Meet-in-the-Middle Attack on Primitives with Binary Matrix Linear Layer

Qingliang Hou¹, Kuntong Li¹, Guoyan Zhang^{1,2}(\boxtimes), Yanzhao Shen², Qidi You^{3,4}, and Xiaoyang Dong⁵

¹ School of Cyber Science and Technology, Shandong University, Qingdao, Chin	na
{qinglianghou, likuntong}@mail.sdu.edu.cn, guoyanzhang@sdu.edu.cn	
² Shandong Institute of Blockchain, Jinan, China	
shenyanzhao@sdibc.cn	
³ State Key Laboratory of Space-Ground Integrated Information Technology	
youqd@spacestar.com.cn	
⁴ Space star Technology Co., Ltd	
⁵ Institute for Network Sciences and Cyberspace, BNRist, Tsinghua University	у,
Beijing, China	

xiaoyangdong@tsinghua.edu.cn

15

14

1

2

3

Abstract. Meet-in-the-middle (MitM) is a powerful approach for the 16 cryptanalysis of symmetric primitives. In recent years, MitM has led to 17 many improved records about key recovery, preimage and collision at-18 tacks with the help of automated tools. However, most of the previous 19 work target AES-like hashing where the linear layer is an MDS matrix. 20 And we observe that their automatic model for MDS matrix is not suit-21 able for primitives using a binary matrix as their linear layer. 22 In this paper, we propose the n-XOR model to describe the XOR operation 23 with an arbitrary number of inputs. And it can be applied to primitives 24 with a binary matrix of arbitrary size. Then, we propose a check model to 25 eliminate the possible inaccuracies caused by n-XOR. But the check model 26 is limited by the input size (not greater than 4). Combined with the two 27 new models, we find a MitM key recovery attack on 11-round Midori64. 28 When the whitening keys are excluded, a MitM key recovery attack can 29 be mounted on the 12-round Midori64. Compared with the previous 30 best work, both of the above results have distinct advantages in terms 31 of reducing memory and data complexity. At last, we apply the n-XOR 32 model to the hashing modes of primitives with large size binary matrix. 33 The preimage attack on weakened Camellia-MMO (without FL/FL^{-1} and 34 whitening layers) and Aria-DM are both improved by 1 round. 35

36 37 **Keywords:** Meet-in-the-Middle · Binary Matrix · Key Recovery · Preimage · Midori64 · Camellia · Aria.

First Author and Second Author contributed equally to this work.

38 1 Introduction

The Meet-in-the-middle (MitM) is a powerful cryptanalysis strategy first pro-39 posed by Diffie and Hellman to attack Double DES [12]. The core idea is to 40 identify two disjoint neutral sets of unknown values. Then, the whole compu-41 tation path can be divided into two independent chunks, which are determined 42 by two neutral sets and denoted by forward chunk and backward chunk, respec-43 tively. At last, the two chunks will meet at a common internal state where the 44 consistency is checked to filter out candidate assignments of unknown values. 45 From then on, MitM and its variants have been successfully applied to many 46 block ciphers [9,32,18,29]. At SAC 2008, Aumasson et al. [3] first introduced the 47 theory of MitM into preimage attacks on step-reduced MD5 and 3-pass HAVAL. 48 Sequentially, many refined techniques were proposed to enhance the power of 49 MitM, such as splice-and-cut [2], initial structure [30], bicliques [8], and so on. 50 At FSE 2011, Sasaki [26] applied such MitM preimage attack to the PGV [25] 51 hashing modes of AES and presented the first preimage attack on 7-round AES-52 MMO/MP/DM together with the partial indirect matching technique. Interestingly, 53 these enhancements were finally found to be applicable in the key recovery at-54 tack on block ciphers. At ACISP 2011, Wei et al. [37] broke the full round 55 KTANTAN using the splice-and-cut technique by connecting the plaintext and 56 ciphertext with encryption or decryption oracles with only 4 chosen plaintexts. 57 Despite being clear that a MitM attack is entirely determined by its *char*-58 acteristic, i.e., the configuration for two chunks, it's still complicated and error-59 prone to explore the whole configuration space. Recently, automated tools were 60 introduced to find the best characteristic by solving an optimization problem. At 61 Eurocrypt 2021, Bao et al. [6] proposed an MILP-based MitM preimage attack 62 on AES-like hash and Haraka v2. At CRYPTO 2021, Dong et al. [13] extended 63 the automatic model into key-recovery and collision attacks and introduced a 64 table-based method to solve the non-linear constraints imposed on neutral sets. 65 At CRYPTO 2022, Bao et al. [7] considered the MitM attack in a view of su-66 perposition (SupP) states and bi-directional attribute propagation (BiDir) such 67 that neutral sets are treated independently and can be imposed constraints in 68 both computation paths. At Asiacrypt 2023, Hou et al. [17] introduced the SupP 69 framework into Feistel-based hash functions. At Eurocrypt 2024, Chen et al. [10] 70 considered the linearization of the S-Box in AES and allowed a linear combina-71 tion of two neutral sets in the initial structure. Different from the above work, 72 Schrottenloher and Stevens [33] studied a simple top-down modeling paradigm 73 for both classical and quantum preimage attacks against permutations and was 74 later extended to key recovery attack on block ciphers with simple key sched-75 ules [34]. The simplified attack excluded many details. In this paper, we adopt 76 the bottom-up MitM framework in [7] and the table-based method in [13]. 77 In the previous work, the targets are most built by a block cipher with an 78

⁷⁹ MDS matrix. Through the diffusion layer, each output cell is related to all the ⁸⁰ input cells. However, the primitives with binary matrix are rarely studied, where ⁸¹ each output cell is represented as the XOR of partial input cells. In [13], Dong ⁸² et al. introduced the 3-XOR model for SKINNY-*n*-3*n*. In their model, the number of input cells is fixed to be 4. All valid cases can be easily exhausted to form a system of inequalities using the convex hull method [36]. However, if more input cells are involved, the number of valid cases will increase extremely leading to larger size of system of inequalities, which can make model infeasible to compute. Hence, there is a gap to find an accurate and effective method to describe the MitM attribute propagation through a binary matrix of arbitrary size.

Our Contributions. In this paper, we propose a novel model called n-XOR un-89 der the encoding scheme in [7], to describe the propagation of MitM attributes 90 through an XOR operation with an arbitrary number of input cells. And the 91 number of inequalities formed by **n-XOR** is fixed, independent of the number of 92 inputs. Hence, n-XOR can be applied to large binary matrices effectively. How-93 ever, we also observe that only applying n-XOR will lead to subtle inaccuracies. 94 An extremely explicit case is that the constraint on the same neutral bits may 95 be double counted in two different n-XOR operations. Besides, there are more 96 implicit cases depending on the specific linear layer. Hence, we propose an addi-97 tional check model to eliminate these inaccuracies. But this model is limited by 98 the input size n, that is, n < 4 in our paper. 99

As a low-energy lightweight cryptography, Midori [5] is well-suited for con-100 strained environments, like the edge gateways and end devices in the blockchain 101 on-chain and off-chain interactions. As a proof of work, we first apply the two 102 new models to Midori64 [5], with a 4×4 binary matrix as linear layer. Then, 103 an 11-round key recovery attack is found with time complexity of 2^{124} . The 104 data and memory complexity are 2^{36} and 2^{6} , respectively. When omitting the 105 whitening layer, a 12-round MitM characteristic for weakened Midori64 is found 106 with time complexity of 2^{120} . The data and memory cost are 2^{48} and $2^{10.6}$, re-107 spectively. Besides, the data and memory complexity can be further reduced if 108 the time complexity is relaxed to 2^{124} . Compared to the previous best records 109 of Midori64 [23,35,22], despite a little higher time complexity, our results have 110 distinct advantages in reducing data and memory complexity. 111

It's a practical design strategy to build hash functions on widely used block 112 cipher with a longstanding record of cryptanalysis. And AES-MMO was even inter-113 nationally standardized by ISO [19]. Since Camellia [1] was also standardized by 114 ISO [20] and Aria [21] was standardized by Korean Standard (KS X1213), the 115 hashing modes of Camellia or Aria may be potential candidates used in prac-116 tice. Indeed, their security have been evaluated in a series of works [31,27,16,4]. 117 In this paper, we apply the n-XOR to describe the MitM attributes propaga-118 tion through the large binary matrix of Camellia and Aria. Finally, we find a 119 preimage attack on 14-round weakened Camellia-MMO (without FL/FL^{-1} and 120 whitening layers) and a preimage attack on 6-round Aria-DM. Compared to the 121 previous best records [28,16], the attack rounds are both improved by 1 round. 122 Our results are also summarized in Table 1 and Table 2. For the source code, 123

please refer to https://github.com/wenny-kt/MITM-Binary-Matrix.

The rest of this paper is organized as follows. In Section 2, we give an overview of how the automated MitM attacks are deployed, along with some enhanced

Table 1: Single Key attacks on Midori64, where ID and \mathcal{DS} -MitM denote impossible differential and Demirci-Selçuk MitM attack, respectively.

Target	Rounds	Data	Memory(Bytes)	Time(Enc.)	Technique	Ref.
Midori64	$11 \\ 11 \\ 11 \\ 12 \\ 12^{\dagger} \\ 12^{\dagger} \\ 12^{\dagger} \\ 12^{\dagger}$	$2^{60} \\ 2^{53} \\ 2^{36} \\ 2^{55.5} \\ 2^{61.9} \\ 2^{48} \\ 2^{36}$	2 ^{95.8} 2 ^{92.2} 2 ⁶ 2 ¹⁰⁹ 2 ⁴⁴ 2 ^{10.6} 2 ^{5.6}	$2^{116.6} \\ 2^{122} \\ 2^{124} \\ 2^{125.5} \\ 2^{90.5} \\ 2^{120} \\ 2^{124}$	ID \mathcal{DS} -MitM MitM \mathcal{DS} -MitM ID MitM MitM	[23] [22] Section 4.1 [22] [35] Section 4.2 Section 4.2

[†] Weakened version without whitening layers.

Table 2: A Summary of the MitM Attacks on Hashing Modes.

Target	Attacks	Rounds	Time1	Time2	Memory	Technique	Ref.
Camellia-MMO	Preimage	13^{\ddagger} 14^{\ddagger}	2^{120} 2^{120}	2^{125} 2^{125}	2^{8} 2^{8}	${f MitM}{{f MitM}}$	[28] Section 5
Aria-DM	Preimage	5 6	$2^{120}_{2^{120}}$	2^{125} 2^{125}	$2^8 2^{112}$	MitM MitM	[16] Section 6

 $^{-}$ ‡ Weakened version without FL/FL^{-1} and white
ning layers.

⁻ Time1 represents the time complexity of pseudo-preimage. Time2 represents the time complexity of preimage attack converted from the pseudo-preimage attack according to [24, Fact9.99].

techniques. In Section 3, we introduce two new improved models embedded in the
automated MitM framework, called n-XOR and check model. The applications
to Midori64, Camellia-MMO and Aria-DM are presented in Sects. 4, 5 and 6,
respectively. Finally, we conclude in Section 7.

¹³¹ 2 Preliminaries: Automated Meet-in-the-Middle Attack

In this section, we provide an overview of how the MitM attack framework is constructed, and how it is encoded into the MILP language with specified configurations for the preimage and key recovery attack. Then, we recall two enhanced techniques to improve the power of MitM attack. The first one is the *table-based method* introduced in [13] to solving the non-linear constraints. Another one is the *Superposition (SupP) States and Bi-direction Attribute-Propagation (BiDir)* introduced in [7] to preserving more valid solutions.

139 2.1 Framework of the Meet-in-the-Middle Attack

¹⁴⁰ The MitM attack framework is illustrated in Figure 1. \mathcal{S}^{ENC} and \mathcal{S}^{KEY} are the ¹⁴¹ starting states where there are $\lambda_{\mathcal{B}}^{\text{ENC}}$ and $\lambda_{\mathcal{B}}^{\text{KEY}}$ neutral bits for forward compu-¹⁴² tation denoted by \blacksquare , and there are $\lambda_{\mathcal{R}}^{\text{ENC}}$ and $\lambda_{\mathcal{R}}^{\text{KEY}}$ neutral bits for backward ¹⁴³ computation denoted by \blacksquare . After imposing $l_{\mathcal{R}}^{\text{ENC}}$ and $l_{\mathcal{R}}^{\text{KEY}}$ constraints on $\lambda_{\mathcal{R}}^{\text{ENC}}$ and ¹⁴⁴ $\lambda_{\mathcal{R}}^{\text{KEY}}$ backward neutral bits, respectively, \blacksquare can be propagated to the matching

Fig. 1: A high-level overview of the MITM attacks [13]

¹⁴⁵ points $End_{\mathcal{B}}$ independent of the **b**its. The degree of freedom (DoF) for the **b** ¹⁴⁶ neutral space is computed by $d_{\mathcal{R}} = \lambda_{\mathcal{R}}^{\text{ENC}} + \lambda_{\mathcal{R}}^{\text{KEY}} - l_{\mathcal{R}}^{\text{ENC}} - l_{\mathcal{R}}^{\text{KEY}}$. Similarly, forward ¹⁴⁷ neutral bits are imposed on $l_{\mathcal{B}}^{\text{ENC}}$ and $l_{\mathcal{B}}^{\text{KEY}}$ constraints to cancel the effect of **b** in ¹⁴⁸ the backward computation. The DoF of the **b** neutral space can be computed ¹⁴⁹ by $d_{\mathcal{B}} = \lambda_{\mathcal{B}}^{\text{ENC}} + \lambda_{\mathcal{B}}^{\text{KEY}} - l_{\mathcal{B}}^{\text{ENC}} - l_{\mathcal{B}}^{\text{KEY}}$. Through a feed-forward mechanism or querying ¹⁵⁰ a public Encryption-Decryption oracle, $End_{\mathcal{R}}$ can be derived by **b**. Instead of ¹⁵¹ requiring the full states, the partial matching exploits the filtering ability derived ¹⁵² by the deterministic relation " $End_{\mathcal{B}} = End_{\mathcal{R}}$ " and denoted by d_m .

by the deterministic relation " $End_{\mathcal{B}} = End_{\mathcal{R}}$ " and denoted by d_m . With the configurations of $(\lambda_{\mathcal{B}}^{\text{ENC}}, \lambda_{\mathcal{B}}^{\text{KEY}}, \lambda_{\mathcal{R}}^{\text{ENC}}, \lambda_{\mathcal{R}}^{\text{KEY}}, l_{\mathcal{B}}^{\text{ENC}}, l_{\mathcal{B}}^{\text{KEY}}, l_{\mathcal{R}}^{\text{KEY}}, l_{\mathcal{R}}^{\text{KEY}}, d_m)$, the basic attack procedure goes as follows:

- 155 1. Choose constants in \mathcal{S}^{ENC} and \mathcal{S}^{KEY} and $l_{\mathcal{B}}^{\text{ENC}} + l_{\mathcal{B}}^{\text{KEY}} + l_{\mathcal{R}}^{\text{ENC}} + l_{\mathcal{R}}^{\text{KEY}}$ constraints.
- 2. For $2^{d_{\mathcal{B}}}$ values of \square neutral space, compute forward to $End_{\mathcal{B}}$ from the starting
- states, and store the values of \blacksquare in table $L_{\mathcal{B}}[End_{\mathcal{B}}]$.
- 3. For $2^{d_{\mathcal{R}}}$ values of \blacksquare neutral space, compute backward to $End_{\mathcal{R}}$ from the starting states, and store the values of \blacksquare in table $L_{\mathcal{R}}[End_{\mathcal{R}}]$.
- 4. According to the indices, check the match between $L_{\mathcal{B}}$ and $L_{\mathcal{R}}$.
- ¹⁶¹ 5. For the surviving pairs that pass the match, check for a full-state match.

¹⁶² Complexity analysis. The above steps 2-5 form a MitM episode. To find an h-bit ¹⁶³ full match, $2^{h-(d_{\mathcal{B}}+d_{\mathcal{R}})}$ episodes are needed. Since each episode is performed with ¹⁶⁴ a time of $2^{\max\{d_{\mathcal{B}},d_{\mathcal{R}}\}} + 2^{d_{\mathcal{B}}+d_{\mathcal{R}}-d_{m}}$, the total time complexity is:

$$2^{h-(d_{\mathcal{B}}+d_{\mathcal{R}})} \cdot \left(2^{\max\{d_{\mathcal{B}},d_{\mathcal{R}}\}} + 2^{d_{\mathcal{B}}+d_{\mathcal{R}}-d_{m}}\right) \approx 2^{h-\min\{d_{\mathcal{B}},d_{\mathcal{R}},d_{m}\}} \tag{1}$$

Apparently, a MitM characteristic is valid, if and only if $\min\{d_{\mathcal{B}}, d_{\mathcal{R}}, d_m\} \geq$ 1. For MitM key recovery attack, additional constraints must be fulfilled to ensure that the internal states in \mathcal{S}^{ENC} can be totally determined by \mathcal{S}^{KEY} . This is equivalent to using up the DoFs of \mathcal{S}^{ENC} , i.e., $\lambda_{\mathcal{B}}^{\text{ENC}} - l_{\mathcal{B}}^{\text{ENC}} = 0$ and $\lambda_{\mathcal{R}}^{\text{ENC}} - l_{\mathcal{R}}^{\text{ENC}} = 0$. Besides, there should exists only one type of neutral bit in the plaintext or ciphertext, and at least 1-bit constant in the plaintext or ciphertext to avoid using up the full codebook. In [6], Bao *et al.* encoded the type of each byte in AES with a pair of boolean variables:

- 1. $\square \mathcal{R}, (x, y) = (0, 1)$: Known byte only with backward computation. 173
- 2. $\square \mathcal{B}, (x, y) = (1, 0)$: Known byte only with forward computation. 174
- 3. $\square \mathcal{G}, (x, y) = (1, 1)$: Constant byte and known in both forward and backward 175 computations. 176
- 4. $\Box \mathcal{W}, (x, y) = (0, 0)$: Unknown byte in forward and backward computations. 177
- Then, the propagation rules for XOR and MixColumns can be described as a 178 system of inequalities based on the above definitions. A valid MitM characteristic 179 is defined as a solution solved by the off-the-shelf MILP solvers, like Gurobi [15], 180 with the objective function that maximizes the min $\{d_{\mathcal{B}}, d_{\mathcal{R}}, d_m\}$. For the detailed 181 MILP models of these propagation rules, please refer to [6] or Appendix A. 182

2.2**Enhanced Techniques** 183

Table-based method solving non-linear constraints. Note that Equation 184 (1) holds mostly when the constraints imposed on neutral bits can be solved 185 in O(1) time, such as linear equations. However, there are many practice MitM 186 characteristics with non-linear constrained neutral bits, which can not be solved 187 efficiently. In [13], Dong *et al.* proposed a precomputation method to compute 188 the value of the constraints by enumerating the neutral bits. Specifically, after 189 setting the value of constants in starting states, do as follows: 190

191 192

 For 2^{λ_B^{ENC}+λ_B^{KEY}} avalues, compute the values of l_B^{ENC} + l_B^{KEY} constraints (denoted by c_B ∈ F₂^{l_B^{ENC}+l_B^{KEY}}) and store the λ_B^{ENC} + λ_B^{KEY} bits in U[c_B].
 For 2^{λ_R^{ENC}+λ_R^{KEY}} values, compute the values of l_R^{ENC} + l_R^{KEY} constraints (denoted by c_R ∈ F₂^{l_R^{ENC}+l_R^{KEY}}) and store the λ_R^{ENC} + λ_R^{KEY} bits in V[c_R]. 193 194

Then, in each MitM episode, for a given $\mathfrak{c}_{\mathcal{B}}$ and $\mathfrak{c}_{\mathcal{R}}$, the values in $U[\mathfrak{c}_{\mathcal{B}}]$ and $V[\mathfrak{c}_{\mathcal{R}}]$ 195 can be searched in time O(1). The time and memory cost for one precomputation 196 phase are both $2^{\lambda_{\mathcal{B}}^{\mathsf{ENC}} + \lambda_{\mathcal{B}}^{\mathsf{KEY}}} + 2^{\lambda_{\mathcal{R}}^{\mathsf{ENC}} + \lambda_{\mathcal{R}}^{\mathsf{KEY}}}$. 197

SupP States and BiDir. In the SupP MitM framework of [7], neutral cells 198 from both directions can be separated into two virtual states, called SupP states, 199 to keep the linearity through linear operations. Then, \blacksquare and \blacksquare will be treated 200 independently through linear operations, and the initial DoFs can be consumed 201 in both directions. After a series of linear operations, two SupP states are fi-202 nally combined before the next nonlinear operation. The color patterns and how 203 the states are separated and combined are visualized in Figure 2. BiDir allows 204 neutral cells to be consumed in both two directions, but this may lead to depen-205 dency between one type of neutral cell with non-linear constraints imposed on 206 another. In [11], Degré proposed a more generic table-based method to cancel 207 this dependency. Combined with the SupP states and BiDir methods, the solu-208 tion space is greatly enlarged, such that some attack configurations with lower 209 time complexities may be found. In the rest of this paper, we simplify the repre-210 sentation of SupP states. The virtual states of pure $\square/\square/\square/\square$ are omitted. And 211 we denote the SupP states by the \square cell in which the blue cell and red cell occur 212 simultaneously. 213

Fig. 2: Rules for separation and combination, where "*" means any color

New Models for Linear Layer with Binary Matrix 3 214

In this section, we first propose an effective method to build an MILP model to 215 describe the MitM attributes propagation through a n-XOR operation with SupP 216 states. Interestingly, the number of input cells involved in the XOR operation 217 can be arbitrary, but the size of MILP model will not increase. However, we 218 also observer that this may lead to double counting of constraints on the same 219 neutral cells. Then, we show that the inaccuracy can be easily eliminated by 220 adding an additional check model. 221

N-XOR Model 3.1222

To simulate the MitM attributes propagation through the linear layer, Bao et al. 223 proposed the MC-RULE for the MDS matrix in AES-like hashing [6,7]. As shown 224 in Figure 3(a), each input cell has an effect on all output cells in MDS matrix. 225 However, some primitives adopt a binary matrix in the diffusion layer where 226 each output cell is computed by the XOR of partial input cells. As the Midori64's 227 binary matrix shown in Figure 3(b), the first output cell is only related to the 228 last three input cells. Apparently, this will lead to inaccurate propagation if we 229 apply the MC-RULE for MDS matrix on binary matrix directly since one output 230 cell is not related to all input cells.

(a) Coloring pattern of MC-RULE for MDS matrix

(b) Coloring pattern for binary matrix

Fig. 3: A case of the difference of color pattern between MDS and binary matrix

231 232

In [13], Dong et al. proposed the 3-XOR-RULE to model the key addition in SKINNY-n-3n. By enumerating four input cells, one output cell and one indicator 233 variable for DoF cost, all valid color patterns can be restricted to a subset of 234 \mathbb{F}_{2}^{11} , which can be described into a system of inequalities using the convex hull 235 technique [36]. If we directly extend the strategy of 3-XOR-RULE to the XOR 236 operation with n input cells, then the enumeration scope will be restricted to a 237

²³⁸ subset of \mathbb{F}_2^{2n+3} . When *n* is large, it's complicated and error-prone to enumerate ²³⁹ all valid color patterns. And the size of the system of inequalities may be large, ²⁴⁰ which renders the model infeasible to compute.

An alternative strategy is to apply the XOR-RULE in [6,7] for two-input XOR consecutively. This strategy is valid but may miss some valid patterns by introducing additional auxiliary variables. We take the attribute propagation through Midori64's diffusion layer to state this fact as shown in Figure 4. In the first step of Figure 4(a), an auxiliary variable **auxi** is needed to carry on the output of $X[2] \oplus X[3]$. For the second step, X[1] and X[0] are XORed with **auxi** to compute Y[0] and Y[1], respectively. Then, one of the following cases will occur,

- If auxi is \blacksquare by consuming one DoF, then Y[0] will always be \blacksquare , and Y[1]will always be \blacksquare .

- If auxi is \blacksquare , then Y[1] will always be \blacksquare . Y[0] can be either \blacksquare or \blacksquare by consuming one DoF.

However, with the n-XOR model in Figure 4(b), step 1 and step 2 can be exe-

²⁵³ cuted independently without correlated variables. Then, Y[0] and Y[1] can be

²⁵⁴ ■ simultaneously by consuming 2 DoFs of ■, which can not be captured by the first strategy.

Fig. 4: The advantage of n-XOR model compared with consecutive XOR

In the following, we show how to convert the propagation of \blacksquare cells through the n-XOR operation under SupP states into MILP language. All coloring patterns can be specified by the following set of rules denoted by n-XOR-RULE⁻. The n-XOR-RULE⁺ for \blacksquare can be obtained in a similar way by exchanging \blacksquare and since they are dual.

- $_{261}$ n-XOR-RULE⁻-1. If there is at least one \Box in input, then the output is \Box .
- $-n-XOR-RULE^{-}-2$. If all cells of the input are \blacksquare , then the output must be \blacksquare .
- $_{263}$ n-XOR-RULE⁻-3. If there are \blacksquare and \blacksquare cells but no \square cell in the input, then one of the following situations will occur:
 - The output is cell and no DoF is consumed.
- The output is **D** by consuming one DoF of **D**.

255

265

Let $(A[1], A[2], \dots, A[n])$ be the input of **n-XOR** where $A[i] = (x_i^A, y_i^A)$. Let B be the output where $B = (x^B, y^B)$. Like [6], we introduce three boolean indicator variables μ, ν and η in the model. $\mu = 1$ if and only if there exists $i \in [1, 2, \dots, n]$ such that $(x_i^A, y_i^A) = (0, 0)$. That is, n-XOR-RULE⁻-1 is fulfilled. $\nu = 1$ if and only if $x_i^A = y_i^A = 1$ for all $1 \le i \le n$, which corresponds to n-XOR-RULE⁻-2. When $\mu = \nu = 0$, n-XOR-RULE⁻-3 is fulfilled. Besides, $\eta = 1$ when there exists one constraint imposed on input \blacksquare cells. With the help of indicator variables, the n-XOR-RULE⁻ can be converted into a system of inequalities shown in Equation (2) and Equation (3).

$$\begin{cases} \sum_{i=0}^{n-1} y_i^A + \mu \le n \\ \sum_{i=0}^{n-1} y_i^A + n \cdot \mu \ge n \\ \sum_{i=0}^{n-1} x_i^A - \nu \le n-1 \\ \sum_{i=0}^{n-1} x_i^A - n \cdot \nu \ge 0 \end{cases}$$
(2)
$$\begin{cases} y^B + \mu = 1 \\ x^B + \mu \le 1 \\ \eta - x^B + \nu = 0 \\ \sum_{i=0}^{n-1} x_i^A + x^B - 2 \cdot \nu \le n-1 \\ \sum_{i=0}^{n-1} x_i^A + x^B - (n+1) \cdot \nu \ge 0 \end{cases}$$
(3)

275

At the end, we must emphasize that, in addition to preserving more valid coloring patterns, another advantage of n-XOR is that the size of model is fixed, independent of the number of input cells. And this makes it possible to describe the attributes propagation for primitives with large binary matrices, like Camellia and Aria.

281 3.2 Check Model: More Accurate Consumption of DoFs

We also observe that n-XOR model may lead to some subtle inaccuracies. We still take a possible propagation of Midori64's diffusion layer as an example to state this fact. A particularly explicit case is that the constraint on the same neutral cells may be double counted due to the independent computation of each output cell as shown in Figure 5(a). Besides, there are some more implicit cases leading to inaccuracy as shown in Figure 5(b).

Then, we introduce the check model to show how the inaccuracy can be 288 eliminated, and describe it in the MILP language. We still state this by con-289 sidering the propagation through the n-XOR operation under SupP states. Let 290 $A[j] = (x_i^A, y_i^A)$, for $1 \le j \le n$, be the input of the $n \times n$ binary matrix M. 291 After the n-XOR Model, we can get $\boldsymbol{\eta} = (\eta_1, \cdots, \eta_n)$ denoted by the degree con-292 sumption vector where η_i is the indicator variable introduced in Equation (3) 293 and $\eta_i = 1$ means there exists one constraint imposed on the input \blacksquare cells for the 294 *i*-th row of M. Since only **\square** cells are needed to be considered for DoF consump-295 tion, we introduce another $n \times n$ binary matrix M' to intuitively mark which 296 cells contribute to the DoF consumption. Then, M' is generated as follows : 297

Fig. 5: Possible situations in our models

²⁹⁸ - If $\eta_i = 1$ and $M_{i,j} = 1$ and $x_j^A = 0$, then $M'_{i,j} = 1$. ²⁹⁹ - If the first case is not satisfied, then $M'_{i,j} = 0$.

For the first case, $\eta_i = 1$ means no \Box in the involved input cells, and $M_{i,j} = 1$ and 300 $x_j^A = 0$ means A[j] is a cell involved in the *i*-th XOR operation. We introduce 301 a general variable η' to denote the rank of M', which equals to the accurate 302 DoF consumption theoretically. Since M is a fixed matrix, we can conclude 303 that the accurate DoF consumption can be determined by the other 2n vari-304 ables $(x_1^A, \dots, x_n^A, \eta_1, \dots, \eta_n)$. Finally, the subset $(x_1^A, \dots, x_n^A, \eta_1, \dots, \eta_n, \eta')$ of $\mathbb{F}_2^{2n} \times \mathbb{F}_{n+1}$ can be restricted to a system of linear inequalities using the con-305 306 vex hull technique [36]. Different with the origin framework, the configuration 307 $l_{\mathcal{R}}^{\text{ENC}} + l_{\mathcal{R}}^{\text{KEY}}$ should be calculated by accumulating the accurate DoF consumption 308 determined by the n-XOR and check model, along with extra constraints imposed 309 by other operations, such as KeyAddition. The configuration $l_{\mathcal{B}}^{\text{ENC}} + l_{\mathcal{B}}^{\text{KEY}}$ for degree 310 consumption of \blacksquare can also be gotten in the similar way due to the duality [7]. 311

However, it should be noted that the cost of exhaustion to determine the 312 accurate DoF consumption is still affected by the number of input cells. Hence, 313 check model can not be applied to large binary matrix (n > 4 in this paper). 314 Although it's trivial to compute the rank of a general matrix in $O(n^3)$, there 315 is still no effective way to implement it in MILP model. Besides, in addition to 316 finding out better modeling methods or more suitable optimizers, we can still 317 combine theoretical models and manually checking to deal with large matri-318 ces, such as Section 5 and Section 6. In practice, by relaxing the constraint to 319 $\min\{d_{\mathcal{B}}, d_{\mathcal{R}}, d_m\} \geq 1-i$, where $i \geq 1$, we check the feasible solutions to find out 320 valid characteristic. It also should be noted that the final results derived by the 321 manually checking method may not be the optimal solution. 322

³²³ 4 MitM Key Recovery Attack on Midori64

³²⁴ Midori64 is an SPN-based lightweight block cipher, consisting of 64-bit block ³²⁵ and a 128-bit key. The state is seen as a 4×4 matrix of 4-bit cells, and its diffusion layer is 4×4 boolean matrix. The detailed specification is provided in Appendix B.1.

In this section, we present an 11-round MitM key recovery attack on Midori64 with a time complexity of 2¹²⁴. For the weakened version of Midori64, without whitening key, a 12-round MitM characteristic is found with a time complexity of 2¹²⁰. Despite a little higher time complexity, the above two attacks can be applied with extremely low data and memory cost compared to the previous best work [23,35]. Besides, the data and memory of the attack on 12-round weakened Midori64 can be further reduced if the time complexity is relaxed to 2¹²⁴.

335 4.1 MitM Key Recovery Attack on 11-round Midori64

As shown in Figure 6 and Figure 7, an 11-round MitM key recovery attack is 336 identified, where $|\mathcal{S}^{ENC}| = 16$ independent bytes in the encryption data path are 337 set to be 0 as Line 1-2 in Algorithm 1, to ensure the values of all the other bytes 338 are totally determined by the given key. And at least one 0 byte in the ciphertext 339 are totally determined by the given key. And at least one 0 byte in the ciphertext C to avoid using the full codebook. The starting states are C and $(K^{(0)}, K^{(1)})$. The encryption data path provides $\lambda_{\mathcal{R}}^{\text{ENC}} = 9$ and $\lambda_{\mathcal{B}}^{\text{ENC}} = 0$ DoFs for \blacksquare and \blacksquare , respectively. And the $\lambda_{\mathcal{R}}^{\text{ENC}} = 9$ \blacksquare cells are used up when computing $A_{\text{ShC}}^{(9)}$ through an MC operation and $A_{\text{MC}}^{(8)}$ through an XOR operation in the backward computation path. For $(K^{(0)}, K^{(1)})$, the initial DoFs for \blacksquare and \blacksquare are $\lambda_{\mathcal{R}}^{\text{KEY}} = 3$ and $\lambda_{\mathcal{B}}^{\text{KEY}} = 2$, respectively. In the key schedule, $K^{(0)}[1] \oplus K^{(0)}[9]$ and $K^{(0)}[1] \oplus K^{(0)}[13]$ are restricted to constants, i.e., $l_{\mathcal{R}}^{\text{KEY}} = 2$. Hence, we get $\text{DoF}_{\mathcal{R}} = \lambda_{\mathcal{R}}^{\text{KEY}} - l_{\mathcal{R}}^{\text{KEY}} = 1$. Similarly, $K^{(0)}[5] \oplus K^{(1)}[5]$ is imposed on $l_{\mathcal{B}}^{\text{KEY}} = 1$ constraint, and then $\text{DoF}_{\mathcal{B}} = \lambda_{\mathcal{K}}^{\text{KEY}} - l_{\mathcal{B}}$ 340 341 342 343 344 345 346 347 $\lambda_{\mathcal{B}}^{\text{KEY}} - l_{\mathcal{B}}^{\text{KEY}} = 1$. The matching phase happens at the MC operation between $A_{\text{ShC}}^{(3)}$ 348 and $A_{MC}^{(3)}$, providing $d_m = 1$ degree of matching by Equation (4). 349

$$A_{\rm shc}^{(3)}[2] \oplus A_{\rm shc}^{(3)}[10] = A_{\rm MC}^{(3)}[2] \oplus A_{\rm MC}^{(3)}[10]$$
(4)

According to Equation (1), the overall time complexity is $2^{4\times(32-\min\{1,1,1\})} \approx 2^{124}$. The data complexity is 2^{36} by traversing the 16-7=9 non-constant cells in *C*. A detailed attack procedure is given in Algorithm 1. The memory cost is about 2^{6} bytes to store $(S_{\mathcal{R}}, S_{\mathcal{B}}, L)$.

³⁵⁴ 4.2 MitM Key Recovery Attack on 12-round Weakened Midori64

In this section, we focus on the weakened version of Midori64 omitting the whitening layers. And we found a MitM key recovery attack on the 12-round Midori64 as shown in Figure 8. As explained above, $|\mathcal{S}^{\text{ENC}}| = 16$ independent bytes in the encryption data path are set as 0. The starting states are ciphertext C and two sub-key $(K^{(0)}, K^{(1)})$. In ciphertext, there are $\lambda_{\mathcal{R}}^{\text{ENC}} = 12$ and $\lambda_{\mathcal{B}}^{\text{ENC}} = 0$ initial DoFs for and , respectively. And the DoFs of are used up when computing $A_{\text{ShC}}^{(10)}$ through an MC operation and $A_{\text{MC}}^{(9)}$ through an XOR operation. The two sub-key $(K^{(0)}, K^{(1)})$ provide $\lambda_{\mathcal{R}}^{\text{KEY}} = 6$ and $\lambda_{\mathcal{B}}^{\text{KEY}} = 2$ initial DoFs for and , respectively. For the key schedule, $K^{(0)}[0] \oplus K^{(0)}[4]$, $K^{(0)}[0] \oplus K^{(0)}[8]$,

Fig. 6: Meet-in-the-Middle key recovery attack on 11-round Midori64

Fig. 7: The MitM characteristic through whitening layers of 11-round $\tt Midori64$

Algorithm 1: MitM Key Recovery Attack on 11-round Midori64					
1 Set the D bytes to be 0, i.e., $C[0, 3, 4, 5, 8, 12, 14] \leftarrow 0, A_{MC}^{(8)}[1, 9, 13] \leftarrow 0$					
$2 \ A_{\mathrm{MC}}^{(9)}[1] \oplus A_{\mathrm{MC}}^{(9)}[9] \leftarrow 0, \ A_{\mathrm{MC}}^{(9)}[1] \oplus A_{\mathrm{MC}}^{(9)}[13] \leftarrow 0, \ A_{\mathrm{MC}}^{(9)}[2] \oplus A_{\mathrm{MC}}^{(9)}[6] \leftarrow 0,$					
$A_{\rm MC}^{(9)}[2] \oplus A_{\rm MC}^{(9)}[10] \leftarrow 0, \ A_{\rm MC}^{(9)}[7] \oplus A_{\rm MC}^{(9)}[11] \leftarrow 0, \ A_{\rm MC}^{(9)}[7] \oplus A_{\rm MC}^{(9)}[15] \leftarrow 0$					
3 Collecting plaintext-ciphertext pairs by traversing the non-constant $16 - 7 = 9$					
cells in C, and storing them in table $H_{(0)}$					
4 for all possible values of the \square cells in $K^{(0)}$ and $K^{(1)}$ do					
5 $A_{sc}^{(10)}[0,3,4,5,8,12,14] \leftarrow (K^{(0)} \oplus K^{(1)})[0,3,4,5,8,12,14]$					
6 for $(\mathfrak{c}_{\mathcal{R},1},\mathfrak{c}_{\mathcal{R},2},\mathfrak{c}_{\mathcal{B}}) \in \mathbb{F}_2^{3 \times 4}$ do					
7 Derive the solution space $\mathcal{S}_{\mathcal{R}}$ of \blacksquare cells by					
$\int K^{(0)}[1] \oplus K^{(0)}[9] = \mathfrak{c}_{\mathcal{R},1}$					
$\int K^{(0)}[1] \oplus K^{(0)}[13] = \mathfrak{c}_{\mathcal{R},2}$					
8 Derive the solution space $S_{\mathcal{B}}$ of \blacksquare cells by $K^{(0)}[5] \oplus K^{(1)}[5] = \mathfrak{c}_{\mathcal{B}}$					
9 $L \leftarrow []$					
10 for $v_{\mathcal{R}} \in \mathcal{S}_{\mathcal{R}}$ do					
11 Compute $A_{\text{shc}}^{(3)}[2, 10]$ along the forward computation path:					
12 $A_{MC}^{(6)} \to C \to Dec_K(C) \to A_{ShC}^{(5)}$ by accessing H					
$13 \qquad \qquad L[A^{(3)}_{\mathrm{Shc}}[2] \oplus A^{(3)}_{\mathrm{Shc}}[10]] \leftarrow v_{\mathcal{R}}$					
14 end					
15 for $v_{\mathcal{B}} \in \mathcal{S}_{\mathcal{B}}$ do					
16 Compute $A_{MC}^{(3)}[2, 10]$ along the backward computation path:					
$C \to A_{\rm MC}^{(3)} \tag{1}$					
17 for Candidate keys in $L[A_{MC}^{(3)}[2] \oplus A_{MC}^{(3)}[10]]$ do					
18 Test the guessed key with several plaintext-ciphertext pairs					
19 end					
20 end					
21 end					
22 end					

 $K^{(0)}[1] \oplus K^{(0)}[5] \text{ and } K^{(0)}[1] \oplus K^{(0)}[13] \text{ are restricted to constants, i.e., } l_{\mathcal{R}}^{\text{KEY}} = 4.$ Hence, we get $\text{DoF}_{\mathcal{R}} = \lambda_{\mathcal{R}}^{\text{KEY}} - l_{\mathcal{R}}^{\text{KEY}} = 2$ and $\text{DoF}_{\mathcal{B}} = \lambda_{\mathcal{B}}^{\text{KEY}} = 2.$ The matching phase happens at the MC operation between $A_{\text{ShC}}^{(4)}$ and $A_{\text{MC}}^{(4)}$, providing $d_m = 1$ degree of matching by Equation (5).

$$A_{\rm shc}^{(4)}[4] \oplus A_{\rm shc}^{(4)}[12] = A_{\rm MC}^{(4)}[4] \oplus A_{\rm MC}^{(4)}[12]$$
(5)

In [14], Fuhr *et al.* proposed the *simultaneous matching* to decrease $2^{d_{\mathcal{B}}+d_{\mathcal{R}}-d_m}$ in Equation (1) exponentially by testing the surviving keys with multiple plaintextciphertext pairs in parallel. Hence, the overall time is dominated by $2^{4\times(32-\min\{2,2\})} \approx 2^{120}$. The data complexity is 2^{48} by traversing the 16-4 non-constant cells in *C*. A detailed attack procedure is given in Algorithm 2. The memory cost is $2^{10.6}$ bytes to store $(\mathcal{S}_{\mathcal{R}}, L)$.

When considering optimization for data complexity, we found a MitM key recovery attack on 12-round Midori64 with data complexity of 2^{36} by relaxing the time complexity to 2^{124} . The figure and algorithm are given in Figure 17 and Algorithm 4 in Appendix C.

Algorithm 2: MitM Key Recovery Attack on 12-round weakened Midori64, optimized for time complexity

 $\mathbf{1} \ \ C[2,6,10,14] \leftarrow 0, \ A_{\mathtt{ShC}}^{(10)}[1,4,7,9,12,15] \leftarrow 0, \ A_{\mathtt{MC}}^{(9)}[0,1,4,5,8,13] \leftarrow 0$ Collecting plaintext-ciphertext pairs by traversing the non-constant 2 16 - 4 = 12 cells in C, and storing them in table H for all possible values of the \blacksquare cells in $K^{(0)}$ and $K^{(1)}$ do 3 for $(\mathfrak{c}_{\mathcal{R},1},\mathfrak{c}_{\mathcal{R},2},\mathfrak{c}_{\mathcal{R},3},\mathfrak{c}_{\mathcal{R},4}) \in \mathbb{F}_2^{4 \times 4}$ do 4 Derive the solution space $S_{\mathcal{R}}$ of \blacksquare cells by 5 $\begin{cases} K^{(0)}[0] \oplus K^{(0)}[4] = \mathfrak{c}_{\mathcal{R},1} \quad K^{(0)}[0] \oplus K^{(0)}[8] = \mathfrak{c}_{\mathcal{R},2} \\ K^{(0)}[1] \oplus K^{(0)}[5] = \mathfrak{c}_{\mathcal{R},3} \quad K^{(0)}[1] \oplus K^{(0)}[13] = \mathfrak{c}_{\mathcal{R},4} \end{cases}$ $L \leftarrow []$ 6 for $v_{\mathcal{R}} \in \mathcal{S}_{\mathcal{R}}$ do 7 Compute $A_{\text{ShC}}^{(4)}[4, 12]$ along the forward computation path: 8 $\begin{array}{l} A_{\tt MC}^{(9)} \to C \to Dec_K(C) \to A_{\tt ShC}^{(4)} \text{ by accessing } H\\ L[A_{\tt ShC}^{(4)}[4] \oplus A_{\tt ShC}^{(4)}[12]] \leftarrow v_{\mathcal{R}} \end{array}$ 9 10 end 11 for $2^{2\times 4}$ possible values of $K^{(1)}[7, 12]$ do 12 Compute $A_{MC}^{(4)}[4, 12]$ along the backward computation path: 13 $C \to A_{\rm MC}^{(4)}$ for Candidate keys in $L[A_{MC}^{(4)}[4] \oplus A_{MC}^{(4)}[12]]$ do 14 Test the guessed key with several plaintext-ciphertext pairs $\mathbf{15}$ 16 end \mathbf{end} 17 18 end 19 end

³⁷⁸ 5 MitM Preimage Attack on Weakened Camellia

³⁷⁹ Camellia is a Feistel-based block cipher with 128-bit block. The diffusion layer

 $_{380}$ is a 8×8 boolean matrix. In this work, we only target on the version with a

³⁸¹ 128-bit key. The detailed specification is provided in Appendix B.2.

³⁸² 5.1 The MitM Characteristic of 14-round weakened Camellia

We first applied the n-XOR model to describe the attributes propagation through the diffusion layer. However, the check model can not be deployed since the large size of the diffusion layer. We relaxed the constraint to $\min\{d_{\mathcal{B}}, d_{\mathcal{R}}, d_m\} \ge 1-i$, where $i \ge 1$, as stated in Section 3.2, and manually checked the solution files to find out valid solutions (may not be optimal).

The final valid configuration of the pseudo-preimage MitM attack on 14-388 round weakened Camellia-MMO without FL/FL^{-1} and whitening layers is shown 389 in Figure 9. We deploy the n-XOR model by considering the MixColumns and XOR 390 as a whole. The attack starts at $A^{(9)}$ and $B^{(9)}$ illustrated in Figure 9(a), in which 391 the initial DoFs for \blacksquare and \blacksquare are $\lambda_{\mathcal{B}} = \lambda_{\mathcal{R}} = 7$. In the forward computation path, 392 in order to facilitate the propagation of \blacksquare cells, there are $l_{\mathcal{R}} = 6$ linear constraints 393 imposed on $A_{\text{SB}}^{(9)}[7] \oplus B^{(9)}[i]$, for $i \in \{0, 1, 2, 4, 5, 6\}$. Similarly, in the backward 394 computation path, $l_{\mathcal{B}} = 6$ linear constraints are imposed on $A_{SB}^{(8)}[7] \oplus A^{(9)}[i]$, 395 for $i \in \{0, 1, 2, 4, 5, 6\}$, to facilitate the propagation of \blacksquare cells. Hence, we get 396 $d_{\mathcal{B}} = \lambda_{\mathcal{B}} - l_{\mathcal{B}} = 1$ and $d_{\mathcal{R}} = \lambda_{\mathcal{R}} - l_{\mathcal{R}} = 1$. 397

Around the feed-forward mechanism of MMO mode, we set global constraints on round keys $(k_0, k_1, k_{12}, k_{13})$ to preserve some attributes like [28]. Specifically, for the given target $H_0 || H_1, A_{SB}^{(0)}$ equals to $A_{SB}^{(13)}$ by setting $k_0 = k_{13} \oplus H_0$ globally. Since $B^{(0)} = \text{MC}(A_{SB}^{(13)}) \oplus A^{(12)} \oplus H_1$ and $A^{(1)} = B^{(0)} \oplus \text{MC}(A_{SB}^{(0)})$, then we can get $A^{(1)} = A^{(12)} \oplus H_1$. Similarly, $A^{(2)}$ equals to $B^{(12)} \oplus H_0$ by setting $k_1 = k_{12} \oplus H_1$. The cost to determine such proper subkeys is given in Section 5.2 and will not exceed the time complexity of main MitM procedure.

The matching points are $A^{(5)}$ and $B^{(5)}$ in Figure 9(c). At first glance, there are no degree for the direct matching. However, after applying a linear transformation P^{-1} to $B^{(5)}$ as in Figure 10, two-byte degree of match are derived. Since $d_{\mathcal{B}} = d_{\mathcal{R}} = 1$, we only use one-byte for match, i.e., $d_m = 1$. The specific matching equation is Equation (6).

$$\bigoplus_{i \in [0,1,2,4,5,6]} B^{(3)}[i] \oplus A^{(3)}_{\mathsf{SB}}[3] = \bigoplus_{i \in [0,1,2,4,5,6]} A^{(6)}[i] \oplus A^{(5)}_{\mathsf{SB}}[3] \tag{6}$$

According to Equation (1), the total time complexity is bounded by $2^{8 \times (16 - \min\{1, 1, 1\})} \approx 2^{120}$. A detailed attack procedure is given in Algorithm 3. The memory complexity of a hash table L is 2^8 . And this attack can be converted to a second preimage

413 attack with a time complexity of 2^{125} according to [24, Fact9.99].

Fig. 8: Meet-in-the-Middle key recovery attack on 12-round weakened Midori64, optimized for time complexity

Fig.9: Meet-in-the-Middle pseudo-preimage attack on 14-round weakened $\tt Camellia-MMO$

Fig. 10: The matching process of 14-round weakened Camellia-MMO

Algorithm 3: MitM Pseudo-Preimage Attack on 14-round weakened Camellia-MMO

1 S	Setting	a global key satisfying $k_0 = k_{13} \oplus H_0$, $k_1 = k_{12} \oplus H_1$;
2 f	or 2^{16}	values of the \square butes in $A^{(9)}[3] B^{(9)}[3]$ do
3	for	$\mathfrak{c}_{\mathcal{B}} \in \mathbb{F}_{2}^{8 \times 6}$ do
4		for $\mathfrak{c}_{\mathcal{P}} \in \mathbb{F}_{2}^{8 \times 6}$ do
5		$L \leftarrow [1]$
6		Solve the following system of equations to find the solution space
		$S_{\mathbf{P}}$ of \square in $A^{(9)}$ and $B^{(9)}$. /* $ S_{\mathbf{P}} = 2^{8 \times (7-6)} = 2^8$ */
7		
•		
		$A_{2p}^{(8)}[7] \oplus A^{(9)}[0] = \mathfrak{c}_{\mathbf{R}}[0], \ A_{2p}^{(8)}[7] \oplus A^{(9)}[1] = \mathfrak{c}_{\mathbf{R}}[1], \ A_{2p}^{(8)}[7] \oplus A^{(9)}[2] = \mathfrak{c}_{\mathbf{R}}[2],$
		$ \begin{array}{c} \begin{array}{c} 1 \\ -56 \\ -58 \\ -$
		$\prod_{\mathbf{SB}} [\mathbf{i}] \oplus \prod_{\mathbf{I}} [\mathbf{r}] = \mathbf{C}_{\mathcal{B}}[0], \prod_{\mathbf{SB}} [\mathbf{I}] \oplus \prod_{\mathbf{I}} [0] = \mathbf{C}_{\mathcal{B}}[\mathbf{r}], \prod_{\mathbf{SB}} [\mathbf{I}] \oplus \prod_{\mathbf{I}} [0] = \mathbf{C}_{\mathcal{B}}[0].$
8		Solve the following system of equations to find the solution space
		S_{7} of \mathbf{I} in $A^{(9)}$ and $B^{(9)}$. /* $ S_{7} = 2^{8 \times (7-6)} = 2^{8}$ */
9		
0		
		$A_{cp}^{(9)}[7] \oplus B^{(9)}[0] = \mathfrak{c}_{\mathcal{R}}[0], B_{cp}^{(9)}[7] \oplus A^{(9)}[1] = \mathfrak{c}_{\mathcal{R}}[1], A_{cp}^{(9)}[7] \oplus B^{(9)}[2] = \mathfrak{c}_{\mathcal{R}}[2],$
		$A^{(9)}[7] \oplus B^{(9)}[4] = \mathfrak{c}_{\mathcal{T}}[3] A^{(9)}[7] \oplus B^{(9)}[5] = \mathfrak{c}_{\mathcal{T}}[4] A^{(9)}[7] \oplus B^{(9)}[6] = \mathfrak{c}_{\mathcal{T}}[5]$
		$\prod_{SB} [1] \oplus D [1] = \mathcal{V}_{\mathcal{K}}[0], \prod_{SB} [1] \oplus D [0] = \mathcal{V}_{\mathcal{K}}[1], \prod_{SB} [1] \oplus D [0] = \mathcal{V}_{\mathcal{K}}[0].$
10		for $v_{\mathcal{B}} \in \mathcal{S}_{\mathcal{B}}$ do
11		Compute forward to $A^{(3)}$ and $B^{(3)}$, derive 1-byte Endr by
12		
		$End_{\mathcal{B}} \leftarrow P^{-1}\left(B^{(3)}\right)[3] \oplus A^{(3)}_{\mathtt{SB}}[3]$
13		$L[End_{\mathcal{B}}] \leftarrow v_{\mathcal{B}}$:
14		end
15		for $v_{\mathcal{P}} \in \mathcal{S}_{\mathcal{P}}$ do
16		Compute backward to $A^{(6)}$ and $B^{(6)}$ derive 1-byte End _p by
17		compute backward to II and D , derive I by the Linak by
11		$D = I = D^{-1} (A^{(6)})$ [o] $= A^{(5)}$ [o]
		$End_{\mathcal{R}} \leftarrow P \left(A^{(*)}\right)[3] \oplus A^{(*)}_{SB}[3]$
18		for $v_{\mathcal{B}} \in L[End_{\mathcal{R}}]$ do
19		Reconstruct the (candidate) message X :
		/* $2^{8 \times (1+1-1)} - 2^8$ values passed the filter */
20		if X is a preimage then
21		Output X and stop:
22		end
 23		end
20 24		and
44 05		enu
2 5		
26	end	
27 e	end	

⁴¹⁴ 5.2 The Cost to Determine a Proper Key

The key schedule of Camellia with 128-bit key is shown in Figure 15. As explained above, we only need to focus on $(k_0, k_1, k_{12}, k_{13})$ [1],

$$k_0 \leftarrow K'_A, \ k_1 \leftarrow K''_A, \ k_{12} \leftarrow K''[30-63] \| K'[0-29], \ k_{13} \leftarrow K'[30-63] \| K''[0-29]$$

As shown in Figure 15, every internal state can be derived for given K' and S_0 . Hence, we get $K'' = F_0(K') \oplus S_0$ and $K''_A = F_2(F_1(S_0)) \oplus F_0(K')$. According to the global constraints $k_0 = k_{13} \oplus H_0$ and $k_1 = k_{12} \oplus H_1$, the relation between K' and S_0 can be represented as Equation (7).

$$F_2(F_1(S_0)) \oplus F_0(K') = (F_0(K') \oplus S_0) [30 - 63] \| K'[0 - 29] \oplus H_1$$
(7)

Besides, we note that K' and S_0 can be placed at two sides of Equation (8), respectively. The left-hand-side of Equation (8) only contains variables in terms of K', while the right-hand-side of Equation (8) depends on S_0 .

$$F_0(K') \oplus F_0(K')[30-63] \| K'[0-29] = F_2(F_1(S_0)) \oplus S_0[30-63] \| \underbrace{0 \cdots 0}^{30} \oplus H_1 (8)$$

Then, an algebraic meet-in-the-middle attack can be mounted by enumerating 424 K' and S_0 independently to filter out valid pairs according to Equation (8), i.e. 425 $d_{\mathcal{B}} = d_{\mathcal{R}} = d_m = 64$. The time and memory complexity are both 2⁶⁴. Besides, 426 the memory cost can be further reduced by extracting partial x bits of K' and 427 S_0 as global variables. Then, the memory can be reduced by a fraction of 2^x , 428 while the total time is bounded by 2^{64+x} . To avoid exceeding the time cost of 429 main MitM procedure, $64 + x \le 120$ should be fulfilled, i.e., x can take 56 at 430 most. The corresponding memory cost is 2^8 . 431

432 6 MitM Preimage Attack on 6-Round Aria

Aria is an SPN-based block cipher that supports a 128-bit block. In this work,
we target on the version with a 128-bit key. The state is treated as a 4×4 matrix.
And the diffusion layer is a 16 × 16 boolean matrix. The detailed specification
of Aria is presented in Appendix B.3.

Since the large size diffusion layer, only the n-XOR model can be applied 437 to describe the MitM attribution propagation through the diffusion layer. By 438 relaxing the constraint to $\min\{d_{\mathcal{B}}, d_{\mathcal{R}}, d_m\} \ge 1 - i$, where $i \ge 1$, as stated in 439 Section 3.2, we finally found out a valid configuration of the pseudo-preimage 440 MitM attack on 6-round Aria-DM as shown in Figure 11 (may not be optimal). 441 The attack starts at $A^{(1)}$ in which the initial DoFs for \blacksquare and \blacksquare are $\lambda_{\mathcal{B}} = 1, \lambda_{\mathcal{R}} =$ 442 14, respectively. Since there are non-linear constraints on \blacksquare cells to compute $A_{P}^{(i)}$ 443 through the DL operation. We use the table-based method in [13] to solve such 444 non-linear constraints. 445

Fig. 11: Meet-in-the-Middle pseudo-preimage attack on 6-round Aria-DM

Precomputation of red initial values. By enumerating the \blacksquare cells in $A^{(1)}$, in the backward computation path, two constraints imposed on \blacksquare cells can be computed as follows:

$$\begin{cases} A_{\mathsf{DL}}^{(0)}[0] \oplus A_{\mathsf{DL}}^{(0)}[6] \oplus A_{\mathsf{DL}}^{(0)}[7] \oplus A_{\mathsf{DL}}^{(0)}[8] \oplus A_{\mathsf{DL}}^{(0)}[10] \oplus A_{\mathsf{DL}}^{(0)}[13] = \mathfrak{c}[0] \\ A_{\mathsf{DL}}^{(0)}[0] \oplus A_{\mathsf{DL}}^{(0)}[4] \oplus A_{\mathsf{DL}}^{(0)}[5] \oplus A_{\mathsf{DL}}^{(0)}[9] \oplus A_{\mathsf{DL}}^{(0)}[11] \oplus A_{\mathsf{DL}}^{(0)}[14] = \mathfrak{c}[1] \end{cases}$$

⁴⁴⁹ In the forward computation path, there are 11 constraints imposed on the cells. During the DL operation in the 2nd round, 6 constraints are imposed on the cells. The specific expression of the constraints is shown in as follows:

$$\begin{cases} A_{\rm SL}^{(1)}[4] \oplus A_{\rm SL}^{(1)}[6] \oplus A_{\rm SL}^{(1)}[8] \oplus A_{\rm SL}^{(1)}[9] \oplus A_{\rm SL}^{(1)}[13] \oplus A_{\rm SL}^{(1)}[14] = \mathfrak{c}[2] \\ A_{\rm SL}^{(1)}[4] \oplus A_{\rm SL}^{(1)}[9] \oplus A_{\rm SL}^{(1)}[10] \oplus A_{\rm SL}^{(1)}[14] \oplus A_{\rm SL}^{(1)}[15] &= \mathfrak{c}[3] \\ A_{\rm SL}^{(1)}[2] \oplus A_{\rm SL}^{(1)}[5] \oplus A_{\rm SL}^{(1)}[6] \oplus A_{\rm SL}^{(1)}[8] \oplus A_{\rm SL}^{(1)}[13] \oplus A_{\rm SL}^{(1)}[15] = \mathfrak{c}[4] \\ A_{\rm SL}^{(1)}[0] \oplus A_{\rm SL}^{(1)}[6] \oplus A_{\rm SL}^{(1)}[7] \oplus A_{\rm SL}^{(1)}[8] \oplus A_{\rm SL}^{(1)}[10] \oplus A_{\rm SL}^{(1)}[13] = \mathfrak{c}[5] \\ A_{\rm SL}^{(1)}[5] \oplus A_{\rm SL}^{(1)}[7] \oplus A_{\rm SL}^{(1)}[10] \oplus A_{\rm SL}^{(1)}[11] &= \mathfrak{c}[6] \\ A_{\rm SL}^{(1)}[10] \oplus A_{\rm SL}^{(1)}[11] \oplus A_{\rm SL}^{(1)}[12] \oplus A_{\rm SL}^{(1)}[15] &= \mathfrak{c}[7] \end{cases}$$

Based on the above 6 constraints $(\mathfrak{c}[2], \mathfrak{c}[3], \mathfrak{c}[4], \mathfrak{c}[5], \mathfrak{c}[6], \mathfrak{c}[7])$, the effect of the cells on the 7 cells $A_{\text{DL}}^{(1)}[0, 5, 7, 10, 11, 13, 14]$ can be cancelled as follows:

$$\begin{cases} A_{\rm SL}^{(1)}[4] \oplus A_{\rm SL}^{(1)}[6] \oplus A_{\rm SL}^{(1)}[8] \oplus A_{\rm SL}^{(1)}[9] \oplus A_{\rm SL}^{(1)}[13] \oplus A_{\rm SL}^{(1)}[14] = \mathfrak{c}[2] \\ A_{\rm SL}^{(1)}[4] \oplus A_{\rm SL}^{(1)}[9] \oplus A_{\rm SL}^{(1)}[10] \oplus A_{\rm SL}^{(1)}[14] \oplus A_{\rm SL}^{(1)}[15] = \mathfrak{c}[3] \\ A_{\rm SL}^{(1)}[6] \oplus A_{\rm SL}^{(1)}[8] \oplus A_{\rm SL}^{(1)}[11] \oplus A_{\rm SL}^{(1)}[12] \oplus A_{\rm SL}^{(1)}[13] = \mathfrak{c}[2] \oplus \mathfrak{c}[3] \oplus \mathfrak{c}[7] \\ A_{\rm SL}^{(1)}[2] \oplus A_{\rm SL}^{(1)}[5] \oplus A_{\rm SL}^{(1)}[6] \oplus A_{\rm SL}^{(1)}[8] \oplus A_{\rm SL}^{(1)}[13] \oplus A_{\rm SL}^{(1)}[15] = \mathfrak{c}[4] \\ A_{\rm SL}^{(1)}[2] \oplus A_{\rm SL}^{(1)}[4] \oplus A_{\rm SL}^{(1)}[7] \oplus A_{\rm SL}^{(1)}[9] \oplus A_{\rm SL}^{(1)}[12] \oplus A_{\rm SL}^{(1)}[14] = \mathfrak{c}[2] \oplus \mathfrak{c}[4] \oplus \mathfrak{c}[6] \oplus \mathfrak{c}[7] \\ A_{\rm SL}^{(1)}[0] \oplus A_{\rm SL}^{(1)}[6] \oplus A_{\rm SL}^{(1)}[7] \oplus A_{\rm SL}^{(1)}[8] \oplus A_{\rm SL}^{(1)}[10] \oplus A_{\rm SL}^{(1)}[13] = \mathfrak{c}[5] \\ A_{\rm SL}^{(1)}[0] \oplus A_{\rm SL}^{(1)}[4] \oplus A_{\rm SL}^{(1)}[5] \oplus A_{\rm SL}^{(1)}[9] \oplus A_{\rm SL}^{(1)}[11] \oplus A_{\rm SL}^{(1)}[14] = \mathfrak{c}[2] \oplus \mathfrak{c}[5] \oplus \mathfrak{c}[6] \end{cases}$$

⁴⁵⁴ In a similar way, the 5 constraints $(\mathfrak{c}[8], \mathfrak{c}[9], \mathfrak{c}[10], \mathfrak{c}[11], \mathfrak{c}[12])$ imposed on the ⁴⁵⁵ cells through the DL in the 3rd round are enough to cancel the effect of the cells ⁴⁵⁶ on the 6 cells $A_{\text{DL}}^{(2)}[4, 6, 8, 9, 13, 14]$. For the specific expression of the constraints,

⁴⁵⁷ please refer to Algorithm 5 in Appendix C. And the detailed DoFs consumption

⁴⁵⁸ process is illustrated as follows:

$$\begin{array}{l} A_{\rm SL}^{(2)}[2] \oplus A_{\rm SL}^{(2)}[8] \oplus A_{\rm SL}^{(2)}[15] = \mathfrak{c}[8] \\ A_{\rm SL}^{(2)}[2] \oplus A_{\rm SL}^{(2)}[9] \oplus A_{\rm SL}^{(2)}[12] = \mathfrak{c}[8] \oplus \mathfrak{c}[12] \\ A_{\rm SL}^{(2)}[1] \oplus A_{\rm SL}^{(2)}[4] \oplus A_{\rm SL}^{(2)}[15] = \mathfrak{c}[9] \\ A_{\rm SL}^{(2)}[1] \oplus A_{\rm SL}^{(2)}[6] \oplus A_{\rm SL}^{(2)}[12] = \mathfrak{c}[9] \oplus \mathfrak{c}[11] \\ A_{\rm SL}^{(2)}[3] \oplus A_{\rm SL}^{(2)}[6] \oplus A_{\rm SL}^{(2)}[8] = \mathfrak{c}[10] \\ A_{\rm SL}^{(2)}[3] \oplus A_{\rm SL}^{(2)}[4] \oplus A_{\rm SL}^{(2)}[9] = \mathfrak{c}[10] \oplus \mathfrak{c}[11] \oplus \mathfrak{c}[12] \end{array}$$

In summary, the values of $l_{\mathcal{R}} = 13$ constraints can be determined for given values of $\lambda_{\mathcal{R}} = 14$ cells in $A^{(1)}$. Hence, we get $d_{\mathcal{B}} = 1$, $d_{\mathcal{R}} = \lambda_{\mathcal{R}} - l_{\mathcal{R}} = 1$.

⁴⁶¹ Matching process. The matching points are $A_{SL}^{(4)}$, $A_{DL}^{(4)}$, indirect matching through ⁴⁶² the DL provides one-byte match, i.e., DoM = 1. The specific matching process is ⁴⁶³ Equation (9).

$$A_{\rm SL}^{(4)}[0] \oplus A_{\rm DL}^{(4)}[13] \oplus A_{\rm DL}^{(4)}[14] = A_{\rm DL}^{(4)}[3] \oplus A_{\rm DL}^{(4)}[4] \oplus A_{\rm DL}^{(4)}[6] \oplus A_{\rm DL}^{(4)}[8] \oplus A_{\rm DL}^{(4)}[9]$$
(9)

Based on the above MitM framework, combined with the table-based technique for solving nonlinear constrained neutral words [13], Algorithm 5 gives a detailed attack procedure in Appendix C.

⁴⁶⁷ Complexity. The nonlinear constraints imposed on \blacksquare cells are solved in Lines 2-8 ⁴⁶⁸ of Algorithm 5. That is, 14 \blacksquare cells of $A^{(1)}[0, 2, 4-15]$ are traversed to compute ⁴⁶⁹ the exact values of $\mathfrak{c}_{\mathcal{R}}[0-12]$. Then, the values of $A^{(1)}[0, 2, 4-15]$ are stored in a ⁴⁷⁰ hash table V under the index of $\mathfrak{c}_{\mathcal{R}}[0-12]$. Hence, the time complexity of the ⁴⁷¹ precomputation phase is $2^{8\times 14} = 2^{112}$. The memory complexity is also 2^{112} to ⁴⁷² store table V.

Lines 10-24 of Algorithm 5 stand for one MitM episode. With the parameters $(d_{\mathcal{B}}, d_{\mathcal{R}}, d_m) = (1, 1, 1)$, there are a total of $2^{8 \times (1+1-1)} = 2^8$ solutions that can ⁴⁷⁵ be filtered out according to Equation (9). In order to find a full match of 128-⁴⁷⁶ bit, it's expected to repeat $2^{120-8} = 2^{112}$ MitM episodes. By traversing the \blacksquare in ⁴⁷⁷ $A^{(1)}$ at the outer loop and enumerating the 13 constraints imposed on \blacksquare cells, ⁴⁷⁸ it is sufficient to find a full match. According to Equation (1), The total time ⁴⁷⁹ complexity of the attack phase is

$$2^8 \times 2^{112} + 2^{8 \times (16 - \min\{1, 1, 1\})} \approx 2^{120}.$$

The memory complexity is dominated by the table V of 2^{112} . And this attack can be converted to a preimage attack with a time complexity of 2^{125} according to [24, Fact9.99].

483 7 Conclusion

In this paper, we propose the n-XOR model to simulate the XOR operation with 484 an arbitrary number of input cells. Specifically, the size of n-XOR model is inde-485 pendent of the number of input cells, and thus it is well suitable for primitives 486 with a binary matrix as the diffusion layer. To eliminate the subtle inaccuracies 487 caused by n-XOR model, we introduce another check model to determine the ex-488 act DoFs consumption of MitM attributes propagation. However, the size of the 489 check model is still limited by the number of input cells n and does not work well 490 when n > 4 in this paper. We expect that there will be more elegant and efficient 491 techniques to overcome this defect and we leave this as an open problem. 492

We apply the above two new models to a MitM key recovery attack on 11round Midori64 with low data and memory. Besides, when omitting the whitening layers, two 12-round MitM characteristics for key recovery attack are found for optimizing time and data, respectively. For hash functions, we obtain improved preimage attack on 14-round weakened Camellia-MMO and 6-round Aria-DM. Both attacks are improved by 1 round compared to previous best records.

499 **References**

- Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
 T.: Camellia: A 128-bit block cipher suitable for multiple platforms design andanalysis. In: Selected Areas in Cryptography. pp. 39–56. Springer Berlin Heidelberg
- 503 (2001). https://doi.org/10.1007/3-540-44983-3_4
- 2. Aoki, K., Sasaki, Y.: Preimage attacks on one-block md4, 63-step md5 and more. In:
- Selected Areas in Cryptography. pp. 103–119. Springer Berlin Heidelberg (2009).
 https://doi.org/10.1007/978-3-642-04159-4_7
- 3. Aumasson, J., Meier, W., Mendel, F.: Preimage attacks on 3-pass HAVAL and step-reduced MD5. In: SAC. vol. 5381, pp. 120–135 (2008). https://doi.org/10. 1007/978-3-642-04159-4_8
- Baek, S., Kim, J.: Quantum rebound attacks on reduced-round ARIA-based hash functions. Cryptology ePrint Archive, Paper 2022/1604 (2022), https://eprint.
- 512 iacr.org/2022/1604

- 513 5. Banik, S., Bogdanov, A., Isobe, T., Shibutani, K., Hiwatari, H., Akishita, 514 T., Regazzoni, F.: Midori: A block cipher for low energy. In: ASIACRYPT
- 515
 2015. pp. 411-436. Springer Berlin Heidelberg (2015). https://doi.org/10.1007/

 516
 978-3-662-48800-3_17

 978-3-662-48800-3_17
- 6. Bao, Z., Dong, X., Guo, J., Li, Z., Shi, D., Sun, S., Wang, X.: Automatic search of meet-in-the-middle preimage attacks on aes-like hashing. In: EUROCRYPT 2021. pp. 771-804. Springer International Publishing (2021). https://doi.org/ 10.1007/978-3-030-77870-5_27
- 7. Bao, Z., Guo, J., Shi, D., Tu, Y.: Superposition meet-in-the-middle attacks:
 updates on fundamental security of aes-like hashing. In: Annual International
 Cryptology Conference. pp. 64–93. Springer (2022). https://doi.org/10.1007/
 978-3-031-15802-5_3
- Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the full
 aes. In: Advances in Cryptology ASIACRYPT 2011. pp. 344–371. Springer Berlin
 Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_19
- Bogdanov, A., Rechberger, C.: A 3-subset meet-in-the-middle attack: Cryptanalysis of the lightweight block cipher ktantan. In: SAC. pp. 229–240. Springer Berlin Heidelberg (2011). https://doi.org/10.1007/978-3-642-19574-7_16
- 10. Chen, S., Guo, J., List, E., Shi, D., Zhang, T.: Diving deep into the preimage security of aes-like hashing. Cryptology ePrint Archive, Paper 2024/300 (2024), https://eprint.iacr.org/2024/300
- 11. Degré, M., Derbez, P., Lahaye, L., Schrottenloher, A.: New models for the cryptanalysis of ascon. Cryptology ePrint Archive, Paper 2024/298 (2024), https: //eprint.iacr.org/2024/298
- 12. Diffie, W., Hellman, M.E.: Special feature exhaustive cryptanalysis of the NBS data encryption standard. Computer 10(6), 74-84 (1977). https://doi.org/10.
 1109/C-M.1977.217750
- 540 13. Dong, X., Hua, J., Sun, S., Li, Z., Wang, X., Hu, L.: Meet-in-the-middle attacks
 541 revisited: Key-recovery, collision, and preimage attacks. In: CRYPTO 2021. pp.
 542 278-308. Springer International Publishing (2021). https://doi.org/10.1007/
 543 978-3-030-84252-9_10
- Fuhr, T., Minaud, B.: Match box meet-in-the-middle attack against KATAN. In:
 FSE 2014. pp. 61-81 (2014). https://doi.org/10.1007/978-3-662-46706-0_4
- 546 15. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2023), https:
 547 //www.gurobi.com
- Hong, D., Koo, B., Kim, D.C.: Preimage and second-preimage attacks on pgv hashing modes of round-reduced aria, camellia, and serpent. IEICE T Fund Electr
 95(1), 372-380 (2012), https://api.semanticscholar.org/CorpusID:19830401
- ⁵⁵¹ 17. Hou, Q., Dong, X., Qin, L., Zhang, G., Wang, X.: Automated meet-in-the-middle
 ⁵⁵² attack goes to feistel. In: ASIACRYPT 2023. pp. 370–404. Springer Nature Singa ⁵⁵³ pore (2023). https://doi.org/10.1007/978-981-99-8727-6_13
- 18. Isobe, T.: A single-key attack on the full gost block cipher. Journal of cryptology
- **26**, 172–189 (2013). https://doi.org/10.1007/s00145-012-9118-5
- ISO/IEC: 10118-2:2010 Information technology Security techniques Hash functions Part 2: Hash-functions using an n-bit block cipher, 3rd edn (2010)
- ⁵⁵⁸ 20. ISO/IEC 18033-3:2010 Information technology-Security techniques ⁵⁵⁹ EncryptionAlgorithms-Part 3: Block ciphers (2010)
- 560 21. Kwon, D., Kim, J., Park, S., Sung, S.H., Sohn, Y., Song, J.H., Yeom, Y., Yoon,
 561 E.J., Lee, S., Lee, J., et al.: New block cipher: Aria. In: Inscrypt. pp. 432–445.
- ⁵⁶² Springer (2003). https://doi.org/10.1007/978-3-540-24691-6_32

- 563 22. Lin, L., Wu, W.: Meet-in-the-middle attacks on reduced-round midori64. IACR
- ToSC pp. 215–239 (2017). https://doi.org/10.13154/tosc.v2017.i1.215-239
- Liu, Y., Xiang, Z., Chen, S., Zhang, S., Zeng, X.: A novel automatic technique based on milp to search for impossible differentials. In: ACNS. pp. 119–148. Springer Nature Switzerland (2023). https://doi.org/10.1007/978-3-031-33488-7_5
- Menezes, A.J., Vanstone, S.A., Oorschot, P.C.V.: Handbook of Applied Cryptog raphy. CRC Press, Inc., USA, 1st edn. (1996)
- 25. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers:
 a synthetic approach. In: Advances in Cryptology CRYPTO' 93. pp. 368–378.
 Springer Berlin Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_31
- 573 26. Sasaki, Y.: Meet-in-the-middle preimage attacks on aes hashing modes and an
- application to whirlpool. In: FSE. pp. 378–396. Springer Berlin Heidelberg (2011).
 https://doi.org/10.1007/978-3-642-21702-9_22
- Sasaki, Y.: Preimage attacks on feistel-sp functions: Impact of omitting the last network twist. In: ACNS. pp. 170–185. Springer Berlin Heidelberg (2013). https://doi.org/10.1007/978-3-642-38980-1_11
- 28. Sasaki, Y.: Preimage attacks on feistel-sp functions: Impact of omitting the last network twist. IEICE T Fund Electr 98(1), 61-71 (2015). https://doi.org/10.
 1587/transfun.E98.A.61
- Sasaki, Y.: Integer linear programming for three-subset meet-in-the-middle attacks:
 Application to GIFT. In: IWSEC 2018. vol. 11049, pp. 227-243 (2018). https:
 //doi.org/10.1007/978-3-319-97916-8_15
- Sasaki, Y., Aoki, K.: Finding preimages in full MD5 faster than exhaustive search.
 In: EUROCRYPT 2009, Proceedings. vol. 5479, pp. 134–152. Springer (2009).
 https://doi.org/10.1007/978-3-642-01001-9_8
- Sasaki, Y., Emami, S., Hong, D., Kumar, A.: Improved known-key distinguishers
 on feistel-sp ciphers and application to camellia. In: Information Security and Privacy. pp. 87–100. Springer Berlin Heidelberg (2012). https://doi.org/10.1007/
 978-3-642-31448-3_7
- Sasaki, Y., Wang, L., Sakai, Y., Sakiyama, K., Ohta, K.: Three-subset meet-in-themiddle attack on reduced xtea. In: AFRICACRYPT 2012. pp. 138–154. Springer
 Berlin Heidelberg (2012). https://doi.org/10.1007/978-3-642-31410-0_9
- Schrottenloher, A., Stevens, M.: Simplified mitm modeling for permutations: New (quantum) attacks. In: CRYPTO 2022. pp. 717–747. Springer Nature Switzerland (2022). https://doi.org/10.1007/978-3-031-15982-4_24
- Schrottenloher, A., Stevens, M.: Simplified modeling of mitm attacks for block ciphers: New (quantum) attacks. IACR Transactions on Symmetric Cryptology
 2023, 146–183 (2023). https://doi.org/10.46586/tosc.v2023.i3.146-183
- ⁶⁰¹ 35. Shahmirzadi, A.R., Azimi, S.A., Salmasizadeh, M., Mohajeri, J., Aref, M.R.: Impossible differential cryptanalysis of reduced-round midori64 block cipher. In: IS-
- ⁶⁰³ CISC. pp. 99–104 (Sep 2017). https://doi.org/10.1109/ISCISC.2017.8488362
- 36. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evaluation and (related-key) differential characteristic search: Application to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: ASIACRYPT 2014. pp. 158–178 (2014). https://doi.org/10.1007/978-3-662-45611-8_9
- 37. Wei, L., Rechberger, C., Guo, J., Wu, H., Wang, H., Ling, S.: Improved meetin-the-middle cryptanalysis of ktantan (poster). In: Information Security and Privacy. pp. 433-438. Springer Berlin Heidelberg (2011). https://doi.org/10.1007/ 978-3-642-22497-3_31

612 A Details of MILP Models for MitM Attack

In this section, we briefly recall the MILP model for MC and XOR operation of AES in [6].

The MC. The rules of the MC are formalized in two different directions in [6]. Taking the forward computation as an example, the set of rules is given as follows:

- $_{618}$ 1. If there is at least one \Box in the input column, all the outputs are \Box ;
- 2. If there are but no □ and in the input column, then all the outputs are
 i;
- $_{621}$ 3. If all the inputs are \blacksquare , then all the outputs are \blacksquare ;
- 4. If there are and but no □ in the input column, each output must be ■
 or □. Moreover, the sum of the numbers of and in the input and output
 columns must be no more than 3;
- 5. If there are but no □ and in the input column, then each output must
 be or ■. Moreover, the number of in the input and output columns must
 be no more than 3.
- ⁶²⁸ Some examples of valid coloring schemes of the MC-RULE in the forward computation are shown in Figure 12.

Fig. 12: Some valid coloring schemes for MC in forward computation in [6]

Let $(\alpha[0], \alpha[1], \alpha[2], \alpha[3])^T$ and $(\beta[0], \beta[1], \beta[2], \beta[3])^T$ be the input and output columns. In [6], Bao *et al.* use three 0-1 indicator variables μ, v, ω for the input column to fulfill different rules auxiliary. Let $\mu = 1$ if and only if there exists $i \in \{0, 1, 2, 3\}$ such that $(x_i^{\alpha}, y_i^{\alpha}) = (0, 0)$. Let v = 1 if and only if $x_i^{\alpha} = 1$ for each $i \in \{0, 1, 2, 3\}$. Let $\omega = 1$ if and only if $y_i^{\alpha} = 1$ for each $i \in \{0, 1, 2, 3\}$. Then, with the help of μ, v, ω , the MC-RULE in the forward computation can be described as a system of inequalities:

$$\begin{cases} \sum_{i=0}^{3} x_{i}^{\alpha} - 4v \ge 0; \\ \sum_{i=0}^{3} x_{i}^{\alpha} - v \le 3. \end{cases} \begin{cases} \begin{cases} \sum_{i=0}^{3} x_{i}^{\beta} + 4\mu \le 4; \\ \sum_{i=0}^{3} y_{i}^{\beta} + 4\mu \le 4; \\ \sum_{i=0}^{3} y_{i}^{\beta} - 4\omega = 0; \end{cases} \begin{cases} \begin{cases} \sum_{i=0}^{3} (x_{i}^{\alpha} + x_{i}^{\beta}) - 5v \le 3; \\ \sum_{i=0}^{3} (x_{i}^{\alpha} + x_{i}^{\beta}) - 8v \ge 0. \end{cases} \end{cases}$$

⁶³⁷ The XOR. For the XOR operation in two different directions, the coloring schemes of the input and output cells are shown in Figure 13.

Fig. 13: The XOR in [6], where a "*" means that the cell can be any color

⁶³⁸ Let $\alpha[i]$, $\beta[i]$ denote the input cells and $\gamma[i]$ denote the output cell, where ⁶⁴⁰ $0 \leq i \leq 15$. Let a boolean variable d_i indicate the consumption of DoF, where ⁶⁴¹ $d_i = 1$ means that one DoF is consumed to let the corresponding output be \blacksquare . ⁶⁴² The set of rules restrict $(x_i^{\alpha}, y_i^{\alpha}, x_i^{\beta}, y_i^{\beta}, x_i^{\gamma}, y_i^{\gamma}, d_i)$ to a subset of \mathbb{F}_2^7 , which can ⁶⁴³ be described by a system of linear inequalities with the convex hull technique in ⁶⁴⁴ [36].

⁶⁴⁵ B Descriptions of Midori, Camellia and Aria

646 B.1 Specification of Midori

Midori is a family of SPN-based lightweight block cipher designed by Banik et 647 al. at ASIACRYPT 2015 [5]. With its low energy consumption, it is suitable for 648 deployment in edge gateways and end devices to facilitate blockchain on-chain 649 and off-chain interactions. Two versions of Midori use a 64-bit and a 128-bit 650 internal state, respectively. In this work, we focus on the 64-bit version denoted 651 by Midori64. The internal state of Midori64 can be represented as a 4×4 array 652 as shown in Figure 14. Midori64 is of 16 iterated rounds and each round function 653 consists of four operations: 654

- SubCell (SC): Apply the 4-bit non-linear involution S-box on each nibble.
- ShuffleCell (ShC): Update the position of each nibble by a pre-defined
 permutation.
- MixColumn (MC): Each column is left multiplied by a 4×4 binary matrix M as follows.

$$M = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}.$$

- KeyAdd (KA): A round key is XORed to the internal state.

For the last round, the operations ShC, MC and KA are omitted. Two sub-keys $K^{(0)} || K^{(1)}$ are derived from the 128-bit master key K and the round keys are

Fig. 14: One full round function of Midori64

generated by $K^{(r\%2)} \oplus \alpha_r$ alternatively, where $0 \le r \le 14$ and α_r is a round constant. Besides, additional KA operations are applied with a whitening key $WK = K^{(0)} \oplus K^{(1)}$ before the first round and after the last round.

666 B.2 Specification of Camellia

⁶⁶⁷ **Camellia** is a Feistel-based block cipher designed by NTT and Mitsubishi Elec-⁶⁶⁸ tric Corporation [1] and has been specified in ISO/IEC 18033-3:2010 [20]. This ⁶⁶⁹ work only targets on the weakened version of **Camellia** with 128 bits block and ⁶⁷⁰ key size, where the FL/FL^{-1} transformations and whitening layers are omitted. ⁶⁷¹ The iterated round function consists of AddRoundKey (AK), SubBytes (SB) and ⁶⁷² MixColumns (MC) as shown in Figure 15. The linear layer of MC is a 8×8 binary ⁶⁷³ matrix described as follows.

The key schedule takes a 128-bit key K = K' || K'' as the input of 4-round Feistel structure, as shown in Figure 15, to compute another 128-bit key $K_A = K'_A || K''_A$. The round function is borrowed from the encryption, where the round keys are pre-defined constants. Then, each round key k_i can be derived from the rotation of K or K_A . Since we only focus on $(k_0, k_1, k_{12}, k_{13})$, we omit detailed key schedule here.

680 B.3 Specification of Aria

Aria was proposed by Korean researchers at ICISC 2003 [21] and the version
1.2 was subsequently included in the Korean Standard (KS X1213) in 2004. In
this paper, we focus our attention on Aria-128, which refers to both the block
and key sizes are 128 bits, and which we henceforth abbreviate as Aria. Aria

Fig. 15: One full round function of Camellia and the key schedule of Camellia

is based on SPN structure with 12 rounds, and each round except the last one consists of Substitution-Layer (SL), Diffusion-Layer (DL) and AddRoundKey (AK) as shown in Figure 16. In the last round, the DL is omitted. Before the first round, a whitening key is XORed to the plaintext. The updated matrix P used in DL is a 16×16 binary matrix described as follows.

,

⁶⁹⁰ In this paper, we target on the preimage attack on Aria-DM. Since the key is ⁶⁹¹ usually fixed as a constant in the DM hashing mode, we omit the description of ⁶⁹² the key schedule here.

⁶⁹³ C Figure and algorithms for Midori64 and Aria

Fig. 16: One full round function of Aria

Algorithm 4: MitM Key Recovery Attack on 12-round weakened Midori64, , optimized for data complexity

 $\begin{array}{c} \mathbf{1} \ \ C[1,3,5,8,9,13,14] \leftarrow 0, \ A_{\mathrm{MC}}^{(9)}[5,9,13] \leftarrow 0 \\ \mathbf{2} \ \ A_{\mathrm{MC}}^{(10)}[0] \oplus A_{\mathrm{MC}}^{(10)}[4] \leftarrow 0, \ A_{\mathrm{MC}}^{(10)}[0] \oplus A_{\mathrm{MC}}^{(10)}[12] \leftarrow 0, \ A_{\mathrm{MC}}^{(10)}[2] \oplus A_{\mathrm{MC}}^{(10)}[6] \leftarrow 0, \\ A_{\mathrm{MC}}^{(10)}[2] \oplus A_{\mathrm{MC}}^{(10)}[10] \leftarrow 0, \ A_{\mathrm{MC}}^{(10)}[7] \oplus A_{\mathrm{MC}}^{(10)}[11] \leftarrow 0, \ A_{\mathrm{MC}}^{(10)}[7] \oplus A_{\mathrm{MC}}^{(10)}[15] \leftarrow 0 \\ \mathbf{3} \ \ \text{Collecting plaintext-ciphertext pairs by traversing the non-constant} \ 16-7=9 \\ \end{array}$ cells in C, and storing them in table Hfor all possible values of the \blacksquare cells in $K^{(0)}$ and $K^{(1)}$ do for $(\mathfrak{c}_{\mathcal{R},1},\mathfrak{c}_{\mathcal{R},2}) \in \mathbb{F}_2^{2\times 4}$ do $\mathbf{4}$ $\mathbf{5}$ Derive the solution space $\mathcal{S}_{\mathcal{R}}$ of \blacksquare cells by 6 $\begin{cases} K^{(0)}[5] \oplus K^{(0)}[9] = \mathfrak{c}_{\mathcal{R},1} \\ K^{(0)}[5] \oplus K^{(0)}[13] = \mathfrak{c}_{\mathcal{R},2} \end{cases}$ $L \leftarrow []$ $\mathbf{7}$ for $v_{\mathcal{R}} \in \mathcal{S}_{\mathcal{R}}$ do 8 Compute $A_{\mathtt{ShC}}^{(4)}[0,4]$ along the forward computation path: 9
$$\begin{split} A^{(9)}_{\text{MC}} &\to C \to Dec_K(C) \to A^{(4)}_{\text{ShC}} \text{ by accessing } H \\ L[A^{(4)}_{\text{ShC}}[0] \oplus A^{(4)}_{\text{ShC}}[4]] \leftarrow v_{\mathcal{R}} \end{split}$$
10 11 \mathbf{end} $\mathbf{12}$ for 2^4 possible values of $K^{(1)}[15]$ do 13 Compute $A_{MC}^{(4)}[0,4]$ along the backward computation path: 14 $C \to A_{\rm MC}^{(4)}$ for Candidate keys in $L[A_{MC}^{(4)}[0] \oplus A_{MC}^{(4)}[4]]$ do 15Test the guessed key with several plaintext-ciphertext pairs $\mathbf{16}$ end $\mathbf{17}$ 18 end \mathbf{end} 19 20 end

Fig. 17: Meet-in-the-Middle key recovery attack on 12-round weakened Midori64, optimized for data complexity

Algorithm 5: MitM Pseudo-Preimage Attack on 6-round Aria-DM

1 for 2^x possible values of \blacksquare in $A^{(1)}$ /* x + 104 = 120 - 8, i.e., x = 8*/ $\mathbf{2}$ do 3 $V \leftarrow [];$ for $v_{\mathcal{R}} \in \mathbb{F}_2^{8 \times 14}$ in $A^{(1)}$ do 4 Compute backward to to get the values of the \blacksquare cells in $A_{\text{DL}}^{(0)}$, 5 $\begin{aligned} \mathfrak{c}_{\mathcal{R}}[0] \leftarrow A_{\mathrm{DL}}^{(0)}[0] \oplus A_{\mathrm{DL}}^{(0)}[6] \oplus A_{\mathrm{DL}}^{(0)}[7] \oplus A_{\mathrm{DL}}^{(0)}[8] \oplus A_{\mathrm{DL}}^{(0)}[10] \oplus A_{\mathrm{DL}}^{(0)}[13], \\ \mathfrak{c}_{\mathcal{R}}[1] \leftarrow A_{\mathrm{DL}}^{(0)}[0] \oplus A_{\mathrm{DL}}^{(0)}[4] \oplus A_{\mathrm{DL}}^{(0)}[5] \oplus A_{\mathrm{DL}}^{(0)}[9] \oplus A_{\mathrm{DL}}^{(0)}[11] \oplus A_{\mathrm{DL}}^{(0)}[14]. \end{aligned}$ Compute forward to the \blacksquare cells in $A_{sL}^{(1)}$ and $A_{sL}^{(2)}$. 6
$$\begin{split} \mathbf{c}_{\mathcal{R}}[2] &\leftarrow A_{\mathrm{sL}}^{(1)}[4] \oplus A_{\mathrm{sL}}^{(1)}[6] \oplus A_{\mathrm{sL}}^{(1)}[8] \oplus A_{\mathrm{sL}}^{(1)}[9] \oplus A_{\mathrm{sL}}^{(1)}[13] \oplus A_{\mathrm{sL}}^{(1)}[14], \\ \mathbf{c}_{\mathcal{R}}[3] &\leftarrow A_{\mathrm{sL}}^{(1)}[4] \oplus A_{\mathrm{sL}}^{(1)}[9] \oplus A_{\mathrm{sL}}^{(1)}[10] \oplus A_{\mathrm{sL}}^{(1)}[14] \oplus A_{\mathrm{sL}}^{(1)}[15], \\ \mathbf{c}_{\mathcal{R}}[4] &\leftarrow A_{\mathrm{sL}}^{(1)}[2] \oplus A_{\mathrm{sL}}^{(1)}[5] \oplus A_{\mathrm{sL}}^{(1)}[6] \oplus A_{\mathrm{sL}}^{(1)}[8] \oplus A_{\mathrm{sL}}^{(1)}[13] \oplus A_{\mathrm{sL}}^{(1)}[15], \\ \mathbf{c}_{\mathcal{R}}[5] &\leftarrow A_{\mathrm{sL}}^{(1)}[0] \oplus A_{\mathrm{sL}}^{(1)}[6] \oplus A_{\mathrm{sL}}^{(1)}[7] \oplus A_{\mathrm{sL}}^{(1)}[8] \oplus A_{\mathrm{sL}}^{(1)}[10] \oplus A_{\mathrm{sL}}^{(1)}[13], \\ \mathbf{c}_{\mathcal{R}}[5] &\leftarrow A_{\mathrm{sL}}^{(1)}[5] \oplus A_{\mathrm{sL}}^{(1)}[7] \oplus A_{\mathrm{sL}}^{(1)}[10] \oplus A_{\mathrm{sL}}^{(1)}[11], \\ \mathbf{c}_{\mathcal{R}}[7] &\leftarrow A_{\mathrm{sL}}^{(1)}[10] \oplus A_{\mathrm{sL}}^{(1)}[11] \oplus A_{\mathrm{sL}}^{(1)}[12] \oplus A_{\mathrm{sL}}^{(1)}[15], \\ \mathbf{c}_{\mathcal{R}}[8] &\leftarrow A_{\mathrm{sL}}^{(2)}[2] \oplus A_{\mathrm{sL}}^{(2)}[8] \oplus A_{\mathrm{sL}}^{(2)}[15], \\ \mathbf{c}_{\mathcal{R}}[9] &\leftarrow A_{\mathrm{sL}}^{(2)}[1] \oplus A_{\mathrm{sL}}^{(2)}[6] \oplus A_{\mathrm{sL}}^{(2)}[15], \\ \mathbf{c}_{\mathcal{R}}[10] \leftarrow A_{\mathrm{sL}}^{(2)}[3] \oplus A_{\mathrm{sL}}^{(2)}[6] \oplus A_{\mathrm{sL}}^{(2)}[12] \oplus A_{\mathrm{sL}}^{(2)}[15], \\ \mathbf{c}_{\mathcal{R}}[11] \leftarrow A_{\mathrm{sL}}^{(2)}[4] \oplus A_{\mathrm{sL}}^{(2)}[12] \oplus A_{\mathrm{sL}}^{(2)}[15], \\ \mathbf{c}_{\mathcal{R}}[12] \leftarrow A_{\mathrm{sL}}^{(2)}[8] \oplus A_{\mathrm{sL}}^{(2)}[9] \oplus A_{\mathrm{sL}}^{(2)}[12] \oplus A_{\mathrm{sL}}^{(2)}[15]. \end{split}$$
 $V[\mathfrak{c}_{\mathcal{R}}] \leftarrow v_{\mathcal{R}};$ /* There are 2^8 elements in $V[\mathfrak{c}_{\mathcal{R}}]$ for each $\mathfrak{c}_{\mathcal{R}}$ */ $\mathbf{7}$ end 8 for $\mathfrak{c}_{\mathcal{R}} \in \mathbb{F}_2^{8 \times 13}$ do 9 10 $L \leftarrow []$ for $v_{\mathcal{R}} \in V[\mathfrak{c}_{\mathcal{R}}]$ do 11 Compute to the \blacksquare cells in $A_{DL}^{(4)}$, and one-byte $End_{\mathcal{R}}$ for matching is 12derived by 13 $End_{\mathcal{R}} \leftarrow \left(A_{\mathrm{DL}}^{(4)}[3] \oplus A_{\mathrm{DL}}^{(4)}[4] \oplus A_{\mathrm{DL}}^{(4)}[6] \oplus A_{\mathrm{DL}}^{(4)}[8] \oplus A_{\mathrm{DL}}^{(4)}[9]\right)$ $L[End_{\mathcal{R}}] \leftarrow v_{\mathcal{R}}$ $\mathbf{14}$ \mathbf{end} 15for 2^8 possible values of $A^{(1)}[3]$ do 16 Compute to the \blacksquare cells in $A_{DL}^{(4)}$ and $A_{SL}^{(4)}$, derive one-byte $End_{\mathcal{B}}$ for $\mathbf{17}$ matching by 18 $End_{\mathcal{B}} \leftarrow \left(A_{\mathtt{SL}}^{(4)}[0] \oplus A_{\mathtt{DL}}^{(4)}[13] \oplus A_{\mathtt{DL}}^{(4)}[14]\right)$ for $v_{\mathcal{R}} \in L[End_{\mathcal{B}}]$ do 19 Reconstruct the (candidate) message X20 21 if X is a preimage then Output X and stop $\mathbf{22}$ 23 \mathbf{end} end $\mathbf{24}$ \mathbf{end} $\mathbf{25}$ 31 \mathbf{end} 26 27 end