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Abstract. Meet-in-the-middle (MitM) is a powerful approach for the16

cryptanalysis of symmetric primitives. In recent years, MitM has led to17

many improved records about key recovery, preimage and collision at-18

tacks with the help of automated tools. However, most of the previous19

work target AES-like hashing where the linear layer is an MDS matrix.20

And we observe that their automatic model for MDS matrix is not suit-21

able for primitives using a binary matrix as their linear layer.22

In this paper, we propose the n-XOR model to describe the XOR operation23

with an arbitrary number of inputs. And it can be applied to primitives24

with a binary matrix of arbitrary size. Then, we propose a check model to25

eliminate the possible inaccuracies caused by n-XOR. But the check model26

is limited by the input size (not greater than 4). Combined with the two27

new models, we find a MitM key recovery attack on 11-round Midori64.28

When the whitening keys are excluded, a MitM key recovery attack can29

be mounted on the 12-round Midori64. Compared with the previous30

best work, both of the above results have distinct advantages in terms31

of reducing memory and data complexity. At last, we apply the n-XOR32

model to the hashing modes of primitives with large size binary matrix.33

The preimage attack on weakened Camellia-MMO (without FL/FL−1 and34

whitening layers) and Aria-DM are both improved by 1 round.35

Keywords: Meet-in-the-Middle · Binary Matrix · Key Recovery · Preim-36

age · Midori64 · Camellia· Aria.37
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1 Introduction38

The Meet-in-the-middle (MitM) is a powerful cryptanalysis strategy first pro-39

posed by Diffie and Hellman to attack Double DES [12]. The core idea is to40

identify two disjoint neutral sets of unknown values. Then, the whole compu-41

tation path can be divided into two independent chunks, which are determined42

by two neutral sets and denoted by forward chunk and backward chunk, respec-43

tively. At last, the two chunks will meet at a common internal state where the44

consistency is checked to filter out candidate assignments of unknown values.45

From then on, MitM and its variants have been successfully applied to many46

block ciphers [9,32,18,29]. At SAC 2008, Aumasson et al. [3] first introduced the47

theory of MitM into preimage attacks on step-reduced MD5 and 3-pass HAVAL.48

Sequentially, many refined techniques were proposed to enhance the power of49

MitM, such as splice-and-cut [2], initial structure [30], bicliques [8], and so on.50

At FSE 2011, Sasaki [26] applied such MitM preimage attack to the PGV [25]51

hashing modes of AES and presented the first preimage attack on 7-round AES-52

MMO/MP/DM together with the partial indirect matching technique. Interestingly,53

these enhancements were finally found to be applicable in the key recovery at-54

tack on block ciphers. At ACISP 2011, Wei et al. [37] broke the full round55

KTANTAN using the splice-and-cut technique by connecting the plaintext and56

ciphertext with encryption or decryption oracles with only 4 chosen plaintexts.57

Despite being clear that a MitM attack is entirely determined by its char-58

acteristic, i.e., the configuration for two chunks, it’s still complicated and error-59

prone to explore the whole configuration space. Recently, automated tools were60

introduced to find the best characteristic by solving an optimization problem. At61

Eurocrypt 2021, Bao et al. [6] proposed an MILP-based MitM preimage attack62

on AES-like hash and Haraka v2. At CRYPTO 2021, Dong et al. [13] extended63

the automatic model into key-recovery and collision attacks and introduced a64

table-based method to solve the non-linear constraints imposed on neutral sets.65

At CRYPTO 2022, Bao et al. [7] considered the MitM attack in a view of su-66

perposition (SupP) states and bi-directional attribute propagation (BiDir) such67

that neutral sets are treated independently and can be imposed constraints in68

both computation paths. At Asiacrypt 2023, Hou et al. [17] introduced the SupP69

framework into Feistel-based hash functions. At Eurocrypt 2024, Chen et al. [10]70

considered the linearization of the S-Box in AES and allowed a linear combina-71

tion of two neutral sets in the initial structure. Different from the above work,72

Schrottenloher and Stevens [33] studied a simple top-down modeling paradigm73

for both classical and quantum preimage attacks against permutations and was74

later extended to key recovery attack on block ciphers with simple key sched-75

ules [34]. The simplified attack excluded many details. In this paper, we adopt76

the bottom-up MitM framework in [7] and the table-based method in [13].77

In the previous work, the targets are most built by a block cipher with an78

MDS matrix. Through the diffusion layer, each output cell is related to all the79

input cells. However, the primitives with binary matrix are rarely studied, where80

each output cell is represented as the XOR of partial input cells. In [13], Dong81

et al. introduced the 3-XOR model for SKINNY-n-3n. In their model, the number82

2



of input cells is fixed to be 4. All valid cases can be easily exhausted to form a83

system of inequalities using the convex hull method [36]. However, if more input84

cells are involved, the number of valid cases will increase extremely leading to85

larger size of system of inequalities, which can make model infeasible to compute.86

Hence, there is a gap to find an accurate and effective method to describe the87

MitM attribute propagation through a binary matrix of arbitrary size.88

Our Contributions. In this paper, we propose a novel model called n-XOR un-89

der the encoding scheme in [7], to describe the propagation of MitM attributes90

through an XOR operation with an arbitrary number of input cells. And the91

number of inequalities formed by n-XOR is fixed, independent of the number of92

inputs. Hence, n-XOR can be applied to large binary matrices effectively. How-93

ever, we also observe that only applying n-XOR will lead to subtle inaccuracies.94

An extremely explicit case is that the constraint on the same neutral bits may95

be double counted in two different n-XOR operations. Besides, there are more96

implicit cases depending on the specific linear layer. Hence, we propose an addi-97

tional check model to eliminate these inaccuracies. But this model is limited by98

the input size n, that is, n ≤ 4 in our paper.99

As a low-energy lightweight cryptography, Midori [5] is well-suited for con-100

strained environments, like the edge gateways and end devices in the blockchain101

on-chain and off-chain interactions. As a proof of work, we first apply the two102

new models to Midori64 [5], with a 4 × 4 binary matrix as linear layer. Then,103

an 11-round key recovery attack is found with time complexity of 2124. The104

data and memory complexity are 236 and 26, respectively. When omitting the105

whitening layer, a 12-round MitM characteristic for weakened Midori64 is found106

with time complexity of 2120. The data and memory cost are 248 and 210.6, re-107

spectively. Besides, the data and memory complexity can be further reduced if108

the time complexity is relaxed to 2124. Compared to the previous best records109

of Midori64 [23,35,22], despite a little higher time complexity, our results have110

distinct advantages in reducing data and memory complexity.111

It’s a practical design strategy to build hash functions on widely used block112

cipher with a longstanding record of cryptanalysis. And AES-MMO was even inter-113

nationally standardized by ISO [19]. Since Camellia [1] was also standardized by114

ISO [20] and Aria [21] was standardized by Korean Standard (KS X1213), the115

hashing modes of Camellia or Aria may be potential candidates used in prac-116

tice. Indeed, their security have been evaluated in a series of works [31,27,16,4].117

In this paper, we apply the n-XOR to describe the MitM attributes propaga-118

tion through the large binary matrix of Camellia and Aria. Finally, we find a119

preimage attack on 14-round weakened Camellia-MMO (without FL/FL−1 and120

whitening layers) and a preimage attack on 6-round Aria-DM. Compared to the121

previous best records [28,16], the attack rounds are both improved by 1 round.122

Our results are also summarized in Table 1 and Table 2. For the source code,123

please refer to https://github.com/wenny-kt/MITM-Binary-Matrix.124

The rest of this paper is organized as follows. In Section 2, we give an overview125

of how the automated MitM attacks are deployed, along with some enhanced126
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Table 1: Single Key attacks on Midori64, where ID and DS-MitM denote im-
possiable differential and Demirci-Selçuk MitM attack, respectively.

Target Rounds Data Memory(Bytes) Time(Enc.) Technique Ref.

Midori64

11 260 295.8 2116.6 ID [23]
11 253 292.2 2122 DS-MitM [22]
11 236 26 2124 MitM Section 4.1
12 255.5 2109 2125.5 DS-MitM [22]
12† 261.9 244 290.5 ID [35]
12† 248 210.6 2120 MitM Section 4.2
12† 236 25.6 2124 MitM Section 4.2

† Weakened version without whitening layers.

Table 2: A Summary of the MitM Attacks on Hashing Modes.
Target Attacks Rounds Time1 Time2 Memory Technique Ref.

Camellia-MMO Preimage 13‡ 2120 2125 28 MitM [28]
14‡ 2120 2125 28 MitM Section 5

Aria-DM Preimage 5 2120 2125 28 MitM [16]
6 2120 2125 2112 MitM Section 6

- ‡ Weakened version without FL/FL−1 and whitening layers.
- Time1 represents the time complexity of pseudo-preimage. Time2 represents the time com-

plexity of preimage attack converted from the pseudo-preimage attack according to [24,
Fact9.99].

techniques. In Section 3, we introduce two new improved models embedded in the127

automated MitM framework, called n-XOR and check model. The applications128

to Midori64, Camellia-MMO and Aria-DM are presented in Sects. 4, 5 and 6,129

respectively. Finally, we conclude in Section 7.130

2 Preliminaries: Automated Meet-in-the-Middle Attack131

In this section, we provide an overview of how the MitM attack framework is132

constructed, and how it is encoded into the MILP language with specified config-133

urations for the preimage and key recovery attack. Then, we recall two enhanced134

techniques to improve the power of MitM attack. The first one is the table-based135

method introduced in [13] to solving the non-linear constraints. Another one is136

the Superposition (SupP) States and Bi-direction Attribute-Propagation (BiDir)137

introduced in [7] to preserving more valid solutions.138

2.1 Framework of the Meet-in-the-Middle Attack139

The MitM attack framework is illustrated in Figure 1. SENC and SKEY are the140

starting states where there are λENCB and λKEYB neutral bits for forward compu-141

tation denoted by , and there are λENCR and λKEYR neutral bits for backward142

computation denoted by . After imposing lENCR and lKEYR constraints on λENCR and143

λKEYR backward neutral bits, respectively, can be propagated to the matching144
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Key schedule

Encryption

lENCB constraints

SENC

λENCB bytes

λENCR bytes

lENCR constraints Partial match

EndB EndR

Public or Oracle computation

lKEYB constraints

SKEY

λKEYB bytes

λKEYR bytes

lKEYR constraints

Fig. 1: A high-level overview of the MITM attacks [13]

points EndB independent of the bits. The degree of freedom (DoF) for the145

neutral space is computed by dR = λENCR + λKEYR − lENCR − lKEYR . Similarly, forward146

neutral bits are imposed on lENCB and lKEYB constraints to cancel the effect of in147

the backward computation. The DoF of the neutral space can be computed148

by dB = λENCB +λKEYB − lENCB − lKEYB . Through a feed-forward mechanism or querying149

a public Encryption-Decryption oracle, EndR can be derived by . Instead of150

requiring the full states, the partial matching exploits the filtering ability derived151

by the deterministic relation “EndB = EndR” and denoted by dm.152

With the configurations of
(
λENCB , λKEYB , λENCR , λKEYR , lENCB , lKEYB , lENCR , lKEYR , dm

)
, the153

basic attack procedure goes as follows:154

1. Choose constants in SENC and SKEY and lENCB + lKEYB + lENCR + lKEYR constraints.155

2. For 2dB values of neutral space, compute forward to EndB from the starting156

states, and store the values of in table LB[EndB].157

3. For 2dR values of neutral space, compute backward to EndR from the158

starting states, and store the values of in table LR[EndR].159

4. According to the indices, check the match between LB and LR.160

5. For the surviving pairs that pass the match, check for a full-state match.161

Complexity analysis. The above steps 2-5 form a MitM episode. To find an h-bit162

full match, 2h−(dB+dR) episodes are needed. Since each episode is performed with163

a time of 2max{dB,dR} + 2dB+dR−dm , the total time complexity is:164

2h−(dB+dR) ·
(
2max{dB,dR} + 2dB+dR−dm

)
≈ 2h−min{dB,dR,dm} (1)

Apparently, a MitM characteristic is valid, if and only if min{dB, dR, dm} ≥165

1. For MitM key recovery attack, additional constraints must be fulfilled to166

ensure that the internal states in SENC can be totally determined by SKEY. This is167

equivalent to using up the DoFs of SENC, i.e., λENCB − lENCB = 0 and λENCR − lENCR = 0.168

Besides, there should exists only one type of neutral bit in the plaintext or169

ciphertext, and at least 1-bit constant in the plaintext or ciphertext to avoid170

using up the full codebook. In [6], Bao et al. encoded the type of each byte in171

AES with a pair of boolean variables:172
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1. R, (x, y) = (0, 1): Known byte only with backward computation.173

2. B, (x, y) = (1, 0): Known byte only with forward computation.174

3. G, (x, y) = (1, 1): Constant byte and known in both forward and backward175

computations.176

4. W, (x, y) = (0, 0): Unknown byte in forward and backward computations.177

Then, the propagation rules for XOR and MixColumns can be described as a178

system of inequalities based on the above definitions. A valid MitM characteristic179

is defined as a solution solved by the off-the-shelf MILP solvers, like Gurobi [15],180

with the objective function that maximizes the min{dB, dR, dm}. For the detailed181

MILP models of these propagation rules, please refer to [6] or Appendix A.182

2.2 Enhanced Techniques183

Table-based method solving non-linear constraints. Note that Equation184

(1) holds mostly when the constraints imposed on neutral bits can be solved185

in O(1) time, such as linear equations. However, there are many practice MitM186

characteristics with non-linear constrained neutral bits, which can not be solved187

efficiently. In [13], Dong et al. proposed a precomputation method to compute188

the value of the constraints by enumerating the neutral bits. Specifically, after189

setting the value of constants in starting states, do as follows:190

1. For 2λ
ENC
B +λKEY

B values, compute the values of lENCB + lKEYB constraints (denoted191

by cB ∈ FlENCB +lKEYB
2 ) and store the λENCB + λKEYB bits in U [cB].192

2. For 2λ
ENC
R +λKEY

R values, compute the values of lENCR + lKEYR constraints (denoted193

by cR ∈ FlENCR +lKEYR
2 ) and store the λENCR + λKEYR bits in V [cR].194

Then, in each MitM episode, for a given cB and cR, the values in U [cB] and V [cR]195

can be searched in time O(1). The time and memory cost for one precomputation196

phase are both 2λ
ENC
B +λKEY

B + 2λ
ENC
R +λKEY

R .197

SupP States and BiDir. In the SupP MitM framework of [7], neutral cells198

from both directions can be separated into two virtual states, called SupP states,199

to keep the linearity through linear operations. Then, and will be treated200

independently through linear operations, and the initial DoFs can be consumed201

in both directions. After a series of linear operations, two SupP states are fi-202

nally combined before the next nonlinear operation. The color patterns and how203

the states are separated and combined are visualized in Figure 2. BiDir allows204

neutral cells to be consumed in both two directions, but this may lead to depen-205

dency between one type of neutral cell with non-linear constraints imposed on206

another. In [11], Degré proposed a more generic table-based method to cancel207

this dependency. Combined with the SupP states and BiDir methods, the solu-208

tion space is greatly enlarged, such that some attack configurations with lower209

time complexities may be found. In the rest of this paper, we simplify the repre-210

sentation of SupP states. The virtual states of pure / / / are omitted. And211

we denote the SupP states by the cell in which the blue cell and red cell occur212

simultaneously.213
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(a) Rules for separation

*

(b) Rules for combination

Fig. 2: Rules for separation and combination, where “∗” means any color

3 New Models for Linear Layer with Binary Matrix214

In this section, we first propose an effective method to build an MILP model to215

describe the MitM attributes propagation through a n-XOR operation with SupP216

states. Interestingly, the number of input cells involved in the XOR operation217

can be arbitrary, but the size of MILP model will not increase. However, we218

also observer that this may lead to double counting of constraints on the same219

neutral cells. Then, we show that the inaccuracy can be easily eliminated by220

adding an additional check model.221

3.1 N-XOR Model222

To simulate the MitM attributes propagation through the linear layer, Bao et al.223

proposed the MC-RULE for the MDS matrix in AES-like hashing [6,7]. As shown224

in Figure 3(a), each input cell has an effect on all output cells in MDS matrix.225

However, some primitives adopt a binary matrix in the diffusion layer where226

each output cell is computed by the XOR of partial input cells. As the Midori64’s227

binary matrix shown in Figure 3(b), the first output cell is only related to the228

last three input cells. Apparently, this will lead to inaccurate propagation if we229

apply the MC-RULE for MDS matrix on binary matrix directly since one output230

cell is not related to all input cells.




e b d 9

9 e b d

d 9 e b

b d 9 e


 × −→

X Y

(a) Coloring pattern of MC-RULE for MDS matrix




0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


 × −→

X Y

(b) Coloring pattern for binary matrix

Fig. 3: A case of the difference of color pattern between MDS and binary matrix

231

In [13], Dong et al. proposed the 3-XOR-RULE to model the key addition in232

SKINNY-n-3n. By enumerating four input cells, one output cell and one indicator233

variable for DoF cost, all valid color patterns can be restricted to a subset of234

F11
2 , which can be described into a system of inequalities using the convex hull235

technique [36]. If we directly extend the strategy of 3-XOR-RULE to the XOR236

operation with n input cells, then the enumeration scope will be restricted to a237
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subset of F2n+3
2 . When n is large, it’s complicated and error-prone to enumerate238

all valid color patterns. And the size of the system of inequalities may be large,239

which renders the model infeasible to compute.240

An alternative strategy is to apply the XOR-RULE in [6,7] for two-input XOR241

consecutively. This strategy is valid but may miss some valid patterns by intro-242

ducing additional auxiliary variables. We take the attribute propagation through243

Midori64’s diffusion layer to state this fact as shown in Figure 4. In the first step244

of Figure 4(a), an auxiliary variable auxi is needed to carry on the output of245

X[2]⊕X[3]. For the second step, X[1] and X[0] are XORed with auxi to compute246

Y [0] and Y [1], respectively. Then, one of the following cases will occur,247

– If auxi is by consuming one DoF, then Y [0] will always be , and Y [1]248

will always be .249

– If auxi is , then Y [1] will always be . Y [0] can be either or by consuming250

one DoF.251

However, with the n-XOR model in Figure 4(b), step 1 and step 2 can be exe-252

cuted independently without correlated variables. Then, Y [0] and Y [1] can be253

simultaneously by consuming 2 DoFs of , which can not be captured by the254

first strategy.




0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0




①
②

×
3
2
1
0

−→

X Y

-1 -1

or or

(a) Model of consecutive XOR




0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


 ×

3
2
1
0

−→

X Y

-2

①
②

(b) n-XOR Model

Fig. 4: The advantage of n-XOR model compared with consecutive XOR

255

In the following, we show how to convert the propagation of cells through256

the n-XOR operation under SupP states into MILP language. All coloring pat-257

terns can be specified by the following set of rules denoted by n-XOR-RULE−.258

The n-XOR-RULE+ for can be obtained in a similar way by exchanging and259

since they are dual.260

– n-XOR-RULE−-1. If there is at least one in input, then the output is .261

– n-XOR-RULE−-2. If all cells of the input are , then the output must be .262

– n-XOR-RULE−-3. If there are and cells but no cell in the input, then263

one of the following situations will occur:264

• The output is cell and no DoF is consumed.265

• The output is by consuming one DoF of .266

Let (A[1], A[2], · · · , A[n]) be the input of n-XOR where A[i] = (xA
i , y

A
i ). Let B be267

the output where B = (xB , yB). Like [6], we introduce three boolean indicator268
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variables µ, ν and η in the model. µ = 1 if and only if there exists i ∈ [1, 2, · · · , n]269

such that (xA
i , y

A
i ) = (0, 0). That is, n-XOR-RULE−-1 is fulfilled. ν = 1 if and only270

if xA
i = yAi = 1 for all 1 ≤ i ≤ n, which corresponds to n-XOR-RULE−-2. When271

µ = ν = 0, n-XOR-RULE−-3 is fulfilled. Besides, η = 1 when there exists one272

constraint imposed on input cells. With the help of indicator variables, the273

n-XOR-RULE− can be converted into a system of inequalities shown in Equation274

(2) and Equation (3).



n−1∑
i=0

yA
i + µ ≤ n

n−1∑
i=0

yA
i + n · µ ≥ n

n−1∑
i=0

xA
i − ν ≤ n− 1

n−1∑
i=0

xA
i − n · ν ≥ 0

(2)



yB + µ = 1

xB + µ ≤ 1

η − xB + ν = 0

n−1∑
i=0

xA
i + xB − 2 · ν ≤ n− 1

n−1∑
i=0

xA
i + xB − (n+ 1) · ν ≥ 0

(3)

275

At the end, we must emphasize that, in addition to preserving more valid276

coloring patterns, another advantage of n-XOR is that the size of model is fixed,277

independent of the number of input cells. And this makes it possible to de-278

scribe the attributes propagation for primitives with large binary matrices, like279

Camellia and Aria.280

3.2 Check Model: More Accurate Consumption of DoFs281

We also observe that n-XOR model may lead to some subtle inaccuracies. We still282

take a possible propagation of Midori64’s diffusion layer as an example to state283

this fact. A particularly explicit case is that the constraint on the same neutral284

cells may be double counted due to the independent computation of each output285

cell as shown in Figure 5(a). Besides, there are some more implicit cases leading286

to inaccuracy as shown in Figure 5(b).287

Then, we introduce the check model to show how the inaccuracy can be288

eliminated, and describe it in the MILP language. We still state this by con-289

sidering the propagation through the n-XOR operation under SupP states. Let290

A[j] = (xA
j , y

A
j ), for 1 ≤ j ≤ n, be the input of the n × n binary matrix M .291

After the n-XOR Model, we can get η = (η1, · · · , ηn) denoted by the degree con-292

sumption vector where ηi is the indicator variable introduced in Equation (3)293

and ηi = 1 means there exists one constraint imposed on the input cells for the294

i-th row of M . Since only cells are needed to be considered for DoF consump-295

tion, we introduce another n× n binary matrix M ′ to intuitively mark which296

cells contribute to the DoF consumption. Then, M ′ is generated as follows :297
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(a) Possible situation I




0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


 ×

3
2
1
0

−→

X Y

i.e.

{
X[1]⊕X[3] = c0

X[1]⊕X[3] = c1

n-XOR Model

-2

=⇒
Check Model

{
X[1]⊕X[3] = c0

X[1]⊕X[3] = c0
-1

(b) Possible situation II




0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


 ×

3
2
1
0

−→

X Y

i.e.





X[2]⊕X[3] = c0

X[1]⊕X[3] = c1

X[1]⊕X[2] = c2

n-XOR Model

-3

=⇒
Check Model





X[2]⊕X[3] = c0

X[1]⊕X[3] = c1

X[1]⊕X[2] = c0 ⊕ c1
-2

Fig. 5: Possible situations in our models

– If ηi = 1 and Mi,j = 1 and xA
j = 0, then M ′

i,j = 1.298

– If the first case is not satisfied, then M ′
i,j = 0.299

For the first case, ηi = 1 means no in the involved input cells, and Mi,j = 1 and300

xA
j = 0 means A[j] is a cell involved in the i-th XOR operation. We introduce301

a general variable η′ to denote the rank of M ′, which equals to the accurate302

DoF consumption theoretically. Since M is a fixed matrix, we can conclude303

that the accurate DoF consumption can be determined by the other 2n vari-304

ables (xA
1 , · · · , xA

n , η1, · · · , ηn). Finally, the subset (xA
1 , · · · , xA

n , η1, · · · , ηn, η′) of305

F2n
2 × Fn+1 can be restricted to a system of linear inequalities using the con-306

vex hull technique [36]. Different with the origin framework, the configuration307

lENCR + lKEYR should be calculated by accumulating the accurate DoF consumption308

determined by the n-XOR and check model, along with extra constraints imposed309

by other operations, such as KeyAddition. The configuration lENCB +lKEYB for degree310

consumption of can also be gotten in the similar way due to the duality [7].311

However, it should be noted that the cost of exhaustion to determine the312

accurate DoF consumption is still affected by the number of input cells. Hence,313

check model can not be applied to large binary matrix (n > 4 in this paper).314

Although it’s trivial to compute the rank of a general matrix in O(n3), there315

is still no effective way to implement it in MILP model. Besides, in addition to316

finding out better modeling methods or more suitable optimizers, we can still317

combine theoretical models and manually checking to deal with large matri-318

ces, such as Section 5 and Section 6. In practice, by relaxing the constraint to319

min{dB, dR, dm} ≥ 1− i, where i ≥ 1, we check the feasible solutions to find out320

valid characteristic. It also should be noted that the final results derived by the321

manually checking method may not be the optimal solution.322

4 MitM Key Recovery Attack on Midori64323

Midori64 is an SPN-based lightweight block cipher, consisting of 64-bit block324

and a 128-bit key. The state is seen as a 4 × 4 matrix of 4-bit cells, and its325
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diffusion layer is 4× 4 boolean matrix. The detailed specification is provided in326

Appendix B.1.327

In this section, we present an 11-round MitM key recovery attack on Midori64328

with a time complexity of 2124. For the weakened version of Midori64, without329

whitening key, a 12-round MitM characteristic is found with a time complexity330

of 2120. Despite a little higher time complexity, the above two attacks can be331

applied with extremely low data and memory cost compared to the previous best332

work [23,35]. Besides, the data and memory of the attack on 12-round weakened333

Midori64 can be further reduced if the time complexity is relaxed to 2124.334

4.1 MitM Key Recovery Attack on 11-round Midori64335

As shown in Figure 6 and Figure 7, an 11-round MitM key recovery attack is336

identified, where |SENC| = 16 independent bytes in the encryption data path are337

set to be 0 as Line 1-2 in Algorithm 1, to ensure the values of all the other bytes338

are totally determined by the given key. And at least one 0 byte in the ciphertext339

C to avoid using the full codebook. The starting states are C and (K(0),K(1)).340

The encryption data path provides λENCR = 9 and λENCB = 0 DoFs for and ,341

respectively. And the λENCR = 9 cells are used up when computing A
(9)
ShC through342

an MC operation and A
(8)
MC through an XOR operation in the backward computation343

path. For (K(0),K(1)), the initial DoFs for and are λKEYR = 3 and λKEYB = 2,344

respectively. In the key schedule, K(0)[1] ⊕ K(0)[9] and K(0)[1] ⊕ K(0)[13] are345

restricted to constants, i.e., lKEYR = 2. Hence, we get DoFR = λKEYR − lKEYR = 1.346

Similarly, K(0)[5]⊕K(1)[5] is imposed on lKEYB = 1 constraint, and then DoFB =347

λKEYB − lKEYB = 1. The matching phase happens at the MC operation between A
(3)
ShC348

and A
(3)
MC , providing dm = 1 degree of matching by Equation (4).349

A
(3)
ShC[2]⊕A

(3)
ShC[10] = A

(3)
MC [2]⊕A

(3)
MC [10] (4)

According to Equation (1), the overall time complexity is 24×(32−min{1,1,1}) ≈350

2124. The data complexity is 236 by traversing the 16− 7 = 9 non-constant cells351

in C. A detailed attack procedure is given in Algorithm 1. The memory cost is352

about 26 bytes to store (SR,SB, L).353

4.2 MitM Key Recovery Attack on 12-round Weakened Midori64354

In this section, we focus on the weakened version of Midori64 omitting the355

whitening layers. And we found a MitM key recovery attack on the 12-round356

Midori64 as shown in Figure 8. As explained above, |SENC| = 16 independent 0357

bytes in the encryption data path are set as 0. The starting states are ciphertext358

C and two sub-key (K(0),K(1)). In ciphertext, there are λENCR = 12 and λENCB = 0359

initial DoFs for and , respectively. And the DoFs of are used up when360

computing A
(10)
ShC through an MC operation and A

(9)
MC through an XOR operation.361

The two sub-key (K(0),K(1)) provide λKEYR = 6 and λKEYB = 2 initial DoFs for362

and , respectively. For the key schedule, K(0)[0] ⊕ K(0)[4], K(0)[0] ⊕ K(0)[8],363
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⊕
K(1)
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(3)
ShC A

(3)
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K(0)

A(2) A
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(2)
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(2)
MC
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(1)
MC

SC ShC MC ⊕
K(0)
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Fig. 6: Meet-in-the-Middle key recovery attack on 11-round Midori64
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P A(0)

K(0) K(1)

⊕ ⊕

ENC: (-0 , -0 )

KEY: (-0 , -1 )

A
(10)
SC C

K(0) K(1)

⊕ ⊕

ENC: (-0 , -0 )

KEY: (-0 , -1 )

(+9 , +0 )

0
0
0
0
0

0

0

Fig. 7: The MitM characteristic through whitening layers of 11-round Midori64

Algorithm 1: MitM Key Recovery Attack on 11-round Midori64

1 Set the 0 bytes to be 0, i.e., C[0, 3, 4, 5, 8, 12, 14]← 0, A(8)
MC [1, 9, 13]← 0

2 A
(9)
MC [1]⊕A

(9)
MC [9]← 0, A(9)

MC [1]⊕A
(9)
MC [13]← 0, A(9)

MC [2]⊕A
(9)
MC [6]← 0,

A
(9)
MC [2]⊕A

(9)
MC [10]← 0, A(9)

MC [7]⊕A
(9)
MC [11]← 0, A(9)

MC [7]⊕A
(9)
MC [15]← 0

3 Collecting plaintext-ciphertext pairs by traversing the non-constant 16− 7 = 9
cells in C, and storing them in table H

4 for all possible values of the cells in K(0) and K(1) do
5 A

(10)
SC [0, 3, 4, 5, 8, 12, 14]← (K(0) ⊕K(1))[0, 3, 4, 5, 8, 12, 14]

6 for (cR,1, cR,2, cB) ∈ F3×4
2 do

7 Derive the solution space SR of cells by{
K(0)[1]⊕K(0)[9] = cR,1

K(0)[1]⊕K(0)[13] = cR,2

8 Derive the solution space SB of cells by K(0)[5]⊕K(1)[5] = cB
9 L← [ ]

10 for vR ∈ SR do
11 Compute A

(3)
ShC[2, 10] along the forward computation path:

12 A
(8)
MC → C → DecK(C)→ A

(3)
ShC by accessing H

13 L[A
(3)
ShC[2]⊕A

(3)
ShC[10]]← vR

14 end
15 for vB ∈ SB do
16 Compute A

(3)
MC [2, 10] along the backward computation path:

C → A
(3)
MC

17 for Candidate keys in L[A
(3)
MC [2]⊕A

(3)
MC [10]] do

18 Test the guessed key with several plaintext-ciphertext pairs
19 end
20 end
21 end
22 end
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K(0)[1]⊕K(0)[5] and K(0)[1]⊕K(0)[13] are restricted to constants, i.e., lKEYR = 4.364

Hence, we get DoFR = λKEYR − lKEYR = 2 and DoFB = λKEYB = 2. The matching365

phase happens at the MC operation between A
(4)
ShC and A

(4)
MC , providing dm = 1366

degree of matching by Equation (5).367

A
(4)
ShC[4]⊕A

(4)
ShC[12] = A

(4)
MC [4]⊕A

(4)
MC [12] (5)

In [14], Fuhr et al. proposed the simultaneous matching to decrease 2dB+dR−dm in368

Equation (1) exponentially by testing the surviving keys with multiple plaintext-369

ciphertext pairs in parallel. Hence, the overall time is dominated by 24×(32−min{2,2}) ≈370

2120. The data complexity is 248 by traversing the 16−4 non-constant cells in C.371

A detailed attack procedure is given in Algorithm 2. The memory cost is 210.6372

bytes to store (SR, L).373

When considering optimization for data complexity, we found a MitM key374

recovery attack on 12-round Midori64 with data complexity of 236 by relaxing375

the time complexity to 2124. The figure and algorithm are given in Figure 17376

and Algorithm 4 in Appendix C.377

Algorithm 2: MitM Key Recovery Attack on 12-round weakened
Midori64, optimized for time complexity

1 C[2, 6, 10, 14]← 0, A(10)
ShC [1, 4, 7, 9, 12, 15]← 0, A(9)

MC [0, 1, 4, 5, 8, 13]← 0
2 Collecting plaintext-ciphertext pairs by traversing the non-constant

16− 4 = 12 cells in C, and storing them in table H
3 for all possible values of the cells in K(0) and K(1) do
4 for (cR,1, cR,2, cR,3, cR,4) ∈ F4×4

2 do
5 Derive the solution space SR of cells by{

K(0)[0]⊕K(0)[4] = cR,1 K(0)[0]⊕K(0)[8] = cR,2

K(0)[1]⊕K(0)[5] = cR,3 K(0)[1]⊕K(0)[13] = cR,4

6 L← [ ]
7 for vR ∈ SR do
8 Compute A

(4)
ShC[4, 12] along the forward computation path:

9 A
(9)
MC → C → DecK(C)→ A

(4)
ShC by accessing H

10 L[A
(4)
ShC[4]⊕A

(4)
ShC[12]]← vR

11 end
12 for 22×4 possible values of K(1)[7, 12] do
13 Compute A

(4)
MC [4, 12] along the backward computation path:

C → A
(4)
MC

14 for Candidate keys in L[A
(4)
MC [4]⊕A

(4)
MC [12]] do

15 Test the guessed key with several plaintext-ciphertext pairs
16 end
17 end
18 end
19 end
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5 MitM Preimage Attack on Weakened Camellia378

Camellia is a Feistel-based block cipher with 128-bit block. The diffusion layer379

is a 8 × 8 boolean matrix. In this work, we only target on the version with a380

128-bit key. The detailed specification is provided in Appendix B.2.381

5.1 The MitM Characteristic of 14-round weakened Camellia382

We first applied the n-XOR model to describe the attributes propagation through383

the diffusion layer. However, the check model can not be deployed since the large384

size of the diffusion layer. We relaxed the constraint to min{dB, dR, dm} ≥ 1− i,385

where i ≥ 1, as stated in Section 3.2, and manually checked the solution files to386

find out valid solutions (may not be optimal).387

The final valid configuration of the pseudo-preimage MitM attack on 14-388

round weakened Camellia-MMO without FL/FL−1 and whitening layers is shown389

in Figure 9. We deploy the n-XOR model by considering the MixColumns and XOR390

as a whole. The attack starts at A(9) and B(9) illustrated in Figure 9(a), in which391

the initial DoFs for and are λB = λR = 7. In the forward computation path,392

in order to facilitate the propagation of cells, there are lR = 6 linear constraints393

imposed on A
(9)
SB [7] ⊕ B(9)[i], for i ∈ {0, 1, 2, 4, 5, 6}. Similarly, in the backward394

computation path, lB = 6 linear constraints are imposed on A
(8)
SB [7] ⊕ A(9)[i],395

for i ∈ {0, 1, 2, 4, 5, 6}, to facilitate the propagation of cells. Hence, we get396

dB = λB − lB = 1 and dR = λR − lR = 1.397

Around the feed-forward mechanism of MMO mode, we set global constraints398

on round keys (k0, k1, k12, k13) to preserve some attributes like [28]. Specifically,399

for the given target H0∥H1, A
(0)
SB equals to A

(13)
SB by setting k0 = k13⊕H0 globally.400

Since B(0) = MC(A(13)
SB )⊕A(12)⊕H1 and A(1) = B(0)⊕MC(A(0)

SB ), then we can get401

A(1) = A(12)⊕H1. Similarly, A(2) equals to B(12)⊕H0 by setting k1 = k12⊕H1.402

The cost to determine such proper subkeys is given in Section 5.2 and will not403

exceed the time complexity of main MitM procedure.404

The matching points are A(5) and B(5) in Figure 9(c). At first glance, there405

are no degree for the direct matching. However, after applying a linear trans-406

formation P−1 to B(5) as in Figure 10, two-byte degree of match are derived.407

Since dB = dR = 1, we only use one-byte for match, i.e., dm = 1. The specific408

matching equation is Equation (6).409

⊕

i∈[0,1,2,4,5,6]

B(3)[i]⊕A
(3)
SB [3] =

⊕

i∈[0,1,2,4,5,6]

A(6)[i]⊕A
(5)
SB [3] (6)

According to Equation (1), the total time complexity is bounded by 28×(16−min{1,1,1}) ≈410

2120. A detailed attack procedure is given in Algorithm 3. The memory complex-411

ity of a hash table L is 28. And this attack can be converted to a second preimage412

attack with a time complexity of 2125 according to [24, Fact9.99].413
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Fig. 8: Meet-in-the-Middle key recovery attack on 12-round weakened Midori64,
optimized for time complexity
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Fig. 9: Meet-in-the-Middle pseudo-preimage attack on 14-round weakened
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Algorithm 3: MitM Pseudo-Preimage Attack on 14-round weakened
Camellia-MMO
1 Setting a global key satisfying k0 = k13 ⊕H0, k1 = k12 ⊕H1;
2 for 216 values of the bytes in A(9)[3]∥B(9)[3] do
3 for cB ∈ F8×6

2 do
4 for cR ∈ F8×6

2 do
5 L← [ ]
6 Solve the following system of equations to find the solution space

SB of in A(9) and B(9); /* |SB| = 28×(7−6) = 28 */
7

A
(8)
SB [7]⊕A(9)[0] = cB[0], A

(8)
SB [7]⊕A(9)[1] = cB[1], A

(8)
SB [7]⊕A(9)[2] = cB[2],

A
(8)
SB [7]⊕A(9)[4] = cB[3], A

(8)
SB [7]⊕A(9)[5] = cB[4], A

(8)
SB [7]⊕A(9)[6] = cB[5].

8 Solve the following system of equations to find the solution space
SR of in A(9) and B(9); /* |SB| = 28×(7−6) = 28 */

9

A
(9)
SB [7]⊕B(9)[0] = cR[0], B

(9)
SB [7]⊕A(9)[1] = cR[1], A

(9)
SB [7]⊕B(9)[2] = cR[2],

A
(9)
SB [7]⊕B(9)[4] = cR[3], A

(9)
SB [7]⊕B(9)[5] = cR[4], A

(9)
SB [7]⊕B(9)[6] = cR[5].

10 for vB ∈ SB do
11 Compute forward to A(3) and B(3), derive 1-byte EndB by
12

EndB ← P−1
(
B(3)

)
[3]⊕A

(3)
SB [3]

13 L[EndB]← vB;
14 end
15 for vR ∈ SR do
16 Compute backward to A(6) and B(6), derive 1-byte EndR by
17

EndR ← P−1
(
A(6)

)
[3]⊕A

(5)
SB [3]

18 for vB ∈ L[EndR] do
19 Reconstruct the (candidate) message X;

/* 28×(1+1−1) = 28 values passed the filter */
20 if X is a preimage then
21 Output X and stop;
22 end
23 end
24 end
25 end
26 end
27 end
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5.2 The Cost to Determine a Proper Key414

The key schedule of Camellia with 128-bit key is shown in Figure 15. As ex-415

plained above, we only need to focus on (k0, k1, k12, k13) [1],416

k0 ← K ′
A, k1 ← K ′′

A, k12 ← K ′′[30−63]∥K ′[0−29], k13 ← K ′[30−63]∥K ′′[0−29].

As shown in Figure 15, every internal state can be derived for given K ′ and417

S0. Hence, we get K ′′ = F0(K
′)⊕S0 and K ′′

A = F2(F1(S0))⊕F0(K
′). According418

to the global constraints k0 = k13⊕H0 and k1 = k12⊕H1, the relation between419

K ′ and S0 can be represented as Equation (7).420

F2(F1(S0))⊕ F0(K
′) =

(
F0(K

′)⊕ S0

)
[30− 63]∥K ′[0− 29]⊕H1 (7)

Besides, we note that K ′ and S0 can be placed at two sides of Equation (8),421

respectively. The left-hand-side of Equation (8) only contains variables in terms422

of K ′, while the right-hand-side of Equation (8) depends on S0.423

F0(K
′)⊕F0(K

′)[30−63]∥K ′[0−29] = F2(F1(S0))⊕S0[30−63]∥
30︷ ︸︸ ︷

0 · · · 0⊕H1 (8)

Then, an algebraic meet-in-the-middle attack can be mounted by enumerating424

K ′ and S0 independently to filter out valid pairs according to Equation (8), i.e.425

dB = dR = dm = 64. The time and memory complexity are both 264. Besides,426

the memory cost can be further reduced by extracting partial x bits of K ′ and427

S0 as global variables. Then, the memory can be reduced by a fraction of 2x,428

while the total time is bounded by 264+x. To avoid exceeding the time cost of429

main MitM procedure, 64 + x ≤ 120 should be fulfilled, i.e., x can take 56 at430

most. The corresponding memory cost is 28.431

6 MitM Preimage Attack on 6-Round Aria432

Aria is an SPN-based block cipher that supports a 128-bit block. In this work,433

we target on the version with a 128-bit key. The state is treated as a 4×4 matrix.434

And the diffusion layer is a 16 × 16 boolean matrix. The detailed specification435

of Aria is presented in Appendix B.3.436

Since the large size diffusion layer, only the n-XOR model can be applied437

to describe the MitM attribution propagation through the diffusion layer. By438

relaxing the constraint to min{dB, dR, dm} ≥ 1 − i, where i ≥ 1, as stated in439

Section 3.2, we finally found out a valid configuration of the pseudo-preimage440

MitM attack on 6-round Aria-DM as shown in Figure 11 (may not be optimal).441

The attack starts at A(1) in which the initial DoFs for and are λB = 1, λR =442

14, respectively. Since there are non-linear constraints on cells to compute A
(2)
DL443

through the DL operation. We use the table-based method in [13] to solve such444

non-linear constraints.445
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(5)
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⊕ SL DL
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SL A

(4)
DL

⊕ SL DL

K(3) A(3) A
(3)
SL A

(3)
DL

⊕ SL DL

(-5 , -0 )K(2) A(2) A
(2)
SL A

(2)
DL

⊕ SL DL

(-6 , -0 )K(1)

(+14 , +1 )

A(1) A
(1)
SL A

(1)
DL

⊕ SL DL

(-2 , -0 )K(0) A(0) A
(0)
SL A

(0)
DL

⊕

Target

Fig. 11: Meet-in-the-Middle pseudo-preimage attack on 6-round Aria-DM

Precomputation of red initial values. By enumerating the cells in A(1), in the446

backward computation path, two constraints imposed on cells can be computed447

as follows:448

{
A

(0)
DL [0]⊕A

(0)
DL [6]⊕A

(0)
DL [7]⊕A

(0)
DL [8]⊕A

(0)
DL [10]⊕A

(0)
DL [13] = c[0]

A
(0)
DL [0]⊕A

(0)
DL [4]⊕A

(0)
DL [5]⊕A

(0)
DL [9]⊕A

(0)
DL [11]⊕A

(0)
DL [14] = c[1]

In the forward computation path, there are 11 constraints imposed on the449

cells. During the DL operation in the 2nd round, 6 constraints are imposed on450

the cells. The specific expression of the constraints is shown in as follows:451





A
(1)
SL [4]⊕A

(1)
SL [6]⊕A

(1)
SL [8]⊕A

(1)
SL [9]⊕A

(1)
SL [13]⊕A

(1)
SL [14] = c[2]

A
(1)
SL [4]⊕A

(1)
SL [9]⊕A

(1)
SL [10]⊕A

(1)
SL [14]⊕A

(1)
SL [15] = c[3]

A
(1)
SL [2]⊕A

(1)
SL [5]⊕A

(1)
SL [6]⊕A

(1)
SL [8]⊕A

(1)
SL [13]⊕A

(1)
SL [15] = c[4]

A
(1)
SL [0]⊕A

(1)
SL [6]⊕A

(1)
SL [7]⊕A

(1)
SL [8]⊕A

(1)
SL [10]⊕A

(1)
SL [13] = c[5]

A
(1)
SL [5]⊕A

(1)
SL [7]⊕A

(1)
SL [10]⊕A

(1)
SL [11] = c[6]

A
(1)
SL [10]⊕A

(1)
SL [11]⊕A

(1)
SL [12]⊕A

(1)
SL [15] = c[7]

Based on the above 6 constraints
(
c[2], c[3], c[4], c[5], c[6], c[7]

)
, the effect of the452

cells on the 7 cells A
(1)
DL [0, 5, 7, 10, 11, 13, 14] can be cancelled as follows:453
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



A
(1)
SL [4]⊕A

(1)
SL [6]⊕A

(1)
SL [8]⊕A

(1)
SL [9]⊕A

(1)
SL [13]⊕A

(1)
SL [14] = c[2]

A
(1)
SL [4]⊕A

(1)
SL [9]⊕A

(1)
SL [10]⊕A

(1)
SL [14]⊕A

(1)
SL [15] = c[3]

A
(1)
SL [6]⊕A

(1)
SL [8]⊕A

(1)
SL [11]⊕A

(1)
SL [12]⊕A

(1)
SL [13] = c[2]⊕ c[3]⊕ c[7]

A
(1)
SL [2]⊕A

(1)
SL [5]⊕A

(1)
SL [6]⊕A

(1)
SL [8]⊕A

(1)
SL [13]⊕A

(1)
SL [15] = c[4]

A
(1)
SL [2]⊕A

(1)
SL [4]⊕A

(1)
SL [7]⊕A

(1)
SL [9]⊕A

(1)
SL [12]⊕A

(1)
SL [14] = c[2]⊕ c[4]⊕ c[6]⊕ c[7]

A
(1)
SL [0]⊕A

(1)
SL [6]⊕A

(1)
SL [7]⊕A

(1)
SL [8]⊕A

(1)
SL [10]⊕A

(1)
SL [13] = c[5]

A
(1)
SL [0]⊕A

(1)
SL [4]⊕A

(1)
SL [5]⊕A

(1)
SL [9]⊕A

(1)
SL [11]⊕A

(1)
SL [14] = c[2]⊕ c[5]⊕ c[6]

In a similar way, the 5 constraints
(
c[8], c[9], c[10], c[11], c[12]

)
imposed on the454

cells through the DL in the 3rd round are enough to cancel the effect of the cells455

on the 6 cells A(2)
DL [4, 6, 8, 9, 13, 14]. For the specific expression of the constraints,456

please refer to Algorithm 5 in Appendix C. And the detailed DoFs consumption457

process is illustrated as follows:458





A
(2)
SL [2]⊕A

(2)
SL [8]⊕A

(2)
SL [15] = c[8]

A
(2)
SL [2]⊕A

(2)
SL [9]⊕A

(2)
SL [12] = c[8]⊕ c[12]

A
(2)
SL [1]⊕A

(2)
SL [4]⊕A

(2)
SL [15] = c[9]

A
(2)
SL [1]⊕A

(2)
SL [6]⊕A

(2)
SL [12] = c[9]⊕ c[11]

A
(2)
SL [3]⊕A

(2)
SL [6]⊕A

(2)
SL [8] = c[10]

A
(2)
SL [3]⊕A

(2)
SL [4]⊕A

(2)
SL [9] = c[10]⊕ c[11]⊕ c[12]

In summary, the values of lR = 13 constraints can be determined for given values459

of λR = 14 cells in A(1). Hence, we get dB = 1, dR = λR − lR = 1.460

Matching process. The matching points are A(4)
SL , A

(4)
DL , indirect matching through461

the DL provides one-byte match, i.e., DoM = 1. The specific matching process is462

Equation (9).463

A
(4)
SL [0]⊕A

(4)
DL [13]⊕A

(4)
DL [14] = A

(4)
DL [3]⊕A

(4)
DL [4]⊕A

(4)
DL [6]⊕A

(4)
DL [8]⊕A

(4)
DL [9]

(9)
Based on the above MitM framework, combined with the table-based tech-464

nique for solving nonlinear constrained neutral words [13], Algorithm 5 gives a465

detailed attack procedure in Appendix C.466

Complexity. The nonlinear constraints imposed on cells are solved in Lines 2-8467

of Algorithm 5. That is, 14 cells of A(1)[0, 2, 4-15] are traversed to compute468

the exact values of cR[0-12]. Then, the values of A(1)[0, 2, 4-15] are stored in a469

hash table V under the index of cR[0-12]. Hence, the time complexity of the470

precomputation phase is 28×14 = 2112. The memory complexity is also 2112 to471

store table V .472

Lines 10-24 of Algorithm 5 stand for one MitM episode. With the parameters473

(dB, dR, dm) = (1, 1, 1), there are a total of 28×(1+1−1) = 28 solutions that can474
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be filtered out according to Equation (9). In order to find a full match of 128-475

bit, it’s expected to repeat 2120−8 = 2112 MitM episodes. By traversing the in476

A(1) at the outer loop and enumerating the 13 constraints imposed on cells,477

it is sufficient to find a full match. According to Equation (1), The total time478

complexity of the attack phase is479

28 × 2112 + 28×(16−min{1,1,1}) ≈ 2120.

The memory complexity is dominated by the table V of 2112. And this attack480

can be converted to a preimage attack with a time complexity of 2125 according481

to [24, Fact9.99].482

7 Conclusion483

In this paper, we propose the n-XOR model to simulate the XOR operation with484

an arbitrary number of input cells. Specifically, the size of n-XOR model is inde-485

pendent of the number of input cells, and thus it is well suitable for primitives486

with a binary matrix as the diffusion layer. To eliminate the subtle inaccuracies487

caused by n-XOR model, we introduce another check model to determine the ex-488

act DoFs consumption of MitM attributes propagation. However, the size of the489

check model is still limited by the number of input cells n and does not work well490

when n > 4 in this paper. We expect that there will be more elegant and efficient491

techniques to overcome this defect and we leave this as an open problem.492

We apply the above two new models to a MitM key recovery attack on 11-493

round Midori64 with low data and memory. Besides, when omitting the whiten-494

ing layers, two 12-round MitM characteristics for key recovery attack are found495

for optimizing time and data, respectively. For hash functions, we obtain im-496

proved preimage attack on 14-round weakened Camellia-MMO and 6-round Aria-497

DM. Both attacks are improved by 1 round compared to previous best records.498
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A Details of MILP Models for MitM Attack612

In this section, we briefly recall the MILP model for MC and XOR operation of613

AES in [6].614

The MC. The rules of the MC are formalized in two different directions in615

[6]. Taking the forward computation as an example, the set of rules is given as616

follows:617

1. If there is at least one in the input column, all the outputs are ;618

2. If there are but no and in the input column, then all the outputs are619

;620

3. If all the inputs are , then all the outputs are ;621

4. If there are and but no in the input column, each output must be622

or . Moreover, the sum of the numbers of and in the input and output623

columns must be no more than 3;624

5. If there are but no and in the input column, then each output must625

be or . Moreover, the number of in the input and output columns must626

be no more than 3.627

Some examples of valid coloring schemes of the MC-RULE in the forward compu-628

tation are shown in Figure 12.629

MC

-0

MC

-0

MC

-0

MC

-0

MC

-1

MC

-1

MC

-2

MC

-0

MC

-3

MC

-2

Fig. 12: Some valid coloring schemes for MC in forward computation in [6]

Let (α[0], α[1], α[2], α[3])T and (β[0], β[1], β[2], β[3])T be the input and output630

columns. In [6], Bao et al. use three 0-1 indicator variables µ, υ, ω for the input631

column to fulfill different rules auxiliary. Let µ = 1 if and only if there exists632

i ∈ {0, 1, 2, 3} such that (xα
i , y

α
i ) = (0, 0). Let υ = 1 if and only if xα

i = 1 for633

each i ∈ {0, 1, 2, 3}. Let ω = 1 if and only if yαi = 1 for each i ∈ {0, 1, 2, 3}.634

Then, with the help of µ, υ, ω, the MC-RULE in the forward computation can be635

described as a system of inequalities:636





3∑

i=0

xα
i − 4υ ≥ 0;

3∑

i=0

xα
i − υ ≤ 3.





3∑

i=0

xβ
i + 4µ ≤ 4;

3∑

i=0

yβi + 4µ ≤ 4;

3∑

i=0

yβi − 4ω = 0;





3∑

i=0

(xα
i + xβ

i )− 5υ ≤ 3;

3∑

i=0

(xα
i + xβ

i )− 8υ ≥ 0.
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The XOR. For the XOR operation in two different directions, the coloring637

schemes of the input and output cells are shown in Figure 13.

(-1 )

*

(a) For the forward computation

(-1 )

*

(b) For the backward computation

Fig. 13: The XOR in [6], where a “*” means that the cell can be any color

638

Let α[i], β[i] denote the input cells and γ[i] denote the output cell, where639

0 ≤ i ≤ 15. Let a boolean variable di indicate the consumption of DoF, where640

di = 1 means that one DoF is consumed to let the corresponding output be .641

The set of rules restrict (xα
i , y

α
i , x

β
i , y

β
i , x

γ
i , y

γ
i , di) to a subset of F7

2, which can642

be described by a system of linear inequalities with the convex hull technique in643

[36].644

B Descriptions of Midori, Camellia and Aria645

B.1 Specification of Midori646

Midori is a family of SPN-based lightweight block cipher designed by Banik et647

al. at ASIACRYPT 2015 [5]. With its low energy consumption, it is suitable for648

deployment in edge gateways and end devices to facilitate blockchain on-chain649

and off-chain interactions. Two versions of Midori use a 64-bit and a 128-bit650

internal state, respectively. In this work, we focus on the 64-bit version denoted651

by Midori64. The internal state of Midori64 can be represented as a 4×4 array652

as shown in Figure 14. Midori64 is of 16 iterated rounds and each round function653

consists of four operations:654

- SubCell (SC): Apply the 4-bit non-linear involution S-box on each nibble.655

- ShuffleCell (ShC): Update the position of each nibble by a pre-defined656

permutation.657

- MixColumn (MC): Each column is left multiplied by a 4 × 4 binary matrix658

M as follows.659

M =




0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


 .

- KeyAdd (KA): A round key is XORed to the internal state.660

For the last round, the operations ShC, MC and KA are omitted. Two sub-keys661

K(0)∥K(1) are derived from the 128-bit master key K and the round keys are662
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Fig. 14: One full round function of Midori64

generated by K(r%2) ⊕ αr alternatively, where 0 ≤ r ≤ 14 and αr is a round663

constant. Besides, additional KA operations are applied with a whitening key664

WK = K(0) ⊕K(1) before the first round and after the last round.665

B.2 Specification of Camellia666

Camellia is a Feistel-based block cipher designed by NTT and Mitsubishi Elec-667

tric Corporation [1] and has been specified in ISO/IEC 18033-3:2010 [20]. This668

work only targets on the weakened version of Camellia with 128 bits block and669

key size, where the FL/FL−1 transformations and whitening layers are omitted.670

The iterated round function consists of AddRoundKey (AK), SubBytes (SB) and671

MixColumns (MC) as shown in Figure 15. The linear layer of MC is a 8× 8 binary672

matrix described as follows.673

P =




1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 1
0 1 1 1 1 1 1 0
1 1 0 0 0 1 1 1
0 1 1 0 1 0 1 1
0 0 1 1 1 1 0 1
1 0 0 1 1 1 1 0




.

The key schedule takes a 128-bit key K = K ′∥K ′′ as the input of 4-round Feistel674

structure, as shown in Figure 15, to compute another 128-bit key KA = K ′
A∥K ′′

A.675

The round function is borrowed from the encryption, where the round keys676

are pre-defined constants. Then, each round key ki can be derived from the677

rotation of K or KA. Since we only focus on (k0, k1, k12, k13), we omit detailed678

key schedule here.679

B.3 Specification of Aria680

Aria was proposed by Korean researchers at ICISC 2003 [21] and the version681

1.2 was subsequently included in the Korean Standard (KS X1213) in 2004. In682

this paper, we focus our attention on Aria-128, which refers to both the block683

and key sizes are 128 bits, and which we henceforth abbreviate as Aria. Aria684
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Fig. 15: One full round function of Camellia and the key schedule of Camellia

is based on SPN structure with 12 rounds, and each round except the last one685

consists of Substitution-Layer (SL), Diffusion-Layer (DL) and AddRoundKey686

(AK) as shown in Figure 16. In the last round, the DL is omitted. Before the first687

round, a whitening key is XORed to the plaintext. The updated matrix P used in688

DL is a 16×16 binary matrix described as follows.689

P =




0 0 0 1 1 0 1 0 1 1 0 0 0 1 1 0
0 0 1 0 0 1 0 1 1 1 0 0 1 0 0 1
0 1 0 0 1 0 1 0 0 0 1 1 1 0 0 1
1 0 0 0 0 1 0 1 0 0 1 1 0 1 1 0
1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1
0 1 0 1 1 0 0 0 0 1 1 0 0 0 1 1
1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 0
0 1 0 1 0 0 1 0 1 0 0 1 1 1 0 0
1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1
1 1 0 0 0 1 1 0 0 0 0 1 1 0 1 0
0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 1
0 0 1 1 1 0 0 1 0 1 0 0 1 0 1 0
0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 0
1 0 0 1 0 0 1 1 1 0 1 0 0 1 0 0
1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0
0 1 1 0 1 1 0 0 1 0 1 0 0 0 0 1




.

In this paper, we target on the preimage attack on Aria-DM. Since the key is690

usually fixed as a constant in the DM hashing mode, we omit the description of691

the key schedule here.692

C Figure and algorithms for Midori64 and Aria693
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Fig. 16: One full round function of Aria

Algorithm 4: MitM Key Recovery Attack on 12-round weakened
Midori64, , optimized for data complexity

1 C[1, 3, 5, 8, 9, 13, 14]← 0, A(9)
MC [5, 9, 13]← 0

2 A
(10)
MC [0]⊕A

(10)
MC [4]← 0, A(10)

MC [0]⊕A
(10)
MC [12]← 0, A(10)

MC [2]⊕A
(10)
MC [6]← 0,

A
(10)
MC [2]⊕A

(10)
MC [10]← 0, A(10)

MC [7]⊕A
(10)
MC [11]← 0, A(10)

MC [7]⊕A
(10)
MC [15]← 0

3 Collecting plaintext-ciphertext pairs by traversing the non-constant 16− 7 = 9
cells in C, and storing them in table H

4 for all possible values of the cells in K(0) and K(1) do
5 for (cR,1, cR,2) ∈ F2×4

2 do
6 Derive the solution space SR of cells by{

K(0)[5]⊕K(0)[9] = cR,1

K(0)[5]⊕K(0)[13] = cR,2

7 L← [ ]
8 for vR ∈ SR do
9 Compute A

(4)
ShC[0, 4] along the forward computation path:

10 A
(9)
MC → C → DecK(C)→ A

(4)
ShC by accessing H

11 L[A
(4)
ShC[0]⊕A

(4)
ShC[4]]← vR

12 end
13 for 24 possible values of K(1)[15] do
14 Compute A

(4)
MC [0, 4] along the backward computation path:

C → A
(4)
MC

15 for Candidate keys in L[A
(4)
MC [0]⊕A

(4)
MC [4]] do

16 Test the guessed key with several plaintext-ciphertext pairs
17 end
18 end
19 end
20 end
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Fig. 17: Meet-in-the-Middle key recovery attack on 12-round weakened
Midori64, optimized for data complexity
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Algorithm 5: MitM Pseudo-Preimage Attack on 6-round Aria-DM
1 for 2x possible values of in A(1) /* x+ 104 = 120− 8, i.e., x = 8 */
2 do
3 V ← [ ];
4 for vR ∈ F8×14

2 in A(1) do
5 Compute backward to to get the values of the cells in A

(0)
DL ,

cR[0] ← A
(0)
DL [0]⊕A

(0)
DL [6]⊕A

(0)
DL [7]⊕A

(0)
DL [8]⊕A

(0)
DL [10]⊕A

(0)
DL [13],

cR[1] ← A
(0)
DL [0]⊕A

(0)
DL [4]⊕A

(0)
DL [5]⊕A

(0)
DL [9]⊕A

(0)
DL [11]⊕A

(0)
DL [14].

6 Compute forward to the cells in A
(1)
SL and A

(2)
SL ,

cR[2] ← A
(1)
SL [4]⊕A

(1)
SL [6]⊕A

(1)
SL [8]⊕A

(1)
SL [9]⊕A

(1)
SL [13]⊕A

(1)
SL [14],

cR[3] ← A
(1)
SL [4]⊕A

(1)
SL [9]⊕A

(1)
SL [10]⊕A

(1)
SL [14]⊕A

(1)
SL [15],

cR[4] ← A
(1)
SL [2]⊕A

(1)
SL [5]⊕A

(1)
SL [6]⊕A

(1)
SL [8]⊕A

(1)
SL [13]⊕A

(1)
SL [15],

cR[5] ← A
(1)
SL [0]⊕A

(1)
SL [6]⊕A

(1)
SL [7]⊕A

(1)
SL [8]⊕A

(1)
SL [10]⊕A

(1)
SL [13],

cR[6] ← A
(1)
SL [5]⊕A

(1)
SL [7]⊕A

(1)
SL [10]⊕A

(1)
SL [11],

cR[7] ← A
(1)
SL [10]⊕A

(1)
SL [11]⊕A

(1)
SL [12]⊕A

(1)
SL [15].

cR[8] ← A
(2)
SL [2]⊕A

(2)
SL [8]⊕A

(2)
SL [15],

cR[9] ← A
(2)
SL [1]⊕A

(2)
SL [4]⊕A

(2)
SL [15],

cR[10] ← A
(2)
SL [3]⊕A

(2)
SL [6]⊕A

(2)
SL [8],

cR[11] ← A
(2)
SL [4]⊕A

(2)
SL [6]⊕A

(2)
SL [12]⊕A

(2)
SL [15],

cR[12] ← A
(2)
SL [8]⊕A

(2)
SL [9]⊕A

(2)
SL [12]⊕A

(2)
SL [15].

7 V [cR]← vR; /* There are 28 elements in V [cR] for each cR */
8 end
9 for cR ∈ F8×13

2 do
10 L← [ ]
11 for vR ∈ V [cR] do
12 Compute to the cells in A

(4)
DL , and one-byte EndR for matching is

derived by
13

EndR ←
(
A

(4)
DL [3]⊕A

(4)
DL [4]⊕A

(4)
DL [6]⊕A

(4)
DL [8]⊕A

(4)
DL [9]

)
14 L[EndR]← vR
15 end
16 for 28 possible values of A(1)[3] do
17 Compute to the cells in A

(4)
DL and A

(4)
SL , derive one-byte EndB for

matching by
18

EndB ←
(
A

(4)
SL [0]⊕A

(4)
DL [13]⊕A

(4)
DL [14]

)
19 for vR ∈ L[EndB] do
20 Reconstruct the (candidate) message X
21 if X is a preimage then
22 Output X and stop
23 end
24 end
25 end
26 end
27 end
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