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Abstract
As cloud-based quantum computing services, such as those of-

fered by D-Wave, become more popular for practical applications,

privacy-preserving methods (such as obfuscation) are essential to

address data security, privacy, and legal compliance concerns. Sev-

eral efficient obfuscation methods have been proposed, which do

not increase the time complexity of solving the obfuscated problem,

for quantum optimization problems. These include sign reversing,
variable permutation, and the combination of both methods as-

sumed to provide greater protection. Unfortunately, sign reversing

has already been shown to be insecure.

We present two attacks on variable permutation and the com-

bined method, where it is possible to efficiently recover the deob-

fuscated problem, particularly when given access to the obfuscated

problem and its obfuscated solution, as a cloud-based quantum

provider would have. Our attacks are in the context of an optimiza-

tion problem of cryptanalysis of the Trivium cipher family, but our

approach generalizes to other similarly structured problems.

Our attacks are efficient and practical. Deobfuscating an opti-

mization problem with 𝑛 variables obfuscated with the combined

method has a complexity of 𝑂 (𝑛2) compared to the complexity of

𝑂 (𝑛 · 𝑛! · 2𝑛) of the brute force attack. We provide an implementa-

tion of our attack; using a commodity laptop, our attack using the

full Trivium cipher takes less than two minutes if optimized. We

also present possible countermeasures to mitigate our attacks and

bring attention to the need for further development in this area.

CCS Concepts
• Security and privacy→ Cryptanalysis and other attacks.

Keywords
Privacy preserving techniques, attacks, obfuscation, quantum com-

puting and annealing, quantum optimization
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1 Introduction
The ever increasing scale and complexity of computational prob-

lems require significantly greater computational power [48], driving

the search for alternative solutions like those offered by quantum

computing. While classical (von Neumann) solutions have been

widely and effectively employed, quantum solutions present an ap-

pealing alternative, offering far greater computational capabilities,

particularly for specific classes of problems such as cryptography,

complex simulations, machine learning, and more.

Gate-based quantum computers are the most widely recognized

type of quantum computer. Operating on the principles of quantum

gates to manipulate quantum bits (qubits), they are considered

general purpose as they can solve a wide range of problems and run

any quantum algorithm. Although these computers hold long-term

promise as universal solutions for quantum computation, they are

still experimental and face significant research and deployment

challenges, particularly in scalability (increasing qubit counts) and

accuracy (reducing error rates) [32].

In contrast, quantum annealing computers are specialized quan-

tum computers designed for specific types of computational tasks.

They leverage the principles of quantum physics to identify the min-

imum energy state of a system, making them particularly effective

for problems such as optimization and probabilistic sampling. Quan-

tum annealing computers have scaled up to thousands of qubits,

with D-Wave’s Advantage system featuring over 5,000 qubits [45].

In contrast, state-of-the-art gate-based quantum computers have

reached over 1,000 qubits with IBM’s 1,121-qubit quantum chip [23].

Quantum annealing is increasingly being applied in real-world

scenarios in diverse industries [56], in part due to the fact that access

to quantum annealing is commercially available [47]. In transporta-

tion, scheduling and logistics, it has been used to optimize vehicle

routing, fleet management and driver scheduling [4, 7, 20, 54], in-

cluding applications such as navigating bus fleets at events [35, 55]

and automating weekly driver schedules. In finance, quantum an-

nealing has shown significant potential in portfolio optimization

by effectively balancing risk and return, achieving near-optimal

solutions for indices like the Nikkei225 and S&P500 [22, 34, 43, 50].
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It also holds promise in cryptanalysis, particularly in the context of

stream ciphers [28, 52], where it can outperform traditionalmethods

such as brute force or the Grover’s algorithm [3], although its appli-

cation to asymmetric cryptography remains limited [17, 25, 31, 51].

Despite the high computational potential and applicability of

quantum annealing to industry problems, building quantum com-

puters is prohibitively expensive and challenging [32]. As a result,

organizations are turning to cloud-based quantum computing ser-

vices, which provide affordable and scalable access to quantum

resources without the need for significant infrastructure invest-

ments. In fact, many organizations, including organizations such

as Johnson & Johnson (healthcare and consumer goods), NTT Do-

como Inc. (telecommunications), Recruit Group (HR and staffing

solutions), Ferrovie dello Stato Italiane - FS Italiane (transporta-

tion), SavantX in cooperation with Fenix Marine Services (AI and

logistics), have used D-Wave services [47].

However, this approach presents challenges associated with shar-

ing computational problems with a third-party provider, mirroring

concerns commonly seen in traditional cloud computing, such as

data security, privacy, and regulatory compliance [41]. Even if we

optimistically–and unrealistically, contrary to established security

principles–assume a fully trusted provider resistant to all security

breaches, regulatory compliance issues still persist. Unlike tradi-

tional cloud computing, where local providers can often meet juris-

dictional requirements, cloud-based quantum annealing services

will, for the foreseeable future, require reliance on organizations

operating outside the same legal jurisdiction. This is due to the

limited availability and regional presence of those services.

These legal compliance challenges affect companies and service

providers alike. Companies are required to comply with relevant

laws, such as data protection and privacy regulations, including EU

GDPR [38], California CCPA [27], and Brazilian LGPD [8]. At the

same time, service providers may prefer not to access sensitive or

protected data to mitigate compliance risks. This becomes particu-

larly complex in international applications, where differing legal

frameworks add another layer of difficulty. For instance, national

security and surveillance laws, such as the U.S. CLOUD Act [15],

China’s Cybersecurity Law [9], and the U.S. Patriot Act [12], can

impose obligations on providers to disclose customer data, some-

times conflicting with local laws in other jurisdictions. Addition-

ally, cybersecurity laws like the EU Cybersecurity Act [39], U.S.

HIPAA [11], and U.S. FISMA [13] impose strict requirements for

securing sensitive data, while intellectual property and industry-

specific regulations, such as the U.S. Dodd-Frank Act [14] for fi-

nancial services and FERPA for educational data [10], add further

compliance obligations. See Section 2 for further discussion.

A straightforward solution to mitigate these issues, often em-

ployed in traditional cloud computing [5, 21, 42], is to apply privacy-

preserving techniques to obfuscate input and output data, a strategy

also applicable in the context of cloud-based quantum computation.

In this paper, we focus on privacy-preserving techniques for

quantum optimization problems that can be solved using either

quantum annealing [26, 33] or gate-based quantum methods such

as the Quantum Approximate Optimization Algorithm (QAOA) [2,

18, 19]. However, we are primarily concerned with the impact of

the attacks we present on quantum annealing, as it is currently

the most practical quantum computing approach for optimization

problems and is likely to remain so for the foreseeable future.

Quantum optimization problems are typically represented in the

form of Quadratic Unconstrained Binary Optimization (QUBO) or

the Ising model, and several obfuscation techniques for those prob-

lems exist (see Table 1). A task to be solved is first transformed into

an optimization problem (either QUBO or Ising model), after which

a selected obfuscation technique is applied. The obfuscated opti-

mization problem is then sent to the cloud-based quantum provider

to solve. Once the provider returns the obfuscated solution, it is

deobfuscated to yield the solution to the original task (see Figure 1).

One such obfuscation technique is sign reversing [37], which

involves reversing the sign of selected coefficients in the Ising

model representation of the optimization problem to disguise its

structure. Another method is variable permutation, partially derived
from [1], where both a vector of variables and the QUBO matrix are

multiplied by a permutation matrix. These two methods can also

be combined to improve the level of obfuscation. Unfortunately,

sign reversal (spin reversal transformation [37] and Enigma-I [1])

has been shown to be insecure [29]. It is possible to efficiently

deobfuscate the obfuscated optimization problem and its solution

by arranging and solving a system of equations.

In this paper, we show that there exist specific problems for

which these privacy-preserving techniques are insecure, even when

both are applied simultaneously. Our results apply to variable per-

mutation, a component of Enigma-II [1], as well as to the simpli-

fied Enigma-II [1] without the inclusion of additional variables

(see Table 1), effectively rendering all currently available obfusca-

tion methods that do not increase the complexity of the obfuscated

optimization problem ineffective. This is a serious concern for prac-

tical applications of cloud-based quantum computation.

We present two attacks (see Section 5) in the context of the Triv-

ium cipher family [49], and show that the obfuscationmethods men-

tioned above are insecure. In our attack, we use the cryptanalysis

of a cipher as an optimization task to be solved using a cloud-based

quantum provider. The task (an algebraic attack against the Triv-

ium cipher [52] with the standard 80-bit key length) is converted

to a QUBO optimization problem, obfuscated using the respective

methods, and then sent to be solved. We then show how an attacker

(who receives the obfuscated optimization problem and/or its ob-

fuscated solution) can extract details about both the optimization

problem and its solution. We stress that our attack is against the

obfuscation methods and not the Trivium cipher family.

The Trivium cipher family, like many hardware-oriented ciphers,

is highly structured, making it particularly susceptible to our at-

tacks. Our attack could extend to other classes of optimization

problems which are similarly structured. Since we cannot defini-

tively determine whether a given problem is highly structured or

not, we should assume that all problems are potentially vulnerable.

The only two other obfuscation methods currently available –

the full Enigma-III algorithm [1] and the combination of digit-wise

splitting with matrix permutation [53]–increase the complexity

of the obfuscated problem. Enigma-III requires adding additional

variables and connections, which, at a time of limited resources,

may render the available hardware unusable. Even with the planned

7000-qubit annealer [46], a solution that creates a fully connected

graph is infeasible. The second method involves solving multiple
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optimization problems instead of one, increasing computational

costs and time requirements, as each problem requires additional

processing. More importantly, however, these methods have been

proposed relatively recently and, although no known attacks have

been identified so far, they also lack formal proofs of security.

While we provide countermeasures (see Section 7), our work

highlights the need to develop more robust obfuscation techniques

for quantum optimization problems. These techniques should not

only provide security, but also maintain practicality by minimizing

computational overhead and preserving compatibility with existing

quantum solvers.

In summary, our contributions are as follows.

• We show that common quantum optimization privacy-

preserving techniques are insecure if the adversary can ac-

cess the obfuscated problem represented in any form, as

is the case of a cloud-based quantum solver. To the best

of our knowledge, we present the first attack against the

variable permutation and the combination of sign revers-

ing and variable permutation methods by exploiting the

optimization problem’s structure. For the combined method,

our attack works regardless of the order in which the in-

dividual methods are applied. Our attack has a polynomial

complexity of 𝑂 (𝑛2), which is significantly faster than the

superexponential time complexity of the brute force attack

of 𝑂 (𝑛 · 𝑛! · 2𝑛) [1].
• Weprovide an implementation of our attack in SageMath [44]

and evaluate it using Trivium with an 80-bit key. We demon-

strate that our attack is highly efficient, taking under 60

minutes when unoptimized and under 2 minutes when opti-

mized. Additionally, we present a pen-and-paper example of

our attack using the Univium cipher with a 9-bit key.

• We propose mitigation techniques such as modifying the co-

efficient in the Rosenberg substitution, forming linear com-

binations of Boolean equations, and applying affine transfor-

mations to Boolean variables before transforming the task

into an optimization problem. These techniques can be com-

bined with sign reversing and variable permutation methods.

Our countermeasures significantly increase the difficulty of

the resulting optimization problem, rendering the attacks we

presented ineffective. However, it is unclear whether other

types of attack could be applied in such cases, but the com-

plexity of exploiting these mitigated approaches appears to

be significantly higher.

This paper is organized as follows. Section 2 explores legal risks

in cloud computing and obfuscation as a defense. Section 3 provides

an overview of current privacy-preserving methods for quantum

optimization, as well as background on the Trivium cipher family.

Section 4 describes the attack framework, while Section 5 details our

attacks. Section 6 demonstrates their practical feasibility. Section 7

outlines possible countermeasures to defend against our attacks.

Finally, Section 8 concludes the paper.

2 Legal Compliance Risks in Cloud Computing
and Obfuscation Defense

2.1 Legal compliance risks in cloud computing
Outsourcing a computational task to a service provider is feasible

if there is sufficient trust, the service provider is held accountable

for their actions and their consequences (under civil, criminal, and

administrative law), and/or technical safeguards are in place to limit

the potential for misconduct.

When considering the responsibility of cloud services, the gen-

eral data protection rules from criminal lawmay apply. For example,

German criminal law [40] defines penalties for computer fraud (Sec-

tion 263a). Among others, “making unauthorized use of data" falls

into the category of computer fraud. A precondition is the inten-
tion of obtaining an unlawful pecuniary benefit for themselves or a
third party. In this case, the penalty is up to 5 years’ imprisonment.

The keywords are “unauthorized use of data" and “benefit." In turn,

Polish criminal law [36] states in Article 266 that whoever, contrary
to the provisions of the law or an obligation assumed, discloses or
uses information that he or she has become aware of in connection
with his or her function, work, . . . or scientific activity, shall be subject
to a fine, restriction of freedom, or imprisonment for up to 2 years.
There is no condition of obtaining a benefit," while the penalties are

substantially lower. In both cases, a contract stating confidentiality

conditions is necessary for criminal prosecution. However, it is

worth noting that the penalties might be too low to deter cases

where the value of the data leaked is very high. This may include,

in particular, cryptanalytic tasks and data of strategic importance.

There are situations where specific regulations apply, and addi-

tional threats exist for the offender. A prime example is GDPR [38]

and violations of personal data protection rules. In such cases,

heavy administrative fines can be imposed alongside criminal penal-

ties. For unauthorized personal data transfer, the maximum fine is

10,000,000 EUR or up to 2% of the offender’s total worldwide annual

turnover (whichever is greater). In the case of cloud-based quantum

computing services, the issue might be that the service provider

cannot determine beforehand whether the data being processed

concerns an identifiable person and, therefore, whether processing

it falls into the category of personal data protection.

On the other hand, the problem with contractual protection and

criminal law is that gathering evidence against a cloud service can

sometimes be difficult or even impossible. If the leaked data is a

decryption key, the party gaining access to a particular plaintext

encrypted with this key may use this knowledge in a covert manner.

This, in turn, creates a legal risk for the customer, who could be

accused of delivering data to a service provider without ensuring

adequate control.

Another practical problem is the applicability of local law. If

services are ordered in a third country, the place of contracting

and the place where services are provided may, according to the

contract, result in the simultaneous application of legal rules from

different countries, even if they are incompatible. As a result, the

customer might be at a disadvantage if the services are operated in a

country with a Common Law system, while the customer originates

from a country with a Continental Law system.

The situation becomes complicated when laws such as the U.S.

CLOUD Act [15] apply. According to the act, A provider of . . . or
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remote computing service shall comply with the obligations of this
chapter to preserve, backup, or disclose the contents of a wire or elec-
tronic communication and any record or other information pertaining
to a customer or subscriber. This means that for a computing task, a

customer’s input and output must be retained and disclosed upon

demand by relevant authorities. The scope of the CLOUD Act is

vast: the information can be requested from U.S. companies and

organizations regardless of whether such communication, record, or
other information is located within or outside of the United States. As
a result, if processing takes place on foreign soil and is regulated

by regional law, fulfilling the obligations stated in the CLOUD Act

may be forbidden by regional law and subject to severe penalties.

The CLOUD Act establishes safeguards that may be applied to

protect a provider in specific situations. A providermay file amotion
to modify or quash the legal process in the U.S.; however, this step is

admissible only if the provider reasonably believes:
(1) the customer or subscriber is not a United States person and

does not reside in the United States; and
(2) the required disclosure would create a material risk of violating

the laws of a qualifying foreign government.
It is important to note that the term United States person is very

broad and includes unincorporated associations with a substantial
number of members that fall into this category. The critical condition
is the second one, which applies only to qualified countries. The

definition of qualified countries is also provided in the CLOUD

Act and specifically requires an executive agreement between the

United States and the country in question. As a result, providers

offering services in countries without such agreements cannot file

a motion to quash the process.

Ongoing disputes and discussions concerning the CLOUD Act

persist in Europe, with strong opposition to its admissibility in the

region. From the perspective of a service provider, these legal and

political disputes create uncertainty and fail to provide a reliable

foundation for conducting business.

2.2 Obfuscation as a legal defense
Obfuscating the input and output of a cloud computation is a highly

effective strategy to mitigate the business risks faced by a cloud

operator. Obfuscation serves multiple purposes:

(1) The input and output data, being obfuscated, can be disclosed

to authorities in compliancewith regulations like the CLOUD

Act without violating the rights and interests of the customer,

as the data are rendered useless in this form.

(2) At the same time, the provider is protected from accusations

of illegal data transfer, as any leaked data are unintelligible

and of no value. In cases of potential criminal prosecution,

the act would be considered to haveminor social harmfulness,
leading to the dismissal of the case. For personal data pro-

tection, effective pseudonymization of the input addresses

concerns related to GDPR [38].

(3) Obfuscation reduces the effort required for cybersecurity pro-

tection of services. Even if a security breach occurs and the

fault is attributed to the provider, civil claims would reflect

the actual damages suffered by the customer, which should

be minimal or negligible if the data are well-obfuscated.

(4) It simplifies risk analysis and facilitates contractual agree-

ments with service providers. In many cases, due diligence
is required, and failure to meet this obligation is punishable.

Obfuscation reduces this burden by mitigating associated

risks.

If the computation input is encrypted using a homomorphic

encryption scheme, the provider performing computations on the

encrypted data is safeguarded in the ways discussed above. The

same applies to end-to-end encryption for communication services.

For tasks like quantum optimization involving sensitive informa-

tion, strong privacy guarantees are essential for both the customer

and the service provider.

3 Background and Related Work
In this section, we provide an overview of optimization problem

representations, existing privacy-preserving methods for quantum

optimization, and the Trivium cipher family.

3.1 Representation of optimization problems
Many optimization problems can be represented as either a QUBO

problem or an Ising model, both of which are required formats for

quantum solvers. These two representations are equivalent and can

be easily transformed into one another.

QUBO Problem. A QUBO problem is an optimization problem

that uses binary variables, defined in Expression (1).

min

𝑥∈{0,1}𝑛
𝑥𝑇𝑄𝑥. (1)

Problem can also be represented as minimizing the folowing expres-

sion: 𝑓 (𝑥) = ∑𝑛−1
𝑖=0 𝑄𝑖,𝑖𝑥𝑖 +

∑𝑛
𝑖,𝑗=0𝑄𝑖, 𝑗𝑥𝑖𝑥 𝑗 . The vector 𝑥 contains 𝑛

binary variables, and 𝑄 is the matrix representing the problem:

𝑄 =


𝑄0,0 𝑄0,1 · · · 𝑄0,𝑛−1
𝑄1,0 𝑄1,1 · · · 𝑄1,𝑛−1
.
.
.

.

.

.
. . .

.

.

.

𝑄𝑛−1,0 𝑄𝑛−1,1 · · · 𝑄𝑛−1,𝑛−1


. (2)

Ising Model. The Ising model is an alternative representation

of an optimization problem. It can be viewed as minimizing the

expression: 𝑓 (𝑠) = ∑𝑛−1
𝑖=0 ℎ𝑖𝑠𝑖 +

∑𝑛−1
𝑖, 𝑗=0 𝐽𝑖, 𝑗𝑠𝑖𝑠 𝑗 . The vector 𝑠 is called

the state, and each variable 𝑠𝑖 ∈ {−1, 1} is called a spin. In practice,

the problem can be characterized using: a vector of biases (3) and a

matrix describing connections between variables (4):

ℎ =
[
ℎ0 ℎ1 · · · ℎ𝑛−1

]𝑇
; (3)

𝐽 =


𝐽0,0 𝐽0,1 · · · 𝐽0,𝑛−1
𝐽1,0 𝐽1,1 · · · 𝐽1,𝑛−1
.
.
.

.

.

.
. . .

.

.

.

𝐽𝑛−1,0 𝐽𝑛−1,1 · · · 𝐽𝑛−1,𝑛−1


. (4)

The coefficients of each matrix can be determined using the ma-

trix coefficients of the corresponding problem [1]. When moving

from the Ising model to the QUBO problem, the matrix is deter-

mined as Equation (5).

𝑄𝑖, 𝑗 = 4𝐽𝑖, 𝑗 ,

𝑄𝑖,𝑖 = 2(ℎ𝑖 −
∑

𝑗 𝐽𝑖, 𝑗 −
∑

𝑗 𝐽 𝑗,𝑖 .)
(5)
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In reverse, the conversion is analogous.

3.2 Privacy-preserving methods for quantum
optimization

Currently available privacy-preserving methods [1, 37, 53] for quan-

tum optimizations work by obfuscating an optimization problem

so that it can be safely shared with a third party for solving. These

methods work for both representations (QUBO problem and Ising

model) of optimization problems. They can be categorized based

on whether they increase the complexity of solving the obfuscated

problem, the obfuscation method used (e.g., sign reversing, vari-

able permutation, a combination of both, or other), and whether an

attack against the method exists. Table 1 provides a comparison of

privacy-preserving methods for quantum optimization. [37] focuses

on applying the spin reversal transformation to the Ising problem.

The simplest way to protect privacy is to obfuscate the problem

using a homomorphic algorithm, employing a random sequence

to reverse the signs in an Ising problem instance. Importantly, the

minimal energy of the instance remains unchanged. As illustrated

in [37], once decrypted, the solution to the obfuscated problem

is identical to the solution of the original problem. The authors

further demonstrate the efficiency of this method.

In [1], several distinct obfuscation methods are proposed for data

processing. These methods include:

(1) Enigma-I, which obfuscates problem coefficients to intro-

duce random bit flips, effectively concealing coefficients and

outcomes through sign reversal, similar to the Spin Reversal

Transformation [37].

(2) Enigma-II, which modifies the graph structure of QUBO

problems by adding decoy qubits, followed by the random

permutation of variablesΠ. The QUBO problem is then trans-

formed into the Ising form, and sign reversal is applied.

(3) Enigma-III, which obscures connectivity information by trans-

forming the graph to ensure all nodes have an identical

number of connections. This method builds on Enigma-II by

adding additional edges.

Out of the current privacy-preserving methods, only the first

three methods listed in Table 1 do not increase the complexity of

solving the obfuscated problem. The inherent behavior of optimiza-

tion problems makes it difficult to determine the time complexity

of a given problem a priori. However, these methods ensure that:

(1) the absolute values of the coefficients remain unchanged;

(2) the density of the matrix in the Ising representation does

not increase;

(3) the total number of variables in the problem remains con-

stant.

Therefore, the main parameters that influence the time complexity

of the quantum optimization solver remain unchanged. As the time

complexity of solving optimization problems using quantum an-

nealing has not yet been fully resolved, one typically approximates

the complexity of quantum annealing [30] as𝑂

(
𝑒𝑎𝑛

𝑏
)
, for positive

coefficients 𝑎, 𝑏, where 𝑏 ≤ 1 and 𝑛 is the number of variables of

the problem.

Therefore, the time complexity remains at the same level for

those methods. However, we note that in some real-world applica-

tions, the three methods mentioned above may slightly increase or

decrease the problem’s time complexity.

Conversely, if the size of the optimization (QUBO) problem in-

creases, for example, by employing privacy-enhancing methods

that require the addition of decoy qubits (as in the full Enigma-II and

full Enigma-III methods), then, the time complexity of solving such

problems also increases. In fact, the full Enigma-3 algorithm [1] and

the combination of digit-wise splitting and matrix permutation [53]

cause an increase in both the total number of variables and the den-

sity of the problem. Further, the combination of digit-wise splitting

and matrix permutation [53] requires solving multiple instances

of optimization problems of the same size as the original problem.

This approach further implies an increase in the time complexity

of solving optimization problems obfuscated using this method.

Consequently, in this paper, we analyze the following methods

for our attacks, which do not increase the complexity of solving the

obfuscated problem and which have not yet been broken.

(1) Variable permutation: variable permutation, a component

of Enigma-II [1]

(2) Sign reversing + variable permutation: simplification

of Enigma-II [1]; we do not consider the addition of decoy

variables.

Simplified Enigma-II (spin reversal transformation combined with
variable permutation). Below, we provide details of the simplified

Enigma-II method, which is the focus of our attack. This obfuscation

scheme, presented in [1], employs the spin reversal transformation

described in [37], variable permutations, and the addition of decoy

variables. Based on the assumptions made, we simplify the scheme

to the following form:

• in the first step, permutation 𝜋 (given by the permutation

matrix Π) of variables and coefficients of QUBO matrix is

performed:

𝑄̃ = Π ·𝑄 · Π𝑇 ,

𝑥 = Π · 𝑥 ; (6)

• in the second step spin reversal transformation is performed

on matrices
˜ℎ and 𝐽 .

Then, the obfuscation process works as follows:

(1) the client generates a secret key 𝑦 = (𝑦0, 𝑦1, . . . , 𝑦𝑛−1) and a

permutation matrix Π;
(2) using Equation (6), the client applies the following permuta-

tion: 𝑄̃ = Π ·𝑄 · Π𝑇
,

(3) the client performs the spin reversal transformation and

computes
ˆℎ and 𝐽 :

ˆℎ𝑖 = (−1)𝑦𝑖 ˜ℎ𝑖 ,
𝐽𝑖, 𝑗 = (−1)𝑦𝑖+𝑦 𝑗 𝐽𝑖, 𝑗 .

(7)

(4) the client sends the obfuscated problem to the quantum cloud

service and receives the solution 𝑠;

(5) the client retrieves the solution using Equation (8) and per-

mutation used:

𝑠𝑖 = (−1)𝑦𝜋 (𝑖 )𝑠𝜋 (𝑖) . (8)
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Table 1: Comparison of privacy-preserving methods for quantum optimization.

Obfuscation type Obfuscation technique Complexity Remarks

Sign reversing Spin reversal transformation [37] and Enigma-I [1] Unchanged Attack presented in [29]

Variable permutation Variable permutation, part of Enigma-II [1] Unchanged Attack presented in this paper

Variable permutation + sign

reversing

Simplified Enigma-II [1], without adding variables Unchanged Attack presented in this paper

Variable permutation + sign

reversing

Full Enigma-3 algorithm [1] Increased No known attack

Other

Combination of digit-wise splitting and matrix

permutation [53]

Increased No known attack

3.3 Trivium cipher family
We demonstrate our attack in the context of an optimization prob-

lem, specifically an algebraic attack against the Trivium cipher

family. We stress that we do not attempt to break the cipher itself;

our attack targets the respective privacy-preserving methods. This

paper uses the Trivium cipher [16] and its parameterized versions

presented in [49]. The original Trivium cipher consists of three in-

ternal shift registers with nonlinear feedback, which are connected

to form a circular structure. The output bit from one register is

passed to the next: 𝑡3 to register 1, 𝑡1 to register 2, and 𝑡2 to register

3. We can distinguish three types of parameterized cipher based on

the number of internal registers. The internal state update is done

analogously to the original version of the cipher. The following

versions can be specified as:

• Univium, with one internal register and characterized by

parameters(𝑢1, 𝑢2, 𝑛1):
𝑧 = 𝑠3𝑢1

⊕ 𝑠3𝑛1
,

𝑡1 = 𝑠3𝑢1
⊕ 𝑠3𝑛1

⊕ 𝑠3𝑛1−2 · 𝑠3𝑛1−1 ⊕ 𝑠3𝑢2
.

(9)

• Bivium, with two internal registers and characterized by

parameters(𝑢1, 𝑢2, 𝑛1) and (𝑢3, 𝑢4, 𝑛2):
𝑧 = 𝑠3𝑢1

⊕ 𝑠3𝑛1
⊕ 𝑠3𝑢3

⊕ 𝑠3𝑛2
,

𝑡1 = 𝑠3𝑢1
⊕ 𝑠3𝑛1

⊕ 𝑠3𝑛1−2 · 𝑠3𝑛1−1 ⊕ 𝑠3𝑢4
,

𝑡2 = 𝑠3𝑢3
⊕ 𝑠3𝑛2

⊕ 𝑠3𝑛2−2 · 𝑠3𝑛2−1 ⊕ 𝑠3𝑢2
.

(10)

• Trivium, with three internal registers and characterized by

parameters(𝑢1, 𝑢2, 𝑛1), (𝑢3, 𝑢4, 𝑛2) and (𝑢5, 𝑢6, 𝑛3):
𝑧 = 𝑠3𝑢1

⊕ 𝑠3𝑛1
⊕ 𝑠3𝑢3

⊕ 𝑠3𝑛2
⊕ 𝑠3𝑢5

⊕ 𝑠3𝑛3
,

𝑡1 = 𝑠3𝑢1
⊕ 𝑠3𝑛1

⊕ 𝑠3𝑛1−2 · 𝑠3𝑛1−1 ⊕ 𝑠3𝑢4
,

𝑡2 = 𝑠3𝑢3
⊕ 𝑠3𝑛2

⊕ 𝑠3𝑛2−2 · 𝑠3𝑛2−1 ⊕ 𝑠3𝑢6
,

𝑡3 = 𝑠3𝑢5
⊕ 𝑠3𝑛3

⊕ 𝑠3𝑛3−2 · 𝑠3𝑛3−1 ⊕ 𝑠3𝑢2
.

(11)

The original description of the cipher assumes numbering starting

from 1. For ease of calculation, the register bits will be numbered

from 0.

4 Attack Framework
In this section, we first describe a generic framework for solving an

optimization task using a cloud-based quantum computing provider

(see Figure 1). We then describe how our attack fits within this

framework (see Figure 3).

Figure 1 illustrates the steps taken by a client to solve a compu-

tational task using a cloud-based quantum computing provider. The

client starts with a task suitable for a quantum annealer or a QAOA

solver. Then, the client transforms the computational task into an

optimization problem represented as either a QUBO problem or an

Ising model. This transformation is performed using a dedicated

method, such as those described in [17, 25, 28]. The transformation

ensures that the task can be solved by the quantum computing

provider. Next, the client selects an obfuscation method (described

in Section 3.2) to produce an obfuscated optimization problem. Once

obfuscated, the optimization problem is sent to the provider for

processing. The provider uses its solver (either a quantum annealer

or QAOA solver) to compute an obfuscated solution to the obfus-

cated problem. The provider then returns this solution to the client.

Finally, the client deobfuscates the solution. By applying the same

obfuscation technique used earlier, the client retrieves the solution,

which corresponds to the optimal solution for the original task.

In our attacks, we assume that the attacker has access either to

the obfuscated optimization problem alone or to both the obfuscated

problem and its solution. If the attacker has access only to the

obfuscated problem, it can use a quantum solver to compute the

corresponding obfuscated solution.

5 Attacks Against Privacy-Preserving Quantum
Optimization Methods

In this section, we present our attacks. First, we demonstrate how

to identify the substitutions resulting from the Rosenberg lineariza-

tion [24], which forms the basis of the attack on the variable per-

mutation method. We then describe both attacks in detail. The first

attack focuses on recovering the permutation by leveraging knowl-

edge of the Rosenberg substitutions. The second attack combines

the first attack with an attack on sign reserving presented in [29].

5.1 Vulnerability resulting from the Rosenberg
linearization

The basis for performing an attack on the variable permutation

method is knowledge of the application of the Rosenberg lineariza-

tion [24] represented by Equation (12),

𝑥𝑖𝑥 𝑗 ≤ 𝑥𝑘 + 2(𝑥𝑖𝑥 𝑗 − 2𝑥𝑘 (𝑥𝑖 + 𝑥 𝑗 ) + 3𝑥𝑘 ) . (12)

The inequality allows the substitution for each quadratic monomial

of a new variable with a penalty represented by Equation (13),

𝑝𝑒𝑛𝑖, 𝑗→𝑘 = 2𝑥𝑖𝑥 𝑗 − 4𝑥𝑘𝑥𝑖 − 4𝑥𝑘𝑥 𝑗 + 6𝑥𝑘 . (13)
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Figure 1: Generic framework for solving an optimization task using cloud-based quantum computing provider.

As shown in the algebraic attack transformation method for the

QUBO problem presented in [6], the following component appears

in the final polynomial which describes this QUBO problem.

𝑃𝑒𝑛 = 𝑐
∑︁
𝑖, 𝑗,𝑘

𝑝𝑒𝑛𝑖, 𝑗→𝑘 =
∑︁
𝑖, 𝑗,𝑘

𝑐 · 𝑝𝑒𝑛𝑖, 𝑗→𝑘 , (14)

where 𝑐 is the arbitrarily chosen constant. For the purpose of this

analysis, let us assume that the value of 𝑐 = 10. Substituting Equa-

tion (13) yields the following: 𝑃𝑒𝑛 =
∑
𝑖, 𝑗,𝑘 2𝑐 ·𝑥𝑖𝑥 𝑗 − 4𝑐 ·𝑥𝑘𝑥𝑖 − 4𝑐 ·

𝑥𝑘𝑥 𝑗 + 6𝑐 · 𝑥𝑘 .
It follows that each substitution directly impacts the final form

of the QUBO matrix. Each substitution introduces three specific

coefficients:

• −4𝑐 for two quadratic monomials 𝑥𝑘𝑥𝑖 and 𝑥𝑘𝑥 𝑗 , above the

main diagonal;

• 6𝑐 + 1 for a single linear monomial 𝑥𝑘 , on the main diagonal.

The permutation of variables does not alter the coefficients in the

matrix. As a result, even after permutation, the substitutions remain

identifiable allowing one to find the partial permutations and the

paths required to deobfuscate the QUBO problem. This knowledge

of substitutions can be leveraged further in the attack. We show

this below using the Trivium cipher as an example.

5.2 Finding path: Attack against the variable
permutation method

In the matrices obtained for the QUBO problem corresponding to

the algebraic attack on the Trivium cipher, we can easily identify

the coefficients corresponding to the aforementioned monomials.

There are 3 values in the selected columns: two −40 for quadratic
monomials and 61 for linear monomials, representing an additional

variable used in the linearization process. From the matrix, a set of

tuples of the form shown: (𝑥𝑖 , 𝑥 𝑗 : 𝑥𝑘 ) can be derived. The size of

the set depends on the chosen cipher (see Section 3.3 for details):

• for Univium, 3𝑛1 tuples are obtained, which can be arranged

in 2 paths, with a length of 3𝑛1 each, as shown in Equa-

tion (15);

• for Bivium, 2 ·3𝑛2 tuples are obtained, which can be arranged
in 4 paths, with a length of 3𝑛2 each, (2 for each internal

register, analogous to Equation (15));

• for Trivium, 3·3𝑛3 tuples are obtained, which can be arranged
in 6 paths, with a length of 3𝑛3 each, (2 for each internal

register, analogous to Equation (15)).

As illustrated by the construction of the Trivium cipher, shown

in Section 3.3, quadratic monomials overlap in pairs, as shown in

Figure 2. On this basis, the substitutions can be organized into the

Figure 2: Example permutation of internal state with over-
lapping quadratic monomials.

following sequences:

𝑅𝑡 = 𝑠𝑢𝑏0, 𝑠𝑢𝑏1, 𝑠𝑢𝑏2, . . . , 𝑠𝑢𝑏3𝑛𝑡−1,
𝑅−1𝑡 = 𝑠𝑢𝑏3𝑛𝑡−1, 𝑠𝑢𝑏3𝑛𝑡−2, 𝑠𝑢𝑏3𝑛𝑡−3 . . . , 𝑠𝑢𝑏0,

(15)

where:

• 𝑡 ∈ {1, 2, 3}, depends on the type of cipher and identifies the

number of internal registers;

• 𝑠𝑢𝑏𝑖𝑑𝑥 = (𝑥𝑖 , 𝑥 𝑗 : 𝑥𝑘 ), for the corresponding 𝑖, 𝑗, 𝑘 from the

set of substitutions;

• 𝑠𝑢𝑏0 = (𝑥𝑖 , 𝑥 𝑗 : 𝑥𝑘 ), if 𝑥𝑖 does not have a precursor;
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• 𝑠𝑢𝑏𝑖𝑑𝑥 = (𝑥𝑖 , 𝑥 𝑗 : 𝑥𝑘 ), and 𝑠𝑖𝑑𝑥+1 = (𝑥 ′
𝑖
, 𝑥 ′

𝑗
: 𝑥 ′

𝑘
) only if

𝑥 𝑗 = 𝑥 ′
𝑖
;

• 𝑠𝑢𝑏3𝑛𝑡−1 = (𝑥𝑖 , 𝑥 𝑗 : 𝑥𝑘 ), if 𝑥 𝑗 does not have a successor.
Finding the sequence described above is equivalent to finding a

fragment of an obfuscating permutation. By selecting the columns

corresponding to the first elements (and for the last word, both val-

ues in order) of each pair in the sequence, we recover the variables

in their original order before the permutation. As the cipher design

shows, the string does not cover the first bit and has length 3𝑛𝑡 + 1,
as illustrated in Figure 2. Another challenge involves the number

of paths found and determining which one is correct.

To better illustrate the above technique, we will discuss the ex-

ample shown in Figure 2. The internal state consists of a single

9-bit register, similar to the Univium cipher. We assume that the

quadratic monomials depicted in Figure 2 were read from the QUBO

matrix, following the approach described in Section 5.1. For sim-

plicity, we omit the substituted variable for the given quadratic

monomial in this analysis.

Next, we arrange the determined quadratic monomials into two

sequences, as described in Equation 15. For clarity, we will focus

only on 𝑅1 in the following. First, we determine the first and last

elements of the sequence:

• 𝑠𝑢𝑏0 = (𝑥2, 𝑥4), 𝑥2 occurs only once, so it has no predecessor
or successor. Without loss of generality, we assume it will

be the initial word;

• 𝑠𝑢𝑏7 = (𝑥0, 𝑥9), 𝑥9 occurs only once, and since the initial

word is already determined, we assume it is the last word.

Then, we complete the middle of the sequence: 𝑠𝑢𝑏1 = (𝑥4, 𝑥6),
𝑠𝑢𝑏2 = (𝑥6, 𝑥3), 𝑠𝑢𝑏3 = (𝑥3, 𝑥5), 𝑠𝑢𝑏4 = (𝑥5, 𝑥7), 𝑠𝑢𝑏5 = (𝑥7, 𝑥1),
𝑠𝑢𝑏6 = (𝑥1, 𝑥0). At this point, we can designate the internal state

as one of the two possibilities:

𝑠𝑡𝑎𝑡𝑒 ← (−, 𝑥2, 𝑥4, 𝑥6, 𝑥3, 𝑥5, 𝑥7, 𝑥1, 𝑥0, 𝑥9)
𝑠𝑡𝑎𝑡𝑒 ← (−, 𝑥9𝑥0, 𝑥1, 𝑥7, 𝑥5, 𝑥3, 𝑥6, 𝑥4, 𝑥2)

By comparing these options with the state shown in Figure 2, we

observe that the first determined state is correct, albeit with one

missing bit.

With somemodifications, the presented technique can be applied

to the combined method (sign reversing + variable permutation),

which we show next.

5.3 Attack against the simplified Enigma-II
algorithm

The simplified Enigma-II algorithms, presented in Section 3.2, com-

bines two obfuscation techniques: sign reversing (in particular, spin

reversal transformation) and variable permutation.

The method for decrypting spin reversal transformation (equiv-

alent to the Enigma-I model) is detailed in [29] for the 𝐸0 stream ci-

pher. Extending this method to the Trivium cipher family is straight-

forward.

We use two techniques, with appropriate modifications, to per-

form the attack:

• the recovery of sequences from the QUBO matrix, as de-

scribed earlier;

• an attack on spin reversal transformation, as detailed in [29].

Our attack consists of two phases: identifying potential permu-

tations and recovering the solution using spin reversal transforma-

tion.

In the first phase, we identify potential permutations by refining

the previously described method with the following modifications:

• due to sign changes in the Ising model, the coefficients on

the QUBO matrix’s main diagonal also change; we search

for columns containing two values𝑄𝑖, 𝑗 such that |𝑄𝑖, 𝑗 | = 40;

• to simplify the data structure, we store only the quadratic

monomial information, we discard the new variable, modi-

fying the collected tuple to a pair of (𝑥𝑖 , 𝑥 𝑗 );
• we select correct permutations during the second phase of

the attack.

In the second phase, we arrange a system of equations based on

the sequences 𝑅𝑖 , with which each variable corresponding to an

element of the parametrized bias vector ℎ𝑃 . For each element, we

consider two equations :
ˆℎ −ℎ𝑃 = 0 (this equation has a solution in

the given set if the coefficient is not blinded) and
ˆℎ + ℎ𝑃 = 0 (this

equation has a solution in the set if the coefficient is blinded).

If neither equation has a solution within the set {−1, 1}, then
the selected triple permutation should be rejected. Ultimately, this

phase yields a set of ordered triples that represent permutation

fragments for each register. By combining permutations 𝜋 with

knowledge of inverted signs, we can derive algebraic description

of internal state, presented in Equation (17), to recover the solution

from the obfuscated solution.

The number of potential solutions depends on the parameters

of the cipher. For Trivium, if the condition in Equation (16) is not

satisfied, the parametrized matrix equations corresponding to suc-

cessive registers will repeat. We provide the analysis and derivation

of the condition in Section 5.5.

3𝑛1 − 3𝑢1 ≠ 3𝑛2 − 3𝑢3 ≠ 3𝑛3 − 3𝑢5 . (16)

Repetitions may introduce false positives among the analyzed

triplets. Equations that cannot be solved due to too many unknown

variables may indicate triplets that should be discarded. After com-

pleting the attack, we get the following:

• possible keystream: some bits may be missing, but the gaps

are minimal (a few bits at most);

• possible algebraic descriptions of internal states: these are

in a format present on Equation (17); the internal state is

determined by the bits of the obfuscated solution 𝑠𝑖 ∈ {−1, 1}
in the Ising model.

𝑠𝑖 = (−1)𝑦𝜋̃ (𝑖 ) 𝑠𝜋̃ (𝑖 ) . (17)

We note that the algebraic description of initial internal des-

ignated in the attack covers not only the initial internal state

of the cipher but also the state after several steps. This ap-

proach allows the initial state to be determined even if some

bits were not determined. Note that Π̃ is a partial permuta-

tion, which corresponds to selected paths 𝑅𝑚, 𝑅𝑛, 𝑅𝑜 .

The correct internal state can be verified by generating an output

string consistent with the recovered state.

Algorithm 1 provides an overview of the attack. We assume that

the attacker has access to the following:

• the obfuscated problem
ˆℎ, 𝐽 or 𝑄̂ , sent by customer to cloud-

based quantum computing provider; the problem can be
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Algorithm 1Description of the attack on Enigma-II (sign reversing

+ variable permutation

𝑅1, 𝑅
−1
1

, 𝑅2, 𝑅
−1
2

, 𝑅3, 𝑅
−1
3
← O(𝑄̂) ⊲ 𝑅−1

𝑖
is 𝑅𝑖 in reverse order

R1 = {𝑅1, 𝑅−1
1
},R2 = {𝑅2, 𝑅−1

2
},R3 = {𝑅3, 𝑅−1

3
}

ℎ𝑃 , 𝐽𝑃 ← 𝜙 (𝑄̂)
for Π̃𝑖 ∈ R𝑚 × R𝑛 × R𝑜 , 𝑖 = 1, 23 · 3! do
A 𝑗 ← ˆℎ𝜋̃𝑖 ( 𝑗 ) − ℎ𝑃𝜋̃𝑖 ( 𝑗 ) , 𝑗 = 1, 3𝑛𝑡 ⊲ 𝑡 ∈ {1, 2, 3}
𝑧,𝑦 ← 𝜎 (A)
if ⊥ is obtained then

Discard the selected permutation Π𝑖

else
Determine the potential internal state 𝑠:

𝑠 𝑗 = (−1)𝑦𝜋̃𝑖 ( 𝑗 ) 𝑠𝜋̃𝑖 ( 𝑗 ) , 𝑗 = 1, 3𝑛𝑡
end if
Keep the potential internal state 𝑠 and keystream 𝑧

end for
return All stored potential internal states and keystream

easily converted from the Ising model to the QUBO problem,

as these representations can be used interchangeably (see

Section 3.1 for discussion);

• the obfuscated solution 𝑠 to the above problem; the attacker

can either obtain it from the provider or send the obfuscated

problem to the provider itself for solving it if only has access

to the obfuscated problem;

• oracle O, which returns a set of potential permutations as

described earlier;

• oracle𝜙 , as described in [29], which provides a parameterized

model for a given cipher;

• algorithm 𝜎 which solves an obfuscated linear system of

equations; this algorithm, as described earlier, returns either

a potential keystream 𝑧 and a potential of obfuscated key

fragment 𝑦, or failure indicator ⊥.
It is important to note that after identifying all three paths

𝑅𝑚, 𝑅𝑛, 𝑅𝑜 , it is necessary to determine their order (which path

is first, second, and third) as well as the direction of each path. It

means that for three paths, one has to check 3! ·23 = 48 possibilities.

We denote the partial permutation, which is a composite of selected

paths, as Π̃𝑖 . However, if condition (16) is met, then Algorithm 1

may be optimized, and then takes under 2 minutes.

Further, it is important to note that for ciphers satisfying the

assumptions outlined in Section 5.5 (regarding the existence of a

solution), only one specific permutation combination will resolve

the system of equations without resulting in a contradiction.

5.4 Feasibility of Our Attacks with Sign
Reversal and Variable Permutation Applied
in Any Order: Proof and Example

We now show that our attack works regardless of the order in which

sign reversing and variable permutation are applied.

Let us note that if a permutation (described by the permutation

matrixΠ) is applied first, followed by a spin-reversal transformation

(described by the involutory matrix 𝐸, where only the diagonal co-

efficients are non-zero and belong to the set {−1, 1}), the following

holds:

𝑓 = 𝑠 · 𝐽 · 𝑠𝑇 + 𝑠 · ℎ𝑇
= (𝑠 · Π) · (Π𝑇 · 𝐽 · Π) · (𝑠 · Π)𝑇 + (𝑠 · Π) · (ℎ · Π)𝑇
= (𝑠 · Π · 𝐸) · (𝐸 · Π𝑇 · 𝐽 · Π · 𝐸) · (𝑠 · Π · 𝐸)𝑇
+(𝑠 · Π · 𝐸) · (ℎ · Π · 𝐸)𝑇
= 𝑠 · 𝐽 · 𝑠𝑇 + 𝑠 · ˆℎ𝑇 ,

where 𝑠 = 𝑠 · Π · 𝐸, 𝐽 = 𝐸 · Π𝑇 · 𝐽 · Π · 𝐸, and ˆℎ = ℎ · Π · 𝐸. We also

use the property that for every permutation matrix Π, Π−1 = Π𝑇
.

However, if these operations are applied in reverse order–first

performing the spin–reversal transformation (described by the in-

volutory matrix 𝐸′), followed by the permutation transformation

(described by the permutation matrix Π′)-to obtain the same ma-

trices 𝐽 = 𝐸 · Π𝑇 · 𝐽 · Π · 𝐸 and
ˆℎ = ℎ · Π · 𝐸, the following must

hold:

𝑓 = 𝑠 · 𝐽 · 𝑠𝑇 + 𝑠 · ℎ𝑇
= (𝑠 · 𝐸′) · (𝐸′𝑇 · 𝐽 · 𝐸′) · (𝑠 · 𝐸′)𝑇 + (𝑠 · 𝐸′) · (ℎ · 𝐸′)𝑇
= (𝑠 · 𝐸′ · Π′) · ((Π′)𝑇 · 𝐸′ · 𝐽 · 𝐸′ · (Π)′) · (𝑠 · 𝐸′ · Π′)𝑇
+(𝑠 · 𝐸′ · Π′) · (ℎ · 𝐸′ · Π′)𝑇
= 𝑠 · 𝐽 · 𝑠𝑇 + 𝑠 · ˆℎ𝑇 .

This implies that the following condition must hold:

Π · 𝐸 = 𝐸′ · Π′ . (18)

However, it is worth noting that given Π · 𝐸 (which is what

our attack ultimately identifies), it is straightforward to determine

𝐸′ ·Π′, for which Equation (18) holds. Since 𝐸 is a matrix with only

diagonal coefficients that are non-zero (equal to−1 or 1), it is easy to
factorize Π ·𝐸 as the product of 𝐸′ ·Π′. It can be shown that Π = Π′,
and consequently, 𝐸′ = Π𝑇 · 𝐸 · Π. Therefore, our attack remains

effective regardless of the order in which these privacy-preserving

operations are applied.

Example 5.1. Let

Π =


0 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0

 ,
and

𝐸 =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

 .
Then

Π · 𝐸 =


0 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0

 ·

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

 =


0 −1 0 0

0 0 0 1

1 0 0 0

0 0 −1 0

 .
On the other hand, if Π · 𝐸 = 𝐸′ · Π′ = 𝐸′ · Π, then

𝐸′ = Π𝑇 ·𝐸·Π =


0 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0

 ·

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1



0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0

 .
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Figure 3: Attack framework using a framework for solving an optimization task using a cloud-based quantum computing
provider.

It means that

𝐸′ =


0 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0

 ·

0 0 1 0

−1 0 0 0

0 0 0 −1
0 1 0 0

 =

−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 .
5.5 Analysis of our attacks
We now present the rationale supporting the correctness and effec-

tiveness of the proposed attacks. For the attack to succeed, the ar-

ranged equationsmust be solvable. Let us analyze themodified equa-

tion describing the output bit. We assume that𝑈𝑖 = 3𝑢𝑖 and 𝑙 𝑗 = 3𝑛 𝑗 .

Let 𝑧𝑖 + 𝑥𝑈1+𝑖 + 𝑥𝑙1+𝑖 + 𝑥𝑈3+𝑖 + 𝑥𝑙2+𝑖 + 𝑥𝑈5+𝑖 + 𝑥𝑙3+𝑖 − 2𝑘0 − 4𝑘1 = 0..

After squaring both sides of the equation above, we obtain

𝑧𝑖 + 𝑥𝑈1+𝑖 + 𝑥𝑙1+𝑖 + 𝑥𝑈3+𝑖 + 𝑥𝑙2+𝑖 + 𝑥𝑈5+𝑖 + 𝑥𝑙3+𝑖 + 4𝑘0 + 16𝑘1
+2𝑧𝑖𝑥𝑈1+𝑖 + 2𝑧𝑖𝑥𝑙1+𝑖 + 2𝑧𝑖𝑥𝑈3+𝑖 + 2𝑧𝑖𝑥𝑙2+𝑖 + 2𝑧𝑖𝑥𝑈5+𝑖 + 2𝑧𝑖𝑥𝑙3+𝑖
−4𝑧𝑖𝑘0 − 8𝑧𝑖𝑘1 + . . . = 0.

Since we are looking for keystream-dependent coefficients, we

simplify the analysis by omitting expressions where 𝑧𝑖 does not

appear:

. . . + (1 + 2𝑧𝑖 )𝑥3𝑢1+𝑖 + (1 + 2𝑧𝑖 )𝑥3𝑛1+𝑖 + (1 + 2𝑧𝑖 )𝑥3𝑢3+𝑖
+(1 + 2𝑧𝑖 )𝑥3𝑛2+𝑖 + (1 + 2𝑧𝑖 )𝑥3𝑢5+𝑖 + (1 + 2𝑧𝑖 )𝑥3𝑛3+𝑖
+4(1 − 𝑧𝑖 )𝑘0 + 8(1 − 𝑧𝑖 )𝑘1 + . . . = 0.

From [49], we have: 𝑢1 < 𝑢2 < 𝑛1 < 𝑢3 < 𝑢4 < 𝑛2 < 𝑢5 < 𝑢6 < 𝑛3.

Now, we make the following substitutions:

• Δ𝐴 = 3𝑛1 − 3𝑢1;
• Δ𝐵 = 3𝑛2 − 3𝑢3;
• Δ𝐶 = 3𝑛3 − 3𝑢5.

Using the substitutions above, we divide the equation into register-

specific parts based on the indices of the variables appearing in the

equation: part for register 1: (1+2𝑧𝑖 )𝑥3𝑢1+𝑖 +(1+2𝑧𝑖 )𝑥3𝑢1+Δ𝐴+𝑖 , part
for register 2: (1+2𝑧𝑖 )𝑥3𝑢3+𝑖 + (1+2𝑧𝑖 )𝑥3𝑢3+Δ𝐵+𝑖 , part for register 3:
(1 + 2𝑧𝑖 )𝑥3𝑢5+𝑖 + (1 + 2𝑧𝑖 )𝑥3𝑢5+Δ𝐶+𝑖 . As we can see from the above

equations, for a certain 𝑖-th equation, the coefficient will depend on

two variables, neither of which necessarily occurs independently in

previous equations. If Δ𝐴 = Δ𝐵 or Δ𝐵 = Δ𝐶 or Δ𝐴 = Δ𝐶 , the same

situation will occur for the corresponding registers. This leads to

a situation in which some of the 𝑧𝑖 variables may remain unde-

termined, because, for at least two registers. the patterns will be

identical. However, if the condition (16) is met, then it holds that

Δ𝐴 ≠ Δ𝐵 ≠ Δ𝐶 . Consequently, for each register a different pat-

tern for path finding is used, allowing us to distinguish which path

corresponds to register 1, register 2, and register 3. Based on this

differentiation, we can determine the condition shown in Equation

(16) when the equations corresponding to successive registers will

be linearly independent. For example, for the coefficients corre-

sponding to the first bits of the registers, three equations with only

one variable repeated in pairs will be obtained. Such a configuration

of equations allows us to unambiguously solve the obtained system

of equations. Furthermore, this leads to a situation in which the

whole keystream is recovered if the condition in Equation (16) is

met. Notably, this situation holds for the full version of the Trivium

cipher.

5.6 Time complexity analysis
We now analyze the time complexity of the attacks we have pre-

sented. In their paper, the authors of [1] presented a security analy-

sis of their algorithm, and claimed the complexity of the brute-force

attack to be:

𝑂 ((𝑛 +𝑚) · (𝑛 +𝑚)! · (2𝑛+𝑚)), (19)

where 𝑛 is the number of variables in the basic QUBO problem

(before the application of the obfuscation of the problem) or Ising

model and𝑚 is the number of decoy variables. In our case, decoy

variables are not being used, so𝑚 = 0. In this case, Equation (19)

reduces to the following form:

𝑂 (𝑛 · 𝑛! · 2𝑛) . (20)

However, as shown below, our attack for the instance equivalent to

the algebraic attack on the Trivium cipher is polynomial in 𝑛.

Theorem 5.2. The algorithm of revealing both keys for spin re-
versal transformation 𝐸 and permutation Π for the QUBO problem
equivalent algebraic attack on Trivium ciphers family to takes at most
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𝑂 (𝑛2) operations, where 𝑛 is the number of variables in the QUBO
problem (or Ising model).

Proof. Let us assume that we first want to identify all elements

that may belong to any path 𝑅1, . . . , 𝑅𝑘 , where 𝑘 is the number of

distinct paths. To find the proper permutation, we need to construct

these paths. Note that identifying all pairs that may be used to

construct all 𝑘 paths requires 𝑂 (𝑛2) operations. The process of

finding all pairs is as follows:

(1) search the matrix 𝐽 row by row;

(2) in each row, check one coefficient if it appears like the result

of using Rosenberg linearization. If yes, add pair (𝑥𝑖 , 𝑥 𝑗 ) to
the set 𝑆 of substitutions.

The set 𝑆 consists of 𝑂 (𝑛) pairs, which each pair treated as a

short path. Since the set 𝑆 consists of 𝑂 (𝑛) paths, we join these

paths using the method presented in Section 5.2 to obtain 𝑘 distinct

paths 𝑅𝑖 , for 𝑖 = 1, 𝑘 , as required for the given version of the cipher

from Trivium ciphers family (1 path for Univium, 2 paths for Bivium,

and 3 paths for Trivium).

After assigning all elements from 𝑆 , we can construct the missing

paths according to Equation (15). Finally, the process above, after

𝑂 (𝑛2) operations, returns the𝑘 distinct paths𝑅1, . . . , 𝑅𝑘 , 𝑅−11 , . . . , 𝑅−1
𝑘

.

However, the order of the paths and the direction of each path re-

mains unknown. As a result, 𝑘! · 2𝑘 possibilities must be checked.

Since 𝑘 ∈ {1, 2, 3}, this does not affect the asymptotic behavior

of the time complexity. Therefore, identifying the potential per-

mutations 𝜋 relevant from the attack’s perspective requires 𝑂 (𝑛2)
operations.

Now, let us address the complexity of the spin reversal transfor-

mation. As presented above, our attack on the spin reversal trans-

formation always succeeds in the context of a full Trivium cipher.

Therefore, we focus on identifying the spin reversal transformation

for this case.

Let us note that, to determine the necessary part of the spin

reversal transformation (used to identify whether coefficients asso-

ciated with internal states are flipped or not), we need to solve at

most 𝑂 (𝑛) equations. These equations are derived solely using the

vector ℎ, and the matrix 𝐽 is not required in this step. Each equation

can then be solved sequentially. For every equation, we need to

check two possibilities: if the spin reversal transformation key is in

this place equal to −1 or 1.
The algorithm starts by analyzing the equations with only one

unknown bit of keystream 𝑧𝑖 . If it is possible to uniquely determine

the value of 𝑧𝑖 (possible only for one of the two possibilities for

spin reversal, either 𝑧𝑖 = 0 or 𝑧𝑖 = 1), then this value of 𝑧𝑖 may

be substituted in the remaining equations. Solving each equation

sequentially makes it possible to find all the necessary solutions in

this case. A straightforward analysis shows that 𝑂 (𝑛2) operations
are required: after solving each equation, its result must be sub-

stituted into the remaining equations, ultimately leading to 𝑂 (𝑛2)
complexity. □

6 Practical Applicability of Our Attacks
In this section, we demonstrate the practicality of our attacks by

applying them to specific problems. We begin with a pen-and-paper

example of our attack, using the cryptanalysis of the Univium

cipher as an optimization problem. Although such examples are

unusual (and often impractical to show), we felt it was important to

include one to underscore the level of vulnerability in the privacy-

preserving methods we examine.

Additionally, we discuss an implementation of our attack in Sage-

Math [44] and present the results of applying it to the cryptanalysis

of the full Trivium cipher as an optimization problem.

6.1 Pen-and-paper attack using Univium
To demonstrate how our attack works, we will use a small example

of an algebraic attack on the Univium cipher with a 9-bit internal

state as the optimization task. We will use the simplified Enigma-II

method for obfuscation. An attacker with access to both the obfus-

cated problem and the obfuscated solution would be able to retrieve

the cipher’s initial internal state and keystream. Since this is a

pen-and-paper example, we will not have access to the obfuscated

solution, which requires access to a quantum annealer. Instead, we

will demonstrate our attack using only the obfuscated problem,

showing that we can retrieve the keystream and the algebraic de-

scription of the internal state solely from the obfuscated problem.

This description, when paired with the obfuscated solution, would

reveal the actual initial internal state.

Our example consists of the following main steps:

(1) define the optimization task (an algebraic attack against

Univium with 9 bits);

(2) transform the task to a QUBO problem for the generated

keystream 𝑧;

(3) obfuscate the generated QUBO problem using the simplified

Enigma-II method; to do so, we use the key 𝑦 and permuta-

tion matrix Π;
(4) generate the parameterized QUBO matrix for the task;

(5) perform the attack to derive the algebraic description of the

internal state and the keystream;

(6) verify the correctness of the solution using the keystream 𝑧,

key 𝑦 and permutation matrix Π.
Equation (21) shows the matrix structure corresponding to the

cryptanalysis of the Trivium cipher. Each block, representing a

fragment of the internal registers, may vary depending on the

selected cipher. For instance, in the case of the Univium cipher,

only the fragments corresponding to the 𝑎 register and 𝑘 variables

will remain in the matrix.


𝑎 𝑏 𝑐 𝑘

𝑎 qa,a qa,b qa,c qa,k
𝑏 0 qb,b qb,c qb,k
𝑐 0 0 qc,c qc,k
𝑘 0 0 0 qk,k

 (21)

The vector of variables 𝑥 consists of two parts. The first part consists

of the vectors of variables 𝑎, 𝑏 and 𝑐 , which represent:

• the internal state of successive registers;

• the internal state at successive clock cycles;

• substitutions made during linearization.

The second part is a vector that contains the 𝑘 variables.

To illustrate how the attack works, we generated a problem

for the Univium-(3, 6, 9) cipher and the following stream: 𝑧 =

(1, 1, 0, 0, 1, 0, 0, 0, 0). We then generated a QUBO matrix with 54

variables and obfuscated it using the given parameters, following

the method described in [52]. Next, we applied the described attack
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Table 2: Summary of the results for our attack in the context
of the Univium cipher.

i Solution 𝜋 (𝑖) Concealment bit Correctness

0 This bit was not found.

1 −1 · 𝑠33 33 1 ✓
2 1 · 𝑠47 47 0 ✓
3 1 · 𝑠31 31 0 ✓
4 1 · 𝑠22 22 0 ✓
5 −1 · 𝑠23 23 1 ✓
6 This bit was not found.

7 1 · 𝑠2 2 0

8 1 · 𝑠37 37 0 ✓
9 1 · 𝑠0 0 0 ✓

to the generated data. In the initial step, we searched for a sequence

of substitutions and found the following partial permutations:

Π̃1 = (−, 𝑥33, 𝑥47, 𝑥31, 𝑥22, 𝑥23, 𝑥15, 𝑥2, 𝑥37, 𝑥0, 𝑥41),
Π̃−1
1

= (−, 𝑥41, 𝑥0, 𝑥37, 𝑥2, 𝑥15, 𝑥23, 𝑥22, 𝑥31, 𝑥47, 𝑥33) .
For the sequence we found, we arranged systems of equations. The

correct sequence that allowed us to arrange the system of equations

described in the attack discussion was the system of equations for

the sequence Π1. The resulting system of equations is:

𝑦𝜋̃ (𝑖 ) = 0 𝑦𝜋̃ (𝑖 ) = 1

A1 : 𝑧1 − 9/2 = 7/2 𝑧1 − 9/2 = −7/2
A2 : 𝑧2 − 19/2 = −19/2 𝑧2 − 19/2 = 19/2
A3 : 𝑧3 − 9 = −9 𝑧3 − 9 = 9

A4 : 𝑧4 − 9 = −8 𝑧4 − 9 = 8

A5 : 𝑧5 − 9 = 9 𝑧5 − 9 = −9
A6 : 𝑧0 + 𝑧6 − 17/2 = 15/2 𝑧0 + 𝑧6 − 17/2 = −15/2
A7 : 𝑧7 − 15/2 = −15/2 𝑧7 − 15/2 = 15/2
A8 : 𝑧8 − 17/2 = −17/2 𝑧8 − 17/2 = 17/2
A9 : −17/2 = −17/2 −17/2 = 17/2
A10 : −5/2 = 5/2 −5/2 = −5/2

As a result of solving the system of equations, the following were

obtained: partial keystream: 𝑧′ = (−, 1, 0, 0, 1, 0,−, 0, 0) and algebraic
description of part of the internal state:

(−,−𝑠33, 𝑠47, 𝑠31, 𝑠22,−𝑠23,−, 𝑠2, 𝑠37, 𝑠0).
As expected, we could not find the entire stream for the Univium

cipher. When we analyzed the system of equations, we observed

that equation A6 does not allow us to determine the solutions

uniquely.

In the final step, we verify the correctness of the results. Table 2

summarizes the determined algebraic description of the initial inter-

nal state. Analyzing the table confirms the correctness of the attack.

For each row, except 0 and 6 for which the equations could not be

determined, compare the resulting algebraic equation describing

the selected state bit with the corresponding bits of key 𝑦 bit and

permutation 𝜋 elements.

6.2 Practical attack using Trivium
We prepared an implementation of our attack against Enigma-II in

SageMath [44] and conducted experiments to verify its correctness

and practicality. The SageMath implementation contains 600 lines

of code and is not optimized. Completing the entire simulation took

approximately 21 hours. We next provide a detailed breakdown of

the time spent on different stages of the attack.

In our experiment, we used the original version of the Trivium

cipher [16] and generated a keystream of 288 bits. Below we list

the steps we performed and the time required for each:

• problem generation: transformation of the algebraic attack

on Trivium to the QUBO problem and obfuscation using

the simplified Enigma-II method to produce the obfuscated

QUBO matrix.

Time required: 10.5 hours;
• QUBO matrix parameterization: generation of the parame-

terized matrix for cryptanalysis of the Trivium cipher using

the method presented in [29].

Time required: 9.5 hours;
• attack execution: determination of potential variable per-

mutations, analysis of the determined systems of equations,

and determination of the algebraic description of the initial

internal state.

Time required: 1 hour.
As observed in [29] and confirmed by our results, the bottleneck

of the attack lies in the generation of the parameterized matrix. The

time spent on problem generation and obfuscation does not pose

a significant issue for two reasons: first, these steps are typically

implemented on the client; second, we used existing libraries and

generic methods that were not optimized for this specific task.

We note that the parameterized matrix is generated only once.

Once generated, the matrix can be reused in subsequent attacks on

obfuscated QUBO problems involving cryptanalysis of a cipher with

the same parameters. In this scenario, the entire attack is reduced

to the final phase, which can be completed in approximately one

hour.

In our experiment, we recovered the entire keystream. As we

discussed in Section 5.3, this result occurred because condition (16)

was fulfilled. The attack produced an algebraic description of the

internal state and the keystream. We verified the correctness of the

results by comparing the recovered keystream and the algebraic

description of the state analogously to Table 2.

7 Countermeasures to Our Attacks
This section presents three specific methods to mitigate our attacks:

changing the coefficient in the Rosenberg substitution, forming lin-

ear combinations of Boolean equations, and applying affine trans-

formations to the Boolean variables. These methods are compatible

with both representations of optimization problems (QUBO and

Ising model). Furthermore, these methods can strengthen the spin

reversal and variable permutation techniques.

Our attack consists of two steps: the first involves determin-

ing potential permutations, and the second focuses on identifying

reversed spins. As described in Section 5.1, the determination of

permutations is possible due to the knowledge of the specific coef-

ficients used in constructing the polynomial that defines the QUBO

problem. Our countermeasures aim to make the identification of

variable permutations impossible–or at least significantly more
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challenging–by modifying the constant 𝑐 that appears in Equa-

tion 14.

While even the simplest algebraic attack on the Univium ci-

pher requires 54 variables, illustrating countermeasures with such

complexity can be unwieldy. Therefore, to demonstrate our coun-

termeasures, we use a smaller example: a system of three Boolean

equations with three variables which represents an optimization

task. Despite the simplicity of this example, the concepts presented

can be applied to protect against practical attacks. We borrow this

specific example from [6] and present further details in Subsec-

tion 7.1.

7.1 Transforming a System of Boolean
Equations into a QUBO Problem

The following system of equations is given:
𝑓0 : 𝑥0𝑥1 + 𝑥2 + 1 ≡ 0 (𝑚𝑜𝑑 2),
𝑓1 : 𝑥1𝑥2 + 𝑥0 ≡ 0 (𝑚𝑜𝑑 2),
𝑓2 : 𝑥0 + 𝑥1 + 𝑥2 + 1 ≡ 0 (𝑚𝑜𝑑 2).

(22)

Let us transform system 22 into the QUBO problem. First, note that
𝑓0 : 𝑥0𝑥1 + 𝑥2 + 1 = 2𝑘0,

𝑓1 : 𝑥1𝑥2 + 𝑥0 = 2𝑘1,

𝑓2 : 𝑥0 + 𝑥1 + 𝑥2 + 1 = 2𝑘2,

(23)

which is equivalent to the system of equations
𝑓 ′
0
: 𝑥0𝑥1 + 𝑥2 + 1 − 2𝑘0 = 0,

𝑓 ′
1
: 𝑥1𝑥2 + 𝑥0 − 2𝑘1 = 0,

𝑓 ′
2
: 𝑥0 + 𝑥1 + 𝑥2 + 1 − 2𝑘2 = 0,

(24)

Next, linearization is performed:

• 𝑥3 = 𝑥0𝑥1,

• 𝑥4 = 𝑥1𝑥2.

For these two substitutions, the following penalties are obtained:𝑃𝑒𝑛1 =

2(𝑥0𝑥1−2𝑥3 (𝑥0+𝑥1) +3𝑥3) and 𝑃𝑒𝑛2 = 2(𝑥1𝑥2−2𝑥4 (𝑥1+𝑥2) +3𝑥4).
These penalties will be added to the QUBO problem at the end of

the transformation. After linearization, the resulting system of

equations is: 
𝑓 ′
𝑙𝑖𝑛0

: 𝑥3 + 𝑥2 + 1 − 2𝑘0 = 0,

𝑓 ′
𝑙𝑖𝑛1

: 𝑥4 + 𝑥0 − 2𝑘1 = 0,

𝑓 ′
𝑙𝑖𝑛2

: 𝑥0 + 𝑥1 + 𝑥2 + 1 − 2𝑘2 = 0.

(25)

The values of 𝑘0, 𝑘1, and 𝑘2 are limited by the maximal value

of each of the equations. Because the maximal value of 𝑥3 + 𝑥2 + 1
equals 3, it must hold that 2𝑘0 ≤ 3, and therefore the maximal

value of 𝑘0 is 1. Similarly, because the maximal value of 𝑥4 + 𝑥0 is
2, it must hold that 2𝑘1 ≤ 2, and the maximal value of 𝑘1 is 1. The

maximal value of 𝑥0 + 𝑥1 + 𝑥2 + 1 equals 4. Therefore, 2𝑘2 ≤ 4, and

the maximal value of 𝑘2 is 2. Since the sum of Boolean variables

must represent variables 𝑘0, 𝑘1, 𝑘2, one can write 𝑘0 = 𝑥5, 𝑘1 = 𝑥6,

𝑘2 = 𝑥7 + 𝑥8.
Finally, the system of equations is equivalent to:

𝑥3 + 𝑥2 + 1 − 2𝑥5 = 0,

𝑥4 + 𝑥0 − 2𝑥6 = 0,

𝑥0 + 𝑥1 + 𝑥2 + 1 − 2(𝑥7 + 𝑥8) = 0.

(26)

However, let us note that the system of equations in Equation 26 is

not a Boolean function but a pseudo-Boolean function.

Figure 4: Graph𝐺1 which represents the QUBO problem ob-
tained from the system of equations in Equation 22.

Finally, the final QUBO problem may be obtained as

𝐹𝑃𝑒𝑛 = (𝑓 ′
𝑙𝑖𝑛0

)2 + (𝑓 ′
𝑙𝑖𝑛1

)2 + (𝑓 ′
𝑙𝑖𝑛2

)2 + 𝑐 · 𝑃𝑒𝑛 −𝐶,

where 𝑃𝑒𝑛 = 𝑃𝑒𝑛1+𝑃𝑒𝑛2 are penalties obtained during linearization,
and 𝑐 = 10 is an arbitrarily chosen constant. Here, 𝑐 = 10 was

chosen to ensure that incorrect substitutions are avoided during

the function minimization process with a higher probability than in

the case of 𝑐 = 1

2
. Of course, the QUBO problem cannot include the

degree 0 term, denoted here by𝐶 . Thus, the final QUBO problem is

in the form

(𝑓 ′
𝑙𝑖𝑛0

)2 + (𝑓 ′
𝑙𝑖𝑛1

)2 + (𝑓 ′
𝑙𝑖𝑛2

)2 + 𝑐 · 𝑃𝑒𝑛,

but −𝐶 gives the minimal energy of such a QUBO problem.

The final QUBO problem can be expressed by the following

quadratic polynomial: 𝐹𝑃𝑒𝑛 = 22𝑥0𝑥1 + 2𝑥0𝑥2 + 22𝑥1𝑥2 − 40𝑥0𝑥3 −
40𝑥1𝑥3 + 2𝑥2𝑥3 + 2𝑥0𝑥4 − 40𝑥1𝑥4 − 40𝑥2𝑥4 − 4𝑥2𝑥5 − 4𝑥3𝑥5 − 4𝑥0𝑥6 −
4𝑥4𝑥6 − 4𝑥0𝑥7 − 4𝑥1𝑥7 − 4𝑥2𝑥7 − 4𝑥0𝑥8 − 4𝑥1𝑥8 − 4𝑥2𝑥8 + 8𝑥7𝑥8 +
4𝑥0 + 3𝑥1 + 6𝑥2 + 63𝑥3 + 61𝑥4 + 4𝑥6.

The graph structure of this problem is as follows: Figure 4.

The large absolute values of the weights in the given graph make

it easy to identify which variable is substituted for a given quadratic

monomial. For example, it is evident that there is a loop for 𝑥3 with

a weight of 63, and the edges from 𝑥0 to 𝑥3 and from 𝑥1 to 𝑥3 have

weights of−40. From this, it is straightforward to conclude that 𝑥3 is

the variable used to substitute 𝑥0𝑥1 during linearization. Similarly,

since the loop for 𝑥4 has a weight of 61 and the edges from 𝑥1 to

𝑥4 and from 𝑥2 to 𝑥4 have weights of −40, it is clear that 𝑥4 is the
auxiliary variable used to substitute 𝑥1𝑥2 during linearization.

This same technique was used in our attack on the Trivium

cipher family. It allows us to find the path and identify the correct

permutation of variables.

7.2 Changing coefficient in Rosenberg
substitution

The first possible method to mitigate the attacks we present (par-

ticularly to strengthen the variable permutation method) involves

reducing the constant 𝑐 (Equation 14), which is multiplied by every
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Rosenberg penalty during the generation of the QUBO problem.

Throughout this paper, we assumed that the constant 𝑐 is large

enough in order to enforce correct substitutions during the quan-

tum optimization process. However, a large coefficient 𝑐 is not

formally required.

Using 𝑐 = 1

2
is also valid as the minimal solution still yields

the correct solution for the original system of equations, and the

coefficients remain integers. The only practical drawback of this

setting could be the potentially longer time required to obtain the

correct solution to the original system of equations, as the penalty

for incorrect substitutions would be smaller. Despite this, reducing 𝑐

appears to be the simplest method to prevent finding a permutation

of the original system of equations.

7.3 Linear combination of equations
Since the optimization problems in our case are highly structured,

their graph representations exhibit a similarly structured nature.

A straightforward approach to modifying the graph structure is

to perform simple linear combinations of the equations prior to

transforming the problem into QUBO form, resulting in a new

system of equations equivalent to the original one. This process

produces a modified–and less structured–graph representing the

QUBO problem to be solved.

A linear transformation of the given system of equations can

be performed as follows. We combine the first and last equations

(𝑓0 and 𝑓2) in Equation 22, as new first equation (𝑓0) and obtain the

following system of equations:
𝑓0 : 𝑥0𝑥1 + 𝑥0 + 𝑥1 ≡ 0 (𝑚𝑜𝑑 2),
𝑓1 : 𝑥1𝑥2 + 𝑥0 ≡ 0 (𝑚𝑜𝑑 2),
𝑓2 : 𝑥0 + 𝑥1 + 𝑥2 + 1 ≡ 0 (𝑚𝑜𝑑 2).

(27)

We also use the penalty constant 𝑐 = 1

2
. As a result:

(1) identifying the task becomes more difficult in this case;

(2) due to the altered graph structure, deobfuscating the problem

should be significantly harder (or even impossible) under

these conditions;

(3) constructed, it is possible to maintain the same number of

variables or, in some cases, even reduce the number of vari-

ables.

Figure 5: Graph𝐺2 which represents the QUBO problem ob-
tained from the system of equations in Equation 27.

The graph 𝐺2, shown in Figure 5, differs significantly from the

graph 𝐺1, shown in Figure 4 in its structure. Specifically, in𝐺1, the

degree of the node 𝑥2 is 8, whereas in 𝐺2, the degree of the same

node is reduced to 6. Additionally, the weights of 𝐺2 do not easily

reveal the substitutions performed during linearization. Further-

more, if the linear combination of equations is constructed carefully,

it is possible to obtain a QUBO problem with the same or even a

smaller number of binary variables.

We will demonstrate this approach using the example presented

in Equation (27).

We first add equation 𝑓2 to equation 𝑓0. As 𝑓2𝑚𝑎𝑥 = 4, and

𝑓0𝑚𝑎𝑥 = 3, 𝑘2 will require 2 binary variables, while 𝑘0 requires

1 binary variable. At first glance, it might seem that modifying

equation 𝑓0 by adding equation 𝑓2 would result in a new equation

𝑓0 with a maximal value of 7. However, this is not the case because

some monomials cancel out. Consequently, the maximal value of

the new equation 𝑓0 remains 3, and the number of binary variables

required for the new 𝑘0 remains 1.

More generally, we can formulate the following statement: If,

for a general system of Boolean equations, one adds equation 𝑗 to

equation 𝑖 , and

⌊𝑙𝑜𝑔2 𝑓𝑖 𝑚𝑎𝑥 ⌋ ≥ ⌊𝑙𝑜𝑔2 𝑓𝑘 𝑚𝑎𝑥 ⌋, (28)

where 𝑓𝑘 = 𝑓𝑖 + 𝑓𝑗 , such linear combinations do not increase the

number of binary variables. However, in some cases, this approach

may also reduce the number of additional variables if condition (28)

is strict. This scenario occurs when certain monomials cancel out

during the addition.

Therefore, if one adds the equation 𝑓0 to the equation 𝑓2, then

the new system of equations will be of the form:
𝑓0 : 𝑥0𝑥1 + 𝑥2 + 1 ≡ 0 (𝑚𝑜𝑑 2),
𝑓1 : 𝑥1𝑥2 + 𝑥0 ≡ 0 (𝑚𝑜𝑑 2),
𝑓2 : 𝑥0𝑥1 + 𝑥0 + 𝑥1 ≡ 0 (𝑚𝑜𝑑 2) .

(29)

In this case, the maximal values are as follows: 𝑓0 = 3, 𝑓1 = 2,

and 𝑓2 = 3.

Consequently, 𝑘0 = 𝑥5, 𝑘1 = 𝑥6, and 𝑘2 = 𝑥7, where 𝑥5, 𝑥6, 𝑥7 are

binary variables. Since two additional binary variables are required

for linearization, the total number of binary variables needed to

transform system of equations in Equation 22 into the QUBO form

is 9. In contrast, transforming the equivalent system of equations

in Equation 31 using the proposed method will require only 8 binary

variables. Furthermore, the structure of the graph will also differ in

this case. We apply 𝑐 = 1

2
to the penalty constant.

The graph representing the resulting QUBO problem is shown

in Figure 6.

It is worth noting that after applying a small Rosenberg constant

to the penalties and performing linear combinations of equations,

additional techniques such as spin reversal transformation and vari-

able transformation can be applied to further protect the original

task.

7.4 Applying affine transformation of basic
variables in the original Boolean system of
equations

We now present the final method which is performed before trans-

forming the system into the QUBO problem. This method can only



Unveiling Privacy Risks inQuantum Optimization Services ACM ASIACCS 2025, August 25–29 , 2025, Hanoi, Vietnam

Figure 6: Example permutation of internal state with over-
lapping quadratic monomials.

be applied when the resulting QUBO problem is derived from a

system of Boolean equations. In this approach, every valid affine

transformation of variables generates a new system of Boolean

equations. This transformed system is highly likely to have a sig-

nificantly different internal structure. Consequently, analyzing the

QUBO problem derived from the transformed system of equations

is unlikely to reveal information about the original system of equa-

tions.

Assume that the system of equations is given by Equation (22).

Let us perform a simple affine transformation on the original vari-

ables as follows: 
𝑥0 = 𝑦0,

𝑥1 = 𝑦0 + 𝑦1,
𝑥2 = 𝑦0 + 𝑦1 + 𝑦2 .

(30)

In this case, the original system of Boolean equations undergoes

significant changes:
𝑦0 (𝑦0 + 𝑦1) + 𝑦0 + 𝑦0 + 𝑦1 + 1 ≡ 0 (𝑚𝑜𝑑 2),
(𝑦0 + 𝑦1) (𝑦0 + 𝑦1 + 𝑦2) + 𝑦0 ≡ 0 (𝑚𝑜𝑑 2),
𝑦0 + 𝑦0 + 𝑦1 + 𝑦0 + 𝑦1 + 𝑦2 + 1 ≡ 0 (𝑚𝑜𝑑 2).

(31)

Simplifying further, the system of equations can be reduced to the

following: 
𝑦0 + 𝑦1 + 𝑦0𝑦1 + 1 ≡ 0 (𝑚𝑜𝑑 2),
𝑦1 + 𝑦0𝑦2 + 𝑦1𝑦2 ≡ 0 (𝑚𝑜𝑑 2),
𝑦0 + 𝑦2 + 1 ≡ 0 (𝑚𝑜𝑑 2) .

(32)

In the case presented above, the system of equations (32) differs

significantly from the system of equations in Equation 22. Notably,

in Equation 32, three distinct quadratic monomials occur, whereas

in Equation 22, only two quadratic monomials exist. Furthermore,

as illustrated by the graph in Figure 7, the graph structure of the

QUBO problem derived from the system of equations in Equation 31

differs substantially from the graph structure of the QUBO problem

obtained by transforming the system of equations in Equation 22.

Additionally, in the above case, one extra Boolean variable is

required to construct the QUBO problem. As noted, this is because

three quadratic monomials occur instead of two, necessitating one

additional variable for linearization. Consequently, the final QUBO

problem and its graph structure differ significantly from those

obtained from the original system of equations. This makes the

problem of identifying and properly interpreting the solution much

more challenging than in the original case, where spin reversal

transformations and variable substitutions are applied.

It is also worth noting that simple variable permutation (of the

variables of the original system if equations) is a special case of

the affine transformation presented. However, the affine transfor-

mation described here is far more general. If the transformation

from the vector 𝑋 = (𝑥0, . . . , 𝑥𝑛−1) to 𝑌 = (𝑦0, . . . , 𝑦𝑛−1) can be

represented as a quadratic matrix 𝑀 of size 𝑛, where 𝑑𝑒𝑡 (𝑀) ≠ 0,

the transformation is bijective. Therefore, if the solution is found

as vector 𝑌 , the corresponding solution given by 𝑋 is unambigu-

ous. Finally, in affine transformations, it is also possible to add the

constant value 1 to any linear combination of the variables 𝑥 .

In conclusion, the countermeasures we have presented are ef-

fective in the cryptanalysis of ciphers from the Trivium family.

However, when using affine transformations, these methods may

result in a new problem with more variables than the original one.

Once this step is completed, spin reversal transformations should

be applied to further obscure the problem.

Figure 7: Graph𝐺4 which represents the QUBO problem ob-
tained from the system (32).

8 Conclusions
This paper presents the first attack on two privacy-preserving meth-

ods for quantum optimization: variable permutation and its combi-

nation with sign reversal. We demonstrate that even when these

methods are applied together, an adversary with access to the ob-

fuscated problem and its obfuscated solution can efficiently recover

the original optimization problem using a polynomial-time attack

on commodity hardware.

Our attack uses a specific optimization problem (an algebraic

attack on the Trivium cipher family) and leverages its structure.

While not all optimization problems share this vulnerability, there is

no definitive method to classify problems as resistant to our attack.

The existence of our attack poses a significant threat, as clients

cannot risk using a compromised method with known weaknesses.

This risk is particularly acute for legal compliance, where relying

on such methods could be deemed negligent. Although we propose

countermeasures to mitigate our attack and two other unbroken
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privacy-preserving methods for quantum optimization (which in-

crease the complexity of solving the obfuscated problem) exist, our

results underscore the significant challenges in achieving robust

privacy for quantum optimization problems.

Ultimately, our paper shows that universally effective privacy-

preserving techniques for quantum optimization are still signifi-

cantly lacking. This limitation poses a fundamental obstacle to the

secure deployment of quantum optimization services.
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