pogeth

Efficient, post-quantum signature verification on Ethereum

Pycnau Kucine (Ruslan Kysil)*
Eo6tvos Lorand University
Budapest, Hungary

Péter Kutas¥
Eo6tvos Lorand University, University of Birmingham
Budapest, Hungary

ABSTRACT

This work explores the application and efficient deployment of
(standardized) post-quantum (PQ) digital signature algorithms in
the blockchain environment. Specifically, we implement and evalu-
ate four PQ signatures in the Ethereum Virtual Machine: W-OTS",
XMSS, SPHINCS+, and MAYO. We focus on optimizing the gas costs
of the verification algorithms as that is the signature schemes’ only
algorithm executed on-chain, thus incurring financial costs (trans-
action fees) for the users. Hence, the verification algorithm is the
signature schemes’ main bottleneck for decentralized applications.

We examine two methods to verify post-quantum digital signa-
tures on-chain. Our practical performance evaluation shows that
full on-chain verification is often prohibitively costly. Naysayer
proofs (FC’24) allow a novel optimistic verification mode. We ob-
serve that the Naysayer verification mode is generally the cheapest,
at the cost of additional trust assumptions. We release our imple-
mentation called poqeth as an open-source library.

1 INTRODUCTION

Issuing cryptocurrency transactions is one of the most widely used
and important digital signature applications. For instance, Bit-
coin [39] settles roughly 300, 000 transactions per day [27]. Further-
more, billions of dollars worth of crypto assets are transferred daily
on cryptocurrencies such as Bitcoin or Ethereum [54]. Each trans-
action is considered valid if digitally signed with either ECDSA [33]
or the Schnorr signature algorithm [49]. At the time of writing,
no major blockchain supports verifying post-quantum (PQ) secure
digital signature algorithms (DSA) natively.

Several post-quantum secure signature schemes [9, 22, 47] and
key-encapsulation methods have recently been standardized [37]
by the National Institute of Standards and Technology (NIST) and
the Internet Engineering Task Force (IETF) [31]. These successful
standardization processes and the imminent threat of quantum
computers [50] compel practitioners to switch from pre-quantum
to post-quantum signature schemes. Therefore, the Internet is
bound to transition from pre-quantum signatures (e.g., RSA [48],
ECDSA [33], or Schnorr [49]) to post-quantum secure signature
schemes. A growing body of literature is already evaluating the cost
profile of the newly standardized PQ signature schemes in various

“ruslan.ilesik@gmail.com

f seresistvanandras@gmail.com
* p-kutas@bham.ac.uk
Skelecsenyi@protonmail.com

Istvan Andras Seres’
Eo6tvos Lorand University
Budapest, Hungary

Nandor Kelecsényi§
Eo6tvos Lorand University
Budapest, Hungary

internet protocols, e.g., the TLS protocol [41]. However, a similar
line of work has yet to be developed to support the post-quantum
transitioning of cryptocurrencies and blockchain applications.

1.1 Post-quantum security and cryptocurrencies

The problem of saving crypto assets from adversaries with access
to quantum computers has been addressed in the literature [52].
Stewart et al’s proposed solution for Bitcoin can be instantiated
with any post-quantum digital signature algorithm. Interestingly,
the purposefully limited Bitcoin scripting language allows one to
encode! the verification circuit of Lamport signatures [30]. The
resulting transaction will be roughly the same size as a regular
Bitcoin transaction; therefore, there is a negligible additional cost
incurred by verifying the Lamport signatures on Bitcoin. Hence, we
consider the problem of efficiently verifying post-quantum secure
digital signatures on Bitcoin solved. We review related work in
more detail in Section 7. Therefore, in this work, we focus on
enabling Ethereum, the second-largest cryptocurrency by market
capitalization and the largest by transaction volume, to allow its
users to issue post-quantum secure transactions.

1.2 The right PQ signature for Ethereum

Blockchains and their computing environments have unique re-
quirements and limitations, e.g., permanent storage is extremely
expensive, as the data stored on the blockchain are replicated and
stored by the entire network, potentially by thousands of nodes [54].
In particular, when selecting post-quantum digital signatures for
Ethereum, one must consider the specifics of the quasi-Turing-
complete Ethereum Virtual Machine (EVM): the computational
costs of executing EVM opcodes [44, 54], cf. Table 1.

First and foremost, for digital signature schemes, we primarily fo-
cus on the efficiency of the verification algorithm in the blockchain
context, as only signature verification happens on-chain. Key gen-
eration and signing could be even slower, as they are executed
off-chain. Thus, they do not incur any financial costs to users.
Ethereum smart contracts are compiled to EVM bytecode, and the
smart contract bytecode is executed on-chain. Ethereum’s compu-
tation environment measures the cost of each executed opcode by
its so-called gas value, see Table 1. We enlist four characteristics of
the EVM that largely influenced our choices in the implementation
and evaluation of PQ digital signature algorithms.

!See Ethan Heilman’s Bitcoin script for the hash-based Lamport signature verifica-
tion: https://groups.google.com/g/bitcoindev/c/mR53go5gHIk.

https://orcid.org/0000-0003-0143-4057
https://orcid.org/0000-0002-2043-9542
https://groups.google.com/g/bitcoindev/c/mR53go5gHIk

EVM Opcode Gas cost
ADDMOD 8
MULMOD 8

KECCAK256 36

SSTORE 20,000

SLOAD 2,100
MSTORE 3
MLOAD 3
CALLDATALOAD 3

Table 1: Gas costs of important opcodes in the EVM [54].
Opcodes for hashing, temporal memory, and arithmetic op-
erations are orders of magnitude cheaper than writing or
reading permanent storage (SSTORE/SLOAD).

Permanent vs. transient storage In Ethereum, reading and
writing permanent storage (i.e., the blockchain) is expensive
(SSTORE, SLOAD), especially compared to (modular) arith-
metic (e.g., ADDMOD) or hashing operations (KECCAK256).
Thus, signature schemes with large public keys were ruled
out from further consideration, e.g., Dilithium [22]. Since
signatures are only temporarily stored in the transaction
CALLDATA, in the blockchain context, we favour small pub-
lic keys even at the expense of larger signature sizes.

Computational efficiency vs. gas pricing Inthe EVM, each
bytecode operation is assigned a gas cost, which does not
always correlate directly with the actual computational re-
sources required [44]. For example, invoking a cryptographic
hash function costs 36 gas (KECCAK256), while perform-
ing a modular multiplication on 256-bit integers costs 8 gas
(MULMOD). This results in an interesting observation: five
multiplications are more expensive than a single hash op-
eration, even though hash functions are typically consid-
ered more computationally intensive. Consequently, cryp-
tographic operations, such as hash-based signatures, often
deemed computationally expensive, can be surprisingly effi-
cient and cheap when implemented on Ethereum.

Signer’s state In some applications, stateful signatures are
considered burdensome to deploy since the signer must keep
state (typically just a counter as in XMSS [31]). Note that the
verifier in the blockchain context can track this simple state
since the verifier is implemented as a smart contract, i.e.,
a trusted party with a transparent state. This observation
makes stateful signatures a perfect fit for blockchain applica-
tions since the signer can always read its simple state from
the immutable, public blockchain, thus obviating the com-
mon synchronization issues of stateful signature schemes.

Lack of native floating point arithmetic The EVM is a stack
machine with a 256-bit word size: it natively only supports
modular arithmetic for integers less than 2236, Custom-made
smart contract libraries may support larger integers (e.g.,
for verifying RSA signatures) or floating point arithmetic,
though typically at the expense of moderate gas costs. For in-
stance, there exist floating point libraries for Ethereum smart

contracts. 2 Still, they incur gas costs (i.e., ~ 600 gas for addi-
tion) that are two orders of magnitude more expensive than
their natively supported integer arithmetic counterparts, cf.
ADDMOD, MULMOD in Table 1.

Considering the aforementioned characteristics and limitations,
we decided to implement and evaluate an on-chain deployment of
the following four post-quantum digital signatures in the EVM.

W-OTS* [30]. Our first choice is the Winternitz-type one-time
signature scheme by Hiilsing. W-OTS" is an essential building
block of standardized (IETF and NIST) hash-based signatures such
as XMSS and SPHINCS+. Unlike Lamport signatures, it also offers
a time-memory tradeoff we explore and evaluate in Section 4.1.

XMSS [31]. As argued above, stateful signatures are practical in
the blockchain context, as a smart contract can easily keep the state
for the signer. Therefore, the first many-time signature scheme
(though with finite signing capabilities) we consider is the stateful
XMSS signature scheme that the IETF is currently standardizing.

SPHINCS+ [9]. Arguably, the most important stateless hash-
based signature scheme that NIST has recently standardized is
SPHINCS+. It offers small public keys, moderate signature sizes,
and efficient verification.

MAYO [12]. To diversify the trust assumptions our implemented
schemes rely on, we consider a multivariate-quadratic-based sig-
nature scheme that offers one of the most compact signatures (321
bytes at NIST security level 1) along with short public keys (1168
bytes at NIST security level 1). MAYO has been submitted to the lat-
est round of NIST’s post-quantum digital signature standardization
call and advanced to the second round at the time of writing.

1.3 Our contributions
In this work, we make the following three contributions.

e On-chain verification. We implement and evaluate the
verification algorithm of four post-quantum digital signa-
ture algorithms (W-OTS*, XMSS, SPHINCS+, and MAYO) in
the EVM. We suggest optimal parameter choices and other
design decisions for a gas-efficient on-chain deployment.

e Naysayer verification. We implement and evaluate an ef-
ficient, recently proposed way of optimistically verifying
proofs, in particular, PQ signatures. The so-called Naysayer
verification [51] mode offers significant speedups compared
to full verification. We recall the Naysayer proofs in Sec-
tion 2.3. To our knowledge, this is the first publicly available
implementation of the recently proposed Naysayer proof
paradigm in the context of post-quantum secure digital sig-
nature schemes. We observe in Table 2 that currently, on
Ethereum, the Naysayer verification mode offers the most
efficient post-quantum signature scheme deployment.

o We release a proof-of-concept implementation, an extendable
library we call poqeth, 3 is available under the MIT licence
at https://github.com/ruslan-ilesik/poqeth.

2See: https://github.com/abdk- consulting/abdk-libraries-solidity.
3poqeth (/’paz.kat/): the library’s name alludes to the fast, small, pocket-sized post-
quantum signature verification algorithms we implemented and evaluated.

https://github.com/ruslan-ilesik/poqeth
https://github.com/abdk-consulting/abdk-libraries-solidity

gas cost W-OTS* XMSS SPHINCS+ MAYO
On-chain 222114 4363623 11617 690 938752492
Naysayer 126095 594572 693721 107 634 064

Table 2: On-chain vs. Naysayer verification gas costs in the EVM with the most efficient parameter settings for each considered
PQ signature scheme. See Table 7 for the verification costs denominated in US dollars and Appendix B for PQ migration costs.

The remainder of this paper is organized as follows. In Section 2,
we recall the pertinent preliminaries on Ethereum, the EVM, smart
contracts, and Naysayer proofs. In Section 3, we introduce our
system model and (trust) assumptions. The on-chain deployment
of hash-based signatures is presented in Section 4. We detail the
deployment of the MAYO signature scheme for the EVM in Section 5.
We design Naysayer proof systems for more NIST candidate PQ
signature schemes in Section 6. We review related work in Section 7.
Our paper concludes with open problems and future directions for
post-quantum transitioning in Ethereum in Section 8.

2 PRELIMINARIES

This section introduces the notations used, the pertinent back-
ground knowledge on the Ethereum Virtual Machine (EVM), ac-
count abstraction in the EVM, and Naysayer proofs.

2.1 Notations

The security parameter is denoted as A. Uniformly at random
sampling an element x from a set S is denoted as x €g S. The
Hamming weight of a binary string m € {0, 1}* is denoted as ||m||;.
Vectors of strings or group/field elements are typeset in bold, e.g.,
r = (r1,...,r;) and r[i] is the ith element of r. The Merkle tree
vector commitment of a vector r, i.e., the Merkle tree’s root hash,
is denoted as M7 (r) = com;. We denote the membership proof
(i.e., the authentication path) for an element r; € r as 7y,,. The
Merkle membership verification algorithm has the following syntax
MT Vrfy(comy, i, ri, 7tr.r;) — {0, 1}. We use similar notations for
other vector commitments, such as XMSS trees or L-trees.

2.2 The Ethereum Virtual Machine

The EVM is a quasi-Turing-complete ¢ stack machine with 1024
stack size and a word size of 256 bits. The formal semantics of the
EVM’s various opcodes are defined in [54]. Numerous opcodes
exist for logical operations, modular arithmetic, and contract calls,
among others, cf. Table 1. Three main programming languages
compile to EVM bytecode: Solidity, Vyper, and Yul. In this work,
we implement the benchmarked algorithms in Solidity. Currently,
there are two types of accounts: externally owned accounts (EOAs)
whose behaviour is determined by a secret-public key pair and
contract accounts that do not possess a secret-public key. Rather,
their behaviour is determined by some (immutable) EVM byte code.
At the time of writing, each valid Ethereum transaction must come
with the sender’s ECDSA signature. The EVM only supports the
Keccak-256, SHA-256, and RIPEMD-160 hash functions natively.

4The amount of computation (the block_gas_limit parameter) in a single block is upper
bounded by the protocol. However, in principle, it may be raised arbitrarily high.

Account abstraction. The Ethereum Request for Comments (ERC-
4337) proposal, often called “account abstraction”, aims to unify
EOAs and contract accounts [17]. More importantly, ERC-4337
would allow users to authenticate transactions with any digital
signature scheme they choose. In particular, Ethereum users could
sign their transactions using PQ digital signature algorithms, e.g.,
SPHINCS+ or MAYO. This opens up the possibility of endowing
Ethereum with post-quantum security. These “non-native” signa-
tures would be verified on-chain by custom smart contracts running
in the EVM. Thus, the motivation for our work is to evaluate the
efficiency of verifying PQ digital signatures in the EVM.

2.3 Naysayer proofs

A Naysayer proof system Inay [51] for a proof system IT allows one
to efficiently prove with a naysayer proof 7nay that a certain proof
7 is incorrect for an NP relation R. Naysayer proofs are useful
when they can be verified much more efficiently than verifying 7.
We recall the formal definition of a naysayer proof:

Definition 2.1 (Naysayer proof). Given a non-interactive proof
system IT = (Setup, Prove, Verify) for some NP relation R, the corre-
sponding naysayer proof system IInay is a tuple of PPT algorithms
(NSetup, NProve, Naysay, VerifyNay) defined as follows:

NSetup(lA, llnay) — (crs, crspay): Given security parameters 14
and 1%y for the proof systems IT and IIhay, respectively,
output common reference strings crs and crspay. Note this
algorithm might use private randomness.

NProve(crs, x, w) — m: Given a statement x and witness w such
that (x, w) € R, compute 7’ « IL.Prove(crs, x, w) and com
a commitment to the evaluation trace of IL Verify(crs, x, 7’),
output 7 := (com, 7’).

Naysay(crsnay, (x,), AUXnay) — 7Tnay: Givena statement x, 77 =
(com, ") where 7’ is a corresponding (potentially invalid)
proof in proof system I, and auxiliary information Auxnay,
output a naysayer proof 7,y disputing z’.

VerifyNay(crspay, (X, 7), Tnay) — {0, L}: Given a pair of state-
ment and a proof (x, 7 = (com, 7’)) and a naysayer proof
Tnay disputing 7, output a bit indicating whether evidence
against 7 is sufficient to reject 7 (0) or inconclusive (L).

A naysayer proof system must satisfy correctness and soundness.
Intuitively, ITnay satisfies correctness if every incorrect proof «
can be proven to be incorrect with an appropriate naysayer proof
Thay- On the other hand, soundness dictates that a correct proof &
must be impossible to proven to be incorrect by a 7y, with non-
negligible probability. For formal definitions, the reader is referred
to Appendix A.

82—~ 9x

sends sig.

User A « User

On-chain

On-chain
verification

A 8 5 ©

1) sends com.
B

4) sends’

On-chain h

Nay

Naysayer

P

Vse
’Igs —
Stg, =
NS
"+
w Data availability
verification layer

Figure 1: The two signature verification modes we consider in this work. In the on-chain verification paradigm (left), a smart
contract verifies the correctness of users’ signatures. In the Naysayer verification paradigm (right), on-chain only a commitment
to the full signature is stored. The full signature is stored off-chain in a data availability layer. Naysayers can prove to an
on-chain smart contract the incorrectness of the provided user signature by sending a Naysayer proof ray to the verifier contract.
The signature is deemed valid if no correct Naysayer proof has been submitted before a pre-set deadline.

3 SYSTEM MODEL

This section describes the two signature verification modes’ system
models, we apply in this work. In both models, key generation and
the signing algorithms are run off-chain.

3.1 On-chain signature verification

A smart contract running in the EVM verifies the full PQ secure
signature on-chain. This verification mode solely assumes the exis-
tential unforgeability of the applied signature scheme under chosen
message attacks (EUF-CMA). The signature is only stored tem-
porarily in the CALLDATA, and after verification (possibly another
contract handles application-specific state changes, e.g., updating
token balances), it is not available to the contract anymore. Most
blockchain consensus algorithms assume synchrony. However, the
on-chain verification mode even works in an asynchronous net-
work communication model, i.e., post-quantum signed transactions
eventually reach the Ethereum peer-to-peer network. We expect on-
chain verification to be moderately costly for most post-quantum
signature algorithms, cf. Sections 4 and 5. Expensive on-chain
verification motivates the following optimistic verification mode.

3.2 Naysayer signature verification

The Naysayer verification mode aims to minimize the gas costs of
the on-chain verification mode. Therefore, verifying a PQ signature
is broken into two steps.

Storing signature on-chain The signer stores the signature
on-chain, but the contract does not verify the correctness
of the signature. Rather, it optimistically accepts it. In prac-
tice, we do not store the full signature; we must store it in
permanent storage for subsequent naysaying. Rather, only
its Merkle commitment (32 bytes) is stored in the contract’s
permanent storage (which can be deleted after the challenge
period). Note that the full signature is provided by the signer
but the Merkle commitment to it must be computed (and
stored) by the on-chain contract. If a malicious signer would
provide a faulty commitment, then it would not be possible to

naysay efficiently the incorrect signature. On the other hand,
if the verifier is tasked to provide the Merkle commitment
of the full signature, then the verifier could provide a faulty
commitment, essentially accusing the signer of sending an
invalid signature. Therefore, we must resort to computing
the Merkle commitment of the signature by the on-chain
smart contract. We assume that the full signature is available
for inspection off-chain to everyone for naysaying.

Challenge period During a pre-defined challenge period (e.g.,
1 hour), anyone could challenge the correctness of the Merkle-
committed PQ signature by sending naysayer proof to the
on-chain contract. If 7nay is verified, the signature is deemed
incorrect. If no verified 7,y arrives in the contract during
the challenge period, the signature is accepted as valid.

The Naysayer verification paradigm introduces massive cost savings
compared to on-chain signature verification. First, in the happy
path, when the signature is correct, the PQ signature does not even
need to be verified on-chain. Second, in the sad path, when the
signature is incorrect, one only needs to verify a naysayer proof
Thay Whose verification cost is typically significantly lower than
that of verifying the entire signature on-chain, cf. Sections 4 and 5.

However, the Naysayer verification mode introduces additional
trust assumptions. In particular, we assume a synchronous commu-
nication model; otherwise, no Thay could arrive at the blockchain
on time if the adversary can arbitrarily delay messages. We as-
sume existential honesty, i.e., there is at least one honest party
who monitors the correctness of PQ signatures and naysays when
necessary. Finally, we assume that the underlying blockchain is
censorship-resistant [53]. Typically, as our performance evaluation
shows in Sections 4 and 5, Naysayer signature verification is more
gas efficient than on-chain signature verification.

4 HASH-BASED SIGNATURE SCHEME
VERIFICATION IN THE EVM
This section studies implementation challenges and optimal param-

eter sets for hash-based signature schemes in the EVM. We focus
on W-OTS*, XMSS, and SPHINCS+. We evaluate both on-chain and

Naysayer verifications. We implement every scheme with Keccak-
256, which is currently the most secure choice of the three available
hash functions of the EVM. 1t is possible to implement other hash
functions in the EVM; however, they likely incur at least one or-
der of magnitude more gas for every hashing operation. Hence, we
slightly deviate from the NIST and IETF standards for gas efficiency.

4.1 The W-OTS" signature scheme

We start with W-OTS" as it is a core building block also in the
XMSS and SPHINCS+ signature schemes. We quickly recall the
W-OTS* hash-based signature scheme [30]. We stylize parts of
the signature scheme irrelevant to our verification-focused discus-
sion. The W-OTS" signature scheme with message length m is
parametrized by the Winternitz parameter w € N, determining the
time-memory tradeoff. We set the message length (in bits) to be

m = 256. All messages are written in base w. Additional parameters
- - log(h(w—1))

Ll Lo, wherel = I; + 1 = Loé?w)w + [lolg(w)] depend on w.

W-OTS™ uses the following chaining function:

c;;(x, r) = hk(c;;_l(x, 1) ® i), (1)

where . : {0,1}4 — {0, 1} is a cryptographic (non-compressing)
hash function, for k € K, with a keyspace K.

Definition 4.1 (W-OTS" signature scheme). The W-OTS" scheme
consists of the following three efficient algorithms.

KeyGen(lA) — (sk, pk, r, k). The secret key sk = (sky, ..., skj)
consists of I random bit strings. The randomization vector r
consists of w — 1 random bit strings, i.e., r = (r1,..., y—1).
A key k eg K is randomly sampled. The public verification
key pk is computed as

pk := (pko, pky. pky) = (1. k). ¢’ (sk. 7). ... " (sky. 7).
@
Sign(M, sk,r) — o. The W-OTS* signature is
o=(01...00) = (cz1 (x,1),.. .,cZ’(x, 1)),
where b; is the ith w-ary word of M||C = (by,...,b;). Cisa

1
checksum computed as C := le (w —1-b;). C’s length in
i=1
w-ary is at most Iy, as C < [jw.
Vrfy(M, o, pk) — {0, 1}. The algorithm checks Vi € [1,1] :

? —1—h:
pk; = ¢~ "Yi(ai,). 3)

If the comparison holds Vi € [1, 1], returns 1, otherwise 0.

On-chain verification performance evaluation. We observe in Equa-
tion (3) that the verification cost primarily depends on the Win-
ternitz parameter w, the length [of the public key pk, and the
signed message’s Hamming weight ||M]|;. Larger w yields shorter
public keys at the cost of increased average number of hashing in
the verification algorithm, see Table 3. Similarly, larger Hamming
weight messages reduce the concrete computational complexity of
the verification algorithm. This tradeoff is observed in Table 3 and
we evaluate this tradeoff in Figure 2.

We apply the hash-and-sign paradigm, i.e., the signer signs H(M).
Thus, the signer could slightly decrease the verification gas costs

w 4 8 16 256
I(=1 + 1) 136 90 67 34
pk (in bytes) 4352 2880 2144 1088
#Hash in Verify 272 360 536 4352

Table 3: Public key size-hashing tradeoff in the W-OTS™
scheme. For a Winternitz parameter w, the public key pk
consists of [elements of bit-length m(= 256). The last row re-
ports the average number of hashing operations (i.e., KW—{”)
in the verification algorithm. Shorter public keys incur an
increased average number of hashing operations in the veri-
fication algorithm. As we shall see, the EVM favours larger

public keys than an increased number of hashing operations.

Ml

Figure 2: On-chain verification gas costs (note log-scaled y-
axis) for W-OTS" for different Hamming weight messages
[IM||1 (x-axis) and Winternitz parameter w € {4, 8, 16, 256}.

by mauling the message in a way that results in a higher Ham-
ming weight digest H(M). This optimization was first observed
in the blockchain context by Baldimtsi et al. [4]. Since ||H(M)||;
is binomially distributed, i.e., ||[H(M)||1~ Binom(256,0.5), most
messages will have = 100 — 150 ones when signing 256-bit hash
digests. More precisely, Ey[||[H(M)||] = 128. In this regime, w = 4
is the optimal parameter choice. In the most common case of
w = 4, ||H(M)||1= 128, we observe a 295 309 verification gas cost.
Table 4 demonstrates that the W-OTS* on-chain verification is most
gas-efficient for w = 4. As W-OTS" is a one-time signature scheme,
the public key is not read from the permanent blockchain state;
rather, it is sent to the contract as part of the CALLDATA, which
is the cheapest (transient) storage. Therefore, the public key size
does not significantly affect the on-chain verification cost. How-
ever, a larger w incurs more hashing operations, cf. Table 3. Put
differently, hashing operations are the real bottleneck in W-OTS*
on-chain verification. This phenomenon causes verification gas
costs increase monotonically as a function of w.

4.1.1 W-OTS* Naysayer verification mode. We see in Equation (3)
that checking the correctness of a W-OTS™ signature o = (01, . . ., 07)
needs to finish all of the hash chains, i.e., Vi € [1,1]. However, if the
W-OTS* signature is incorrect, then one only needs to check Equa-
tion (3) for a single index i. This observation lends itself to a simple

v 4 8 16 256
Mode
On-chain 222114 223478 272355 1971090
Naysayer 174 448 139821 126095 237908

Table 4: W-OTS" average verification gas costs in the two verification modes for w € {4,8,16,256}. In each cell, we report
weighted gas costs, where we weight the measured verification gas costs for all different Hamming weight messages, cf. Figure 2,
by the probability that a uniformly random message m € M = {0, 1}2°¢ has the given Hamming weight.

Naysayer protocol. After signing, the signer stores M7 (o, pk, M) =
comg, k- We assume that o, pk, M are available to anyone for sub-
sequent naysaying (e.g., they are stored at a data availability layer).

The W-OTS" naysayer proof. The W-OTS" 7nay contains all the
necessary elements that allow a naysayer verifier to check Equa-
tion (3) for the faulty index i. Formally, let

Tinay = (0%, Pk, T, bis (6 pk) pk,» T(o,pk), 03> (o, pk).r (a,pk),bi s

i.e., the naysayer prover opens comg pi, and provides the con-
tract with the faulty o3, pk;, 1, b; and accompanying Merkle proofs
T(o,pk),pk;» H(o,pk).oi (a,pk)rs (o, pk).b; with respect to the Merkle
commitment comg .

The W-OTS" naysayer verifier. The contract verifies the Merkle
opening proofs g, pk),pk,» (., pk).c;» (o,pk)r> (o, pk).b; TOT P> 03,1, b
with respect to comg . Finally, the naysayer verifier checks for
W—l—bi

index i : pk; z < (03,). More formally:

MT.Vrfy(com(,,pk, i, pk;, ”(o‘,pk),pki) A
/\M‘T.Vrfy(commpk, i+l 0, ”(a',pk),o‘i)
A MT Vrfy(comg pi, 0, T, Z(gply,r) A 4

AMT Vrfy(comg pi. 21 + 1, bi, (o pl.b,)

A pk; # czv_l_b"(cri, r)
If all checks pass, the naysayer verifier outputs 0 (the W-OTS*
signature o is invalid) or L (inconclusive). We evaluate and contrast
the gas cost consumption of the Naysayer verifier with that of the
full on-chain W-OTS" verifier in Table 4. We observe major cost
savings when deploying the optimistic Naysayer verification, e.g.,
for w = 4, the Naysayer verifier shaves off 21.46% from the on-
chain verification gas cost. Interestingly, the naysayer verifier is
most efficient when w = 16. For larger w, the public key and the
signature are shorter, resulting in smaller Merkle authentication
paths in Equation (4). Even though for w = 256 we have the shortest
signatures and public keys, the hashing operation in checking pk; z
cl‘:_l_bi (07, r) dominates the Naysayer verifier cost rendering w =
16 the optimal choice for the W-OTS*-Naysayer mode.

4.2 Extended Merkle signature scheme (XMSS)

The XMSS stateful hash-based signature scheme was introduced
in 2011 by Buchmann, Dahmen, and Hiilsing [16] and is currently
being standardized in the RFC8391 [29]. NIST has also approved
specific variants of XMSS [36]. In the following, we are following
the IETF XMSS standard’s recommendations. XMSS only supports

signatures for 2h messages, where h is the height of an XMSS tree
X7 . An XMSS tree is a binary hash tree just like a Merkle tree
but it also applies bit masks for deriving the parent nodes. More
formally, the ith node n; j on the jth level of the tree (the root is
on level h) is obtained as:

nij = H(nzi j—1 @ by j||n2i+1,j-1 ® brj), (5)

using bitmasks (b ;||br.j) €r {0, 1}2™_ Note that XMSS trees admit
similar logarithmic-sized membership proofs (sometimes authenti-
cation paths) as those in Merkle trees.

The XMSS tree X7 during key generation commits to 2h w-
OTS" public keys pkyy := (pkyy, - - pszh), and the tree’s root
compy, . is part of the XMSS scheme’s public key. Furthermore, the
ith XMSS tree leaf pkyy, commits to the ith W-OTS" public keys’
elements (pkyy,, . .., pkyy,) using L-trees. The L-tree is a binary
tree. Since [+ 1 might not be a power of two, a node that has no
right sibling is lifted to a higher level of the L-tree until it becomes
the right sibling of another node. In this construction, the same
hash function as above but new bitmasks are used, see Equation (5).
The bitmasks are the same for each of those 2" trees. As the L-
trees have [log(l)] height, [log(l)] additional bitmasks are used.
The XMSS public key pk contains the bitmasks b and the root of
the XMSS tree compy, . Roughly, the XMSS signer for counter
cnt = i provides a W-OTS™ signature on a message M with sky;,
and an authentication proof for pkyy, i.e., the ith W-OTS™ public
key. The verification entails checking the W-OTS" signature on M,
recomputing pk;/v,- and comparing it to pkyy,. Finally, the verifier
checks the authentication path for the claimed pkyy, .

Next, we recall the formal definition of the XMSS algorithms
with some stylizing simplifications.

Definition 4.2 (The XMSS algorithms). The XMSS scheme consists
of the following efficient algorithms.

KeyGen(lA) — (sk, pk). Let sk := seed €p {0,1}* and gen-
erate Vi € [1,27],j € [0,1] : pkWi,- := H(seed||i||j). Let
pky, = Llpkw.-- - Pk, D) Similarly, let compy,, =
XT ([pkyy,s - - s pszh]). Let b denote the applied bitmasks.
Finally, pk := (compkw,b). Return (sk, pk).

Sign(M, sk, cnt) — o. The signature is o = (i, ow;, Tpk—spkyy.)
where i is a counter, oy, is a W-OTS™ signature on M undé:r
pky,, while mpi —pk,, is the XMSS authentication path for
pkyy,. Return o. l

Vrfy(M, o, pk, cnt) — {0, 1}. Parse o as (i, ow;, Tpkyy —pkay:): Com-

pute PkWU- = c;:'_l_b“(a‘,vi [j], r), where b; is the jth w-ary

Figure 3: On-chain verification gas costs (y-axis) for XMSS
with messages of different Hamming weight (x-axis) for
XMSS tree heights h € {4,8,16,20} and IETF-standardized
Winternitz parameters w = 4 and w = 16.

word of M. The verifier recomputes the W-OTS™ public key,
ie., pk{/‘,i = L([pky,, - - -» Pkyy, 1) and checks

? . ?
cnt =i A pk'Wi = Mok —pkyy, [0] A

(6)

”
/\X‘T.Vrfy(compkw, i, pkyy,» Tpkyy—pyy,) =1.

If all the above checks are satisfied in Equation (6), cnt :=
cnt + 1, and return 1, otherwise 0.

On-chain verification performance evaluation. We evaluated the
on-chain verification of XMSS for parameter sets (w, h) € {4, 16} X
{4,8,16,20}. The Winternitz parameters w = {4, 16} are recom-
mended by the IETF XMSS standard. The choice of w is also sup-
ported by our measurements above in Section 4.1 as W-OTS* pro-
duces the most efficient verifications with Winternitz parameters
w = {4, 16} for on-chain and Naysayer verifications, respectively.
We chose h € {4,8,16,20} as a parameter set for h since it can
support a wide range of real-world applications, i.e., max number
of signatures® is up to 22°. Overall, we see two major trends in
on-chain verification gas costs, see Figure 3.

First, XMSS is more efficient with Winternitz parameter w = 4
than w = 16 for all parameters h and ||H(M)||1, see Figure 3. The
most efficient XMSS parameter set is (w, h) = (4, 4), resulting in
4363 623 gas (averaged out across all message Hamming weights).
Second, an interesting trend for all the 8 measured (w, h) pairs is
that the height of the Merkle tree has less effect on the verification
gas cost than the message’s Hamming weight. More precisely,
for (w, h) = (4, 8) the verification gas cost is 5178 583, while for
(w,h) = (4,20), it is more expensive by 5.12%, i.e., 5443 842 gas
(both for messages of 100 Hamming weight). While (w, h) = (4, 4)
and Hamming weight 156, we observe a 15.82% decrease compared
to (w, b, ||M||1) = (4, 4,100), i.e., 4359 189 gas. As in W-OTS*, we
observe a linear relationship between ||M||; and verification gas
cost, cf. Figure 3. We characterize this linear relationship using
linear regression. We find that for (w, h) = (16, 20) the gas cost
can be well approximated as 7874574 — 37 585x for Hamming
weight x € [0, 256]. Similary, we found for (w, h) = (4, 20) a linear

>Note that in our evaluation, we disregard the key generation and signing algorithms’
computational cost. For larger h, we observed significant XMSS key generation time.

Figure 4: Naysayer proofs for (Merkle) tree authentication
paths. For concreteness, we stick to Merkle trees but these
observations also hold for L-trees or XMSS trees. In a Merkle
tree, each node consists of the hash of its children. In this
toy example, the prover committed to v := (vg, 01, . ..,07), i.e.,
let L; := H(v;). When the prover wants to show that vs3 is
committed in the Merkle tree at index 3, it provides the co-
path of the leaf L3 (in red), i.e., v o, := (L2, Ho, H23) (the yellow
nodes in the tree). In the corresponding Naysayer proof sys-
tem of the Merkle authentication path for v3, the prover also
includes the full verification trace, i.e., the blue nodes, i.e.,
{La, L3, Hy, H1, Ho1, Ha3, Root}. Then 7,5y would point to (one
of) the verification trace’s failing hashing operation.

relationship 5 440 598 — 14 683x. Both the higher slope and intercept
for w = 16 can be explained by the larger W-OTS* public keys.

4.2.1 XMSS Naysayer verification mode. In our XMSS naysayer
scheme, for the ith signature, the signer commits to the vector
v := ({ow,, pkWU_ }§'=0’ ﬂ;kw_)pkWi), i.e., computes comy = M7 (v)
and uploads comy to the blockchain. Note that n*k L isa
PKw = PKy;
modified authentication path that for each original authentication
path element also contains its sibling node, see Figure 4. We explain
the necessity of this later in Section 4.2.1. The verification of an
XMSS signature o = (i, ow;, ”Pkw—’Pkwi) could fail due to one of
the following three reasons.

e The W-OTS" signature oy, is faulty, cf. Equation (3). This is
naysayed precisely as in Section 4.1.1.

e The L-tree computation is faulty: the L-tree root of the
W-OTS* public key does not match the one attached in
”;kw—)PkWi' This fault is naysayed by opening Vi € [1,1] :

pkyy, public keys and the entire L-tree is recomputed. The

L-tree’s root is compared to the one in stored in 7y, —pk,, -

e The XMSS authentication path Tpkyy —pkyy, is faulty. Nexit,
we detail how this can be naysayed in practice.

Naysaying tree authentication paths. The XMSS naysayer prover
may need to naysay about the incorrectness of one of the authen-
tication paths in a signature. Generally, we observe that for any
tree-based authentication proof system, the prover should commit
not only to the element v; to be authenticated and its authenti-
cation path 7y, but also to all the sibling nodes of the nodes
in the authentication path 7y 4, i.e., the entire verification trace.
This is illustrated in a toy example in Figure 4. We denote the set
of augmented authentication path as 7y ,, . Therefore, the prover

Merkle-commits to all the elements in 7y ,, , the authentication path
TTv,y; and its co-path and obtains Root. If the authentication path
is faulty, then it means that a naysayer prover needs to open the
Merkle commitment Root committing to the verification trace at
three appropriately chosen places (i.e., where the hashing operation
fails in the authentication path) v;,v;, vy and show that

MT Vrfy(comy, i, v;, 7y 0,)
A MT Vrfy(comy, j, v}, v,0;))
A MT Vrfy(comy, k, vk, 70v,0,) A H(villvj) # H(vg).

On-chain verification costs, unsurprisingly, increase monotoni-
cally as a function of h, w = 4 being the more efficient choice for the
Winternitz parameter. For the Naysayer verification mode, however,
we see that w = 16 outperforms w = 4. This is because W-OTS*
with w = 16 has smaller public keys resulting in smaller L-trees.
Among the three types of XMSS Naysayer proofs, recomputing the
L-tree is the most expensive, while proving the incorrectness of
an authentication path (cf. Equation (7)) in the XMSS tree is the
most efficient. We observe that the height h of the XMSS tree has
minimal impact on Naysayer’s verification gas costs. Finally, we
note that XMSS Naysayer for every evaluated parameter is at least
2.67% less efficient than W-OTS* on-chain verification, see Table 4.

4.3 SPHINCS+

SPHINCS+ [9] is the only hash-based signature scheme recently
standardized by NIST and, currently, the only NIST-standardized
signature implemented in our poqeth library.

Figure 5: An illustration of a (small) SPHINCS structure
for parameters (h,d) = (6,2). Circled nodes are hash nodes.
Squared nodes represent OTS nodes (i.e., W-OTS"), and the
diamond node denotes a few-time signature (FTS) node. The
public key is the root of the hyptertee. The message M is
signed by the FORS FTS scheme. W-OTS™ public keys are
authenticated by including the yellow nodes in the signature.

Figure 6: SPHINCS+ on-chain verification gas costs for fixed d
parameters, i.e., d € {2,8} and for varying h and a parameters.

The SPHINCS+ signature is a tree-based stateless signature we
briefly review. For further details, we refer to [9]. SPHINCS+ ex-
tends XMSS in the following sense: it builds a tree of trees, a
so-called hypertree, cf. Figure 5. SPHINCS+ applies a binary tree
where the W-OTS* public keys sign a few-time signature (FTS)
scheme’s public key instead of the message directly, as in XMSS.
Finally, the message is signed by the FORS FTS scheme. The FORS
public key consists of k binary hash trees of height a. The FORS
signature scheme can sign messages of k - a bits. Each leaf node
in a tree is used to sign the tree’s root below. For computational
efficiency, all leaf nodes of all intermediate trees are determinis-
tically generated W-OTS* public keys that do not depend on any
of the trees below them. Hence, the hypertree structure is purely
virtual and never computed in full. During key generation, only
the topmost subtree is calculated to derive the SPHINCS+ public
key. Let h denote the height of the total tree, while the intermediate
layers are denoted as d, and we set i’ = g For a given set of
SPHINCS+ parameters (h, d, a, k) the bit length of the message that
can be signed is computed as

®)

We observe in Figure 7 that parameter d has the largest effect on
verification gas costs when all other parameters remain fixed. For
our SPHINCS+ verifier implementation to match the NIST security
level 1 and to be able to sign m = 256 bit messages, the most gas-
efficient parameter set was (h, d, a, k) = (63, 10, 12, 15). Applying the
on-chain verification mode with the Winternitz parameters w = 4
and 16, we measured the 11617690 and 13376297 gas, respectively.
A more thorough analysis of the SPHINCS+ parameter space is
conducted in Appendix C.

m=

h=181+7) (L8] +7
5)

Naysaying SPHINCS+ signatures. There are five places where
the verification of SPHINCS+ signatures can fail. These errors
correspond to five types of SPHINCS+ Naysayer proofs that we
evaluate in Table 6. First, a hashing operation might fail at one
of the intermediary nodes at one of the hypertrees. Second and
third, W-OTS™ or FORS signatures might be faulty. In the Merkle
commitment, we commit to the hashes of W-OTS* and FORS public
keys instead of the full public keys. The last two types of faults
correspond to these hash computations being faulty.

h
m 4 8 16 20
On-chain (w=4) 4363623 4429140 4560331 4626 005
On-chain (w=16) 5541759 5608 202 5741245 5807 858
Naysayer L-tree (w=4) 2541579 2541564 2541952 2541959
Naysayer W-OTS" (w=4) 716 794 716 811 716 776 716 794
Naysayer XT (w=4) 596 137 596 094 596 906 596 905
Naysayer L-tree (w=16) 1550368 1550741 1551161 1551148
Naysayer W-OTS* (w=16) 636797 636 794 636818 636 814
Naysayer XT (w=16) 593007 593780 594572 594559

Table 5: XMSS on-chain and Naysayer verification gas costs averaged over all Hamming weight messages for Winternitz
parameters w € {4,16}. The Naysayer types correspond to the three XMSS verification faults described in Section 4.2.1.

207
1]
55
556
01
805 K
T 5501
ot san
3 3 3 g i 7 s 3 3 3 3)
4 n
108 d=2 126 d=2
1 571
571 g3t
55
551
54
41
531
52
524y + : + . L
. K

Figure 7: Impact of each SPHINCS+ parameter on on-chain
verification costs when all other parameters remain constant.

w
e . 16

On-chain 11617 690 13376 297
Naysay FORS 788788 785 630
Naysay FORS Hash 1360472 1343 606
Naysay WOTS 1233214 1238559
Naysay WOTS Hash 1451263 1310754
Naysay HT 693721 690587

Table 6: SPHINCS+ average verification gas costs for NIST
security level 1, i.e., parameters (h, d, a, k) = (63, 10, 12, 15).

5 MAYO: A MULTIVARIATE-QUADRATIC
SIGNATURE SCHEME IN THE EVM

Multivariate signature schemes usually follow a full domain hash
approach based on surjective trapdoor one-way functions. Thus,
creating a multivariate signature usually amounts to being able
to generate a multivariate quadratic map P : IFZ — F{I” with a
trapdoor that allows the signer to find pre-images of P.

Patarin’s Unbalanced Oil and Vinegar (UOV) [35] scheme is a
classic example. Here, we briefly describe UOV using a formulation
established in [11]. Let P : FZ - Fg’ be a multivariate quadratic

(MQ) map that vanishes on a secret linear space O of dimension m
called the oil space. Then, knowing O, one can find pre-images of P
in the following fashion. Assume we are looking for a pre-image of
b € F and take a random vector r € F2. We look for a pre-image

q q
in the form r + 0 where o € O. Now, one has that

P(r +0) = P(r) + P(0o) + P'(r, 0)

where P’ is the bilinear map associated to P (often called the polar
form). Now when one tries to solve P(r + 0) = b, then this reduces
to solving the linear system P’(r, 0) = b — P(r), which by design has
m equations and m variables. If this does not have a solution, then
one samples a new r. Generating a system with an oil space as a
trapdoor is relatively easy. One starts with a system where every
quadratic form has a matrix with an m X m bottom right corner with
all 0 entries and then masks it with a secret linear transformation
(note that the other entries of the initial matrices are also secret).

Even though UOV is an established scheme in the MQ literature,
its public keys are large, especially in the context of the EVM. The
main idea of MAYO is to utilize this formalism and start out with
a system with a small oil space and then whip it up into a larger
system with a larger oil space using a pseudorandom generator.

Let P : Fy — Fg' be a quadratic map. Let O be a linear subspace
of dimension o such that for every u € O, one has that P(u) = 0.
Let E; j be a set of fixed matrices (that have the property that any
non-trivial linear combination of them has rank m), and then one
can build the map P* : F’;" — Fg' in the following fashion

k
P*(x1,...,x%) = D EiiP(xi) + > EijP (xi, x)).
i-1

i<j

Observe that Yu € OX : P*(u) = 0, implying that if ko > m, one can
compute pre-images of any vector in the same fashion as in UOV.
MAYO generates the public key in the following fashion to save on
the size of the public key. Pick a random o X (n — 0) matrix O and
let O be the row-space of the matrix (O,). Now, every quadratic
polynomial can be represented by an upper triangular matrix

P p
o pY

where Pl(l) is a square matrix of size n — o, Pl@) is a square matrix
of size 0 and sz) is a rectangular matrix of size (n — 0) X 0. Using a
small random seed PI(I) and PEZ) can be generated pseudorandomly,

and then, solving a linear equation, one can find a suitable Pl(l) to
ensure that the system vanishes on O. Next, we summarize the
above discussion using the following definition.

Definition 5.1 (The MAYO signature scheme). MAYO takes as in-
put system parameters g, n, m, o, k and the matrices E; j € My, (Fg).

KeyGen(lA) — (sk, pk). Generate a random oil space O of di-
mension o. seed i {0, 1})‘. Using the seed, generate Pl(l) and
(1) p2)

sz) for every i and compute PES) to ensure P = (Pi ?3))

i

vanishes on O. Then sk = (seed, O) and pk = (seed, Pl@).
Sign(M, sk,r) — o. Compute P*(x1,...,xx) = Zi.‘zl E;iP(x;) +
Yi<j EijP’(xi, xj). Let s be a random salt and Compute r =
H(M||s) € F;” for a hash function H : {0,1}* — F('I” Solve
P*(u) = r as discussed above. Return the signature o = (s, u).

Vrfy(M, o, pk) — {0, 1}. This algorithm verifies P*(u) z H(M]|s).
If the comparison holds, return 1; otherwise, 0.

MAYO on-chain verification performance evaluation. The two
most important implementation decisions we had to make were
choosing the finite field F4 and, second, choosing the appropriate
pseudorandom generator (PRG) for whipping the MQ system up
comprising the public key.

The MAYO finite field F; Many publicly available open-source
MAYO implementations ¢ apply the choice g = 16, that is
Fq = GF (2%). We refrained from this choice as the EVM does
not support finite field arithmetic natively in Galois fields
with non-prime cardinality. Therefore, we chose g = 31.

An efficient PRG Most MAYO deployments choose the AES-
128-CTR symmetric cipher to whip the public key up to
the final MQ system. Since the EVM does not support na-
tively this cipher, we decided to apply the natively supported
KECCAK-256 hash function for whipping the public key up.

We implement the MAYO signature scheme with the parameter set
(g.m,n,0,k) = (31,60, 62, 6,10) that achieves NIST security level 1.
We measured a 938 752 492 gas cost for verifying a single MAYO sig-
nature on-chain. We attribute this high gas cost to two main factors.
First, as we do not store the expanded public key map (= 115KB) in
permanent storage, ’ the verifier smart contract needs to expand the
entire public key map from the seed for every signature verification.
Second, linear operations (e.g., polynomial evaluation) take up 84%
of the gas cost. These linear operations could be significantly sped
up if the EVM supported single instruction, multiple data (SIMD)
operations. Future support for SIMD operations is under consider-
ation and discussion [19]. Additionally, we acknowledge that our
implementation is unoptimized as we store each 5-bit coefficient
on an entire EVM word. Packing more F3; elements into a single
EVM word is a possible optimization we have not explored yet.

©See: https://github.com/mjosaarinen/mayo-py.
7Storing the entire MAYO public key map in permanent storage and reading it from
there during signature verification would incur exorbitant gas costs.

Naysaying MAYO signatures. Looking at Definition 5.1, we see

that the MAYO signature verification check P*(u) ’H (M]]s) can
fail if (at least) one row, i.e., a multivariate equation p;(u) in P*(u)
is computed incorrectly. We expect significant speedups for the
Naysayer verifier compared to on-chain verification as the Naysayer
verifier needs to check only a single multivariate quadratic equation
instead of checking all m of them (m = 68 at NIST security level 1).
Specifically, first, the signer commits to the vector v := (pk, o, M)
and stores a Merkle commitment comy := M7 (v) on-chain.

If naysaying the MAYO signature is necessary, then for the ith
(i € [1, m]) equation, the Naysayer prover opens the commitment
comy by sending Merkle authentication paths to provide M, s, u
and the coefficients of p;(-). Let t; denote the ith [log(q)] word of

H(M]||s). Then the Naysayer verifier checks p;(u) z t;. We found
that the MAYO Naysayer verifier burns 107 634 064 gas, a major
improvement to the on-chain MAYO verifier.

6 NAYSAYER PROOFS FOR MORE NIST PQ
SIGNATURE CANDIDATES

As we saw in Sections 4 and 5, at the time of writing, for PQ
signatures, the Naysayer verification mode is significantly more
efficient than on-chain verification in the EVM. Motivated by this,
in this section, we describe systematically Naysayer proof systems
for various NIST candidate PQ signature schemes. We focus on
signature schemes that are still competing in the second round
of the second NIST call for PQ signatures. ® This section aims to
provide high-level ideas of turning usual verification into Naysayer
verification and to analyze which signatures might be best suited
for the EVM. We leave the implementation and evaluation of the
proposed Naysayer proof systems to future work.

Note that one of the stated goals of the additional signature call
by NIST is to standardize special-purpose signature schemes, and we
believe that being EVM-friendly could be useful information for
the standardization process.

6.1 Code-based signatures

In NIST’s second standardization round for PQ signatures, only
LESS [13] and CROSS [3] remain as code-based signature schemes.

6.1.1 LESS. LESS is based on the code equivalence problem. In this
setting, one is given two linear codes Cy, C; and their generator
matrices Go, G;. One has to find an n X n matrix Q such that
G1 = GoQ and Q has precisely one non-zero element in every row
and every column (such a matrix is called a monomial matrix).
The LESS scheme uses the usual framework to build a graph
isomorphism-type identification scheme with 1-bit challenges and
applies the Fiat-Shamir transform [26]. Every generator matrix
for every code in the protocol is stored in reduced row echelon
form. In one iteration of the interactive version of the protocol,

one has that the verification equation is H(G_pgresp) 2 commit.

When building a signature scheme using Fiat-Shamir the challenge

is obtained as a hash of the commitment and the public key.
Thus, one has to do the following operations:

8The complete list of competing PQ signatures can be found at https://csrc.nist.gov/
Projects/pqc-dig-sig/round- 2-additional-signatures.

https://github.com/mjosaarinen/mayo-py
https://csrc.nist.gov/Projects/pqc-dig-sig/round-2-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-2-additional-signatures

e Matrix multiplication, recomputing the challenge.

o Checking that resp is a monomial matrix.

o Compute the reduced row echelon form of G.pqresp.
o Checking the verification equation.

For a security parameter A, this is executed A times; for the
Naysayer proof, it is enough to provide one faulty instance. The
most costly step here is the reduced row echelon form computation.
The signer could provide two transformation matrices A, B that
transform G4 resp into reduced row echelon form to speed this
step up. Then what has to be checked is that AG_j4;respB is in row
echelon form, which is significantly faster as it is enough to show a
particular row of A and column of B that violates the reduced row
echelon form. This shows that slightly increasing the signature
size makes Naysayer verification significantly faster. The clear
drawback of LESS is the large public key, which could be mitigated
by only storing a hash of the public key and adding the actual public
key to the signature (thus adding one extra hash to verification).

6.1.2 CROSS. CROSS is based on the restricted syndrome decod-
ing problem where H is the parity check matrix of a linear code,
He = y and y is given and one has to find e restricted to a certain
subgroup. Describing the entire CROSS protocol is more involved.
Still, it is a 5-pass identification protocol where the last challenge
is a bit (thus, similarly to LESS, one has to iterate A times and use
Fiat-Shamir). The verification check consists of’

e Two hashes, vector addition, matrix-vector multiplication.

e Application of a certain transformation o € G where G is
some group. However, Section 3.11 of the aforementioned
specification describes this as just a simple vector addition.

All these operations are fast. The Naysayer prover points to the
incorrect iteration (out of A iterations). CROSS has 38-byte public
keys (for NIST level 1), which is suitable for Ethereum applications.

6.2 Multivariate signatures

Multivariate signature schemes follow a similar template as MAYO,
cf. Section 5. Thus, the corresponding Naysayer proofs are similar
in spirit. UOV is an interesting conservative choice [42], and verifi-
cation here is slightly simpler than in MAYO, as there is no public
key whipping procedure. However, the large public key makes it
an unlikely candidate for Ethereum applications.

6.3 SQIsign and Hawk

6.3.1 SQIsign. We believe SQIsign [20] could be well suited to the
blockchain environment due to its small public key and signatures.
The verification algorithm of SQIsign is rather costly (even with
recent speed-ups in the newer versions [5, 24, 38]). However, it
could potentially be more efficient using the Naysayer paradigm.
One particular idea could be the following. In the identification
system version of [20], the prover’s response is a certain isogeny
of degree 2% The kernel of this isogeny is not rational, so it is cut
up into chunks for which the kernel is rational. Thus, it can be
represented by some elliptic curves and certain points on those
curves. Finally, the verifier can check if the isogenies corresponding
to those kernels are between the correct elliptic curves. To avoid

9The verification check is described in detail in Figure 2, in the latest CROSS specifica-
tion available at https://www.cross-crypto.com/CROSS_Specification_v1.2.pdf.

forgeries, one also has to double-check some cyclicity conditions.
One potential idea to turn SQIsign friendly for Naysayer proofs is
to write the response isogeny as a chain of 2-isogenies. Thus, if a
chain of isogenies is incorrect, a naysayer only has to prove that two
curves are not 2-isogenous in the chain. This can be accomplished
by evaluating a polynomial of degree 2 in two variables. If the
cyclicity condition is not satisfied, one can simply submit a 2-torsion
basis of a curve and check that the isogeny kills the 2-torsion, which
requires two point doublings on elliptic curves. The drawback of
this construction is that it slightly increases the signature size.

When applying Fiat-Shamir, one has to check the correctness of
the challenge. This is usually rather straightforward; however, in
SQIsign, the challenge is an isogeny that has to be recomputed from
a hash and checked during verification. Thus, to keep Naysayer
verification fast, one has to do the same trick, namely writing
the challenge isogeny into the signature as a chain of 2-isogenies.
Here, there are two ways to cheat. One could use a fake chain
of 2-isogenies, which can be checked similarly as discussed. The
other is to use an isogeny whose kernel does not correspond to the
one obtained by the hash in Fiat-Shamir. In this case, one has to
recompute this isogeny until it diverges from the correct one.

In edge cases, this could lead to recomputing most of the chal-
lenge isogeny, which could be slow. Without this check, a forger
observes an honest signature and can easily return the same signa-
ture for a different message (as the challenge would not be correct).
However, for such an attack, the fake and the correct isogeny should
diverge quite quickly since for a given message m1, we have to find
a message my such that output hashes are equal at many places.
Thus, for most signatures, Naysayer verification remains fast.

6.3.2 HAWK. The HAWK signature scheme [23] relies on a struc-
tured version of the lattice isomorphism problem. However, this
is only relevant to key generation as the verification algorithm is
similar to FALCON [47]. Thus, there is no real need to discuss this
separately, as the main benefit of HAWK versus Falcon is a simpler
signing procedure, but that might not be so relevant in this context.

6.4 MPC in-the-head

There are a large number of signatures following the MPC-in-the-
head paradigm in the second round: MQOM [8], Mirath [1], SDitH
[25], Ryde [14], FAEST [6] and PERK [10]. We do not deal with the
specifics of all the schemes, but we describe the MPC-in-the-head
paradigm, and a high-level method to build Naysayer proofs.

The general framework is that one is given a hard-to-invert func-
tion F, x is secret, and F(x) = y is public. Again, an identification
scheme is turned into a signature scheme using Fiat-Shamir. First,
one can create n shares of the secret x, denoted by x1, . .., x,. Then,
one commits to these shares in the commitment phase. Further-
more, one takes an MPC protocol for the function F with inputs
X1,...,Xxn where the parties locally compute value «; and then
broadcast these values from which anyone can compute the shared
function locally again. In the commitment phase, the prover sends
these a; to the verifier. The challenge is an index i, and the prover
responds with all the x; where j # i.

The verifier checks if the commitments are correct and whether
F(x) computed from the ¢; is indeed y. Completeness and zero
knowledge of this protocol follow as the MPC protocol does not

https://www.cross-crypto.com/CROSS_Specification_v1.2.pdf

reveal any information on x;, and the commitment hides x; as well.
One could cheat by designing an MPC protocol that outputs y,
but for a single i, one of the commitments to x; is not suitable.
Thus, a malicious prover succeeds with probability 1/n. In usual
applications, n has to be chosen carefully. The larger n, the more
costly the MPC protocol, but the identification protocol needs fewer
iterations. Fewer iterations imply a smaller signature size. Thus,
proposals usually try to balance size, signing and verification speed.
In a Naysayer proof, we only want to optimize for verification
speed as public keys are small by design. Thus, the generic idea is
to keep n small (n = 2 or n = 3 should suffice), as then if there is an
error, the verification only has to run an MPC protocol for a low
number of parties and check a low number of commitments.

7 RELATED WORK

As early as 2010, Nakamoto contemplated the potential conse-
quences of quantum computing on Bitcoin’s security in a Bit-
coinTalk post [40]. The state-of-the-art protocol to rescue Bitcoin
in the face of a quantum computing threat was proposed by Stewart
et al. [52], which was later improved in [32]. These protocols apply
a slow commit-delay-reveal structure, where users spend their pre-
quantum unspent transaction outputs (UTXOs) into a post-quantum
secure UTXO. After a delay period, users can reveal (i.e., spend) their
post-quantum public keys previously committed, accompanied by
a PQ signature. Hence, transitioning a pre-quantum UTXO into a
post-quantum secure one requires a Bitcoin transaction. Recently,
the cost of transitioning all unspent bitcoins to PQ safe addresses a
la Stewart et al. was estimated to last at least = 76.16 days, assuming
no other transactions are processed in Bitcoin, causing effectively a
two-month-long downtime in Bitcoin [46].

Various applied cryptographic solutions were proposed to help
the post-quantum transitioning of cryptocurrencies. Bonneau pro-
posed a cryptocurrency design called Fawkescoin that only applies
symmetric-key primitives [15]. Thus, he effectively showed that
a quantum-secure cryptocurrency can be built with little to no
overhead compared to cryptocurrencies using public-key primi-
tives. Chaum et al. [18] extend the current cryptocurrency wallet
design by creating an ECDSA-compatible signature scheme with
a PQ secure fallback utilizing W-OTS*. Their technical invention
is to use ECDSA secret keys and derive from those the W-OTS*
public keys. Hence, if ECDSA is broken, W-OTS* could still be used
to authenticate Bitcoin or other cryptocurrency transactions in a
backwards-compatible manner. Giechaskiel et al. analyze Bitcoin’s
security in the presence of broken cryptographic primitives [28].

Ethereum currently mandates each valid transaction to be signed
by the pre-quantum ECDSA algorithm [54]. Account abstraction, a
planned protocol upgrade, allows users to authenticate transactions
by any signature scheme they choose [17]. These signatures will
be verified by on-chain contracts and open the possibility of tran-
sitioning Ethereum to a post-quantum world. To our knowledge,
there is no systematic study implementing and benchmarking the
gas costs of verifying (standardized) PQ signatures in the EVM. Our
work fills this gap. The only efforts we know of are EIP-7592 and
EIP-7619 (Ethereum Improvement Proposal) and [2], which propose
the addition of a precompile contract to the EVM that allows users
to verify Falcon signatures [43, 45]. Allende et al. observe that

verifying Falcon signatures in the EVM would cost 500 million gas
on average [2]. Therefore, EIP-7592 and EIP-7619 solicit a protocol
change that allows “natively” verifying Falcon signatures in the
EVM by adding a new precompile contract. The protocol heavily
subsidizes the gas costs of precompile contracts; i.e. if these EIPs are
accepted, one could verify Falcon signatures on Ethereum for 1200
gas (less than the gas cost of verifying ECDSA signatures). How-
ever, as we argued in Section 1.2, our selected and benchmarked
signature algorithms are better suited to the EVM than Falcon.

8 CONCLUSION AND FUTURE DIRECTIONS

In this work, we implemented and evaluated poqeth, an open-
source library that enables the efficient verification of PQ signatures
on Ethereum, the currently most popular public blockchain. The
technical discussions around the PQ transition of cryptocurrencies
are still in their infancy, with many open questions remaining.

Precompile contracts in the EVM for PQ signature verification. This
work shows that full verification of PQ signatures is moderately
costly on Ethereum main net, see Table 7. Thus, a likely impact of
our paper is that the Ethereum community will amend the EVM to
enable natively verifying PQ digital signature algorithms through
precompile contracts. This approach would be similar to the one
advocated in EIP-7619 for Falcon signatures [43]. However, the
question of how PQ signature verification should be part of the
EVM is open. Shall the EVM support precompile contracts for full
signature verification? Or perhaps the EVM should stay modular
and shall only provide precompiles for specific subroutines of these
verification algorithms that form the bottleneck of the verification
algorithms (e.g., verifying Merkle authentication paths, or evalu-
ating polynomials, multivariate-quadratic equation systems over
finite fields etc.). We leave these timely questions for future work.

USD cost W-OTS® XMSS SPHINCS+ MAYO
On-chain 2.76 54.31 144.58 12411.01
Naysayer 1.57 7.40 8.63 1339.48

Table 7: On-chain vs. Naysayer verification USD costs with
the most efficient parameter settings for the four considered
signature schemes. Verification gas costs are taken from Ta-
ble 2. ETH/USD exchange price and gas prices were taken on
October 27, 2024; that is, at the time of writing, 1 ether was
worth 2489 USD, while the median gas price was 5.08 Gwei.

Succinct proofs of signature verification. A promising approach
would be to prove the correct verification of PQ signatures instead
of verifying them directly in the EVM. For example, a computation-
ally powerful prover could collect numerous user transactions and
the PQ signatures attached to them and issue a succinct PQ-secure
STARK [7] proof attesting to the validity of all these signatures.
(zk)STARKS and its many variants have already successfully been
deployed on Ethereum in production. The EVM allows the efficient
verification of STARK proofs (~ 5 million gas). Note that this gas
cost could be amortized over multiple PQ signatures. We leave the

evaluation and benchmarking of this approach with more standard-
ized NIST PQ signatures for future work. A similar line of research
has recently been initiated: see [21, 34] and references therein.

Benchmarking more post-quantum signature algorithms. Future
work may evaluate and extend our benchmarks to other post-
quantum signature schemes. In particular, following Naysayer
proof systems described in Section 6 we expect that CROSS [3] and
the MPC-in-the-head signatures will admit the most significant
speed-ups using Naysayer proofs. Future work could implement
these schemes and evaluate their efficiency.

Naysayer prover/verifier efficiency tradeoffs. Observe that the
naysayer verifier efficiency can be highly optimized by committing
to the entire EVM-level computation trace of signature verification.
This observation would lead to highly efficient Naysayer verifiers,
which only need to verify the incorrectness of a single EVM opcode.
This strategy comes at the cost of increased signer time, as the
signer must now commit to a much larger computation trace. We
leave the evaluation of this optimization to future work.

Acknowledgements. We thank Noemi Glaeser and Antonio Sanso
for insightful discussions on Naysayer proofs and PQ signatures.
We are grateful to Alex Beregszaszi for reviewing an earlier version
of this paper. This research was supported by the Ministry of
Culture and Innovation and the National Research, Development,
and Innovation Office within the Quantum Information National
Laboratory of Hungary (Grant No. 2022-2.1.1-NL-2022-00004) and
by the grant "EXCELLENCE-151343". Péter Kutas is supported by
the Janos Bolyai Research Scholarship of the Hungarian Academy
of Sciences and is also partly supported by EPSRC through grant
number EP/V011324/1.

REFERENCES

[1] Gora Adj, Stefano Barbero, Emanuele Bellini, Andre Esser, Luis Rivera-Zamarripa,

Carlo Sanna, Javier Verbel, and Floyd Zweydinger. Mirith: Efficient post-quantum

signatures from minrank in the head. IACR Transactions on Cryptographic Hard-

ware and Embedded Systems, 2024(2):304-328, 2024.

Marcos Allende, Diego Lopez Leon, Sergio Cerén, Adrian Pareja, Erick Pacheco,

Antonio Leal, Marcelo Da Silva, Alejandro Pardo, Duncan Jones, David] Worrall,

et al. Quantum-resistance in blockchain networks. Scientific Reports, 13(1):5664,

2023.

Marco Baldi, Sebastian Bitzer, Alessio Pavoni, Paolo Santini, Antonia Wachter-

Zeh, and Violetta Weger. Zero knowledge protocols and signatures from the

restricted syndrome decoding problem. In IACR International Conference on

Public-Key Cryptography, pages 243-274. Springer, 2024.

[4] Foteini Baldimtsi, Konstantinos Chalkias, Panagiotis Chatzigiannis, and Mahimna
Kelkar. Truncator: time-space tradeoff of cryptographic primitives. Cryptology
ePrint Archive, 2022.

[5] Andrea Basso, Luca De Feo, Pierrick Dartois, Antonin Leroux, Luciano Maino,
Giacomo Pope, Damien Robert, and Benjamin Wesolowski. SQIsign2D-west: The
fast, the small, and the safer. Cryptology ePrint Archive, Paper 2024/760, 2024.
https://eprint.iacr.org/2024/760.

[6] Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael Kloo83,
Christian Majenz, Shibam Mukherjee, Sebastian Ramacher, Christian Rechberger,
Emmanuela Orsini, Lawrence Roy, et al. Faest: algorithm specifications. Technical
report, Technical report, National Institute of Standards and Technology, 2023.

[7] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable,
transparent, and post-quantum secure computational integrity. Cryptology ePrint
Archive, 2018.

[8] Ryad Benadjila, Thibauld Feneuil, and Matthieu Rivain. Mq on my mind: Post-

quantum signatures from the non-structured multivariate quadratic problem.

In 2024 IEEE 9th European Symposium on Security and Privacy (EuroS&P), pages

468-485. IEEE, 2024.

Daniel J Bernstein, Andreas Hiilsing, Stefan K6lbl, Ruben Niederhagen, Joost

Rijneveld, and Peter Schwabe. The sphincs+ signature framework. In Proceedings

[2

=

=
&

=

of the 2019 ACM SIGSAC conference on computer and communications security,

pages 2129-2146, 2019.

Slim Bettaieb, Loic Bidoux, Victor Dyseryn, Andre Esser, Philippe Gaborit, Mukul

Kulkarni, and Marco Palumbi. Perk: compact signature scheme based on a new

variant of the permuted kernel problem. Designs, Codes and Cryptography, pages

1-27, 2024.

Ward Beullens. Improved cryptanalysis of uov and rainbow. In Annual Inter-

national Conference on the Theory and Applications of Cryptographic Techniques,

pages 348-373. Springer, 2021.

Ward Beullens. Mayo: practical post-quantum signatures from oil-and-vinegar

maps. In International Conference on Selected Areas in Cryptography, pages 355—

376. Springer, 2021.

[13] Jean-Francois Biasse, Giacomo Micheli, Edoardo Persichetti, and Paolo Santini.

Less is more: code-based signatures without syndromes. In Progress in Cryptology-

AFRICACRYPT 2020: 12th International Conference on Cryptology in Africa, Cairo,

Egypt, July 20-22, 2020, Proceedings 12, pages 45-65. Springer, 2020.

Loic Bidoux, Jests-Javier Chi-Dominguez, Thibauld Feneuil, Philippe Gaborit,

Antoine Joux, Matthieu Rivain, and Adrien Vincotte. Ryde: a digital signa-

ture scheme based on rank syndrome decoding problem with mpc-in-the-head

paradigm. Designs, Codes and Cryptography, pages 1-36, 2025.

[15] Joseph Bonneau. Fawkescoin: A cryptocurrency without public-key cryptogra-
phy (transcript of discussion). In Cambridge International Workshop on Security
Protocols, pages 359-370. Springer, 2014.

[16] Johannes Buchmann, Erik Dahmen, and Andreas Hiilsing. Xmss-a practical

forward secure signature scheme based on minimal security assumptions. In

Post-Quantum Cryptography: 4th International Workshop, PQCrypto 2011, Taipei,

Taiwan, November 29-December 2, 2011. Proceedings 4, pages 117-129. Springer,

2011.

Vitalik Buterin, Yoav Weiss, Dror Tirosh, Shahaf Nacson, Alex Forshtat, Kristof

Gazso, and Tjaden Hess. Erc-4337: account abstraction using alt mempool.

Technical report, Ethereum Improvement Proposals, 2021.

David Chaum, Mario Larangeira, Mario Yaksetig, and William Carter. W-ots+

up my sleeve! a hidden secure fallback for cryptocurrency wallets. In Interna-

tional Conference on Applied Cryptography and Network Security, pages 195-219.

Springer, 2021.

Greg Colvin. Eip-616: Simd operations for the evm. EIPS/eip-616, 2017.

Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and Benjamin

Wesolowski. Sqisign: compact post-quantum signatures from quaternions and

isogenies. In Advances in Cryptology—ASIACRYPT 2020: 26th International Con-

ference on the Theory and Application of Cryptology and Information Security,

Daejeon, South Korea, December 7-11, 2020, Proceedings, Part I 26, pages 64—93.

Springer, 2020.

Justin Drake, Dmitry Khovratovich, Mikhail Kudinov, and Benedikt Wagner.

Hash-based multi-signatures for post-quantum ethereum. Cryptology ePrint

Archive, 2025.

Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky, Peter Schwabe,

Gregor Seiler, and Damien Stehlé. Crystals-dilithium: A lattice-based digital

signature scheme. IACR Transactions on Cryptographic Hardware and Embedded

Systems, pages 238-268, 2018.

Léo Ducas, Eamonn W Postlethwaite, Ludo N Pulles, and Wessel van Woerden.

Hawk: Module lip makes lattice signatures fast, compact and simple. In Interna-

tional Conference on the Theory and Application of Cryptology and Information

Security, pages 65-94. Springer, 2022.

Max Duparc and Tako Boris Fouotsa. SQIPrime: A dimension 2 variant of

SQISignHD with non-smooth challenge isogenies. Cryptology ePrint Archive,

Paper 2024/773, 2024. https://eprint.iacr.org/2024/773.

Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Syndrome decoding in the

head: Shorter signatures from zero-knowledge proofs. In Annual International

Cryptology Conference, pages 541-572. Springer, 2022.

Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identi-

fication and signature problems. In Conference on the theory and application of

cryptographic techniques, pages 186-194. Springer, 1986.

Evangelos Georgiadis. How many transactions per second can bitcoin really

handle? theoretically. Cryptology ePrint Archive, 2019.

Ilias Giechaskiel, Cas Cremers, and Kasper B Rasmussen. On bitcoin security in

the presence of broken cryptographic primitives. In Computer Security-ESORICS

2016: 21st European Symposium on Research in Computer Security, Heraklion,

Greece, September 26-30, 2016, Proceedings, Part I 21, pages 201-222. Springer,

2016.

A Huelsing, D Butin, S Gazdag, J Rijneveld, and A Mohaisen. Rfc 8391: Xmss:

extended merkle signature scheme, 2018.

Andreas Hiilsing. W-ots+-shorter signatures for hash-based signature schemes.

In Progress in Cryptology-AFRICACRYPT 2013: 6th International Conference on

Cryptology in Africa, Cairo, Egypt, June 22-24, 2013. Proceedings 6, pages 173-188.

Springer, 2013.

Andreas Hiilsing, Denis Butin, Stefan Gazdag, Joost Rijneveld, and Aziz Mohaisen.

Xmss: extended merkle signature scheme. Technical report, 2018.

[10

(1]

(12]

[14

(17

[21

[22]

[23]

[24]

[25

[26

[27

[28

™
20,

[30

[31

https://eprint.iacr.org/2024/760
https://eprint.iacr.org/2024/773

[32] Dragos IIlie, William J Knottenbelt, and Iain D Stewart. Committing to quantum
resistance, better: A speed-and-risk-configurable defence for bitcoin against a fast
quantum computing attack. In Mathematical Research for Blockchain Economy: 1st
International Conference MARBLE 2019, Santorini, Greece, pages 117-132. Springer,
2020.

Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic curve digital
signature algorithm (ecdsa). International journal of information security, 1:36-63,
2001.

Irakliy Khaburzaniya, Konstantinos Chalkias, Kevin Lewi, and Harjasleen Malvai.
Aggregating and thresholdizing hash-based signatures using starks. In Pro-
ceedings of the 2022 ACM on Asia Conference on Computer and Communications
Security, pages 393-407, 2022.

Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced oil and vinegar
signature schemes. In International Conference on the Theory and Applications of
Cryptographic Techniques, pages 206—-222. Springer, 1999.

Larry Marks and Evan Clendening. Stateful hash-based signatures. Public
Comments on Misuse Resistance, 2019.

Dustin Moody. Status report on the third round of the nist post-quantum cryp-
tography standardization process. NIST technical report, 2022.

Kohei Nakagawa and Hiroshi Onuki. SQIsign2D-East: A new signature scheme
using 2-dimensional isogenies. Cryptology ePrint Archive, Paper 2024/771, 2024.
https://eprint.iacr.org/2024/771.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Satoshi
Nakamoto, 2008.

Satoshi Nakamoto. Major meltdown. In Post on Bitcoin forum, volume 2, page 19,
2010.

Christian Paquin, Douglas Stebila, and Goutam Tamvada. Benchmarking post-
quantum cryptography in tls. In Post-Quantum Cryptography: 11th International
Conference, PQCrypto 2020, Paris, France, April 15-17, 2020, Proceedings 11, pages
72-91. Springer, 2020.

[42] Jacques Patarin. The oil and vinegar signature scheme. In Presented at the
Dagstuhl Workshop on Cryptography September 1997, 1997.

Erick Pacheco Pedraza. Eip-7619: Precompile falcon512 generic verifier. Technical
report, Ethereum Improvement Proposals, 2024.

Daniel Perez and Benjamin Livshits. Broken metre: Attacking resource metering
in evm. arXiv preprint arXiv:1909.07220, 2019.

Kuo Po-Chun, Cheng Chen-Mou, and Tam Chris. Eip-7592: Precompile for falcon
signature verification. Technical report, Ethereum Improvement Proposals, 2024.
Jamie J Pont, Joseph J Kearney, Jack Moyler, and Carlos A Perez-Delgado. Down-
time required for bitcoin quantum-safety. arXiv preprint arXiv:2410.16965, 2024.
Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim
Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William Whyte,
and Zhenfei Zhang. Falcon. Post-Quantum Cryptography Project of NIST, 2020.
Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the ACM,
21(2):120-126, 1978.

Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In
Advances in Cryptology—CRYPTO’89 Proceedings 9, pages 239-252. Springer, 1990.
Aaronson Scott. Quantum computing: Between hope and hype. Technical report,
The University of Texas at Austin, 2024.

Istvan Andras Seres, Noemi Glaeser, and Joseph Bonneau. Naysayer proofs.
Cryptology ePrint Archive, 2023.

Tain Stewart, Daniel Ilie, Alexei Zamyatin, Sam Werner, MF Torshizi, and William J
Knottenbelt. Committing to quantum resistance: A slow defence for bitcoin
against a fast quantum computing attack. Royal Society open science, 5(6):180410,
2018.

Anton Wahrstitter, Jens Ernstberger, Aviv Yaish, Liyi Zhou, Kaihua Qin, Taro
Tsuchiya, Sebastian Steinhorst, Davor Svetinovic, Nicolas Christin, Mikolaj Bar-
czentewicz, et al. Blockchain censorship. In Proceedings of the ACM on Web
Conference 2024, pages 1632-1643, 2024.

Gavin Wood et al. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper, 151(2014):1-32, 2014.

[33]

[34

)
S

[36

[37

[38

[39

[40

N
o=y

[43

[44

[45

[46

[47

[48

[49

[50]

[51

[52

[53

[54

A EXTENDED PRELIMINARIES

We recall the formal security definitions of a naysayer proof system.

Definition A.1 (Naysayer correctness). Given a proof system II, a
naysayer proof system Ilnay is correct if, for all honestly generated
Crs, CrSpay, all statements x, and all invalid proofs 7, Naysay outputs

a valid naysayer proof mnay, that is, the following probability is 1:

(crs, crsnay)
T—NSetup(lA, 1’1"“) A

VerifyNay(crsnay, (X, 7), Tnay) Verify(crs, x, 1) = 0 A

Pr -0

Tnay
~Naysay(crspay; (x, 7), AuXnay)

Definition A.2 (Naysayer soundness). Given a proof system II,
a naysayer proof system I,y is sound if, for all PPT adversaries
A and for all x, Aux, honestly generated crs, crspay, and correct
proofs 7, A produces a verifying naysayer proof mnay with at most
negligible probability, that is, the following probability is at most
negligible in the security parameter Anay:

(crs, crspay)
*—NSetup(l’l, IA”aY) A
Pr |VerifyNay(crsnay, (x, 7), Tnay) = 0| Verify(crs,x,) = 1 A
Tnay
~A(crsnay, (x, 1), Auxnay)

B ETHEREUM’S PQ MIGRATION COST

In this section, we provide loose lower bounds for the post-quantum
migration costs in Ethereum, akin to those in [46] calculated for Bit-
coin. At the time of writing (November 27th, 2024), there are ~ 210
million unique externally owned accounts (EOA) on the Ethereum
mainnet that had sent at least one transaction. '° Since these ad-
dresses sent at least one valid transaction, their ECDSA public key
is publicly exposed. Hence, in the presence of a plausible quantum
computing threat, a quantum attacker could drain the cryptocur-
rency stored at these addresses. Thus, each of these Ethereum
addresses must send a transaction to an address protected by a PQ
secure public key. Currently, the block gas limit on Ethereum is
30 million gas, and a simple value transfer transaction costs 21000
gas. For the sake of simplicity, let us assume that a transaction
with a PQ signature consumes 21000 gas as well. Therefore, at least
4410000 000 000 gas needs to be burnt to complete Ethereum’s PQ
migration. This computation requires 147 000 full Ethereum blocks.
At the time of writing, the block time interval in Ethereum is 12
seconds. Hence, Ethereum’s PQ transition would require at least
~ 20.42 days of downtime, effectively. This downtime can be eased
by trading off full blocks to a longer PQ transition period. Even
with this approach, the Ethereum blockchain’s throughput would
dramatically decrease.

C ADDITIONAL PERFORMANCE
MEASUREMENTS FOR SPHINCS+

In this section, we provide additional measurements for the on-
chain verification gas costs of SPHINCS+ for various parameter
sets. Recall that a SPHINCS+ implementation needs to specify a
parameter set (h, d, a, k), where h denotes the total height of the
SPHINCS+ hypertree, d denotes the number of intermediate layers,
while a and k are parameters of the FORS signature scheme allowing
us to sign messages with k - a bits. Figures 8 to 10 depicts SPHINCS+
verification gas costs when one parameter is fixed, and the other
vary for 256-bit messages.

105ee: https://dune.com/queries/2282489/3740508.

https://eprint.iacr.org/2024/771
https://dune.com/queries/2282489/3740508

Figure 8: SPHINCS+ on-chain verification gas costs for fixed a parameters (a € {4, 8, 16,32}) with varying h and d parameters.
Note that we only evaluate the parameters that enable the signing of 256-bit messages, cf. Equation (8).

k=7 k=23

Figure 9: SPHINCS+ on-chain verification gas costs for fixed k parameters (k € {7, 23,40, 60}) with varying h and a parameters.
Note that we only evaluate the parameters that enable the signing of 256-bit messages, cf. Equation (8).

2 1.900 25 20

Figure 10: SPHINCS+ on-chain verification gas costs for fixed h parameters (h € {3, 7,13, 19}) with varying d and a parameters.
Note that we only evaluate the parameters that enable the signing of 256-bit messages, cf. Equation (8).

	Abstract
	1 Introduction
	1.1 Post-quantum security and cryptocurrencies
	1.2 The right PQ signature for Ethereum
	1.3 Our contributions

	2 Preliminaries
	2.1 Notations
	2.2 The Ethereum Virtual Machine
	2.3 Naysayer proofs

	3 System Model
	3.1 On-chain signature verification
	3.2 Naysayer signature verification

	4 Hash-based signature scheme verification in the EVM
	4.1 The W-OTS^+ signature scheme
	4.2 Extended Merkle signature scheme (XMSS)
	4.3 SPHINCS+

	5 MAYO: A multivariate-quadratic signature scheme in the EVM
	6 Naysayer proofs for more NIST PQ signature candidates
	6.1 Code-based signatures
	6.2 Multivariate signatures
	6.3 SQIsign and Hawk
	6.4 MPC in-the-head

	7 Related work
	8 Conclusion and Future Directions
	References
	A Extended Preliminaries
	B Ethereum's PQ migration cost
	C Additional performance measurements for SPHINCS+

