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Abstract. The Polynomial Modular Number System (PMNS) is a non-positional number system de-
signed for modular arithmetic. Its efficiency, both in software and hardware, has been demonstrated for
integers commonly used in Elliptic Curve Cryptography [11,26]. In [9,7], the authors introduce specific
prime forms that are particularly well-suited for PMNS arithmetic. In this work, we extend their results
to a broader class of prime numbers. In practice, our approach yields performance that is competitive
with, and in some cases superior to, Pseudo-Mersenne arithmetic. As a result, we expand the set of
prime numbers that are well-suited for modular arithmetic. Furthermore, we contribute a database of
proof of concept Elliptic Curves constructed with those primes that verify the Brainpool Standard.

Keywords: Modular arithmetic · Polynomial modular number system · Internal reduction · Mersenne
primes · Pseudo-Mersenne primes · Fermat primes

1 Introduction

This work presents some methods to build very efficient PMNS for several classes of (prime) moduli.
In so doing, we extend the set of friendly primes for modular arithmetic.
Mersenne primes, of the shape p = 2q − 1, are a notable number class due to the fast modular reduc-
tion they afford. More precisely, the modular reduction can be done in linear time with regard to the
number of multi-precision coefficients. As such, they are used in cryptosystems that allow them with
the pre-eminent example being the E-521 curve in Elliptic Curve Cryptography [3].
Unfortunately, the density of such primes leaves much to be desired which is why Pseudo-Mersenne
[10], of the shape p = 2n − c with small c, and Generalized Mersenne [30] primes, of the shape
p = 2n1 ±2n2 ±· · ·±2ni ±1, are often used instead such as for Curve25519 [6] and secp256k1 [1]. These
also allow for linear-time modular reduction.
PMNS were introduced by Bajard et al. [4] as yet another extension of Mersenne numbers. Unfortu-
nately, in the general case, for any prime p, the modular reduction has an at best sub-quadratic time
complexity. PMNS-friendly primes that allow for linear-time reduction are known to exist and have
been utilized in the context of Elliptic Curve Cryptography [9] as well as for Isogeny-based Cryptog-
raphy [7]. The main motivation behind this work is to construct a class of primes which includes the
ones used in previous works as well as to extend it thanks to new constructions [27]. The result is a
prime class with speed in the same ballpark as Pseudo and Generalized Mersenne primes while being
much denser. More explicitly, our new class includes any prime of the shape p = αγn−λ

k
with no need

for any of those parameters to be powers of 2 or close to powers of 2. Restrictions on each parameter
are detailed further in the rest of the paper.
Section 2 gives a background on PMNS while Section 3 explains more recent additions to PMNS usage
as well as improved bounds for parameter consistency and corresponding conversion algorithms. Section
4 introduces the new prime class which branches off into two distinct constructions and explains how to
convert between the two. Those constructions are detailed further in Sections 5 and 6. In Section 7, we
present the cost analysis and benchmarks allowed by this construction. Finally, we conclude in Section 8.



2 Background on PMNS

The Polynomial Modular Number System (PMNS) is a non-positional number system for modular
arithmetic. A PMNS is defined by a tuple (p, n, γ, ρ, E), where p, n, γ and ρ are positive non-zero
integers and E ∈ Z[X] is a monic polynomial such that E(γ) ≡ 0 (mod p). For consistency, we assume
that p ⩾ 3 and n ⩾ 2. Let us start with the notations we will be using throughout this paper.

2.1 Some notations and conventions

– Zk[X] is the set of polynomials in Z[X] with degrees lower than or equal to k:
Zk[X] = {C ∈ Z[X] | deg(C) ⩽ k}.

– If A ∈ Zk[X], we assume that A(X) = a0 + a1X + · · ·+ akX
k can equivalently be represented as

the vector A = (a0, . . . , ak) ∈ Zk+1.
– If A = (a0, . . . , ak), then A (mod ϕ) = (a0 (mod ϕ), . . . , ak (mod ϕ)).
– Let A ∈ Zk be a vector. The supremum norm of A is defined as:
∥A∥∞ = max

0⩽i⩽k−1
|ai|.

– Let W ∈Mk(Z) be a matrix. The 1-norm of W is defined as:

∥W∥1 = max
0⩽j⩽k−1

k−1∑
i=0

|wij |.

2.2 PMNS and euclidean lattices

Definition 1. Let p ⩾ 3, n ⩾ 2, γ ∈ [1, p− 1] and ρ ∈ [1, p− 1]. Let E ∈ Z[X] a monic polynomial of
degree n, such that E(γ) ≡ 0 (mod p). A PMNS is a set B ⊂ Z[X] such that :
1. ∀A ∈ B, deg(A) < n,

2. ∀A(X) =

n−1∑
i=0

aiX
i ∈ B, −ρ < ai < ρ for all i,

3. ∀a ∈ Z/pZ, ∃A ∈ B such that A(γ) ≡ a (mod p).

Given a tuple B = (p, n, γ, ρ, E), one can build the n-dimensional full-rank Euclidean lattice LB
defined as follows:

LB = {A ∈ Zn−1[X] A(γ) ≡ 0 (mod p)}. (1)
It is the set of polynomials with degrees strictly less than n and having γ as a root modulo p. A basis
of LB is the n× n matrix B, defined as follows:

B =



p 0 0 . . . 0 0
t1 1 0 . . . 0 0
t2 0 1 . . . 0 0
...

. . .
...

tn−2 0 0 . . . 1 0
tn−1 0 0 . . . 0 1



← p
← X + t1
← X2 + t2

← Xn−2 + tn−2

← Xn−1 + tn−1

, (2)

where ti = (−γi) mod p.

Theorem 1 (from [5]) gives a condition on ρ for B to be a PMNS given p, n and E.

Theorem 1. Let p ⩾ 3, n ⩾ 1 be two integers, γ ∈ Z/pZ \ {0} and E ∈ Zn[X] a monic polynomial
such that E(γ) ≡ 0 (mod p). Let W be any basis of the lattice LB. A tuple B = (p, n, γ, ρ, E) defines
a PMNS if:

ρ >
1

2
∥W∥1 .

This theorem applies on any basis W of LB. However, for optimization purposes to represent PMNS
elements, we want ρ to be as small as possible. So, in practice,W is taken as a reduced basis of LB (the
smaller the better). Such a basis can be obtained with algorithms like LLL [21], BKZ [28] or HKZ [20],
applied to the basis B (Equation 2). Since det(B) = p, this results in a parameter ρ ≈ n

√
p [25].

In [12, Lemma 4.1], this theorem is extended to any basis of any sub-lattice of LB.
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2.3 Arithmetic of PMNS

Let p = 1048573, n = 5, γ = 238019, ρ = 36 and E(X) = X5− 2. Constructing the basis B as described
in Equation 2 and reducing it with LLL produces the reduced basis

W =


5 6 9 −2 −9
5 7 −3 12 −5
−10 5 7 −3 12
−13 −7 2 0 −9
1 −12 14 4 0


One can verify that ∥W∥1 = 37 so that ρ > 1

2
∥W∥1 and thus B = (p, n, γ, ρ, E) is a PMNS. Now let us

consider two polynomials in B: A = −9X4+13X3−35X2−25 and B = 24X4−32X3+21X2−2X−16.
Their modular multiplication is performed in three steps:

1. a standard polynomial multiplication

AB = −216X8 + 600X7 − 1445X6 + 1411X5

−1217X4 + 662X3 + 35X2 + 50X + 400

2. a degree reduction (called external reduction)

C = AB mod E

= −1217X4 + 230X3 + 1235X2 − 2840X + 3222

Since E(γ) ≡ 0 mod p, we have C(γ) ≡ A(γ)B(γ) mod p.
3. a coefficient reduction (called internal reduction)

S = C − (−1211X4 + 228X3 + 1225X2 − 2832X + 3236)

= −6X4 + 2X3 + 10X2 − 8X − 14

(with− 1211γ4 + 228γ3 + 1225γ2 − 2832γ + 3236 ≡ 0 mod p)

At the end of the process, with have S(γ) ≡ A(γ)B(γ) mod p and ∥S∥∞ = 10 < ρ so that S is in the
PMNS.
More formally, the goal of external reduction is to ensure that the degree of the product of two elements
of the PMNS remains less than or equal to n − 1 so that the first property of Definition 1 holds.
Polynomial division guarantees that there exists a polynomial Q(X) ∈ Z[X] such that A(X)B(X) =
Q(X)E(X) + R(X) with degR(X) < n. Since E(γ) ≡ 0 (mod p), it follows that R(γ) ≡ A(γ)B(γ)
(mod p). External reduction involves computing A(X)B(X) mod E(X). In Section 3, we provide a
general framework for this operation, which encompasses the methods presented in [13] for E(X) =
Xn + en−1X

n−1 + · · ·+ e1X + e0, and [27] for E(X) = αXn − λ.
The goal of the internal reduction is to ensure the absolute value of the coefficients of the product of
two elements of the PMNS remains smaller than ρ so that the second property of Definition 1 holds.
A general approach is to find a polynomial C′ in the lattice W close to the reduced product C = AB
mod E so that the coefficients of C − C′ are small. Since C′ ∈ W we have C′(γ) ≡ 0 mod p and
C(γ)−C′(γ) ≡ C(γ) mod p. In the next section, we focus on another approach that is commonly used
to perform internal reduction.

2.4 Internal reduction

This paper focuses on the Montgomery-like internal reduction method introduced in [24] by Christophe
Negre and Thomas Plantard. The main idea is to add to C a multiple of a polynomial M ∈ W such
that all the coefficients of C +QM are divisible by the same integer ϕ. This method (see Algorithm 1)
requires three parameters chosen so that ∥C +QM∥∞ < ϕρ.
– An integer ϕ ⩾ 2.
– A polynomial M ∈ Zn−1[X] such that: M(γ) ≡ 0 (mod p).
– A polynomial M ′ ∈ Zn−1[X] such that: M ′ = −M−1 mod (E, ϕ).
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Algorithm 1 Coefficient reduction [24]

Require: V ∈ Zn−1[X], M ∈ Zn−1[X] such that M(γ) ≡ 0 (mod p), ϕ ∈ N \ {0, 1} and M ′ =
−M−1 mod(E, ϕ).

Ensure: S(γ) = V (γ)ϕ−1 (mod p), with S ∈ Zn−1[X]
1: Q← V ×M ′ mod (E, ϕ)
2: T ← Q×M mod E
3: S ← (V + T )/ϕ
4: return S

With ϕ and the polynomials M and M ′, the authors in [13] introduce the matrices M and M′ (see
Equations 3 and 4) in order to make the internal reduction’s cost independent of the shape of E. With
these matrices, Algorithm 1 is rewritten as Algorithm 2. Notice thatM generates a sub-lattice of LB.

M =


m0 m1 . . . mn−1

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . .


←M
← X.M mod E

← Xn−1.M mod E

(3)

M′ =


m′

0 m
′
1 . . . m

′
n−1

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . .


←M ′

← X.M ′ mod (E, ϕ)

← Xn−1.M ′ mod (E, ϕ)

(4)

Algorithm 2 Coefficients reduction for PMNS (RedCoeff) [13]

Require: V ∈ Zn−1[X], the matricesM, M′ and ϕ ∈ N \ {0, 1}.
Ensure: S(γ) = V (γ)ϕ−1 (mod p), with S ∈ Zn−1[X]
1: Q = (v0, . . . , vn−1)M′ (mod ϕ)
2: T = (q0, . . . , qn−1)M
3: S ← (V + T )/ϕ
4: return S

2.5 Generalized internal reduction and bounds for ρ and ϕ

In two recent (and independent) works, the above Montgomery-like internal reduction method has
been generalized. In [22], the authors show that the matrix M in Algorithm 2 can be replaced by any
(reduced) basis W of LB, with M′ = −W−1 mod ϕ. In [12], the authors go even further by doing a
precise study of the redundancy in the PMNS and showing that M can be replaced by any (reduced)
basis G of any sub-lattice of LB, with M′ = −G−1 mod ϕ. With this generalization, they also propose
a simple way to perform the equality test within the PMNS.

Let L be a sub-lattice of LB, having G as a basis. As explained in [12], det(G) = k×p. If gcd(ϕ, det(G)) =
1, then G′ = −G−1 mod ϕ exists. Thus, the Montgomery-like internal reduction method can be gener-
alized using any basis G of any sub-lattice L (see Algorithm 3).
Let A and B be two elements of B and V = A× B mod E. In [12], the authors give bounds on ρ and
ϕ to ensure consistency of operations and to guarantee that GMont-like (Algorithm 3) outputs from
V an element of B. They propose to take these parameters such that:

ρ = ∥G∥1 + 1 and ϕ ⩾ 2⌈w(δ + 1)2∥G−1∥1∥G∥21⌉ (5)
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Algorithm 3 Coefficients reduction for PMNS (GMont-like) [12]

Require: V ∈ Zn−1[X], ϕ ∈ N\{0, 1}, a (reduced) basis G of a sub-lattice of LB such that gcd(ϕ, det(G)) = 1,
and G′ = −G−1 mod ϕ.

Ensure: S(γ) = V (γ)ϕ−1 (mod p), with S ∈ Zn−1[X]
1: Q = (v0, . . . , vn−1)G′ (mod ϕ)
2: T = (q0, . . . , qn−1)G
3: S ← (V + T )/ϕ
4: return S

The parameter δ has been introduced in [11], designating the maximum number of consecutive additions
of elements in B that we want to compute before doing a multiplication and an internal reduction.
Introduced in [13], the parameter w represents the increase in the coefficients of the result due to the
external reduction.

3 PMNS with non-monic external reduction polynomials

Let us first recall in this Section a classical result on the product of two polynomials U(X) and T (X)
in any ring R[X]. Suppose U(X) =

∑d
i=0 uiX

i is a polynomial of degree d and T (X) is a constant
polynomial of degree d. Then

U(X)T (X) =

d∑
i=0

uiX
iT (X) .

Thus, each coefficient of the polynomial U(X)T (X) can be obtained by computing the following vector-
matrix product :

(u0, u1, . . . , ud−1, ud)E .
where E is a precomputed matrix whose rows are composed of the coefficients of XiT (X) in R[X], for
i = 0 . . . , d.
Let A(X) and B(X) two elements of Zn−1[X] and let

C(X) = A(X)B(X)
= c0 + c1X + · · ·+ cn−1X

n−1 + (cn + cn−1X + · · ·+ cn−2X
n−2)Xn

= L(X) + U(X)Xn .

Then
C(X) mod E(X) = L(X) + (U(X)Xn mod E(X)) .

As previously detailed the coefficients of (U(X)Xn mod E(X)) can be computed using the following
vector-matrix product

(cn, cn−1, . . . , cn−2)E ,
where E is the matrix whose rows are the coefficients of Xn+i in Z[X]/E(X). Notice that these coef-
ficients are in Z when E(X) is a monic polynomial. The whole computation of C(X) mod E(X) boils
down to computing (as described in [13])

(c0, . . . , cn−1) + (cn, cn−1, . . . , cn−2)E .

3.1 Extending the parameters for non-monic E

Let E(X) = αXn + en−1X
n−1 + · · · + e1X + e0 be a non-monic polynomial (i.e. α > 1), there is no

guarantee that Xn+i mod E(X) belongs to Z[X]. Now, since

C(X) mod E(X) = L(X) + (U(X)Xn mod E(X)) ,

then
αC(X) mod E(X) = αL(X) + (U(X)αXn mod E(X)) .
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Let us consider the matrix Eα whose rows are the coefficients of αXn+i mod E(X).

Eα =


−e0 −e1 . . . −en−1

. . . . . . . . . . . .
...

...
...

...
. . . . . . . . . . . .


← αXn mod E
← αXn+1 mod E

← αX2n−2 mod E

. (6)

Since αXn ≡ −(en−1X
n−1 + · · ·+ e1X + e0) mod E(X) then

αXn+1 ≡ −(en−1X
n + · · ·+ e1X

2 + e0X) mod E(X) ,

and
−en−1X

n ≡ en−1

α
(en−1X

n−1 + · · ·+ e1X + e0) .

Hence to keep the result in Z[X]/E(X), we need to assume that en−1 ≡ 0 mod α. By induction, to
guarantee that each row of Eα belongs to Zn, we need to assume that

ei ≡ 0 mod α, for i = 2, . . . , n− 1. (7)

Notice that the matrix E previously defined for monic E(X) is equal to E1 and that the generalized
external reduction process for any monic polynomials (α = 1) and any non-monic polynomials satisfying
the conditions of Equation 7 can be computed as :

R = α(c0, . . . , cn−1) + (cn, . . . , c2n−2)Eα . (8)

Doing so, one obtains a polynomial R ∈ Zn−1[X] such that:

R(γ) ≡ αA(γ)B(γ) (mod p) .

By convention, α will be positive as we can always take −E instead of E to guarantee it. The case
E(X) = αXn − λ is a specific instance of the aforementioned detailed in [27]. This recent work to
appear proposes the following algorithm (Algorithm 4) for external reduction.

Algorithm 4 External reduction using binomial (bMul) [27, Slide 22]

Require: A,B ∈ Zn−1[X] and E(X) = αXn − λ
Ensure: R(γ) ≡ αA(γ)B(γ) (mod p), with R ∈ Zn−1[X]
1: C ← A×B
2: Decompose C = L+ UXn, with deg(L),deg(U) < n
3: R← αL+ λU
4: return R

Remark 1. As R(γ) ≡ αA(γ)B(γ) (mod p), the author of [27] recommends using a specific domain for
the correctness of the computation. That is to say to compute a× b, one should find P (X) and Q(X)
such that P (γ) ≡ α−1a (mod p) and Q(γ) ≡ α−1b (mod p). This way R(X) = αP (X)Q(X) (mod E)
satisfies R(γ) ≡ α−1ab (mod p).

From Equation 8, we deduce that

∀i = 0, . . . n− 1, Ri = αci +

n−2∑
k=0

cn+k(Eα)ki .

Now since C(X) = A(X)B(X), then

ci =

i∑
k=0

akbi−k for 0 ⩽ i ⩽ n− 1 and cn−1+i =

n−1∑
k=i

akbn−1+i−k for 1 ⩽ i ⩽ n− 1 .
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Hence

ci ⩽ (i+ 1)∥A∥∞∥B∥∞ for 0 ⩽ i ⩽ n− 1 and cn−1+i ⩽ (n− i)∥A∥∞∥B∥∞ for 1 ⩽ i ⩽ n− 1 .

It follows that

∀i = 0, . . . , n− 1, Ri ⩽ |α|(i+ 1) +

n−2∑
k=0

(n− k − 1)(E ′α)ki ,

E ′α being the (n− 1)× n matrix such that (E ′α)ij = |(Eα)ij |. This last result gives that

∥R∥∞ ⩽ wα∥A∥∞∥B∥∞ , (9)

with:
wα = ∥|α|(1, 2, . . . , n) + (n− 1, n− 2, . . . , 1)E ′α∥∞ . (10)

This generalizes the result given in [13, Proposition 2].

Remark 2. For E(X) = αXn − λ we have

wα = max(αn, α+ (n− 1)|λ|). (11)

3.2 Improvement on bounds
As mentioned in Section 2.5, it has been proposed in [12] to take ρ = ∥G∥1 + 1. In this section, we
provide a slight improvement of this value and give a bound on ϕ that is somewhat more precise than
that of [13, Proposition 3]. From now on, we consider the assumption in Equation 7. Let A and B be
two elements of B and V = A×B (mod E). From Equation 9, we have that:

∥V ∥∞ ⩽ wα∥A∥∞∥B∥∞ ⩽ wα(ρ− 1)2.

The output of Algorithm 3 will be in the PMNS if :

∥V + T∥∞
ϕ

⩽ ρ− 1 ,

Now in Algorithm 3:
∥T∥∞ < ϕ∥G∥1.

Therefore:
∥V + T∥∞

ϕ
<

1

ϕ
(wα(ρ− 1)2 + ϕ∥G∥1).

Traditionally, the mod ϕ reduction is done by taking the value between 0 and ϕ− 1, but we could just
as easily take the value between −ϕ

2
and ϕ

2
− 1.

By making use of signed arithmetic, the output of Algorithm 3 will be in the PMNS if:

wα(ρ− 1)2

ϕ
+

1

2
∥G∥1 ⩽ ρ ,

that is to say, if

wα(ρ− 1)2 ⩽ ϕ(ρ− 1

2
∥G∥1) .

This means we can then take ρ = ∥G∥1 − 1 for its minimal value. Indeed we have:

wα(ρ− 1)2

ρ− ∥G∥1
2

⩽ ϕ.

We take the derivative to find the minimum value:
wα(ρ− 1)(ρ− ∥G∥1 + 1)

(ρ− ∥G∥1
2

)2
.

This gives us a minimal value for ρ = ∥G∥1 − 1 which we can now set as our new optimal parameter ρ.
The bound on ϕ thus becomes:

2wα(ρ− 1) ⩽ ϕ. (12)
instead of [13, Proposition 3]

2wαρ ⩽ ϕ .
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Remark 3. If we take into account the parameter δ used on page 5, our bound becomes 2wα(∥G∥1 −
2)(δ + 1)2 ⩽ ϕ instead.

Remark 4. Regarding the bound on ϕ in Equation 5, page 4, it translates to ϕ ⩾ 2⌈wα(ρ−1)∥G−1∥1∥G∥1(δ+
1)2⌉, which is greater or equal than 2wα(ρ− 1)(δ+1)2 since ∥G−1∥1∥G∥1 ⩾ 1. Nevertheless, the bound
on ϕ in Equation 5 enables performing an equality test within the PMNS and provides precise control
over redundancy (see next section).

3.3 Alternative conversion algorithms

In previous works on PMNS, authors generally take ρ as a power of 2 in order to use fast conversion
algorithms, usually the smallest power of 2 above the optimal value of ρ. However, in [12], the authors
propose a fast conversion algorithm that doesn’t rely on the parameter ρ being any specific shape,
allowing it to be taken as its optimal value.

In [12, Section 4.2], the authors introduced the translation vector, a well-chosen point of L which allows
to perform the internal reduction to space domains where the redundancy in the PMNS is precisely
known and controlled. The use of this vector also makes it possible to carry out an equality test between
the elements of a PMNS, which was previously an open problem. When fine control of redundancy or
equality testing is not required, as in this paper, some of the algorithms presented in [12] can be slightly
modified to enhance either efficiency or memory usage. This section presents alternative algorithms to
conversion methods presented in [12, Algorithms 8, 9]. First, we modify the exact conversion algorithm
from [12, Algorithm 8]. Adding an extra iteration to the for loop, we can obtain better bounds on the
supremum norm of the output. This is needed for precomputed values of the fast conversion algorithm.

Algorithm 5 Exact Conversion to PMNS

Require: a ∈ Z/pZ, B = (p, n, γ, ρ, E) and the matrices G and G′.
Ensure: A ∈ B with A(γ) ≡ a (mod p).
1: τ ← a× ϕn (mod p)
2: A← (τ, 0, . . . , 0) # a vector of dimension n
3: for i = 0 . . . n do
4: A← GMont-like(A)
5: end for
6: return A

Proposition 1. Algorithm 5 properly outputs a polynomial A ∈ B such that ∥A∥∞ ⩽ ∥G∥1
2

+ 1 and
A(γ) ≡ a (mod p).

Proof. Let us denote Ai the value A will have at the iteration i of the loop in Algorithm 5. By con-
struction we get that A0(γ) ≡ a×ϕn (mod p). Each iteration involves applying GMont-like and thus
dividing by ϕ so we naturally get that Ai(γ) ≡ a × ϕn−i (mod p). Since we apply it n times we get
A(γ) ≡ a (mod p).

As for the bounds on A, we get that ∥A0∥∞ < p since τ < p. Furthermore, for a given iteration i, we

will have that ∥Ai+1∥∞ ⩽
∥Ai∥∞+ϕ

2
∥G∥1

ϕ
from the application of GMont-like. If we simplify we get

∥Ai+1∥∞ ⩽ ∥Ai∥∞
ϕ

+ ∥G∥1
2

. If we go one iteration step further we get ∥Ai+2∥∞ ⩽ ∥Ai+1∥∞
ϕ

+ ∥G∥1
2

=
∥Ai∥∞

ϕ
+

∥G∥1
2

ϕ
+ ∥G∥1

2
which simplifies to ∥Ai+2∥∞ ⩽ ∥Ai∥∞

ϕ2 + ∥G∥1
2ϕ

+ ∥G∥1
2

. Because of our bounds from

Section 3.2, ∥G∥1
ϕ

< 1. Taken to its natural conclusion we can bound An in the following way:

∥An∥∞ <
∥A0∥∞
ϕn

+
∥G∥1
2

+ 1.
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Hence
∥An∥∞ <

p

ϕn
+
∥G∥1
2

+ 1.

By construction, we have that p < ϕn therefore p
ϕn

< 1 so:

∥A∥∞ <
∥G∥1
2

+ 2.

Thus
∥A∥∞ ⩽

∥G∥1
2

+ 1.

Since ρ = ∥G∥1 − 1 so we also have:
∥A∥∞ < ρ.

So A ∈ B. ⊓⊔

Remark 5. Algorithm 12 in [12, Section 5.3] ensures the output result in lattice fundamental domain
H′ = {t ∈ Rn | t =

∑n−1
i=0 µiGi and − 1

2
⩽ µi <

1
2
}, where the redundancy can be controlled and

every element A ∈ H′ is such that ∥A∥∞ ⩽ 1
2
∥G∥1. So, unlike Algorithm 5, the reached space domain

is known with a slightly better bound. However, it is slower.

Algorithm 5 is slow and mostly useful for pre-computations used in Algorithm 6 although it does give
an unconditional low-norm representative in a PMNS. In practice, for fast conversion, we will instead
use the following adapted from [12, Algorithm 9]:

Algorithm 6 Fast Conversion to PMNS

Require: a ∈ Z/pZ, B = (p, n, γ, ρ, E), with E’s leading coefficient being noted as α, the matrices G and
G′, Θ the smallest power of 2 such that Θn > p and Pi ∈ B such that Pi(γ) ≡ α−1Θiϕ2 (mod p) and ∀i,
∥Pi∥∞ ⩽ ∥G∥1

2 + 1.
Ensure: A ∈ B with A(γ) ≡ α−1aϕ (mod p)
1: t← (tn−1, . . . , t0) # Θ-radix decomposition of a

2: U ←
n−1∑
i=0

tiPi(X)

3: A← GMont-like(U)
4: return A

Proposition 2. Algorithm 6 properly outputs a polynomial A such that A(γ) ≡ α−1aϕ (mod p) and
furthermore, if Θ < 2wα

n
(∥G∥1 − 7 + 6

(∥G∥1+2)
), then ∥A∥∞ < ρ.

Proof. Because t is the Θ-radix decomposition of a, we can write a as a =
n−1∑
i=0

tiΘ
i. By construction,

we get that U(γ) ≡
n−1∑
i=0

tiΘ
iα−1ϕ2 ≡ α−1aϕ2 (mod p). Since GMont-like applies a division by ϕ,

A(γ) ≡ α−1aϕ (mod p).
Now ∀i, ∥Pi∥∞ ⩽ ∥G∥1

2
+1 and ∥t∥∞ ⩽ Θ−1 by construction therefore ∀i, ∥tiPi∥∞ ⩽ (Θ−1)( ∥G∥1

2
+1).

It follows that ∥U∥∞ ⩽ n(Θ − 1)( ∥G∥1
2

+ 1).

After applying GMont-like we get ∥A∥∞ ⩽
n(Θ−1)(

∥G∥1
2

+1)+
ϕ∥G∥1

2
ϕ

which gives us:

∥A∥∞ ⩽
n(Θ − 1)( ∥G∥1

2
+ 1)

ϕ
+
∥G∥1
2

. (13)

Our bounds regarding ϕ and ρ give us that ϕ > 2wαρ and the optimal value of ρ has been noted to be
∥G∥1 − 1 hence:

∥A∥∞ ⩽
n(Θ − 1)( ∥G∥1

2
+ 1)

2wα(∥G∥1 − 1)
+
∥G∥1
2

.
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Furthermore, we wish to obtain for all inputs ∥A∥∞ ⩽ ρ− 1, which is verified if:

∥G∥1 − 2 ⩾
n(Θ − 1)( ∥G∥1

2
+ 1)

2wα(∥G∥1 − 1)
+
∥G∥1
2

.

Thus, the necessary condition becomes:

∥G∥1
2

⩾
n(Θ − 1)( ∥G∥1

2
+ 1)

2wα(∥G∥1 − 1)
+ 2

⇐⇒ ∥G∥1 − 1 ⩾
n(Θ − 1)(∥G∥1 + 2)

2wα(∥G∥1 − 1)
+ 3

⇐⇒ (∥G∥1 − 1)(∥G∥1 − 4) ⩾
n(Θ − 1)(∥G∥1 + 2)

2wα

⇐⇒ 2wα(∥G∥1 − 4− 3 +
6

(∥G∥1 + 2)
) ⩾ n(Θ − 1)

If we isolate Θ we get:
2wα
n

(∥G∥1 − 7 +
6

(∥G∥1 + 2)
) > Θ. (14)

⊓⊔

Proposition 3. Let B = (p, n, γ, ρ, E) a PMNS and let ℓ such that 2ℓ−1 < p < 2ℓ. Equation 14 is
verified if wα ⩾ 3

2
n and ℓ > n log2(21) + 1.

Proof. From [12, Property 4.2], we have | det(G)| ⩽ (∥G∥1)n. Since p ⩽ | det(G)|, we get that n
√
p ⩽

∥G∥1. We have 2ℓ−1 < p < 2ℓ and Θ being the smallest power of 2 such that Θn > p, we get that
2
ℓ
n < Θ < 2

ℓ+n−1
n and equation 14 becomes:

3(2
ℓ−1
n − 7 +

6

(∥G∥1 + 2)
) > 2

ℓ+n−1
n

⇐⇒ 3× 2
ℓ−1
n − 2× 2

ℓ−1
n − 21 +

18

(∥G∥1 + 2)
> 0

⇐⇒ 2
ℓ−1
n − 21 +

18

(∥G∥1 + 2)
> 0

Since 18
(∥G∥1+2)

> 0, the inequality is satisfied as soon as:

2
ℓ−1
n > 21

⇐⇒ ℓ− 1

n
> log2(21)

⇐⇒ ℓ > n log2(21) + 1

⊓⊔

Remark 6. For the vast majority of PMNS, this inequality will be verified. However, for the rare
exceptions, one can increase ρ in consequence so long as 2wα(ρ−1)(δ+1)2 ⩽ ϕ. If the bounds allow for
ρ to be the smallest power of 2 bigger than ∥G∥1− 1 (similar to what was done in previous works) then
we can take Θ = ρ and Algorithm 6 will therefore correctly output an element whose coefficients are
absolutely bounded by ρ. From equation 13:

∥A∥∞ ⩽
n(ρ− 1)( ∥G∥1

2
+ 1)

2wα(ρ− 1)
+
∥G∥1
2

⇐⇒ ∥A∥∞ ⩽
n( ∥G∥1

2
+ 1)

2wα
+
∥G∥1
2

⇐⇒ ∥A∥∞ ⩽
n

wα
(
∥G∥1
4

+
1

2
) +
∥G∥1
2

⩽
∥G∥1
4

+
1

2
+
∥G∥1
2

⩽
3

4
∥G∥1 +

1

2

⇐⇒ ∥A∥∞ ⩽ ∥G∥1 − 1 ⩽ ρ
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4 PMNS-friendly primes

The internal reduction is one of the most investigated aspects of PMNS because of how critical it is
to the overall time complexity of operations. In the general case, an at best subquadratic amount of
operations (in the degree of the polynomial to reduce) is expected but the authors of [9] and [7] have
noted that specific prime shapes allow for linear-time internal reduction with sparse polynomials M
and M ′, using Algorithm 1. This was actually already observed for the NIST prime P521 in an earlier
version of [11] (see Remark 11 and Appendix A of the arXiv preprint). In this section, we show that the
prime class covered by those two methods are the same and we introduce the shape of an even broader
class of primes that allow for linear-time reduction.

In [7], the authors consider the PMNS within the context of SIDH arithmetic. They explain a method for
linear time internal reduction for any PMNS B = (p, n, γ, ρ, E = Xn−λ) whenever M(X) = γ

λ
Xn−1−1.

From [7, Theorem 11], if γ2 ≡ 0 (mod ϕ), then M ′ will also be sparse. From [7, Theorem 13] the shape
of M implies γ < ρ.
Meanwhile, in [9], the authors implement PMNS for ECC and, in [9, Section II.D], remark that for any
Mersenne and some Generalized Mersenne numbers, one can achieve linear time internal reduction for
a PMNS B = (p, n, γ, ρ, E = Xn − λ) using M(X) = γ′X − 1 and M ′(X) = γ′X +1, whenever γ′2 ≡ 0
(mod ϕ) and ([9, Equation 1]) γ′ < ρ with γ′, γ’s modular inverse in Z/pZ.
We will now show that any prime that satisfies the clauses for the method of [7] also satisfies the clauses
for [9] and a corresponding PMNS can be created with the same p and n but a different γ and E.

Let B = (p, n, γ, ρ,Xn − λ) such that γ2 ≡ 0 (mod ϕ) and γ < ρ which are the conditions for [7]’s
method. Let us denote γ′ the modular inverse of γ in Z/pZ. We will have γ′×γ = 1+k×p with k ∈ Z.
From the parameters we get that γn − λ = k′ × p with k′ ∈ Z.

k′p = γn − λ

⇐⇒ γ′nk′p = γ′nγn − γ′nλ

⇐⇒ γ′nk′p = (γ′γ)n − γ′nλ

⇐⇒ γ′nk′p = (1 + k × p)n − γ′nλ

For the sake of clarity we will write (1 + k × p)n = 1 + k′′p with k′′ =
n∑
i=1

(
n
i

)
kipi−1

γ′nk′p = 1 + k′′p− γ′nλ

⇐⇒ λγ′n − 1 = (k′′ − γ′nk′)p

We can therefore construct the PMNS B′ = (p, n, γ′, ρ′, E′ = λXn − 1). Indeed, we clearly have
E′(γ′) ≡ 0 (mod p). Furthermore, γ′ is such that the square of its modular inverse is a multiple of ϕ
since its modular inverse is γ. This means the PMNS meets the conditions for [9]’s method. (Remark
7 explains why in fact ρ′ = ρ and therefore we also meet the other requirement as well).

Conversely, let B = (p, n, γ, ρ, E = Xn − λ) with γ′, γ’s modular inverse such that γ′2 ≡ 0 (mod ϕ)
and γ′ < ρ which are the conditions for [9]’s method.
We can show in a similar way that we can construct the PMNS B′ = (p, n, γ′, ρ′, E′ = λXn−1). Indeed,
we clearly have E′(γ′) ≡ 0 (mod p). Furthermore, γ′ is such that γ′2 ≡ 0 (mod ϕ) and γ′ < ρ′ which
means the PMNS meets the conditions for [7]’s method. (Remark 7 explains why in fact ρ′ = ρ).

More generally, we can show that for any PMNS (p, n, γ, ρ, E) we can construct another PMNS
(p, n, γ′, ρ′, E′) with any E by taking E′ the reciprocal polynomial of E and γ′ the modular inverse of
γ.
We therefore introduce the following definition.

Definition 2. Let B = (p, n, γ, ρ, E) a PMNS with E(X) = enX
n + en−1X

n−1 + . . .+ e1X + e0. Let
E′(X) = e0X

n + e1X
n−1 + . . .+ en−1X + en the reciprocal polynomial of E. Let γ′ such that γγ′ ≡ 1

(mod p). The mirror PMNS of B is B′ = (p, n, γ′, ρ, E′).
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Remark 7. Given a short basis G, each row corresponds to a polynomial that vanishes in γ. If we take
the reciprocal of each polynomial, they will vanish in γ′ and thus we can construct a short basis of the
mirror with the same 1-norm as G. Since ρ depends on the 1-norm of the short basis, we will have the
same ρ for B and B′.

Remark 8. If e0 is negative, we can take −E′ instead so that the leading coefficient is positive.

PMNS have traditionally been considered with monic external reduction polynomials only, but [27],
using E(X) = αXn − λ, paves the way for constructing a broader class of prime.

With consideration towards binomials, we can consider the class of prime numbers of the shape p =
αγn−λ

k
having either γ < ρ or γ−1 < ρ and k ∈ Z \ {0}. Note that this could be generalized to

p = E(γ)
k

for any E that allows for fast external reduction with the same conditions on k and γ (or
γ−1). Moreover, in the following sections, we will show that even if γ2 ̸≡ 0 (mod ϕ) or γ−2 ̸≡ 0 (mod ϕ)
(which is required in [7,9]), using sparse M gives a polynomial inverse that, while not sparse, possesses
structure that still allows for a linear multiplication process.

5 PMNS built with M(X) = 1
γ
X − 1

This Section is about PMNS with the internal reduction polynomial M such that M(X) = tX − 1,
where t = 1

γ
(mod p). We will see how such a polynomial M results in very sparse matrices G and G′.

Thus, making GMont-like (Algorithm 3) very efficient. We also explain how to generate such a PMNS.

Several kinds of primes with interesting mathematical properties have been proposed [2]. However, most
of them do not offer any particular advantage for efficient modular arithmetic. In this section, we show
how to easily build very efficient PMNS for some of them. Thus, allowing us to get the best of both
worlds: the interesting mathematical properties of these moduli, and very efficient modular arithmetic
thanks to the efficient PMNS generated for them.

From now on, we focus on the polynomials E such that E(X) = αXn − λ. We first consider the case
where only the matrix G is guaranteed to be very sparse. We will see that this is sufficient to have a
reduction algorithm with linear complexity in the number of small operations. Then, we explain how
to choose the polynomial M so that the matrix G′ is also very sparse, which allows us to minimise the
cost of the internal reduction. After presenting a generation process of these PMNS, we highlight a set
of well-known primes for which very efficient PMNS can be easily built.

5.1 Coefficient reduction

Remember that the reduction polynomial M ∈ LB (see Equation 1), i.e. M(γ) ≡ 0 (mod p). The
coefficient reduction is done using the GMont-like algorithm. So, we need to define the matrices G
and G′. With M(X) = tX − 1, the reduction matrix G is defined as follows:

G =



−1 t 0 0 . . . 0
0 −1 t 0 . . . 0

0 0
. . .

. . . 0 0

0 0
. . . −1 t 0

0 0 . . . 0 −1 t
tλ 0 0 . . . 0 −α



←M
← X.M mod E

← Xn−3.M mod E
← Xn−2.M mod E
← αXn−1.M mod E

(15)

Notice that:
det(G) = (−1)n−1(λtn − α) (16)

In practice, |λ| and |α| are chosen very small, and the polynomial M is a short vector of the lattice LB,
i.e. |t| ≈ n

√
p. As a consequence, we have det(G) ̸= 0 and

∥G∥1 = max(|tλ|+ 1, |t|+ |α|) (17)
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Moreover, each row of G is an element of LB. So, G is the basis of a sub-lattice of LB. Thus, det(G) = kp,
with k ∈ Z \ {0}.

Proposition 4. The inverse matrix of G is:

G−1 =
(−1)n−1

det(G)



α αt αt2 αt3 . . . αtn−2 tn−1

λtn−1 α αt αt2 . . . αtn−3 tn−2

λtn−2 λtn−1 α αt . . . αtn−4 tn−3

...
...

...
. . .

...
...

...
λt3 λt4 . . . λtn−1 α αt t2

λt2 λt3 λt4 . . . λtn−1 α t
λt λt2 λt3 λt4 . . . λtn−1 1


(18)

Proof. We have:

G.G−1 =
(−1)n−1

det(G) × T =
1

λtn − α × T ,

where:

T =



(−α+ λtn) (−αt+ αt) (−αt2 + αt2) . . . (−αtn−2 + αtn−2) (−tn−1 + tn−1)
(−λtn−1 + λtn−1) (−α+ λtn) (−αt+ αt) . . . (−αtn−3 + αtn−3) (−tn−2 + tn−2)
(−λtn−2 + λtn−2) (−λtn−1 + λtn−1) (−α+ λtn) . . . (−αtn−4 + αtn−4) (−tn−3 + tn−2)

...
...

...
. . .

...
...

(−λt2 + λt2) (−λt3 + λt3) (−λt4 + λt4) . . . (−α+ λtn) (−t+ t)
(αλt− αλt) (αλt2 − αλt2) (αλt3 − αλt3) . . . (αλtn−1 − αλtn−1) (−α+ λtn)



Thus, G.G−1 = 1
λtn−α


−α+ λtn 0 0 . . . 0 0

0 −α+ λtn 0 . . . 0 0
...

. . .
...

0 0 0 . . . −α+ λtn 0
0 0 0 . . . 0 −α+ λtn



For the parameter G′ = −G−1 (mod ϕ) to exist, we need gcd(ϕ, λtn − α) = 1. As said earlier, the
parameter ϕ must be a power of two for efficiency. Thus, λtn − α must be odd for G′ to exist.

Remark 9 (A special case for smaller memory cost).
Remember that E(X) = αXn − λ. Let us assume that α divides t, i.e. there exists s ∈ Z \ {0} such
that t = s× α. Then, the matrix G can be defined as follows:

G =



−1 t 0 0 . . . 0
0 −1 t 0 . . . 0

0 0
. . .

. . . 0 0

0 0
. . . −1 t 0

0 0 . . . 0 −1 t
sλ 0 0 . . . 0 −1



←M
← X.M mod E

← Xn−3.M mod E
← Xn−2.M mod E
← Xn−1.M mod E

(19)

Its inverse matrix becomes:

G−1 =
(−1)n−1

det(G)



1 t t2 t3 . . . tn−2 tn−1

sλtn−2 1 t t2 . . . tn−3 tn−2

sλtn−3 sλtn−2 1 t . . . tn−4 tn−3

...
...

...
. . .

...
...

...
sλt2 sλt3 . . . sλtn−2 1 t t2

sλt sλt2 sλt3 . . . sλtn−2 1 t
sλ sλt sλt2 sλt3 . . . sλtn−2 1


, (20)
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where det(G) = (−1)n−1(λstn−1 − 1).
Thus, we have det(G) ̸= 0 and:

∥G∥1 = max(|sλ|, |t|) + 1 (21)

Remember that ρ = ∥G∥1 − 1 and ∥G∥1 = max(|tλ|+ 1, |t|+ |α|) in the general case. So, depending on
the values of s and λ, this could lead to significant improvement on ρ. This will be highlighted in some
examples later. Finally, taking ϕ as a power of two, λstn−1 − 1 must be odd for G′ to exist.

Remark 10 (Operation complexity).
– Remember that the parameter ρ is such that ρ > |λt|, with |t| ≈ n

√
p. As it can be observed, the

matrix G is very sparse. Additionally, in practice, ρ is chosen small enough to fit on a single memory
register. So, any vector-matrix multiplication by G can be done in linear time, with at most n+ 1
“small” multiplications.

– Let us now consider the vector-matrix multiplication by G′. Remember that the result is reduced
modulo ϕ. In practice, this parameter ϕ is taken small enough so that any integer fits on a single
memory register after modular reduction by it. Now, let us focus on the matrix G−1 (Equation 18).
Since M(X) = tX − 1 and E(X) = αXn − λ, we have α = λtn (mod p) and γ = 1

t
(mod p). So,

reading the matrix G−1 from left to right, it can first be observed that the second-last column is
equal to the last one multiplied by αt. Then, from the third column to the last, each column is the
preceding one multiplied by 1

t
, with α

t
= λtn−1. So, a vector-matrix multiplication by G−1 can be

efficiently done by first multiplying the vector by the last column of G−1 to get the last coefficient
of the result, computed modulo ϕ. Then, one multiplies that coefficient by αt (modulo ϕ) to get
the second-last coefficient of the result. Now from the second-last to the first, each coefficient is
obtained by successively multiplying the current column by γ (modulo ϕ) to get the next coefficient.
Thus, a vector-matrix multiplication by G−1 (modulo ϕ) can be done in linear time complexity in
the number of “small” multiplications.

To sum up, with these matrices, we obtain a linear time complexity for GMont-like (Algorithm 3).
In the remaining, PMNS possessing linear-time internal reduction will be denoted LinearRed PMNS.

5.2 PMNS with the matrix G′ also sparse

As seen above, taking the polynomial M such that M(X) = tX − 1, with t = 1
γ

(mod p), makes the
matrix G very sparse and the matrix G′ friendly, leading to a linear time complexity for the internal
reduction. In this section, we study the case when t2 ≡ 0 (mod ϕ). We show that this leads to a matrix
G′ also very sparse. Thus, achieving optimal cost for the internal reduction.
Remember that the parameter ϕ is taken as a power of two for GMont-like to be efficient. From now
on, we assume that:

ϕ = 2h, with h ∈ N \ {0} (22)

To have t2 ≡ 0 (mod ϕ), we need t ≡ 0 (mod
√
ϕ). That is, t = q× 2u, with u ∈ N and u ⩾ ⌈h/2⌉. We

assume the parameter n ⩾ 2. From Equation 18, the matrix G′ = −G−1 (mod ϕ) in this case becomes:

G′ =



1 t 0 0 . . . 0 0
0 1 t 0 . . . 0 0
0 0 1 t . . . 0 0
...

...
...

. . .
...

...
...

0 0 . . . 0 1 t 0
0 0 0 . . . 0 1 α−1t

λα−1t 0 0 0 . . . 0 α−1


(mod ϕ) (23)

As for G, it can be observed that any vector-matrix multiplication by G′ can be done in linear time,
with at most n + 1 “small” multiplications. In the remaining, PMNS with both G and G′ very sparse
will be denoted DoubleSparse PMNS.
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Remark 11. Under the condition of Remark 9, i.e. α is a divisor of t (with t = s × α), the matrix G′
becomes (from Equation 20):

G′ =



1 t 0 0 . . . 0 0
0 1 t 0 . . . 0 0
0 0 1 t . . . 0 0
...

...
...

. . .
...

...
...

0 0 . . . 0 1 t 0
sλt 0 0 . . . 0 1 t
sλ sλt 0 0 . . . 0 1


(mod ϕ) (24)

It is interesting to note that if st ≡ 0 (mod ϕ), which is very likely to happen in practice when t2 ≡ 0
(mod ϕ) since α is small, then sλt ≡ 0 (mod ϕ). This will make the matrix above even more sparse.

5.3 Parameters generation

In previous sections, we saw that PMNS with very sparse matrix G lead to linear time complexity for
internal reduction. In this section, we explain how to generate such PMNS. We highlight the requirement
on the modulus p. Then, we present the generation algorithm.
Remember that we take M(X) = tX − 1 and E(X) = αXn − λ, with both polynomials having γ as a
root modulo p. This leads to the following equations:{

tγ ≡ 1 (mod p) ,
αγn ≡ λ (mod p) .

(25)

As a consequence, we have:

α
1

tn
≡ λ (mod p) (26)

Thus,
λtn ≡ α (mod p) (27)

That is,
k × p = λtn − α , (28)

where k ∈ Z \ {0}. This is our main equation to find efficient PMNS and primes.

Now, given the modulus size we want, the goal is to find a PMNS that satisfies Equation 28. We start by
first choosing n, λ and α (so, consequently the polynomial E). Then, we search for a suitable modulus
p, using an iterative process on the possible values for t. To do so, we first need to find the minimum
suitable value for t, which we designate as tmin. Also, for the process to end, we need a maximum value
for t, which we designate as tmax. This will be computed thanks to a bound on the parameter ϕ.

Let ℓ be the (minimum) bit size of the modulus p we want. So, p > 2ℓ−1. Let us consider Equation
28. To find tmin, we take the minimum positive value for k (i.e. k = 1) and the maximum non-zero
positive value allowed for λ and α, we respectively note λmax and αmax. Since p > 2ℓ−1, this leads to
the following equation:

2ℓ−1 < λmaxt
n
min + αmax

Thus, we take:

tmin =
⌈
n

√
2ℓ−1 − αmax

λmax

⌉
(29)

Let us now compute tmax. From Equation 12, the parameter ϕ is taken such that:

ϕ > 2wα(∥G∥1 − 2)(δ + 1)2 (30)

To find tmax, we take the minimum positive value, which is 1, for λ and α. With Equation 17, this
implies that ∥G∥1 = |t|+ 1. Knowing that wα ⩾ n, we obtain that:

ϕ > 2n(tmax − 1)(δ + 1)2
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Thus, we take:

tmax =
⌊ ϕ

2n(δ + 1)2

⌋
+ 1 (31)

As mentioned earlier, the generation process is based on Equation 28. This process requires knowing
whether the integer y = λtn−α has a prime factor p of bit size equal to (or greater than) ℓ. To avoid the
factorization, which can be quite hard, we need a bound on y and define an efficient “cleaning process”
which returns such a prime factor p if it exists. Given tmax, one can compute ymax as follows:

ymax = λmaxt
n
max + αmax

Let lmax be the bit size of ymax:
lmax = ⌈log2(ymax)⌉ (32)

Given ℓ and lmax, Algorithm 7 describes a basic example of how this “cleaning process” can be done.
Notice that very efficient implementations of this cleaning process can be found in popular libraries
such as SageMath [31]. Algorithm 8 describes the process to find LinearRed and DoubleSparse PMNS,

Algorithm 7 CleanInt, a basic example of “cleaning process” to find a desired prime factor (if any)

Require: y, ℓ and lmax.
Ensure: p is a prime factor of y such that ⌈log2(p)⌉ ⩾ ℓ, or returns 0
1: p = y
2: a = 2lmax−ℓ+1

3: b = 2
4: while (p not prime) and (⌈log2(p)⌉ > ℓ) and (b ⩽ a) do
5: p← clean_factor(p, b) # remove the power of b in p factorisation
6: b← b.next_prime() # the next prime greater than b
7: end while
8: if (⌈log2(p)⌉ < ℓ) or (p not prime) then
9: return 0

10: end if
11: return p

with the desired modulus size.

Remark 12. It is not necessary to choose lmax according to Equation 32 for the cleaning process. It
needs to be such that l ⩽ lmax ⩽ ⌈log2(ymax)⌉. Taking lmax smaller than ⌈log2(ymax)⌉ might only lead
to missing some “LinearRed” or “DoubleSparse” PMNS in the generation process.

Remember that we take E(X) = αXn − λ. So, from Equations 11, 17 and 30, we want the parameter
ϕ to be such that:

ϕ > 2(δ + 1)2 ×max(αn, α+ (n− 1)|λ|)× (max(|tλ|+ 1, |t|+ |α|)− 2) (33)

Remark 13. As mentioned earlier, the parameter ϕ is taken as a power of two for efficiency. Let us
assume that the target hardware is a h-bit architecture. As suggested in [11], a good choice for efficient
modular arithmetic is to take ϕ = 2h. Thus, implying the parameter n to be such that:

n ⩾ nmin = ⌊ l
h
⌋+ 1

So, Algorithm 8 must be executed with n ⩾ nmin. Also, depending on the value of δ, the value of n
must be increased as much as necessary in order to find a suitable PMNS.

Remark 14. Algorithm 8 stops when it finds a PMNS (see line 20). However, this is not necessary. One
can continue the search if more than one PMNS is desired.
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Algorithm 8 LinearRed and DoubleSparse PMNS generation

Require: prime (minimum) bit size ℓ, the parameters n, ϕ = 2h and δ, and λmax and αmax.
Ensure: B is a LinearRed or DoubleSparse PMNS, or returns 0
1: Compute tmin, see Equation 29
2: Compute tmax, see Equation 31
3: Compute lmax, see Equation 32 and Remark 12
4: for t ∈ {−tmax, . . . , −tmin} ∪ {tmin, . . . , tmax} do
5: #IMPORTANT: take t ≡ 0 (mod 2⌈h/2⌉) if a DoubleSparse PMNS is desired (see Section 5.2)
6: Randomly (or iteratively) choose a non-zero α ∈ {−αmax, . . . , αmax}
7: Randomly (or iteratively) choose a non-zero λ ∈ {−λmax, . . . , λmax}
8: if Equation 33 is not satisfied then
9: Jump to the next iteration for t with |t| smaller, or change (α, λ)

10: end if
11: y ← λtn − α
12: p← CleanInt(y, ℓ, lmax) # see Algorithm 7 for example
13: if p = 0 then
14: Make another choice for (α, λ), or jump to the next iteration for t
15: end if
16: γ ← 1

t (mod p)
17: ρ← max(|tλ|+ 1, |t|+ |α|)− 1
18: E ← αXn − λ # take −E if α < 0

19: M ← tX − 1
20: B ← (p, n, γ, ρ, E, M, ϕ, δ)
21: return B
22: end for
23: return 0

Here are some examples of PMNS found with Algorithm 8.

Example 1. For a 256-bit modulus.
• p = 60440003927590133985782451365630693872755589432225658125679387443792520937473

• n = 5

• γ = 35113295015827659083538442227693603887830925641299948652724224

• ρ = 6885141813133313.
• E(X) = X5 − 4

• M(X) = −1721285453283328.X − 1

• ϕ = 264

• δ = 3

Example 2. For a 384-bit modulus.
• p = 205633766264934610182221371993528947534248159842400037491428214911974705247

12223452918959096229392120215140627906559

• n = 7

• γ = 870258118347971125321513664674627813201777625547094021760712296297683007321
307612563373840421355520

• ρ = 118145273183600641.
• E(X) = X7 − 5

• M(X) = 23629054636720128.X − 1

• ϕ = 264

• δ = 0
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5.4 Efficient PMNS from special primes

The method presented above does not allow to choose the modulus but only its bit size. Additionally,
the generated modulus p does not have any special shape, except that it is a divisor of λtn − α (see
Equation 28). Thus, one may wonder if it is possible to generate LinearRed or DoubleSparse PMNS
for any given prime. It seems impossible to do this for all primes. However, some particular shapes of
primes allow to generate such PMNS very easily. In this section, we highlight some examples of such
primes and explain how to easily build efficient PMNS for them.
On the Wikipedia prime number page [2], a list of primes with special shapes is given. Although these
primes have interesting mathematical properties, they do not offer any particular advantage for efficient
modular arithmetic, except for a few, such as Fermat, Mersenne, and Pseudo-Mersenne primes, which
serve as bases for many cryptographic protocol parameters, because of the performance they offer for
modular arithmetic in classical representation. We will see how to generate LinearRed or DoubleSparse
PMNS for primes of some special shapes, including many of those given in the wiki link above. Thus,
allowing us to get the best of both worlds: the interesting mathematical properties of these moduli, and
very efficient modular arithmetic thanks to the LinearRed or DoubleSparse PMNS generated for them.
Let us start with primes p such that:

p =
u2l − c
r

, (34)

where u > 0 and c ̸= 0 are small integers, and r ∈ N \ {0}.
This includes several types of primes. Some examples are given in Table 1, with the values of u, c and
r that lead to the corresponding type of prime.

Prime type u c r Prime shape
Cullen prime l −1 1 p = l × 2l + 1

Woodall prime l 1 1 p = l × 2l − 1

Thabit prime 3 1 1 p = 3× 2l − 1

Thabit prime of the second kind 3 −1 1 p = 3× 2l + 1

Fermat prime 1 −1 1 p = 2l + 1

Mersenne prime 1 1 1 p = 2l − 1

Pseudo-Mersenne prime 1 c > 0 1 p = 2l − c

1 c > 0 1 p = 2l + c

Proth prime −1 1 p = u× 2l + 1

1 1 p = u× 2l − 1

Wagstaff prime 1 −1 3 p = 2l+1
3

1 1 3 p = 2l−1
3

Table 1: Example of friendly prime shapes for optimal PMNS

Equation 34 implies that r × p = u2l − c. Let l = wn + s be the Euclidean division of l by n. Then
r × p = 2su(2w)n − c. So, a DoubleSparse PMNS (see Section 5.2) can be built with:

• E(X) = cXn − 2su
• M(X) = 2wX − 1
• γ = 1

2w
(mod p)

Alternatively, if s and w are taken such that l = wn−s. Then, r×p = 2−su(2w)n−c. So, a DoubleSparse
PMNS can be built with:

• E(X) = 2scXn − u
• M(X) = 2wX − 1
• γ = 1

2w
(mod p)
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In both cases, note that if c < 0, you can multiply E by −1 to make its leading coefficient positive.

Remark 15 (The lowest/best cost).
In both cases, the generated DoubleSparse PMNS are such that M(X) = tX − 1, where t is a power
of two. Thus, depending on the values of α and λ, a vector-matrix multiplication by G (see Equation
15) costs at most 2 “small” multiplications, while a multiplication by G′ (see Equation 24) costs at
most 3 “small” multiplications. Indeed, in this case, a multiplication by t is a simple left shift, which
is very cheap. As a consequence, an internal reduction with GMont-like costs at most 5 “small”
multiplications, regardless of the value of n. This is the best/lowest possible cost that can be
expected for this algorithm. This should make these PMNS more efficient than Pseudo-Mersenne primes
(in classical representation) and nearly as efficient as Mersenne primes (also in classical representation).
Moreover, based on Remarks 9 and 11, if α (which is either c or 2sc) divides t = 2w, then we obtain
PMNS with smaller value of ρ and GMont-like costs at most 4 “small” multiplications.

Example 3. For this example and for the next ones in this section, we assume that ϕ = 264.
Let us consider the NIST prime p = 2521 − 1. With n = 9, knowing that 521 = 58 × 9 − 1, we have a
DoubleSparse PMNS with the following parameters:

• E(X) = 2X9 − 1
• M(X) = 258X − 1
• γ = 1

258
(mod p)

• ρ = 258 + 1 (see Remarks 9 and 11)

Example 4. Let us now consider the Proth prime p = 7 × 2320 + 1. With n = 6, knowing that 320 =
54× 6− 4, we have a DoubleSparse PMNS with the following parameters:

• E(X) = 24X6 + 7
• M(X) = 254X − 1
• γ = 1

254
(mod p)

• ρ = 254 + 1 (see Remarks 9 and 11)

Example 5. As a last example, let us consider the Wagstaff prime p = 2347+1
3

. With n = 6, knowing
that 347 = 58× 6− 1, we have a DoubleSparse PMNS with the following parameters:

• E(X) = 2X6 + 1
• M(X) = 258X − 1
• γ = 1

258
(mod p)

• ρ = 258 + 1 (see Remarks 9 and 11)

Remark 16 (Choice of n).
To build these PMNS, the choice of n must be done according to the actual bit size of p (i.e. ⌈log2(p)⌉),
instead of l in Equation 34. That is, n ⩾ ⌊ ⌈log2(p)⌉

h
⌋+ 1. Also, as mentioned in Remark 13, depending

on the value chosen for δ, the parameter n may need to be increased.

Equation 34 can be generalized to encompass even more types of primes. It can be extended to the
following:

p =
u al − c

r
, (35)

where u > 0, a ⩾ 2 and c ̸= 0 are small integers, and r ∈ N \ {0}.
For small bases a, this includes the generalized repunit primes [14]:

p =
al − 1

a− 1
,

obtained for u = c = 1 and r = a− 1.
The same goes for the primes of the form [15]:

p =
al + 1

a+ 1
,

obtained for u = 1, c = −1 and r = a + 1. Note that this generalizes the Wagstaff primes above
mentioned.

Similar to Equation 34, let us first assume that l = wn + s. Then, Equation 35 implies that r × p =
asu(aw)n − c. In this case, a LinearRed PMNS (see Section 5.1) can be built with:
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• E(X) = cXn − asu
• M(X) = awX − 1
• γ = 1

aw
(mod p)

Likewise, if l = wn− s, then r × p = a−su(aw)n − c. So, a LinearRed PMNS can be built with:
• E(X) = ascXn − u
• M(X) = awX − 1
• γ = 1

aw
(mod p)

Again, note that if c < 0, you can multiply E by −1 to make its leading coefficient positive. Also,
depending on the value of a, the generated PMNS may be DoubleSparse.

Example 6. For ϕ = 264, let us consider the generalized repunit prime p = 3103−1
2

. With n = 3, knowing
that 103 = 34× 3 + 1, we have a LinearRed PMNS with the following parameters:

• E(X) = X3 − 3
• M(X) = 334X − 1
• γ = 1

334
(mod p)

• ρ = 335 + 1

Example 7. Finally, let us consider the prime p = 3281+1
4

. With n = 8, knowing that 281 = 35× 8 + 1,
we have a LinearRed PMNS with the following parameters:

• E(X) = X8 + 3
• M(X) = 335X − 1
• γ = 1

335
(mod p)

• ρ = 336 + 1

6 PMNS built with M(X) = γ
λ
Xn−1 − 1

In this section, we generalize the PMNS shape used in [7] as introduced in Section 4 that uses M(X) =
γ
λ
Xn−1−1. In the process, we also show that this leads to linear time internal reduction even for γ2 ̸≡ 0

(mod ϕ). In the sequel of this section, we assume E to be of the shape αXn − λ.
The authors from [7] choose their parameters to get p = γn/λ− 1 (with γ a multiple of λ) mainly for
efficiency reasons and also require γ < ρ [7, Theorem 13]. In this section, we generalize this without
sacrificing too much in terms of speed. Namely we consider primes of the shape p = αγn−λ

k
, k ∈ Z∗.

This is a generalization because if α = 1 and k = λ we return to the shape from [7].

We will have γ ≈ n

√
k
α
p which means that for small enough k we get the required property γ < ρ (since

as noted earlier ρ ≈ n
√
p) which in practice means it can fit in a word-size register (since we normally

choose ρ so that our coefficients fit on a single register). This Section will show that this property
of having a small enough γ to fit on a memory register leads to linear time coefficient reduction
which helps our modular multiplication become competitive with optimized Pseudo-Mersenne modular
multiplication algorithms with a broad class of primes.

6.1 Existence

Let ℓ be the size of primes considered. We have 2ℓ−1 < p < 2ℓ. This leads to k× 2ℓ−1 < k× p < k× 2ℓ.
We therefore choose γ as follows:

k × 2ℓ−1 ⩽ αγn ⩽ k × 2ℓ .

Which gives us: ⌈
(
k

α
× 2ℓ−1)

1
n

⌉
⩽ γ ⩽

⌊
(
k

α
× 2ℓ)

1
n

⌋
(36)

For a given γ, we can bound λ by considering two consecutive primes p1 and p2 such that p1 < p2 and
also such that p1 ⩽

⌊
αγn

k

⌉
⩽ p2. We can always bound an integer between consecutive prime numbers.

This leads to kp1 < αγn < kp2 which gives us

|λ| ⩽ kp2 − kp1
2

. (37)
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The problem of upper bounds on the gap between consecutive primes is closely related to the Riemann
Hypothesis so we won’t give an exact upper bound for all sizes of primes. Shanks’s conjecture from
1964 which still holds to this day gives the maximum gap between two consecutive primes p1 and p2
to be ∼ ln(p1)2. The largest known ratio p2−p1

ln(p1)2
to date is approximately 0.9206 [29].

However, a classical result on the average gap comes from the Prime Number Theorem [18,32] that
states that the gap between two consecutive primes is asymptotically ∼ ln(p1). The following table
shows our empirical result for various integer sizes of the ratio p2−p1

ln(p1)
and shows for our purpose we can

indeed consider the gap to be approximately ln(p1) on average for the sizes we are considering.

prime size in bits 256 512 1024 2048
ratio 1.0058 1.0031 1.0005 1.0007

Average ratio between the prime gap at given integer sizes and their natural logarithm for a random sample
of 221 primes of given size

We have |λ| ⩽ k(p2−p1)
2

(equation 37) which we can now take as |λ| ⩽ k(ln(p1))
2

. We want primes
between 2ℓ−1 and 2ℓ so on average ln(p1) = ln(1.5 × 2ℓ−1). If our bounds allow taking λ such that
λ ⩾

⌈
k
2
ln(1.5× 2ℓ−1)

⌋
we can therefore expect to find at least one prime p on average within the

bounds.
The number of possible γ for a given parameter set of (ℓ, n, k, α) is simply

⌊
( k
α
× 2ℓ)

1
n

⌋
−
⌈
( k
α
× 2ℓ−1)

1
n

⌉
(from equation 36) which is ∼ n

√
k
α
(( n
√
2− 1)

n
√
2ℓ−1). If we note λmax the maximum allowed value for

λ by our bounds, each γ will find on average λmax

⌈ k2 ln(1.5×2ℓ−1)⌋ valid primes so the total number of primes

for a given range can be estimated to be ( n
√

k
α
(( n
√
2− 1)

n
√
2ℓ−1))× λmax

k
2
ln(1.5×2ℓ−1)

.

Remark 17. Traditionally in AMNS, authors choose small values for λ to allow for use of faster instruc-
tions such as LEA or binary shifts, however, integer multiplication is 3-4 cycles on most modern CPUs
[17] so the value of our λ needs not to be small while preserving optimal computation speeds. Further-
more, even on architectures where integer multiplication is much more costly, the tradeoff of getting a
linear-time reduction in exchange is virtually always worth the cost. With that said the density of this
class of primes is big enough that in practice we can still expect small values for λ to exist depending
on our choice of parameters.

6.2 Coefficient Reduction

The external reduction process with non-monic E(X) involves an additional multiplication by α. In
[27], the internal reduction is performed using polynomial multiplication which leads to applying further
reductions by E and multiplying by α for each step which means additional adaptation to get a correct
result once evaluated in γ. This requirement comes from needing to use polynomial multiplication in
the internal reduction process. However, in this paper, we use Algorithm 3 for our internal reduction
instead, which avoids any additional external reduction steps to reduce our coefficients due to not
relying on polynomial operations. This means we need to construct a short basis for a sub-lattice of

L =

{
(x0, . . . , xn−1) ∈ Zn :

n−1∑
i=0

xiγ
i ≡ 0 mod p

}
. Normally, we would do this by constructing the

companion matrix of M(X) = γ
λ
Xn−1 − 1 but for our purposes we can simply use the following

proposition instead.
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Proposition 5. Let p = αγn−λ
k

. The matrix

G =




−γ 1 0 . . . . . . 0
0 −γ 1 0 . . . 0
...

...
...

...
...

...
0 . . . . . . 0 −γ 1
λ 0 . . . . . . 0 −αγ

is a basis of a sub-lattice of L =

{
(x0, . . . , xn−1) ∈ Zn :

n−1∑
i=0

xiγ
i ≡ 0 mod p

}
.

Proof. The first n − 1 rows correspond to the polynomials Xi − γXi−1. When evaluated in γ they
become γi − γ × γi−1 which becomes 0.
The last row corresponds to −αγXn−1 + λ which becomes −αγn + λ when evaluated in γ. We know
from construction that this is equal to −k × p and is thus congruent to 0 modulo p.
We get that each row of the matrix vanishes in γ mod p. They are therefore all elements of L ={
(x0, . . . , xn−1) ∈ Zn :

n−1∑
i=0

xiγ
i ≡ 0 mod p

}
.

The value of the determinant is equal to −γ × (−αγ)n−1 plus or minus λ depending on parity of n.
Therefore | det(G)| = k × p.
Since det(G) ̸= 0 each row is linearly independent and we have a basis. ⊓⊔

Remark 18. For k = ±1 we will have a basis of the full lattice.

Remark 19. Note that except for the last row, this is equivalent to building the companion matrix of
X − γ.

Because of the shape of the matrix, any vector-matrix multiplication can be done in linear time. Indeed
we only have two non-0 coefficients per row and per column and γ < ρ which makes the coefficients fit
on a single memory register. In the general case for random primes, γ can be of the same size as p and
therefore would not fit on a single memory register. This would cause a vector-matrix multiplication to
be quadratic instead. In our specific case, having a small enough γ will mean G as defined in proposition
5 will be a short basis.
Indeed, notice that ∥G∥1 = max(γ+ |λ|, |αγ|+1). Since α and λ are chosen to be small and γ ≈ n

√
k
α
p,

we get ∥G∥1 ≈ n
√
αn−1kp. Minkowski’s theorem from [23] gives us that for any lattice L of dimension

n, its short basis will have an upper bound on its 1-norm of n
√
n! det(L). In our case, this becomes

n
√
n! p. In other words, G is a short basis as long as αn−1k ⩽ n! which in practice will always be the

case.
This gives us sufficient conditions to construct a basis that is both short and sparse which gives us
linear time complexity vector-matrix multiplication. Note that in practice even if G is not the shortest
possible basis, as long as all its coefficients fit on a memory register the time complexity will still be
linear. However, we still want ρ < ϕ

2w
and ρ is set depending on the 1-norm of G so we want it as small

as possible.

Remark 20. Since | det(G)| = k × p if we want it to be invertible modulo ϕ = 2h, k can be chosen odd
to guarantee it. Otherwise, for any k = z2ψ, (z, ψ) ∈ Z∗ × Z with z odd, if αγ and λ are divisible by
2ψ, one can use the following basis instead:

G̃ =




−γ 1 0 . . . . . . 0
0 −γ 1 0 . . . 0
...

...
...

...
...

...
0 . . . . . . 0 −γ 1
λ
2ψ

0 . . . . . . 0 −αγ
2ψ
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We get | det(G̃)| = z × p instead. Since z is odd, this is invertible mod ϕ. Requiring αγ and λ divisible
by 2ψ implies fewer potential candidates but it is still reasonable for small ψ.

Proposition 6. The inverse matrix of G is :

G−1 =





−αγn−1

kp
−αγn−2

kp
. . . −αγ2

kp
−αγ
kp

−1
kp

−λ
kp

−αγn−1

kp
. . . −αγ3

kp
−αγ2
kp

−γ
kp

...
...

...
...

...
...

−λγn−3

kp
−λγn−4

kp
. . . −λ

kp
−αγn−1

kp
−γn−2

kp
−λγn−2

kp
−λγn−3

kp
. . . −λγ

kp
−λ
kp

−γn−1

kp

Proof.

G.G−1 =





αγn−λ
kp

−αγn−1+αγn−1

kp
. . . −αγ3+−αγ3

kp
−αγ2+αγ2

kp
−γ+γ
kp

λγ−λγ
kp

αγn−λ
kp

. . . −αγ4+−αγ4
kp

−αγ3+−αγ3
kp

−γ2+γ2
kp

...
...

...
...

...
...

λγn−2−λγn−2

kp
λγn−3−λγn−3

kp
. . . λγ−λγ

kp
αγn−λ
kp

−γn−1+γn−1

kp
αλγn−1−αλγn−1

kp
αλγn−2−αλγn−2

kp
. . . αλγ2−αλγ2

kp
αλγ−αλγ

kp
αγn−λ
kp

=




1 0 . . . 0 0 0
0 1 . . . 0 0 0
...

...
...

...
...

...
0 0 . . . 0 1 0
0 0 . . . 0 0 1

= In

⊓⊔

The second to last column of G−1 is equal to the last column times αγ (for the last coefficient, note that
−αγn ≡ λ (mod p)). Similarly, each column before that is just the next column times γ. As such, when
computing a vector-matrix multiplication with G−1, it can be done by first computing the vector times
the last column to get the last coefficient of the result and then multiplying that product successively
for each previous column to get each other coefficient. In other words, a vector-matrix multiplication
with G−1 can be done in linear time complexity.

Remark 21. Since we reduce the result of the vector-matrix product by G−1 modulo ϕ in practice we
use G−1 (mod ϕ) which guarantees the coefficients will all fit in a memory register each.

As noted earlier, since G is sparse, the product can similarly be done in linear time which gives us an
overall linear time complexity for Algorithm 3.

Remark 22. Contrary to [7] and [9], this linear-time internal reduction process doesn’t require γ2 ≡ 0
(mod ϕ). In fact, γ could be coprime with ϕ without affecting the time complexity.

As noted in the previous section (section 5.1, on page 14), for the sake of expediency, PMNS possessing
linear-time internal reduction shall be denoted LinearRed PMNS.
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6.3 Generation

This Section details the generation algorithm. We are searching for primes of the shape p = αγn−λ
k

.
For the generation process, we will try to find primes near αγn

k
which means we first must bound the

maximum value for λ.

As noted in Section 3.2, the optimal value for ρ is ρ = ∥G∥1 − 1 and our bound on ϕ is:

2w(∥G∥1 − 2) < ϕ

with w = max(αn, α+ (n− 1)|λ|) (from equation 11) which means

w =

{
α+ |λ|(n− 1) if α ⩽ |λ|,
αn otherwise

and furthermore we have

∥G∥1 =

{
γ + |λ| if α = 1,

αγ + 1 otherwise.

For α = 1 we have:
2((n− 1)|λ|+ 1)(γ + |λ| − 2) < ϕ

If we note λmax a bound on the absolute value of λ, we get that λmax will verify:

2((n− 1)λmax + 1)(γ + λmax − 2) = ϕ− 1

⇐⇒ 2(n− 1)λ2
max + 2((n− 1)(γ − 2) + 1)λmax + 2γ − ϕ− 3 = 0

⇐⇒ λmax =

√
(2((n− 1)(γ − 2) + 1)2 − 4(2(n− 1))(2γ − ϕ− 3)− 2((n− 1)(γ − 2) + 1)

2(2(n− 1))

⇐⇒ λmax =
(γ − 2)

(√
1 + 2ϕ−2γ+2

(n−1)(γ−2)2
+ 1

((n−1)(γ−2))2
− 1
)
− 1

n−1

2

Since this is not very human-readable, we give this simplified form through series expansion to give a
clearer intuition of the value:

λmax ∼
ϕ− γ + 1

2(n− 1)(γ − 2)
.

Meanwhile for all other α with |λ| ⩾ α we have:

2(α+ |λ|(n− 1))(αγ − 1) < ϕ.

Which means:
λmax =

ϕ− 2α(αγ − 1)− 1

2(n− 1)(αγ − 1)
.

Remark 23. As we can see, λmax is inversely proportional to γ in all cases. For α = 1 we get λmax ∼
ϕ−γ+1

2(n−1)(γ−2)
= ϕ−1

2(n−1)(γ−2)
− 1

2(n−1)
while otherwise we get ϕ−2α(αγ−1)−1

2(n−1)(αγ−1)
= ϕ−1

2(n−1)(αγ−1)
− 2α

2(n−1)
.

Our bound on λ can therefore be expressed as:

λmax =


(γ−2)

(√
1+ 2ϕ−2γ+2

(n−1)(γ−2)2
+ 1

((n−1)(γ−2))2
−1

)
− 1
n−1

2
if α = 1,

min
(
α, ϕ−2α(αγ−1)−1

2(n−1)(αγ−1)

)
otherwise.

(38)

Remark 24. For δ > 0 our bound is 2w(∥G∥1 − 2)(δ + 1)2 < ϕ which gives us:

δmax =

⌊√
ϕ

2w(∥G∥1 − 2)

⌋
− 1 (39)
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Algorithm 9 LinearRed PMNS generation
Require: prime size ℓ, number of coefficients n, word size ϕ, parameters k, α and δmin

Ensure: A PMNS (p, n, γ, ρ, E := αXn−λ, δ) with linear time coefficient reduction such that k×p = αγn−λ
if within bounds else 0

1: Compute λmax using γ =
⌈
( kα × 2ℓ−1)

1
n

⌉
, see Equation 38

2: if λmax < 1 then
3: return 0
4: end if
5: while True do
6: Choose γ randomly such that

⌈
( kα × 2ℓ−1)

1
n

⌉
⩽ γ ⩽

⌊
( kα × 2ℓ)

1
n

⌋
7: Compute λmax, see Equation 38
8: if λmax ⩾ 1 then
9: p← next_prime(⌊αγ

n−λmax

k ⌋)
10: λ← αγn − kp
11: Compute δ, see Equation 39
12: if |λ| ⩽ λmax and GCD( k

GCD(k,λ,αγ) , ϕ) = 1 and δ ⩾ δmin then
13: ρ← max(γ + |λ|, αγ + 1)− 1
14: E ← αXn − λ
15: return (p, n, γ, ρ, E, δ)
16: end if
17: end if
18: end while

On the first line of Algorithm 9 we compute λmax with the smallest value of γ for the input parameters
because, as seen in remark 23, λmax is inversely proportional to γ and as such if λmax is lesser than 1
for such γ, it will also be the case for all other γ and we won’t be able to construct a valid PMNS.
Note that for lower values of λmax, Algorithm 9 may not find a valid PMNS and run forever. To guar-
antee finite time execution, one may choose to iterate over all possible values of γ instead, although the
result would not be random like it is in the current algorithm (or alternatively find all PMNS for that
range first and then randomly choose one among them although doing so may take an inconveniently
long time). For additional steps for GCD(k, ϕ) ̸= 1, see Remark 20.

Next, as to the potential outputs, as an example for (ℓ, n, k, α) = (256, 5, 1, 1) there are 334838928077626
possible γ which is approximately 248. Here, λmax evaluates to 952.75 for the middle of the in-
terval, and k

2
ln(1.5 × 2ℓ−1) evaluates to approximately 88.57 so we can expect to find on average

952.75/88.57 ≈ 10.75 valid PMNS per γ. Experimentally we find on average about 10.78 valid primes
per γ with a uniform sampling in that interval which fits our estimation. Furthermore, with an exhaus-
tive search for values γ such that γ ≡ 0 (mod 232), we find at least one corresponding prime for each
γ.

As k increases, γ will naturally increase (see equation 36). Seeing as λmax is inversely proportional to γ
(see remark 23), λmax is therefore inversely proportional to k. As seen earlier since the average number
of primes per γ can be expressed as λmax

⌈ k2 ln(1.5×2ℓ−1)⌋ , it is, therefore, proportional to λmax and conse-

quently the average number of primes for a given interval will decrease as k increases. As an empirical
example, while we estimate that there are approximately 251 valid prime numbers for the parameter
set (ℓ, n, k, α) = (256, 5, 1, 1), for (ℓ, n, k, α) = (256, 5, 11, 1) we estimate that there are only 248 primes
that fall within our bounds.
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6.4 Specific sparse inverse matrices

As a consequence of the shape of G−1, we get that if γ2 ≡ 0 (mod ϕ), the inverse matrix will have
exactly 2 non-0 coefficients per row and 2 non-0 coefficients per column if reduced modulo ϕ.
This is because each column and each row has all the powers of γ from 0 to n− 1 included, with none
of them repeating. Hence the only coefficients that won’t become 0 after modular reduction are the
ones with γ0 and γ1. Furthermore, kp = αγn − λ so kp ≡ −λ (mod ϕ) which means −λ

kp
≡ 1 (mod ϕ).

We thus get the following matrix:

G−1 ≡



0 0 0 0 . . . 0 −αγ(kp)−1 −(kp)−1

1 0 0 0 . . . 0 0 −γ(kp)−1

γ 1 0 0 . . . 0 0 0
0 γ 1 0 . . . 0 0 0
...

...
. . .

. . .
...

...
...

...
...

...
...

. . .
. . .

...
...

...
...

...
...

...
. . .

. . .
...

...
0 0 0 0 . . . γ 1 0


(mod ϕ)

Remark 25. Note that k and p are chosen such that they are invertible mod ϕ.

As noted in the previous section (section 5.2, on page 14) we refer to this specific combination of having
both G and its inverse as sparse matrices as DoubleSparse instead of just LinearRed.

Remark 26. As noted in [7], this can be expanded to have exactly κ non-0 coefficients per row and per
column for any 2 ⩽ κ < n by choosing γκ ≡ 0 (mod ϕ).

7 Cost analysis and implementations

This Section details the cost analysis and performances of the algorithms with this new PMNS shape.
Note that the shapes detailed in Sections 5 and 6 in practice have both the same theoretical operations
cost and in practice our measures support that fact. Hence we will treat both cases as being the same
for the sequel of this Section.

7.1 Operation costs

A full modular multiplication in PMNS is done through first a polynomial multiplication and external
reduction in one go, and then the internal reduction step is applied.

Polynomial Multiplication and External reduction
First, as to the combined polynomial multiplication and external reduction step, we adapt [27, Algo-
rithm 1] (see Algorithm 4 on page 6), since we use E(X) = αXn−λ, by transforming it into a normal
vector-matrix multiplication.
The goal is to compute C(X) = A(X)×B(X) (mod E(X)). We consider the vectors (a0, a1, . . . , an−1)
and (b0, b1, . . . , bn−1) representing the coefficients of A and B respectively. Each coefficient of C can be

written as ci = α
i∑

j=1

ajbi−j + λ
n−i−1∑
j=0

ai+jbn−j . This means we can rewrite the operation as follows:
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(c0, c1, . . . , cn−2, cn−1) = (a0, a1, . . . , an−2, an−1) ×




αb0 αb2 . . . αbn−2 αbn−1

λbn−1 αb0 . . . αbn−3 αbn−2

...
. . .

. . .
. . .

...
λb2 λb3 . . . αb0 αb1
λb1 λb2 . . . λbn−1 αb0

This is notable because the matrix is a Toeplitz matrix and thus allows us to use the Toeplitz Recursive
Splitting vector-matrix multiplication algorithm [16]. Previous works [22] have shown that this is better
than using recursive Karatsuba multiplication.
Constructing the matrix itself costs n multiplications by α and n−1 multiplications by λ. After this, the
vector-matrix multiplication itself is computed recursively. As shown in [19, Equation 22], the number
of integer multiplications of a vector of size κ with a κ × κ size matrix with the Toeplitz algorithm is

κ
logκ

(
κ(κ+1)

2

)
or in other words κ(κ+1)

2
. If we take n = κz then we can split the n × n multiplication

into n
logκ

(
κ(κ+1)

2

)
integer multiplications instead which is equal to κ

z×logκ

(
κ(κ+1)

2

)
which becomes(

κ(κ+1)
2

)z
. If we write n = κz11 × κ

z2
2 × · · · × κ

zg
g with each κi a prime factor of n, then the overall

number of integer multiplications of a full recursive Toeplitz split of n would be
g∏
i=1

(
κi(κi+1)

2

)zi
. Added

together with the multiplications needed to construct the matrix in the first place gets us a total of

2n− 1 +

g∏
i=1

(
κi(κi + 1)

2

)zi
multiplications.

Remark 27. The number of multiplications is sub-quadratic in n. For each prime factor κi, the com-
plexity is essentially (κi+1

κi
)κ

2−logκi
2

i , which means at worst for prime n the complexity is O(n2−logn 2).

Meanwhile, the number of additions is also given by [19, Equation 22]. However, that paper was aimed
at hardware implementations so some shortcuts are available in software that wouldn’t be realistic
otherwise due to surface constraints.
If this time we write the decomposition of n as n = κ0 × κ1 × κ2 × · · · × κf where each κi for i ⩾ 1
is a prime factor of n such that ∀i < j, κi ⩽ κj and κ0 = 1 (notice that this isn’t the same exact
decomposition as earlier) the number of additions ends up being:

f∑
i=1

((
i−1∏
j=0

κj(κj + 1)

2

)
×

((
2n∏i
j=1 κj

− 1

)
(3κi − 4)As +

n∏i−1
j=0 κj

(
κi − 1

2
As + (κi − 1)Ad

)))

where As represents additions on a simple register and Ad additions made on 2 registers.

The proof is detailed in Appendix A.

Internal reduction
The internal reduction step is performed with Algorithm 3. The time complexity for computing T is
a vector-matrix multiplication by G. Because of the shape of G, the total cost is (n+1) multiplications
and n additions.
For LinearRed, i.e. the general case, computing Q involves first computing the last coefficient which is
(n−1) multiplications followed by (n−1) additions. Each of the other coefficients of Q is an additional
multiplication and addition from that which means a total of (2n − 2) multiplications and (2n − 2)
additions to compute Q fully. Note that because of the modular reduction, those are additions on a
single register.
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Meanwhile, for DoubleSparse, G−1 being sparse means the corresponding costs become (n+ 1) multi-
plications and n additions just like for sparse G.
In both cases, computing S is simply n additions, the division by ϕ being considered “free” since it is
at worst a single mov per coefficient (since ϕ is chosen to be the size of a register).

Shape \ Step Computing Q Computing T Computing S Total
LinearRed (2n− 2)M + (2n− 2)As (n+ 1)M + nAd nAd (3n− 1)M + 2nAd + (2n− 2)As

DoubleSparse (n+ 1)M + nAs (n+ 1)M + nAd nAd (2n+ 2)M + 2nAd + (n− 1)As

7.2 Implementations

The following procedure has been applied for every measure done for this paper :
– the Turbo-Boost® is deactivated during the tests;
– 501 runs are executed in order to “heat” the cache memory, that is to say we ensure that the

cache memory (data and instruction) is in a stable enough state in order to avoid untimely
cache misses;

– one generates 1001 random data sets, and the number of clock cycle for W executions over
a batch of 501 runs is recorded for each data set;

– the performance is the median value divided by W .
(Note that W varies depending on the parameter sizes). All code is available at https://
github.com/linearRedPMNS. More specifically, the code to generate the following tables is
available at https://github.com/linearRedPMNS/pmns_with_gamma_small.

ECC-size Integers
PMNS are known to be effective for prime sizes used for elliptic curves (see [9]) so we chose
primes from https://safecurves.cr.yp.to/ for comparison with our new class of PMNS-
friendly primes. Most of the primes are Pseudo-Mersenne, with the exception of the E-521
Mersenne prime.

Method \ Prime size 255 383 414 511 521
Corresponding Curve Curve25519 M-383 Curve41417 M-511 E-521

Optimized Multiprecision 61 104 103 151 136
DoubleSparse PMNS 64 108 109 153 153

LinearRed PMNS 77 123 123 166 166
Adapted GMP low level 94 138 164 197 223

Table 2: Cycle count for modular multiplication on ECC-size integers using gcc 12.3.0 on intel processor
i9-11900KF

The algorithm used for our benchmarks of “Optimized Multiprecision” in tables 2 and 5 bases it-
self on code from Adam Langley (https://code.google.com/archive/p/curve25519-donna/)
which adapts Daniel J. Bernstein’s code from Curve25519 to seamless 128-bit arithmetic offered
by modern CPUs. We then adapt the code to the other primes, including the Mersenne prime.
The “Adapted GMP low level” benchmarks refer to the use of low-level GMP primitives to
perform a (Pseudo) Mersenne modular multiplication (as opposed to using the general-use
mpn_tdiv_qr to perform the reduction).
As can be seen in table 2 our benchmarks are close to optimized Pseudo-Mersenne performances
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Method \ Prime size 255 383 414 511 521
Corresponding Curve Curve25519 M-383 Curve41417 M-511 E-521

Optimized Multiprecision 66 130 113 235 194
DoubleSparse PMNS 66 118 122 162 163

LinearRed PMNS 72 127 127 177 180
Adapted GMP low level 89 140 164 202 222

Cycle count for modular multiplication on ECC-size integers using clang 14.0.0 on intel processor i9-11900KF

with a much greater density of valid primes. For example at the 255-bit prime size the PMNS we
use to compare ourselves to Curve25519 arithmetic is the same prime, that is to say p = 2255−19,
and yet we are only a few cycles apart from the very optimized code widely used in cryptography.

In Table 3, we show how an increase in n affects performance. Of note is that due to the recur-
sive Toeplitz splitting approach we use for multiplication sometimes bigger values of n produce
faster running code such as n = 12 being faster than n = 11 due to 11 being a prime number.
We thus cannot split it further into smaller sub-matrices unlike for n = 12.

n 9 10 11 12 13 14
DoubleSparse PMNS 156 185 273 242 360 314

LinearRed PMNS 175 208 300 276 394 353
Table 3: Cycle count for modular multiplication for 512-bit integers for various values of n using gcc 12.3.0
on intel processor i9-11900KF

In Table 4, we show that specific shapes of external reduction polynomial, such as αXn−1 and
Xn − λ, result in almost identical performance compared to the more general αXn − λ.

E X9 − 2 X9 − 3 2X9 − 1 2X9 − 3 3X9 − 1 3X9 − 2
DoubleSparse PMNS 154 154 156 156 156 156

LinearRed PMNS 167 167 173 172 172 172
Table 4: Cycle count for modular multiplication for 512-bit integers for various shapes of E using gcc 12.3.0
on intel processor i9-11900KF

Prime fields in Elliptic Curve Cryptography are usually chosen for the underlying prime num-
ber’s properties surrounding fast modular arithmetic, as can be seen by the fact that the primes
chosen are usually Mersenne, Pseudo-Mersenne or Generalized Mersenne. Furthermore, the
prime sizes are usually chosen for speed considerations as long as they satisfy specific security
thresholds. We have shown in table 2 that this work generates a class of primes with which curves
can be constructed with similar performance as existing elliptic curves based on Mersenne (or
Mersenne derivative) primes for a given size with no impact on the resulting security level.
However, the prime sizes were chosen to be optimal for a positional number system and not
necessarily optimal for PMNS. In table 5 we propose various prime sizes for which our work
gives better performances than corresponding Pseudo-Mersenne primes of the same size in a
positional system, showing a proof of concept for potential applications.
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To be clearer, the Pseudo-Mersenne primes used for comparison in table 5 are only used because
they are the most advantageous at this size for multi-precision arithmetic in terms of speed and
not out of any consideration for constructing viable Elliptic Curves with them.

With that said, as part of our proof of concept, we have constructed good elliptic curves
with our PMNS-friendly primes using the Brainpool [8] Standard, adapting a SageMath curve
generation code from http://bada55.cr.yp.to/brainpool.html. Examples of such curves
generated with our primes are available at https://github.com/linearRedPMNS/pmns_with_
gamma_small/tree/main/curves and the corresponding PMNS are also available on the same
GitHub repository.

Remark 28. Note that for some parameters we will always have p ≡ 1 (mod 4) such as choosing
p = γ4 ± 1 for our 244 bit primes or p = γ8 ± 1 for 480 bit. This technically goes against the
requirement of the Brainpool standard of needing p ≡ 3 (mod 4). However, this requirement,
according to the Brainpool standard, “allows efficient point compression” [8, Section 3.1] and
is not linked to any security requirement. Note that we can construct elliptic curves verifying
every other Brainpool criteria with primes generated from this work’s generation algorithms
and in the general case, the primes we generate show no strong bias towards being congruent
to either 3 or 1 mod 4.

Method \ Prime size 244 297 354 480
Corresponding Pseudo-Mersenne 2244 − 189 2297 − 123 2354 − 153 2480 − 47

Optimized Multiprecision 63 82 103 156
DoubleSparse PMNS 47 66 85 123

LinearRed PMNS 55 78 94 135
Adapted GMP low level 93 115 138 197

Table 5: Cycle count for modular multiplication on proof of concept sizes of integers chosen at advantageous
breakpoints for PMNS using gcc 12.3.0 on intel processor i9-11900KF

In Table 6, we give proof of concept benchmarks for large primes for when we can choose the
exact prime arbitrarily (such as for Diffie-Hellmann). We compare ourselves to “Adapted GMP
low level” (see above) which automatically uses subquadratic algorithms for large sizes. Opti-
mized algorithms in the vein of those used for smaller integers could be faster but no example
code exists for the arbitrary prime sizes which were chosen for optimal construction of PMNS
with specific n for best Toeplitz-Matrix splitting performance. In [22], GMP’s implementation
of the Montgomery modular multiplication was shown to be faster than PMNS for sizes above
the 2048-bit range unless multi-threading was used. Table 6 shows PMNS can beat GMP using
Pseudo-Mersenne specific arithmetic, which is faster than the Montgomery modular multipli-
cation, while single-threaded.

8 Conclusion

In this work we have made the link between two PMNS-friendly classes of primes from [9] and
[7] to construct a broader class that includes them while giving performances comparable to
Pseudo and Generalized Mersenne primes. We have also improved on the parameter bounds
of previous works on PMNS while adapting conversion algorithms in consequence. We utilize

30

http://bada55.cr.yp.to/brainpool.html
https://github.com/linearRedPMNS/pmns_with_gamma_small/tree/main/curves
https://github.com/linearRedPMNS/pmns_with_gamma_small/tree/main/curves


Method \ Prime size 1023 2002 3979 7813
Corresponding Pseudo-Mersenne 21023 − 361 22002 − 297 23979 − 3819 27813 − 241

DoubleSparse PMNS 522 1580 5037 15049
LinearRed PMNS 573 1734 5351 15593

Adapted GMP low level 641 1933 6230 18409
Table 6: Cycle count for modular multiplication on large integers using gcc 12.3.0 on intel processor i9-
11900KF

the works from [22] and [12] and show we can construct sub-lattices with interesting properties
for internal reduction instead of relying on LLL-reduced bases. Additionally, we constructed
a database of Elliptic Curves using the Brainpool standard using our friendly primes which
ensures fast low-level arithmetic with PMNS. Finally, we also introduced the concept of Mirror
PMNS which is applicable to the general case and may lead to interesting applications in the
future.
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Appendix A Addition count in Recursive Toeplitz Splitting
algorithm

Since we have a Toeplitz matrix of size n we can split it as follows:





M0 M1 M2 . . . Mκ−3 Mκ−2 Mκ−1

Mκ M0 M1 . . . Mκ−4 Mκ−3 Mκ−2

Mκ+1 Mκ M0 . . . Mκ−5 Mκ−4 Mκ−3

...
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . . . .

...
M2κ−2 M2κ−3 M2κ−4 . . . Mκ+1 Mκ M0

with each Mi a submatrix of dimension n
κ (with κ a divisor of n). Similarly, we take our vector

V of size n and split it into κ sub vectors of size n
κ . The number of additions can be broken

down as follows: for each resulting sub-vector a total of κ(κ+1)
2 sub-products must be performed.

The first κ subproducts require κ− 2 matrix additions each, which gives us κ(κ− 2) additions.
They are as follows: 

P0 = V0(M0 +M1 + · · ·+Mκ−2 +Mκ−1)

P1 = V1(Mκ +M0 + · · ·+Mκ−3 +Mκ−2)

P2 = V2(Mκ−1 +Mκ + · · ·+Mκ−4 +Mκ−3)

. . .

Pκ−1 = Vκ−1(M2κ−2 +M2κ−3 + · · ·+Mκ +M0)

with each Pi a corresponding subproduct.
However, some of these sums have common terms so they can be reduced to 3κ−4 additions in

total through partial sums. We first compute Ps =
κ−2∑
i=0

Mi which comes down to κ − 2 matrix

additions. We then have P0 = V0(Ps+Mκ−1) and P1 = V1(Ps+Mκ). This allows us to compute
the first two subproducts in just κ matrix additions instead of 2(κ− 1) matrix additions total
like in [19]. For the remaining κ − 2 subproducts, they can be computed through one matrix
subtraction and one matrix addition to the previous partial sum. For example for P2, having

already computed Mκ+
κ−2∑
i=0

Mi for P1, we keep the partial sum in memory and add Mκ−1 while

subtracting Mκ−2. So we add 2(κ − 2) additions for the remaining subproducts which give us
3κ− 4 matrix additions in total.

As mentioned earlier, each submatrix is a Toeplitz n
κ ×

n
κ matrix with only 2n

κ − 1 distinct
coefficients. This means so far the number of integer additions comes down to (2n

κ − 1)(3κ− 4).
After this, the remaining κ(κ−1)

2 subproducts require a vector subtraction each which gives us an
additional n

κ×
κ(κ−1)

2 integer additions. Once all the sub-products are performed the final results
have to be computed. This is done through an additional κ(κ−1) vector additions/subtractions
which comes down to n

κ × κ(κ − 1) more integer additions. Note that those additions are
performed on 2 registers in practice so they are more costly. For brevity, we note As additions
on a simple register and Ad additions made on 2 registers. This gives us (2n

κ − 1)(3κ− 4)As +
n(κ−1

2 As + (κ− 1)Ad) additions in summary.
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Let us now break down the overall number of additions. As noted on page 27 in section 7.1, we
write the decomposition of n as n = κ0 × κ1 × κ2 × · · · × κf where each κi for i ⩾ 1 is a prime
factor of n such that ∀i < j, κi ⩽ κj and κ0 = 1. For the top level of the recursion, we get
(2 n

κ1
− 1)(3κ1 − 4)As + n(κ1−1

2 As + (κ1 − 1)Ad). We then perform κ1(κ1+1)
2 sub products. For

each of them, (2 n
κ1κ2

− 1)(3κ2 − 4)As +
n
κ1
(κ2−1

2 As + (κ2 − 1)Ad) additions will be performed
assuming n is not prime. We then proceed recursively and get

f∑
i=1

i−1∏
j=0

κj(κj + 1)

2

×(( 2n∏i
j=1 κj

− 1

)
(3κi − 4)As +

n∏i−1
j=0 κj

(
κi − 1

2
As + (κi − 1)Ad

))

Remark 29. In practice, we perform the bottom level of the recursion with the schoolbook
algorithm instead. At that scope using the schoolbook algorithm minimises the memory usage
and movements required. Meanwhile, using Toeplitz on recursion levels above means minimizing
the number of calls to the bottom level.
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