23]. Our main technical contribution, beyond identifying OSARE
as a potent notion, is in the third step of lifting OSARE to ARE. Accordingly, we start by overviewing this
step and then give a brief overview of the first two steps.

Throughout, for two-party schemes, we refer by default to the first party as Alice and to the second party
as Bob, and to their inputs as 𝑥 and 𝑦, respectively.

One-Sided ARE. Recall that in OSARE, we relax the security definition of ARE so that the server given
the sum 𝑥 +𝑦, may learn not only the result 𝑓 (𝑥,𝑦) but also Alice’s input 𝑥 . Formally 𝑥 +𝑦 can be simulated
from (𝑥, 𝑓 (𝑥,𝑦)).

Naïve Idea: Encrypt Alice’s 𝑥 and use SFE. Aiming to leverage OSARE to construct a (two-sided) ARE
for 𝑓 (𝑥,𝑦), we of course cannot use Alice’s secret input 𝑥 directly (as it leaks). Instead, we’d like to use an
encryption Enck(𝑥) and perform the computation over this encryption. For this purpose, we use perhaps the
first primitive that comes to mind — secure function evaluation (SFE).

In an SFE scheme, the receiver Alice can send an encryption rct = Enck(𝑥) of her input to the sender
Bob, with respect to her secret key k. Sender Bob then uses his input 𝑦 to generate an evaluated ciphertext
ect = Eval(rct, 𝑦). Alice can then compute Deck(ect) to decrypt the output 𝑓 (𝑥,𝑦). In terms of security,
Alice is guaranteed that Bob learns nothing about her input 𝑥 , and Bob is guaranteed that (a semi-honest)
Alice learns nothing about his input 𝑦, except for 𝑓 (𝑥,𝑦). An external observer seeing only (rct, ect) does
not learn anything at all.

Using SFE, the most straightforward idea is to use OSARE for the function

𝑒 (rct, (𝑦, 𝑟)) = Eval(rct, 𝑦; 𝑟) ,

with Alice’s input set to rct = Enck(𝑥) and Bob’s input set to 𝑦 and the randomness 𝑟 needed for Eval.
OSARE security guarantees that the resulting (sum) encoding can be simulated from Alice’s input rct and
the result ect, which by SFE security leaks nothing to the server.

However, this naïve attempt obviously falls short of obtaining our final goal, as the server also cannot
learn 𝑓 (𝑥,𝑦), but only an encryption ect thereof.

Controlled SFE Decryption using FE. To complete the above idea, we aim to allow the server to decrypt
ect in order to learn the result 𝑓 (𝑥,𝑦), but prevent it from decrypting rct and learning 𝑥 . For this purpose,
we use functional encryption (FE).

In a public-key FE scheme for a two-party function 𝑑 (𝛼, 𝛽), it is possible to generate a public encryption
key fpk together with a master secret key msk. Given fpk it is possible to generate an encryption fct𝛼 of any
first input 𝛼 , and given msk it is possible to generate a function key fsk𝛽 = KeyGenmsk(𝛽) for any second
input 𝛽. Given (fct𝛼 , fsk𝛽) it is possible to decrypt the result 𝑑 (𝛼, 𝛽). The security guarantee is that nothing

3

is learned about 𝛼 beyond 𝑑 (𝛼, 𝛽) (whereas 𝛽 may leak).2 Such FE can be constructed based on plain public-
key encryption [SS10]. (Importantly, we only require security in the presence of a single function key and
do not pose any compactness requirements.)

Going back to our goal of allowing the server SFE decryption of ect, but nothing more, we consider an
FE scheme for the SFE decryption function

𝑑 (k, ect) = SFE.Deck(ect) .

We then augment our OSARE function 𝑒 (rct, (𝑦, 𝑟)) from before to a new function

𝑒 (rct, (𝑦, 𝑟,msk)) = FE.KeyGenmsk(ect = SFE.Eval(rct, 𝑦; 𝑟)) ,

which like before computes the SFE ciphertext ect, but then rather than outputting the ciphertext itself
outputs a corresponding function key. Since the OSARE hides Bob’s input (𝑦, 𝑟,msk), we are guaranteed
the server only learns Alice’s input rct and the resulting function key fskect.

The only missing part is allowing the server to learn an FE encryption FE.Encfpk(k) of the SFE secret
key k. This would allow the server to obtain the decryption

𝑓 (𝑥,𝑦) = 𝑑 (k, ect) = SFE.Deck(ect)

of the SFE ciphertext ect and nothing more.
For this, we simply use OSARE again, only this time in reverse. That is, the parties run an OSARE for

the function
𝑔(fpk, (k, 𝑟 ′)) = FE.Encfpk(k; 𝑟 ′)

that encrypts k under the FE public key fpk using randomness 𝑟 ′. This time around, Alice provides the secret
input (k, 𝑟 ′) whereas Bob provides the leaky input fpk. The OSARE guarantees that the server only learns
the result fct = FE.Encfpk(k; 𝑟 ′) and the leaky input fpk.

Overall, considering the two instances of OSARE, the server only learns

rct, fskect, fpk, fct ,

which by the security of FE and SFE reveal nothing but 𝑓 (𝑥,𝑦).

PKE instead of SFE. SFE protocols are known to be equivalent to two-message (semi-honest) oblivious
transfer [Yao86]. We observe, however, that traditional SFE gives more than we bargained for. Indeed,
SFE guarantees security when one of the parties is corrupted, whereas in our setting we only need security
against an external observer that only sees the ciphertexts rct, ect, but is completely oblivious to the inner
state of either party. In other words, we only need secure communication, which we can achieve using
(plain) public-key encryption. In the language we have used so far, we can think of an SFE protocol, where
Alice sends her public encryption key pk and Bob sends back an encryption Encpk(𝑦), Alice then decrypts,
and computes 𝑓 (𝑥,𝑦) herself.

Let us redescribe the scheme, forgoing SFE altogether. In the augmented scheme, instead of generating
an SFE key, Alice generates PKE keys (pk, sk) . For our FE scheme, we replace the SFE decryption function
with the PKE decryption function along with the function evaluation of 𝑓 :

𝑑 ((𝑥, sk), pct) = 𝑓 (𝑥, PKE.Decsk(pct)) .

2Typically, the fixed function 𝑑 is thought of as a universal circuit, and the second input 𝑏 describes a circuit for a dynamically
chosen function. The above equivalent formulation is more convenient in our setting.

4

We modify the OSARE function to output a corresponding function key:

𝑒 (pct, (𝑦, 𝑟,msk)) = FE.KeyGenmsk(pct = PKE.Enc(𝑦; 𝑟)) .

The second OSARE now encrypts the secret key sk and Alice’s input 𝑥 together, instead of the SFE secret
key k:

𝑔(fpk, (𝑥, sk, 𝑟 ′)) = FE.Encfpk((𝑥, sk); 𝑟 ′) ,

where Alice provides the secret input (𝑥, sk, 𝑟 ′) and Bob provides the leaky input fpk. In the new scheme,
the server only learns

pct, fskpct, fpk, fct ,

which reveals nothing but 𝑓 (𝑥,𝑦) by the security of FE and PKE. Finally, we note that two-party (full-
fledged) ARE (even just for equality) imply multi-party (full-fledged) ARE, by a reduction from [HIKR23]
(we in fact review this reduction below, observing that it also applies to OSARE).

From OSARE for Equality to OSARE for General Functions. We review the reduction of ARE for
general functions to ARE for the equality function [HIKR23], and observe that the exact same reduction
also applies for OSARE. Specifically, consider the two-party function that checks equality of two elements
𝑥,𝑦 from a finite domain [𝑑].

We first show that this implies an OSARE for any function 𝑓 : [𝑑 − 1] × [𝑑 − 1] → {0, 1}. To achieve
this, Alice and Bob execute 𝑑 − 1 OSARE protocols for equality. Alice uses her input 𝑥 in all of them. Bob
lists all inputs 𝑥 ′ such that 𝑓 (𝑥 ′, 𝑦) = 1, pads the list to length 𝑑 −1, using the element 𝑑 , which is outside the
function domain, and randomly permutes (or just shifts) the list. The OSARE only reveals Alice’s input 𝑥 ,
and each of the equality results, which are either all non-equal when 𝑓 (𝑥,𝑦) = 0, or equal in a single random
instance in case 𝑓 (𝑥,𝑦) = 1.

This in particular implies an OSARE for the OT function (𝑐, (𝑠0, 𝑠1)) ↦→ 𝑠𝑐 , where the server only learn a
chosen string 𝑠𝑐 , as well as the choice bit 𝑐. Then, we combine the OSARE for OT with Yao’s garbled circuit
to get an OSARE for general two-party functions 𝑓 (𝑥,𝑦). Here Bob would generate the garbled circuit
corresponding to 𝑓 (·, 𝑦) and Alice would OT-choose the labels corresponding to her input 𝑥 . OSARE for
OT guarantees that the server learns only Alice’s input 𝑥 as well as the garbled circuits and corresponding
𝑥-labels, which only reveal 𝑓 (𝑥,𝑦).

A Statistical OSARE for Equality. To construct a one-sided ARE for equality for input domain 𝐷 = [𝑑],
we encode elements over Z𝑑𝑡 (for large 𝑡). On input 𝑥 , Alice outputs a length 𝑑 vector with 0 at the 𝑥𝑡ℎ entry
and random elements in all other entries. On input 𝑦, Bob does the complement: outputting a length 𝑑 vector
with a random element at the 𝑦𝑡ℎ entry and 0 in all other entries. The decoder outputs equal if all entries
are nonzero and not-equal otherwise. If 𝑥 = 𝑦, the scheme is perfectly simulatable (it in fact does not
leak anything). If 𝑥 ≠ 𝑦, the scheme leaks 𝑥 , but nothing on 𝑦, except that 𝑦 ≠ 𝑥 . As described the scheme
has perfect security and correctness error 𝑂 (1/𝑡). Alternatively, by restricting to non-zero elements, we can
get perfect correctness and statistical security error 𝑂 (1/𝑡).

We note that in [HIKR23], an ARE for an "equality-type" function is given, which in fact can also be
shown to be a OSARE for the (standard) equality function. However, there it is not clear how to obtain
perfect correctness.

5

ARE from CDH. Finally, we briefly overview the direct construction of ARE from the CDH assumption.
Our first observation is that the pairing-based construction from [HIKR23] can easily be modified to use

the Squaring DDH assumption in plain groups. In their construction, the additive encodings are of the form

(𝑥0, 𝑥1, 𝑥2) = ([𝑟]1, [𝑟𝑥]2, [𝑟𝑥2]𝑡)
(𝑦0, 𝑦1, 𝑦2) = ([𝑠]1, [−𝑠𝑦]2, [−𝑠𝑦2]𝑡)

where [𝑎]1, [𝑏]2, [𝑐]𝑡 denote values 𝑔𝑎1 , 𝑔
𝑏
2 , 𝑔

𝑐
𝑡 in the pairing groups G1,G2, and G𝑡 with generators 𝑔1, 𝑔2, and

𝑔𝑡 , respectively. To check equality, the evaluator obtains the sum (𝑧0, 𝑧1, 𝑧2) = ([𝑟+𝑠]1, [𝑟𝑥−𝑠𝑦]2, [𝑟𝑥2−𝑠𝑦2]𝑡)
and checks whether 𝑒 (𝑧0, 𝑧1) = 𝑧2, which always occurs when 𝑥 = 𝑦, and with small probability otherwise.
We observe that security, in fact, still holds even if one of the exponents is given in the clear:

(𝑥0, 𝑥1, 𝑥2) = (𝑟, [𝑟𝑥], [𝑟𝑥2])
(𝑦0, 𝑦1, 𝑦2) = (𝑠, [−𝑠𝑦], [−𝑠𝑦2])

where [𝑎] denotes 𝑔𝑎 in the DDH group G, and the equality check remains the same as in the first con-
struction, but now does not require pairing. We then show how to apply the Goldreich Levin hard-core bit
theorem to further reduce the construction to the Squaring CDH assumption, which is in turn equivalent to
plain CDH [MW99, BDZ03]. More details are provided in section 4.

2 Preliminaries

Throughout this work, we denote by 𝜆 the security parameter. We say a function 𝑓 is negligible in the
security parameter 𝜆 if 𝑓 = 𝜆−𝜔 (1) . We denote this by writing 𝑓 (𝜆) = negl(𝜆). We write poly(𝜆) to denote a
function that is bounded by a fixed polynomial in 𝜆. We say an algorithm is efficient if it runs in probabilistic
polynomial time (PPT) in the length of its input.

We use Z×𝑡 to denote Z𝑡 \ {0}. For a positive integer 𝑛, we use [𝑛] to denote the set {1, . . . , 𝑛} . For a set
𝑆 , 𝑥 ← 𝑆 denotes uniformly sampling from 𝑆 . We use U𝑛 to denote the uniform distribution over {0, 1}𝑛 .
We next review the main cryptographic primitives we use in this work.

2.1 Additive Randomized Encodings

Definition 2.1 (Additive Randomized Encoding [HIKR23]). Let 𝑘 (𝜆), 𝑛(𝜆),𝑚(𝜆) be polynomially bounded
functions. A 𝑘-party ARE scheme for a function 𝑓 : ({0, 1}𝑛)𝑘 → {0, 1}𝑚, consists of three PPT algorithms
Π = (Setup, Enc,Dec) with the following syntax:

• pp ← Setup(1𝜆) is a generator that given the security parameter 1𝜆, generates public parameters pp.
The public parameters include the description of an Abelian group (G, +) with efficient representation
and operations.

• 𝑥𝑖 ← Encpp(𝑥𝑖 , 𝑖) is an encoding algorithm that given an input 𝑥𝑖 ∈ {0, 1}𝑛 and an index 𝑖 ∈ [𝑘]
outputs an encoding 𝑥𝑖 ∈ G.

• 𝑦 ← Decpp(𝑦) is a decoding algorithm that given 𝑦 ∈ G outputs a value 𝑦.

We require the following properties:

6

• Correctness: Π is 𝜀-correct, for a function 𝜀 (𝜆), if for all 𝜆 and 𝑥1 . . . , 𝑥𝑘 ∈ {0, 1}𝑛:

Pr
Decpp(𝑦) = 𝑓 (𝑥1, . . . , 𝑥𝑘) :

pp← Setup(1𝜆)
𝑥𝑖 ← Encpp(𝑥𝑖 , 𝑖)
𝑦 =

∑𝑘
𝑖=1 𝑥𝑖

 ≥ 1 − 𝜀 (𝜆) .

• Security: There exists a PPT simulator Sim such that for any 𝜆, and 𝑥1, . . . , 𝑥𝑘 ∈ {0, 1}𝑛,:

(pp, 𝑦) ≈𝑐 Sim(1𝜆, 𝑓 (𝑥1, . . . , 𝑥𝑘)) ,

where pp← Setup(1𝜆), 𝑥𝑖 ← Encpp(𝑥𝑖 , 𝑖), and 𝑦 =
𝑘∑
𝑖=1

𝑥𝑖 .

We further say that security is statistical/perfect if instead of computational indistinguishability we
have statistical/perfect indistinguishability.

2.2 Public Key Encryption

Definition 2.2 (Public Key Encryption). Let 𝑛(𝜆) be a polynomially bounded function. A public key en-
cryption scheme consists of three algorithms PKE = (Setup, Enc,Dec) with the following syntax:

• (pk, sk) ← Setup(1𝜆) given the security parameter 𝜆, outputs a public/secret key pair (pk, sk).

• pct ← Encpk(𝑥) is a randomized algorithm, given input 𝑥 ∈ {0, 1}𝑛, public key pk ∈ {0, 1}𝜆, outputs
a ciphertext pct.

• 𝑧 ← Decsk(pct) is a deterministic algorithm that given a ciphertext pct and secret key sk ∈ {0, 1}𝜆,
outputs a result 𝑧.

We require the following properties:

• Correctness: For all 𝜆 ∈ N and 𝑥 ∈ {0, 1}𝑛,

Pr[Decsk(pct) = 𝑥] = 1 .

where pct← Encpk(𝑥) and (pk, sk) ← Setup(1𝜆).

• Semantic Security: For all 𝜆 ∈ N, and all inputs 𝑥 ∈ {0, 1}𝑛,(
pk, Encpk(𝑥)

)
≈𝑐

(
pk, Encpk(0𝑛)

)
,

where (pk, sk) ← Setup(1𝜆) .

2.3 Single-Key Functional Encryption

Definition 2.3 (Single-Key Functional Encryption). Let 𝑛𝑋 (𝜆), 𝑛𝑌 (𝜆),𝑚(𝜆) be polynomially bounded func-
tions. A single-key functional encryption scheme for 𝑓 : {0, 1}𝑛𝑋 × {0, 1}𝑛𝑌 → {0, 1}𝑚 consists of four
algorithms FE = (Setup,KeyGen, Enc,Dec) with the following syntax:

• (msk, fpk) ← Setup(1𝜆) given the security parameter 𝜆, outputs a master secret key msk and a public
key fpk.

7

• fsk𝑦 ← KeyGen(msk, 𝑦) given the master secret key msk and 𝑦 ∈ {0, 1}𝑛𝑌 , outputs a functional secret
key fsk𝑦 corresponding to the function 𝑓 (·, 𝑦).

• fct← Encfpk(𝑥) given 𝑥 ∈ {0, 1}𝑛𝑋 and public key fpk, generates a ciphertext fct.

• 𝑧 ← Decfsk𝑦 (fct) given a ciphertext fct and function key fsk𝑦 outputs a decryption value 𝑧.

We require the following properties:

• Correctness: For all 𝜆 ∈ N and 𝑥,𝑦 ∈ {0, 1}𝑛𝑋 × {0, 1}𝑛𝑌 ,

Decfsk𝑦 (fct) = 𝑓 (𝑥,𝑦) .

where fct← Encfpk(𝑥) and fsk𝑦 = KeyGen(msk, 𝑦).

• Security: There exists a PPT algorithm Sim such that for all 𝜆 ∈ N, and all inputs 𝑥,𝑦 ∈ {0, 1}𝑛𝑋 ×
{0, 1}𝑛𝑌 ,

(fpk, fsk𝑦, Encfpk(𝑥)) ≈𝑐 Sim(𝑦, 𝑓 (𝑥,𝑦)) ,

where the probability distributions are taken over the randomness of FE.Sim and Enc.

Remark 2.4. Commonly in the literature, one considers single-input functions 𝑓 (𝑥) of some bounded circuit
size and functional keys fsk𝑓 . The above formulation is equivalent and will be more convenient for our
purposes.

Instantiation. FE schemes as above are known for any polynomially computable 𝑓 based on plain public-
key encryption [SS10].

3 ARE from PKE and FE

3.1 One-Sided ARE

We define a weaker notion of an ARE, which we call a one-sided ARE below, where security only guarantees
the privacy of one party’s input.

Definition 3.1 (One-Sided Additive Randomized Encoding). An ARE scheme Π = (Setup, Enc,Dec) for
𝑓 : {0, 1}𝑛𝑋 ×{0, 1}𝑛𝑌 → {0, 1}𝑚 defined for two parties is said to be a one-sided ARE if it satisfies the same
correctness guarantee as an ARE and the security guarantee below:

One-Sided Security: There exists a PPT simulator Sim such that for any 𝜆, and 𝑥 ∈ {0, 1}𝑛𝑋 , 𝑦 ∈ {0, 1}𝑛𝑌 :

(pp, 𝑧̂) ≈𝑐 Sim(1𝜆, 𝑥, 𝑓 (𝑥,𝑦)) ,

where pp← Setup(1𝜆), 𝑥 ← Encpp(𝑥, 1), 𝑦 ← Encpp(𝑦, 2), and 𝑧̂ = 𝑥 + 𝑦.
We further say that security is statistical/perfect if instead of computational indistinguishability we have

statistical/perfect indistinguishability.

8

One-Sided ARE Scheme ARE𝑒𝑞 for Equality

Enc(1𝜆, 𝑖, 1):

• Sample 𝑢1, . . . , 𝑢𝑑 ← Z×𝑡 .

• Set 𝑖̂ to be the 𝑑-dimensional vector
∑

𝑘≠𝑖 𝑢𝑘 · 𝒆𝑘 , where 𝒆𝑘 is the 𝑘-th standard basis vector.

Enc(1𝜆, 𝑗, 2):

• Sample 𝑣 ← Z×𝑡 .

• Set 𝑗̂ to be the 𝑑-dimensional vector 𝑣 · 𝒆 𝑗 .

Dec(1𝜆,𝑤) :

• Parse the (sum) encoding 𝑤 as a vector (𝑤1, . . . ,𝑤𝑑).

• If for all 𝑘 , 𝑤𝑘 ≠ 0, output equal, else output not-equal.

Figure 1: One-Sided ARE for Equality

3.2 One-Sided ARE for Equality

We describe a one-sided ARE ARE𝑒𝑞 for the equality function over a finite domain 𝐷 = {1, . . . , 𝑑}. In the
constructions below, we do not require a public setup, and omit the setup when not needed. Instead we pass
the security parameter explicitly to the encoding and decoding algorithms. Let 𝑡 (𝜆) be a function, where
𝑡 ≈ 2𝜆 by default.

Proposition 3.2. The scheme ARE𝑒𝑞 is perfectly correct and 𝑂 (𝑡−1)-statistically secure.

Proof. We prove that the scheme satisfies the two properties required by a one-sided ARE.

Correctness:
Our encodings are computed additively, i.e. 𝑤 = 𝑖̂ + 𝑗̂ .

• When inputs are equal, i.e. if 𝑖 = 𝑗 = 𝑘 .

For any index ℓ ≠ 𝑘 ∈ [𝑑], observe that 𝑤ℓ = 𝑢ℓ ≠ 0 and for index ℓ = 𝑘 , 𝑤ℓ = 𝑣 ≠ 0. Since all
coordinates are non-zero, decryption outputs equal.

• When inputs are unequal, i.e. if 𝑖 ≠ 𝑗 .

In this case, 𝑤𝑖 = 0 and decryption outputs not-equal.

One-Sided Security:

• When inputs are equal, Sim(1𝜆,equal) randomly samples (𝑤1, . . . ,𝑤𝑑) ← (Z×𝑡)𝑑 , and perfectly
emulates the encoding 𝑖̂ + 𝑗̂ = ∑

𝑙≠𝑖 𝑢𝑙 · 𝒆𝑙 + 𝑣 · 𝒆 𝑗 .

9

• When inputs are unequal, Sim(1𝜆, 𝑖,not-equal) sets 𝑤𝑖 = 0, for ℓ ≠ 𝑖 samples 𝑤ℓ ← Z×𝑡 , and
outputs (𝑤1, . . . ,𝑤𝑑).
This distribution perfectly emulates all coordinates ℓ ≠ 𝑗 of the encoding 𝑖̂ + 𝑗̂ = ∑

ℓ∉{𝑖, 𝑗 } 𝑢ℓ · 𝒆ℓ + (𝑣 +
𝑢 𝑗) ·𝒆 𝑗 . For the coordinate 𝑗 , the statistical distance between 𝑣 +𝑢 𝑗 ∼ 𝑈 (Z×𝑡) +𝑈 (Z×𝑡) and𝑤 𝑗 ∼ 𝑈 (Z×𝑡)
is 𝑂 (𝑡−1).

□

3.3 From Equality to Any Small Function

We observe that the transformation of [HIKR23] from ARE for Equality to ARE for any finite domain
applies also for the case of one-sides AREs. That is, one-sided ARE for Equality implies one-sided ARE for
any finite-domain function. Below, the proof is taken almost verbatim from [HIKR23], adopted to the case
of one-sided security.

Lemma 3.3 (Adaptation of [HIKR23, Lemma 5.7]). Let 𝑓 : 𝐷1 × 𝐷2 → {0, 1} be a Boolean function over
finite domains 𝐷1 and 𝐷2. Assume w.l.o.g. that |𝐷1 | ≤ |𝐷2 |, and let 𝑧 be an arbitrary symbol 𝑧 ∉ 𝐷1. Then a
secure one-sided ARE scheme OSARE𝑒𝑞 for equality over the domain 𝐷 = 𝐷1 ∪ {𝑧} can be converted into a
secure one-sided ARE scheme OSARE𝑓 for function 𝑓 , where the communication complexity of OSARE𝑓 is
at most |𝐷1 | times larger than that of OSARE𝑒𝑞 .

Proof.

The scheme OSARE𝑓 . Let 𝑑1 = |𝐷1 |. On inputs 𝑥 ∈ 𝐷1, 𝑦 ∈ 𝐷2, the parties run 𝑑1 parallel copies of the
equality scheme OSARE𝑒𝑞:

• Party 1 uses their input 𝑥 in all these copies.

• For Party 2, let 𝑥1, 𝑥2, . . . , 𝑥𝑑 be all the possible party-1 inputs for which 𝑓 (𝑥𝑖 , 𝑦) = 1. Party 2 concate-
nates 𝑑1 − 𝑑 copies of the values 𝑧 ∉ 𝐷1, yielding 𝑎 = (𝑥1, . . . , 𝑥𝑑 , 𝑧, . . . , 𝑧) ∈ 𝐷𝑑1 . Party 2 then shifts
by a randomly chosen 𝛿 ← [0, 𝑑1 − 1] to obtain 𝑏 such that the 𝑖𝑡ℎ entry of 𝑏 is the (𝑖 − 𝛿) (mod 𝑑1)
entry of 𝑎.

The evaluator gets 𝑑1 sums 𝑦1, . . . , 𝑦𝑑1 from the 𝑑1 copies of OSARE𝑒𝑞 and decodes them to get 𝑑1 results
𝑏𝑖 = Dec𝑒𝑞 (𝑦𝑖) . It outputs 1 if there is any match 𝑏𝑖 = equal, and outputs 0 if they are all not-equal.

We prove that OSARE𝑓 satisfies the two properties required by a one-sided ARE.

Correctness. Since Party 1 uses 𝑥 ∈ 𝐷1 in all the copies of OSARE𝑒𝑞 and Party 2 uses 𝑑 distinct inputs
from 𝐷1 and the value 𝑧 ∉ 𝐷1, then at most one of them will be a match. A match occurs if and only if 𝑥 = 𝑥𝑖
for some 𝑖 ≤ 𝑑, which means that 𝑓 (𝑥,𝑦) = 𝑓 (𝑥𝑖 , 𝑦) = 1.

One-Sided Security. Let Sim𝑒𝑞 be the one-sided security simulator for the scheme ARE𝑒𝑞 .

• When 𝑓 (𝑥,𝑦) = 0, Sim𝑓 (1𝜆, 𝑥, 0) computes ∀𝑖 ∈ [𝑑1], 𝑣𝑖 ← Sim𝑒𝑞 (1𝜆, 𝑥,not-equal), and outputs
(𝑣1, . . . , 𝑣𝑘). This statistically emulates the encoding by a standard hybrid argument.

10

• When 𝑓 (𝑥,𝑦) = 1, Sim𝑓 (1𝜆, 𝑥, 1) samples 𝑖 ← [𝑑1], computes 𝑣𝑖 ← Sim𝑒𝑞 (1𝜆, 𝑥,equal), and ∀𝑗 ∈
[𝑑1], 𝑗 ≠ 𝑖, 𝑣 𝑗 ← Sim𝑒𝑞 (1𝜆, 𝑥,not-equal), and outputs (𝑣1, . . . , 𝑣𝑘) . Similarly, this statistically
emulates the encoding by a standard hybrid argument.

□

3.3.1 One-Sided ARE for General Functions

In addition, the transformation of [HIKR23] from ARE for Equality to ARE for general functions applies
also for the case of one-sides AREs. That is, one-sided ARE for Equality implies one-sided ARE for general
functions. Below, the proof is also taken almost verbatim from [HIKR23], adopted to the case of one-sided
security.

Lemma 3.4 (Adaptation of [HIKR23, Lemma 5.8]). Let 𝑛𝑋 (𝜆), 𝑛𝑌 (𝜆),𝑚(𝜆) be polynomially bounded func-
tions. Let 𝑓 : {0, 1}𝑛𝑋 × {0, 1}𝑛𝑌 → {0, 1}𝑚 be a two-party function, and let {𝐶𝜆} be a family of polynomial-
size circuits computing 𝑓 . Assuming one-way functions, there exists a computationally-secure one-sided
ARE scheme OSARE𝑓 for 𝑓 . Furthermore, we obtain statistical one-sided ARE (without assuming one-way
functions) if we allow an inefficient ARE scheme, or if

{
𝐶𝜆

}
∈ NC1.

Proof Sketch. Let OSARE𝑠𝑜𝑡 be a one-sided ARE scheme, which we obtain from Lemma 3.3, for the
string oblivious transfer function:

𝑓𝑠𝑜𝑡 : {0, 1} × {0, 1}2𝜆 → {0, 1}𝜆, 𝑓𝑠𝑜𝑡 (𝑐, (𝑠0, 𝑠1)) = 𝑠𝑐 .

We build a one-sided ARE scheme OSARE𝑓 for 𝑓 . If we allow an inefficient ARE scheme, then we can
simply apply Lemma 3.3 to construct OSARE𝑓 . Otherwise, party 2 will construct and send the evaluator a
garbling of 𝐶𝜆 (which can be implemented from any one-way function or by using information-theoretic
garbling [IK02] if

{
𝐶𝜆

}
∈ NC1 and will run with Party 1 𝑛𝑋 instances of OSARE𝑠𝑜𝑡 for strings of length 𝜆,

one for each of their input bits. In each instance, Party 2 will play the role of the sender using as input the
two labels for that input wire, and Party 1 will play the receiver using the corresponding input bit as the OT
choice bit. The evaluator will therefore receive the garbled circuit, along with one label for each input wire.
It will then evaluate the garbled circuit and compute the output. Correctness and security follow from those
of OSARE𝑠𝑜𝑡 and the garbling scheme. Unlike [HIKR23], the security of OSARE𝑠𝑜𝑡 is only one-sided, so
simulating the encoding requires knowing 𝑥 . Accordingly, simulating the encoding for 𝑓 requires knowing
𝑥 , so accordingly we only obtain one-sided security.

3.4 One-Sided ARE to Full-Fledged ARE from PKE

In this section, we show how to transform one-sided ARE for general functions to (two-sided) ARE for
general functions, assuming PKE and FE, which in turn can be constructed from PKE. Note that two-party
full-fledged ARE can be transformed into 𝑘-party ARE via [HIKR23, Lemma 5.8].

Construction 3.5 (ARE from One-Sided ARE using PKE). Throughout, we let 𝜆 be the security parameter.
Let 𝑓 (𝑥,𝑦) be a function that we wish to compute using our ARE, where 𝑥 is the input of the first party and
𝑦 is the input of the second party.

• Let PKE = (Setup, Enc,Dec) be a public-key encryption scheme (definition 2.2).

11

• Let FE = (Setup,KeyGen, Enc,Dec) be a single-key functional encryption scheme (definition 2.3) for
the evaluation function

𝑑 ((𝑥, sk), pct) := 𝑓 (𝑥, PKE.Decsk(pct)) ,

which given PKE secret key sk and PKE ciphertext pct, decrypts the ciphertext and evaluates 𝑓 .

• Let OSARE𝑔 = (Enc,Dec) be a one-sided ARE scheme (definition 3.1) for the key-generation func-
tion,

𝑔(pk, (msk, 𝑦, 𝑟PKE)) := FE.KeyGen(msk, pct),
where pct := PKE.Encpk(𝑦, 𝑟PKE) .

That is, the function 𝑔 given a PKE ciphertext pct and master secret key msk, input 𝑦, and PKE
encryption randomness 𝑟PKE, encrypts 𝑦 and outputs a function secret key fskpct corresponding to the
function 𝑑 (·, pct).

• Let OSARE𝑒 be a one-sided ARE scheme (definition 3.1) for an encryption function,

𝑒 (fpk, (𝑥, sk, 𝑟FE)) := FE.Encfpk((𝑥, sk) ; 𝑟FE) ,

which given a public key, and message k, outputs an FE encryption.

Remark 3.6. Note that our full-fledged ARE scheme, as described, does not require setup since our one-
sided ARE schemes also do not require setup. The only public parameter is 1𝜆 .

Proposition 3.7. The scheme ARE𝑓 is perfectly correct.

Proof. From correctness of the one-sided ARE schemes OSARE𝑔,OSARE𝑒 , we have

fskpct = OSARE𝑔 .Dec(𝑧̂0) = 𝑔(pk, (msk, 𝑦, 𝑟PKE)) = FE.KeyGen(msk, pct) ,

where pct = PKE.Encpk(𝑦, 𝑟PKE) and

fct = OSARE𝑒 .Dec(𝑧̂1) = 𝑒 (fpk, (𝑥, sk, 𝑟FE)) = FE.Encfpk((𝑥, sk) ; 𝑟FE) ,

respectively. From correctness of the FE and PKE schemes, we have,

Dec(1𝜆, 𝑧̂ = (𝑧̂0, 𝑧̂1)) = FE.Decfskpct (fct) = 𝑑 ((𝑥, sk), pct) := 𝑓 (𝑥, PKE.Decsk(pct)) = 𝑓 (𝑥,𝑦) .

□

Proposition 3.8. The scheme ARE𝑓 is computationally secure.

Proof. Simulator ARE𝑓 .Sim(1𝜆, 𝑓 (𝑥,𝑦)) outputs 𝑧̂′ =
(
𝑧̂′0, 𝑧̂

′
1
)

and is defined below.

Compute:

• (pk, sk) ← PKE.Setup(1𝜆) .

• pct′ ← PKE.Encpk(0𝑛𝑌).

12

Full-Fledged Two-Party ARE ARE𝑓

Enc(1𝜆, 𝑥, 1):

• Sample (pk, sk) ← PKE.Setup(1𝜆).

• Compute 𝑥0 ← OSARE𝑔 .Enc(pk, 1).

• Compute 𝑥1 ← OSARE𝑒 .Enc((𝑥, sk) , 2), (recall that the second party’s inputs are hidden in this
one-sided ARE scheme).

• Output 𝑥 = (𝑥0, 𝑥1).

Enc(1𝜆, 𝑦, 2):

• Sample 𝑟PKE ← {0, 1}𝜆 and compute (msk, fpk) ← FE.Setup(1𝜆).

• Compute 𝑦0 ← OSARE𝑔 .Enc((msk, 𝑦, 𝑟PKE), 2), (recall that the second party’s inputs are hidden
in this one-sided ARE scheme).

• Compute 𝑦1 ← OSARE𝑒 .Enc(fpk, 1) .

• Output 𝑦 = (𝑦0, 𝑦1) .

Dec
(
1𝜆, 𝑧̂ = (𝑧̂0, 𝑧̂1)

)
:

• Compute fskpct ← OSARE𝑔 .Dec(1𝜆, 𝑧̂0) .

• Compute fct← OSARE𝑒 .Dec(1𝜆, 𝑧̂1) .

• Output FE.Decfskect (fct) .

Figure 2: Full-Fledged Two-Party ARE from One-Sided ARE for a function 𝑓

• (fpk′, fsk′, fct′) ← FE.Sim(1𝜆, pct′, 𝑓 (𝑥,𝑦)).

• 𝑧̂′0 ← OSARE𝑔 .Sim(1𝜆, pk, fsk′).

• 𝑧̂′1 ← OSARE𝑒 .Sim(1𝜆, fpk′, fct′).

Output 𝑧̂′ =
(
𝑧̂′0, 𝑧̂

′
1
)
.

We define a sequence of hybrids starting with a hybrid that captures real encodings produced by ARE𝑓 and
ending with simulated encodings produced by ARE𝑓 .Sim.

Hybrid 0. The algorithm presented in construction 3.5:

1. Compute (𝑥0, 𝑥1) ← Enc(1𝜆, 𝑥, 1).

13

(a) Sample (pk, sk) ← PKE.Setup(1𝜆).
(b) Compute 𝑥0 ← OSARE𝑔 .Enc(pk, 1) and 𝑥1 ← OSARE𝑒 .Enc((𝑥, sk) , 2).

2. Compute (𝑦0, 𝑦1) ← Enc(1𝜆, 𝑦, 2).
(a) Sample 𝑟PKE ← {0, 1}𝜆 and compute (msk, fpk) ← FE.Setup(1𝜆).
(b) Compute 𝑦0 ← OSARE𝑔 .Enc((msk, 𝑦, 𝑟PKE), 2) and 𝑦1 ← OSARE𝑒 .Enc(fpk, 1) .

3. Output (𝑧̂0 = 𝑥0 + 𝑦0, 𝑧̂1 = 𝑥1 + 𝑦1).

Hybrid 1. We sample the encoding 𝑧̂′0 using the simulator OSARE𝑔 .Sim instead of the real encoder which
computes 𝑥0, 𝑦0 and sets 𝑧̂0 = 𝑥0 + 𝑦0.
More concretely, we set 𝑧̂′0 ← OSARE𝑔 .Sim(1𝜆, pk, fskpct) where pct ← PKE.Enc(𝑦; 𝑟PKE), and
fskpct ← FE.KeyGen(msk, pct).

Hybrid 2. We sample the encoding 𝑧̂′1 using the simulator OSARE𝑒 .Sim instead of the real encoder which
computes 𝑥1, 𝑦1 and sets 𝑧̂1 = 𝑥1 + 𝑦1.
More concretely, we set 𝑧̂′1 ← OSARE𝑒Sim(1𝜆, fpk, fct) where fct← FE.Encfpk((𝑥, sk); 𝑟FE).

Hybrid 3. We simulate the functional secret key and ciphertext using the simulator FE.Sim instead of run-
ning FE.Setup, FE.Enc, FE.KeyGen algorithms.

More concretely, we set (fpk′, fsk′, fct′) ← FE.Sim(1𝜆, pct, 𝑓 (𝑥,𝑦)).

Hybrid 4. We simulate the public key encryption ciphertext by encrypting 0𝑛𝑌 instead of 𝑦.

More concretely, we set pct′ ← PKE.Encpk(0𝑛𝑌).

We write Hyb𝑖 to denote the output distribution of hybrid 𝑖. We now show that each pair of adjacent
distributions defined above are computationally indistinguishable.

Claim 3.9. Suppose OSARE𝑔 is secure according to definition 3.1. Then,

Hyb0 ≈𝑐 Hyb1.

Proof. Hyb0 differs from Hyb1 only in that in the first 𝑧̂0 = 𝑥0 + 𝑦0 is a real sum encoding, whereas in the
second it is a simulated encoding, 𝑧̂′0 ← OSARE𝑔 .Sim(1𝜆, pk, fskpct). Accordingly, we can turn any distin-
guisher between the hybrids to a distinguisher against 𝑧̂0 and 𝑧̂′0, which contradicts the one-sided security of
OSARE𝑔 . □

Claim 3.10. Suppose OSARE𝑒 is secure according to definition 3.1. Then,

Hyb1 ≈𝑐 Hyb2.

Proof. Hyb1 differs from Hyb2 only in that in the first 𝑧̂1 = 𝑥1 +𝑦1 is a real sum encoding and in the second
it is a simulated encoding, 𝑧̂′1 ← OSARE𝑒Sim(1𝜆, fpk, fct). Accordingly, we can turn any distinguisher
between the hybrids to a distinguisher against 𝑧̂1 and 𝑧̂′1, which contradicts the one-sided security of OSARE𝑒 .

□

Claim 3.11. Suppose FE is secure according to definition 2.3. Then,

Hyb2 ≈𝑐 Hyb3.

14

Proof. Hyb2 differs from Hyb3 only in that in the first (fpk, fskpct, fct) are all sampled according to the
real FE algorithms; namely, (msk, fpk) ← FE.Setup(1𝜆), fskpct ← FE.KeyGen(msk, pct), and fct ←
Encfpk((𝑥, sk))), whereas in the second they are simulated, (fpk′, fsk′, fct′) ← FE.Sim(1𝜆, pct, 𝑓 (𝑥,𝑦)).
Since the adversary’s view in these hybrids is independent of msk and 𝑟FE, we can turn any distinguisher
between the hybrids to a distinguisher against (fpk, fskpct, fct) and (fpk′, fsk′, fct′) . Since 𝑑 ((𝑥, sk), pct) :=
𝑓 (𝑥, PKE.Decsk(pct)) = 𝑓 (𝑥,𝑦) this contradicts the FE security. □

Claim 3.12. Suppose PKE is secure according to definition 2.2. Then,

Hyb3 ≈𝑐 Hyb4.

Proof. Hyb3 differs from Hyb4 only in that in the first pct is an encryption of𝑦, namely, pct← PKE.Encpk(𝑦),
whereas in the second it is an encryption of 0𝑛𝑌 , pct′ ← PKE.Encpk(0𝑛𝑌). Since the adversary’s view in these
hybrids is independent of sk and 𝑟PKE, we can turn any distinguisher between the hybrids to a distinguisher
against pct and pct′ (given pk), which contradicts PKE security. □

Finally, we note that Hyb4 described the the the simulated output of the constructed ARE. The scheme’s
security follows. □

4 ARE from CDH

In this section, we construct (two-sided) ARE for equality based on the Computational Diffie Hellman As-
sumption, which by [HIKR23, Lemma 5.8] implies ARE for general functions. The resulting construction is
rather simple and may be more efficient (and easy to implement) than the construction in the previous sec-
tion. The presented construction is an adaptation of the pairing-based construction from [HIKR23, Lemma
5.4].

Groups in Additive Notation. We denote group encodings in additive notation (c.f. [BHHO08]). We
consider a prime-order group G and identify it with (Z𝑞, +). A generator 𝑔 ∈ G will be denoted by [1], every
element 𝑔𝑥 by [𝑥], and 𝑔𝑥 × 𝑔𝑦 by [𝑥] + [𝑦] = [𝑥 + 𝑦]. We also denote multiplication by a scalar 𝑐 ∈ Z𝑞 as
𝑐 [𝑥] = [𝑐𝑥] to denote exponentiating 𝑔𝑥 by 𝑐 to obtain 𝑔𝑐𝑥 . Let 𝑛 be the number of bits required to represent
any element in G in binary, and let bin(ℎ) ∈ {0, 1}𝑛 be the binary representation of any element ℎ ∈ G.

Inner Product Mod 2. We denote the inner product mod 2 of two 𝑛-bit strings 𝑥,𝑦 ∈ {0, 1}𝑛 to be

⟨𝑥,𝑦⟩ =
𝑛∑
𝑖=1

𝑥𝑖𝑦𝑖 where 𝑥𝑖 and 𝑦𝑖 are the 𝑖𝑡ℎ bits of 𝑥 and 𝑦.

Definition 4.1 (Squaring Computational Diffie-Hellman). Let G be a PPT generator that given 1𝜆 outputs
(G, 𝑞, [1]), where G is a group of prime order 𝑞 with generator [1] (and efficient representation and oper-
ations). The Squaring-CDH assumption with respect to G states that for public parameters (G, 𝑞, [1]) ←
G(1𝜆), for all polynomial-size circuit families {A𝜆} ,

Pr
𝑥←Z𝑞

[
A(pp, [𝑥]) = [𝑥2]

]
= negl(𝜆) .

We note that the squaring CDH assumption is known to follow from the (plain) CDH assumption.
[MW99, BDZ03].

15

Lemma 4.2. Assuming Squaring CDH, given pp = (G, 𝑞, [1]) ← G(1𝜆), distinct 𝑥,𝑦 ∈ [⌊𝑞/2⌋] , 𝑟, 𝑠 ←
Z𝑞, 𝑡1 = 𝑟 + 𝑠, and 𝑡2 = [𝑟𝑥 − 𝑠𝑦], then 𝑡3 = [𝑟 2𝑥 − 𝑠2𝑦] is computationally unpredictable.

Proof. Letting 𝜏1 = 𝑟 + 𝑠 and 𝜏2 = 𝑟𝑥 − 𝑠𝑦, we have

𝑟 =
𝑦𝜏1 + 𝜏2
𝑥 + 𝑦

𝑠 =
𝑥𝜏1 − 𝜏2
𝑥 + 𝑦 .

Plugging in values for 𝑟 and 𝑠 gives

𝑡3 = [𝛼 · 𝜏1𝜏2 + 𝛽 · 𝜏21 + 𝛾 · 𝜏22] .

where

𝛼 =
4𝑥𝑦
(𝑥 + 𝑦)2

𝛽 =
𝑥𝑦 (𝑦 − 𝑥)
(𝑥 + 𝑦)2

𝛾 =
𝑥 − 𝑦
(𝑥 + 𝑦)2

and 𝜏1, 𝜏2 are uniform in Z𝑞 and independent. Now, we will show that if we have a polynomial-size circuit
family {A𝜆} that given (pp, 𝜏1, [𝜏2]) where (𝜏1, 𝜏2) ← Z2

𝑞 computes [𝛼 · 𝜏1𝜏2 + 𝛽 · 𝜏21 + 𝛾 · 𝜏22] with non-
negligible probability, then we have a polynomial-size circuit family {B𝜆} which contradicts the Squaring
CDH assumption. On input (pp, [𝜌]), the adversary B does the following:

1. Sample 𝑢 ← Z𝑞 .

2. Compute 𝑎 = A(pp, 𝑢, [𝜌]).

3. Output 𝛾−1(𝑎 − 𝛼𝑢 [𝜌] − 𝛽𝑢2 [1]).

If A outputs the correct result 𝑎 = A(pp, 𝑢, [𝜌]) = [𝛼𝑢𝜌 + 𝛽𝑢2 + 𝛾𝜌2], with non-negligible probability then
B outputs 𝛾−1(𝑎 − 𝛼𝑢 [𝜌] − 𝛽𝑢2 [1]) = [𝜌2] with the same probability. □

4.1 Construction

We describe a scheme ARE𝑒𝑞 for the equality function over the domain [𝑑] where (G, 𝑞, [1]) ← G(1𝜆) and
𝑞 > 2𝑑.

Proposition 4.3. The scheme ARE𝑒𝑞 is correct with probability 1
2 .

Proof. For inputs 𝑥,𝑦 ∈ Z𝑞 and additive encoding 𝑧̂ = (𝑧̂0, 𝑧̂1, 𝑧̂2, 𝑧̂3, 𝑧̂4) , we have

⟨bin(𝑧̂2 − 𝑧̂0𝑧̂1), 𝑧̂3⟩ = ⟨bin([𝑅] + [𝑟 2𝑥 − 𝑠2𝑦] − [(𝑟 + 𝑠) (𝑟𝑥 − 𝑠𝑦)]), 𝑆⟩
= ⟨bin([𝑅] + [𝑟𝑠 (𝑥 − 𝑦)]), 𝑆⟩

• If 𝑥 = 𝑦, then the output Decpp(1𝜆, 𝑧̂) = equal is always correct since we always have ⟨bin(𝑧̂2 −
𝑧̂0𝑧̂1), 𝑧̂3⟩ = ⟨bin([𝑅]), 𝑆⟩ = 𝑧̂4.

16

Two-Party Equality ARE ARE𝑒𝑞 from CDH

Setup(1𝜆):

• Set pp = (G, 𝑞, [1]) ← G(1𝜆).

Encpp(1𝜆, 𝑥, 1):

• Sample 𝑟 ← Z𝑞 .

• Output 𝑥 = (𝑟, [𝑟𝑥], [𝑟 2𝑥], 0, 0).

Encpp(1𝜆, 𝑦, 2):

• Sample 𝑠, 𝑅 ← Z𝑞, and 𝑆 ← {0, 1}𝑛.

• Output 𝑦 = (𝑠, [−𝑠𝑦], [−𝑠2𝑦] + [𝑅], 𝑆, ⟨bin([𝑅]), 𝑆⟩).

Decpp
(
1𝜆, 𝑧̂ = (𝑧̂0, 𝑧̂1, 𝑧̂2, 𝑧̂3, 𝑧̂4)

)
:

• If ⟨bin(𝑧̂2 − 𝑧̂0𝑧̂1), 𝑧̂3⟩ = 𝑧̂4, then output equal, else output not-equal.

Figure 3: Two-Party Equality ARE from CDH

• If 𝑥 ≠ 𝑦, then we have ⟨bin([𝑅] + [𝑟𝑠 (𝑥 −𝑦)]), 𝑆⟩ = ⟨bin([𝑅]), 𝑆⟩ + ⟨𝑎, 𝑆⟩ for some nonzero 𝑎 ∈ {0, 1}𝑛 .
The probability of outputting not-equal is the probability that ⟨𝑎, 𝑆⟩ = 1, which is 1

2 because 𝑆 is
sampled independently from 𝑎.

□

Proposition 4.4. The scheme ARE𝑒𝑞 is computationally secure.

Proof. We define the simulator Sim as follows:

• When inputs are equal, Sim(1𝜆,equal) randomly samples 𝑟 ′, 𝑠′, 𝑅′ ← Z𝑞 , 𝑆 ′ ← {0, 1}𝑛 and outputs
(𝑧̂′0, 𝑧̂′1, 𝑧̂′2, 𝑧̂′3, 𝑧̂′4) = (𝑟 ′, [𝑠′], [𝑅′], 𝑆 ′, ⟨bin([𝑅′] − [𝑟 ′𝑠′]), 𝑆 ′⟩).

• When inputs are not equal, Sim(1𝜆,not-equal) randomly samples 𝑟 ′, 𝑠′, 𝑅′ ← Z𝑞, 𝑆 ′ ← {0, 1}𝑛,𝑈 ′ ←
{0, 1} and outputs (𝑧̂′0, 𝑧̂′1, 𝑧̂′2, 𝑧̂′3, 𝑧̂′4) = (𝑟 ′, [𝑠′], [𝑅′], 𝑆 ′,𝑈 ′) .

In both cases, the values (𝑧̂0, 𝑧̂1, 𝑧̂2, 𝑧̂3) = (𝑟 +𝑠, [𝑟𝑥 −𝑠𝑦], [𝑟 2𝑥 −𝑠2𝑦] + [𝑅], 𝑆) are independent and uniformly
random over their respective domains. Since 𝑥 ≠ −𝑦 because 0 < 𝑥,𝑦 < 𝑞/2, the values 𝑧̂0 and 𝑧̂1 are linearly
independent. In addition, since 𝑅 and 𝑆 are independent of 𝑟, 𝑠, 𝑥, and 𝑦, we have 𝑧̂2 and 𝑧̂3 are also uniformly
random and independent from 𝑧̂0 and 𝑧̂1. Thus, (𝑧̂0, 𝑧̂1, 𝑧̂2, 𝑧̂3) ≡ (U(Z𝑞),U(G),U(G),U𝑛) .

For the equality case, 𝑧̂′4 = ⟨bin([𝑅]), 𝑆⟩ is equivalent to the distribution of 𝑧̂′4 by the correctness proof,
which completes the proof for the equality case.

17

In the inequality case, from lemma 4.2 we have 𝑧̂2 − [𝑅] = [𝑟 2𝑥 − 𝑠2𝑦] is unpredictable from (𝑧̂0, 𝑧̂1), which
implies that 𝑅 is unpredictable from (𝑧̂0, 𝑧̂1, 𝑧̂2). Thus, (𝑧̂0, 𝑧̂1, 𝑧̂2, 𝑧̂3, 𝑧̂4) ≈𝑐 (U(Z𝑞),U(G),U(G),U𝑛,U1)
follows from the Goldreich-Levin hardcore bit theorem [GL89]. This shows the output of Sim is computa-
tionally indistinguishable from 𝑧̂ in both cases.

□

4.2 Correctness Amplification

To amplify the correctness of the scheme, we perform parallel repetition.

Lemma 4.5. For any 𝛿 ∈ (0, 1),ARE𝑒𝑞 can be converted to a scheme ARE𝑒𝑞,𝛿 with correctness probability
at least 1 − 𝛿 . The communication complexity of ARE𝑒𝑞,𝛿 is 𝑂 (log(1/𝛿)) times larger than that of ARE𝑒𝑞 .

Proof.

The scheme ARE𝑒𝑞,𝛿 . Let 𝑘 = ⌈log2(1/𝛿)⌉ . Both parties run 𝑘 parallel copies of the scheme ARE𝑒𝑞 . The
evaluator gets 𝑘 sums𝑦1, . . . , 𝑦𝑘 from the 𝑘 copies of ARE𝑒𝑞 and decodes them to get 𝑘 results 𝑏𝑖 = Dec𝑒𝑞 (𝑦𝑖) .
It outputs equal if 𝑏𝑖 = equal for all 𝑖 ∈ [𝑘] and outputs not-equal otherwise.

Correctness. If 𝑥 = 𝑦, then ARE𝑒𝑞 is perfectly correct, so ARE𝑒𝑞,𝛿 will also be perfectly correct. If 𝑥 ≠ 𝑦,

then the probability that ARE𝑒𝑞,𝛿 is incorrect is the probability that 𝑏𝑖 = equal for all 𝑖 ∈ [𝑘], which occurs
with probability

(1
2
)𝑘 ≤ 𝛿.

Security. Security follows by a standard hybrid argument from the security of ARE𝑒𝑞 since all copies of
the scheme are independent of each other. □

Acknowledgments

N. Bitansky was supported in part by the European Research Council (ERC) under the European Union’s
Horizon Europe research and innovation programme (grant agreement No. 101042417, acronym SPP).

References

[AAP19] Navneet Agarwal, Sanat Anand, and Manoj Prabhakaran. Uncovering algebraic structures in
the MPC landscape. In Yuval Ishai and Vincent Rijmen, editors, Advances in Cryptology -
EUROCRYPT 2019 - 38th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part II,
volume 11477 of Lecture Notes in Computer Science, pages 381–406. Springer, 2019.

[ABT21] Benny Applebaum, Zvika Brakerski, and Rotem Tsabary. Perfect secure computation in two
rounds. SIAM J. Comput., 50(1):68–97, 2021.

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in nc0. SIAM J. Comput.,
36(4):845–888, 2006.

18

[App17] Benny Applebaum. Garbled circuits as randomized encodings of functions: a primer. In Yehuda
Lindell, editor, Tutorials on the Foundations of Cryptography, pages 1–44. Springer Interna-
tional Publishing, 2017.

[Bar17] Boaz Barak. The complexity of public-key cryptography. In Yehuda Lindell, editor, Tutorials
on the Foundations of Cryptography, pages 45–77. Springer International Publishing, 2017.

[BDZ03] Feng Bao, Robert H Deng, and Huafei Zhu. Variations of diffie-hellman problem. In Inter-
national Conference on Information and Communications Security, pages 301–312. Springer,
2003.

[BF24] Nir Bitansky and Sapir Freizeit. Robust additive randomized encodings from IO and pseudo-
non-linear codes. In Leonid Reyzin and Douglas Stebila, editors, Advances in Cryptology -
CRYPTO 2024 - 44th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2024, Proceedings, Part VIII, volume 14927 of Lecture Notes in Computer Sci-
ence, pages 109–135. Springer, 2024.

[BGI+14] Amos Beimel, Ariel Gabizon, Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, and Anat
Paskin-Cherniavsky. Non-interactive secure multiparty computation. In Juan A. Garay and
Rosario Gennaro, editors, Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part II, volume 8617
of Lecture Notes in Computer Science, pages 387–404. Springer, 2014.

[BHHO08] Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Ostrovsky. Circular-secure encryption
from decision diffie-hellman. In David A. Wagner, editor, Advances in Cryptology - CRYPTO
2008, 28th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 17-
21, 2008. Proceedings, volume 5157 of Lecture Notes in Computer Science, pages 108–125.
Springer, 2008.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans. Inf.
Theory, 22(6):644–654, 1976.

[FKN94] Uriel Feige, Joe Kilian, and Moni Naor. A minimal model for secure computation (extended
abstract). In Frank Thomson Leighton and Michael T. Goodrich, editors, Proceedings of the
Twenty-Sixth Annual ACM Symposium on Theory of Computing, 23-25 May 1994, Montréal,
Québec, Canada, pages 554–563. ACM, 1994.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In
David S. Johnson, editor, Proceedings of the 21st Annual ACM Symposium on Theory of Com-
puting, May 14-17, 1989, Seattle, Washington, USA, pages 25–32. ACM, 1989.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental poker
keeping secret all partial information. In Harry R. Lewis, Barbara B. Simons, Walter A.
Burkhard, and Lawrence H. Landweber, editors, Proceedings of the 14th Annual ACM Sympo-
sium on Theory of Computing, May 5-7, 1982, San Francisco, California, USA, pages 365–377.
ACM, 1982.

[HIJ+17] Shai Halevi, Yuval Ishai, Abhishek Jain, Ilan Komargodski, Amit Sahai, and Eylon Yogev.
Non-interactive multiparty computation without correlated randomness. IACR Cryptol. ePrint
Arch., page 871, 2017.

19

[HIKR23] Shai Halevi, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. Additive randomized encodings and
their applications. In Helena Handschuh and Anna Lysyanskaya, editors, Advances in Cryptol-
ogy - CRYPTO 2023 - 43rd Annual International Cryptology Conference, CRYPTO 2023, Santa
Barbara, CA, USA, August 20-24, 2023, Proceedings, Part I, volume 14081 of Lecture Notes
in Computer Science, pages 203–235. Springer, 2023.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation with ap-
plications to round-efficient secure computation. In 41st Annual Symposium on Foundations
of Computer Science, FOCS 2000, 12-14 November 2000, Redondo Beach, California, USA,
pages 294–304. IEEE Computer Society, 2000.

[IK02] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via perfect ran-
domizing polynomials. In Peter Widmayer, Francisco Triguero Ruiz, Rafael Morales Bueno,
Matthew Hennessy, Stephan J. Eidenbenz, and Ricardo Conejo, editors, Automata, Languages
and Programming, 29th International Colloquium, ICALP 2002, Malaga, Spain, July 8-13,
2002, Proceedings, volume 2380 of Lecture Notes in Computer Science, pages 244–256.
Springer, 2002.

[IKOS06] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography from
anonymity. In 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS
2006), 21-24 October 2006, Berkeley, California, USA, Proceedings, pages 239–248. IEEE
Computer Society, 2006.

[Ish13] Yuval Ishai. Randomization techniques for secure computation. In Manoj Prabhakaran and
Amit Sahai, editors, Secure Multi-Party Computation, volume 10 of Cryptology and Informa-
tion Security Series, pages 222–248. IOS Press, 2013.

[MW99] Ueli M. Maurer and Stefan Wolf. The relationship between breaking the diffie-hellman protocol
and computing discrete logarithms. SIAM J. Comput., 28(5):1689–1721, 1999.

[RSA83] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital sig-
natures and public-key cryptosystems (reprint). Commun. ACM, 26(1):96–99, 1983.

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption with public
keys. In Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov, editors, Proceedings
of the 17th ACM Conference on Computer and Communications Security, CCS 2010, Chicago,
Illinois, USA, October 4-8, 2010, pages 463–472. ACM, 2010.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th
Annual Symposium on Foundations of Computer Science, Toronto, Canada, 27-29 October
1986, pages 162–167. IEEE Computer Society, 1986.

20

	Introduction
	This Work
	More Related Work
	Technical Overview

	Preliminaries
	Additive Randomized Encodings
	Public Key Encryption
	Single-Key Functional Encryption

	ARE from PKE and FE
	One-Sided ARE
	One-Sided ARE for Equality
	From Equality to Any Small Function
	One-Sided ARE for General Functions

	One-Sided ARE to Full-Fledged ARE from PKE

	ARE from CDH
	Construction
	Correctness Amplification

